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NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET 

DET MEDISINSKE FAKULTET 

Uracil in DNA - et viktig mellomprodukt for adaptiv immunitet og mutagen skade 

 Uracil er en av fire nukleobaser i RNA, men små mengder kan også befinne seg i 
DNA. Det er to kilder til genomisk uracil: misinkorporering av deoksyuridin trifosfat (dUTP) 
i steden for deoksytymidin trifosfat (dTTP) under DNA replikasjon, og deaminering av 
cytosin. dUTP misinkorporering danner uracil:adenin (U:A) par uten konsekvenser for 
genetisk informasjon. Cytosin deaminering resulterer derimot i uracil:guanin (U:G) par med 
mutagent potensiale. U:G par har derfor lenge blitt ansett som DNA skade, men i 
begynnelsen av 2000 tallet ble det etterhvert også klart at activation induced deaminase 
(AID) drevet cytosin deamineringer startpunktet for antistoffsmodningsprosessene somatisk 
hypermutasjon (SHM) og klasseskift rekombinajon (CSR). Til tross for sin rolle i det 
antistoffmodning har sekvensringsekperimenter av kreftgenomer vist at andre cytosin 
deaminaser (APOBECer) er ansvarlige for mutasjonssignaturer i mange ulike krefttyper. 
 Vårt arbeid har fokusert på uracils tilknytning til kreft og adaptiv immunitet. Mange  
uracil-relaterte observasjoner kommer fra musemodeller. I artikkel I undersøkte vi derfor 
aktivitetsnivå og mengde av tre uracilreparerende enzymer UNG2, SMUG1 og TDG i ulike 
cellelinjer fra menneske og mus. Vi fant at den totale uracilfjerningskapasiteten fra U:A og 
U:G substrater var større i humane celler enn for museceller, hovedsakelig fordi UNG-nivået 
var høyere. I museceller stod SMUG1 for 50 % av uracil-fjerningskapasitet fra U:G substrat, 
men bare 1 % i humane celler. Slike forskjeller er viktige å ta i betraktning når man bruker 
musemodeller i forskning rettet mot genomisk uracil. Vi stimulerte videre primære B-celler 
fra mus til å gjennomgå CSR. UNG og SMUG1 aktivitet i de stimulerte B-cellene var på 
samme nivå som i de øvrige musecellelinjene, hvilket indikerer at både UNG og SMUG1 er 
uttrykt og kan fjerne U:G fra deaminert cytosiner i aktiverte B-celler. 
 Flere forskningsgrupper har forsøkt å måle genomiske uracilnivåer, men resultatene 
deres varierte med nesten tre størrelsesordener. De store forskjellene i målte uracilnivåer kan 
forklares med biologiske ulikheter i prøvene til de ulike gruppene, men vi foreslår at det 
stammer fra tekniske svakheter i målemetodene. I artikkel II identifiserte vi og løste 
problemer ved DNA preparasjon som bidro til overvurderingen av uracilnivåer, hovedsakelig 
fra med-isolert dUMP og in vitro-generert uracil fra cytosindeaminering. Vi presenter en 
metode for absolutt kvantifisering av genomisk uracil hvor DNA hydrolyseres med enzymer 
til nucleosider, deoksycytidin fjernes ved væskekromatografi-fraksjonering, og deoxyuridin 
måles gjennom væskekromatografi-massespektrometri (LC/MS/MS). Vi testet metoden i en 
relevant biologiske sammenheng ved måling av genomisk uracilnivåer i mus embryonale 
fibroblaster (MEFer) og humane lymfoblastoide cellelinjer som ikke utrykker UNG. Vi fant 
at de UNG-manglene cellene inneholdte fem- til elve ganger mer genomisk uracil. Videre 
observerte vi at UNG-kompetente celler inneholdt 400 til 600 uraciler per genom. Våre 
uracilmålinger er lavere enn tidligere rapporterte genomisk uracil verdier. Dette indikerer at 
det basale uracil nivået har blitt overvurdert og at vår metode gir den mest nøyaktige uracil 
kvantifiseringen.  
 UNG2 er ansett som den viktigste glycosylasen i reparasjon av genomisk uracil, mens 
SMUG1 fungerer som støtte. I artikkel III studerte vi rollene til de to glycosylasene ved bruk 
av Ung-/-Smug1-/- mus. Vi observerte at SMUG1i hovedsak står for genomisk 5-
hydroxymethyluracil (5-hmU) fjerningsaktivitet i musevev og MEFer, og at Smug1-/- mus 
akkumulerte 5-hmU. I motsetning til dette hadde SMUG1-status ingen effekt på genomiske 
uracil nivåer og nesten ingen effekt på uracil fjerningsaktivitet. Fjerningsaktivteten ble kun 
funnet lavere i Smug1+/- og Smug1-/- hjerneprøver. UNG-mangel reduserte uracil 
fjerningsaktiviteten i alle vevsprøver bortsett fra hjerne, og Ung-/- mus hadde to- til tre-gang 
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høyere genomiske uracilnivåer enn villtype mus. Vi fant imidlertid en mye større økning, 3- 
til 20-ganger, av genomiske uracilnivåer i Ung-/-Smug1-/- mus, i tillegg til en komplett 
ablasjon av uracil fjerningsaktiviteten. Vi forutsetter derfor at UNG er i hovedsak ansvarlig 
for uracil-fjerningsaktivitet i alle testete vev bortsett fra hjerne med SMUG1 som støtte, og at 
enten UNG eller SMUG1 er tilstrekkelig for å opprettholde basale nivåer av genomisk uracil. 
 Selv om det er mange bevis for at AID og APOBEC mutasjonssignaturer i kreft 
stammer fra enzymatisk cytosin deaminering har uracilnivåer ikke ble testet i sammenheng 
med AID og APOBEC uttrykk. I artikkel IV målte og korrelerte vi derfor genomisk uracil- og 
AID-nivåer i en rekke ulike B-celle lymfomcellelinjer. Vi fant tydelig korrelasjon mellom 
genomisk uracil og AID uttrykk i lymfomcellelinjer, og ingen korrelasjon i ikke-
lymfomcellelinjer. I tillegg økte eller reduserte vi AID nivåer ved AID-overuttrykk, B-celle 
stimulering og shRNA mediert AID ekspresjonshemming.  Vi observerte at AID økning førte 
til mer genomisk uracil mens AID senking reduserte mengden genomisk uracil. Vi korrelerte 
genomisk uracil med uracil-DNA glykosylasenivåer, men fant kun svakere korrelasjoner enn 
med AID uttrykk og kun i ikke-lymfomcellelinjer. Ved repetisjon av sekvenseringsanalysene 
rettet mot APOBEC mutasjonssignaturer fant vi en AID-spesifikke mutasjonssignatur i B-
celle lymfomer og kronisk lymfatisk leukemi. Vi har dermed påvist at høye AID uttrykk 
følges av genomisk uracil akkumulering og at dette er assosiert med kreft in vivo. 
 
 I sum har dette arbeidet bidratt til bedre forståelse av de biologiske egenskapene til 
genomisk uracil og de proteinene som kontrollerer dets nivåer. Dette har gitt ny innsikt i 
hvordan uracil prosesseres og hva konsekvensene er ved feilregulering. 
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1. INTRODUCTION 

 Genomic uracil is both a lesion and a necessary intermediate for adaptive immunity in 

mammalian cells. In this sense, both an abundance and a shortage of DNA uracil through 

either genetic abnormalities or exogenous perturbations can lead to pathological phenotypes. 

In this thesis, I will first provide an overview of the possible sources of genomic uracil 

(section 2). Then, I will describe the main and alternative pathways for its removal from 

DNA (sections 3 and 4). Next, I will delve more deeply into endogenous DNA uracilation 

and explain how genomic uracil is used as an intermediate in antibody maturation and as a 

tool to restrict the replication of exogenous viral genomes (sections 5 and 6). Finally, I will 

provide an overview of how both an abundance and a shortage of genomic uracil can lead to 

human disease (section 7). 

 Before continuing onwards, I encourage the reader to familiarize him- or herself with 

the abbreviations section on the previous page. I will generally list an unabbreviated name 

before using the abbreviation, but a section or more may sometimes stand between the 

original unabbreviated name of a molecule, idea, or process and its subsequent abbreviated 

use, leading to confusion. Furthermore, I will not expand on the abbreviations between the 

five canonical DNA and RNA bases, nucleosides, and nucleotides. The general nomenclature 

in this case is as follows, using adenine as an example: the free base is A or Ade, the RNA 

nucleoside is rA or rAdo, the DNA nucleoside is dA or dAdo, and the nucleotides are 

(d)AMP, ADP, and ATP for mono-, di, and triphosphorylated forms, respectively. 

2. Sources of Genomic Uracil 

 Uracil is a canonical RNA base that can be found in DNA in very low quantities. In 

this section, I will describe the three mechanisms by which uracil is introduced into DNA: 

dUTP misincorporation during DNA replication instead of dTTP (section 2.1), non-

enzymatic, spontaneous or chemical-induced cytosine deamination to uracil (section 2.2), and 

enzymatic cytosine deamination to uracil by DNA cytidine deaminases (section 2.3). There is 

no overt deleterious effect of dUTP misincorporation into DNA instead of dTTP because the 

resulting U:A pairs identically to the original T:A pair, although the uracil may be recognized 

and improperly processed to yield a mutation. Cytosine deamination to uracil is mutagenic 

and yields a C:G to T:A transition mutation after replication.  

2.1 dUTP misincorporation during DNA replication 

 Mammalian DNA polymerases cannot differentiate between dUTP and dTTP [1], so 

the extent of dUTP misincorporation depends on the dUTP/dTTP ratio in the vicinity of the 

polymerase during DNA synthesis (figure 1) [2,3]. Thus, a cell must maintain a low 
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dUTP/dTTP ratio to avoid excessive DNA uracilation. The normal intracellular ratio is 

estimated at well below 1% [4]. 

 dUTP is an intermediate in normal pyrimidine metabolism (reviewed in [3]). Low 

dUTP levels are maintained by deoxyuridine 5 -triphosphate nucleotidohydrolase (dUTPase), 

which dephosphorylates dUTP to dUMP [5]. The dUMP is converted to dTMP by 

thymidylate synthase (TS) using N5,N10-methylene-tetrahydrofolate (MTHF) as a methyl 

donor. dTTP is eventually generated from the dTMP by thymidylate kinase (DTYMK) and 

nucleoside diphosphate kinase (NDK) and used in replication [3,6–8]. The main factors 

controlling the dUTP/dTTP pool are dUTPase and TS activities, and it has been estimated 

that one dUTP per 104 dTTPs is incorporated per cell per day [2,9]. This amounts to ~80,000 

misincorporated uracils per genome (~27 dUrd per 106 dN), assuming a 46.1% GC content 

and that G = C and A = T (Chargaff’s rule) [10,11].  

 A significant reduction of either dUTPase or TS activity leads to a phenomenon called 

“thymineless death,” which is thought to be primarily a result of dTTP pool depletion instead 

of dUTP misincorporation [12,13]. It has been proposed that thymineless cells accumulate 

single-stranded DNA (ssDNA) gaps that are converted into double-stranded DNA (dsDNA) 

breaks (DSBs) behind the replication fork. The released dTMP can be converted to dTTP and 

used for new polymerase initiations, but further disintegration of small replication bubbles 

causes replication origin destruction [14]. Thymineless death seems to be independent of 

dUTP incorporation [15,16]. More subtle attenuation of genomic uracil misincorporation by 

TS inhibition will be discussed in section 7.2.4.  

 
Figure 1: dUTPase and TS activities regulate the amount of dUTP in the cell. dUTP is 

degraded to dUMP by dUTPase and converted to dTMP by TS. The dTMP is subsequently 

converted to dTTP by DTYMK and DNK. The dUTP misincorporation rate is a factor of the 

dUTP/dTTP ratio. 
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2.2 Non-enzymatic cytosine deamination to uracil 

 Cytosine is spontaneously deaminated to uracil in DNA. The spontaneous 

deamination rate of ssDNA is 2x10-10 deaminations per second and the rate of dsDNA is 200 

to 300 times slower [17,18]. The deamination rate was measured in vitro by heat-inducing 

deamination at 95 °C and extrapolating to 37 °C. The actual in cellulo deamination rate may 

be attuned by e.g. different solution conditions, protein binding, and DNA supercoiling. The 

spontaneous deamination rate has been estimated to be 100 to 500 cytosines per cell per day 

(0.033 to 0.17 dUrd per 106 dN) if 0.1% of the genome is single-stranded [19].  

 Nitrous anhydride (N2O2) can also induce cytosine deamination (called nitrosative 

deamination) [20,21]. N2O2 is an intermediate in nitric oxide (NO•) production. NO• is 

produced as a physiological response to infection, a regulator of immune functions, or a 

chemical messenger for neurons (reviewed in [22]). Inflammation and cancer have been 

linked to the generation of high NO• levels, and an estimated 20% of cancers are caused by 

inflammation and chronic infection [22,23]; however, deamination only occurs at toxic N2O2 

levels [24,25]. Thus, nitrosative deamination is not likely to be a significant contributor to the 

genomic uracil load.  

2.3 Enzymatic cytosine deamination to uracil 

 Enzymatic cytosine deamination is primarily performed by the apolipoprotein B 

mRNA editing enzyme, catalytic polypeptide-like (APOBEC) enzyme family. APOBECs 

have one or two zinc (II)-binding catalytic domains that catalyze cytosine deamination in 

DNA or RNA (reviewed in [26–28]). There are eleven known APOBECs in humans: 

activation induced deaminase (AID), APOBEC1, APOBEC2, APOBEC3A through 

APOBEC3G, and APOBEC4 (A1, A2, A3A through A3G, and A4, respectively). A1, A2, 

and A4 have not been shown to have verifiable DNA cytosine deamination activity or 

contribution to the genomic uracil load, so I will describe them only briefly and focus on AID 

and A3. 

 A1 is primarily an mRNA editing deaminase present in the gastrointestinal tract that 

participates in lipid metabolism [29]. Briefly, A1 deaminates apolipoprotein B (APOB) pre-

mRNA to change a glutamine codon to a stop codon, shortening the subsequent APOB 

protein [30,31]. APOB is the primary lipoprotein in chylomicrons. The shortened protein has 

an accelerated plasma turnover relative to the full length protein, so the editing activity of 

APOBEC1 is crucial for maintaining physiological concentrations of APOB-containing 

lipoproteins in plasma [28]. A2 has no known physiological substrate, is expressed only in 

heart and skeletal muscles, and is thought to promote muscle fiber differentiation [32–34]. Its 
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function remains largely unelucidated, but it has been shown to deaminate methylated 

cytosines, which may indicate a role in epigenetic regulation [28,35]. Finally, A4 also has no 

known substrate. It is found in the testis and has been suggested as a possible mRNA editing 

enzyme in spermatogenesis, though this has not been researched and no detectable mutagenic 

activity in bacterial or yeast assays has been detected [36,37]. 

 A3 enzymes have been shown to deaminate ssDNA and their primary role seems to be 

acting against exogenous viruses and endogenous retroelements [38–41]. Section 6 contains a 

brief overview of the role of A3 enzymes in innate immunity. A3D, A3F, and A3G are 

cytoplasmic, A3B is nuclear, and A3A, A3C, and A3H are both cytoplasmic and nuclear 

[39,42–44]. Moreover, A3 enzymes deaminate at specific target sequences [45–48]. In 

general, A3 enzymes are found in T-cell, B-cells and phagocytic cells, although they are not 

confined to immune cells and can be expressed in e.g. the ovaries and testes and embryonic 

stem cells [49,50]. There is no clear agreement as to relative abundance of A3 in different 

tissues because of technical limitations in their measurement, but the general consensus 

suggests a broad and constitutive expression profile in humans [28]. Given their prevalence, 

nuclear localization, and mutagenicity, it is unsurprising that recent evidence indicates that 

A3 enzymes play a large role in the development of many cancers. The pathological 

consequences of A3 mutagenicity will be discussed in section 7.2.5.  

 AID also deaminates ssDNA and is essential for immunoglobulin (Ig) gene 

diversification in activated mature B-cells [51–54]. Normally, AID expression is restricted to 

germinal center (GC) B-cells, although there is evidence of AID expression in other cell 

types as a result of hepatitis C or  H. pylori infection as well as pro-inflammatory cytokines  

[55–57]. AID targets the sequence WRCY (W=A/T, R=A/G, Y=T/A). The role of AID in 

antibody maturation is discussed in sections 5.3 and 5.4 and the consequences of AID 

deamination outside the Ig loci is discussed in section 7.2.5. 

 Cytosines can also be deaminated by methyltransferases. Methylation of cytosines at 

CpG islands by methyltransferases is fundamental to epigenetic gene silencing. DNA 

(cytosine-5)-methyltransferases (DNMTs) convert cytosines to 5-methylcytosines (5-mC) 

using S-adenosylmethionine (SAM) as a methyl donor [58]. This reaction includes a 

dihydropurine intermediate that can spontaneously deaminate to uracil prior to methyl 

transfer from SAM. Thus, either dysfunctional DNMTs or low SAM levels result in DNMT1 

cytosine deamination [59,60]. Several prokaryotic methyltransferases as well as the catalytic 

domain of DNMT3a have been shown to deaminate cytosine [59,61,62]. Not all DNMTs 

exhibit this activity and their contribution to the genomic uracil load remains unstudied [63]. 
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3. Repair of Genomic Uracil by the Base Excision Repair Pathway 

 Repair of genomic uracil is usually performed by the base excision repair (BER) 

pathway, in which uracil-DNA glycosylases initiate the repair process by recognizing and 

excising uracil (figure 2). BER also repairs nucleobase oxidations, alkylations, and 

deaminations, as well as misincorporated nucleotides, abasic (AP) sites, and ssDNA breaks 

(SSBs), the specificity of which depends on the initiating DNA glycosylase (reviewed in 

[64,65]). BER can proceed via short- or long-patch (SP or LP, respectively) repair pathways 

or DNA polymerase  (POL ) dependent two nucleotide insertion [66–68]. In this section, I 

will provide a step-by-step overview of SP- and LP-BER pathways and then provide a more 

detailed examination of the known uracil-DNA glycosylases. 

3.1 General base excision repair pathway 

 The exact mechanism by which glycosylases scan DNA for their respective lesions is 

not fully elucidated. For non-recruited DNA scanning, i.e. if the glycosylase is not recruited 

to the vicinity of the replication fork for scanning during replication, a glycosylase requires a 

balance of  specialized thermodynamics and kinetics for its interaction with both specific and 

non-specific DNA sequences [69]. Should the enzyme bind too tightly to non-specific 

sequences, it may not have the opportunity to scan the entire genome before further 

replication. Conversely, if the enzyme binds too weakly, some lesions may be overlooked 

[70,71]. The general consensus in the field is that most DNA glycosylases scan DNA in two 

ways (reviewed in [72]). The first scanning mode is referred to as “DNA sliding” and 

involves tracking along the DNA using a loosely-associated enzyme state, and the second 

mode is referred to as “DNA hopping” and involves intermittent dissociation and re-

association with the DNA [73–75]. Due to their complexity, studies on glycosylase DNA 

scanning have been performed with simplified in vitro systems, so the effects of glycosylase 

recruitment to e.g. the replication fork, post-translational modifications (PTMs), and 

glycosylase-protein binding have not been studied. 

 The common initiation step for all glycosylases upon lesion recognition is the 

“flipping” of the aberrant base out of the DNA helix and into the enzyme’s substrate 

recognition pocket in which the N-glycosidic bond between the C1 on the deoxyribose (dR) 

and the nucleobase is cleaved, leaving an AP site (reviewed in [76]). Most organisms have 

several DNA glycosylases for the removal of various damages, which has traditionally been 

thought to indicate a level of redundancy by the BER glycosylases [76]. After base removal, 

apurinic/apyrimidinic endonuclease 1 (APE1) nicks the phosphodiester bond 5  to the AP 

site, leaving a 3 -OH and a 5 -deoxyribose phosphate (dRP) moiety [76,77]. Some 
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glycosylases (called bifunctional glycosylases) also have AP-lyase activity that allows them 

to nick the phosphodiester bond 3  of the AP site by -elimination or both 3  and 5  of the AP 

site by / -elimination. The AP-lyase-derived nick leaves a fragmented sugar derivative 3  of 

the strand break and is therefore blocks DNA polymerases, so APE1 or polynucleotide kinase 

3 -phosphate (PNKP) must process the nick before subsequent DNA synthesis [78]. 

 DNA synthesis can then proceed via SP- or LP-BER, which insert one or two to 

twelve nucleotides, respectively. The choice of SP/LP-BER is likely determined by relative 

protein concentrations and specific interactions between repair and scaffolding proteins at the 

lesion, as well as lesion type, stress response, cell type, and cell cycle [66–68,79–84]. Most 

glycosylases responsible for oxidatively damaged base excision are bifunctional and tend to 

follow SP-BER while monofunctional glycosylases follow either SP- or LP-BER [85]. It has 

therefore been proposed that since oxidatively damaged bases often occur in clusters, closely-

spaced LP-BER could lead to strand breakage, so SP-BER is a more sensible choice for 

oxidatively damaged bases [85]. Despite these insights, the exact mechanisms determining 

SP- versus LP-BER remain unknown. 

 In SP-BER, one nucleotide is usually inserted by POL  or (less frequently) POL  and 

the nick is ligated by DNA ligase I (LIG1) or LIG3  in complex with scaffolding protein X-

ray repair cross-complementing protein 1 (XRCC1) [65,86–88]. Several other polymerases 

(POL , POL , POL , and POL ) have also been proposed to be involved in BER [89–92]. 

LIG3 is stabilized by but can function independently of XRCC1 and is essential in 

mitochondrial BER, but apparently dispensable in nuclear BER [93–95]. In LP-BER, two to 

twelve nucleotides are inserted by POL  or POL  and POL  in complex with proliferating 

cell nuclear antigen (PCNA) and replication factor C (RFC). The nucleotide insertion 

displaces the nucleotides 3  of the AP site, leaving a ssDNA “flap.” The flap is removed by 

flap endonuclease 1 (FEN1) and ligation is performed by LIG1 [96]. 
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Figure 2: The SP- and LP-BER pathways. The base is recognized and excised by a 

monofunctional glycosylase that levels an AP-site or bifunctional glycosylase also nick the 

strand. The AP-site is nicked by APE1 and the nicked strand processed by APE1 or PNKP, 

resulting in a SSB with a 3 -OH and 5 -phosphate. In SP-BER, POL  fills in the nucleotide 

and LIG1 or LIG3 ligate the nick. In LP-BER, POL , POL , or POL  fill in two to twelve 

nucleotides, FEN1 removes the flap, and LIG1 ligates the nick. Modified from [97]. 
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3.2 Uracil recognition and excision by uracil-DNA glycosylases 

 There are five known uracil-excising DNA glycosylases: uracil-DNA glycosylase 1 

and 2 (UNG1/2), single-strand selective monofunctional uracil DNA glycosylase 1 

(SMUG1), G/T mismatch-specific thymine DNA glycosylase (TDG), and methyl-CpG-

binding domain protein 4 (MBD4) (table 1). Their activities depend on sequence context, 

DNA strandedness (i.e. ssDNA or dsDNA), the base opposite the uracil (U:A or U:G), cell 

cycle, PTMs, interaction partners, and their location in the genome [97,98]. Several of these 

parameters were studied in Articles I and III of this thesis. 

3.2.1 UNG1 and UNG2 

 UNG is the major uracil glycosylase in mammalian cells [99,100]. The UNG gene 

encodes two isoforms with identical catalytic domains and unique N-termini that determine 

protein localization [101]. UNG1 expression is controlled by the PB promoter in the UNG 

gene and localizes to mitochondria, and UNG2 is controlled by the PA promoter and localizes 

to the nucleus [101]. UNG1 mRNA is expressed in all tissues, but UNG2 mRNA is mainly 

found in proliferative tissue like the testis, colon mucosa, small intestine, and the thymus 

[102]. UNG mRNA and protein levels are cell cycle-dependent: UNG2 is up-regulated in late 

G1- and early S-phase and UNG1 is constitutive expressed with a less pronounced up-

regulation in early S-phase [102]. UNG2 also preferentially excises uracil from ssDNA 

contexts than from dsDNA, and U:G over U:A [100,103]. Furthermore, sequence context 

specificity (i.e. the flanking nucleotides) trumps U:G over U:A preference [98,104,105]. In 

addition to uracil, UNG2 has been shown to less efficiently excise uracil analogues with 

minor 5  modifications like 5-fluorouracil (5-FU), 5-hydroxyuracil (5-hU), alloxan, and 

isodialuric acid [77,100,105,106]. 

 It makes biological sense that the UNG2 is the main uracil-excising enzyme coupled 

to DNA replication because many more uracils probably arise from dUTP minsincorporation 

during replication than from spontaneous cytosine deamination. UNG2 has a much higher 

catalytic turnover rate compared to other uracil-DNA glycosylases, so it is well suited for fast 

uracil excision in the replication fork where dUTP misincorporation takes place and the 

spontaneous deamination rate increased [17,100]. Furthermore, UNG2 is phosphorylated at 

Ser23 in late G1- and early S-phase, which increases its association with the DNA binding 

protein replication protein A (RPA) catalytic turnover rate on ssDNA [107]. Conversely, 

UNG2 Ser64 and Thr60 phosphorylations throughout the S-phase reduce RPA binding and 

facilitate ubiquitinylation and proteosomal degradation in G2 [107]. Co-immunoprecipitation 

experiments have also shown that BER complexes contain UNG as the only uracil-DNA 
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glycosylase, APE1, POL , POL , POL , POL , DNA protein kinase (DNA-PK), XRCC1, 

PCNA, LIG1, DNA replication licensing factor MCM7 (MCM7, also referred to as mini-

chromosome maintenance protein 7), and cyclin A, supporting replication-associated repair 

[108,109]. Finally, UNG2 co-localizes with RPA and PCNA in replication foci [110,111].  

 UNG2’s role in the mutagenic processing of genomic uracil in antibody maturation 

will be discussed in sections 5.3 and 5.4, and the consequences of UNG2 deficiency will be 

discussed in sections 7.2.1 and 7.2.2. 

3.2.2 SMUG1 

 Like UNG2, SMUG1 excises uracil, 5-hU, 5-FU, alloxan, and it also excises 5-

hydroxymethyluracil (5-hmU), 5-carboxyluracil (5-caU) and 5-formyluracil (5-fU) [100,112–

114]. Unlike UNG2, SMUG1 is constitutively expressed throughout the cell cycle and is 

thought to be the primary backup for UNG2 in the repair of U:A and U:G, although it cannot 

compensate for UNG2 deficiency in human B-cells [100,115]. While UNG2 is responsible 

for rapid repair of both U:A and U:G during replication, SMUG1 is thought to be more 

important for U:G repair in non-replicative chromatin [116]. 

 SMUG1 has been suggested as a reader of epigenetic markers like 5-hmU in addition 

to its role as a repair glycosylase [117]. Up-regulation in ten eleven translocation (TET) 

enzymes, which are linked to DNA demethylation, induced 5-hmU accumulation [118,119]. 

Furthermore, 5-hmU was recently shown to be introduced by enzymatic oxidation of thymine 

by TET enzymes in mouse embryonic stem cells (mESC) independently of 5-

hydroxymethylcytosine (5-hmC) or ROS-mediated thymine oxidation [120]. Smug1-/- mouse 

embryonic fibroblasts lack 5-hmU excision activity and resist normally toxic concentrations 

of 5-hmdUrd treatment [121]. It had been speculated that a glycosylase excising 5-hmU in 

DNA could be involved in the demethylation of 5-mC [122]. The theory has gained 

credibility in light of evidence showing that 5-hmC is a natural DNA component [123–125]. 

5-mC could thus be demethylated by 5-mC hydroxylation to 5-hmC, deamination to 5-hmU 

by AID/APOBECs, excision by SMUG1, and BER insertion of C [118,119,126]. This 

mechanism has been called into question since the discovery that AID/APOBECS do not 

deaminate 5-hmC and deaminate 5-mC ten-fold slower than the unmodified base [127,128]; 

however, both 5-hmU and SMUG1 may yet have undiscovered epigenetic roles.  

 There is also evidence for a role of SMUG1 in ribosomal RNA (rRNA) regulation. 

SMUG1 has broad nuclear localization and is slightly enriched in the nucleoli, where rRNA 

synthesis and metabolism takes place [100,129]. SMUG1 depletion in mice leads to 5-hmU 

accumulation in RNA and SMUG1 interacts with pseudouridine synthetase dyskerin (DKC1), 
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indicating a role for SMUG1 in rRNA quality control in that 5-hmU-modified RNA may be 

degraded by the exosome in its absence [130].  

3.2.3 TDG 

 TDG excises U:G (not U:A) and T:G that presumably originate from C or 5-mC 

deamination, respectively, with a preference towards U:G [131,132]. TDG has a very low 

turnover compared to UNG2 because it tightly binds to the AP site generated by uracil 

excision [133,134]. C-terminal TDG SUMOylation at Lys350 reduces AP site binding 

affinity and increases U:G turnover while decreasing T:G activity [134,135]. So although 

TDG does not seem like a viable backup for UNG2 and SMUG1, its SUMOylated form plays 

a role in uracil repair. In addition to uracil and thymine, TDG can excise 5-hU, 5-hmC, 5-FU, 

the lipid peroxidation product 3,N4-ethenocytosine ( C), and the 5-mC oxidation products 5-

formylcytosine (5-fC) and 5-carboxylcytosine (5-caC) [136–139].  

 TDG is important in epigenetic regulation during embryonic development. Knockout 

or catalytic inactivation of TDG leads to embryonic lethality in mice [126,126]. The TDG-

deficient embryos showed a decrease in developmental transcription factors (e.g. Hox) by 

perturbed methylation at their regulatory domains. In addition, TDG knockdown led to 5-caC 

accumulation in embryonic stem cells and simultaneous TET and TDG overexpression led to 

5-caC and 5-fC depletion in HEK293 cells [127,138]. The fact that TDG has been shown to 

excise TET-oxidized 5-fC and 5-caC combined with their accumulation in TDG knockdown 

cells is a clear indicator of TDGs role in the demethylation of 5-mC after TET oxidation 

[140]. This represents the first validation of a pathway for active DNA demethylation. 

3.2.4 MBD4 

 MBD4 has similar substrate preference to TDG, but preferentially binds to 5-

mCG:TG and excises neither 5-fC nor 5-caC [141–143]. In addition, MBD4 has been shown 

to excise the peroxidase-mediated inflammation products 5-chlorouracil (5-CU) and 5-

bromouracil (5-BU), the chemotherapy products 5-FU and 5-iodouracil, and C  [144–148]. 

There is evidence for direct DNA demethylation by MBD4 5-mC excision using growth 

arrest and DNA damage-inducible protein GADD45 (GADD45) as a scaffold [35,149]. 

Protein kinase C (PKC) phosphorylation of MBD4 has also been shown to potentiate its 5-

mC glycosylase activity following parathyroid hormone stimulation, leading to demethylation 

within the cytochrome P450 27B1 (CYP27B1) promoter [150] . This indicates that MBD4 

may have a role in the epigenetic de-repression of hormone regulated genes [143]. 
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Table 1: Uracil-DNA glycosylases (modified from [65]). 

 
4. Repair of Genomic Uracil by the Mismatch Repair Pathway 

 The primary role of the mismatch repair (MMR) pathway is the repair of base-base 

mismatches and insertion/deletion loops (IDLs) (reviewed in [151]). Although MMR has not 

been shown to be employed in the removal of genomic uracil under normal circumstances, it 

is crucial for mutagenic uracil processing in antibody maturation. In this section, I will give a 

general overview of the MMR pathway. I will also briefly mention uracil repair by MMR to 

provide a framework for better understanding the section on antibody maturation (section 5). 

4.1 General mismatch repair pathway 

 The key proteins in MMR are the MutS and MutL protein families (reviewed in 

[152]). The MutS  dimer is composed of the MSH (MutS homolog) 2 and MSH6 

heterodimer and the MutS  dimer is composed of the MSH2 and MSH3 heterodimer. MutS  

recognizes base-base mismatches and IDLs and MutS  recognizes longer IDLs and is thought 

to be unable to repair base-base mismatches [153,154]. The MutL  dimer is composed of 

MutL homolog (MLH) 1 and mismatch repair endonuclease PMS2 (PMS2) and interacts with 

MutS dimers to recruit downstream repair proteins by signaling the mismatch recognition  

[155]. This can alternatively be performed by MutL  (MLH1 and PMS1) or MutL  (MLH1 

and MLH3), which may be involved in repairing IDLs and in meiotic recombination 

[156,157].  
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 Exonuclease 1 (EXO1) is also recruited to coordinate downstream proteins to finalize 

repair. EXO1 starts 5 -directed mismatch excision in the presence of MutS  or MutS  and 

RPA [158,159]. Alternatively, EXO1 can introduce a 3  nick directed excision with MutL , 

which is activated by PCNA and RFC [160,161]. MutL  endonuclease also incises 5  to the 

mismatch after recognition of the 3  nick and mismatch. Then, EXO1 excises 5  to 3  from the 

MutL  incision site through and beyond the reach of the mismatch [160]. Although sterile 

because of meiotic effects, EXO1-deficient mice do not accumulate many mutations, so it is 

possible that other exonucleases are involved [162]. Moreover, EXO1-deficiency in mice 

increases lymphoma susceptibility and decreases survival compared to wild-type animals, but 

they have a higher survival than MSH2-deficient mice [162]. After the error is removed, 

POL  synthesizes a new strand and LIG1 ligates the nick [152,163]. 

 There are two moving models for the events following mismatch recognition. In the 

“stationary” model, MMR proteins induce DNA bending or looping that brings two distant 

sites together [164,165]. MutS  and MutS  remain bound at the mismatch, and MutS  

ATPase activity acts in a proofreading role to verify mismatch binding before proceeding 

with downstream excision. In the “moving” model, MutS / -MutL  complexes load at a 

mismatch site and then search for the strand break where exonucleases can be recruited to 

initiate excision [166–170]. 

 To preserve genome integrity, MMR should only occur on the newly-synthesized 

strand with the mispaired nucleotide. Strand discrimination is strand-specific, but the source 

of the nicking activity is not fully understood [171]. Bound PCNA determines the orientation 

of the MutL  incision on the leading strand and enhances its endonuclease activity [172]. In 

the lagging strand, the 5  ends of the Okazaki fragments are used for strand discrimination 

[173]. 

 There is very little evidence of uracil repair by the MMR pathway outside of antibody 

maturation. Human MutS  has been shown to bind to U:G substrate in vitro [174]. MutS  

also preferentially recognizes U:G or UU:GG relative to UU:AA homoduplexes, as well as 

uracil photoproducts [175–177]. Finally, U:G pairs have been shown to activate MutS  

ATPase activity [178]. 

5. A Necessary Intermediate in Antibody Maturation: Genomic Uracil in Somatic 

Hypermutation and Class Switch Recombination 

 Uracil is enzymatically introduced into DNA for the antibody maturation processes 

somatic hypermutation (SHM) and class switch recombination (CSR). In this section, I will 
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first provide a brief overview on innate and acquired immunity and general B-cell maturation. 

I will then explain SHM and CSR, focusing on the role of genomic uracil. 

5.1 Innate versus acquired immunity 

 The body is constantly exposed to many dangers from pathogenic microorganisms. To 

this end, the innate immune system works as a first-line defense to stop pathogens, identify 

them, and mount short and long term responses (reviewed in [179]). The innate immune 

system is composed of anatomical and physiological barriers (e.g. the skin, placenta, and 

respiratory, urinary, and gastrointestinal tracts), anti-microbial toxins or molecules (e.g. -

defensins, lysozymes, and APOBECs), and phagocytosis and the inflammatory response (by 

e.g. phagocytes, the complement system, and the activation of the adaptive immune system). 

The inflammatory response is initiated by the activation of non-self-recognizing receptors 

e.g. toll-like receptors (TLRs). TLRs recognize pathogen-associated molecular patterns like 

bacterial lipopolysaccharide (LPS, an endotoxin in bacterial cell walls), bacterial flagellin, 

and dsRNA and unmethylated CpG islands from viruses. 

 The acquired (or adaptive) immune system is activated by the innate immune system 

and mounts a targeted, long-term response with memory. The acquired immune system’s 

response to infection can be broadly split into the cell-mediated or humoral responses, for 

which T-cells or B-cells are mainly responsible, respectively. The cell-mediated response is 

composed of T-helper cells, which help coordinate the activity of the immune system through 

macrophage antigen presentation and subsequent cytokine secretion and activation of B-cells 

and cytotoxic T-cells. The cell-mediated response also involves cytotoxic T-cells that can 

recognize antigens and kill other cells, and memory T-cells that retain antigen recognition 

over a long time frame. The humoral response is mediated by activated B-cells, which 

undergo affinity maturation and mature into antibody-secreting plasma cells or memory B-

cells. Here, I will only focus on antibody production in B-cells. 

5.2 B-cell maturation 

 B-cells develop from hematopoietic stem cells in the bone marrow (reviewed in [179]. 

In the bone marrow, stromal cells secrete growth factors for hematopoietic stem cell 

differentiation and antigen-independent V(D)J recombination takes place in immature B-

cells. V(D)J recombination is the initial antigen-independent rearrangement of 

immunoglobulin genes necessary to produce a high number of unique antibodies from limited 

genetic material (reviewed in [180]). Briefly, the variable (V), diversity (D), and joining (J) 

segments of immunoglobulin genes are rearranged through the introduction of site-specific 

DNA DSBs. The recombination activating proteins recombination activating gene (RAG) 1 
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and RAG2 assemble a pair of dissimilar recombinational signal sequences (RSSs) into a 

synaptic complex and cleave the DNA strands. The resulting strands are reorganized and 

repaired by the non-homologous end-joining (NHEJ) pathway, and further genetic diversity 

may be achieved by random nucleotide insertions and template-independent DNA fill-in 

synthesis by POL  and POL . Mature, naïve B-cells that express membrane bound IgM are 

then released from the bone marrow. 

 Upon infection, B-cells bind to antigens and are activated by T-cells in secondary 

lymphoid organs (spleen, lymph nodes, tonsils, and Peyer’s patches) and are selected for 

immunoglobulin antigen binding affinity, which requires B-cell receptor- (BCR, membrane 

bound Ig), CD40 ligand- (CD40L) and growth-factor (e.g. B-cell activating factor, BAFF) 

stimulation [181–183]. A fraction of B-cells differentiate into centroblasts in the primary 

follicles of the lymphoid organs to form GCs [184,185]. Further B-cell differentiation occurs 

in GCs through SHM and CSR. SHM introduces mutations of the V regions of the 

immunoglobulin heavy (IgH) and constant (IgC) genes, thereby introducing another level of 

diversity to immunoglobulins (reviewed in [186,187]).  

 B-cells are selected for maturation into plasma cell and memory B-cell based on the 

specificity of their immunoglobulin binding to antigen. This is achieved through pro-

proliferative and pro-apoptotic properties of GCs. Centroblasts lack expression of anti-

apoptotic factors, allowing rapid apoptosis by default or in response to exogenous signals 

[188–190]. Indeed, isolated GC B-cells quickly undergo apoptosis in vitro unless rescued by 

anti-apoptotic cytokines [191–193]. Clonal selection of BCR-expressing cells then leads to 

the selection of B-cells expressing high-affinity antibodies for differentiation into antibody-

secreting plasma cells or memory B-cells [194–196]. Together, SHM and V(D)J 

recombination are estimated to produce  more than 109 different antibodies [197]. Some 

animals (e.g. cattle, pigs, sheep, and chickens) also employ a process called gene conversion, 

in which parts of “pseudo” V regions are transferred to rearranged V regions, but this will not 

be discussed in the thesis [198,199]. 

 The constant (C) region of the IgG chain can be recombined by CSR from IgM or IgD 

to IgA, IgE, or IgG to have differing effector functions (reviewed in [200,201]). CSR occurs 

in switch (S) regions of the IgH gene, which are located upstream of each C region and 

recombine DNA to replace C  or C  regions with a downstream C region, thereby bringing 

the functional V(D)J region close to the downstream C region (reviewed in [202,203]). The 

altered C regions produce antibodies of different isotypes with different effector functions 

without altering antibody specificity [204,205]. 
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 B-cell differentiation into antigen-secreting plasma cells or memory B-cells occurs 

after successful response to antigen in the GC (reviewed in [206]). Plasma cells secrete 

soluble antibodies and memory B-cells are long-lived and can proliferate into antigen-

secreting cells upon re-encountering an antigen. B-cell differentiation is determined by BCR 

signaling upon antigen stimulation and will not be further explained in the thesis [207–209]. 

The resulting antibodies from B-cells have three main functions: neutralizing pathogens by 

forming a coat around them, opsonizing pathogens (i.e. labeling them for phagocytocis), and 

activating the complement system. 

5.3 Somatic hypermutation 

 In SHM, mutations are introduced into the V region of the Ig gene, leading to protein-

level mutations and subsequent selection for proliferation based on Ig antigen binding affinity 

(figure 3). AID initiates SHM by deaminating cytosines, creating U:G mismatches [210–

212]. Normal BER can be employed and a CTP re-inserted, leaving no mutation. C:G to T:A 

transition mutations can be generated by normal replication across U by POL  or POL  

[213,214]. Ung-/- mice exclusively develop these transitions in Ig V regions [215]. 

Alternatively, the U can be excised by UNG2, creating an AP site that can be processed in 

several ways. The AP site can be replicated over by the error-prone translesion synthesis 

(TLS) polymerase DNA protein REV1 (REV1) [216–220]. REV1 has been demonstrated to 

bypass polymerase-stalling AP sites and induce C:G to G:C transversion mutations 

[217,218,221]. In the absence of REV1, POL  can generate C:G to G:C transversions as well 

[222–224]. Finally, C:G to A:T transversions also require UNG2-induced AP sites, but the 

responsible TLS polymerase or polymerases are unknown [215,225]. APE2 also likely plays 

a large role in SHM. APE1 is down-regulated and APE2 up-regulated in GC B-cells [226]. 

APE2 has a functional PCNA-interacting domain and monoubiquitinylated PCNA at Lys164 

has been shown to recruit POL  and REV1 [227,228]. 

 Alternatively, U:G mismatches can be recognized by MutS , activating EXO1 to 

create a ssDNA gap. The gaps are filled in by error-prone TLS polymerases POL  or POL  

[229–233]. These mutations are associated with A:T pairs 5  of the U:G mismatch and POL , 

MSH2/6, and EXO1-deficient cells have been shown to lack 90 % of A:T mutations found in 

WT cells [234–237]. 
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Figure 3: Somatic hypermutation. AID deaminates C to U. Normal replication yields a C:G 

to A:T mutation. U can be recognized by the MMR pathway, resulting in end-resection and 

fill-in by TLS POL  or POL  and A:T to G:C or tandem mutations. UNG2 can excise U, 

leaving an AP-site that can be replicated over by TLS REV1 to yield a C:G to G:C mutation. 

The AP-site can also be faithfully repaired or replicated by TLS POL  to yield a A:T to G:C 

mutation 5  of the U. Modified from [238]. 

5.4 Class switch recombination 

 CSR is the intrachromosomal rearrangement between S regions of IgH genes leading 

to the replacement of the C  locus with C , C , or C  loci and thus antibody isotype 

switching (figure 4) (reviewed in [203,239]). S regions are located upstream of all C genes 

except for C  and are 1-10 kbp in length [240]. Recombination occurs between DSBs 

introduced in the donor  S region (S ) and a downstream acceptor region, though 

recombination can also occur with regions farther downstream [240,241]. S regions are G-

rich and have a frequency of the preferred AID target motif WGCW (W=A/T) [242–244]. 

Like with SHM, CSR is induced by AID-mediated DNA deamination of cytosines in the S 

regions of Ig gene V regions [52,53,212,245–247]. CSR occurs in G1 phase during cell 

division and is linked to RNA transcription [248,249]: AID is regulated by cell division and 

deaminates ssDNA, and interaction with RNA polymerase II-associated exosome complex 

enhances AID recruitment to DNA [245,250,251].  

 AID-generated uracils are excised by UNG2. CSR is reduced by 95% in UNG-

deficient mouse splenocytes and in humans with dysfunctional UNG, indicating that it is the 
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major glycosylase in CSR U excision [212,215,238,252–254]. SMUG1 can function as a 

weak backup and it has been shown that SMUG1 overexpression can partially rescue CSR in 

UNG-deficient mouse splenocytes and UNG/SMUG1 deficient splenocytes are devoid of any 

residual CSR activity [253,255]. Interestingly, SMUG1 overexpression in the presence of WT 

UNG decreases CSR, suggesting either a role for UNG in the recruitment of error-prone 

repair components or SMUG1 in the recruitment of error-free BER [255].  

 After uracil excision, APE1 and/or APE2 nick the DNA at the AP site. If the two 

nicks are in close enough proximity, a DSB is produced, which requires APE1 and APE2 

[256]. S region DSBs are greatly reduced in Apex1+/-Apex2-/- mouse splenocytes but only 

slightly reduced in Apex1+/- or Ape2-/-, suggesting redundant roles for APE1 and APE2 in 

CSR [256]. Contrarily, another study showed that APE1-deficiency in a mouse B-cell 

lymphoma cell line (CH12F3) caused an 80% reduction in CSR while APE2-deficiency did 

not affect CSR [257,258]; however, CH12F3 cells have a demonstrably abnormal uracil 

profile in response to CSR stimulation compared to ex vivo-stimulated B-cells, so a 

fundamental difference in the biology of the cell line may explain this discrepancy [259]. 

Indeed, an interaction between APE2 and PCNA may promote error-prone repair and APE2’s 

3  to 5  exonuclease processivity is enhanced by PCNA [226,260].  

 If no DSBs are initially produced, POL  replaces the nucleotide and the nick is 

ligated by LIGIII in complex with XRCC1. POL  inhibits S region DSBs and CSR, 

suggesting that it may compete with DSB formation but is overcome by the amount of AID-

induced SSBs [226,261]. Alternatively, the MMR pathway can convert a SSB into a DSB. 

MutS  binds to U:G mismatches in dsDNA and recruits MutL  and EXO1, which then 

initiates resection of the SSB 5  to the mismatch [262,263]. PMS2 (part of MutL  dimer) also 

exhibits exonuclease activity and can create additional SSBs to provide more entry sites for 

EXO1 [160,264]. Combined with the SSB from UNG2 excision of U and APE1/2 nicking of 

the DNA strand, MMR therefore creates a DSB with a long ssDNA tail that results in a blunt 

DSB upon polymerization of the ssDNA with a DNA polymerase [226,239]. 

 The blunt DSBs are joined by the NHEJ or alternative end-joining (A-EJ) pathways. 

NHEJ is initiated by the XRCC5/6 dimer (also known as Ku80/Ku70, respectively), which 

binds to DSBs and recruits the Artemis/DNA-PK catalytic subunit (DNA-PKcs) complex and 

other NHEJ proteins [265,266]. The two DNA ends bound to DNA-PKcs are joined together 

and processed by Artemis/DNA-PKcs to make them compatible for joining [267,268]. POL  

and POL  bind to the XRCC5/6/DNA complex and fill in nucleotides at the strand breaks 

[269]. Finally, the XRCC4-like-factor (XLF)/XRCC4/LIGIV complex ligates across the 
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DNA ends [270–272]. A-EJ works as a backup DSB repair mechanism in the absence of 

NHEJ proteins and it has been shown that NHEJ-deficient cells retain significant CSR 

activity [273–278]. Moreover, A-EJ probably does not compete with NHEJ and the choice 

between the two is likely determined by the density of DNA lesions [279]. A-EJ involves 

larger microhomologies between the DSB junctions than NHEJ, but the pathway is not well 

understood and may even represent several pathways [280,281]. The consensus initiation step 

for A-EJ is 5  to 3  resection at the DSB to expose ssDNA for annealing to a homologous 

sequence [282]. DNA endonuclease RBBP8 (RBBP8, also called C-terminal-interacting 

protein, CtIP) is used for the DNA end-resection step [276,283]. Base-pairing then occurs at 

regions with complementary microhomology and the ends are joined by an undetermined 

ligase [281].  
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Figure 4: Class switch recombination. AID deaminates C to U in C loci of Ig S regions. The 

Us are excised by UNG2 and the AP-site nicked by APE1 or APE2, which may result in a 

DSB if two adjacent nicks occur in opposite strands. The MMR pathway can also process an 

AP-site and U in the strand opposite the APE1/2 nick, creating a blunt DSB. The DSBs are 

joined to other C loci by NHEJ or A-EJ. Modified from [223,238]. 

6. Host Defense by Uracilation of Exogenous Genomes: Genomic Uracil in Innate 

Immunity 

 APOBEC3A-G (A3A-A3G) constitute an innate barrier to retroviruses, endogenous 

retro-elements, and DNA viruses (reviewed in [284,285]). The biological function of 

APOBECs in this sense is the uracilation of exogenous DNA instead of cellular genomic 

DNA, so this section will only give a brief overview of A3 proteins in antiviral defense. 

 The restriction of human immunodeficiency virus (HIV) by A3G is well-

characterized. A3G is incorporated into incoming virus particles in the cell through 

interaction with the nucleocapsid domain of the group specific antigen (Gag) protein in an 
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RNA-independent manner [286–292]. Then, A3G deaminates cytosines in the cDNA created 

by reverse transcription of viral RNA, the frequency of which can exceed 10 % of all 

cytosines, resulting in a staggering loss of genetic information and subsequent formation of 

defective virions during the subsequent replication cycle [48,293]. Most lentiviruses 

(including HIV) counteract A3G by expressing viral infectivity factor (Vif), which hijacks 

the E3 ubiquitin ligase Cullin-5 (CUL5) to target A3G for ubiquitinylation and proteosomal 

degradation [294–301]. The actual restriction of viral cDNA could be performed by UNG2 

and APE1 processing of the uracils, but APOBEC-mediated viral restriction has also been 

shown to occur in the absence of UNG2 and SMUG1, so whether this actually occurs or to 

what extent remains in question [27,302–305]. 

 Although not as well characterized as with HIV, A3 enzymes have been shown to 

restrict several other viruses. Human T-cell lymphotropic virus (HTLV) does not encode any 

Vif-like protein and cannot degrade A3 in vitro [306,307]. Despite this, there was no 

hypermutation in viral cDNA from HTLV-infected patients [306]. Two possibilities have 

been suggested to explain this discrepancy. First, the infrequent replication by reverse 

transcription in HTLV reduces the opportunities for A3 deamination to occur [308–311]. 

Second, elements in the C-terminus of the HTLV-1 nucleocapsid inhibit A3G packaging to 

the virus particle [312]. Hepatitis B virus (HBV) may also be susceptible to APOBEC 

deamination by A1, AID, and all A3 enzymes except A3D and A3E [313–319]. A3G 

restriction of HBV has been reported with a reduction of ~30-fold viral DNA in the presence 

of A3G [316,318,320]. Hepatitis C virus (HCV) replication can be inhibited by A3G in vitro, 

but no hypermutated sequences have been found, possibly because HCV is RNA-based 

during all phases of replication (i.e. no cDNA is produced) [321]. Nevertheless exogenous 

Vif-1 decreased A3G levels and increased the HCV replication rate in vitro [322]. Human 

papillomavirus has been shown to be susceptible to A3A, A3C, and A3H editing [323]. 

Finally, human herpesviruses (HHV) can be restricted by APOBECs with the identification 

of hypermutated viral DNA, and A3C overexpression has been shown to reduce viral load 

[314,324]. Although much work remains to be done in the characterization of A3 enzymes’ 

(as well as other APOBECs’) roles in viral restriction, it is clear that they are potent DNA 

damagers and therefore also potentially dangerous for the host genome. 

7. Pathology of an Abundance or Shortage of Genomic Uracil 

 Given that work during the decade has clearly illustrated the role of genomic uracil as 

a necessary intermediate in immunity and a mutagenic DNA lesion, it is unsurprising that 

perturbations in the “uracilome” have pathological consequences (figure 5). In this section, I 
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will describe how a shortage of genomic uracil by AID deficiency leads to immunodeficiency 

and even autoimmunity. Then, I will discuss how an abundance of genomic uracil by uracil-

DNA glycosylase deficiency, perturbations in pyrimidine biosynthesis, or dysfunctional 

enzymatic cytosine deamination can lead to both immunodeficiency and cancer. 

 
Figure 5: Overview of uracil-DNA glycosylase AID/APOBEC dysregulation, their impacts 

on genomic uracil levels, and their resulting pathogenicities.  

7.1 Shortage of genomic uracil from AID deficiency 

 A shortage of genomic uracil by AID deficiency leads to immunodeficiency. Hyper-

immunoglobulin M (HIGM) syndromes are a heterogeneous group of genetic disorders that 

result in defective CSR with or without defective SHM (reviewed in [325]). HIGM syndrome 

leads to bacterial infections of the respiratory and digestive tracts and lymphoid hyperplasia 

[325–328]. HIGM syndrome patients may also suffer from autoimmune disorders [328]. The 

most common forms of HIGM syndrome are a result of CD40 or CD40 ligand deficiencies 

[329], the lack of which precludes B-cell stimulation for CSR and SHM upon antigen 

recognition. Although very rare, AID deficiency results in HIGM with both defective CSR 

and SHM, usually in an autosomal recessive manner [52,53]. C-terminal mutations in AID 

have been reported to be autosomal dominant and impair CSR but not SHM [330,331]. AID 

contains a nuclear export signal (NES) in its C-terminus, so the autosomal dominance of 
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HIGM in patients with C-terminal mutated AID may suggest that either the inactivation of the 

NES leads to an accumulation of the mutant allele in the nucleus or AID acts in a 

multimerization or complex formation with not yet defined partners crucial for CSR [332–

334]. Thus, in CD40(L)- or AID-deficient HIGH syndromes, a shortage of genomic uracil 

causes immune dysfunction resulting from a lack of high affinity antibodies. 

7.2 Abundance of genomic uracil from deficient uracil repair or increased uracilation 

 An increased uracil burden is pathogenic. In this section, I will describe how UNG2 

deficiency can lead to both HIGM and lymphomagenesis (7.2.1 and 7.2.2). Next, I will list 

the evidence linking the other uracil-DNA glycosylases to increased mutagenicity (7.2.3). 

Then, I will briefly explore how the alteration of the pyrimidine biosynthesis pathway by 

folate deficiency can lead to both an increased and reduced risk of cancer (7.2.4). Finally, I 

will outline recent advances showing how enzymatic deamination by AID/APOBECs has 

been clearly linked to a variety of cancers (7.2.5). 

7.2.1 UNG2 deficiency: Hyper Immunoglobulin M Syndrome 

 A deficiency in DNA uracil repair by UNG can lead to both dysfunctional CSR and 

oncogenesis. Like those lacking AID, persons lacking functional UNG suffer from HIGM 

syndrome [327]. Imai et al. studied a small group of HIGM syndrome patients with mutations 

in the UNG  gene and found them to have strongly impaired CSR and SHM skewed SHM 

with no quantitative deficiency [254]. The SHM-induced base insertion in these patients was 

skewed towards G-C instead of A-T, likely due to the absence of UNG, forcing replication 

over unrepaired U:G. Although this work only included three patients, the biological 

conclusions from the study fit data from studies performed on transgenic mice. Ung-/- mice 

have been shown to have greatly reduced CSR but competent SHM [215,335]. The little CSR 

activity remaining in these mice is attributed to uracil processing by SMUG1and MutS ; 

however, SMUG1 overexpression does not rescue CSR in Ung-/- mice, although it does 

increase CSR levels in Ung-/-Msh2-/- mice to Ung-/- levels [210,336]. Furthermore, SMUG1 

overexpression in UNG-competent mice leads to diminished CSR, suggesting that SMUG1 

preferentially initiates the traditional error-free BER pathway, while UNG2 uracil excision 

leads to error-prone repair [255]. Thus, either an abundance of unrepaired uracil or its repair 

in an error-free manner are both deleterious to competent CSR and the immune response. 

7.2.2 UNG2 deficiency: increased lymphomagenesis 

 UNG2 deficiency can also increase the global uracil load and lead to hyperplasia and 

lymphoma. Ung-/- mice show a 22-fold increase in B-cell lymphoma development over wild-

type mice [337], which is linked to early-age lymphoid hyperplasia in splenic B-cells and 
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possibly an immunological imbalance characterized by differential interferon (IFN) , 

interleukin (IL) 6, and IL-2 levels [338]. Gene-specific mutation analysis in mice showed a 

1.4-1.8 increase in the AID deamination targets and oncogenes B-cell lymphoma 6 protein 

(Bcl-6) and Myc proto-oncogene protein (Myc) [339]. Moreover, a high-AID-expressing 

lymph node tumor analyzed showed 3-fold increased mutation levels in both Bcl-6 and c-Myc 

loci, but not the tumor suppressor gene p53 that is not targeted by AID [339]. The C:G to T:A 

transition mutation frequency in Ung-/- mice was increased as well, which is consistent with 

the aberrant SHM caused by UNG-deficiency.  

7.2.3 SMUG1, TDG, or MBD4 deficiencies: increased mutagenesis 

 Although considered a backup for UNG2 uracil excision in BER, SMUG1’s role in 

uracil repair is not necessarily redundant. siRNA-mediated silencing of Smug1 in mouse 

embryonic fibroblasts (MEFs) revealed a 2.4-fold increase in mutation frequency over wild-

type MEFs, suggesting that UNG2 and SMUG1 are not fully complementary [340]. 

Furthermore, although Ung-/-Smug1-/- mice will breed normally and remain healthy beyond 1 

year of age, Ung-/-Smug1-/-Msh2-/- mice have greatly increased cancer predisposition and 

shortened lifespans, indicating when both base excision and mismatch repair pathways are 

defective, the mutagenic effects of  spontaneous cytosine deamination are sufficient to 

increase cancer incidence without precluding  mouse development [121].  

 MBD4 is important for mutation suppression. MBD4-deficient mice are fertile, 

develop normally, and have no increase in tumorigenesis, but show a two- to three-fold 

increase in C:G to T:A transition mutations at CpG sites in the small intestines [341,342]. 

Cancer-susceptible mice heterozygous for the Min allele in adenomatous polyposis coli 

(Apcmin) gene crossed with Mbd4-/- mice also showed an accelerated tumor formation with 

predominant CpG to TpG transition mutations as the Apc gene [341]. Furthermore, MBD4 is 

mutated in 26-43 % of gastric, colorectal, endometrial, and pancreatic cancers that exhibit 

microsatellite instability, and the presence of an MBD4 mutant that binds 5-mCpG sites but 

lacks glycosylase activity has been shown to more than double the mutation frequency in 

colon cancer cells [343–347]. Thus, MBD4 repair of cytosine deamination at CpG sites is 

crucial to avoid mutagenesis and possibly cancer, although as with TDG it is unclear whether 

an abundance of uracil is the main cause. 

 Several studies have linked single nucleotide polymorphisms (SNPs) in uracil-DNA 

glycosylase genes with elevated uracil levels or increased cancer predisposition. Germline 

variations in TDG and UNG genes were linked to colon cancer predisposition, though their 

rarity is indicative of a limited role [348]. Furthermore, SNPs in TDG and SMUG1 have been 
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associated with esophageal squamous cell carcinoma (ESCC), and several SMUG1 SNPs 

modestly increase breast, bladder, and colon cancer risk [349–353]. Two SNPs in SMUG1and 

one in UNG were also shown to increase genomic blood uracil levels [354]. Finally, several 

SNPs in MBD4 have been associated with increased risk of ESCC and lung, colon, and 

cervical cancers [355–360]. There are several conflicting reports regarding the risk of the 

uracil-DNA glycosylase SNPs and their associations, so I provided a more complete list 

thereof in Table 3. It is therefore likely that dysfunctional glycosylase activity plays at least a 

small role in oncogenesis, though the interplay between uracil repair-related genomic 

instability and other oncogenic factors is unclear. 
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Table 3: SNPs associated with uracil-DNA glycosylases [349–377]. 
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7.2.4 Folate deficiency: contradicting evidence for oncogenesis 

 Whether an increased uracil load by thymidylate synthase inhibition or dysfunction 

contributes to cancer risk is under contention. Folate is a necessary co-factor for TS activity 

and folic acid deficiency or folate antagonists such as methotrexate impair its activity 

[378,379]. TS inhibition is cytotoxic to some cancers, and one hypothesis for TS inhibitor-

induced cytotoxicity is that futile cycles of glycosylase uracil excision, BER, and further 

dUTP misincorporation induce DNA fragmentation [13,380]. Were this the case, TS inhibitor 

sensitivity would increase with increased UNG expression, but this is not the case: cancer 

subtypes resistant to the TS inhibitor pemetrexed exhibit higher UNG expression than 

pemetrexed-sensitive subtypes, and UNG overexpression has been ineffective at sensitizing 

cells to other TS inhibitors [381,382]. Instead, UNG loss has been shown to enhance DSBs in 

colon cancer cell lines upon pemetrexed treatment, so it has been suggested that pemetrexed-

induced uracil misincorporation is genotoxic by uracil accumulation near replication origins, 

replication fork stalling, fork collapse, DSB break formation, and cell death [383]. 

 However, the clinical picture is less straightforward. Although folate depletion 

(leading to lowered TS activity) appears to increase carcinogenesis [384,385], supplemental 

folate intake and high folic acid levels have also been shown to increase cancer risk [386–

388]. Another study showed that a low-folate diet did not increase tumor development in 

Ung-/- mice [389]. Finally, it was shown that increasing dietary folate both increased and 

decreased genomic uracil in mice colon and livers, respectively [390]. Thus, it remains 

unclear whether and to what extent genomic uracil is modulated by thymidylate synthase. 

7.2.5 Enzymatic cytosine deamination: increased widespread carcinogenesis 

 DNA uracil abundance by enzymatic DNA cytosine deamination can also lead to 

oncogenesis. A general hallmark of many B-cell lymphomas is a translocation between the 

Ig-loci and a proto-oncogene, such as the BCL1/Ig translocation in Mantle zone lymphoma, 

BCL2/Ig translocation in follicular lymphoma, and MYC/Ig translocation in Burkitt’s 

lymphoma [391,392]. The role of AID in these translocations has been well established: 

removal of AID has been shown to decrease the frequency of MYC/IgH translocations [393]. 

These translocations occur most frequently at transcription start sites, which is consistent 

with the accepted model of transcription-coupled deamination of single stranded DNA [394]. 

AID also shifts the incidence from pre-B-cell to more mature B-cell lymphomas in MYC-

overexpressing mice and shifts the preference from Mantle cell lymphoma to diffuse large B-

cell lymphoma in BCL6-overexpressing mice [395,396]. Furthermore, ablation of AID 

activity by knock-out in mice results in the accumulation of significantly fewer mutations 
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linked to B-cell lymophomagenesis [397]. These data suggest that AID deamination is 

lymphomagenic. In addition, AID is highly expressed in several lymphomas, so deamination 

may be important for therapy resistance and disease progression [398–400]. High AID levels 

have also been correlated with high genomic uracil levels in lymphoma cell lines and primary 

B-cell leukemia and lymphoma cells [259]. 

 Enzymatic DNA cytosine deamination has also been linked to non-B-cell cancers. A 

2012 study by Nik-Zainal et al. sequenced the genomes of 21 breast cancer tumor samples 

and discovered unique mutational signatures in clusters called “kataegis” (Greek for shower 

or thunderstorm) [401]. The kataegis clusters were attributed to APOBEC cytosine 

deamination and subsequent work showed that the mutational signatures observed were 

indeed consistent with the action of these enzymes [402]. Another study found that A3B was 

up-regulated in the majority of breast cancer tumor samples and cell lines analyzed and the 

tumors and cell lines with high A3B levels contained twice as many somatic hypermutations 

as those with low A3B levels [403]. The same study also showed that genomic uracil levels 

were decreased in a high-A3B-expressing cell line upon small hairpin RNA (shRNA) knock-

down of A3B. Subsequent work has shown that: increased AID/APOBEC expression levels 

increase mutational frequency and kataegis in yeast in an UNG-dependent fashion [404]; 

APOBEC mutational signatures and kataegis are present in most cancers, including breast 

pancreas, lung, and liver cancer, medulloblastomas, chronic lymphocytic leukemia, B-cell 

lymphomas, and acute lymphocytic leukemia [405]; and kataegis clusters are present in 

multiple myeloma, ovarian cancer, osteosarcoma, and renal cell carcinoma [406–409]. Thus, 

an increase in enzymatic DNA uracilation has a clear link to cancer. 
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8. AIMS OF THE THESIS 

 The overarching goal of the articles presented in this thesis and my doctoral studies in 

general was to better understand the link between genomic uracil’s role in cancer and 

adaptive immunity. Thus, we explored the following topics: 

1. How does uracil repair differ between man and mouse? An overwhelming amount 

of mechanistic insights are gained from both in vitro and in vivo mouse studies, so 

it was crucial to identify what drawbacks a mouse model may have. 

2. We aimed to establish a method to measure absolute global genomic uracil levels. 

A wide variety of methods have been employed to measure genomic uracil, but 

they have yielded an equally broad distribution of results, suggesting possible 

technical shortcomings in the methods. A method to accurately determine uracil 

levels was therefore crucial to make conclusions regarding its regulation. 

3. What are the relative contributions of UNG and SMUG1 to general uracil repair in 

various tissues? Together, the two enzymes supposedly maintain a low genomic 

uracil burden, so understanding their relative contributions to uracil excision 

would help clarify their respective roles. 

4. Do AID/APOBEC expression levels correlate with genomic uracil levels? Given 

the recent discovery of APOBEC mutational signatures in cancers, it was 

important to determine whether the global uracil burden was substantially 

increased with high AID/APOBEC expression or whether the uracils were 

transient, i.e. they were repaired too soon after introduction to measure.  
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9. SUMMARY OF RESULTS 

9.1. Article I - Uracil-DNA glycosylase in base excision repair and adaptive immunity: 

species differences between man and mouse. 

May 2011, Journal of Biological Chemistry 

Doseth B, Visnes T, Wallenius A, Ericsson I, Sarno A, Pettersen HS, Flatberg A, Catterall T, 

Slupphaug G, Krokan HE, Kavli B 

 Mouse models are very commonly used in molecular biology, including for the 

elucidation of BER and SHM and CSR. In this article, we examined the species differences in 

the initiation of uracil repair between mouse and man to better understand the applicability of 

results derived from mouse models. 

 We measured the uracil excision activity using a standard oligonucleotide-based 

nicking assay in which a 19-mer oligonucleotide containing one uracil is removed by the 

uracil-DNA glycosylases in sample cell extracts and the strand cleaved. We used a variety of 

normal, embryonic, and cancer human and mouse cell lines and found that the mean human 

cell line uracil excision activity was nine to ten-fold higher than mouse using substrates with 

both U:A and U:G. Then, we measured complete BER in the cell lines using covalently 

closed circular DNA (cccDNA) substrates with a single U:A or U:G incubated with cell 

extracts and radiolabelled nucleotides that can be used to estimate repair. Human extracts 

showed higher U:A repair efficiency than mouse extracts, but there was no species difference 

in U:G repair. This suggests distinct U:A versus U:G BER mechanisms in man and mouse. 

 Next, we examined the relative contributions of UNG and SMUG1 in man and mouse 

by selectively inhibiting each enzyme. UNG was inhibited using the irreversible inhibitor 

uracil-DNA glycosylase inhibitor (Ugi) from a B. subtilis bacteriophage, and SMUG1 was 

inhibited with a neutralizing SMUG1 IgG [410]. U:G lesions had previously been reported to 

be mostly repaired by UNG2 in humans and SMUG1 in mice [100,411]. Inhibiting both UNG 

and SMUG1 completely abolished measurable uracil excision activity in all samples, 

suggesting a minor role for TDG and MBD4 in uracil repair; however, the enzymes should 

not be ruled out because the reaction conditions may have disfavored them and did not 

include APE1, which increases the turnover of the enzymes by releasing them from the AP 

site. UNG showed a six-fold higher uracil excision activity in human extracts than in mouse. 

Interestingly, SMUG1 neutralization increased U:G activity in the samples, which could be 

explained by SMUG1 having a high affinity for U:G but a relatively lower turnover than 

UNG. Therefore, SMUG1 can compete with UNG for the limited U:G substrate when 

uninhibited. Contrastingly, SMUG1 exhibited an 8-fold higher uracil excision activity in 
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mouse than in man. Furthermore, about 50 % of the total excision activity in mouse samples 

could be attributed to SMUG1, compared to only 1 % in human samples. Thus, UNG and 

SMUG1 have similar relative contributions in mouse and human cells, but UNG is clearly the 

predominant glycosylase in human cells. 

 We then quantified the relative abundances of UNG, SMUG1, and TDG in the cell 

lines to determine whether protein levels could explain the relative contributions of the 

enzymes to uracil excision activity. Due to their low abundance, all proteins except for 

human UNG required immunoprecipitation prior to western blot analysis. UNG was ~20-fold 

higher in human than in mouse cell lines, indicating that the higher relative UNG activity was 

a result of a higher abundance of the enzyme and not necessarily a more active enzyme. The 

large difference may be explained by alternative transcriptional regulation of UNG in mouse 

and man. Indeed, there is limited homology between human and mouse UNG promoter 

sequences, although many key transcription factor binding sites are conserved [412]. Also, 

human UNG2 is regulated by stepwise phosphorylations, but one phosphorylation site is not 

conserved in mouse UNG2, suggesting a less stringent regulation of the protein in mouse 

cells [107]. There was no significant difference in SMUG1 levels between human and mouse 

cell lines, and TDG was 3.4-fold higher in mouse cells. Thus, the reliance on SMUG1 in 

mouse cell lines was most likely a result of a lower UNG abundance. 

 Finally, we measured the contributions of UNG and SMUG1 to uracil excision in 

CSR. To this end, we stimulated ex vivo wild type and Ung-/- splenic B-cells from mice with 

LPS and IL-4 to induce in vitro CSR. As expected, there was no UNG activity in the Ung-/- 

B-cells, as well as no change in SMUG1 activity with UNG-deficiency. All excision activity 

was again abolished when inhibiting both UNG and SMUG1, suggesting that TDG and 

MBD4 are unlikely to play a role in CSR uracil excision. In contrast to a previous report, 

SMUG1 activity was not down-regulated upon stimulation, but rather it was increased by 40 

% [255]; however, SMUG1 activity does decrease with stimulation if normalized to total 

protein in the extract instead of to the number of cells used. Normalization to total protein can 

be disadvantageous because cell morphology changes after stimulation, a difference in 

cytoplasmic proteins that can skew normalization. Thus, SMUG1 may also play a role in 

backup uracil excision during CSR, although it may recruit error-free BER proteins that 

inhibit CSR in vivo. 

 CSR is completely abolished in humans lacking functional UNG, but only 95 % 

reduced in mice. MMR plays a role in CSR, but it also depends on uracil processing by a 

glycosylase and is therefore unlikely the reason for why UNG deficiency has a more 
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pronounced effect in mice. SMUG1 overexpression partially rescues CSR in Ung-/- mice and 

Ung-/-Smug1-/- mice are completely devoid of CSR [253,255]. Additionally, uracil in ssDNA 

at AID hotspots is 200-fold more favored by human UNG2 than human SMUG1 and SMUG1 

prefers U:G in a dsDNA context. Finally, SMUG1 activity represented a larger portion of the 

uracil excision capacity in mouse cell lines and human cells expressed much more UNG than 

mouse cells, so mouse cells may rely more heavily on SMUG1 than on UNG2. Thus, 

SMUG1 functions as a backup for UNG2 in mouse CSR, but may not do so to the same 

extent in human cells. 

 In conclusion, we identified key differences between human and mouse cells 

suggesting that though UNG2 is the major uracil-DNA glycosylase in both organisms, 

SMUG1 likely plays a larger role in mouse cells. Care should therefore be taken before using 

conclusions derived using mouse models to elucidate human biology. 

9.2. Article II - A robust, sensitive assay for genomic uracil determination by 

LC/MS/MS reveals lower levels than previously reported. 

September 2013, DNA Repair 

Galashevskaya A*, Sarno A*, Vågbø CB, Aas PA, Hagen L, Slupphaug G, Krokan HE 

*(shared first authorship) 

 Uracil’s roles in adaptive immunity and possible carcinogenicity underscore the need 

for a reliable assay to quantify it. Several groups have employed a variety of methods to 

assay whole-genome uracil, but the resulting broad variation in their results suggest that the 

methods contained technical shortcomings despite the heterogeneity of the samples 

measured. In this article, we set out to both identify and ameliorate any potential 

shortcomings in LC/MS-based uracil quantification. 

 We decided to measure dUrd by enzymatic hydrolysis of DNA to dNs instead of Ura 

by UNG excision for several reasons. First, dUrd contains a labile N-glycosylic bond between 

Ura and the deoxyribose moiety that requires substantially less energy to fragment than the 

heterocyclic Ura bonds, and less collision energy often tends to give lower background 

signals. Thus, measurement of dUrd by multiple reaction monitoring (MRM) on a triple-

quadrupole mass spectrometer yielded a lower background than Ura. Second, the extent of 

Ura excision by UNG cannot easily be confirmed. One group found that restriction digestion 

of genomic DNA was essential to ensure complete Ura excision, presumably because the 

enzyme could more easily scan the shorter DNA fragments [413]. Conversely, the extent to 

which DNA is hydrolyzed can be easily measured by measuring dAdo/Cyd/Guo/Thd. 
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 Naturally occurring 13C-dCyd is isobaric with and yields an identical mass transition 

to dUrd, so they are indistinguishable by MRM. Given that dCyd is five to six orders of 

magnitude more abundant than dUrd, the small percentage of 13C-dCyd presented completely 

obfuscated the dUrd peak using a normal reverse phase chromatography column, despite 

good chromatographic separation between the two nucleosides. We avoided this problem by 

using a reverse phase column with embedded weak ion-pairing groups (PrimeSep200) with 

which dUrd elutes before dCyd, avoiding obfuscation. We could not directly measure dUrd 

from hydrolyzed DNA using HPLC with a PrimeSep200 column directly coupled a MS/MS 

because dUrd elutes too near the void volume of the column, where ion suppression interferes 

with the signal. So, we set up a precursory HPLC step to separate dUrd from both dCyd and 

ion-suppressing contaminants. This had the added advantage of allowing direct quantification 

of total dNs by HPLC-UV. We found that measuring dUrd in this way gave a mean accuracy 

of 94.3%, intra- and inter-day CV values of 9.7 % and 10%, respectively, and a lower limit of 

quantification of 5 fmol dUrd. 

 We found that dUrd can be largely overestimated by co-purification of dUMP with 

DNA. Co-purified dUMP would then be dephosphorylated to dUrd during DNA hydrolysis. 

Alternatively, dCMP could be co-purified and deaminated. Note that this drawback is not 

present when measuring UNG-excised Ura. To eliminate co-purified dUMP, we pre-treated 

DNA samples with phosphatase to dephosphorylate dUMP and then precipitated the DNA. 

We hypothesized that dUrd would not carry over after the precipitation. Indeed, we found 

that up to 98% of the dUrd measured was removed after phosphatase treatment, confirming 

that dUMP (or dCMP) had been co-purified with DNA. 

 The rate of dCyd deamination is determined by temperature, pH, and DNA 

strandedness [17,19]. Thus, we wanted to avoid in vitro dCyd deamination by avoiding high 

heat and basic or acidic pH. Our final hydrolysis reaction was performed at 37 °C for 50 min 

and lay within pH 6 to 7.6. Other methods denature DNA by heating to 95 °C before a 3 h to 

6 h DNA hydrolysis [24,25,414]. We found that heating DNA to 95 °C for 5 min resulted in a 

1.7-fold increase in genomic dUrd. Furthermore, the hydrolysis step introduced 4.805 x 10-3 

dUrd per 106 bp per min. We therefore included a control sample in our assay that has been 

deuracilated with UNG to measure the amount of in vitro generated dUrd. Subtracting the 

deuracilated control from the actual samples yields an accurate estimation of the actual 

genomic dUrd content in a sample. 

 Next, we aimed to validate the assay. We first compared dUrd content from DNA 

isolated using a spin column kit and phenol:chloroform:isoamyl alcohol, and found no 
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difference between the isolation methods. Next, we compared our assay to LC/MS/MS 

analysis of UNG-excised Ura (similar to [415]) and found a significant lack of reproducibility 

with the Ura excision method. Finally, we compared DNA from UNG2 proficient and 

deficient lymphoblastoid cell lines as well as Ung+/+ and Ung-/- MEFs and found that UNG 

deficiency leads to a clear increase in genomic uracil levels. 

 From these results, we proposed that our method addresses the major sources of error 

in genomic uracil measurement. 

9.3. Article III - UNG and SMUG1 efficiently complement each other in removing 

genomic uracil from mouse organs. 

Manuscript 

Sarno A*, Alsøe L*, Galashevskaya A, Tekin NB, Jobert L, SenGupta T, Carracedo S, 

Krokan HE, Nilsen H *(shared first authorship) 

 It is widely accepted that UNG2 is the primary uracil-DNA glycosylase with SMUG1 

acting as its immediate backup. In paper I, we confirmed that this is indeed the case, although 

SMUG1 likely plays a larger role in mouse cells. In this article, we aimed to further clarify 

the respective roles of the two glycosylases, focusing on their effect on the genomic uracil 

load. Thus, we used Ung-/-Smug1-/- mice to elucidate the relative roles of UNG and SMUG1. 

 First, we generated Smug1-/- mice and characterized them. The homozygous knockout 

mice showed no residual SMUG1 expression in the spleen by mRNA or western blot and the 

heterozygous mice had 50 % SMUG1 compared to wild type mice. Moreover, the mice were 

fertile and the Smug1 knock-out gene was inherited at Mendelian ratios. SMUG1-deficiency 

led to no obvious pathological abnormalities in appearance or organ lesions. Blood cell count 

was also normal in these mice, but they exhibited a 20 % reduction in lymphocytes. We then 

crossed the Smug-/- mice with a previously-established Ung-/- strain, which also had no gross 

abnormalities except for CSR deficiency and a high incidence of lymphoma late in life 

[215,337]. The Ung-/-Smug1-/- mice also showed no gross morphological abnormalities. Thus, 

we concluded that combined UNG/SMUG1 deficiency is well-tolerated in mice, at least in 

the time period examined here. 

 To confirm that SMUG1 is the major enzyme responsible for 5-hmU repair, we 

measured 5-hmU levels by LC/MS/MS and 5-hmU excision activity using the oligo nicking 

assay described in article I. Expectedly, there was no 5-hmU excision activity in Smug-/- 

MEFs. The wild type MEF and organ extracts showed a preference towards 5-hmU:G over 5-

hmU:A and no activity on single-stranded 5-hmU substrate. The 5-hmU excision activities 

were almost identical to the uracil excision activities, indicating that SMUG1 excises the two 
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nucleosides at the same rate. 5-hmU levels were lowest in wild type organs and MEFs and 

increased in Smug1+/- and further in Smug1-/- organs, suggesting that a single copy of the 

Smug1 gene (and subsequent 50 % expression relative to wild type) is not sufficient to 

maintain basal levels of 5-hmU. We measured 1.4- to 3.8-fold increases in 5-hmU over wild 

type in SMUG1-deficient organs. Furthermore, there was a slight increase in 5-hmU in MEFs 

after 22 passages, but it was independent of SMUG1 status. Lastly, there was no significant 

correlation between 5-hmU excision activity and 5-hmU levels. 

 We then explored the effect of SMUG1-deficiency on genomic uracil levels and uracil 

excision activity. There was a higher variation in uracil excision activity between tissue types 

than there was with 5hmU excision, possibly because of the contribution from UNG. The 

spleen and heart displayed the highest activities with U:G and ssU substrates, which also had 

similar activity profiles between organs. The only organ extract that had a different relative 

activity between U:G and ssU was the brain, the uracil excision activity of which was 

reduced using both U:G and U:A substrates. The reduction of uracil excision activity with 

SMUG1 deficiency in the brain combined with the low excision activity observed with ssU 

substrate regardless of SMUG1 status strongly suggests that SMUG1 is the major uracil-

DNA glycosylase in the brain.  

 Finally, we measured the effect on uracil excision activity and genomic uracil 

accumulation on Ung-/- and Ung-/-Smug1-/- mice. For the activity assays, we used wild type 

organ extracts pre-incubated with Ugi to simulate Ung-/- mice and found that uracil excision 

was completely abolished in all organ extracts with the ssU substrate and substantially 

reduced in all extracts save the brain with U:A and U:G substrates. The lack of any effect on 

uracil excision activity by UNG deficiency further indicates that SMUG1 is the major uracil-

DNA glycosylase in the brain. Expectedly, there was no appreciable activity in any extract 

from Ung-/-Smug1-/- mice, regardless of substrate. Unlike SMUG1, UNG-deficiency resulted 

in a two- to three-fold increase in genomic uracil levels over wild type in mouse organs, 

although they did not correlate with uracil excision activity. Strikingly, the Ung-/-Smug1-/- 

exhibited a three- to 20-fold increase in genomic uracil levels over wild type. The heart, 

skeletal muscle, kidney, and lung samples showed an increase of 20- to 30-fold in genomic 

uracil over wild type and the liver a greater than 80-fold increase. The spleen and brain only 

exhibited three- and four-fold increases in genomic uracil, respectively. The synergistic 

increase in genomic uracil levels in Ung-/-Smug1-/- mice demonstrates that SMUG1 can 

maintain genomic uracil at near wild type levels in the absence of UNG. 
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 The spleen’s relatively modest increase in genomic uracil was especially interesting 

given its high proliferative capacity. dUTP misincorporation has the potential to be a much 

more substantial source of genomic uracil compared to cytosine deamination, so more highly 

proliferative cells should accumulate more uracil than organs with lower proliferation. We 

did not observe such a clear correlation, although we only tested DNA isolated from organs, 

which have a heterogeneous cell composition. Although tempting to ascribe the large 

increase in genomic uracil to either dUTP misincorporation or cytosine deamination, more 

work needs to be performed to elucidate the relative contributions of the two mechanisms. In 

addition to proliferation rates, dUTP/dTTP ratios may vary between tissue and cell types, 

which would impact the dUTP misincorporation rate. Furthermore, ion levels and pH that can 

alter the spontaneous deamination rate are also likely to be tissue-dependent. TDG and 

MBD4 may also have contributed to uracil repair, despite the fact that no uracil excision 

activity was observed in Ung-/-Smug1-/- organ extracts. The activity assay itself may not have 

been optimized for TDG and MBD4, as discussed in article I.  

 Thus, the main conclusion from this article is that while UNG is indeed the major 

glycosylase responsible for uracil repair in mice, SMUG1 alone can maintain genomic uracil 

at physiologically normal levels and is responsible for the majority of uracil excision in the 

brain. The relative contributions of dUTP misincorporation versus cytosine deamination 

remains to be explored, as well as to what extent SMUG1 can compensate for UNG in 

humans. 

9.4. Article IV - AID expression in B-cell lymphomas causes accumulation of genomic 

uracil and a distinct AID mutational signature. 

November 2014, DNA Repair 

Pettersen HS, Galashevskaya A, Doseth B, Sousa MML, Sarno A,  Visnes T, Aas PA, 

Liabakk NB, Slupphaug G, Sætrom P, Kavli B,  Krokan HE 

 AID and APOBECs are associated with several mutational signatures in kataegis 

hotspots found in a wide variety of cancers (section 7.2.5). Although the presence of these 

mutational signatures implies at least the transient presence of genomic uracil, only one study 

had measured genomic uracil levels in APOBEC-expressing cells and they only did so to 

demonstrate the effect of shRNA knock-down of A3B [416]. In this article, we aimed to test 

whether there was a correlation between AID, APOBEC, and uracil-DNA glycosylase levels 

and genomic uracil. Note that an article containing very similar experiments and results was 

published the week we submitted our manuscript [259]. 
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 To find a correlation between AIC/APOBEC levels and genomic uracil, we measured 

genomic uracil by LC/MS/MS and AID/APOBEC expression by qPCR in 17 cancer cell lines 

for. There was a staggering 72-fold variation in genomic uracil levels between the cell lines, 

and we observed that uracil levels were higher in lymphoma cell lines (4.4- and 18-fold 

higher in lymphoma cell lines than in non-lymphoma cell lines and primary B-cells from 

healthy donors, respectively). Of all the DNA cytosine deaminases, AID showed the best 

correlation with genomic uracil (R2 = 0.70). We confirmed the correlation with AID levels 

measured by western blot (R2 = 0.95) and mass spectrometry (R2 = 0.65). 

 Next, we tested whether AID attenuation by CSR stimulation, exogenous AID 

expression, or shRNA knockdown could alter the genomic uracil load in B-cell lines. AID 

overexpression in the mouse B-cell lymphoma cell line CH12F3 increased genomic uracil 

six-fold. Stimulation of the CH12F3 line to undergo CSR induced AID expression and 

increased genomic uracil four-fold 48 h after stimulation. The increase in genomic uracil 

post-stimulation was probably not due to an increase in dUTP misincorporation because 

CH12F3 cells proliferate more slowly upon stimulation. Thus, unless there was a large 

attenuation in the dUTP/dTTP ratio, the slower proliferation of the unstimulated cells would 

decrease their dUTP misincorporation relative to the stimulated cells. We also knocked down 

AID by shRNA in a cell line with high constitutive AID expression, reducing AID expression 

by 60 % and correspondingly reducing genomic uracil levels by 38 %. Thus, we showed that 

endogenous and exogenous AID expression increase genomic uracil levels in cellulo. 

 We explored uracil repair to determine to what extent it is responsible for the high 

genomic uracil levels in AID-expressing cell lines. Uracil excision activity assays (mean of 

U:G and U:A) had a statistically significant but weak inverse correlation (R2 = 0.52) with 

genomic uracil. We further measured the four uracil-DNA glycosylases by mass spectrometry 

and found weak inverse correlations between UNG and SMUG1 levels and genomic uracil 

(R2 = 0.42 and 0.28, respectively). These inverse correlations suggest that UNG and SMUG1 

play a minor but significant role in the accumulation of AID-induced genomic uracil. The 

correlations were likely not higher because genomic uracil represents a balance of uracil 

introduction and repair. Uracilation in these cells seems to mostly be a product of AID 

deamination, whereas uracil repair regulated by a variety of factors including but not limited 

to uracil-DNA glycosylases, some of which are likely dysfunctional in cancer cell lines. 

 A method to distinguish between genomic uracil in U:A versus U:G contexts would 

be the best way to exclude dUTP misincorporation as a source of uracil in these cell lines, but 

no such method yet exists. As an alternative, we correlated cell doubling time with genomic 
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uracil and found that the lymphoma cell lines showed no correlation and the non-lymphoma 

cell lines had an inverse correlation between genomic uracil and cell doubling time. This 

suggests that dUTP minsincorporation may affect the genomic uracil load in cells with low 

AID expression, but has little to no impact in cells with high AID expression. In addition, we 

measured in vitro U:G BER activity on synchronized HeLa cells. We found that UNG was 

the major contributor to BER G1/S and G2/G1, though to a lesser extent and only 1.5-fold 

more than TDG. SMUG1 exhibited a small contribution to BER during all cell cycle phases. 

Thus, TDG and SMUG1 may have roles in BER of U:G mismatches in G1- and to a lesser 

extent in S. The relative roles of the glycosylases is likely similar in other cell lines, although 

this has not been demonstrated. 

 Alexandrov et al. analyzed sequencing data in from 7,042 cancers and found A3 

kataegis-localized mutational signatures in acute lymphoblastic leukemia (ALL), lung 

adenocarcinomas, and breast, pancreas, and liver cancers [405]. We hypothesized that there 

may be different kataegis mutational signatures in B-cell lymphomas and chronic 

lymphocytic leukemia (CLL), so we re-analyzed the data accordingly. We found that B-cell 

lymphomas and CLL have an AID-specific mutational signature in kataegis regions (AGCT 

instead of TCA/T for other cancer types with kataegis clusters). This finding strongly links 

AID with genomic instabilities in B-cell malignancies. 

 In this article, we demonstrated a clear link between AID expression and genomic 

uracil as well as identified an AID mutational signature in CLL and B-cell lymphomas. The 

work we presented provides a strong piece of evidence to the theory that enzymatic DNA 

cytosine deamination is a major contributor to genomic instability in cancer. 
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10. DISCUSSION 

10.1 SMUG1 plays a larger role in uracil repair in mice than in humans 

There are significant differences in uracil processing between mouse and man that 

should be recognized before any conclusions are made using mouse models. Nevertheless, 

the overall uracil excision mechanisms between the two species seem to be similar enough 

for significant insight to be gained by using mouse models. The major difference between 

man and mouse seems to be the extent to which SMUG1 serves as a backup uracil-DNA 

glycosylase in mouse. UNG2 levels are lower in mice in general, so SMUG1 may act more as 

a partner with a large degree of overlapping function than a backup in mice. This is in part 

evidenced by the residual CSR activity in Ung-/- mice (5 % of wild type) that is much less 

pronounced in UNG-deficient humans [215]. Furthermore, we showed in article III that 

SMUG1 alone is sufficient to maintain physiologically low genomic uracil levels in mice. 

Thus, UNG deficiency, dysfunction, or deregulation may play a larger role in humans by 

inducing a more pronounced increase in the genomic uracil burden and therefore increasing 

overall genomic instability. 

We showed in article III that either UNG or SMUG1 are sufficient to maintain 

genomic uracil at near wild type levels, but this has not been shown in humans. Given that 

UNG2 seems to play a larger role in human cells, its inactivation may predispose cells to 

uracilation more than in UNG-deficient mouse cells. Unlike Ung-/- mice, UNG-deficient 

humans likely still express some form of the enzyme, albeit mutated. Thus, it may be 

incorrect to assume that UNG2 dysfunction in humans could be mitigated by SMUG1 in the 

same way that it is in Ung-/- mice because mutated UNG2 may still outcompete SMUG1 in 

uracil binding, thereby negating its effects as a backup glycosylase. Such a situation may not 

be well reflected in vitro because of the relatively high abundance of uracil in most assays.  

10.2 AID deamination causes uracil accumulation in B-cell malignancies 

AID can be a major contributor to the genomic uracil load in B-cells. We (in article 

IV) and Shalhout et al. showed that AID and genomic uracil levels correlated well in 

lymphoma cell lines [259]. Moreover, genomic uracil levels could be attenuated by 

attenuating AID levels, i.e. exogenous AID overexpression or endogenous AID induction by 

cytokine stimulation increased genomic uracil levels, while AID knockdown decreased uracil 

levels. Uracil-DNA glycosylase expression and uracil excision activity did not correlate as 

well with genomic uracil as AID expression, so it is tempting to conclude that AID 

deamination overwhelms BER in the cell lines we tested. On the contrary, the lymphoma cell 

lines exhibited lower overall uracil excision activities, indicating that uracil excision was at 
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least partly compromised. Furthermore, the article by Shalhout et al. showed that genomic 

uracil levels are not increased after cytokine stimulation in primary B-cells. Thus, genomic 

uracil levels are a function of both uracil introduction (in this case by enzymatic deamination) 

and repair. 

Enzymatic cytosine deamination also increases the genomic uracil burden in patients. 

The torrent of publications since 2012 showing mutational signatures attributed to AID and 

APOBECs in cancers provide convincing evidence that genomic uracil is involved in cancer 

development and progression [401–409,416,417]. Shalhout et al. also demonstrated that AID 

and genomic uracil levels correlate well in B-cells from CLL patients [259]. Although we did 

not directly test patient samples, we found a mutational signature specific to AID instead of 

A3 in published B-cell lymphoma and CLL sequence data, which substantiates the role AID 

in increasing genomic uracil levels in B-cell malignancies. Interestingly, Shalhout et al. also 

found that UNG2 and SMUG1 expression levels varied little between tumor samples, so AID 

deamination seems to overwhelm uracil repair in these cells. The combined evidence points 

to a role of deaminase-induced uracil in B-cell malignancies, though whether and the extent 

to which enzymatic deamination leads to cancer or is a byproduct of dysregulated DNA 

damage repair remain unknown.  

It remains unclear whether uracil repair is a targeted event. In normal CSR, AID and 

UNG2 are recruited to S regions, so uracilation is likely a transient event in which uracils are 

quickly added by AID and partially removed by UNG2 [418,419]. Thus, both an attenuation 

of UNG2 or AID levels and a dysregulation of scaffolding or recruitment proteins can alter 

the genomic uracil burden. There is no evidence that APOBECs other than AID are recruited 

to specific DNA regions or that they co-localize with and uracil-DNA glycosylase, so their 

activity likely leaves uracils scattered throughout the genome in both ssDNA and dsDNA 

contexts. UNG2 or SMUG1 must then scan the entire genome for uracils before the next 

replication cycle, which may be too high a burden for the glycosylases to remove all the 

uracil. Thus, unless uracil-DNA glycosylases are targeted to uracilation sites like UNG2 

during antibody maturation, even proficient BER may not be sufficient to remove uracils 

resulting from enzymatic deamination. The result of APOBEC or untargeted AID 

deamination could therefore be only trickle of uracils resulting from only partial repair of 

enzymatically deaminated cytosines. Furthermore, a cell may experience different levels of 

susceptibility to uracil accumulation, e.g. if glycosylase levels are low. The consequent 

genomic instability could help drive cancer development or progression. Future research 
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should therefore focus on elucidating the relative contributions of uracil introduction versus 

uracil repair in increasing the overall genomic uracil load. 

10.3 The importance of accurate absolute genomic uracil quantification 

In light of the apparent involvement of genomic uracil in cancer, it is crucial that 

groups employ standardized methods for genomic uracil measurement. Of the recent 

publications dealing with deaminase-induced kataegis, only Burns et al. measured genomic 

uracil [403]. They used UNG to excise uracil and measure it by LC/MS/MS on two breast 

cancer cell lines high in A3B expression. They found that very high A3B-expressing cell 

lines contained 15 to 20 Ura per 106 dN, whereas our results in article IV from high AID-

expressing cell lines contained up to 4 dUrd per 106 dN, which was 72-fold higher than cells 

with low AID expression. The large difference between our results could be explained 

biologically: A3B may introduce more uracils than AID and/or they may not be excised as 

efficiently in the cells we tested. On the other hand, technical variations in our two methods 

may have influenced the results. For example, it has been reported by the Ames group that 

free uracil may contaminate samples during assay preparations (e.g. during vacuum 

centrifugation) [413,420]. Such a contamination may be systematic and therefore not affect 

the conclusions derived from the assay; however, a general overestimation of genomic uracil 

by one group precludes direct comparison of their results with another group’s results. This is 

further exemplified by the article by Shalhout et al. that measured genomic uracil levels and 

AID expression in very similar samples (including some of the same cell lines) to our article 

IV [259]. They did not provide absolute uracil quantification, so although their results look 

similar to our own in that AID and genomic uracil levels correlate, albeit with a more 

pronounced difference between high and low uracil samples, we cannot directly compare our 

data. 

Perhaps more strikingly, our own uracil measurements exhibited some variation. We 

reported that wild type MEFs contained ~0.1 and ~2 dUrd per 106 dN in articles II and III, 

respectively. The main difference in the two measurements was that UNG2 deuracilated 

DNA was not used as a control in article III. Thus, some the dUrd measured was likely 

generated in vitro during sample preparation. The high uracil values in e.g. Ung-/-Smug1-/- 

organs were less affected by the overestimation because in assay uracilation is subtracted 

from (and not divided by) dUrd measurements to give the final value, but lower wild type, 

Smug1+/-, and Smug1-/- values may have been overestimated and are thus not comparable to 

the uracil values in articles II and IV.  
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It is therefore important to strive towards a universally accepted “gold standard” 

uracil assay that accurately quantifies the absolute genomic uracil levels so that values may 

be compared between different groups. Currently, no direct comparisons can be made using 

data from different groups unless within a relative context (i.e. perturbed versus unperturbed 

samples). TDG is thought to only excise U:G, so it may be employed to distinguish between 

U:A and U:G given a high enough U:G specificity. TDG’s turnover rate is much slower than 

that of UNG2, but it has been shown to increase in vitro when SUMOylated or with the 

addition of APE1, making it more suitable for uracil quantification [133–136,421]. Several 

groups have also made efforts to quantify genomic uracil within specific genes, although it is 

unclear whether their methods have the resolution to measure basal genomic uracil levels 

[422–424]. Regardless of this, it is clear that genomic uracil measurements will likely yield 

substantial insights into cancer biology, so standardizing the methods employed is crucial to 

this end. We have made substantial progress in this field, but there remains room for 

improvement. 

10.4 Final thoughts: translating genomic uracil research to the clinic 

The role of genomic uracil in cancer has potential applications in the clinic, but first 

several key questions need to be answered: at what stages of cancer is uracilation occurring, 

on what factors does it depend, and when is it pathogenic? In the short term, APOBEC, repair 

protein, and uracil levels could be compared to mutation data over time the better elucidate 

when uracil leads to mutation, as well as which factors affect its introduction and 

mutagenicity. Such a study would require large, well-stratified cohorts with multiple tumor 

samples gathered over time e.g. before and after treatment, disease progression, or even onset 

of disease. From this, it may be possible to partly elucidate what role uracilation is 

responsible for in cancer development, treatment response, or disease progression. Genomic 

uracil or factors that lead to uracilation like high APOBEC or low uracil-DNA glycosylase 

levels could then be employed as biomarkers that give prognostic insight into e.g. cancer risk, 

therapy response, or risk of disease progression. More optimistically, novel therapeutic 

strategies could target uracilation pathways to both increase or decrease genomic uracil. 

Decreasing genomic uracil in cancer or pre-cancer cells by e.g. inhibiting enzymatic 

deamination could decrease risk of disease progression by eliminating a source of genomic 

instability. Alternatively, increasing genomic uracil by e.g. TS-inhibition could target cancer 

cells already rich in uracil to overwhelm DNA damage repair and induce apoptosis.  

The exciting developments in the field of genomic uracil in the last several years have 

propelled the field into the limelight. Here I have presented data indicating that the generation 
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genomic uracil is a complex phenomenon and its consequences affect both immunity and 

cancer. Moreover, the enzymes involved in genomic uracil regulation also have important 

roles in epigenetic regulation. Future research will likely take advantage of genomic uracil in 

disease prevention, diagnosis, and treatment. 
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Considerable  progress has  been  made  in  understanding  the  origins  of genomic uracil and its role  in

genome  stability and  host  defense;  however,  the main question  concerning  the basal level of  uracil in

DNA  remains  disputed.  Results from  assays  designed  to quantify  genomic uracil vary by almost three

orders of magnitude.  To  address the issues  leading to this  inconsistency,  we explored possible  short-

comings  with  existing  methods  and developed a  sensitive  LC/MS/MS-based  method  for the  absolute

quantification  of genomic 2′-deoxyuridine  (dUrd). To  this end,  DNA was  enzymatically hydrolyzed  to

2′-deoxyribonucleosides  and dUrd  was  purified  in  a  preparative  HPLC  step  and analyzed  by LC/MS/MS.

The  standard curve was  linear over  four orders of magnitude  with  a  quantification  limit of  5 fmol dUrd.

Control  samples demonstrated  high inter-experimental accuracy (94.3%)  and precision  (CV 9.7%). An

alternative  method that employed  UNG2 to excise uracil from  DNA for LC/MS/MS  analysis  gave  similar

results,  but  the  intra-assay variability  was  significantly  greater. We  quantified genomic dUrd in  Ung+/+

and Ung−/− mouse embryonic fibroblasts and human  lymphoblastoid cell lines carrying UNG  mutations.

DNA-dUrd  is 5-fold  higher in  Ung−/− than  in Ung+/+ fibroblasts  and 11-fold  higher in  UNG2  dysfunctional

than  in  UNG2 functional  lymphoblastoid cells. We  report approximately  400–600 dUrd  per human or

murine genome in repair-proficient  cells,  which is lower than results  using other methods  and suggests

that  genomic  uracil  levels may  have previously  been  overestimated.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Deamination of  2′-deoxycytidine (dCyd) and misincorpora-

tion of  2′-deoxyuridine 5′-monophosphate (dUMP) are the major

sources of 2′-deoxyuridine (dUrd)/uracil (U) in the mammalian

genome [1]. The former creates U:G mismatches and occurs spon-

taneously, mainly via direct nucleophilic attack of the  hydroxyl ion

on the protonated base under physiological conditions, by exposure

to various chemicals, or  enzymatically by activation induced cyti-

dine deaminase (AID), APOBEC1, and possibly other members in  the

APOBEC family [2,3]. Unrepaired U:G mismatches result in C to T

transitions during replication, the most frequent type of  mutation

Abbreviations: LC/MS/MS, liquid chromatography coupled to tandem mass spec-

trometry; UNG, uracil-DNA glycosylase encoded by the UNG-gene; dCyd/dUrd/Dn,

2′-deoxycytidine/2′-deoxyuridine/2′-deoxyribonucleoside.
� This is  an open-access article distributed under the terms of the Creative Com-

mons Attribution-NonCommercial-No Derivative Works License, which permits

non-commercial use, distribution, and  reproduction in  any medium, provided the

original author and source are credited.
∗ Corresponding author. Tel.: +47 72573074; fax: +47 72576400.

E-mail address: hans.krokan@ntnu.no (H.E. Krokan).
1 Joint first authors.

in human cancers [4]. Alternatively, dUMP misincorporation cre-

ates U:A pairs, depends on the dTTP/dUTP ratio at the  time of DNA

replication, and is governed by thymidylate synthase and dUTPase

activities [5]. U:A pairs may  be cytotoxic due to altered binding of

transcription factors and indirectly mutagenic through generation

of abasic sites [6–9].

Genomic dUrd is generally treated as a lesion that can be cor-

rected by base excision repair with  mismatch repair  as  a  likely

backup for U:G mismatches [1,10,11]. Nevertheless, dUrd is also

a  key intermediate in adaptive immunity. In  this process, dUrd

is generated by  AID-mediated dCyd deamination, which targets

variable and switch regions of  immunoglobulin genes in  B-cells

during somatic hypermutation (SHM) and class switch recombi-

nation (CSR), respectively [12].  This is  a  risky process because

off-target deamination may  cause mutations and translocations,

ultimately culminating in B-cell lymphomas [13–15]. Importantly,

the translocations occur at the  DNA damage sites [16]. Furthermore,

infection- and/or inflammatory cytokine-driven AID expression

may contribute to carcinogenesis in epithelial cells [17–19].

The emerging significance of  genomic uracil thus calls for an

accurate and reliable method for its quantification. Most  estab-

lished methods are relative, which precludes comparisons between

experimental batches and different laboratories [6,12,20–25].

1568-7864/$ – see front matter ©  2013 The Authors. Published by Elsevier B.V. All rights reserved.
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Direct quantification of absolute levels of  genomic uracil can  be

achieved using mass spectrometry. There are two main approaches:

detection of U excised from DNA by UNG and detection of dUrd after

enzymatic hydrolysis of  DNA to  2′-deoxyribonucleosides (dNs)

[26–32]. Both strategies are seemingly straightforward, but a  wide

variation in estimates has been reported, ranging from 3  × 103 to

4 × 106 uracils per mammalian genome [31,33].  It  has been sug-

gested that the inconsistency in reported genomic uracil levels may

be due to  differences in sample type, but may also emanate from

technical shortcomings of  the employed methods [33].

Here we present an improved LC/MS/MS-based method for  the

absolute quantification of dUrd in DNA and discuss drawbacks of

related methods. We explore the  issues that may  lead to inaccu-

rate estimation of genomic U and ameliorate them by introducing

steps for specimen clean-up and chromatographic modifications.

Additionally, we compare dUrd quantification by DNA hydrolysis

to U quantification by UNG excision. We lastly applied our method

to quantify genomic dUrd in  Ung+/+ and Ung−/− mouse embryonic

fibroblasts, as well as  human lymphoblastoid cell lines derived

from hyper-IgM patients carrying UNG mutations. We measured

genomic uracil values lower than those previously reported, indi-

cating that previous methods may  have overestimated genomic

uracil.

2. Material and methods

2.1. Reagents

2′-Deoxyuridine, 2′-deoxycytidine, 2′-deoxyadenosine, 2′-
deoxyguanosine, thymidine, alkaline phosphatase, nuclease

P1, and BSA were  from Sigma–Aldrich (Steinheim, Germany);

DNase I was from Roche Applied Science (Mannheim, Germany);

UltraPureTM salmon sperm DNA was from Invitrogen Corpora-

tion (Carlsbad, CA, USA). Recombinant uracil-DNA glycosylase

(UNG�84) was purified in-house as  previously described [34].

[2-13C;1,3-15N2]-2
′-deoxyuridine was from  C/D/N Isotopes

(Pointe-Claire, Quebec, Canada).

2.2. Cell lines

Ung+/+ and Ung−/− mouse embryonic fibroblast cell lines [35]

were cultured in DMEM 4500 mg/l d-glucose, supplemented

with 0.29 mg/ml  l-glutamine, 10% fetal bovine serum,  100 U/ml

penicillin, 0.1 �g/ml streptomycin, and 2.5 �/ml  amphotericin

B in a humidified 5% CO2 incubator at  37 ◦C. Epstein–Barr

virus immortalized human lymphoblastoid cell lines [36], a

gift from Dr. Anne Durandy (Institut National de la Santé

et de la Recherche Médicale, Paris, France), were cultured

in RPMI–1640 + GlutaMaxTM-l medium supplemented with 10%

heat-inactivated bovine serum, 100 U/ml penicillin, 0.1 mg/ml

streptomycin, and 2.5 �g/ml amphotericin B.

2.3. DNA isolation and removal of intracellular

2′-deoxyribonucleotides

Cells (106/80 �l) were lysed in 10 mM Tris-HCl (pH 8.0), 10 mM

NaCl,  0.5% SDS, 2.5 mM DTT, 0.25 �g/�l  proteinase K, 0.1 �g/�l
RNase A and incubated at 37 ◦C for  1  h  with shaking at  250 rpm.

Genomic DNA was extracted in phenol:chloroform:isoamyl alcohol

(25:24:1) and chloroform:isoamyl alcohol (24:1), then precipitated

by  adding 0.3 volume equivalents of 10 M ammonium acetate (pH

7.9) and one volume equivalent of 100% isopropanol, washed once

in 70% ethanol, and buffered with 100  mM  ammonium bicarbonate

(pH 7.6) and 1 mM  MgCl2. Where indicated, DNA was isolated from

cell pellets using the DNeasy® Blood and Tissue kit (Qiagen, Hilden,

Germany) according to  the manufacturer’s instructions except for

increasing the  RNase A  concentration to 0.1 �g/�l and decreasing

the temperature during incubation with AL buffer from 56 to

37 ◦C. Potentially co-isolated intracellular 2′-deoxyribonucleotides
were dephosphorylated by incubation with alkaline phosphatase

(pH 7.6) from Escherichia coli (0.2 U/�l) in  100  mM  ammonium

bicarbonate for 30 min  and DNA precipitated with isopropanol as

described above.

2.4. DNA hydrolysis to 2′-deoxyribonucleosides

DNA was enzymatically hydrolyzed to  dNs. Prior to hydroly-

sis, a  control DNA sample was  deuracilated by treatment with

UNG to control for uracil generated in vitro during the assay.

To this end, up  to  15 �g  DNA were buffered with 20 mM Tris-

HCl (pH 7.5), 60 mM  NaCl, 1 mM  DTT, 1 mg/ml  BSA in a  reaction

volume of 30 �l and treated with 0.075 U UNG�84  at  37 ◦C for

1 h. The DNA was isopropanol precipitated as described in 2.3

and resuspended in  30 �l 100 mM  ammonium acetate (pH 6.0),

10 mM  MgCl2,  and 1 mM  CaCl2 containing 2  U DNase I and 0.2 U

nuclease P1  and  incubated for 30 min  at 37 ◦C.  As an internal

standard [2-13C;1,3-15N2]-2
′-deoxyuridine was used. The sam-

ples were then buffered in ammonium bicarbonate (pH 7.6) to

a final concentration of 100 mM,  and incubated for 20 min  at

37 ◦C with 0.1 U alkaline phosphatase from  E.  coli. To precipi-

tate contaminants that could potentially clog the HPLC column,

three volume equivalents of  ice-cold acetonitrile were added to

the samples, which were then centrifuged (16,100 ×  g, 20  min,

4 ◦C). The supernatants were transferred to  new tubes and vac-

uum centrifuged until dry at room temperature. The samples

were finally dissolved in 100 �l water containing 10% acetoni-

trile.

2.5. Preparative purification of  2′-deoxyuridine

dUrd was purified by HPLC prior to LC/MS/MS analysis. The

purification was performed using a reverse-phase column with

weak acidic ion-pairing groups (Primesep 200, 2.1 mm × 150 mm,

5 �m,  SIELC Technologies, Prospect Heights, IL), kept at 35 ◦C, on

an Agilent 1200 series HPLC system, equipped with a  G1365D

multiple wavelength detector (Agilent Technologies, Waldbronn,

Germany). Samples were maintained at 4 ◦C prior to  injection.

Each sample was injected in triplicate with an injection volume

of 30 �l.  The gradient used consisted of solvent A  (water, 0.1%

formic acid) and B (methanol, 0.1% formic acid) starting at 10%

B for 0.5 min, ramping to 60% B over 6 min, holding at 60% B for

4 min, and re-equilibrating with 10% B for 10 min  at  a  flow  rate

of 0.200 ml/min. dNs were quantified by measuring absorption

at  260 nm.  The fractions containing dUrd and IS  were collected

±1 min  with a Foxy R2 fraction collection system (Teledyne ISCO,

Lincoln, NE,  USA)  and vacuum centrifuged until  dry at  room tem-

perature. The samples were dissolved in  25 �l  water containing 5%

methanol.

2.6. Uracil excision

Uracil was  excised from DNA for direct analysis by LC/MS/MS

to compare uracil excision with  DNA hydrolysis as  in  an alterna-

tive strategy for DNA-uracil quantification. The uracil excision and

quantification protocol was modified from Bulgar et al.  [26]. Up to

15 �g  DNA were buffered with 20 mM Tris-HCl (pH 7.5), 10 mM

NaCl, 1  mM DTT, 1 mg/ml  BSA in a  reaction volume of 40 �l  and

treated with 0.075 U UNG�84 at 37 ◦C for 1 h. The NaCl concen-

tration used was  different from that used for  DNA deuracilation

described above to avoid signal loss by ion suppression during

LC/MS/MS. [2-13C,15N2]-Uracil was used as internal standard. After

incubation with UNG, 500 �l ice-cold acetonitrile were added to the
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samples and they were then centrifuged (16,100 × g,  20  min, 4 ◦C).
The supernatants were transferred to  new tubes and vacuum cen-

trifuged until dry at room temperature. The samples were finally

dissolved in 40 �l 10% 2 mM  ammonium formate 90% acetonitrile.

2.7. LC/MS/MS instrumentation and conditions

Both dUrd and uracil were quantified using an LC-20AD HPLC

system (Shimadzu Corporation, Kyoto, Japan) coupled to an  API

5000 triple-quadrupole mass spectrometer (Applied Biosystems,

Carlsbad, CA, USA) operated under the  multiple reaction monitor-

ing (MRM)  mode.

dUrd was quantified using a  Zorbax SB-C18 reverse phase

column at room temperature (2.1 mm × 150 mm,  3.5 �m,  Agi-

lent Technologies, Santa Clara, CA, USA), protected with a  Zorbax

Reliance guard-column (4.6 mm ×  12.5 mm,  Agilent Technologies).

The injection volume was 20  �l.  The gradient used contained sol-

vent A  (water, 0.1% formic acid) and B (methanol, 0.1% formic acid)

starting at 5% B for 0.5 min, ramping to 90% B over  6 min, holding at

90% B for 1.5 min and re-equilibrating with 5% B  for  5  min  at a flow

rate of  0.300 ml/min. Mass spectrometry detection was performed

using positive electrospray ionization, monitoring the mass tran-

sitions 229.2 → 113.0 and 232.2 → 116.0 for  2′-deoxyuridine and

[2-13C,1,3-15N2]-2
′-deoxyuridine, respectively.

For the alternative uracil-release method, uracil was  quantified

using a  hydrophobic interaction liquid chromatography column

(2.1 mm ×  100 mm,  3.5 �m,  Atlantis HILIC Silica column, Waters

Corporation, Milford, MA,  USA). The injection volume was 10 �l
and the HPLC was run  at 0.200 ml/min isocratically with 95%

acetonitrile and 5% 2 mM ammonium formate. Detection was  per-

formed using negative electrospray ionization, monitoring the

mass transitions 110.9 →  41.9 and 114.1 →  43.9 for  uracil and [2-
13C,1,3-15N2]-uracil, respectively.

3.  Results

3.1. Method development

3.1.1. MS/MS analysis

We used tandem mass spectrometry to validate our method’s

specificity. MS/MS  spectra revealed ions with m/z  values of  113.0

and 116.0, which correspond to the uracil and isotopically labeled

base in  the internal standard (IS), respectively. The m/z values 117.0,

99.0, and 81.1 were found in  both dUrd and IS  and correspond

to 2-deoxyribose and 2-deoxyribose without one or two water

molecules, respectively (Fig. 1A).

3.1.2. A  precursory HPLC step is essential for  sample purity

The analysis of  dUrd is complicated by naturally occurring

[13C]-2′-deoxycytidine ([13C]-dCyd), which is isobaric with dUrd.

Although dUrd and  dCyd are apparently well separated by reverse-

phase chromatography, the relative abundance of dCyd over dUrd

in DNA is so high that  the  [13C]-dCyd peak tail (∼1.1% of  all car-

bon) will obfuscate the dUrd peak, consequently interfering with

the  subsequent MS analysis. To circumvent this problem, we  used

a reverse-phase column with embedded weak acidic ion-pairing

groups (hereafter referred to by its brand name, Primesep 200),

with which dUrd elutes well before dCyd (Fig. 1B). However, dUrd

is  weakly retained in  the  column and elutes near or  with the

void volume, resulting in ion suppression from ions present in

the reaction buffer, which compete for ionization with the ana-

lyte of  interest (dUrd, data not shown). To avoid this, we  employed

a  precursory HPLC step with a  Primesep 200 column to  rid the

samples of dCyd and increase sensitivity and then analyzed the

dUrd concentration with a  reverse-phase C18 column coupled

to a  mass spectrometer. We  also tested a  standard C18 column

for the precursory HPLC step, but found that enough dCyd co-

eluted with the dUrd fraction that dCyd deamination occurred

Fig. 1. Optimized LC/MS/MS conditions ensure method specificity. (A) MS/MS spectra of 2′-deoxyuridine (m/z 229) and [2-13C,1,3-15N]-2′-deoxyuridine (m/z 232.1) showing

parent  [MH]+ to product ion  transitions. The proposed origins of key fragments are  indicated. Note  that the collision energy was  tuned to  acquire spectra with more

fragments  to demonstrate the fragmentation pattern of dUrd. The final  settings were optimized for  the specific mass transitions analyzed. (B) Effect of precursory HPLC

step  with PrimeSep 200 and standard reverse phase C18 columns on LC/MS/MS chromatograms. Note that both chromatograms represent the same data displayed with a

different  y-axis scale. In the  lower panel, the range to 1.5 × 104 has been expanded to  visualize chromatographic tailing and  the problems related to [13C]-dCyd when using

C18  column for pre-HPLC. The dUrd peak is  obscured by the [13C]-dCyd peak tail  in  the absence of fractionation (dashed red line). Using both C18 (solid black line) and

Primesep 200 (solid blue line) columns overcome dUrd peak obfuscation by the  [13C]-dCyd peak, but the C18 column retains some dCyd, leading to a [13C]-dCyd peak in  the

LC/MS/MS step as  well as a higher dUrd peak, probably due to  dCyd deamination.



702 A. Galashevskaya et al. /  DNA  Repair 12 (2013) 699– 706

Table  1
Summary of statistics for method validation. Deuracilated salmon sperm DNA

samples were spiked with 5,  15, and 100 fmol dUrd to determine accuracy and

intra/inter-day precision.

dUrd spike

(fmol)

Accuracy (%

theoretical value)

Intra-day

precision (CV %)

Inter-day

precision (CV %)

5 94.0 13.6 15.0

15  97.0 13.1 12.4

100  91.9 2.6 2.6

Mean 94.3 9.7 10.0

n  18 6 18

between the precursory HPLC step and the  LC/MS/MS analysis

(Fig. 1B).

An additional advantage of employing a  precursory HPLC step is

that it provides a  convenient opportunity to  quantify all dNs prior

to  LC/MS/MS analysis, thereby allowing accurate quantification of

dUrd per dNs. We  compared the  DNA concentration measured by

spectrophotometry of  5 �g salmon sperm DNA with the calculated

concentration by HPLC-UV on three separate days  and found 99.9%

recovery after hydrolysis with a CV of 8.34%.

3.1.3. Determination of range, linearity, detection limit, precision,

and accuracy

We determined the range, linearity, and detection limit for

dUrd quantifications by making standard curves in both water and

deuracilated DNA. Triplicate standard curves of dUrd in water con-

taining 5–200 fmol dUrd and 40 fmol IS were analyzed on three

different days (r2 = 1.0000), demonstrating near perfect linearity

(Supplementary Fig. 1).  Deuracilated DNA prepared by  UNG-

treatment and isopropanol precipitation of  5  �g  salmon sperm DNA

was spiked with 5, 15, and 100 fmol dUrd and assayed in sets of

six replicates. The mean observed accuracy for these samples was

94.3%, and the  intra- and inter-day CV values were 9.7 and 10%,

respectively. The lower limit of quantification was found to  be

5  fmol dUrd (CV 15% n  = 18).  The data are summarized in Table 1.

Supplementary data associated with this article can be

found, in  the online version, at http://dx.doi.org/10.1016/j.dnarep.

2013.05.002.

3.1.4. Sample contamination with intracellular

2′-deoxyribonucleotides causes overestimation of genomic dUrd

We  tested whether cellular dUMP and dCMP could possibly

interfere with dUrd analysis due to co-purification with DNA.

Importantly, dCMP and dCyd (as well as dCyd in ssDNA) are deam-

inated more than two orders of  magnitude faster than dCyd in

dsDNA [3].  To this end, we pre-treated DNA samples with alkaline

phosphatase and then precipitated the  DNA. Our hypothesis was

that dUMP and dCMP would co-purify with DNA to a larger extent

than dUrd. Indeed, we found that up to 98% of measured dUrd in

commercially prepared DNA was removed after phosphatase treat-

ment and precipitation (Fig. 2A). DNA isolated in  our laboratory

showed similar results (data not shown).

3.1.5. Overcoming dCyd deamination during sample work-up

Three main factors have been demonstrated to  affect cytosine

deamination in  purified DNA samples: temperature, pH, and the

degree to which DNA is  denatured [3,37,38]. Taking this into con-

sideration, we made efforts to minimize dCyd deamination during

sample work-up and analysis. Several methods used by other

laboratories involve heat-denaturation of  DNA prior to enzymatic

hydrolysis [27]. We  found that DNA denaturation by heating to

95 ◦C for 5–20 min  increases the  dUrd signal approximately 1.7-

and 2.7-fold, respectively (Fig. 2B). To avoid deamination during

work-up and analyses, we optimized reaction time and buffer

conditions, concluding with enzymatic hydrolysis at  pH 6–7.6

and 37 ◦C for  50 min  using DNase I,  nuclease P1, and alkaline

phosphatase. To test the rate  at which dUrd is introduced under

these reaction conditions, we assayed the amount of dUrd gen-

erated during sample analysis over time. We  found a  constant

deamination rate of  4.805 ×  10−3± 5.9 ×  10−5 dUrd/106 bp/min

(R2 =  0.9964, n =  12, Fig. 2C).  This corresponds to  1.059 × 10−2

dUrd/106 dCyd/min, which is in line with previously reported

values of dCyd deamination rates of 2.6 × 10−2, 1.2 × 10−3,
and 4.8 ×  10−5 dUrd/106 dCyd/min for  deoxyribonucleosides,

single-stranded DNA, and double-stranded DNA, respectively

[3]. Subtracting the deuracilated DNA control from the normal

samples yielded a constant value regardless of the  time point (0.66

dUrd/106 bp); however, the  variation between replicate experi-

ments increased with  reaction time due to  increasing background.

Thus, we included a  deuracilated DNA control in all sample batches

to control for in vitro-generated dUrd.

It has been reported that alkaline phosphatase contained mea-

surable dCyd deaminase activity [28,29]. We  substituted dCyd for

DNA to  the equivalent of  ∼2  �g  (10.5 nmol) and carried out  mock

hydrolysis with all enzymes, only alkaline phosphatase, and no

enzymes. The amount of  dUrd per dCyd in  the untreated samples

was statistically indistinguishable from  that of  the  samples con-

taining either all  enzymes or  only alkaline phosphatase (data not

shown), which strongly suggests that none of  the  enzyme prepa-

rations employed contained dCyd deaminase activity under our

reaction conditions. We therefore did not employ dCyd deaminase

inhibitors.

3.1.6. dUrd quantification by DNA hydrolysis is more robust than

U quantification by U excision

Several groups have employed UNG to excise uracil for GC

or LC/MS analysis [26,32]. To compare this strategy to the  dUrd

method, we  used UNG to excise U  from DNA and measured U

by a  hydrophobic interaction chromatography column coupled to

the same mass spectrometer used for dUrd quantification. First,

we spiked U  into deuracilated DNA and determined that the  limit

of  quantification for this assay was 5  fmol.  Then, we measured

genomic U in DNA that had been heated to  95 ◦C. The results

were similar to those obtained by DNA hydrolysis (Fig. 2B). We

also assayed genomic uracil using both  the DNA hydrolysis and U

excision on DNA isolated using either phenol:chloroform:isoamyl

alcohol isolation or a column-based kit (Supplementary Fig. 2). The

level of genomic dUrd was  similar regardless of  the DNA isolation

method when assayed using the  DNA hydrolysis method, but signif-

icantly different in UNG2 deficient cells when using the U excision

method (P = 0.0275, n  = 3). This indicates that DNA hydrolysis is both

more robust and reproducible than the U excision method.

Supplementary data associated with this article can be

found, in the  online version, at  http://dx.doi.org/10.1016/j.dnarep.

2013.05.002.

3.2. Genomic uracil in human and mouse cells proficient or

deficient in UNG-activity

We tested the biological applicability of our method by compar-

ing the levels of genomic dUrd in mammalian cell lines. First,  we

compared two lymphoblastoid cell lines: one with UNG-deficiency

derived from a patient with a homozygous mutation substituting

Ser with Phe (UNG2-F251S) and one with functional UNG derived

from an individual with a  heterozygous mutation substituting Arg

with Cys (UNG2-R88C) [36].  The UNG2-R88C mutation has recently

been reported in the NCBI SNP database (rs151095402) with a

frequency of  the C/T heterozygote of  0.003 in  a cohort of  >1500 indi-

viduals in  the NHLBI Exome Sequencing Project. Furthermore, the

UNG2-R88C cell line’s overall uracil excision activity has been mea-

sured and is comparable to  that in  other UNG-WT human tissues
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Fig. 2. Sample contamination with intracellular 2′-deoxyribonucleotides and in vitro dCyd deamination leads to overestimation of genomic dUrd. (A) Alkaline phosphatase

(AP)  pretreatment of commercially prepared DNA followed by  repeated isopropanol precipitation steps prior to  DNA hydrolysis decreases the final genomic dUrd value.

(B)  Denaturation of salmon sperm DNA by heating at  95 ◦C in water induces dCyd deamination and  increases genomic dUrd or U  content in  time-dependent manner. (C)

Prolongation  of sample work-up procedure increases the amount of measured dUrd. Salmon sperm DNA samples as well as  deuracilated controls were hydrolyzed at pH

6–7.6  and 37 ◦C for  50 min, 6  h, and 9  h. In  vitro dCyd deamination occurs at  the constant rate of 4.805 × 10−3 dUrd/106 bp/min. Results represent triplicate experiments ±SD.

and cell lines, whereas the UNG2-F251S is devoid of in vitro uracil

excision activity [39,40]. We  assayed genomic dUrd in  these human

cell lines in three separate experiments and found an  11-fold higher

level of  dUrd per base pair in  the  UNG2-F251S line (1.10 ± 0.13

dUrd/106 bp,  CV 11.6%), as compared with the  UNG2-R88 C line

(0.105 ± 0.014 dUrd/106 bp, CV 13%) (Fig. 3A).

We also quantified genomic dUrd in Ung-proficient and

Ung-deficient mouse embryonic fibroblasts (MEFs) in  triplicate

experiments (Fig. 3B).  We  found a  5-fold higher genomic dUrd level

in the Ung−/− line (0.344 ±  0.023 dUrd/106 bp, CV 6.76%) as com-

pared with the Ung+/+ line (0.072 ± 0.006 dUrd/106 bp, CV 8.59%).

These experiments also suggest that other uracil-DNA glycosylases

(e.g. SMUG1, TDG, and MBD4 [1]) cannot compensate for the  lack

of uracil-DNA glycosylase activity in  the absence of UNG2.

4. Discussion

Although great progress has been made in  understanding the

mechanisms of base excision repair, quantitative information on

the genomic content of  the  DNA base lesions and intermedi-

ates involved has yielded highly divergent results. As  examples,

measurements of  genomic 8-oxo-7,8-dihydroguanine, uracil, and

abasic sites have given results varying by orders of magnitude for

each lesion [33,41–45].

Here, we have made efforts to  improve quantification of

genomic uracil by mass spectrometry and find that the  content is

lower than previously reported. Accurate quantification of genomic

uracil is important to  understand its processing, whether present

as a  lesion or  as an essential intermediate in  antibody affin-

ity maturation. The interplay between these two fields forms

the link  between adaptive immunity and oncogenesis that has

Fig. 3. Quantification of genomic dUrd in  Ung+/+ and  Ung−/− mouse embryonic

fibroblasts  and human lymphoblastoid cell lines carrying UNG mutations. (A) UNG2

dysfunctional lymphoblastoid cells (UNG2-F251S) had  11-fold higher genomic dUrd

level  than lymphoblastoid cells with functional UNG2 (UNG2-R88 C). (B) Genomic

dUrd  level was 5-fold higher in  Ung−/− than  in  Ung+/+mouse embryonic fibroblasts.

Results  represent triplicate experiments ±SD.
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Fig. 4. Overview of possible errors in the methods for absolute quantification of

genomic U/dUrd. (A) Intracellular 2′-deoxyribonucleotides can co-elute with DNA

and  be subsequently included in quantification. (B)  Unspecific contaminants are

usually  more abundant with decreasing molecular weight of the  precursor ions.

(C)  Differential derivatization of standards versus samples may  lead to inaccuracies,

and  the efficiency of derivatization is  not controlled. (D) Inaccurate determination of

DNA  concentration may compromise quantification. The extent of the uracil excision

reaction is not  monitored. (E) Denaturation of DNA by heating to 95 ◦C deaminates

dCyd  and overestimates the final genomic dUrd measurement. (F) Deamination of

dCyd  occurs at  37 ◦C and  neutral pH. Extended incubation time during sample work-

up  may  artificially increase the amount of dUrd. (G) dCyd elutes before dUrd with

reverse-phase chromatography and may  therefore contaminate the dUrd fraction

due to peak tailing. dCyd may  then be deaminated prior to MS/MS analysis.

recently been established [13,15]. In  this sense, relative quantifi-

cation of genomic uracil can be useful and in some cases preferable

to absolute quantification. For instance, several assays are DNA

sequence-specific and can therefore shed light on specific AID

off-target effects [12,22]. Nevertheless, relative assays  hamper

comparison between data sets, and sequence-specific assays are

biased to the sequences they target. Indeed, the wide range of

reported values for genomic uracil suggests that reliable quan-

tification of genomic uracil (as  free uracil or dUrd) is technically

problematic [31,33]. Therefore, all steps from cell lysis through

DNA isolation and analysis should be standardized and validated.

A schematic visualization of  the different approaches to genomic

uracil and dUrd analyses and steps at which errors may  arise is pre-

sented in  Fig. 4. The DNA isolation step can be a significant error

source (Fig. 4A). We  noticed that isopropanol precipitation steps

reduced the  amount of  measured dUrd regardless of how DNA was

isolated. Adding alkaline phosphatase prior to  precipitation further

decreased the dUrd signal, presumably by removing intracellular

nucleotides (specifically dUMP and dCMP) co-purifying with  DNA.

As an alternative to DNA hydrolysis and quantification of dUrd,

uracil can be excised using uracil-DNA glycosylase and directly ana-

lyzed by MS/MS  (Fig. 4B) [30,31].  Uracil is inherently more prone to

background signal in MS/MS  because it is a  heterocyclic molecule

that resonates between non-aromatic amide and aromatic imide

tautomers, the chemical bonds in which require more energy to

break than the N-glycosylic bond between U and the  deoxyribose

in dUrd. Consequently, the  additional collision energy required to

break up the uracil molecule results in a higher probability of mis-

taking contaminants for the analyte. In this sense, quantification

of dUrd is advantageous to measuring U because the  abundance

of interfering components is  lower. Derivatizating U abrogates this

effect, but adds complexity because the degree to which U has  been

derivatized cannot easily be monitored. In  addition, it has proven

difficult to establish robust conditions for derivatization to the

extent that different conditions have been required to derivatize

Fig. 5. Summary of improved genomic dUrd  quantification. DNA isolation is

improved by avoiding sample heating at 56 ◦C.  A  phosphatase pre-treatment step

removes intracellular dCMP and dUMP, which otherwise co-purify with DNA. UNG2

is  used to deuracilate DNA as a control processed in  parallel to estimate whether

and how much dUrd is  generated during the analysis. DNA  hydrolysis to  dNs by

nuclease/phosphatase treatment is kept short and pH neutral. A precursory HPLC

step  efficiently removes dCyd from the sample. Together, it  significantly improves

the  accuracy of the method.

biological samples and standards (Fig. 4C) [32]. Derivatization can

be circumvented by employing hydrophilic interaction chromatog-

raphy (Fig. 4D) [26]. We tested a  similar method and found the

sensitivity comparable to measuring dUrd by hydrolysis; however,

intra-sample variability was greater. Indeed, we compared DNA

samples isolated using different methods and found no variability

between DNA isolation methods when employing DNA hydrolysis,

whereas there was significant difference using the U excision assay.

This may  result from our inability to gauge the  extent of the U  exci-

sion under these assay conditions, as well as imprecise estimation

of  the DNA concentration. In contrast, the  present DNA hydrolysis

method normalizes samples to the  amount of  dNs measured spec-

trophotometrically during the precursory HPLC step, which both

determines the extent to which DNA has undergone hydrolysis

and provides very  accurate determination of DNA concentration.

We performed hydrolysis with 5, 10, 15,  and 20  �g  DNA and saw

no variation in dUrd measurements (data not shown). Moreover,

samples are minimally handled between precursory HPLC and

analytical LC/MS/MS, resulting in  better  reproducibility. Uracil exci-

sion is not necessarily inferior to DNA hydrolysis as a  DNA-uracil

quantification method and  its shortcomings may  theoretically be

ameliorated by meticulous standardization of sample treatment,

but it is nevertheless more susceptible to  intra-lab or intra-sample

variations.

Employing DNA hydrolysis to  measure genomic dUrd has  been

reported previously [27–29]; however, the methods reported

are prone to  overestimation of  genomic dUrd content for  var-

ious reasons. DNA heat denaturation causes dCyd deamination

and therefore overestimates dUrd estimates several-fold (Fig. 4E)

[27].  The  dCyd-containing products deaminate orders of  mag-

nitude faster than double-stranded DNA during long incubation

times (6–9 h at 37 ◦C) required for complete enzymatic hydroly-

sis (Fig. 4F). We  optimized experimental conditions to only require

50 min  incubation at 37 ◦C. Decreasing this incubation time further

would potentially yield more accurate results. Finally, employment

of a  normal reverse-phase column for  precursory HPLC fraction-

ation of dNs with which dUrd elutes after dCyd results in a  risk of

dCyd contamination in  the dUrd fraction from peak tailing because

dCyd is so much more abundant than dUrd (Fig. 4G) [28]. The dCyd
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contamination is problematic both because [13C]-dCyd is isobaric

with dUrd and because dCyd may  deaminate to dUrd between

steps. To avoid that problem, we employed a  reverse-phase col-

umn  with weak acidic ion-pairing groups with which dUrd elutes

before dCyd. The precursory HPLC step may be omitted by com-

bining the  PrimeSep200 and C18 columns with  a column switcher.

A dual-column system would shorten the total analysis time and

decrease the likelihood of  dUrd contamination as  a  result of  sample

handling before LC/MS/MS analysis; however, the accuracy of the

assay would not necessarily increase. An overview of our improved

method is presented in Fig. 5.

We used the optimized conditions to measure dUrd in DNA

isolated from Ung+/+ and Ung−/− mouse embryonic fibroblasts

and human lymphoblastoid cell lines derived from hyper-IgM

patients carrying UNG mutations. The  values reported for genomic

uracil here were lower than  those reported by other groups,

approximately 400–600 dUrd per human or  murine genome in

repair-proficient cells [31]. Although this alone does not prove that

our method is superior to those previously published, our demon-

stration of  overestimation sources indicates that our method is

probably more reliable.
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Supplementary Figure Legends 1 

Supplementary Fig. 1. Standard curve used for genomic uracil quantification. A concentration gradient 2 

from 5 fmol to 10 nmol dU was used with 200 fmol 1313C15N2-dU as an internal standard. The R2 value 3 

was 1.000. Note that both plots represent the same data displayed with different y-axis scales. Results 4 

represent triplicate experiments ± SD. 5 

Supplementary Fig. 2. DNA hydrolysis is a more robust assay for genomic uracil than the uracil excision 6 

method. Both methods were employed to measure genomic uracil levels in DNA isolated from UNG2 7 

proficient and deficient cell lines using both a DNA extraction kit from Qiagen (DNeasy) and 8 

phenol:chloroform:isoamyl alcohol DNA isolation method (PCI). Results represent triplicate experiments ± 9 

SD. 10 
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ABSTRACT 

Uracil in DNA is both a lesion and a necessary intermediate for antibody maturation. Uracil 

is primarily excised by the uracil-DNA glycosylase (UNG2) or single-strand selective 

monofunctional uracil DNA glycosylase (SMUG1), which initiate the error-free base 

excision repair pathway. The relative contributions of UNG2 and SMUG1 in limiting uracil 

accumulation have been difficult to resolve using biochemical approaches and remain an area 

of contention. Here, we used a genetic approach to clarify this issue: we generated gene 

targeted Smug1-/- mice and crossed them with the previously generated Ung-/- mice to 

generate Smug1-/-Ung-/- mice. We measured uracil excision activity and genomic uracil and 5-

hydroxymethyluracil (hmU) levels in mouse embryonic fibroblasts and organs from both 

single and double knock-out mice, as well as hmU excision activity in wild type and Smug1-/- 

MEFs and wild type organs. Expectedly, hmU excision activity was undetectable in Smug1-/- 

mice, and UNG was found to be the major contributor to uracil excision in most tissues. 

SMUG1 was the largest contributor to U:G, and more weakly to U:A excision in the brain, 

but its activity in other tissues was only apparent when UNG was inhibited. A slight 2-3-fold 

increase in genomic uracil was observed in UNG-deficient tissues, whereas genomic uracil 

levels from Smug1-/- mice were indistinguishable from isogenic wild type controls. In 

contrast, the Smug1-/-Ung-/- organs contained 3-20-fold more uracil than their wild-type 

counterparts. Our data suggests that low levels of genomic uracil are maintained by either 

UNG or SMUG1, despite their different activity levels. Thus, we postulate that physiological 

variations in glycosylase activity are not a major factor in increasing genomic uracil levels.  



INTRODUCTION 

 Uracil is a natural intermediate in thymine biosynthesis. A small dUTP pool is 

therefore necessary, the consequence of which is occasional dUTP misincorporation in place 

of dTTP because DNA polymerases cannot distinguish between the two nucleotides 

(Friedberg et al., 1995). Genomic uracil is also generated by spontaneous and enzymatic 

cytosine deamination, generating U:G mispairs. dUMP misincorporation (generating U:A) is 

likely the larger contributor to the genomic uracil burden in proliferating cells, with an 

estimated 104 dUTP misincorporated per genome per division, whereas the spontaneous 

cytosine deamination rate is estimated to be 100 to 500 per cytosines per cell per day 

(Lindahl, 1993; Mosbaugh and Bennett, 1994). There is little evidence to indicate that U:A 

pairs arising from dUTP misincorporation are deleterious, though they have been shown to 

alter transcription factor binding and topoisomerase activity in vitro (Pourquier et al., 1997; 

Risse et al., 1989). In contrast, unrepaired cytosine-deamination events replicate to generate 

C:G to T:A mutations. Indeed, enzymatic deamination of cytosine by activation induced 

deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination 

(CSR) during immunoglobulin (Ig) diversification (Rada et al., 2002). Recent work has also 

shown that DNA mutational signatures associated with AID and other enzymes in the 

APOBEC-family are present in a wide variety of cancers, suggesting a role for enzymatic 

DNA cytosine deamination in tumorigenesis (Alexandrov et al., 2013; Bolli et al., 2014; 

Burns et al., 2013a, 2013b; Chen and Wang, 2014; Davis et al., 2014; Hoogstraat et al., 2014; 

Lada et al., 2012; Nik-Zainal et al., 2012). 

 Thus, understanding how uracil is processed and repaired is increasingly important. 

Uracil is primarily excised by uracil-DNA glycosylases (UDGs) that initiate the error-free 

base excision repair (BER) pathway. Mammalian cells express several (UDGs), including 

mitochondrial uracil-DNA glycosylase 1 (UNG1) and nuclear UNG2, single-strand selective 

monofunctional uracil DNA glycosylase 1 (SMUG1), G/T mismatch-specific thymine DNA 

glycosylase (TDG), and methyl-CpG-binding domain protein 4 (MBD4). All UDGs have the 

ability to excise U:G, though only UNG and SMUG1 efficiently remove U:A. The relative 

contribution of the different UDGs to uracil repair are influenced by a plethora of factors like 

sequence context, whether the DNA is single- or double-stranded, the base opposite the 

uracil, cell-cycle phase, post-translational modifications, interaction partners, and their 

localization in the genome (reviewed in (Krokan et al., 2014)). The substrate specificities of 

the UDGs and their preference for various DNA contexts partially overlap. SMUG1 also has 



a particular role in removing the thymine oxidation product 5-hydroxymethyluracil (hmU) 

(Boorstein et al., 2001). 

 Ung-/- mice revealed that UNG2 has a role in U:A and U:G repair, as well as in Ig 

diversification (Nilsen et al., 2000a, 2003, 2005; Rada et al., 2002). Initial work suggested 

that SMUG1 serves as a backup for UNG2 in both uracil repair and Ig diversification 

(Dingler et al., 2014; Kemmerich et al., 2012; Nilsen et al., 2001; Rada et al., 2002); 

however, distinct intracellular localisation and interaction partners suggest that SMUG1 and 

UNG2 likely also have non-redundant functions. UNG2 interacts with RPA and PCNA and 

removes misincorporated uracil by postreplicative DNA repair (Otterlei et al., 1999). 

Divergently, SMUG1 does not localise with replicating chromatin, but is instead localised 

throughout the nucleus with some accumulation in nucleoli (Kavli et al., 2002). Furthermore, 

SMUG1 directly interacts with Dyskerin (DKC1) in Cajal bodies, and contributes to RNA 

quality control (Jobert et al., 2013). However, the distinct functions of UNG2 and SMUG1 in 

genomic-uracil repair in vivo remain poorly understood. Here, we used a genetic approach to 

clarify the relative importance of UNG2 and SMUG1 in genomic uracil repair and generated 

gene targeted Smug1-/- mice and crossed them with Ung-/- mice to generate Smug1-/-Ung-/- 

mice. 

 

 



MATERIALS AND METHODS 

Generation of conditionally targeted Smug1 knockout mice  

 The Smug1 gene (NM_027885) spans 14 kb and eight predicted exons of which only 

the two last exons are protein coding. Two isoforms exist that differ in their 5 -UTRs. A two-

step strategy giving a final deletion of the protein coding exons 1 and 2 was used. A gene 

targeting vector containing Smug1 exon 1 and exon 2 was constructed by cloning 

genomic Smug1 fragments PCR amplified from C57Bl/6 genomic DNA using Accuprime 

Taq DNA polymerase High Fidelity (Thermo Scientific) into the pCR4-TOPO vector 

(Thermo Scientific). The long-homology arm of the targeting vector was built by TA-cloning 

of two separate PCR fragments: i) a 3371 bp fragment comprising 5´-UTR was amplified 

using forward primer 5 -TAGATGTGGTGGGGATAGACTAGAACCTGG-3 and reverse 

primer 5 -CTACAAGCTCACTTTCCTGGTAACGAAGG-3  and ii) a 2464 bp fragment 

comprising the exon 1 and exon 2 regions amplified using the primers (5 - 

TGACTGACAGGGTTTCTTCTGAGCCC-3 and 5 -

GAAGGGGAAGACAGCAGGAGAGCTG- ) flanked by two LoxP sites. A positive 

selection neomycine gene flanked by FRT-sites was inserted. The short homology arm was 

generated by amplification of the 3 untranslated region of exon 2 (5 - 

CCTTGAGCCTCTCACCCTTTTGTCTC-3 and 5 -CTCCTATTGTTCCCAACAGTTGCC-

3 ). A Diphteria Toxin A (DTA) gene was used for negative selection. The absence of PCR-

generated mutations was confirmed by sequencing. The targeting vector was linearized 

with PmeI and electroporated into C57Bl/6 ES cells. ES cells were selected with 

 G418. Homologous recombination events at the 5 and 3 arms were verified in 

G418 resistant ES cell clones by PCR and Southern blot analysis. Six independent clones 

were injected into C57BL/6J blastocysts. Chimeric mice were crossed with a C56BL/6 Cre-

deleter mouse strain (GenOway) to allow germline excision of the loxP-flanked region thus 

generating heterozygous constitutive Smug1 knock-out mice.  

 The generation of Ung-/- mice in a mixed 129SV-C57Bl/6J background was described 

previously and backcrossed ten generations into the C57Bl/6J background (Doseth et al., 

2011; Nilsen et al., 2000b). Smug1-/-Ung-/- double-knockout (DKO) mice were generated by 

crossing single-knockout mice born to heterozygous mothers. All strains were maintained as 

heterozygous. 

 



Southern blotting  

 Genomic DNA was digested with PciI, blotted onto a nylon membrane and 

 probe) located downstream of the short 

homology arm of the targeting vector. The expected fragment sizes of the wild type and the 

recombined Cre-excised loci are 9.3 kb and 2.1 kb, respectively. The non-excised allele 

would give a fragment of 6.3 kb. Pre-hybridization and hybridization were performed at 

 SDS, 0.5% skimmed milk, 

 EDTA  herring sperm DNA) followed by washing twice in 3 × SSC, 

1% SDS  1% SDS 

were visualised after 3 days exposure to BioMax MS films with BioMax intensifying screens. 

-

CTCATCTGTCTCTTTAATGGTTGGTTGGATG- -

AGCTGGCTAGGGTCACTGTGGAGGTAT-   

Genotyping  

 Mice were genotyped by multiplex PCR. The primer set for the Smug1 alleles were as 

follows: 5 -GGATGAGGGTTCAGCCAGACCTACA-3  (forward WT), 5 -

ACTGCGAATATGACTTCAGACATCCCG-3  (reverse WT), SMUG KO 5 -

TGACAGGGTCACATGTCGTACATAA-3  (forward KO) and SMUG KO 5 -

ACTGCGAATATGACTTCAGACATCC3  (reverse KO). The primer set for the Ung alleles 

were as follows: mUNG3+: 5 -CACGGACCTAATCAAGCTCACG-3  (forward WT), 

mUNG4-: 5 -GGCCCACCCTGACAAATCCCC3  (reverse WT/KO) and Neo+: 5 -

CTTGGGTGGAGAGGCTATTC-3  (forward KO). AccuPrime Pfx Supermix (Invitrogen) 

was used for the PCR of both Smug1 and Ung. The PCR program for Smug1 was: 1 cycle of 

95 °C for 5 min, 35 cycles of 95 °C for 15 s, 58 °C for 30 s and 68 °C for 1 min and then 1 

cycle of 68 °C for 7 min. The PCR program for Ung was equal to that of Smug1 except for 

the annealing temperature, which was 59 °C. The PCR products were run on 2% agarose gels. 

The Smug1 PCR were expected to give a wild-type band of 271 bp and a knock-out band of 

232 bp (Figure 1C). The Ung PCR gave a wild-type band of 550 bp and a knock-out band of 

850 bp (Supplementary Figure 1).  

Isolation and culture of MEFs  

 Timed matings were set up between either wild type, Smug1-/- or Ung-/- mice born to 

heterozygous parents or between Smug1-/-Ung-/- mice born from either Smug1+/-Ung-/- or 

Smug1-/-Ung+/- parents in order to obtain wild type, Smug1-/- or Smug1-/-Ung-/- MEFs. MEFs 

were established from 13.5 to as described (Xu, 2005), and grown in 



Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12, GlutaMAX (Invitrogen) 

supplemented with 10% fetal bovine serum (Lonza), 1x penicillin-streptomycin (Invitrogen) 

and 1x MEM non-essential amino acids (Invitrogen).  Primary MEF cell lines (Passage 1) 

and cells cultured for 23 continuous passages were used. 

Phenotypic assessment of Smug1-/- mice  

 Phenotypic assessment was performed according to the modified SHIRPA protocol 

(EMPRESS, eumorphia.org) at PhenoPro (http://www.phenopro.fr/). Briefly, 10 male wild 

type and 10 Smug1-/- mice aged 6 weeks old were housed 1 to 4 per cage and fed standard 

chow diet (D04, Safe) ad libitum. Phenotypic testing started at 11 weeks after 3 weeks 

acclimation in the phenotypic area. Starting from 13 weeks, mice were submitted to 

dysmorphology screen to assess morphological abnormalities in their general physical 

appearance (weight, length, and dysmorphology, including tail kinks, shape of ears, eyes, 

head, teeth, limbs, number and shape of digit, irregularities and variation in coat colour, hair 

distribution and development, irregularities in the genitals). Blood was collected from 14-

week-old mice by retro-orbital puncture under isoflurane anesthesia for biochemistry and 

hematologic analysis. A complete blood cell count was performed in the Advia 120 

workstation. Body composition and bone mineral content were evaluated by X-ray analysis. 

Generation of anti-SMUG1 antibodies  

 Generation of an antibody against mouse SMUG1 was carried out by BioGenes. The 

antibody was raised in rabbit against the mouse SMUG1 peptide CLTPAELPAKQREQL-

amide. The first immunisation was followed by five weekly boosts before the final bleeding 

of the rabbit. The antiserum was purified against the immunising peptide coupled to 

SulfoLink gel (Pierce). The coupling of the peptide to the SulfoLink gel and the purification 

were carried out according to the recommendations from the manufacturer. Eluted fractions 

containing the purified antibody were pooled and dialysed against 10 mM Tris HCl (pH 7.9), 

20 % glycerol, 0.5 mM EDTA, 50 mM KCl.   

Protein extraction for oligonucleotide nicking assays  

 Protein was extracted from organs and cells using two buffers. Lysis buffer I 

contained 10 mM Tris-HCl (pH 8.0) and 200 mM KCl and lysis buffer II contained 10 mM 

Tris-HCl (pH 8.0), 200 mM KCl, 40 % glycerol, and 0.5% NP-40 alternative (Merck 

Millipore). Buffers were freshly supplemented with 1 M DTT, 1X Complete Protease 

Inhibitor Cocktail (Roche), and 1X Phosphatase Inhibitor Cocktails 2 and 3 (Sigma-Aldrich). 

All steps were performed with ice-cold buffer and on ice or at 4 °C. Protein from MEFs was 

extracted by first suspending the cells in 3 l lysis buffer I per 106 cells and then adding the 



same amount of lysis buffer II. The suspensions were then incubated for 2 h at 4 °C and 

centrifuged at 16,100 rcf. The supernatants were finally aliquoted to new tubes, snap-frozen 

in liquid nitrogen, and stored at -80 °C. Protein from organs were lysed by suspending organs 

in 1.8 l 1:1 lysis buffers I and II per mg organ and homogenization with Dounce 

homogenizers. The homogenates were then incubated, centrifuged, aliquoted, and stored 

identically to the MEFs. 

Isolation of genomic DNA  

 Organ samples were snap-frozen in liquid nitrogen and stored at -80 °C until isolation 

of genomic DNA. The genomic DNA was isolated using the DNeasy Blood & Tissue kit 

(Qiagen) according to the manufact  with minor modifications. Briefly, 2 ml 

CK14 homogenisation tubes containing ceramic 1.4 mm zirconium oxide beads (Precellys) 

were prepared with 400 l ice-cold lysis buffer consisting of: 360 l ATL buffer, 40 l 

Proteinase K and 0.1 g/ l RNaseA. 10-25 mg tissue per tube were homogenised at 4 °C by 

bead beating for 30 s 3x with 30 s pauses between cycles. The lysates were incubated in a 

water bath for at least 1 h at 37 °C and vortexed occasionally. The lysates were recovered 

from the beads through two needle holes in the lid of the homogenisation tube as the tube was 

spin upside down inside a 15 ml tube at 250 rcf for 2 min. Each lysate was split into two spin 

columns. The final DNA elution step was performed with 200 l milli-Q water.   

Whole cell extract of MEFs for western analysis  

 Wild type and Smug1-/- primary MEFs at 80 % confluency were trypsinised with 

0.25% trypsin-EDTA (Invitrogen) and washed twice in cold PBS. The cells were resuspended 

in 300 l extraction buffer (20 mM Tris-HCl pH 7.5, 1 mM DTT, 20% glycerol, 400 mM 

KCl, 1x protease inhibitor cocktail, cOmplete Mini EDTA-free (Roche)) and incubated on ice 

for 30 min with occasional gentle mixing. The extracts were exposed to three freeze-thaw 

cycles in liquid nitrogen and spun at 16000 rcf for 20 min at 4 °C. The supernatants were 

collected and dialysed against 25 mM Tris-HCl pH 7.5, 5 mM MgCl2, 100 mM KCl, 10% 

glycerol, 1 mM DTT in a Slide-A-Lyzer Dialysis cassette 3500 MWCO (Fisher Scientific) 

overnight at 4 °C. The whole cell extracts were collected and added 1x protease inhibitor 

cocktail. Protein concentrations were determined by Bradford quantification (Bio-Rad) using 

BSA as standard. The extracts were snap-frozen in liquid nitrogen and stored at -80 °C until 

further use.      

Western blot analysis  

 100 g whole cell extract of wild type and Smug1-/- MEFs were run on a 15% Tris-

HCl Criterion gel (Bio-Rad) and transferred to a nitrocellulose membrane (Bio-Rad). The 



membrane was blocked in 1x PBS, 0.1% tween-20, 5% milk for 1 h at room temperature and 

incubated overnight at 4 °C in purified rabbit anti-mouse SMUG1 antibody diluted 1:500 in 

the blocking solution. The membrane was washed three times 10 min in 1x PBS, 0.1% tween-

20 and then incubated for 1 h at room temperature in goat anti-rabbit IgG-HRP (Cell 

Signaling) diluted 1:2000 in the blocking solution. The membrane was washed as above 

before it was developed with SuperSignal West Pico Chemiluminescent kit according the 

instructions from the manufacturer (Thermo Scientific). Hyperfilm ECL (GE Healthcare) was 

exposed to the membrane for various time-points. The membrane was stripped by incubation 

in 0.2 M glycine, 0.1% SDS, 0.1% tween-20 (pH 2.2) two times 20 min at 37 °C. The 

membrane was blocked as above and incubated for 1 h at room temperature with rabbit anti-

GAPDH antibody (14C10, Cell Signaling) diluted 1:2000 in blocking solution. The 

membrane was further processed as above.  

Gene expression analyses  

 Kidneys from wild type, Smug1+/-, and Smug1-/- mice had been stored in RNAlater at -

20 °C until RNA isolation. RNA was isolated using the mirVana miRNA isolation kit 

(Ambion/Life Technologies). 2 ml CK14 homogenisation tubes containing 1.4 mm ceramic 

1.4 mm zirconium oxide beads were prepared with 600 l ice-cold lysis buffer and a piece of 

tissue of 2 x 2 x 2 mm was added per tube and covered by the lysis buffer. The tissue was 

homogenised and the lysate recovered as for isolation of genomic DNA. The lysate was 

processed further according to instructions. The RNA was eluted in 100 l 

DEPC treated milli-Q water. cDNA was synthesised from 5 g RNA using SuperScript II 

Reverse Transcriptase (Invitrogen/Life Technology) and random hexamers according to the 

instructions following the transcriptase. The Smug1 transcription was measured by 

quantitative real-time PCR using Fast SYBR Green Master Mix (Applied Biosystems) 

according to the instructions following the kit. Smug1 expression was normalised to Gapdh 

expression. 2 l cDNA was used in the qRT-PCR for both Smug1 and Gapdh. Primers for the 

qRT-PCR were Smug1 (forward) 5 -TCAAGTCTTCTTCCGGCACT-3 , Smug1 (reverse) 5 -

ACTCCCACTACCAGACGCAC-3 , Gapdh (forward) 5 -AACTTTGGCATTGTGGAAGG-

3  and Gapdh (reverse) 5 -GGATGCAGGGATGATGTTCT-3 . 

Oligonucleotide nicking assays  

 Oligonucleotide UDG assays were performed as previously described (Doseth et al., 

2011; Kavli et al., 2002). 6-carboxyfluorescein-labeled uracil- or hydroxymethyluracil-

-[6-FAM]-CATAAAGTG-U/5hmU-AAAGCCTG) were 

annealed to 1.5x of the complementary strand containing G or A opposite U/5hmU. Activity 



was measured by incubating 10 l of 20 nM substrate and 20, 2.5, or 1.25 g of (5hm)U:A, 

(5hm)U:G, or ss(5hm)U protein extracts, respectively. The reactions were buffered in 20 mM 

Tris-HCl (pH 8.0), 60 mM NaCl, and 1 mM EDTA, freshly complemented to a final 

concentration of 1 mM DTT and 0.5 mg/ml BSA. The reactions were incubated at 37 °C for 

60 min, 20 min, and 15 min for (5hm)U:A, (5hm)U:G, or ss(5hm)U protein extracts, 

respectively. UNG was inhibited by 0.4 U uracil-DNA glycosylase inhibitor (Ugi, New 

England Biolabs). The reactions were stopped on ice and abasic sites were cleaved by adding 

50 l 10 % ice-cold piperidine and subsequent incubation at 90 °C for 20 min. Next, the 

reactions were vacuum centrifuged at 60 °C for 1 h to dryness and redissolved in 30 l 60 % 

formamide loading buffer containing 0.05 % bromophenol blue. The substrate and product 

were separated by electrophoresis on a urea-PAGE gel containing 12 % acrylamide:bis-

acrylamide (19:1) and 42% urea in 0.5 x TBE and visualized using a Typhoon Trio imager 

(GE Healthcare). Analysis was performed using ImageQuant 7 TL (GE Healthcare). 

Quantification of modified bases in genomic DNA  

 Modified nucleosides were quantified as previously described (Galashevskaya et al., 

2013). Potentially co-purified deoxynucleotides in DNA were removed by incubating 15 g 

DNA with 0.2 U alkaline phosphatase from E. coli per 100 l in 100 mM NH4HCO3 (pH 7.6) 

and 10 mM MgCl2 for 30 min at 37 °C, followed by isopropanol precipitation. The DNA was 

then hydrolyzed to nucleosides by redissolving the DNA pellet in 20 l containing 10 mM 

NH4C H O  (pH 6.0), 10 mM MgCl2, 10 mM CaCl2, 41.65 nM 13C15N2-dUrd, 0.4 U 

nuclease P1 from P. citrinum (Sigma-Aldrich), and 2 U DNase I (Roche). The solution was 

incubated for 30 min at 37 °C, after which 5 l containing 0.5 NH4HCO3 (pH 7.6) and 0.1 U 

alkaline phosphatase were added and further incubated at 37 °C for 20 min. The reactions 

were stopped on ice and the enzymes in the reactions with 3 volumes of cold acetonitrile, 

after which the samples were centrifuged at 16,100 rcf for 30 min at 4 °C. The supernatants 

were transferred to new tubes and vacuum centrifuged at room temperature until dry. 

To separate (5hm)-dUrd from dCyd, the samples were redissolved in 100 l 90:10 

water:acetonitrile and fractionated with 3x 30 l injections on an Agilent HP1100 HPLC-UV 

system and a Primesep 200 column (2.1 mm x 150 mm, 5 m, Sielc) using a flow rate of 0.4 

ml/min and water and acetonitrile as mobile phase, each containing 0.1 % formic acid. The 

HPLC 7.5-min-long gradient was as follows: 10 % acetonitrile for 30 s, ramp to 60 % 

acetonitrile by 2 min to 2.5 min, and return to 10 % acetonitrile by 2.55 min. The (5hm)-

dUrd-containing fractions were collected from 1.3 - 1.8 min and vacuum centrifuged until 

dry. The pellets were redissolved in 25 l 95:5 water:methanol and analyzed for dUrd and 



5hm-dUrd by LC/MS/MS using a reverse phase column (2.1 mm x 150 mm, 3.5 m, Zorbax 

SB-C18, Agilent Technologies) on an LC-20AD HPLC (Shimadzu) coupled to an AB SCIEX 

5500 triple quadrupole mass spectrometer with an electrospray ion source (AB SCIEX). The 

injection volume was 20 l, the flow rate was 0.3 ml/min, and the 5-min-long HPLC gradient 

was as follows: 5 % methanol for 30 s, ramp to 30 % methanol by 1 min to 2 min, and return 

to 5 % methanol by 2.1 min. Analysis was performed in positive ionization multiple reaction 

monitoring mode, monitoring the mass transitions 228.994  113.0, 232.0  116.0, and 

259.0  143.1 for dUrd, 13C15N2-dUrd, and 5hm-dUrd, respectively. Chromatogram analysis 

was performed using Analyst 1.5 software (AB SCIEX). 

Statistical analysis  

 Data were analyzed using unpaired one-way- or repeated measures analysis of 

variance (ANOVA) with one between factor (genotype) and one within factor (time). 

Qualitative parameters (e.g. some of clinical observations) were analyzed using 2 test. The 

level of significance was set at p < 0.05. Biochemical assays were evaluated using two-way t-

test 95% confidence level. 

  

 

 

 

 

 

 

 

 

 

  



RESULTS 

Smug1-/- mice display no obvious pathological phenotypes  

 Gene targeted mice deleted for both coding exons of the Smug1 gene (Figure 1A) 

were born at Mendelian ratios and are fertile. Smug1-/-mice had no residual Smug1 

expression, as measured in total RNA isolated from MEFs by qRT-PCR (Figure 1D). 

Heterozygous mice expressed Smug1 mRNA at 50% of the wild type level. An affinity 

purified peptide antibody generated against a mouse SMUG1 peptide revealed a specific band 

migrating at 29 kDa in whole cell extract prepared from wild type kidney that was absent in 

extracts prepared from Smug1-/- kidney (Figure 1E). Hence, we concluded that the Smug1-/- 

mice are true knockouts.  

 No obvious pathological abnormality was observed in the general appearance of the 

Smug1-/- mice, and they exhibited normal body shape and skeletal morphology.  No major 

changes were observed in blood-cell counts although there was a slight reduction in the mean 

number of lymphocytes in the Smug1-/- mice (5.70 ± 0.15 vs 4.57 ± 0.25, p = 0.0011).  No 

macroscopic or microscopic lesion or change was observed by histological assessment of the 

major organs. The generation and phenotypic assessment of Ung-/- mice in a mixed 129SV-

C57Bl/6J background were described previously to have no obvious morphological 

phenotype (Nilsen et al., 2000b), they present a hyper IgM phenotype resulting from 

defective processing of AID-induced uracil during CSR in the Ig loci (Rada et al., 2002). A 

high incidence of B-cell lymphoma was also observed in aging, mixed background Ung-/- 

mice (Andersen et al., 2005; Nilsen et al., 2003). Ung-/- mice (Supplementary Figure S1) were 

backcrossed ten generations into C57Bl6/J and used to generate Smug-/-Ung-/- mice. Smug1-/-

Ung-/- mice also showed no obvious morphological abnormalities. Thus, the deletion of the 

Smug1 gene and the combined loss of the two major UDGs are well tolerated in mice in the 

time period examined here.  

Smug1-/- mice lose hmU excision activity and accumulate hmU in genomic DNA 

 SMUG1 was previously characterised as the main enzyme removing 5-

hydroxymethyluracil (hmU) from DNA (Boorstein et al., 2001). To determine whether the 

Smug1-/- mice had any residual SMUG1 activity, we measured the excision capacity on an 

oligonucleotide substrate harbouring a centrally placed hmU residue. The hmU-excision 

activity from MEF and organ extracts was higher on hmU:G than hmU:A substrates, whereas 

no detectable activity was found on single-stranded substrates under our reaction conditions 

(Figure 2A/B). In contrast, there was no hmU-excision activity in extracts from isogenic 

Smug1-/- MEFs, regardless of substrate (Figure 2A). There was some variation in hmU-



excision activity between different organs, in particular on hmU:G substrate, with the highest 

activity in the brain and lowest in the liver extracts. (Figure 2B).  

 To determine whether the lack of hmU excision activity in Smug1-/- cells resulted in 

increased genomic hmU load, we measured the amount of hmU present in total genomic 

DNA by modifying our recently developed LS/MS/MS assay for measuring genomic uracil 

(Galashevskaya et al., 2013).  Primary Smug1-/- MEFs (Passage 1) contained about 20 hmU 

residues per million nucleotides, which was double the genomic hmU content of isogenic 

primary wild types MEFs (Figure 2C). The genomic hmU-levels seemed to slightly increase 

upon passage in culture, as would be expected because hmU can be formed by direct 

oxidation of thymine; however, the increase in hmU content was similar in wild type and 

Smug1-/- MEFs. Similar levels of hmU were found in genomic DNA isolated from different 

tissues (Figure 2D). The tissue variation in hmU levels was unremarkable, ranging from 

about 5 to 10 hmU per million nucleotides in wild type mice (Figure 2D, top panel). Genomic 

DNA isolated from Smug1+/- mice had about double the amount of hmU compared to wild 

types, suggesting that a single expressed copy of SMUG1 is insufficient to maintain basal 

hmU levels (Figure 2D, middle panel).  Considerably higher hmU levels were found in 

genomic DNA isolated from organs of Smug1-/- mice and most tissues exhibited 3- to 4-fold 

increased hmU levels compared to wild type organs. The largest increases relative to wild 

type were found in brain extracts where the levels increased from ~5 to 18 hmU per million 

nucleotides. Hence, we concluded that Smug1-/- mice have lost hmU excision activity and 

accumulate hmU in genomic DNA. 

Smug1-/- mice have normal uracil-excision capacity 

 SMUG1 was previously found to the predominant UDG in Ung-/- mice (Doseth et al., 

2011; Kemmerich et al., 2012; Nilsen et al., 2001).  To assess whether loss of SMUG1 

impacted uracil repair capacity, we performed standard uracil excision activity assays on 

oligonucleotide substrates containing one centrally placed uracil residue. The uracil excision 

activity varied more than the activity on hmU-containing substrates (Figure 3). High activity 

to the point of assay saturation was observed in spleen and heart extracts on U:G substrates 

(Figure 3, top panel). Wild-type mice showed less efficient uracil excision in splenic extracts 

on U:A containing substrates compared to U:G (Figure 3, middle panel). Uracil excision 

activity from single-stranded substrates resembled the U:G substrate, except that brain 

activity was reduced by 60% (Figure 3, bottom panel). SMUG1 status did not significantly 

impact uracil-excision activity from double-stranded substrates in tissues other than the brain, 

in which the activity was reduced by 40% and 60% in Smug1+/- and Smug1-/- mice, 



respectively. Consistently, no statistically significant accumulation of genomic uracil was 

seen in Smug1-/- MEFs (Figure 4A) or any of the SMUG1-deficient organs tested (Figure 4B).  

Uracil levels also did not rise in MEFs upon culture in vitro (Figure 4A). These data are in 

agreement with previous findings that UNG is the dominating UDG in mouse cells, although 

SMUG1 contributes significantly to uracil-excision from double-stranded substrates in the 

brain. 

The combined action of SMUG1 and UNG prevents genomic uracil accumulation  

 To test whether SMUG1 activity contributes to uracil repair in the absence of UNG, 

we generated Smug1-/-Ung-/- mice. There was a complete ablation of measurable uracil 

excision activity in all Smug1-/-Ung-/- organs regardless of substrate (Figure 5A). This 

demonstrated that both UNG and SMUG1 have the ability to compensate for loss of the other 

enzyme, but that the loss of SMUG1 in an UNG-proficient background impacts relatively 

little on overall uracil excision capacity (Figure 3). In contrast, SMUG1 appears not to be 

fully able to compensate for the loss of UNG activity, as shown by partial suppression of 

uracil excision activity upon inhibition of UNG by Ugi (Figure 5A). Again, these data 

confirm that UNG and SMUG1 account for the majority of uracil excision activity in mice, 

with UNG as the larger contributor.  

 As shown above, the loss of SMUG1 did not lead to a significant increase in the 

global genome uracil content (Figure 4); however, the loss of UNG activity resulted in a 2-3-

fold increase in genomic uracil content in the tissues measured here (Figure 5B, middle 

panel). In contrast to the relatively modest increase in the UNG-deficient tissues, there was a 

dramatic increase in genomic uracil levels in the double knockout organs (Figure 5B, lower 

panel). Surprisingly, the spleen, an organ with high proliferative capacity, showed a modest 

3-fold increase from ~2 to 7 uracil per million nucleotides in wild type compared to DKO 

extracts, whereas a 6-fold uracil accumulation was seen in the essentially post-mitotic brain 

extracts. Heart, skeletal muscle, kidney, and lungs all showed between ~20 and 30 uracil per 

million nucleotides, which represent more than 10-fold increases relative to the wild type 

levels. Finally, liver extracts from DKO mice showed more than 80 uracils per million 

nucleotides, which represents a 20-fold increase relative to wild type levels. This synergistic 

increase in uracil levels demonstrates that SMUG1 efficiently, albeit not fully, compensates 

for loss of UNG activity and vice versa.  

 In summary, SMUG1 is the sole detectable hmU excision enzyme in MEFs and hmU 

accumulates in the genome of Smug1-/- mice. UNG is the major UDG in mouse cells and 

organs. The contribution of SMUG1 to uracil removal is highly tissue specific and appears to 



be either more active or abundant in brain extracts, despite the lack of uracil accumulation 

upon the SMUG1-deficient organs. There is extensive buffering between the two enzymes 

with respect to global genome uracil repair and their combined action effectively prevents 

accumulation of uracil in the mouse genome. However, the two enzymes are not entirely 

redundant as demonstrated by the synergistic increase in uracil levels in the double knockout 

mice. 

 

 

 

 

 

  



DISCUSSION 

 In the present work we describe the generation of a gene targeted knockout mouse 

model deficient in SMUG1 and show that SMUG1 comprises the only detectable hmU-

excision activity in mouse tissues. Consequently, the absence of SMUG1 leads to genomic 

hmU accumulation. Reduced UDG activity was detected in double-stranded substrates in 

Smug-/- brain extracts, but other organs were unaffected by the loss of SMUG1; however, by 

comparing uracil accumulation in MEF and tissues extracted from Smug-/-, Ung-/-, and Smug-/-

Ung-/- mice, we demonstrate that SMUG1 and UNG effectively collaborate to limit uracil 

accumulation in genomic DNA.   

 A mouse model deficient in SMUG1 was previously generated by germline 

transmission of ES cells generated in the European Conditional Mouse Mutagenesis 

Consortium (EUCOMM, project ID 23057) in which suppression of SMUG1 expression was 

achieved by a gene trap inserted in the intron between the coding exons (Kemmerich et al., 

2012).  This mouse model has no detectable SMUG1 expression and has lost hmU-activity. 

Thus, there is no reason to suspect that this model does not represent a good Smug1-knockout 

model. We nevertheless chose to make a classical gene targeted deletion of both coding 

exons of the Smug1 gene because bioinformatic analysis performed at Genoway 

(www.genoway.com) revealed one possible splice variant from the Smug1 gene that 

harboured a cryptic ATG upstream of the gene-trap cassette coding exons (AK020817) 

giving a theoretical possibility of a splice event between the engrailed 2 gene encoded by the 

inserted gene trap  and Smug1 exon 2 giving rise to a stable mRNA. If translated, this mRNA 

would give rise to a 137 kDa protein with a partial UDG domain (39 out of 194 amino acids). 

This protein would not be predicted to have UDG activity as it would only contain 1 out of 4 

substrate binding sites, but possible hypomorphic or gain-of-function effects would, 

nevertheless, be a theoretical possibility.  

 The Smug-/- mice developed here phenocopy the previously-described model and 

showed that loss of SMUG1 does not interfere with normal development and extensive 

phenotypic screening did not reveal any obvious pathophysiological changes at 10 weeks of 

age (Kemmerich et al., 2012). The small reduction in lymphocyte numbers found in our 

model might be related to the role of SMUG1, albeit minor, in CSR (Dingler et al., 2014). 

Stimulated B-cells undergo selection in germinal centres during the immune response, so 

slightly less efficient antibody generation as a result of SMUG1-deficiency may slightly 

increase apoptosis induction or decrease proliferation in B-cells, resulting in the observed 

lowered lymphocyte levels. 



 In agreement with the previous study, we found that Smug1-/- cells and tissues had no 

detectable hmU-excision activity leading to 3-4-fold higher levels of hmU in genomic DNA 

(Kemmerich et al., 2012). The extent of hmU accumulation was similar in all tissues 

analysed. A small increase in hmU, but not uracil, levels was observed upon passage of wild 

type and Smug1-/- MEFs in culture. This is consistent with the majority of cellular hmU being 

generated from direct oxidation of thymine (Pfaffeneder et al., 2014). Surprisingly, the 

increase was similar in Smug1-/- and wild type MEFs, which might be indicative of 

compensatory changes limiting the accumulation of hmU in SMUG1-deficient cells. 

 Importantly, the work presented here offers novel insight into the long-standing 

question on the relative importance of UNG2 and SMUG1 in uracil repair. The hmU excision 

profile (i.e. the differences between organs) in wild type samples was nearly identical to that 

of uracil excision in UNG-inhibited WT samples, suggesting that SMUG1 excises the two 

nucleosides with similar efficiency. Loss of SMUG1 had no effect on UDG activity in the 

presence of functional UNG in most organs. This supports the conclusion that UNG is the 

major contributor to uracil excision in most tissues in the mouse (Doseth et al., 2011). A 

significant reduction of UDG activity in Smug1-/- tissues was found only in brain extracts on 

U:G substrate and more weakly on U:A substrate. No effect was seen on uracil excision from 

single-stranded substrates, corroborating earlier studies indicating that SMUG1 primarily 

removes uracil from double-stranded substrates under our reaction conditions (Doseth et al., 

2012). We cannot exclude the possibility that the contribution of SMUG1 to total UDG 

activity was underestimated using the present assay conditions which was optimised for UNG 

(Supplementary Figure 2) (Akbari and Krokan, 2012; Doseth et al., 2012). Indeed, the 

dramatic reduction in UDG activity in all Smug1-/-Ung-/- organs tested strongly indicates that 

SMUG1 contributes to UDG activity and that confirms that it is the major UDG in UNG-

deficient mice (Nilsen et al., 2001). Smug1-/- tissues or cells did not accumulate uracil, and 

Ung-/- tissues only showed a 2- to 3-fold increase in uracil levels. That the UDG activity 

contributed by SMUG1 is relevant in vivo is evident from the dramatic increase in uracil 

levels in the double knockout organs. Hence, both UNG2 and SMUG1 contribute to 

maintenance of baseline uracil levels.  

 As both UNG and SMUG1 efficiently remove uracil from U:A and U:G pairs, we do 

not yet know whether the main increase in uracil in the DKOs comes from misincorporation 

or deamination. The rates of spontaneous cytosine deamination are expected to be largely 

dependent on the degree of single-stranded DNA, and therefore depend on the transcription 

activity of a cell and unlikely to differ in the genetic background studied here (Lindahl, 



1993). There are also other enzymes and pathways that can repair U:G mismatches in the 

absence of UNG and SMUG1, most notably the mismatch repair pathway and the two 

mismatch specific uracil-DNA glycosylases TDG and MBD4 (Cortázar et al., 2007; Kunz et 

al., 2009; Wong et al., 2002). For U:A the two most efficient repair enzymes are UNG2 and 

SMUG1 (Kavli et al., 2002). Uracil misincorporation will occur in replicating cells in direct 

proportion to the cellular dUTP pool, which is largely determined by the dUTPase enzyme. 

dUTPase expression is cell cycle regulated. A relatively low increase in uracil content in the 

brain, in which there is very low cellular turnover, might indicate that the bulk of genomic 

uracil in the Smug1-/-Ung-/- organs originates from uracil misincorporation. A similarly 

modest increase in uracil content in the spleen was more surprising in light of the important 

physiological function of AID induced deamination in this tissue. AID expression is low in 

mouse spleen and it can be expected that the effect of AID-dependent cytosine deamination 

will not be seen in the absence of stimulation (Nilsen et al., 2005). Furthermore, the 

importance of the mismatch repair pathway in processing AID-initiated U:G lesions is 

supported by the severe early morbidity caused by thymic lymphomas in Smug1-/-Ung-/-Msh2-

/- mice (Kemmerich et al., 2012; Kunz et al., 2009). Hence, whereas many alternatives exist 

to repair deaminated cytosine, few enzymes other than UNG and SMUG1 are known to 

effectively repair misincorporated uracil, which might suggest that the dramatic increase in 

uracil content in the Smug-/-Ung-/- mice is likely dominated by U:A pairs. The absence of a 

tumour-prone phenotype in the Smug-/-Ung-/- mice previously reported would also support this 

interpretation, but definite conclusions regarding the relative accumulation of U:A or U:G 

pairs must await assay improvements (Kemmerich et al., 2012).  

 In conclusion, there is extensive buffering between UNG and SMUG1 with respect to 

global genome uracil repair in vivo and their combined action effectively prevents 

accumulation of uracil in the mouse genome. However, the two enzymes are not entirely 

redundant as demonstrated by the synergistic increase in uracil levels in the double knockout 

mice. We therefore propose that in the absence of active uracilation by e.g. enzymatic 

deamination, physiological variations in glycosylase levels are sufficient to maintain uracil 

levels at near basal levels in vivo. 

    



LEGENDS TO FIGURES 

Figure 1 - Generation of Smug1-knockout mice 

(A) Gene targeting strategy showing the endogenous Smug1 gene (top panel) with the two 

-UTR (blue box), and two predicted upstream exons 

(white boxes). The recombined Smug1 locus (middle panel) with the floxed neomycine 

selection marker (grey box) and LoxP 

indicated (red box). The Smug1 locus after Cre-mediated excision (lower panel). The 

expected fragment sizes resulting from PciI digestion are indicated below each panel. (B) 

Southern blot confirming the size of the endogenous locus and in a heterozygous animal after 

Cre-mediated excision.  (C) Smug1 PCR genotyping showing both wild type (wt) and 

knockout (ko) bands of expected sizes. (D) qRT-PCR showing Smug1 mRNA expression (as 

arbitrary units AU) relative to Gapdh as mean +/- SD from triplicate measurements (E) 

Western blots of whole cell extracts prepared from mouse embryonic fibroblasts probed with 

anti-SMUG1 antibodies. GAPDH expression was used as loading control. 

 

Figure 2 - Smug1-/- mice lose hmU excision activity and accumulate genomic hmU 

(A) Smug1-/- MEFs exhibit no 5-hmU excision activity. (B) hmU excision activity is higher 

on hmU:G substrate than hmU:A substrate in all organs and undetectable on single-stranded 

substrate. (C) Smug1-/- MEFs accumulate 5-hmU in genomic DNA. (D) hmU incorporation in 

all organs is dependent on SMUG1 status. Representative gels in A and B are shown below 

each graph and error bars indicate SD of three biological replicates. 

 

Figure 3 - SMUG1 status has little impact on uracil excision activity in all organs except 

the brain 

Mice organs exhibit a wide range of uracil excision activities. The activities in brain samples 

were reduced by 40 % and 60 % on U:A and U:G substrates, respectively. SMUG1-status did 

not influence single-stranded uracil excision activity. Representative gels are shown below 

each graph and error bars indicate SD of three biological replicates. 

 

Figure 4 - Smug1-/- mice do not accumulate genomic uracil 

(A) Genomic uracil did not increase in either Smug1-/- mice or after 23 passages. (B) 

Genomic uracil did not significantly increase in any organ in either Smug1+/- or Smug1-/- 

mice. Error bars indicate SD of three biological replicates. 



Figure 5 - Ung-/-Smug1-/- mice lose all uracil excision activity and accumulate a large 

amount of genomic uracil. 

(A) U:G and U:A excision activities is decreased upon UNG inhibition by Ugi in all organ 

extracts except the brain and completely ablated in all organs in Smug1-/-Ung-/- mice. Single-

stranded uracil excision activities are ablated both in Ugi-treated extracts and in Smug1-/-Ung-

/- mice. (B) Genomic uracil increased by 2-3-fold and 3-20-fold in Ung-/- and Ung-/-Smug1-/- 

mouse organs, respectively. Representative gels in A are shown below each graph and error 

bars indicate SD of three biological replicates. 

 

Supplementary Figure 1 

Agarose gel electrophoresis image of Ung PCR genotyping showing both wild type (WT) and 

knockout (KO) bands of expected sizes. 

 

Supplementary Figure 2 - Uracil excision assay optimization using liver extracts. 

Uracil excision activity was measured over time in wild-type, Ugi-treated, and Smug1-/- livers 

on (A) U:A substrate using 20 g extract, (B) U:G substrate using 5 g extract, and (C) 

single-stranded uracil substrate using 2.5 g extract. 
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a  b s  t r  a  c  t

The most  common mutations  in  cancer  are C to T  transitions, but  their origin  has  remained  elusive.

Recently,  mutational  signatures  of APOBEC-family cytosine  deaminases  were  identified  in  many com-

mon  cancers, suggesting  off-target  deamination  of cytosine  to  uracil  as a common mutagenic  mechanism.

Here  we  present evidence from  mass spectrometric  quantitation  of deoxyuridine  in  DNA that shows sig-

nificantly  higher genomic  uracil  content in  B-cell lymphoma  cell lines compared  to  non-lymphoma cancer

cell  lines and normal circulating  lymphocytes.  The  genomic uracil  levels were  highly  correlated  with  AID

mRNA and  protein expression,  but not with  expression  of  other APOBECs.  Accordingly,  AID  knockdown

significantly  reduced  genomic uracil  content.  B-cells stimulated  to express endogenous  AID  and undergo

class  switch  recombination  displayed a several-fold increase in  total genomic  uracil, indicating that  B

cells  may  undergo  widespread cytosine  deamination  after  stimulation.  In  line with  this,  we found  that

clustered  mutations  (kataegis) in  lymphoma  and  chronic  lymphocytic leukemia  predominantly  carry

AID-hotspot  mutational  signatures.  Moreover,  we  observed  an inverse correlation  of  genomic uracil with

uracil excision  activity and expression  of the  uracil-DNA  glycosylases UNG and  SMUG1.  In conclusion,

AID-induced  mutagenic U:G  mismatches  in  DNA may be a fundamental  and common  cause of mutations

in B-cell malignancies.

©  2014  The  Authors.  Published by  Elsevier B.V. This  is  an open  access  article under the CC  BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The only sources of  uracil in DNA were previously thought

to be misincorporation of dUMP during DNA replication and

spontaneous deamination of  DNA cytosine. The discovery of

activation-induced cytidine deaminase (AID, also called AICDA) and

several other APOBEC-family enzymes as  probable DNA-cytosine

deaminases introduced a  third possible source (reviewed in  [1]).

∗ Corresponding authors. Tel.: +47 72 57 30 74/+47 72  573221;

fax:  +47 72 57  64  00.

E-mail addresses: bodil.kavli@ntnu.no (B. Kavli), hans.krokan@ntnu.no

(H.E. Krokan).
1 Present address: Science for Life Laboratory, Division of Translational Medicine

and  Chemical Biology, Department of Medical Biochemistry and  Biophysics, Karolin-

ska  Institutet, S-17121 Stockholm, Sweden.

AID was first identified following induction of  class switch recom-

bination (CSR) in the CH12 mouse B-cell lymphoma cell line and

initially thought to  be an RNA-editing enzyme [2]. However, evi-

dence that AID was a  DNA mutator in Escherichia coli  [3]  and its

functional interaction with uracil-DNA glycosylase UNG in adaptive

immunity [4–6], indicated that AID is a  DNA-cytosine deaminase.

Later several of  the other known APOBEC-family enzymes were

also found to be DNA-cytosine deaminases in vitro [7,8].  DNA cyto-

sine deamination by APOBEC-family enzymes is a natural event in

both the  adaptive and innate immune systems, through targeted

deamination of immunoglobulin (Ig) genes by AID and deamina-

tion of  viral DNA by APOBEC enzymes, respectively [7]. Despite their

important physiological functions, these host defense mechanisms

entail a  high risk  of potentially carcinogenic off-target genomic

mutagenesis. Recent high-throughput sequencing of  large num-

bers of human cancer genomes showed that mutations at cytosine

residues, particularly C to T  transitions, are the  most prevalent

http://dx.doi.org/10.1016/j.dnarep.2014.11.006

1568-7864/© 2014 The  Authors. Published by Elsevier B.V. This is  an open access article under the  CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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mutations in human cancer, highlighting enzymatic deamination of

cytosine to uracil as a  potential source of mutagenesis [9–11]. How-

ever, the actual uracil level in normal  and various cancer genomes

has remained elusive.

Here, a sensitive LC/MS/MS-based method for quantification

of genomic 2′-deoxyuridine (dUrd) was applied to demonstrate

that B-cell lymphoma cell lines contain several-fold increased lev-

els of  genomic uracil compared to  normal human lymphocytes

and non-lymphoma cell lines. Genomic uracil content correlated

with AID protein expression but not with other APOBEC enzymes.

In accordance with AID-generated uracil, we found that regions

of clustered mutations (kataegis)  in lymphoma and chronic lym-

phocytic leukemia (CLL) have a  distinct AID-hotspot mutational

signature. Importantly, we also show that uracil excision capac-

ity and expression of the uracil-DNA glycosylases UNG and SMUG1

correlated negatively with genomic uracil levels and to some extent

diminished the  effect of  AID. This study provides direct mechanistic

evidence for  genomic uracil accumulation due to  enzymatic DNA

cytosine deamination in  human cancers.

2. Materials and methods

2.1. Primary cells, cell  lines, cultivation, and reagents

Human cell lines HeLaS3 (ATCC  CCL-2.2TM), HEK293T (ATCC

CRL-11268TM),  and U2OS (ATCC HTB-96TM) were from ATCC. L428

(DSMZ ACC 197), DU145 (DSMZ ACC 261), KARPAS422 (DSMZ

ACC 32), T24 (DSMZ ACC 376), DOHH2 (DSMZ ACC 47), SUDHL4

(DSMZ ACC 4956), JJN3 (DSMZ ACC 541), SUDHL5 (DSMZ ACC 571),

SUDHL6 (DSMZ ACC 572 6), RAMOS (DSMZ ACC 603), RL  (DSMZ

ACC 613), DAUDI (DSMZ ACC 78 5), A431 (DSMZ ACC 91) were

from DSMZ. OCILY3 was a gift from Dr. L.M. Staudt, Metabolism

Branch, Center for Cancer Research, National Cancer Institute,

National Institutes of Health, Bethesda, MD, USA. Peripheral blood

mononuclear cells (PMBCs)  were purified from buffy coats from

three healthy blood donors using the LymphoprepTM (Progen) kit

according to the manufacturer’s protocol. Human B-lymphocytes

were purified from buffy coats from three healthy blood donors

using a  negative selection kit from StemCell Technologies accord-

ing to  the  manufacturer’s protocol. HeLaS3, HEK293T, T24, A431,

DU145, and U2OS cells were cultured in  DMEM (4500 mg/l glu-

cose) with 10% FCS, 0.03% l-glutamine, 0.1 mg/ml gentamicin and

2.3 �g/ml fungizone at  37 ◦C and 5% CO2.  DAUDI, DOHH-2, KARPAS,

RAMOS, SU-DHL-4, SU-DHL-6, OCILY-3, L-428, RL, SU-DHL-5, and

JJN3 cells were cultured in RPMI-1640 with 4500 mg/l glucose,

0.03% l-glutamine, Pen-Strep (1×  final), 0.1 mg/ml  gentamicin, and

2.3 �g/ml fungizone, and 20% heat  inactivated (56 ◦C, 20 min) FCS at

37 ◦C  and 5% CO2. For  quantitative rtPCR and uracil measurements

cells were harvested at densities between 750 000  and 2 million

cells/ml.

Cell doubling times for  suspension cells were measured using

a Countess® cell counter (Invitrogen) by two parallel daily mea-

surements for three to five day periods from cell densities of

50 000–200 000 cells/ml to  one to three million cells/ml. For adher-

ent cells, doubling time was measured in  96 well plates (3–6 parallel

wells; starting density 50 000 cells/ml) for a  three day period by

daily fluorescent measurement of resazurin (Sigma) metabolism

according to the manufacturer’s protocol. Doubling times were cal-

culated by exponential regression.

SUDHL5 AID knockdown and control cells were made using

Open Biosystem TransLenti Viral Packaging Mix, pTRIPZ AICDA

shRNA (RHS4741-EG57379; vectors V2THS 58282, 58283, and

58319) or pTRIPZ non-silencing control vector according to the

manufacturer’s protocol. Briefly, lentiviruses were produced in

HEK293T cells, and then supernatant from three consecutive days

48 h after  HEK293T transfection were used to  infect SUDHL5 cells.

Infected SUDHL5 cells were amplified for another 48 h  and  then

selected with  2  �g/ml puromycin for 30 days. Expression was

induced with 1 �g/ml doxycycline.

CH12F3 AID-EYFP and EYFP stable transfectants, confo-

cal microscopy, and stimulation experiments were described

previously [12].  CH12F3 cells (2 × 106 cells/ml) were cul-

tured in RPMI medium, with 10% heat-inactivated fetal calf

serum, 0.03% l-glutamine, 50  �M �-mercaptoethanol, 1  mM Na-

pyruvate, 0.1 mg/ml  penicillin/streptomycin, 2.3 �g/ml fungizone,

and 1.0 mg/ml  G418. CH12F3 cells were stimulated to  undergo

class switch recombination by adding 10 ng/ml mouse recom-

binant IL-4 (Peprotech), 2  �g/ml anti-mouse CD40 monoclonal

antibody (BD Biosciences) and 1  ng/ml human TGF-�1 (Pepro-

tech) and harvested 48 h  post stimulation for  DNA and protein

isolation. Western analysis of AID protein expression was per-

formed using mouse anti-AID monoclonal antibody no. 39-2500,

clone ZA001, 500 �g/ml (Invitrogen). Nuclear extracts from  syn-

chronized HeLa cells were prepared essentially as described

[13,14].

2.2. RNA isolation and quantitative real-time PCR  (qRT-PCR)

Total RNA for  mRNA analysis was  prepared using the  mirVana

miRNA isolation kit (Ambion) according to the  manufacturer’s

instructions. RNA concentration and quality was measured on  a

NanoDrop ND-1000 UV–vis spectrophotometer. Total RNA (770 ng)

was reverse transcribed for  gene expression analysis using Taq-

Man  reverse transcription reagents (Applied Biosystems). The

following TaqMan gene expression assays (Applied Biosystems)

were used: AID (Hs00757808 m1), UNG (Hs00422172 m1),

SMUG1 (Hs04274951 m1), TDG (Hs00702322 s1), MBD4

(Hs00187498 m1), APOBEC1 (Hs00242340 m1), APOBEC2

(Hs00199012 m1), APOBEC3A (Hs00377444 m1), APOBEC3B

(Hs00358981 m1), APOBEC3C (Hs00819353 m1), APOBEC3D

(Hs00537163 m1), APOBEC3G (Hs00222415 m1), APOBEC3F

(Hs01665324 m1), APOBEC3H (Hs00419665 m1), APOBEC4

(Hs00378929 m1), and GAPDH (Hs99999905 m1). Quantitative

PCR was  carried out on  a Chromo4 (BioRad) real-time PCR detec-

tion system. Relative expression of mRNA was  calculated by the

�Ct method using GAPDH as endogenous control. Regression

analyses were done using GraphPad Prism where data were fitted

by linear regression (log/linear(X)  vs. log/linear(Y))  as indicated.

2.3.  Quantification of uracil in DNA by LC/MS/MS

Genomic uracil was quantified as previously described

[15]. Briefly, DNA was isolated by phenol:chloroform:isoamyl

extraction, treated with alkaline phosphatase to remove free

deoxyribonucleosides, and then  enzymatically hydrolyzed to

deoxyribonucleosides. Deoxyuridine (dU) was then separated

from deoxycytidine (dC) by HPLC fractionation using a  reverse-

phase column with embedded weak acidic ion-pairing groups

(2.1 mm × 150 mm,  5  �m, Primesep 200, SIELC technologies), using

a  water/acetonitrile gradient containing 0.1% formic acid.  The dU

fraction was  finally analyzed by ESI-LC/MS/MS using a  reverse

phase column (2.1 mm  × 150 mm,  3.5 �m,  Zorbax SB-C18, Agilent

Technologies), using a water/methanol gradient containing 0.1%

formic acid on  an API5000 triple quadrupole mass spectrometer

(Applied Biosystems) in  positive ionization mode. A  small frac-

tion of  the hydrolyzed deoxyribonucleosides were quantified by

LC/MS/MS in parallel and used to determine the amount of  dU  per

106 deoxyribonucleosides.
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2.4. In vitro uracil DNA excision activity and complete BER  assays

Standard UDG activity assay was performed as described [16].

Briefly, 20 �l reaction mixtures containing (final) 1.8 �M nick trans-

lated [3H]-dUMP-labeled calf thymus DNA (U:A substrate), 1× UDG

buffer (20 mM  Tris–HCl, pH 7.5, 60 mM  NaCl, 1 mM  DTT, 1 mM

EDTA, 0.5 mg/ml  BSA) and 1  �g whole cell extract were incubated at

30 ◦C for 10 min. Acid-soluble [3H] uracil was quantified by scintil-

lation counting. Whole cell extracts was prepared as  described [17].

Oligodeoxynucleotide UDG assays were performed as described

[16]. Briefly, double-stranded DNA substrates were generated by

annealing 6-FAM-labeled oligonucleotides containing a centrally

positioned uracil in an AID-hotspot (5′-CATAAAGAGUTAAGCCTGG-
3′; Eurogentec) to complementary strands containing G opposite

U. Activity was measured in  10 �l assay mixtures containing (final)

20 nM substrate, 1× UDG buffer and 0.4 �g cell extract, and incu-

bated at 37 ◦C for 10  min. Reactions were stopped and AP-sites were

cleaved by addition of 50 �l  10% piperidine followed by incubation

at  90 ◦C for 20 min.  Product and substrate were separated on PAGE,

scanned on Typhoon Trio imager and quantified using ImageQuant

TL software (GE healthcare).

BER assays were carried out essentially as  described [14,17].

Briefly, 10 �g nuclear extract was incubated with 250 ng cccDNA

(covalently closed circular DNA) substrates in final concentra-

tions of 40  mM HEPES-KOH, 70 mM  KCl, 5 mM  MgCl2,  0.5 mM DTT,

2 mM ATP, 20  �M dATP, 20 �M dGTP, 20  �M dTTP, 8  �M dCTP,

4.4 mM phosphocreatine, 62.5 ng/�l  creatine kinase and 50 nCi/�l
[�-32P]dCTP in a final volume of  40 �l.  Reactions were incubated

for 25 min  at 37 ◦C and stopped by addition of EDTA  (18 mM final)

and 6 �g RNaseA and incubated at 37 ◦C for  10 min  followed by

the addition of  SDS (0.5% final) and 12  �g proteinase K.  DNA was

extracted by phenol/chloroform and precipitated in ammonium

acetate/ethanol and digested with XbaI  and HincII (New England

Biolabs). Following 12% PAGE, bands were visualized and quanti-

fied using ImageQuant software (Fujifilm). We investigated relative

contribution of SMUG1, TDG and UNG2 to  the  initiation of  uracil

repair by pre-incubating extracts with neutralizing antibodies to

SMUG1 (0.11 �g/�l final concentration), UNG (0.3 �g/�l final con-

centration), and/or neutralizing anti-serum towards TDG (1:50

dilution) on ice  for 30 min  prior to the reaction.

2.5. Flow cytometric analysis of cell cycle

Cells were fixed in  70% methanol, washed twice with PBS,

and then treated with 50  �l RNaseA (100 �g/ml in PBS) at 37 ◦C
for 30 min  prior to DNA staining with 200 �l propidium iodide

(50 �g/ml in  PBS) at 37 ◦C  for 30 min.  Cell  cycle analyses were per-

formed using a  FACS Canto flow  cytometer (BD-Life Science).

2.6. Sample preparation and targeted mass spectrometry

Cell pellets were resuspended in 1× packed cell volume in

buffer I: 10 mM  Tris–HCl pH 8.0,  200  mM  KCl,  1× complete protease

inhibitor, and 5× phosphatase-inhibitor cocktails I and II (Sigma-

Aldrich), 10 �M suberoylanilide hydroxamic acid (SAHA) (Cayman

Chemicals) and 0.05 �M,  Ubiquitin Aldehyde (Biomol International

LP) followed by addition of  an equal final volume of  buffer II: 10 mM

Tris–HCl pH  8.0, 200 mM  KCl, 10  mM EGTA, 10 mM MgCl2,  40%

glycerol, 0.5% NP40, 1 mM  DTT, 1× complete protease inhibitor,

and 5× phosphatase-inhibitor cocktails I and II (Sigma-Aldrich),

10 �M suberoylanilide hydroxamic acid (SAHA) (Cayman chemi-

cals) and 0.05 �M,  Ubiquitin Aldehyde (Biomol International LP)

containing an endonuclease cocktail of  200 U Omnicleave (Epicen-

ter Technologies), 2 U DNase I (Roche Inc.), 250 U Benzonase (EMD),

100–300 U micrococcal nuclease (Sigma-Aldrich), and 10 �g  RNase

A (Sigma-Aldrich) per 1 ml  of  buffer II. After resuspension, the

lysates were incubated for 1.5 h at 4 ◦C  in a roller. 50 �g  protein

of cell lysate pools consisting of  2–4 biological replicates from each

cell line were incubated with 5  mM  tris (2-carboxyethyl) phosphine

(TCEP) for  30 min  followed by alkylation with 1 �mol/mg protein

of  iodoacetamide for 45 min  in  the dark. Proteins were precipitated

using a methanol–chloroform method as described [18],  including

another round of  reduction and alkylation prior to  overnight diges-

tion with Trypsin (Promega) at 1:40 ratio (w/w, enzyme:protein)

at 37 ◦C. Tryptic digests were dried out, resuspended in 0.1% formic

acid and analyzed on  a  Thermo Scientific QExactive mass spec-

trometer operating in  Targeted-MS2 mode coupled to an Easy-nLC

1000  UHPLC system (Thermo Scientific/Proxeon). Peptides (2 �g)
were injected onto a  Acclaim PepMap100 C-18 column (75 �m
i.d.  × 2 cm, C18, 5 �m,  100 Å)  (Thermo Scientific) and further sep-

arated on a  Acclaim PepMap100 C-18 analytical column (75 �m
i.d.  × 50 cm,  C18, 3 �m,  100 Å)  (Thermo Scientific). A  120 min

method was used and consisted of a  300  nl/min flow rate, start-

ing with 100% buffer A (0.1% Formic acid) with an increase to  5%

buffer B (100% Acetonitrile, 0.1% Formic acid) in  2 min, followed by

an increase to 35% Buffer B over 98  min  and a rapid increase to  100%

buffer B in  6 min, where it was held for  5.5 min. The solvent compo-

sition was  quickly ramped to 0%  buffer B, where it was subsequently

held  for 8  min  to allow the column to  equilibrate for the next run.

The  peptides eluting from the  column were ionized by using a

nanospray ESI ion source (Proxeon, Odense) and analyzed on the

QExactive operating in positive-ion mode using electrospray volt-

age 1.9 kV  and HCD fragmentation. Each MS/MS  scan was acquired

at a  resolution of  35 000 FWHM,  normalized collision energy (NCE)

28, automatic gain control (AGC) target value of 2 × 105, maximum

injection time of 120 ms  and isolation window 2  m/z.

All parallel reaction monitoring (PRM)-based targeted mass

spectrometry methods were designed, analyzed, and processed

using Skyline software version 2.5 [19]. In silico selection of pro-

teotypic peptides was  performed via Skyline using the Homo

sapiens reference proteome available at  www.uniprot.org to

exclude non-unique peptides. Frequently modified peptides, such

as those containing methionine, and  peptides containing contin-

uous sequences of  R and K (e.g., KR,  RK, KK or  RR) were avoided.

However, when the inclusion of non-ideal peptides was neces-

sary both unmodified and M-oxidized peptides as well as peptides

containing a  missed cleavage site were analyzed. Synthetic puri-

fied peptides (JPT Peptide Technologies) and tryptic digests from

recombinant proteins were analyzed in  a  QExactive mass spec-

trometer. Information on  retention time and fragmentation pattern

of  the  top 2–6 ionizing tryptic peptides (2+ or  3+ charge states)

for each protein were used to build a scheduled method with a

retention time window of 5 min. The method was  then used for

peptide quantification in  the cell lysate pools. A minimum of  2

peptides per protein was used for quantitative analysis except for

APOBEC3F in which  only one of the  unique peptides tested was

detectable in the  samples. The sum of  the  integrated peak areas of

the 3–5 most intense fragments was used for peptide quantifica-

tion. Peptide areas for multiple peptides of the  same protein were

summed to assign relative abundance to  that protein. The error bars

represent the  standard deviation of  3 technical replicates.

2.7. Bioinformatics analysis of DNA  exome sequencing data

Kataegis regions and somatic mutations for CLL, B-Cell lym-

phoma, ALL, lung  adenocarcinoma, and breast, liver, and pancreatic

cancer were downloaded from the supplementary material of a

published study [11].  The kataegis regions within specific cancer

samples were provided as genomic coordinates into the human

reference genome version 19 (hg19); the somatic mutations were

provided as genomic coordinates in  hg19 and nucleotide alter-

ations. We used the following procedure to  create mutational
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signatures for the  kataegis regions for  each cancer type. First, for

each kataegis region, its sample ID and genomic coordinates were

used to identify the corresponding somatic mutations. Second,

for each somatic mutation, the  five nucleotides centered on  the

mutated nucleotide were retrieved from the genome sequence.

Third, if  the middle nucleotide within the retrieved sequence was  a

purine, the sequence was reverse-complemented such that all  the

mutations were represented by  pyrimidines. Fourth, for each of  the

six possible single nucleotide mutations, the relative occurrence of

each  nucleotide at  each position within the retrieved sequences

was computed. These position-specific relative occurrences were

the mutational signatures.

3. Results

3.1. High  genomic uracil levels in  B-cell lymphoma cells

To investigate whether uracil in the  genome may be an  impor-

tant factor in lymphomagenesis, we measured genomic uracil in

ten B-cell lymphoma cell lines, seven other human transformed cell

lines and in lymphocytes from three healthy human blood donors

(Fig. 1A). The origin and major characteristics of cell lines is dis-

played in Fig. 1B. We found as  much as  72-fold variation in genomic

uracil levels between the cell line with the highest uracil content

(DAUDI, 4.03 deoxyuridines (dU) per 106 deoxyribonucleosides

(nt)) and the cells with the lowest level of  genomic uracil (A431,

0.056 dU/106 nt). Strikingly, all  ten lymphoma cell lines and four of

the other transformed cell lines had significantly (P < 0.05) elevated

genomic uracil levels compared to genomic uracil in peripheral

blood mononuclear cells (PBMC) from the mean value for three

blood donors (0.19 dU/106 nt). We  also measured genomic uracil in

B-lymphocytes isolated from buffy coats from three healthy donors,

using a  kit for negative selection. The genomic mean uracil level

in these was 0.14 dU/106 nt, with individual values of  0.07, 0.17

and 0.19 dU/106 nt, respectively. The mean value for the genomic

uracil level in B-cell lymphoma cell  lines  (2.5  dU/106 nt) was 13-fold

and 18-fold higher than in  PBMC and primary B-cells, respectively.

In addition it was significantly higher (4.4-fold, P < 0.001) than the

mean for non-lymphoma cell lines (0.57 dU/106 nt). The B-cell lym-

phoma cell lines are likely to be exposed to  enzymatic untargeted

cytosine deamination by AID throughout the  genome, since the

total number of  genomic uracils is in the range 3000–15 000 per

haploid genome (this paper) and the density of genomic uracil in

S� region of  stimulated B-cells is only ∼0.8 per kb [20]. Some of  the

non-lymphoma cancer cell  lines had intermediate genomic uracil

levels, clearly higher than  normal peripheral blood lymphocytes,

but lower than most of  the B-cell lymphoma cell lines.

3.2. AID  expression correlates with genomic uracil accumulation

AID has previously been shown to be expressed in several lym-

phoma subtypes [21–24] and AID/APOBEC family enzymes were

suggested to contribute to mutational signatures in a  number of

cancers by deaminating cytosine to uracil in DNA [11]. We  there-

fore investigated whether expression of  AID and/or other APOBECs

could explain the  observed variation in  genomic uracil levels in

the cell line  panel. We  first measured mRNA expression of  AID

and all other APOBEC-family genes by quantitative rtPCR using

GAPDH as reference gene (Fig. 2A). AID mRNA was  detected in all 17

cell lines, although at  highly variable levels, but not in the normal

lymphocytes from blood donors. Furthermore, AID mRNA was sub-

stantially increased in lymphomas with high genomic uracil such

that AID mRNA had a  high positive correlation with genomic uracil

(R2 = 0.70, P <  0.0001). By contrast, APOBEC3B, -3D, -3F, and -3G

mRNA content did not correlate with genomic uracil level although
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Fig. 1.  Genomic uracil levels in  B-cell lymphoma-/non-lymphoma cell lines  and
on  white blood cells from peripheral blood l. (A) Quantification of genomic uracil

levels (dU/106 nt) by LC–MS/MS in  lymphoma cell lines  (green), non-lymphoma cell

lines (yellow) and PBMCs or B-lymphocytes isolated from buffy coats from  blood

donors (red). Asterisk (*) signifies measurements significantly (P < 0.05) different

from average genomic uracil levels  in  PBMC from three healthy blood donors (Stu-

dent’s  T-test). Error bars represent mean and SD of at least two biological replicates.

Cell lines within each  group are ordered along the x-axis according to  increasing

genomic uracil levels. (B) Overview of cell  lines, PBMCs and B-lymphocytes used in

the  study and their origin. B-NHL: B-cell non-Hodgkin lymphoma. (For interpreta-

tion  of the references to  color in  this  figure legend,  the reader is referred to the web

version  of this article.)

they were expressed in all cell lines as well as in the  normal lympho-

cytes (Fig. 2A). mRNA of the other APOBECs (APOBEC1, APOBEC2,

APOBEC3A, and  APOBEC) were detected only in  some of the cell

lines and mostly at very low levels  (data  not shown).

Although mRNA expression data is useful as  a  predictor of  pro-

tein expression, it does not always correlate with the  actual protein

levels in the  cells. Thus, we quantified AID and the  APOBEC proteins

by parallel reaction monitoring using a quadrupole-Orbitrap mass

spectrometer (Fig. 2B). This is a  highly selective method allowing

quantification of  many protein targets in a  single sample [25,26].

In agreement with mRNA data, MS  quantification revealed higher

amounts of  AID  protein in lymphoma cells with increased genomic

uracil (Fig. 2B, upper panel). Furthermore, similar to mRNA data

(Fig. 2A, middle panel), APOBEC3B, -3D, -3F  and-3G proteins

were expressed in all cell lines (Fig. 2B, middle panel), while

APOBEC1, APOBEC2, APOBEC3A, and APOBEC4 were not detectable

or detected at very  low levels (data not shown). In  general, protein

levels for  AID and the  APOBEC proteins (normalized to GADPH pro-

tein) correlated well with mRNA levels  (Fig. 2C).  As an additional

control, we also quantified AID by western analysis, which yielded

results similar to the MS analysis (Fig. 2D).  Linear regression
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Fig. 2. Expression of AID and APOBECs, and correlation with genomic uracil. Expression of AID and APOBEC3B, 3D,  3F, and 3G mRNAs measured by  qRT-PCR (A)  or protein

by  mass spectrometric quantification. (B) Lymphoma cell lines are shown in green,  non-lymphoma cell  lines in yellow, and PBMC in  red. Cell lines within each group  are

ordered  along the x-axis according to  increasing genomic uracil levels, as in  Fig.  1.  mRNA levels have been normalized to GAPDH mRNA, and protein levels to MS signal

counts  per total injected protein. Note  that mRNA and protein expression data are in  log-scale. Regression plots of genomic uracil (dU/106 nt) vs. AID mRNA and protein levels

are  presented in  the lower panels in Fig. 2A and B, respectively. (C) Table of correlation coefficients between mRNA and protein expression for AID and other APOBECs. (D)

Western  analysis of AID protein expression with GAPDH shown  as  a loading control. (For interpretation of the references to color in  this figure legend, the reader is referred

to  the web version of this article.)

Table 1
Regression analysis of genomic uracil levels (linear)  vs. AID and APOBEC protein expression (log) normalized to total protein. Bold green indicates significant positive

correlation  (For interpretation of the references to color in this  figure legend, the  reader is  referred to the web version of this article.).

All cell  lines including PBMC B-cell lymphoma cell  lines Non-lymphoma cell lines

R2 P-value R2 P-value R2 P-value

AID 0.65 <0.0001 0.42 0.04 0.00 0.97

APOBEC3B 0.10 0.2089 0.00 0.84 0.00 0.98

APOBEC3D 0.12 0.17  0.00 0.88 0.02 0.79

APOBEC3F  0.01 0.67  0.08  0.44 0.32 0.18

APOBEC3G 0.12 0.14  0.30  0.09 0.00 0.98
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Fig. 3. Genomic uracil levels after stimulation of endogenous AID expression, AID-YFP overexpression, and AID knockdown. (A) Genomic uracil levels in  DNA isolated

from  mouse lymphoma cells (CH12F3) stably transfected with AID-YFP or YFP, and  confocal microscopy showing subcellular distribution of AID-YFP fusion protein or YFP. (B)

Genomic  uracil levels and cell  growth of CH12F3 YFP cells and CH12F3 AID-YFP cells prior to stimulation and 48 h after being stimulated to undergo class switch recombination

using  mouse recombinant IL-4, CD40 monoclonal antibody and hTGF-� (upper panel) and western blots from one representative experiment showing AID protein expression

levels  and �-actin as loading control (middle panel). The lower panel shows cell growth of stimulated and unstimulated cells. Graphs represent mean and SD calculated

from  at least two  biological replicates. P-values were calculated by a two-tailed Student’s T-test. (C) Genomic uracil levels in  SUDHL5 lymphoma cells stably transfected with

AID-shRNA and control. Western blots shows AID protein expression levels  with  GAPDH as  a loading control.

analysis of  AID western signals against MS quantitation of  AID  pro-

tein revealed almost perfect correlation (R2 = 0.95). Importantly,

AID expression significantly correlated with genomic uracil also

at the protein level (R2 = 0.65, P < 0.0001) (Fig. 2B, and Table 1),

and thereby seemed to  account for a  large part of  the  variation in

genomic uracil between the  cell lines. The correlation was  still valid

when including only the  B-cell lymphoma cell lines in the regres-

sion analysis (Table 1). No significant correlations were observed

between the other APOBEC proteins and genomic uracil (Table 1).

Thus, AID was the  only APOBEC-family member that correlated

with genomic uracil in the  human cancer cell lines examined here.

3.3. AID  expression causes several-fold increases in  genomic

uracil

To investigate whether AID expression significantly increases

the overall level of genomic uracil in an otherwise isogenic back-

ground, we used stable transfectants of the  mouse B-cell lymphoma

cell line CH12F3 expressing AID-YFP fusion protein, or YFP as

control [27]. AID is mostly localized in the  cytoplasm (Fig. 3A),

but is actively imported into the nucleus where it  may  access

the genome [12].  We  found that the  cells expressing AID-YFP

displayed an almost six-fold higher level of  genomic uracil com-

pared to  the YFP control (Fig. 3A). When appropriately stimulated,

CH12F3 cells increase endogenous AID  expression and have capac-

ity to undergo CSR. Thus next, we investigated whether stimulation

of these cell lines also increased the level of genomic uracil. A

clear induction of  AID and a  four-fold increase in genomic uracil

were observed in stimulated CH12F3-YFP cells already after 48 h

(Fig. 3B, upper panel). An increase in  genomic uracil was  observed

in the  stimulated AID-YFP expressing cells as well, although this

was  not significant, probably due to the high constitutive expres-

sion AID-YFP. Importantly, the  increase in  genomic uracil observed

after stimulation could not be ascribed to increased replica-

tive  misincorporation of dUMP due to higher proliferation rate

because stimulated CH12F3 cells actually have reduced prolifer-

ation (Fig. 3B, lower panel). Finally, we examined the effect of

knocking down AID using a  lentiviral AID shRNA expressing vector.

For this experiment, we  used the human B-cell lymphoma cell line

SUDHL5, which exhibited high constitutive AID expression (Fig. 2B

and D). We  found that a  60% knockdown of AID reduced genomic

uracil level by 38% (P = 0.005; Fig. 3C). Taken together these results

strongly support the view  that enzymatic cytosine deamination is

the major source of  genomic uracil in  AID-expressing cells.

3.4. Uracil-DNA repair capacity is inversely correlated with

genomic uracil levels

Genomic uracil is predominantly repaired by base excision

repair (BER), which is mainly initiated by the uracil-DNA glycosy-

lase encoded by the  UNG gene [16]. We  have previously shown that

UNG deficiency in  human and mouse cells results in a  several-fold
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Fig. 4. Uracil excision activity, expression of uracil DNA glycosylases, and correlation with genomic uracil levels. Note that in  all bar graphs cell lines are  ordered

according  to increasing genomic uracil levels  in  lymphoma cell lines (green) and non-lymphoma cell lines (yellow), and Y-axes are normalized so that maximum activity

or  maximum protein abundance equals 1. Bars  and  error bars represent mean and SD of three biological replicates. (A)  Relative uracil excision activity from an AID-hotspot

sequence-oligomer containing uracil in U:G context (cleavage assay) and from a nick-translated DNA containing uracil in  U:A context (3H-uracil release assay), as indicated

by  color codes. Activity was normalized to  total protein. (B) The  corresponding correlation between genomic uracil and activity per total protein. (C) Relative uracil excision

activity  normalized to activity per cell, and  (D) the corresponding correlation with genomic uracil with activity per cell. (E) Western blot  of UNG2 and  UNG1 in  non-lymphoma

and  lymphoma cell  lines. (F) Relative abundance of MS-quantified UNG  protein per total protein; (G)  Correlation plot of average uracil excision activity vs. relative abundance

of  MS quantified UNG protein. (H) Relative abundance of MS quantified DNA glycosylases SMUG1, TDG and MBD4 and cell doubling times of cell lines; (I) Correlation plot

of  genomic uracil content vs. doubling times of non-lymphoma cell  lines and lymphoma cell lines. (J) Contribution of UNG, SMUG1  and TDG through the cell  cycle measured by
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increase in genomic uracil [15]. The  other uracil-DNA glycosylases,

i.e. SMUG1, TDG, and MBD4, are thought to be quantitatively less

important contributors, at least in proliferating cells [16,28,29].

Furthermore, the  DNA repair machinery has been shown to  protect

against AID-induced mutagenesis [30–32].  Therefore, we  measured

uracil excision activity of  cell free extracts prepared from all cell

lines against oligodeoxyribonucleotides with uracil in a U:G con-

text. In addition, we measured [3H]-uracil release from calf thymus

DNA having uracil in  a  U:A  context. The two different assays gave

similar activity profiles (Fig. 4A). Regression analysis of  uracil-

excision activity (relative to protein content in the cell extracts)

against genomic uracil content in the cells demonstrated a  nega-

tive correlation (Fig. 4B), which is significant (P < 0.05), although

weak. We also calculated relative uracil excision activity per cell

since the glycosylases are predominantly nuclear enzymes and the

cells tested vary in size and nucleus-to-cytoplasm ratios (Fig. 4C).

Using these activity values, a stronger correlation with genomic

uracil level was observed (Fig. 4D).

The UNG gene encodes both nuclear UNG2 and mitochondrial

UNG1, having identical catalytic domains but specific N-terminal

domains. These isoforms are differently regulated from two pro-

moters [33,34].  Since activity assays measure total activity, we

analyzed the  isoforms by western blots. Nuclear UNG2, which is

the isoform relevant for  repair of  genomic uracil, was expressed in

all cell lines and accounted for  approximately half of  total UNG in

most cell lines (Fig. 4E).  UNG  enzymes are the  most active of the

glycosylases, at least in  vitro. However, each glycosylase with its

specific or complementary role may  exert a  significant impact on

the total level of  genomic uracil in vivo. We  therefore quantified

all the uracil-DNA glycosylases at protein level by MS. The relative

abundance of  quantified UNG protein (UNG1 and UNG2) (Fig. 4F)

correlated strongly with total uracil excision activity (Fig. 4G), in

accordance with its presumed major role in uracil repair. Similar

to the uracil excision activity, UNG protein per cell also corre-

lated inversely with genomic uracil level when all cell lines were

included in the  regression analysis (Table 2). Furthermore, quanti-

fied SMUG1 protein (Fig. 4H) correlated negatively with genomic

uracil, although more weakly. Surprisingly, however, SMUG1 was

the only glycosylase that correlated with genomic uracil when only

the B-cell lymphoma group was analyzed (Table 2). In  addition,

the AID/SMUG1 protein ratio displayed significantly higher corre-

lation with genomic uracil in the  B-cell lymphoma group (R2 = 0.65)

compared to AID alone (R2 = 0.42). No significant correlations were

found for TDG or MBD4 proteins and genomic uracil (Fig. 4H) when

analyzed separately (Table 2)  or in combination with AID or  other

glycosylases.

3.5. Cell doubling time, genomic uracil content and repair

capacity in  cell cycle phases

In  cells that do  not express AID, one would predict that genomic

uracil from misincorporation of  dUMP during replication should

result in  increased genomic uracil in cells with short doubling

time, as suggested previously [35]. Indeed, we observed a  signif-

icant inverse relationship between genomic uracil and doubling

time in  non-lymphoma cancer cells (R2 = 0.57; P =  0.048; Fig. 4I).

Furthermore, since AID has  been shown to  act  in  the  G1 phase of

the cell cycle [36–38],  one would expect that the lymphoma cell

lines with long doubling times might have higher genomic uracil

levels than those with shorter doubling time. However, we did not

find a  significant positive correlation with doubling time (R2 = 0.27;

P =  0.12), although the  curve was  apparently different from that  of

the non-lymphoma cell lines (Fig. 4I).

As mentioned above, we  found an inverse correlation between

genomic uracil and both total uracil excision capacity, and with

SMUG1 and UNG protein levels. Nuclear UNG2 expression peaks

during G1/S-phase transition and during S-phase and is expressed

at a  lower level in late S-phase, G2 and early  G1 [13,39].  In con-

trast, TDG is  mainly expressed in the  G1 phase of  the  cell cycle

[13,39].  Thus, TDG might have a role in counteracting untargeted

generation of  U:G mismatches by AID in G1, although correlation

studies did not give indications of  this. SMUG1 is not cell cycle regu-

lated [40] and may  contribute in  all cell cycle phases, but is  a rather

slow acting enzyme [16]. To explore the relative contribution of  the

uracil-DNA glycosylases in in  vitro complete BER of uracil in  differ-

ent parts of  the  cell cycle, we synchronized HeLa cells by double

thymidine block [13],  prepared nuclear extracts from the  differ-

ent cell cycle phases (monitored by flow cytometry) and applied

an assay for complete BER of  U:G mismatches in  DNA [14,17,41].

To examine UNG, SMUG1 and TDG  separately, we used a  combina-

tion of  neutralizing antibodies against UNG, SMUG1 and TDG. UNG

was found to  be by far  the major contributor to initiate BER in the

G1/S transition and  in the  S  phase. Total repair capacity in G2  and

G1 was somewhat lower than in the S phase, but UNG remained a

major contributor to the  initial step in BER-process, although con-

tributing only 1.5–1.7 more than TDG. SMUG1 contributed in all cell

cycle phases, but to  a  minor degree (Fig. 4J).  Thus, a  role of  TDG and

SMUG1 in BER of  U:G mismatches in the  G1  phase, and a  smaller

role in the S-phase would seem likely from our in vitro data. The

contribution of the  different uracil-DNA glycosylases during the

cell cycle is likely to be similar in other human cell lines, includ-

ing B  cell lymphoma cell lines, although this has not been formally

demonstrated.

3.6. Lymphomas and  CLL  carry a  distinct AID-hotspot mutational

signature in  kataegis regions

Large scale genome sequencing of  cancers has produced the

novel observation that  several cancers carry localized hypermu-

tation, named kataegis,  in small regions that are also associated

with genomic rearrangements. The mutational signatures observed

in most cancer types with kataegis (acute lymphoblastic leukemia

(ALL), lung  adenocarcinomas, breast, pancreas, and liver cancer)

suggest an association with APOBEC3 enzymes, with a strong

enrichment of C to T transitions and C to G transversions at

TCA/T sequence contexts [11]. As  mentioned, these kataegis pat-

terns might be different from those found in lymphomas and CLL

[11],  though this was not explored in detail in their comprehen-

sive paper. We  therefore reanalyzed these exome sequencing data

from kataegis regions of  lymphomas and CLL and compared them  to

kataegis regions in cancers with typical APOBEC signatures (Fig. 5).

The preferred sequence for  C  to  T mutation in kataegis regions of

B-cell lymphomas and CLL  revealed a target sequence that over-

lap with the known AID hotspot motif (WRCY W = A/T, R = purine,

Y =  pyrimidine). The  general mutational pattern for C to T tran-

sitions in lymphomas and CLL  was AGCT,  rather than TCA/T  for

the other cancer  types with kataegis (Fig. 5). This strongly impli-

cates AID-induced genomic uracil formation in the  development

of localized hypermutation in  B-cell malignancies, in accordance

an in vitro assay for complete BER of a  single uracil in a defined U:G  context. HeLa  cells were synchronized by double thymidine block, and harvested after 0, 3,  8,  and 14  h

representing  G1/early S-phase, mid  S-phase, G1 and G2 phase, and  G1 phase, respectively, as  shown by flow cytometric confirmation of cell cycle distribution in  the top row.

The  contribution of each uracil DNA glycosylase was measured by using neutralizing antibodies to  UNG, SMUG1, or TDG as indicated. Note that the column size  values in the

panels  are directly comparable since they are generated from the same gel using the same substrate. The data points represent mean of independent triplicate experiments.

(For  interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table  2
Regression analysis of genomic uracil levels  (linear) vs.  expression of uracil-DNA repair  glycosylases (linear) normalized either  to  total protein or  to  total  protein per cell.

Bold  red indicates significant negative correlation (For interpretation of the references to color in this figure legend, the reader is referred to the  web version of this article.).

Per total protein

All cell  lines B-cell lymphoma cell lines Non-lymphoma cell lines

R2 P-value R2 P-value R2 P-value

UNG 0.24 0.05  0.01 0.82 0.23 0.28

SMUG1  0.28 0.03 0.41 0.04 0.13 0.43

TDG  0.05 0.35 0.02 0.69 0.13 0.41

MBD4  0.07 0.27 0.02 0.7 0.05  0.63

Per  cell

All cell  lines B-cell lymphoma cell lines Non-lymphoma cell lines

R2 P-value R2 P-value R2 P-value

UNG 0.42 0.005 0.05 0.52 0.20  0.31

SMUG1  0.28 0.03  0.16 0.24 0.06  0.6

TDG  0.22 0.06 0.14 0.27 0.32 0.17

MBD4  0.00 0.94 0.05 0.55 0.00 0.88
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Fig. 5. Sequence context of C to T transitions in  kataegis regions of lym-
phomas. Sequence analyses are based on exome sequencing data obtained from

[11]. Sequence context of C to T transitions in  kataegis regions of lymphomas (n = 21;

1102  single mutation sites) and  CLL (n =  15; 290 single  mutation sites) showing

an  AID-hotspot consensus sequence ( AGCTN ), where N  represents no signifi-

cant difference between A, T, C or G. Comparative analyses of cancers with known

APOBEC signatures in  kataegis regions showing an  APOBEC consensus signature

(  NTCATN ),  from  ALL (n =  1; 153 single mutation sites), breast (n =  67;  5021 sin-

gle  mutation sites), liver (n = 15;  175 single mutation sites), lung adenocarcinoma

(n  = 20; 2024 single mutation sites), and pancreas (n = 11; 439 single mutation sites).

with our genomic uracil measurements and the  published associa-

tions between AID and lymphomas [21–24,42–44] and CLL [45,46].

Moreover, these 122 lymphoma kataegis regions mapped to 70 dis-

tinct 100 kb blocks on 16  chromosomes, further supporting that

enzymatic cytosine deamination by AID is not restricted to the S�

region but occurs genome-wide.

4. Discussion

A major finding in our study is that AID expression is apparently

a predominant source of  genomic uracil in B-cell lymphoma cell

lines. The LC–MS/MS method used quantifies genomic uracil as 2′-
deoxyuridine in DNA [15].  The contribution of AID in this process

was not  solely made plausible by correlations, but also demon-

strated by physiological induction of  the endogenous AID gene,

overexpression of  recombinant AID, as well as  knockdown of  AID

by shRNA. We feel that these  results provide convincing evidence

of  dC to dU  conversion in vivo by AID, which was considered miss-

ing in a  recent review [47].  Furthermore; we found that mutational

signatures in kataegis regions in human B-cell malignancies carry

a distinct AID signature, strongly supporting the  concept that AID

is a DNA cytosine deaminase that, when mistargeted cause muta-

tions and eventually B-cell malignancies. The increased genomic

uracil is in  general agreement with a  recent report on  relative

increases in  genomic uracil in B-cell lymphoma cell lines express-

ing AID, using an indirect genomic uracil-quantification method

[48].  Evidence for  targeted generation of  uracil in Ig-genes has

been obtained using a ligation-mediated PCR approach [20,49].

AID is normally only expressed in activated germinal center B-

cells [2,50] and at low but detectable levels in early developing

B-cells in  the bone marrow [51]. This is  apparently a  risky pro-

cess because AID strongly promotes the generation of  germinal

center-derived lymphomas [22,52,53],  in which off-target activity

of AID may  contribute to point mutations and translocations during

lymphomagenesis [31,54,55].

Recently, high-throughput sequencing of  complete human

cancer genomes and exomes revealed distinct mutational signa-

tures compatible with  mutagenesis by APOBEC-family enzymes

in several common human cancers. This suggests that enzymatic

off-target deamination of DNA-cytosine to  uracil might be a major

cause of mutation in human cancers [9–11]. However, direct evi-

dence from measurements of  uracil in the cancer genomes has

largely been missing. Importantly, we  found that endogenous

AID-induction in  CH12F3 mouse B-cells increases genomic uracil

four-fold, from  approximately 750 to 3000 uracils per genome

already after 48 h. It is unlikely that this substantial increase can be

confined to  target regions in the  Ig genes. Therefore, the increase in

genomic uracil levels following endogenous AID expression indi-

cates that even transiently induced AID expression during CSR

causes widespread cytosine deamination. This is also in accor-

dance with the  mutational AID signatures found at  many regions

in human B-cell malignancy genomes. We  did not observe corre-

lation of  genomic uracil with expression of  other APOBEC-family
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members.  This does not rule out these as significant mutators

in cancer cells, particularly since we only examined seven non-

lymphoma cell lines. Low levels of enzymatic cytosine deamination

may be overshadowed by dUMP misincorporation and sponta-

neous cytosine deamination. In addition, the  strong effect of  AID

in B-cell lymphomas may  obscure contribution of other APOBEC

enzymes. A  contribution from APOBECs may  become significant

over time and help drive transformation from normal cell to  cancer

cell, as indicated by mutational signatures [11,56].

Although AID expression levels correlated with  variation in

genomic uracil in the  cells we tested, our results indicate that

additional factors may  modulate genomic uracil levels. The  most

obvious factor would be uracil repair capacity, which varies con-

siderably between cell lines, and dUMP incorporation. We have

previously shown that UNG is a  rate-limiting factor in complete

in vitro BER of genomic uracil [14] although UNG  and SMUG1 may

have complementary roles in uracil repair [16,29,57] and in the

prevention of mutagenesis [58]. Studies on UNG−/− cells have doc-

umented an important function for UNG in  keeping genomic uracil

levels low [15]. However, the complete absence of  any BER fac-

tor is a  dramatic and rare event, whereas several-fold variation is

rather common, at least  in transformed cells. Earlier work demon-

strated that AID-induced mutagenesis was counteracted by  UNG,

which initiates U:G DNA repair [31]. Our data showed that UNG

and SMUG1 protein levels both correlated inversely with genomic

uracil, with UNG showing the  strongest correlation across all  cells,

while only SMUG1 correlates significantly in the  lymphoma cell

lines. Consequently, these results indicate that BER protein lev-

els do affect genomic uracil. These results do not in themselves,

however, necessarily reveal the relative importance of individual

glycosylases for  in vivo BER. We therefore made an effort to  ana-

lyze the role of  the glycosylases independently, using an assay for

complete BER based on nuclear extracts from synchronized HeLa

cells and a  plasmid containing a  single uracil. The results indicated

that overall, UNG is the  main contributor in  initiating BER of  uracil,

at  least in  HeLa cells.  However, SMUG1 and TDG may  contribute sig-

nificantly in G1 (and G2),  which is also the time when AID is most

active.

It  is thought that U:G mismatches arising from AID in Ig genes

and U:G from spontaneous deamination are processed by different

mechanisms. Indeed, in order for SHM and CSR to  be successfully

carried out, canonical uracil DNA repair may  be locally suppressed.

One factor contributing to this may  be transcription factor E2A,

which induces AID [59,60], but represses both  UNG-expression and

its binding to relevant regions in  the Ig  genes [60]. Furthermore,

p53 is actively reduced in germinal center B cells, presumably to

allow mutagenic processing required for  antibody maturation [61].

Although complex, the  evidence that AID may drive carcinogenesis

is well supported. In  mice, AID expression was shown to be required

for translocations between Ig  loci and proto-oncogenes, a  hallmark

of several human B-cell lymphomas [62]. In contrast, AID knockout

mice have fewer translocations [63] and accumulate fewer muta-

tions in genes linked to B cell tumorigenesis [31].  AID expression

has also been shown to confer a  mutator phenotype in established

lymphomas [42–44],  but the role of  AID in cancer progression

remains unsettled [23,64,65]. Interestingly, AID expression has

been reported in numerous cancers of non-B-cell origin, including

breast, prostate, stomach, liver, and lung [66]. It  would be inter-

esting to  investigate whether aberrant AID expression also confers

high genomic uracil levels in these cancers. Interestingly, Ung−/−

mice have roughly a  20-fold higher frequency of  B-cell lymphoma

compared with wild-type mice, but no apparent increase in other

cancer types [67,68].  A straightforward explanation for this obser-

vation would be that  SMUG1 and TDG together with MMR may

compensate for UNG-deficiency in most tissues, but not in B-cells

expressing AID, due to their increased genomic uracil levels.

A central role for  AID-induced mutagenesis in  lymphomas is

also indicated by the AID-hotspot signature in the kataegis regions

of a  random selection of  all lymphomas and CLLs  (Fig. 5).  We

find that the  kataegis AID-hotspot signature is not limited to lym-

phomas, but is also present in  CLL, which overlaps with the  category

small lymphocytic lymphoma. Indeed, AID expression as cause

of an ongoing mutator phenotype has been suggested for both

lymphomas [42–44] and CLL [45,46].  Interestingly, progression of

established cancers through expression of AID was also demon-

strated in other blood cell cancers, such as  ALL [69] and chronic

myelogenous leukemia (CML), in which AID expression may lead

to fatal lymphoblastoid crisis [70].  Thus, AID may  be involved in

development and progression of B-cell malignancies, and possibly

only in late stage progression of other blood cell malignancies. This

would be in agreement with the  lack of  an  overall AID signature in

ALL, as observed in  our study.

In conclusion, we  have provided strong evidence that AID is  a

DNA-cytosine deaminase that due to persistent expression causes

accumulation of genomic uracil in  B-cell lymphoma cell lines, as

well as AID mutational signatures in human B-cell malignancies.

Other factors, including expression levels for uracil-DNA glycosyl-

ases and cell doubling time, may  modulate genomic uracil levels,

but AID levels remain the  strongest predictor.
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