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Abstract

The symmetry of the superfluid 𝐴-phase of He3 has previously been
suggested to describe the unconventional superconducting state of Sr2RuO4
which would make this material a chiral 𝑝-wave superconductor. In
this thesis we discuss tools, results and techniques useful in the theo-
retical description of superconductors with this symmetry.

In Paper Iwe use field-integral techniques to investigate the effects of
spin-orbit coupling on the coefficients of the phenomenologicalGinzburg-
Landau theory of chiral 𝑝-wave superconductors. We find that these
coefficients have a non-linear anisotropic dependence on the spin-orbit
coupling strength and direction in spin-space. This dependence neces-
sitates two independent phenomenological parameters for the mixed
gradient terms and the mixed component terms respectively, even in
the weak-field limit when written using dimensionless variables.

In Paper II we use large-scaleMonte-Carlo simulations to investigate
the vortex-matter of a superconducting system that can be modelled
by a Ginzburg-Landau theory with chiral 𝑝-wave symmetry such as
the one investigated in Paper I, but now in the limit of vanishing spin-
orbit coupling. We find that a square vortex lattice consisting of single-
quanta vortices is stable at high temperatures close to 𝑇𝑐(𝐵). The
single-quanta vortices merge into double-quantum vortices at lower
temperature which together then stabilizes a triangular vortex lattice.

In Paper III we investigate a𝑍2 Ising transition resulting from spon-
taneously broken time-reversal symmetry in the neutral sector of chi-
ral 𝑝-wave symmetric superconductors subjected to zero external field.

i



We find that this transition is irrevocably tied to the superconducting
transition for all realistic values of the phenomenological parameters
in our model.
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Preface

This thesis is submitted in partial satisfaction of the requirements of
the degree Philosophiae Doctor (PhD) at the Norwegian University of
Science and Technology, in Trondheim Norway.

The work that this thesis presents started in September 2015 and
ended in early spring 2021 at theCenter forQuantumSpintronics (QuS-
pin), NTNU. During this time, one year of accumulated timewas ded-
icated to teaching duties at the Department of Physics, and half a year
was devoted to completion of courses (30 ECTS) as pr. the require-
ments of the degree. The researchwas supervised by Prof. Asle Sudbø
as main supervisor, and Prof. Jacob Linder as co-supervisor.

Computation-timewas granted at the Vilje and Fram supercomput-
ers through the UNINETT ∫igma2 e-infrastructure. The code was
written in the Julia programming language. The figures and plots
were produced by the use of Julia and Inkscape. The thesis was writ-
ten in LATEX based on a template by J. A. Ouassou available under CC
BY 4.0 license, that was heavily modified.

Fredrik Nicolai Krohg
Oslo, June 2021
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Chapter 1
Introduction

Research into superconductors holds a vital key in the development
of technologies that can reduce global emissions of greenhouse gasses
and thus prevent large economic as well as human losses due to the
effects of the climate crisis. In IPCC’s special report, they state that in
order to have no or limited overshoot in global temperature from the
goal of 1.5 ∘C, the global net anthropogenic emissions of CO2 need to
decline by 45% compared to such emission levels in 2010, and this has
to happen by 2030. The emission levels must then continue to decline,
reaching net zero around 2050 [4]. In order for the member nations of
the Paris Agreement to meet this goal, the NDC Synthesis report [5]
highlights the need for further increase in the nations’ contributions
compared to those that are currently declared. Measures mentioned
by member nations for mitigating the release of greenhouse gasses in-
clude renewable energy generation, electrification of the transport sec-
tor and more efficient electrical grids. Because of the non-traditional
properties of superconductors, such materials could potentially be of
great benefit in further strengthening such mitigation strategies.

In aircraft travel, designs for hybrid electric aircraft such as NASA’s
N3-X are underway. Analysis shows that fully utilizing high tempera-
ture superconductors in the propulsion system could provide asmuch
as 3.5 times higher power-to-weight ratio than previous designs due
to superconductors’ high current-densities [6].
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Chapter 1 Introduction

In Norway there has recently been a debate about the development
of wind turbine parks close to population centers and in vulnerable
natural habitats. Moving the wind power production from land to
sea solves some of the debated issues but needs effective turbines. In-
cluding high temperature superconductors into the design of such off-
shore wind-turbines is beneficial for much the same reasons as for air-
craft design: the high power-density makes for a compact, lightweight
and efficient construction [7, 8].

Other examples of future applications of superconductors include
their use inmore efficient power grids [9, 10], sustaining the highmag-
netic fields needed for nuclear fusion [11, 12] and for the operation of
a particle collider more powerful than the LHC [13], faster, more effi-
cient electronics for digital logic andmemory devices andmore robust
quantum computers [14].

Superconductors also currently have numerous important applica-
tions. In the Chūō Shinkansen magnetic levitation line, which is cur-
rently under construction, the interaction between superconducting
coils in the train and copper coils on both sides of the track provides
levitation and guidance of the train at high speeds [15]. Supercon-
ductors are essential for generating the high strength magnetic fields
needed in MRI imaging. They are also used in other medical settings
such as measurements of the electrical currents in the heart (magne-
tocardiography), in measuring the concentration of iron stored in the
liver (biomagnetic liver susceptometry) and cancer treatments through
their role in particle accelerators [16].

All of this is the product of fundamental research into the electronic
properties of metals and other materials that has shown that for some
of them, at a critical temperature 𝑇𝑐, the electrical resistivity of thema-
terial suddenly vanishes and any external magnetic field is expelled.
These are the two main properties that we associate with the phase
of superconductivity. Zero resistivity means that electricity can travel
through thematerial without losing any energy, in contrast to a normal
conductor where energy is usually lost through heat. The expulsion of
magnetic fields is called the Meissner effect and is in a sense the more
fundamental of the two properties. On a microscopic level it is due
to electrons forming paired states that share certain features in such
a way that different pairs can behave as one. Because a macroscopic
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1.1 A brief history of superconductivity

number of states share these features, the quantummechanical nature
of such states which is usually only significant for tiny particles, be-
comes apparent through these non-classical macroscopically measur-
able effects.

1.1 A brief history of superconductivity

Superconductivitywas first discovered inmercury at𝑇𝑐 ≈ −268.99 ∘C
by Heike Kamerlingh Onnes in the Netherlands in 1911 [17]. The
Meissner effect was then discovered in 1933 by W. Meissner and R.
Ochsenfeld [18]. These discoveries happened without any previous
theoretical prediction or explanation. Theoretical descriptionwas then
gradually developed, first by a simple thermodynamic two-fluidmodel
of electron densities by Garter and Casimir and then in 1935 by the
phenomenological theory of the electromagnetic properties by H. and
F. London [19]. WWII came and went and then a significant improve-
ment on the London-model was published by V. L. Ginzburg and L.
D. Landau in 1950 [20], which built on Landau’s previous description
[21] of a second order phase-transition by an order-parameter quan-
tity. Based on this theory, Abrikosov introduced the concept of a type-
II superconductor in 1952, which has negative surface energy and a
mixed phase at non-zero magnetic field [22].

An attempt at a microscopic theory was given by Frölich in 1950
based on electron-phonon interaction [23]. Even though the pertur-
bation theory he derived failed to predict important superconducting
properties such as the Meissner effect, his Hamiltonian later became
well known as a fruitful starting point for the application of field the-
oretic methods. In 1953 Pippard introduced a second length scale, the
coherence length 𝜉, through a non-local modification of the London-
model [24]. This length scale was a measure of the width of the in-
terface between normal and superconducting regions. Although not a
theory of superconductivity itself, Landau’s Fermi-liquid theorywhich
came in 1956 would prove crucial in the development of a microscopic
theory and describes the electronic properties of many metals that at
lower temperature become superconducting [25]. A complete micro-
scopic theory of superconductivity was published by J. Bardeen, L. N.
Cooper, and J. R. Schrieffer in 1957 [26, 27]. The BCS-theorywas based
on the idea that Fermi-liquid quasiparticles with opposite momentum

3



Chapter 1 Introduction

could form an attractive interaction through an intermediate interac-
tionwith a phonon. Thiswould then lead to the formation of pairs that
could form a condensate, andwhich implied an energy gapΔ between
the energies of paired electrons and energies of normal quasiparticle
states in the Fermi-sea. This year Abrikosov also published his predic-
tion of the existence of a lattice of vortices in the mixed state of type-II
superconductors [28].

A separate form of a microscopic theory appeared in 1958 by N. N.
Bogoliubov in a series of papers [29–31]. This methodology of solv-
ing the Frölich Hamiltonian was presented in a book [32] by P. G. de
Gennes and has since become known as the Bogoliubov-de Gennes or
BdG equations.

The diagrammatic methods developed for high-energy physics was
first applied by Gor’kov to the problem of superconductivity in 1958
when he calculatedGreen’s functions based on the ideas of BCS-theory
that reproduced its results [33]. He then in 1959 used thesemethods to
prove that the Ginzburg-Landau theory follows from the BCS theory
in the limit 𝑇 → 𝑇𝑐 [34]. The application of field theoretic methods
was extensively developed by the work of Nambu, published in 1960,
where he introduced the Nambu-spinor for calculating the Gor’kov
Green’s functions. A perturbation theory for these Green’s functions
were calculated by Éliashberg in the same year following a similar ap-
proach asNambu, which later become known as the Éliashberg theory
[35].

The understanding of the effects of impurities got an important con-
tribution in 1959 bywhat is known as Anderson’s theorem [36]. It says
that any instability of the Fermi-surface that does not lift the Kramer
degeneracy of time-reversed paired quasi-particles do not affect the
mean-field transition temperature [37]. The idea of an energy gap in
the excitation spectrum, which was integral to the BCS theory, was
given strong experimental backing by the tunneling experiments of I.
Giæver in 1960 [38]. Such experiments were given a theoretical under-
standing by B. D. Josephson in 1962, through what is now known as
the Josephson effect [39].

From the framework of the Gor’kov Green’s functions, a set of trans-
port equations were derived for type-II superconductors in 1968 by
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1.1 A brief history of superconductivity

Eilenberger [40]. These equations were further simplified for the case
of a dirty superconductor by Usadel in 1970 [41].

From the perspective of our work, the discovery of a new phase in
He3 by Osheroff et al. in 1972 was of particular importance. Although
a superfluid and not a superconducting phase, the𝐴-phase of this sys-
tem has an unconventional anisotropic pairing symmetry which was
famously described by Leggett in his 1975 review article [42]. This is
the same symmetry that we have considered in our work.

Superconductivitywas found in the first heavy-fermion systemCeCu2Si2
in 1979 by Steglich et al. [43]. The heavy-fermion superconductors
are systems where the superconducting state consists of quasiparti-
cles that are fermions with large effective masses and where the su-
perconducting order is of an unconventional character. For a review
see Ref. [44].

The first high-𝑇𝑐 superconductor was discovered in the form of
La2– xBaxCuO4 by Bednorz andMüller in 1986 [45]. This was followed
up one year later by the discovery of YBa2Cu3O7– x by M. K. Wu et
al. [46]. These discoveries ushered in an era of superconductivity
research dominated by cuprates — ceramic compounds consisting of
metal oxides between planes of CuO2. These are truly unconventional
superconductors in that their pairing symmetry is demonstrably non-
isotropic. It was in 1987 proposed by V. J. Emery that antiferromag-
netic spin-fluctuations could cause such an anisotropic pairing [47].
This theory of the cuperate superconductive mechanism was then ex-
tensively studied by P.Monthoux, D. Pines andD. J. Scalapino [48–50],
among many others in the early 90s, however a consensus on its valid-
ity is yet to be reached due to its seeming inconsistency with normal
state properties of the materials [51]. Through a group-theoretical ap-
proach, a vast array of unconventional symmetries and theirGinzburg-
Landau theories and physical properties were enumerated by Sigrist
and Ueda in 1991 [52]. By which of these symmetries the supercon-
ducting state of cuprates could be described was in the early 90s a
topic of much discussion, however due in part to strong evidence from
phase-sensitive SQUIDmeasurements of YBCO byWollmann et al. in
1993 [53], it was by 2000 firmly established as a 𝑑𝑥2−𝑦2 symmetry [54].

In 1994, superconductivity was discovered in the perovskite struc-
ture of Sr2RuO4 by Y. Maeno et al. [55]. This proved that copper was
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Chapter 1 Introduction

not a necessary ingredient for superconductivity in layered perovskite
crystal structures andwould be the starting point of a still-standing de-
bate about its pairing symmetry which served as the immediate back-
drop to our own research.

One of the phenomena that needs a theoretical explanation for a full
understanding of superconductivity in the cuperate family of high-𝑇𝑐
superconductors is the pseudogap phase. Above the transition tem-
perature, but below a characteristic temperature 𝑇 ∗ there is a hitherto
undiscovered phase in such compounds where the electronic density
of states near the Fermi-surface continues to be suppressed by an en-
ergy gap ΔPG. This phase was named the pseudogap phase by Ding
et al. in 1996 [56], and its origin continues to be a hotly debated topic.

2008 marked the beginning of the “iron age” of superconductiv-
ity research by the discovery of the first iron-based superconductor
La[O1– xFx]FeAs by Y. Kamihara et al. [57]. The materials in this fam-
ily of superconductors, called iron-pnictides, feature high 𝑇𝑐 and sev-
eral other exotic properties including nematic order [58]. For a review
see Ref. [59].

Lastly one could argue that we now have entered a “hydrogen age”,
as an increasing number of hydrogen-rich compounds are approach-
ing room-temperature superconductivity when they are placed under
insane pressures [60, 61]. It could also be argued that we are currently
in a “topological age” as topological edge states in superconductors
constitute a field under intense study [62] that potentially have far-
reaching consequences through their immediate application to quan-
tum computing. Others again, would surely argue that we are in a
“graphene age” as novel forms of superconductivity have been ob-
served in twisted layers of graphene [63]. Which age we are in, I sus-
pect, depends on what field the researcher you are asking works on,
and a clear answer will have to be postponed until seen through the
coarse-grained eyes of history.

1.2 About this work

In the last section we saw how the research into the phenomena of su-
perconductivity has blossomed into a myriad of different directions
and sub-fields. Through all this research, an implicit motivation has
been the search of one day finding a theory or a specific system of a

6



1.2 About this work

material that is superconducting at room temperature. This has be-
come a goal, similar to how the alchemists searched for the philoso-
pher’s stone, that we still have not quite reached, but whose continued
pursuit itself has borne numerous fruits.

As for this thesis, we have focused on a branch of unconventional su-
perconductivity that pertains to the description of phaseswith 𝑘𝑥±𝑖𝑘𝑦
chiral 𝑝-wave pairing symmetry. The 𝑝 in 𝑝-wave implies that the pair-
ing states internal angular momentum has 𝑙 = 1, i.e. it has a 1st order
(linear) dependence on its internal angular momentum.1 As we men-
tioned, this is the same kind of state that describes the real world sys-
tem of the He3 superfluid 𝐴-phase. In that context it is often referred
to as the ABM-state after Anderson Brinkman andMorel who first de-
scribed this pairing state in the context of the BCS-theory [64] in 1961,
and then demonstrated how this state was stable in the𝐴-phase of He3

in 1973 [65]. It was for a long time thought that the unconventional su-
perconducting phase of the perovskite compound Sr2RuO4 had such
a pairing symmetry, with one of the chief reasons being that it clearly
features spontaneously broken time-reversal symmetry. This formed
in part the motivation for much of our work.

The determination of pairing symmetries is an important step in un-
derstanding what type of superconductivity is in a system because it
leads to distinct experimental consequences. Roughly speaking one
can think of the pairing symmetry as determining the 𝒌 dependence
of the gap function

Δ(𝒌) = ∑
𝑚

𝜂𝑚𝑏𝑚(𝒌), (1.1)

where 𝑏𝑚(𝒌) are basis functions that depend on the point group sym-
metry of the system and 𝒌 determines a point on the Brillouin zone.
Depending on these basis functions then, Δ(𝒌) could have points or
lines in the Brillouin zone where it vanishes, so-called point- or line-
nodes. The existence of such nodes implies distinct signatures such
as quadratic low temperature-dependence of the specific heat. Other
examples of experimental signatures of unconventional symmetry in-
clude temperature-independent Knight-shift, magnetic field depen-

1. The letter-convention stands for “principal” and comes historically from the
study of atomic emission spectra that result when electrons jump between dif-
ferent orbitals.
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Chapter 1 Introduction

dent Kerr-angle rotation and unconventional symmetry of lattices of
magnetic vortices. For an introduction to superconductors with un-
conventional pairing symmetries we highly recommend the lecture
notes by Sigrist in Ref. [66] and [67].

Importantly, one may derive the form of the Ginzburg-Landau the-
ory of the superconductor based solely on the pairing-symmetry as
was done by Sigrist and Ueda for a large number of different symme-
tries in 1991 [52]. The Ginzburg-Landau theory is a phenomenologi-
cal theory, meaning that it explains the effective phenomenon observ-
able in superconductors without necessarily knowing all the micro-
scopic details. As such, any correct microscopic theory should then
reduce to the phenomenological Ginzburg-Landau theory in the limit
of 𝑇 → 𝑇𝑐. As wementioned, Gor’kov first did this for a conventional
𝑠-wave superconductor in 1959 through a Green’s function approach
[34]. One fruitful starting point for such a microscopic theory is the
Hubbard-Hamiltonian

𝐻̂ = ∑
𝑖𝑗𝑠𝑠′

𝐻𝑖𝑗;𝑠𝑠′ ̂𝑐†𝑖𝑠 ̂𝑐𝑗𝑠′ + 𝒪( ̂𝑐4), (1.2)

which itself can be viewed as an effective theory of the underlying
many-body quantum mechanics. In a Hubbard-theory, electrons can
occupy sites in an atomic crystal lattice and hop from one site to an-
other. Any long-range interaction such as the Coulomb interaction is
thenwritten in terms of howelectrons at different sites interact through
nearest neighbor terms, next-nearest neighbor terms, etc. In Chap-
ter 3 we will describe some of the tools useful in deriving an effec-
tive Ginzburg-Landau theory from such a microscopic starting point.
We then in Chapter 4 present the group-theory needed for deriving
the requirements on such a microscopic theory, for this to result in a
sought-after pairing-symmetry.

In the last chapter of Chapter 7, we present some tools useful when
investigating magnetic vortices and vortex-lattices in chiral 𝑝-wave su-
perconductors.

Aswas said by Leggett in hisNobel lecture, there are very few things
that can be proved rigorously in condensed matter physics, by which
he referred to analytic arguments [68]. To get around this difficulty, we
have used Monte-Carlo techniques that relies on the power of com-
puters to simulate physical consequences of a theoretical Ginzburg-

8



1.2 About this work

Landau model. Such techniques have a long history in our group of
being successfully able to simulate superconductive systems. For a few
examples, see [69–73]. Although similar techniques have been used
for centuries, their modern form was first developed in the context of
nuclear research in the Manhattan project. After the researchers had
become familiar with the Monte Carlo casino in Monaco, they named
it after the casino because of the technique’s reliance on random or
pseudo-randomnumbers to calculatemultidimensional integrals [74].

In our use of Monte-Carlo techniques, which we present in Chap-
ter 6, they are used to calculate thermal averages of statistical-mechanical
observables. The rough procedure is that first, the theory under inves-
tigation is discretized to a corresponding lattice model as described
in Chapter 5, such that the probability of any configuration of fields
on this numerical lattice can be computed. The theory then implies a
probability distribution for how likely certain field-configurations are
to materialize in a real system. Then, from a predetermined starting
configuration, small changes are made incrementally to the numerical
configuration in such a way as to yield numerous statistical samples
of field configurations that follow the theoretical probability distribu-
tion after a sufficient number of incremental changes have been done.
These samples of field configurations finally are used to calculate sta-
tistical averages, which corresponds to taking thermal averages in sta-
tistical mechanics of the observables we are interested in.

We begin this thesis in Chapter 2 with a brief review of some rele-
vant aspects of statistical mechanics that should refresh what is meant
by thermal averages of observables, how these are tied to probability
distributions of system configurations, and a brief introduction to Lan-
dau and Ginzburg-Landau theory as it pertains to phase transitions.

9





Chapter 2
Statistical Mechanics

In statisticalmechanicswe attempt to describe an ensemble of particles
that may be interacting to extract not precise information about what
each and every particle is doing, but statistical information about what
most of the particles are doing. One can imagine this process as zoom-
ing out from a detailed view of individual entities and viewing the re-
sulting collection through squinted eyes. This amounts to treating the
collection in a course-grained manner. Through such eyes, only the
most significant behavior is perceptible such that it can be understood
and described in a simplified way.

2.1 Canonical ensemble and the partition function

Most of the business of statistical mechanics is about calculating what
is known as the partition- function. Once this function is known, all
the heavy lifting is done since most important statistical quantities can
be extracted from it following already established systematic steps. To
calculate the partition function is theoretically very simple: we sum
the quantity 𝑒−𝛽𝐸𝑖 over all the possible states of the system. Every
state is a particular configuration of things in the system, and since
all things in the system have a certain energy, the energy of a system
state is given by the sum of all these things’ individual energy, plus
any energy given by interactions between them. If we label each state
of the system with the index 𝑖, then we can denote the energy of each

11
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state 𝐸𝑖. The definition of the partition function 𝑍 in the canonical
ensemble can then be written

𝑍 = ∑
𝑖

𝑒−𝛽𝐸𝑖 , (2.1)

where 𝛽 = 1/(𝑘B𝑇 ) and 𝑘B is the Boltzmann constant,1 given that the
number of different possible states is countable.

As we can see, the essential ingredients needed to calculate the par-
tition function is one: to be able to enumerate all possible states 𝑖 of
the system, and two: to be able to calculate their corresponding ener-
gies 𝐸𝑖. Since we have used the summation sign ∑𝑖 in Eq. (2.1), we
have assumed that there exists a countable number of different states.
However, if there is one thing in the system that can change in a contin-
uous fashion, which we would measure using the set of real numbers
ℝ and some unit, then the number of states is infinite and uncount-
able. In this case we sum over the different numbers of states by sim-
ply integrating over the things that are continuous, and the unit of the
partition function becomes the product of the units of the continuous
variables (things) unless we normalize by some constant dimension-
ful quantity. In most cases, it is the position 𝒓 and momentum 𝒑 of
particles in the system that are continuous, hence the definition of the
partition function becomes2

𝑍 ∼ ∑
𝑖

∫d3𝑟 ∫d3𝑝 𝑒−𝛽𝐸𝑖(𝒓,𝒑). (2.2)

The canonical partition function is directly related to the Helmholtz
free energy 𝐹 (often only referred to as the free energy) of the system
through a simple exponential

𝑍 = 𝑒−𝛽𝐹. (2.3)

Because of the exponentials inherent in the definition of𝑍, calculating
realistic values often results in excessively high numbers. This is one

1. In SI units, the value of the Boltzmann constant is given by 𝑘B ≈
1.380 649 × 10−23 JK−1

2. The reason why there is a∼ sign in Eq. (2.2) is that technically there is a factor of
Planck’s constant ℎ in the denominator for each d𝑟 d𝑝 in the integral measure
since this makes the partition function dimensionless and thus consistent with
the definition in terms of countable number of states in Eq. (2.1).
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of the reasons why it is more useful to work with 𝐹, rather than 𝑍
itself, since inverting Eq. (2.3) 𝐹 = − ln(𝑍)/𝛽, reducing the value of
𝑍 through a logarithm.

2.2 Calculating observables

An observable in statistical mechanics is a quantity that we can both
calculate from the statistical theory, and (at least in principle) go out
andmeasure in the realworld. In quantummechanics, observables are
restricted to operators that have real expectation-values, as opposed to
the complex values the theory usually deals with. This is to enforce
the connection between observables and measurements, which we in-
tuitively understand to always be reducible to a series of real values,
i.e. points on a line.

We are interested in statistical information on observables of systems
consisting of several quantum mechanical particles. To get this infor-
mation we need some kind of probability distribution of the different
states of the system. We are imagining that we for each such state (in-
dexed by 𝑗) can calculate a real number for the thing (observable) we
are interested in measuring. Let’s call this observable 𝑂. Then 𝑂 is a
statistical variable which takes a particular value 𝑜𝑗 in the state 𝑗 of the
system. Since the state is quantum mechanical, it is usually denoted
by a Dirac bracket |𝑗⟩. A real observable 𝑂 corresponds to a Hermi-
tian operator 𝑂̂ in quantum mechanics whose expectation value we
can then write as 𝑜𝑗 = ⟨𝑗|𝑂̂|𝑗⟩.

If we now let 𝑃𝑗 be the probability distribution, i.e. the probability
that the system exists in state 𝑗, then we know from probability theory
that the expectation value of 𝑂 is

⟨𝑂⟩ = ∑
𝑗

𝑜𝑗𝑃𝑗. (2.4)

The probability distribution 𝑃𝑗 is in the canonical ensemble given by
a Maxwell-distribution

𝑃𝑗 = 𝑒−𝛽𝐸𝑗/𝑍, (2.5)

normalized by the partition function 𝑍. Inserting this we get

⟨𝑂⟩ = ∑
𝑗

𝑜𝑗𝑒−𝛽𝐸𝑗

𝑍
. (2.6)
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The observable of specific heat at constant volume𝐶𝑣 is particularly
important in the study of phase transitions since its thermal behavior
can be used to classify these transitions into categories. The specific
heat is the measure of how much energy must be transferred to the
system for its temperature to change by an infinitesimal amount given
constant volume of the system. Thus it is defined by the equation𝐶𝑣 =
(𝜕𝐸𝜕𝑇 )𝑉. In the canonical ensemble, this quantity is calculated by

𝐶𝑣 = 𝑘B𝛽2(⟨𝐸2⟩ − ⟨𝐸⟩2) = −𝑘B𝛽2(2𝜕𝐹
𝜕𝛽

+ 𝛽𝜕
2𝐹

𝜕𝛽2 ). (2.7)

From this form of the specific heat, we see that it can be interpreted as
a measure of the variance or width of the distribution of energies, and
also that it is related to the second derivative of the free energy. Any
discontinuity in the second derivative of the free energy, thus implies
a discontinuity in the specific heat.

2.3 Ginzburg-Landau model

The experimental discovery of superconductivity was a surprise to the
scientists at the time. No theoretical model had so far predicted the
properties that the experimentalists were measuring. The theoretical
models in use at that time predicted a decrease in resistivity as the tem-
perature was lowered, but its sudden disappearance was completely
unprecedented and impossible to explain classically in a convincing
manner. Therefore, superconductivity seemed to demand a radically
different understanding of how electrons moved inside atomic struc-
tures.

2.3.1 Landau Model

Before such anunderstandinghadbeendeveloped, Ginzburg andLan-
dau took a shortcut and came up with a theory that could describe the
phenomenon of superconductivity without knowing its microscopic
origin. In other words, they treated superconductivity as a black box
and instead of asking what was inside to give the box’s output, they
used the output to determine a small set of material parameters which
could then be used to predict how the box would react to a large range
of stimuli or conditions. Now, given a large enough number of param-
eters, you can usually construct a model to fit any set of experimental
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observations that you like. The merit of this theory came from use of
symmetry arguments to reduce this set into only a few parameters,
which still allowed it to describe the observations, while also embed-
ding the theory with great predictive power.

TheGinzburg-Landau (GL) theory of superconductivity is based on
Landau’s previous work on a theory of general second order phase-
transitions.3 The approach is given by two ideas. The first is simply
that the phase transition should be able to be characterized by the ap-
pearance of some kind of measurable order that can be described by
a function Ψ which we call the order parameter. In the liquid-water to
ice-transition, it is the position of the molecules that become ordered
in a lattice.4 In the magnetization of a metal it is the individual spins
that become ordered along a particular direction.

The second idea is that at the phase transition, it is the appearance
of this order that should dominate the behaviour of the system, to the
exclusion of all other effects. Thus, the system should be described
in terms of the order-parameter, and since this is infinitesimally small
close to the transition, the free energy can be expanded in aMaclaurin-
series with respect to this parameter as

𝐹 = 𝐹0 + 𝑐1Ψ+ 𝑐2Ψ2 + 𝑐3Ψ3 + 𝑐4Ψ4 + 𝑐5Ψ5 +… (2.8)

The real constants𝐹0 and 𝑐𝑖 constitute the set ofmaterial parameters
of the theory and this set can then be reduced by any symmetries that
we suspect should be inherent in the underlying theory. For example,
ifΨ should represent the order parameter ofmagnetization of a system
of Ising-spins, which can point either up or down, then the free energy
should be invariant to this global choice, i.e. we need to enforce that the
free energy be invariant with respect to the transformation Ψ ↦ −Ψ.
Then all the constants 𝑐𝑖 for odd 𝑖 vanish.

In the case of superconductivity, the order parameter Ψ represents
the probability amplitude of the collective state of the superfluid of

3. 2nd order phase-transitions are phase transitions of systems whose free energy
has a discontinuous second order derivative at the transition point, but is con-
tinuous for lower orders. Since the specific heat is given by the second order
derivative, then the specific heat is discontinuous in this case.

4. The astute readermight have noticed that this example is a first order phase tran-
sition because of the existence of latent heat. Actually first order phase transitions
can also be described by a modified Landau theory, however we will here focus
on the second order kind.
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Cooper-paired electrons such that |Ψ| can be interpreted as the den-
sity of such electron pairs. Since Ψ is complex, it has to be combined
with its complex conjugateΨ∗ in ways that yield real numbers to pro-
duce terms that are valid in the free energy, since 𝐹 itself should be
a real number. Furthermore, the phenomenon of superconductivity
is produced as a result of the breaking of 𝑈(1) symmetry, so 𝐹 also
needs to be 𝑈(1) symmetric, i.e. it has to be invariant under the trans-
formation Ψ ↦ 𝑒𝑖𝜙Ψ for 𝜙 ∈ ℝ. These restrictions result in the free
energy

𝐹 = 𝐹0 − 𝑎|Ψ|2 + 𝑏|Ψ|4, (2.9)

when keeping the lowest order terms that produce a phase transition.
Thermodynamic equilibrium is reached at the minimum of free en-

ergy. This restricts 𝑏 ≥ 0 since negative 𝑏 yields a free energy with no
global minimum.5 The minimum is then found by the condition

𝜕𝐹
𝜕Ψ∗ = (−𝑎 + 2𝑏|Ψ|2)Ψ = 0, (2.10)

which yields the possibilities |Ψ| = 0 or |Ψ| = √𝑎/2𝑏. The first case
gives the energy 𝐹 = 𝐹0, while the second gives 𝐹 = 𝐹0 − 𝑎2/(4𝑏).
We see that the second case is energetically favorable, but only exists
and is different from the first case when 𝑎 > 0. Furthermore, the
second case represents the ordered state, since in this case the order-
parameter |Ψ| ≠ 0, in the conventional Landau theory.6

It is the thermodynamic parameter of temperature that traditionally
determines whether a system is in one phase or another. Looking at
the free energy in Eq. (2.9), the order parameter Ψ is the dynamical
variable of the theory while the explicit temperature dependence lies
in the material parameters 𝑎 and 𝑏. Denoting the critical temperature
where the phase transition happens 𝑇𝑐, the dimensionless parameter
𝑡 = (𝑇 − 𝑇𝑐)/𝑇𝑐 is small close to the critical point which means that

5. If there is no such minimum, then we say that the theory is unbounded or diver-
gent.

6. Actually this only represents when Cooper-pairs are forming and the real onset
of superconductivity is determined by the point in parameter-space where the
gauge-mass becomes non-zero, which is closely related but not exactly the same
as where the density of Cooper-pairs becomes non-zero. The real onset of super-
conductivity is thus more related to when the phase of the wave-function settles
on a value.
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2.3 Ginzburg-Landau model

it can be used to expand the temperature-dependence of the material
parameters such that

𝑎(𝑇 ) = 𝑎0 + 𝑎1𝑡 + …
𝑏(𝑇 ) = 𝑏0 + 𝑏1𝑡 + …

(2.11)

Now we argue for what terms to keep in these expansions. Since
𝑎(𝑇 ) should change sign at 𝑡 = 0 based on the discussion of Eq. (2.10),
then we only keep odd terms of 𝑎. Since we need 𝑏(𝑇 ) > 0 for the the-
ory to be thermodynamically stable it seems that 𝑏0 is the important
term that needs to be larger than any negative contributions from the
other terms. Keeping only lowest order terms, then the expansions re-
duce to 𝑎(𝑇 ) = 𝑎1(𝑇 − 𝑇𝑐)/𝑇𝑐 and 𝑏(𝑇 ) = 𝑏0. Since the ordered
state is the solution of the theory when 𝑎 > 0 and this ordered state
exists at temperatures 𝑇 < 𝑇𝑐 then 𝑎1 < 0 and the final temperature
dependence of 𝑎 becomes 𝑎(𝑇 ) = −|𝑎1|(𝑇 − 𝑇𝑐)/𝑇𝑐. From this tem-
perature dependence, it is straightforward to derive critical exponents,
the specific heat, etc. See Ref. [75].

2.3.2 Gradient Terms

The simple Landau theory described above is a type of mean field the-
ory in that there is no spatial dependence in the order parameter Ψ,
and thus it gives a simplified picture that can only be valid far away
from any defects or boundaries. This simple approach can be extended
to include spatial variation by allowing terms with gradients of the or-
der parameter in the free energy through a gradient expansion of 𝑓
in

𝐹 = ∫d3𝑟 𝑓(Ψ,∇Ψ,∇2Ψ,∇3Ψ,…). (2.12)

Keeping only the lowest order in this expansion that is invariant under
𝑈(1) symmetry, we get the term |∇Ψ|2 added to the free energy 𝐹 in
Eq. (2.9).

Perhaps the single most important phenomenon of superconduc-
tivity from a theoretical standpoint is the fact that it expels magnetic
fields, hence it is clear that any theory that attempts to explain super-
conductivity needs to have some way for the superconducting order
to interact with magnetic fields. The standard way to achieve this is
through the recipe of minimal coupling, where the vector potential 𝑨
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times a constant is subtracted from any momentum in the previously
neutral theory. Specifically, 𝒑 ↦ 𝒑 − 𝑞/𝑐𝑨, where 𝑞 is the charge of
the particle and 𝑐 is the speed of light. Using this trick, then the free
energy density becomes

𝑓 = 𝑓0 − 𝑎|Ψ|2 + 𝑏|Ψ|4 +𝐾|(∇ + 𝑖𝑔𝑨)Ψ|2, (2.13)

by letting 𝑔 = 𝑞/ℏ𝑐, which is the formof the free energy in theGinzburg-
Landau theory of conventional 𝑠-wave superconductivity. The form of
the gradient that results fromminimal coupling is called the covariant
derivative and is defined as

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔𝐴𝜇. (2.14)

For unconventional symmetries, the form of the gradient terms can
vary substantially from that in Eq. (2.13). Even if the transition can
be described by a single component, i.e. a single function Ψ, then an
unconventional symmetry could still lead to anisotropies in the gradi-
ent terms such that 𝐾 in Eq. (2.13) becomes directionally dependent.
An example is single-component pairing in a tetragonal crystal. The
symmetry group of tetragonal crystals is denoted 𝐷4ℎ in the Schön-
flies notation and consists of four-fold rotations in, and mirror sym-
metry about, the 𝑥𝑦-plane. The rotational symmetry makes the gradi-
ent isotropic in the plane, but because of the lack of symmetry in the
𝑧-direction, the gradient terms in general must take the form

𝐾1 ∑
𝜇=𝑥,𝑦

|(𝜕𝜇 + 𝑖𝑔𝐴𝜇)Ψ)|2 +𝐾2|𝜕𝑧 + 𝑖𝑔𝐴𝑧)Ψ|2. (2.15)

Even more complex gradient terms are possible when the order-
parameter consists of multiple components, i.e. there are degenerate
states that all give significant contributions to the physics at the phase-
transition. A particular case of this is when the pairing state is an ir-
reducible representation of the crystal symmetry-group that is multi-
dimensional.7 In this case, instead of a single complex function Ψ de-
scribing the order, we need several complex functions 𝜂𝑖.

A chiral 𝑝-wave superconductor has a pairing state that belongs to
such a two-dimensional irreducible representation. It comes from the

7. For amore detailed explanation of irreducible representations and group theory,
see Chapter 4.
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Γ5 irreducible representation of the tetragonal symmetry group 𝐷4ℎ.
This representation consists of two components 𝜂𝑥 and 𝜂𝑦 that com-
bine to form the general gradient terms

𝐾1[|𝐷𝑥𝜂𝑥|2 + |𝐷𝑦𝜂𝑦|2] + 𝐾2[|𝐷𝑥𝜂𝑦|2 + |𝐷𝑦𝜂𝑥|2]
+ 𝐾3[(𝐷𝑥𝜂𝑥)∗(𝐷𝑦𝜂𝑦) + c.c.] + 𝐾4[(𝐷𝑥𝜂𝑦)∗𝐷𝑦𝜂𝑥 + c.c.]
+ 𝐾5[|𝐷𝑧𝜂𝑥|2 + |𝐷𝑧𝜂𝑦|2].

(2.16)

This is the general expression of the gradient terms in the model we
have investigated in our work and can be found in Ref. [52].
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Chapter 3
Field Theory Methods

In this chapterwewill give a short introduction to the use ofGraßmann
variables and complex numbers in the calculation of the field-integrals
in the partition function. We will also describe how these variables
can be used to transform the expression for the action through the
Hubbard-Stratonovich (HS) transformation.

A field theoretic expression for the quantum mechanical partition
function 𝒵 is obtained by using a coherent state basis. A coherent
state is the eigen-state of an annihilation operator; thus, it produces
an eigenvalue when operated on by the annihilation operator. Letting
𝐻̂ be the quantummechanicalHamiltonian of the system forwhichwe
are interested in calculating the partition function, 𝜇 be the chemical
potential and ̂𝑁 be the number operator, then the partition function is
defined as

𝒵 = Tr(𝑒−𝛽(𝐻̂−𝜇𝑁̂)). (3.1)

Inserting a basis of coherent states {|𝜉⟩} when calculating the trace,
we obtain a functional integral over the coherent state eigenvalues 𝜉𝛼
and 𝜉∗𝛼 by substituting these variables for 𝑐𝛼 and 𝑐†𝛼 respectively in the
𝐻̂- and ̂𝑁-operators. Here 𝛼 symbolizes the set of quantum-numbers
needed to specify a state. The functional integral then takes the form

𝒵 = ∫𝒟[𝜉∗ 𝜉]𝑒−∫𝛽
0

d𝜏 ∑𝛼[𝜉∗𝛼(𝜕𝜏−𝜇)𝜉𝛼+𝐻(𝜉𝛼,𝜉∗𝛼)]. (3.2)
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The integration variable 𝜏 is the imaginary time and a 𝜏-dependence is
implicit in the notation such that 𝜉𝛼 = 𝜉𝛼(𝜏). This path-integral no-
tation is a shorthand for a more involved expression where the imag-
inary time-dependence of 𝜏 is split into a collection of time-indexed
coherent state eigenfunctions 𝜉𝛼,𝜏, and the integration measure is a
product over these indices and the quantum-state indices 𝛼. For fur-
ther detail we refer to Ref. [76] which we will follow for a large part of
this chapter.

3.1 Quadratic Fermionic Field Integrals

Because of the anti-commuting property of the fermion annihilation
operators, any coherent state has to have eigenvalues that anti-commute
as well. This leads to Graßmann numbers being the central variables
used in constructing the partition function when it is written in the
convenient basis of coherent states.

3.1.1 Graßmann algebras

A Graßmann algebra is constructed on a set of generators {𝜉𝛼} such
that a specific product of the generators 𝜉𝛼1

𝜉𝛼2
⋯𝜉𝛼𝑛

together with a
complex coefficient 𝜙 constitute a number in the algebra and the gen-
erators anti-commute such that 𝜉𝛼𝜉𝛽 = −𝜉𝛽𝜉𝛼. On such an algebra,
differentiation can be defined such that

d
d𝜉𝛼𝑚

𝜙 𝜉𝛼1
⋯𝜉𝛼𝑛

= (−1)𝑚−1𝜙 𝜉𝛼1
⋯𝜉𝛼𝑚−1

𝜉𝛼𝑚+1
⋯𝜉𝛼𝑛

, (3.3)

provided that the generator 𝜉𝛼𝑚
is in the number, and 0 otherwise. The

factors of (−1) comes from anti-commuting the generator 𝜉𝛼𝑚
such

that it is next to the differentiation operator. In Graßmann algebra,
integration can (perhaps a little non-intuitively) be defined such that
it acts in the sameway as differentiation, i.e. generators have to be anti-
commuted until they are next to the symbolic infinitesimal differential
d𝜉𝛼, and then use

∫d𝜉 𝜉 = 1, (3.4)

while
∫d𝜉 1 = 0. (3.5)
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If the integral consists of several differentials of generators, then these
differentials also have to be anti-commuted such thatd𝜉1d𝜉2 = −d𝜉2d𝜉1.
On an algebra consisting of 2𝑛 generators we define conjugation as a
map from the first half of the generators {𝜉𝛼𝑖

}𝑛𝑖=1 to the other half
{𝜉∗𝛼𝑖

}𝑛𝑖=1 and in such a way that when applied to a particular number

(𝜙𝜉𝛼𝜉𝛽)∗ = 𝜙∗𝜉∗𝛽𝜉∗𝛼, (3.6)

for 𝜙 ∈ ℂ.

3.1.2 Nambu Spinor

In the Nambu notation, we group spin-dependent Graßmann num-
bers 𝜉↑ and 𝜉∗↓ , which correspond to the annihilation- and creation-
operators ̂𝑐†↑ and ̂𝑐↓, in a vector called a Nambu spinor

𝝃 = (𝜉↑
𝜉∗↓
) . (3.7)

A sesquilinear form can then be createdwith this vector and its adjoint
such that

𝝃†𝑆𝝃 = 𝑆11𝜉∗↑𝜉↑ + 𝑆22𝜉∗↓𝜉↓ + 𝑆12𝜉∗↑𝜉∗↓ + 𝑆21𝜉↑𝜉↓. (3.8)

This allows any action that contains spin-dependent terms of the form
of the right-hand side of Eq. (3.8) to be put on sesquilinear form. As-
suming this is the case, then the partition function in the field-integral
representation takes the form

𝒵 = ∫𝒟[𝜉∗ 𝜉] 𝑒−∫𝛽
0

d𝜏 𝝃†
𝛾𝑆𝛾𝛿𝝃𝛿 . (3.9)

In this equation, the indices 𝛾 and 𝛿 are arbitrary collections of quan-
tum numbers needed to specify a state other than spin, for example
they could be momentum indices 𝛾 = 𝒌, 𝛿 = 𝒌′, and summation over
these repeated indices is implicitly understood.

Splitting the integral over 𝜏 into 𝑀 imaginary time-slices and ex-
panding the path integral measure into a product of individual in-
tegrals over specific quantum numbered and time-sliced Graßmann
variables such that

∫𝒟[𝜉∗ 𝜉] ∝ lim
𝑀→∞

∫
𝑀
∏
𝜏=1

∏
𝛼

d𝜉∗𝛼,𝜏d𝜉𝛼,𝜏, (3.10)
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the path-integral in Eq. (3.9) can be evaluated by the Gaussian Graß-
mann integral identity

∫∏
𝑖
(d𝜉∗𝑖d𝜉𝑖) 𝑒−𝜉∗𝑖𝑆𝑖𝑗𝜉𝑗 = det𝑆, (3.11)

for which a derivation can be found in Ref. [76]. This identity holds
for any Hermitian matrix 𝑆, even if it is not positive definite. The re-
sult is then that the partition function in Eq. (3.9) becomes𝒵 = det𝑆.
To calculate this determinant one has to consider the matrix 𝑆 as also
a matrix with time-slice indices. This is perhaps most easily accom-
plished using the Matsubara formalism in which the 𝜏 dependence is
substituted with a dependence on Matsubara frequencies through a
Fourier-like transform. More details on this formalism can be found
in Section 3.2, but first we consider what to do when a spin-dependent
action cannot be written on the form in Eq. (3.8).

3.1.3 Extended Nambu Spinor

FromEq. (3.8)we see that theNambu spinor sesquilinear product fails
to accommodate terms in a Hamiltonian that mix creation and anni-
hilation operators of differing spins, e.g. a term ∝ ̂𝑐†↑ ̂𝑐↓. In general, a
quadratic Hamiltonian can contain any combination of spin-indices of
the form ̂𝑐𝑠1 ̂𝑐𝑠2 , ̂𝑐†𝑠1 ̂𝑐𝑠2 , ̂𝑐𝑠1 ̂𝑐†𝑠2 and ̂𝑐†𝑠1 ̂𝑐†𝑠2 . This gives in total 16 differ-
ent combinations, and to accommodate them all we thus need a 4 × 4
matrix. Exchanging to Graßmann numbers, we define the vector

𝝃𝛾 =
⎛⎜⎜⎜⎜
⎝

𝜉∗𝛾,↑
𝜉𝛾,↑
𝜉∗𝛾,↓
𝜉𝛾,↓

⎞⎟⎟⎟⎟
⎠

, (3.12)

where all quantum numbers except spin is included in the index 𝛾.
Writing the elements of this vector (𝝃𝛾)𝑖 = ̃𝜉𝛾,𝑖 regardless of whether
it is a conjugate or not, we can write all quadratic terms of a Hamilto-
nian on the bilinear form

𝝃𝖳𝛾𝑆𝛾𝛿𝝃𝛿 = ̃𝜉𝛾,𝑖𝑆𝛾𝑖;𝛿𝑗
̃𝜉𝛿,𝑗, (3.13)
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3.1 Quadratic Fermionic Field Integrals

where 𝑆𝛾𝛿 is a 4 × 4 antisymmetric1 matrix, and 𝑆𝛾𝑖;𝛿𝑗 denotes its el-
ements. Let there be 𝑛 number of different quantum numbers, now
including spin. Then there must be 2𝑛 different Graßmann genera-
tors ̃𝜉𝛾,𝑖. All of these are integrated over in the discrete version of the
partition function field integral

𝒵 = ∫𝒟[𝜉∗ 𝜉] 𝑒−∫𝛽
0

d𝜏 ̃𝜉𝛾,𝑖𝑆𝛾𝑖;𝛿𝑗
̃𝜉𝛿,𝑗 . (3.14)

Even though this superficially looks like the field integral in Eq. (3.9),
we now have a bilinear and not a sesquilinear form, and 𝑆 is now a
2𝑛 × 2𝑛 matrix and not an 𝑛 × 𝑛 matrix. This means that we cannot
use the integral in Eq. (3.11) to evaluate the integral, but instead have
to rely on the more general Gaussian Graßmann integral

∫∏
𝑖
(d ̃𝜉𝑖) 𝑒−

1
2

̃𝜉𝑖𝑆𝑖𝑗
̃𝜉𝑗 = Pf(𝑆), (3.15)

which applies for any antisymmetric matrix 𝑆. The right-hand side is
called the Pfaffian Pf(𝑆) of the matrix 𝑆 and is defined for any anti-
symmetric matrix to be given by

Pf[𝑆] = 1
2𝑛𝑛!

∑
𝑃∈𝑆𝑛

(−1)𝑃𝑆𝑃1𝑃2
⋯𝑆𝑃𝑛−1𝑃𝑛

, (3.16)

where 𝑃 is a permutation in the finite group 𝑆𝑛 of all possible permu-
tations of 𝑛 numbers. This matrix function is related to the determi-
nant by the relation Pf(𝑆)2 = det(𝑆).

1. To see why this matrix can always be said to be antisymmetric lets first simplify
the notation and write the bilinear product as ̃𝜉𝑖𝑆𝑖𝑗

̃𝜉𝑗. Then the matrix 𝑆 =
(𝑆 + 𝑆𝖳)/2 + (𝑆 − 𝑆𝖳)/2, such that we can write it as a symmetric matrix
𝒮 = (𝑆 + 𝑆𝖳)/2 and an antisymmetric matrix 𝒜 = (𝑆 − 𝑆𝖳)/2. Considering
only the symmetric part of the bilinear form we get

̃𝜉𝑖𝒮𝑖𝑗
̃𝑥𝑖𝑗 = − ̃𝜉𝑗𝒮𝑖𝑗

̃𝜉𝑖 = − ̃𝜉𝑖𝒮𝑗𝑖
̃𝜉𝑗 = − ̃𝜉𝑖𝒮𝑖𝑗

̃𝜉𝑗.

Hence ̃𝜉𝑖𝒮𝑖𝑗
̃𝜉𝑗 = 0 and all that remains is the antisymmetric bilinear form.
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Applying the integral identity in Eq. (3.15) to the partition function2

in Eq. (3.14) after applying the proper discretization of the imaginary
time, then yields the result

𝒵 = ∫𝒟[𝜉∗ 𝜉] 𝑒−∫𝛽
0

d𝜏 ̃𝜉𝛾,𝑖𝑆𝛾𝑖;𝛿𝑗
̃𝜉𝛿,𝑗 = √det(𝑆). (3.17)

We have chosen the positive result in Pf(𝑆) = ±√det(𝑆) since the
partition function𝒵 needs to be positive on physical grounds. Thema-
trix 𝑆 on the right-hand side of Eq. (3.17), which we take the determi-
nant of, is the full matrix one gets after discretizing the imaginary time
into sliceswhich is usually done through theMatsubara-frequency for-
malism.

Now that we know that the partition function is given in terms of
the determinant of the action-matrix 𝑆, we can use this information to
manipulate the definition of ̃𝜉𝛾,𝑖 so that we can still write the action as
a sesquilinear form. In particular, switching the position of 𝜉∗𝛾,𝑠 and
𝜉𝛾,𝑠 for both spins in the transposed vector on the left of the bilinear
form 𝝃𝖳𝛾𝑆𝛾𝛿𝝃, the transposed vector becomes the adjoint vector. This
affects the matrix 𝑆 by switching two pairs of rows. Denoting the ma-
trix where the rows are switched 𝑆′, we can thus rewrite the bilinear
form such that

𝝃𝖳𝛾𝑆𝛾𝛿𝝃𝛿 = 𝝃†𝛾𝑆′
𝛾𝛿𝝃𝛿. (3.18)

Now, the integral over the exponent has not changed since all we have
done is simply re-ordering its terms. However, since exchange of rows
in a determinant at most produces a minus sign and we do this twice,
we get that det𝑆 = det𝑆′, and we can write

𝒵 = ∫𝒟[𝜉∗ 𝜉] 𝑒−∫𝛽
0

d𝜏 𝝃†
𝛾𝑆′

𝛾𝛿𝝃𝛿 = √det(𝑆′). (3.19)

In this equation, it is important to remember that𝑆′ is the row-switched
matrix of an antisymmetric matrix 𝑆.

2. In relating the discrete version of Eq. (3.15) to (3.14) we have to make sure that
the spinor elements ̃𝜉𝑖 are defined in terms of 𝜉𝑖 and 𝜉∗

𝑖 in such a way as to get a
correspondence to the sequence of Graßmann generators d𝜉∗

𝑖d𝜉𝑖 in the measure
to avoid any sign errors. One solution is to set 𝜉∗

𝑖 = ̃𝜉2𝑖−1 and 𝜉𝑖 = ̃𝜉2𝑖 as
we have done in Eq. (3.12). With this definition, then the measure ∫∏𝑖 d𝜉

∗
𝑖d𝜉𝑖,

which results from the discretized version of the field-integral measure, becomes
equal to ∫∏2𝑛

𝑖=1 d ̃𝜉𝑖 such that Eq. (3.15) can be directly applied.
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3.2 Matsubara formalism

3.2 Matsubara formalism

The Matsubara formalism3 is a way of handling the imaginary time
𝜏 dependence of the coherent state eigenvalue fields 𝜉𝛼(𝜏), where 𝛼
denotes a collection of quantum numbers that are necessary to spec-
ify a state, without having to go back to the time-sliced path-integral.
It also lets us automatically satisfy the imaginary-time boundary con-
ditions 𝜉𝛼(0) = 𝜁𝜉𝛼(𝛽), where 𝜁 = +1 for bosons and 𝜁 = −1 for
fermions. Imagining that 𝜏 is a continuous variable as suggested in
the path-integral notation, we define two countable infinite sets of new
field-variables through the Fourier-transforms

𝜉𝛼,𝑛 = 1√
𝛽
∫

𝛽

0
d𝜏 𝑒𝑖𝜔𝑛𝜏𝜉𝛼(𝜏), (3.20a)

𝜉∗𝛼,𝑛 = 1√
𝛽
∫

𝛽

0
d𝜏 𝑒−𝑖𝜔𝑛𝜏𝜉∗𝛼(𝜏). (3.20b)

The frequencies 𝜔𝑛 are called Matsubara frequencies and are defined
by 𝜔𝑛 = (2𝑛 + 1)𝜋/𝛽 with 𝑛 ∈ ℤ for fermions. For bosons we use
instead the notation 𝜈𝑛 where 𝜈𝑛 = 2𝑛𝜋/𝛽. The inverse relations are
given by

𝜉𝛼(𝜏) = ∑
𝑛∈ℤ

𝑒−𝑖𝜔𝑛𝜏𝜉𝛼,𝑛, (3.21a)

𝜉∗𝛼(𝜏) = ∑
𝑛∈ℤ

𝑒𝑖𝜔𝑛𝜏𝜉∗𝛼,𝑛. (3.21b)

3.2.1 Matsubara sums

When the Matsubara formalism 𝜉𝛼,𝑛 is used for the field variables in
the action of a partition-function field-integral, we will often need to
evaluate infinite sums of Matsubara frequencies of the form

∑
𝑛

ℎ(𝑖𝑓𝑛), (3.22)

where 𝑓𝑛 is either a fermionic- or bosonic Matsubara-frequency, to
evaluate the field integral. A useful strategy in such evaluations is to

3. Named after the Japanese physicist Matsubara, Takeo.
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transform the sum to a complex integral by using reverse residue inte-
gration. We consider the complex contour integral along a path𝒞 run-
ning counterclockwise around the complex plane infinitesimally close
to the imaginary axis as shown in Fig. 3.1. The integrand we consider

ℑ

ℜ

𝒞

𝒞′
ℂ

Figure 3.1: Integration contour for the Matsubara sum
∑𝑛 ℎ(𝑖𝑓𝑛). The contour is marked by a solid line and is imag-
ined continuing to ±𝑖∞. The crosses along the imaginary axis
symbolize the simple poles of the Fermi-Dirac distribution-
function. A deformed integration contour is shown with dashed
lines that is imagined to cross the real axis at ±∞. This contour
then encloses a simple pole on the left and a branch cut on the
right belonging to the summand.

is given by the product of the summand and the complex continuation
of the Fermi-Dirac- or Bose-Einstein distribution-function

𝑛𝜁(𝑧) = (𝑒𝛽𝑧 − 𝜁)−1, 𝑧 ∈ ℂ, (3.23)

depending onwhether theMatsubara frequency in the sum is of fermionic
(𝜁 = −1) or bosonic (𝜁 = +1) nature. This function has simple poles4

at 𝑧 = 𝑖𝑓𝑛 and thus integration around the contour results in a sum
of residues of the integrand at these poles such that we get

∑
𝑛

ℎ(𝑖𝑓𝑛) =
𝜁𝛽
2𝜋𝑖

∮
𝒞
d𝑧 ℎ(𝑧)𝑛𝜁(𝑧), (3.24)

4. That the poles are simple, i.e. 1st order, is easily seen by expanding the exponen-
tial around 𝑖𝑓𝑛 to leading order.
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given that ℎ(𝑧) does not contain any poles at these points. The con-
tour can now be continuously deformed at will, as long as it does not
cross any singularities, which can greatly facilitate the calculation of
the integral. The default approach is to see if the integrand vanishes
as |𝑧| → ∞, in which case it is usually useful to expand the contour
as much as possible as illustrated by the deformed contour 𝒞′ in Fig-
ure 3.1.

Using the method outlined above, we may calculate the sums

∑
𝑛∈ℤ

1
𝑖𝑓𝑛 − 𝑥

= −𝜁𝛽𝑛𝜁(𝑥), (3.25a)

∑
𝑛∈ℤ

1
(𝑖𝜔𝑛 − 𝑥)(𝑖𝜔𝑛 − 𝑦)

= 𝛽
𝑥 − 𝑦

( 1
1 + 𝑒𝛽𝑥

− 1
1 + 𝑒𝛽𝑦

), (3.25b)

∑
𝑛∈ℤ

ln[𝛽(𝑖𝜔𝑛 + 𝑥)] = ln(1 + 𝑒−𝛽𝑥). (3.25c)

3.3 Hubbard-Stratonovich transformation

The HS transformation is a transformation in the fields of a theory,
where a new complex field is introduced in order to convert a term
that is quadratic in an existing field variable, into a linear coupling
between the existing- and new field. This is particularly useful when
the existing field is Fermionic and thus a Graßmann variable, since it
makes it possible to consider low energy excitations of the theory using
e.g. a saddle-point approximation. It is however important to point out
that the transformation itself is not in any way approximative but is
an exact transformation that maintains all information of the original
theory.

In technical terms, the HS transformation can be viewed simply as
the solution of a complex multivariate integral. Let 𝐴 have a strictly
positive Hermitian part and 𝑱 be a vector of coefficients that could
contain Graßmann- or complex variables. Then

𝑒𝑱†𝐴𝑱 = det𝐴−1 ∫
ℂ
∏
𝑖

[d𝑧∗𝑖d𝑧𝑖
2𝜋𝑖

]𝑒−(𝒛†𝐴−1𝒛+𝒛†𝑱+𝑱†𝒛), (3.26)

exchanges a quadratic term in 𝑱 with an integration over the complex
𝒛 variables. Since 𝑱 usually represents some field in a field theory, the
new 𝒛 is called the auxiliary- or conjugate field because of its linear
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coupling to 𝑱. In the less general case that 𝐴 is a Hermitian matrix,
this formula is proved simply by completing the square, then diago-
nalizing 𝐴 by a unitary transformation and calculating the resulting
integrals by the formula ∫

ℂ
d𝑧∗d𝑧 𝑒−𝑎𝑧𝑧∗ = 2𝜋𝑖/𝑎.

From Eq. (3.26), we see that what we have to do to perform the HS
transformation is first to make a choice for what to interpret as part of
the matrix𝐴 and what to interpret as part of 𝑱. We then have to check
that this definition of 𝐴 leads to its Hermitian part having only posi-
tive eigenvalues. Finally, we need to know an analytical expression for
its inverse. It is usually the first step that is the most difficult, since this
dictates the low energy excitation a subsequent saddle point approx-
imation or a stationary phase approximation will produce. Typically,
we are interested in transforming a Fermionic interaction potential of
the form

𝑉 = 1
2

∑
𝛼𝛽𝛾𝛿

𝑉𝛼𝛽𝛾𝛿𝜉∗𝛼𝜉∗𝛽𝜉𝛿𝜉𝛾, (3.27)

where 𝜉𝛼 are Graßmann variables, which can be sketched in the way
of the single-vertex diagram in Figure 3.2. The HS-transformation is

𝛿

𝛾

𝛽

𝛼

Figure 3.2: Generic two-body interaction.

classified into being done in a specific channel depending onwhich pair
of Graßmann variables are considered to be part of𝑱 and consequently
𝑱†. The direct channel5 is given by the identification 𝐽𝑖 ∼ 𝜉∗𝛼𝜉𝛾, the
Cooper channel6 is defined by the identification 𝐽𝑖 ∼ 𝜉𝛿𝜉𝛾 while the

5. Also known as the density-density channel.
6. Also known as the particle-particle channel.
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3.3 Hubbard-Stratonovich transformation

exchange channel is given by the identification 𝐽𝑖 ∼ 𝜉∗𝛼𝜉𝛿. Depend-
ing on exactly how 𝑱 is chosen, the Gaussian integral in Eq. (3.26)
might have to be modified. For example, in the case of the direct- and
exchange-channel, the exponential argument on the left side will have
the form 𝑱𝖳𝐴𝑱, which necessitates the Gaussian integral identity

𝑒− 1
2𝑱

𝖳𝐴𝑱 =
√

det𝐴−1 ∫
ℝ
∏
𝑖

[ d𝑥𝑖√
2𝜋

]𝑒− 1
2𝒙

𝖳𝐴−1𝒙−𝑖𝑱𝖳𝒙, (3.28)

where the auxiliary field 𝒙 now is a real conjugate field.

3.3.1 Transformation in symmetry channels

In the Cooper-channel of the HS transformation, the complex field 𝒛 is
conjugate to some combination of pairs of annihilation operators ̂𝑐𝛿 ̂𝑐𝛾
(or their corresponding Graßmann variables). The symmetry of the
specific combination in turn then determines the symmetry of any low
energy field theory obtained through a subsequent stationary phase
approximation. By diagonalizing the interaction potential ̂𝑉 into its
different irreducible representations aswewill do in Section 4.8, then a
HS transformation in a specific symmetry channel is done by identify-
ing𝑱with irreducible representation (IR) basis function combinations
of latter operators.

Let’s take the case of a BCS theory of superconductivity where the
interaction can be written in terms of basis functions 𝑑(𝑏),𝑚

𝑠1𝑠2 (𝒌) such
that the diagonalized interaction takes the form

̂𝑉 = ∑𝑑(𝑏),𝑚
𝑠1𝑠2 (𝒌)∗𝑣(𝑏)𝑑

(𝑏),𝑚
𝑠′1𝑠′2

(𝒌′)𝑐†𝒒
2+𝒌𝑠1

𝑐†𝒒
2−𝒌𝑠2

𝑐 𝒒
2−𝒌′𝑠′2𝑐 𝒒

2+𝒌′𝑠′1 ,
(3.29)

where ∑ indicates the sum over the indices, 𝒌, 𝒌′, 𝒒, 𝑠1, 𝑠2, 𝑠′1, 𝑠′2, 𝑏
and 𝑚. Here 𝑏 specifies the irreducible representation while 𝑚 enu-
merates the representation basis .7 Identifying

̂𝐽 (𝑏𝑚)
𝒒 = ∑

𝒌𝑠1𝑠2

𝑑(𝑏),𝑚
𝑠1𝑠2 (𝒌) ̂𝑐 𝒒

2−𝒌,𝑠1 ̂𝑐 𝒒
2+𝒌,𝑠2 , (3.30)

the interaction potential is simply written

̂𝑉 = ∑
𝒒,𝑏,𝑚

̂𝐽 (𝑏𝑚) †
𝒒 𝑣(𝑏) ̂𝐽 (𝑏𝑚)

𝒒 . (3.31)

7. For an exposition on the basics of irreducible representations in superconductiv-
ity theory see Chapter 4.
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In the path-integral representation of the partition function, the an-
nihilation operators become Graßmann variables which we denote by
writing 𝐽 instead of ̂𝐽, such that the contribution from the interaction
potential results in the exponential

𝒵𝐼 = 𝑒−∫𝛽
0

d𝜏 ∑𝒒,𝑏,𝑚 𝐽 (𝑏𝑚)†
𝒒 𝑣(𝑏)𝐽 (𝑏𝑚)

𝒒 . (3.32)

Now it is straightforward to use the HS formula

𝑒∫
𝛽
0

d𝜏 ∑𝑖𝑗 𝐽
∗
𝑖𝐴𝑖𝑗𝐽𝑗 = ∫𝒟[𝜂∗𝑖 𝜂𝑖]𝑒

−∫𝛽
0

d𝜏(𝜂∗
𝑖𝐴−1

𝑖𝑗 𝜂𝑗+𝐽∗
𝑖𝜂𝑖+𝐽𝑖𝜂∗

𝑖), (3.33)

which is a path integral version of Eq. (3.26), to transform each pair of
irreducible representation basis vectors to individual conjugate fields.
In the notation of Eq. (3.33) implicit summation over repeated indices
is used and each index 𝑖 is a collection 𝑖 = (𝑏,𝑚, 𝒒) of indices. Com-
paring Eq. (3.33) and (3.32) we gather that

𝐴𝑖𝑗 = 𝐴𝑏,𝑚,𝒒; 𝑏′,𝑚′,𝒒′ = −𝛿𝒒𝒒′𝛿𝑚𝑚′𝛿𝑏𝑏′𝑣(𝑏), (3.34)

which is trivially Hermitian and positive definite provided 𝑣(𝑏) < 0.
In this case we say that the irreducible representation 𝑏 is an attrac-
tive channel. 𝐴 is in this case also trivially invertible with 𝐴−1

𝑖𝑗 =
−𝛿𝑖𝑗/𝑣(𝑏). Writing out all the indices, we finally arrive at the HS trans-
formation of the interaction potential in individually attractive sym-
metry channels

𝒵𝐼 = ∫𝒟[𝜂(𝑏𝑚) ∗
𝒒 𝜂(𝑏𝑚)

𝒒 ]𝑒
∫𝛽
0

d𝜏 ∑
𝒒𝑏𝑚

[ |𝜂(𝑏𝑚)
𝒒 |

𝑣(𝑏) −(𝐽 (𝑏𝑚)∗
𝒒 𝜂(𝑏𝑚)

𝒒 +𝐽 (𝑏𝑚)
𝒒 𝜂(𝑏𝑚)

𝒒 )]
,

(3.35)
where

𝐽 (𝑏𝑚)
𝒒 = ∑

𝒌𝑠1𝑠2

𝑑(𝑏),𝑚
𝑠1𝑠2 (𝒌)𝜉 𝒒

2−𝒌,𝑠1𝜉 𝒒
2+𝒌,𝑠2 (3.36)

in terms of Graßmann variables 𝜉. We note that this derivation does
not assume either odd or even basis functions for the irreducible rep-
resentations and thus works just as well for either.
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3.4 Field theory approximations

3.4.1 Stationary phase and the one loop expansion

Let 𝑍 be the partition function

𝑍(𝑙) = ∫𝒟[𝜂∗𝛼 𝜂𝛼] 𝑒−𝑙𝑆(𝜂∗
𝛼,𝜂𝛼), (3.37)

given in terms of bosonic fields 𝜂∗𝛼, 𝜂𝛼 and where 𝑙 is some large pa-
rameter 𝑙 ≫ 1. In what is called the stationary phase approximation8

of a bosonic field integral, we create an expansion of the free energy
around the field configuration {𝜂𝑐𝛼} where the action 𝑆 is stationary
and a minimum. This configuration is the main contribution to the in-
tegral in Eq. (3.37) since it provides themaximum of the exponent and
determines the leading order asymptotic behavior as 𝑙 → ∞. It also
corresponds in a sense to a classical solution and gives in the case of the
Feynman path-integral for the evolution operator of a single particle in
an external potential, the classical Euler-Lagrange equations. The con-
figuration is found in the path-integral notation by varying the fields
in the action such that

𝛿𝑆
𝛿𝜂𝛼

= 0 ∧ 𝛿𝑆
𝛿𝜂∗𝛼

= 0. (3.38)

As an example, the Hubbard-model with a conventional negative-𝑈
Hubbard-potential 𝑈 ∑𝒓𝑖

𝑛̂𝒓𝑖,↑𝑛̂𝒓𝑖,↓, can be expressed as a bosonic
field integral through aHS transformation. The stationary field config-
uration {𝜂𝑐𝑞(𝜏)} is in this case given by a imaginary-time- and spatially-
independent field-configuration 𝜂𝑐. Assuming such a solution, the ac-
tion reduces to

𝑆(𝜂𝑐 ∗, 𝜂𝑐) = 𝛽𝑁
𝑈

|𝜂𝑐|2 −∑
𝒒

ln [(1 + 𝑒𝛽𝐸𝒒)(1 + 𝑒−𝛽𝐸𝒒)], (3.39)

where𝐸𝒒 = √(𝜖(𝒒) − 𝜇)2 + |𝜂𝑐|2,𝑁 is the number of hopping sites,
𝜖(𝒒) is the Fourier transformed kinetic hopping energy, 𝜇 is the chemi-
cal potential, and𝑈 is the repulsive Hubbard interaction strength. The

8. The name is misleading in the case of the many-particle partition function since
we do not have a strict phase in the exponent but in general a complex function
because 𝜂𝛼 ∈ ℂ. Technically it is the method of steepest descent for the case of
an exponent with stationary points that is used in this case.
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stationary action condition in Eq. (3.38) then yields the equation

|𝜂𝑐|( 1
𝑈

− 1
𝑁

∑
𝒒

1
2𝐸𝒒

tanh
𝛽𝐸𝒒

2
) = 0, (3.40)

which has two solutions: one given by 𝜂𝑐 = 0, and one given by setting
the terms in the parenthesis equal to 0. The last non-trivial solution is
a form of the BCS solution and represents the order-parameter in an 𝑠-
wave superconductor. Because of the parameter𝛽, this solutionwill be
temperature dependent and disappears at some critical temperature at
which the two solutions for 𝜂𝑐 converge.

The stationary phase expansion is then the expansion resulting from
expanding the action around the stationary solution. Setting ̃𝜂𝛼 =√
𝑙(𝜂𝛼 − 𝜂𝑐𝛼) we get in general the expansion

𝑆( ̃𝜂𝛼, ̃𝜂∗𝛼) = 𝑆𝑐 +
1
𝑙
[ 1
2!

𝛿2𝑆
𝛿𝜂𝛼𝛿𝜂𝛽

∣
𝜂𝑐

̃𝜂𝛼 ̃𝜂𝛽

+ 1
2!

𝛿2𝑆
𝛿𝜂∗𝛼𝛿𝜂∗𝛽

∣
𝜂𝑐

̃𝜂∗𝛼 ̃𝜂∗𝛽 + 𝛿2𝑆
𝛿𝜂𝛼𝛿𝜂∗𝛽

∣
𝜂𝑐

̃𝜂𝛼 ̃𝜂∗𝛽] + 𝒪( 1
𝑙
√
𝑙
)

= ∑
𝑛1+𝑛2≥2

1
𝑛1!𝑛2!

𝛿𝑛1+𝑛2𝑆
𝛿 ̃𝜂𝑛1𝛼 𝛿 ̃𝜂∗ 𝑛2

𝛽
̃𝜂𝑛1𝛼 ̃𝜂∗ 𝑛2

𝛽 ∣
𝜂𝑐

1
𝑙(𝑛1+𝑛2)/2

.

(3.41)

We have used implicit summation over repeated indices and on the
last line we have assumed that new indices should be introduced and
summed for each 𝑛1 and 𝑛2. This is simply the multivariate Taylor
expansion around 𝜂𝑐 where we have treated 𝜂 and 𝜂∗ as independent
variables.

A simpler expansion can be found when the bosonic fields corre-
spond to order parameters in a system close to a phase transition. In
this case we can assume the fields 𝜂𝛼 to be small in general such that
𝑆 simply can be expanded about 0. If the system is fermionic, then the
bosonic field integral of the order-parameters will have resulted from
a HS transformation, in which case we will have a contribution to the
integral of the form

√det𝐺−1(𝜂𝛼, 𝜂∗𝛼) = 𝑒 1
2 Tr ln𝐺−1 , (3.42)

where 𝐺−1 is the result of the integration of a quadratic fermionic ac-
tion and will in general depend on the auxiliary bosonic fields 𝜂𝛼 and
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3.4 Field theory approximations

𝜂∗𝛼 in a non-linear way. Then the matrix 𝐺−1 can be decomposed in a
matrix 𝐺−1

0 that results purely from fermionic integration, and a ma-
trix𝜙 that is dependent on the auxiliary fields 𝜂𝛼 and importantly van-
ishes as 𝜂𝛼 → 0, such that 𝐺−1 = 𝐺−1

0 +𝜙. When the system is close
to the phase transition such that the auxiliary fields are small, then this
allows for the expansion of the logarithm in Eq. (3.42) such that

1
2
Tr ln(𝐺−1

0 + 𝜙) = 1
2
(Tr ln𝐺−1

0 + Tr ln(1 + 𝐺0𝜙))

= 1
2
(Tr ln𝐺−1

0 −
∞
∑
𝑛=1

Tr(−𝐺0𝜙)𝑛

𝑛
).

(3.43)

This is known as the one-loop expansion since in terms of perturbation
theory,𝐺0 is the fermionic propagator such that the sum in the last line
of Eq. (3.43) corresponds to a series of propagators and interactions
that are connected in a closed loop by the trace.

3.4.2 Gradient expansion

The gradient expansion rests on the assumption that the fields are suf-
ficiently smooth, such that progressively higher order derivatives with
respect to the field parameters are progressively smaller, i.e. we as-
sume

𝑙𝑛𝛼|𝜕𝑛
𝛼𝜂𝛼| ≫ 𝑙𝑛+1

𝛼 |𝜕𝑛+1
𝛼 𝜂𝛼|, (3.44)

where 𝑙𝛼 is some appropriate length scale such as to make 𝑙𝛼𝜕𝛼 di-
mensionless. In practice this usually means that given a momentum-
dependent action density, 𝑆(𝜂∗𝒒,𝛼, 𝜂𝒒,𝛼; 𝒒), we assume 𝑞𝑖 small com-
pared to the lattice spacing9 𝑎𝑖. Then we expand the explicit 𝒒 depen-
dence in the action density in the small parameters 𝑎𝑖𝑞𝑖 as aMaclaurin
series. In the following notation, we will assume the length parame-
ter 𝑎𝑖 is present in the notation 𝑞𝑖 where appropriate. The momen-
tum dependence of the fields themselves should not be expanded, as
our goal is to have terms of the form (𝑞𝑖)𝑛( ̃𝜂𝒒,𝛼)𝑚. If we then let
partial momentum-derivatives only act on the explicit momentum-
dependence in 𝑆, and neglecting the field dependence in the notation

9. This could be the spacing betweenhopping sites, i.e. stationary ions in an electron
model.
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for 𝑆, the expanded action can be written as the series

𝑆(𝒒) = 𝑆(0) + 𝜕𝑆
𝜕𝑞𝑖

(0) 𝑞𝑖 + 1
2!

𝜕2𝑆
𝜕𝑞𝑖𝜕𝑞𝑗

(0) 𝑞𝑖𝑞𝑗 + 𝒪(𝑞3). (3.45)

Usually, the linear term cancels by symmetry of the underlying lattice.
In general, it is smart to here check for terms that cancel by considering
any internal momentum sums that may be included in the coefficients.

Terms with products between fields 𝜂𝒒,𝛼 and 𝑞𝑖 lead to gradients
of the spatially dependent fields 𝜂𝑹,𝛼, which is why the expansion in
Eq. (3.45) can be called a gradient expansion. The spatially dependent
fields are defined as the coefficients in the inverse Fourier transform

𝜂𝒒,𝛼 = 1√
𝑁

∑
𝑹

𝑒𝑖𝒒⋅𝑹𝜂𝛼(𝑹), (3.46)

where 𝑁 is the number of terms in the sums ∑𝒒 and ∑𝑹. One way
of now obtaining gradients of the spatial fields is to realize that since
𝑞𝑖 is small we can set

𝑞𝑖 ≈ sin(𝑞𝑖) = 1
2𝑖

(𝑒𝑖𝑞𝑖 − 𝑒−𝑖𝑞𝑖). (3.47)

With this identification, all the momentum dependence in 𝑆(𝒒) exists
as phases such that the sum ∑𝒒 𝑆(𝒒) results in a series of Kronecker-
delta functions which we evaluate by the ∑𝑹 sums coming from the
inverse Fourier transforms in Eq. (3.46). Grouping terms of displaced
spatial fields, we can identify derivatives, such that

𝜂𝛼(𝑹 + 𝑎 ̂𝑒𝑖) − 𝜂𝛼(𝑹) ≈ 𝑎 𝜕
𝜕𝑅𝑖 𝜂𝛼(𝑹). (3.48)

These identifications are justified bygoing to the continuum limitwhere
𝑎 → 0.

As an example, consider the sum

𝑆 = ∑
𝒒

𝐾𝛼𝛽 𝑖𝑗𝑞𝑖𝑞𝑗𝜂∗𝒒,𝛼𝜂𝒒,𝛽, (3.49)

where there is an implicit summation over repeated indices 𝑖, 𝑗, 𝛼 and
𝛽. Fourier transforming the fields according to Eq. (3.46) and writing
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𝑞𝑖 as sin 𝑞𝑖, we can group terms such that

𝑆 = 1
𝑁

∑
𝑹1𝑹2

𝐾𝛼𝛽 𝑖𝑗𝜂𝛼(𝑹1)∗𝜂𝛽(𝑹2)
1
4
∑
𝒒

[𝑒𝑖𝒒⋅(𝑹2−𝑹1+𝑎 ̂𝑒𝑖−𝑎 ̂𝑒𝑗)

+𝑒𝑖𝒒⋅(𝑹2−𝑹1+𝑎 ̂𝑒𝑗−𝑎 ̂𝑒𝑖) − 𝑒𝑖𝒒⋅(𝑹2−𝑹1+𝑎 ̂𝑒𝑖+𝑎 ̂𝑒𝑗) − 𝑒𝑖𝒒⋅(𝑹2−𝑹1−𝑎 ̂𝑒𝑖−𝑎 ̂𝑒𝑗)]

= ∑
𝑹

𝐾𝛼𝛽 𝑖𝑗𝑎2
𝜕

𝜕𝑅𝑖
𝜂𝛼(𝑹)∗ 𝜕

𝜕𝑅𝑗
𝜂𝛽(𝑹).

(3.50)

A more conventional way of converting to gradients, is to use inte-
gration by parts. Then the product rule of partial derivatives is used
to obtain

𝑞𝑗𝜂𝛼(𝑹)𝑒𝑖𝒒⋅𝑹 = 𝑖𝜕𝜂𝛼
𝜕𝑅𝑖 𝑒

𝑖𝒒⋅𝑹 − 𝑖 𝜕
𝜕𝑅𝑖 [𝜂𝛼(𝑹)𝑒𝑖𝒒⋅𝑹]. (3.51)

Summing on both sides and arguing that the boundary term vanishes
because 𝜂𝛼(𝑹) → 0 as 𝑅𝑖 → ∞, then

∑
𝑹

𝑞𝑗𝜂𝛼(𝑹)𝑒𝑖𝒒⋅𝑹 = 𝑖∑
𝑹

𝑒𝑖𝒒⋅𝑹∇𝑖𝜂𝛼(𝑹). (3.52)
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Chapter 4
Group Theory

In this chapter we will introduce some basic group-theoretic frame-
work to clarify the meaning of how a free energy can “belong” to an
irreducible representation, and to show how group-theory can be ap-
plied to quantum-mechanical concepts such as operators and states.

A few words about notation. We will use the semicolon ‘;’ in equa-
tions as notation for the words ‘such that’, e.g., when defining sets. A
colon with a trailing space ‘ ∶ ’ is used when defining maps where the
symbol representing themapping itself should be on the left, while the
sets being related or how the elements of the sets are related, is on the
right of the colon. The colon ‘∶’ is also used as a shortcut for the words
‘applied through its representation to’ for when group elements are applied
to vectors, where the correct representation to use for this application
should be implicitly understood.

Thematerial in this section is based on thematerial covered inRefs. [77]
and [76], specified for the use in quantum mechanical theories of un-
conventional superconducting states.

4.1 Irreducible representations

To know what an irreducible representation (IR) is, let’s start with
what we mean by a reducible representation.

Def. 4.1. A matrix representation is reducible if there exists a non-trivial invariant
subspace of the vector space of the representation.
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The intuition is then that the vector space of the representation is
reducible if a “smaller” representation is contained within it. Since
there is a smaller vector space within the vector space of the original
representation, and this vector space is invariant, it is possible to define
another representation on this smaller vector space, i.e., reduce the orig-
inal representation. We have now used the word “invariant” a couple
of times, so let’s define what it means more precisely.

Def. 4.2. Let 𝐷(𝑔) be a representation of the group 𝐺 on the vector space 𝑉 such
that𝐷(𝑔)∶ 𝑉 → 𝑉. Then a subspace𝑈 ⊆ 𝑉 is invariant if

∀𝑔 ∈ 𝐺 𝑢 ∈ 𝑈 ⟹ 𝐷(𝑔)𝑢 ∈ 𝑈. (4.1)

In other words: a vector space is invariant if it is not possible for any
vector in it to escape using the representation1 of any group element.
All representations applied to any vector in the invariant subspace
must necessarily land in that same subspace from which it started.

4.2 BCS Hilbert Space

Wedefine the BCSHilbert space as the Hilbert space uponwhich BCS-
type potentials operate. Specifically, this is a reduced form of the two-
particle fermionic product Hilbert space ℋ2 = ℋ ⊗ ℋ where ℋ =
span{|𝒌, 𝑠⟩} and we only consider states that have opposite momen-
tum. Thus, this Hilbert space is given by

ℬ = span{|𝒌, 𝑠1⟩|−𝒌, 𝑠2⟩}, (4.2)

and the identity operator in this space can be written

𝟙̂ = ∑
𝒌𝑠1𝑠2

|𝒌, 𝑠1⟩|−𝒌, 𝑠2⟩⟨−𝒌, 𝑠2|⟨𝒌, 𝑠1|. (4.3)

Acting on the arbitrary vector |𝑣⟩ ∈ ℬ with this identity operator, we
find that in terms of this basis, the vector can be written

|𝑣⟩ = ∑
𝒌𝑠1𝑠2

𝑣𝑠1𝑠2(𝒌)|𝒌, 𝑠1⟩|−𝒌, 𝑠2⟩, (4.4)

1. In this languagewe use theword representation both tomean linear transformation that
corrresponds to a group element on a vector space, and the set of all such linear
transformations together with the vector space.
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4.2 BCS Hilbert Space

where
𝑣𝑠1𝑠2(𝒌) = ⟨−𝒌, 𝑠2|⟨𝒌, 𝑠1 ∣ 𝑣⟩. (4.5)

The indices 𝑠1 and 𝑠2 can take on only twovalues each, namely 𝑠1, 𝑠2 ∈
{↑, ↓}. In total, there are thus 4 different realizations of the pairs 𝑠1𝑠2,
e.g., 𝑠1𝑠2 =↑↑, for 𝑣𝑠1𝑠2(𝒌). Putting these different realizations of
𝑣𝑠1𝑠2(𝒌) as elements in a 2 × 2 matrix, we get

𝑣𝑠1𝑠2(𝒌) = (𝑣↑↑(𝒌) 𝑣↑↓(𝒌)
𝑣↓↑(𝒌) 𝑣↓↓(𝒌)

) . (4.6)

Any 2×2matrix can be written in the conventional basis of the 4 Pauli
matrices 𝜎0 = 𝟙2×2, 𝜎𝑥, 𝜎𝑦, and 𝜎𝑧. This means that we could write
the matrix in Eq. (4.6)

𝑣𝑠1𝑠2(𝒌) = 𝑣0𝒌𝜎0
𝑠1𝑠2 + 𝑣𝑖𝒌𝜎𝑖

𝑠1𝑠2 . (4.7)

It is, however, conventional to factor out a Pauli matrix 𝑖𝜎𝑦 to the right
in the expansion, since this results in nice transformation properties of
the coefficients as we shall see. With the spin-indices expanded in this
basis, it is conventional to let the function of 𝒌 that is in front of 𝜎0 be
called 𝜓𝒌. The three others are conventionally denoted 𝑑𝒌,𝑖 which are
components of what we call the 𝒅-vector.2 Expanded in this conven-
tional basis, then, 𝑣𝑠1𝑠2(𝒌) takes the form

𝑣𝑠1𝑠2(𝒌) = (𝜓𝒌𝜎0
𝑠1𝑠′

+ 𝑑𝒌,𝑖𝜎𝑖
𝑠1𝑠′

)𝑖𝜎𝑦
𝑠′𝑠2

, (4.8)

and finally, the state |𝑣⟩ can be written

|𝑣⟩ = ∑
𝒌𝑠1𝑠2

[(𝜓𝒌𝜎0 + 𝒅𝒌 ⋅ 𝝈)𝑖𝜎𝑦]𝑠1𝑠2 |𝒌, 𝑠1⟩|−𝒌, 𝑠2⟩. (4.9)

Going one step back andwriting out the different combinations of 𝑠1𝑠2
in 𝑣𝑠1𝑠2(𝒌) as a matrix like we did in Eq. (4.6), but now multiplying
out the Pauli matrices in Eq. (4.8), we get

(𝑣↑↑(𝒌) 𝑣↑↓(𝒌)
𝑣↓↑(𝒌) 𝑣↓↓(𝒌)

) = (−𝑑𝒌,𝑥 + 𝑖𝑑𝒌,𝑦 𝜓𝒌 + 𝑑𝒌,𝑧
−𝜓𝒌 + 𝑑𝒌,𝑧 𝑑𝒌,𝑥 + 𝑖𝑑𝒌,𝑦

) . (4.10)

2. Note that a state in ℬ that is described by a 𝒅-vector does not necessarily mean
that it has 𝑑-wave symmetry, which is a symmetry of its 𝒌-space argument.
Rather, it tells us that the state is a spin-triplet state.
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This set of linear relations is easily inverted, which yields

𝜓𝒌 = 1
2
(𝑣↑↓(𝒌) − 𝑣↓↑(𝒌)) (4.11)

𝑑𝒌,𝑥 = 1
2
(𝑣↓↓(𝒌) − 𝑣↑↑(𝒌)) (4.12)

𝑑𝒌,𝑦 = − 𝑖
2
(𝑣↑↑(𝒌) + 𝑣↓↓(𝒌)) (4.13)

𝑑𝒌,𝑧 = 1
2
(𝑣↑↓(𝒌) + 𝑣↓↑(𝒌)). (4.14)

Since the space ℬ is fermionic, we have the symmetry3

|𝒌, 𝑠1⟩|−𝒌, 𝑠2⟩ = −|−𝒌, 𝑠2⟩|𝒌, 𝑠1⟩. (4.15)

Using this symmetry transformation on the basis vectors in the expan-
sion of |𝑣⟩ in Eq. (4.4), then renaming indices and finally equating
coefficients term by term, we see that for the coefficients of |𝑣⟩, this
symmetry takes the form

𝑣𝑠1𝑠2(𝒌) = −𝑣𝑠2𝑠1(−𝒌). (4.16)

4.3 Application of group elements

When we are talking about applying some symmetry transformation
to a state, this is synonymous with applying a group element to a vec-
tor. Even more specifically, the ‘applying’ part means that we have
some natural representation of the group on the vector space of the
states, and we are using the linear transformation of the representa-
tion of the group element to act on the state vector. In this thesis, we
will use the notation 𝑔 ∶ |𝜓⟩ to refer to this procedure.

Let 𝑔 be an arbitrary group element in the symmetry group 𝐺 and
𝐷 be a representation of 𝐺 on the 𝑑-dimensional vector space 𝑉. Let
𝑉 have a basis {𝒃𝑖}𝑑𝑖=1. The application of a group element to a basis
vector is then defined as

𝑔 ∶ 𝒃𝑖 = ∑
𝑗

𝒃𝑗𝐷𝑗𝑖(𝑔), (4.17)

3. We are here assuming that the state is even in (time) frequency. It is also possible
to have superconducting states that are odd in frequency [78], however we will
not treat that possibility here.
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4.3 Application of group elements

where𝐷𝑗𝑖(𝑔) are thematrix elements of the linear transformation𝐷(𝑔).
The application of a group element to any vector in 𝑉 is then calculated
by expanding the vector in the basis and applying the representation
𝐷 to each basis vector separately as a linear transformation:

𝑔 ∶ 𝒗 = ∑
𝑖

𝑣𝑖𝑔 ∶ 𝒃𝑖. (4.18)

4.3.1 Active vector transformation

By the definition in Eq. (4.17), the transformation of 𝑔 ∶ is viewed in a
passive perspective since it is the basis vectors that change. It is often
useful, and sometimes more intuitive, to consider the application of
𝑔 to a vector 𝒗 in the basis {𝒃𝑖} as an application not on the vectors
themselves, but on the expansion coefficients 𝑣𝑖 of𝒗 in the basis. Given
the transformation of the basis vectors in Eq. (4.17), we insert this into
the transformation of 𝒗 in Eq. (4.18), which yields

𝑔 ∶ 𝒗 = ∑
𝑖

𝑣𝑖 ∑
𝑗

𝒃𝑗𝐷𝑗𝑖(𝑔) = ∑
𝑖

𝑣′𝑖𝒃𝑖, (4.19)

where we have defined the transformed coefficients

𝑣′𝑖 = ∑
𝑗

𝐷𝑖𝑗(𝑔)𝑣𝑗. (4.20)

From this calculation, we see that we can consider the application of 𝑔
as a transformation of the coefficients of the vector as

𝑔 ∶ 𝑣𝑖 = ∑
𝑗

𝐷𝑖𝑗(𝑔)𝑣𝑗. (4.21)

Since, in this case, the basis vectors are left invariant and static, the vec-
tor𝒗 can be viewed as being actively transformed in a fixed coordinate-
system. Thus, the transformation 𝑔 ∶ 𝒗 is, when viewed in this per-
spective, known as an active transformation. The active- and passive-
perspective can be notoriously difficult to differentiate since they are,
in the end, mathematically equivalent. Therefore, being consistent
with a single perspective can dissuade a lot of confusion.
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4.3.2 Representation on product spaces

The product space 𝑉 ⊗ 𝑉, where 𝑉 is defined as before, is a vector
space with a basis {𝒃𝑖𝒃𝑗}𝑑𝑖,𝑗=1. A derived representation can be con-
structed from 𝐷 on this product space called the product representa-
tion 𝐷(𝐷×𝐷)(𝑔). This is defined through its application on the basis
by

𝑔 ∶ 𝒃𝑖𝒃𝑗 = ∑
𝑘𝑙

𝒃𝑘𝒃𝑙[𝐷(𝐷×𝐷)(𝑔)]
𝑘𝑙,𝑖𝑗

= ∑
𝑘𝑙

𝒃𝑘𝒃𝑙𝐷𝑘𝑖(𝑔)𝐷𝑙𝑗(𝑔).

(4.22)
To apply group theory to physical problems, we need to know how

the objects we are working with in the physical theory transform un-
der group elements. Themost important vector space in quantumme-
chanics is arguably the Hilbert space where particle states are deter-
mined by a momentum- and spin quantum numbers. Each quantum
number has its own vector space defined by the basis vectors |𝒌⟩ and
|𝑠⟩ in the Dirac notation. The combination of both quantum numbers
in the description of a particle state, then gives a state in the product
space of these vector spaces. A basis for this space is given by the vec-
tors |𝒌, 𝑠⟩ = |𝒌⟩|𝑠⟩. Given 𝒌 ∈ ℝ𝑑 and 𝑠 ∈ {↑, ↓}, these basis vectors
transform according to the product representation of the representa-
tions on each vector space, given by

𝑔 ∶ |𝒌′, 𝑠′⟩ = ∑
𝒌𝑠

|𝒌, 𝑠⟩𝐷(𝒌×𝑠)
𝒌𝑠;𝒌′𝑠′ = ∑

𝒌𝑠
|𝒌, 𝑠⟩𝐷𝑔 𝑠𝑠′𝛿𝒌,𝑔∶𝒌′ , (4.23)

under a group element 𝑔. Here 𝑔 ∶ 𝒌′ means application of 𝑔 to the
vector 𝒌′ through the standard representation of 𝑔 in ℝ𝑑. 𝐷𝑔 𝑠𝑠′ is
a representation on the spin-up spin-down vector space given by the
matrix

𝐷𝑔 𝑠𝑠′ = 𝜎0
𝑠𝑠′ cos(𝜙/2) − 𝑖𝒖̂ ⋅ 𝝈𝑠𝑠′ sin(𝜙/2), (4.24)

where 𝒖̂ is the rotation axis unit vector, while𝜙 is the angle that defines
the proper rotation associated with 𝑔. 𝝈 is the vector notation for the
3 Pauli matrices and 𝜎0

𝑠𝑠′ = 𝛿𝑠𝑠′ [79, 80].
In the BCS Hilbert space, which we discussed in more detail in Sec-

tion 4.2, the basis vectors are outer products of themomentum spin ba-
sis vectors with opposite momentum: {|𝒌, 𝑠1⟩|−𝒌, 𝑠2⟩}. The product
representation on this vector space then transforms the basis vectors

44



4.3 Application of group elements

according to

𝑔 ∶ |𝒌′, 𝑠′1⟩|−𝒌′, 𝑠′2⟩ = ∑
𝒌𝑠1𝑠2

|𝒌, 𝑠1⟩|−𝒌, 𝑠2⟩𝐷
(𝐷×𝐷)
𝒌𝑠1𝑠2; 𝒌′ 𝑠′1𝑠′2

(𝑔),

(4.25)
where

𝐷(𝐷×𝐷)
𝒌𝑠1𝑠2; 𝒌′ 𝑠′1𝑠′2

(𝑔) = 𝐷𝑔 𝑠1𝑠′1𝛿𝒌,𝑔∶𝒌′𝐷𝑔 𝑠2𝑠′2𝛿−𝒌,𝑔∶−𝒌′ . (4.26)

Since group representations on𝒌 is a linear transformation, then 𝛿−𝒌,𝑔∶−𝒌′ =
𝛿𝒌,𝑔∶𝒌′ , such that the last Kronecker delta function becomes superflu-
ous.

4.3.3 Representation on 𝜓-𝒅 functions

The coefficients of the basis expansion of a vector in the BCS Hilbert
space are typicallywritten in the conventional𝜓-𝒅notation of Eq. (4.9).
Taking the active view of group transformations, we can say that the
expansion coefficients of arbitrary states |𝑣⟩ in the BCS Hilbert space
ℬ transform like the 𝑣𝑖 in Eq. (4.21), but where now the representa-
tion matrix𝐷 is given by the matrix𝐷(𝐷×𝐷)

𝒌𝑠1𝑠2; 𝒌′ 𝑠′1𝑠′2
above in Eq. (4.26).

Written out then, the coefficients transform according to

𝑔 ∶ 𝑣𝑠1𝑠2(𝒌) = ∑
𝒌′ 𝑠′1𝑠′2

𝐷(𝐷×𝐷)
𝒌𝑠1𝑠2; 𝒌′ 𝑠′1𝑠′2

𝑣𝑠′1𝑠′2(𝒌
′). (4.27)

Let now |𝑣⟩ be a state that is even in space, meaning that its expansion
only consists of coefficients𝜓(𝒌) in the𝜓-𝒅 notation. Thenwe see from
Eq. (4.10) that𝜓(𝒌) can bewritten𝜓(𝒌) = 𝑣↑↓(𝒌). The transformation
properties of 𝜓(𝒌) are thus given by

𝑔 ∶ 𝜓(𝒌) = 𝑔 ∶ 𝑣↑↓(𝒌) = ∑
𝒌′ 𝑠′1𝑠′2

𝐷(𝐷×𝐷)
𝒌↑↓;𝒌′ 𝑠′1𝑠′2

𝜓(𝒌′)(𝑖𝜎𝑦)𝑠′1𝑠′2

= 𝜓(𝑔−1 ∶ 𝒌)(𝑖𝜎𝑦)↑↓ = 𝜓(𝑔−1 ∶ 𝒌).
(4.28)

In this calculationwe inserted the expression of𝐷(𝐷×𝐷)
𝒌𝑠1𝑠2; 𝒌′ 𝑠′1𝑠′2

in Eq. (4.26)
and used the equation𝐷𝑔𝑖𝜎𝑦𝐷𝖳

𝑔 = 𝑖𝜎𝑦, where𝐷𝑔 are the spin repre-
sentation matrices given in Eq. (4.24).

To find the transformation properties of𝒅𝒌, the principle is the same
as above for 𝜓(𝒌), but the calculations become more involved. We
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assume that the spin-momentum basis expansion of a state |𝑣⟩ consists
of only odd coefficients so that 𝑣𝑠1𝑠2(𝒌) = 𝒅𝒌 ⋅ (𝝈𝑖𝜎𝑦)𝑠1𝑠2 . Inserting
this into the active transformation of the coefficients of |𝑣⟩ in Eq. (4.27),
and also inserting the expression for 𝐷(𝐷×𝐷)

𝒌𝑠1𝑠2; 𝒌′ 𝑠′1𝑠′2
as we did before,

yields

𝑔 ∶ 𝑣𝑠1𝑠2(𝒌) = ∑
𝒌′ 𝑠′1𝑠′2

𝛿𝒌,𝑔∶𝒌′𝐷𝑔 𝑠1𝑠′1𝐷𝑔 𝑠2𝑠2𝒅𝒌′ ⋅ (𝝈𝑖𝜎𝑦)𝑠′1𝑠′2

= ∑
𝑠

(𝐷𝑔𝝈𝜎𝑦𝐷𝖳
𝑔𝜎𝑦)

𝑠1𝑠
⋅ 𝒅𝑔−1∶𝒌 𝑖𝜎𝑦

𝑠𝑠2 .
(4.29)

Since a group transformation (aka. the linear transformation given by
a group representation) cannot transform a state that was even into
being odd, or vice versa, then the resulting state given by the trans-
formed coefficients 𝑔 ∶ 𝑣𝑠1𝑠2(𝒌) have to remain odd, and thus they can
be expanded in terms of a new 𝒅′ such that

𝑔 ∶ 𝑣𝑠1𝑠2(𝒌) = ∑
𝑠

𝒅′
𝑔−1∶𝒌 ⋅ 𝝈𝑠1𝑠𝑖𝜎

𝑦
𝑠𝑠2 . (4.30)

Having expanded both sides of the transformed coefficients with a
common factor 𝑖𝜎𝑦 to the right, we can equate the remaining 2 × 2
spin matrices which gives an expression for 𝒅′

𝑔−1∶𝒌 ⋅ 𝝈 by comparing
Eq. (4.29) and Eq. (4.30). Furthermore, using the anti-commutation
property {𝜎𝑖, 𝜎𝑗} = 2𝛿𝑖𝑗𝜎0 of Pauli matrices, we find that

𝑑′
𝒌,𝑖 =

1
4
Tr ({𝜎𝑖, 𝒅′

𝒌 ⋅ 𝝈}). (4.31)

Inserting the expression for 𝒅′
𝑔−1∶𝒌 ⋅ 𝝈 in terms of the 𝑆𝑈(2) spin-

representation matrices 𝐷𝑔, and inserting these matrices full expres-
sion, which can be found in Eq. (4.24), yields after some algebra

𝑑′
𝑔−1∶𝒌,𝑖 =

1
4
Tr ({𝜎𝑖, 𝒅𝑔−1∶𝒌 ⋅ 𝐷𝑔𝝈𝜎𝑦𝐷𝖳

𝑣𝜎𝑦})

= 𝑅𝑖𝑗(𝒖̂, 𝜙)𝑑𝑔−1∶𝒌,𝑗,
(4.32)

where we have defined the matrix

𝑅𝑖𝑗(𝒖̂, 𝜙) = 𝛿𝑖𝑗 cos𝜙 + 𝑢̂𝑖𝑢̂𝑗(1 − cos𝜙) − 𝜖𝑖𝑗𝑘𝑢̂𝑘 sin𝜙

= (
cos𝜙+𝑢̂2

𝑥(1−cos𝜙) 𝑢̂𝑥𝑢̂𝑦(1−cos𝜙)−𝑢̂𝑧 sin𝜙 𝑢̂𝑥𝑢̂𝑧(1−cos𝜙)+𝑢̂𝑦 sin𝜙
𝑢̂𝑦𝑢̂𝑥(1−cos𝜙)+𝑢̂𝑧 sin𝜙 cos𝜙+𝑢̂2

𝑦(1−cos𝜙) 𝑢̂𝑦𝑢̂𝑧(1−cos𝜙)−𝑢̂𝑥 sin𝜙
𝑢̂𝑧𝑢̂𝑥(1−cos𝜙)−𝑢̂𝑦 sin𝜙 𝑢̂𝑧𝑢̂𝑦(1−cos𝜙)+𝑢̂𝑥 sin𝜙 cos𝜙+𝑢̂2

𝑧(1−cos𝜙)
).

(4.33)
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This matrix is in fact the rotation matrix of a vector in ℝ3 by an angle 𝜙
about a unit vector 𝒖̂. Since the coefficients of an odd state |𝑣⟩ are fully
determined by the vector 𝒅, their transformation can be regarded just
as a transformation of 𝒅 itself, which thus takes the form

𝑔 ∶ 𝑑𝒌,𝑖 = 𝑅𝑖𝑗(𝒖̂, 𝜙)𝑑𝑔−1∶𝒌,𝑗, (4.34)

where 𝒖̂ and𝜙 give the unit vector and angle respectively, of the proper
rotation4 that is associated with 𝑔. The conclusion is thus that 𝒅 trans-
forms as a vector by the proper rotation associated with 𝑔.

4.3.4 Representation on ladder operators

The fermionic creation and annihilation operators 𝑐†𝒌,𝑠 and 𝑐𝒌,𝑠, which
wewill collectively refer to as 𝑐(†)𝒌,𝑠, are second-quantized operators that
act on multi-particle states in a fermionic Fock space [76]. To properly
define how a group element 𝑔 transforms these operators, we should
strictly speaking first derive the representation𝑄(𝑔) of 𝑔 on𝑁-particle
states |𝒌1, 𝑠1⟩∧…∧|𝒌𝑁, 𝑠𝑁⟩ for arbitrary𝑁, and then use the relation
𝑔 ∶ 𝑐(†)𝒌,𝑠 = 𝑄(𝑔)𝑐(†)𝒌,𝑠𝑄(𝑔)−1 to derive their transformation properties.
However, luckily, a shortcut is possible because the 𝑄(𝑔) representa-
tion is connected with how 𝑔 acts on the single-particle basis {|𝒌, 𝑠⟩}
through the relationship

𝑄(𝑔)𝑐(†)𝒌,𝑠𝑄(𝑔)−1 = 𝑐(†)(𝑔 ∶ |𝒌, 𝑠⟩). (4.35)

In this notation we treat the creation and annihilation operators as re-
spectively linear and antiunitary functions of the states that they cre-
ate or annihilate. If the matrix-components of the representation of 𝑔
on the single-particle basis is denoted 𝐷(𝒌×𝑠)

𝒌𝑠;𝒌′𝑠′ then we thus have the
transformation property

𝑔 ∶ 𝑐(†)𝒌,𝑠 = ∑
𝒌′𝑠′

𝑐(†)𝒌′,𝑠′[𝐷
(𝒌×𝑠)
𝒌′𝑠′;𝒌𝑠]

(∗), (4.36)

where thematrix-elements are complex conjugated only ifwe are trans-
forming an annihilation operator.

4. The proper rotation of a group element 𝑔 is the rotation obtained when writing 𝑔 as
this rotation followed by either the group element of inversion or identity, which
can be done in all point-groups.
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Given that 𝑔 is an element of some point-group, such that it can be
decomposed into a rotation and a parity inversion, then we may use
the representation on {|𝒌, 𝑠⟩} given in Eq. (4.23) such that

𝑔 ∶ 𝑐(†)𝒌,𝑠 = ∑
𝑠′

𝑐(†)𝑔∶𝒌,𝑠′𝐷
(∗)
𝑔 𝑠′𝑠, (4.37)

where the matrix 𝐷𝑔 𝑠𝑠′ is defined in Eq. (4.24). As an example, a
simple parity transformation 𝑔 = ̂𝑃, then transform the operators ac-
cording to ̂𝑃 ∶ 𝑐(†)𝒌,𝑠 = 𝑐(†)−𝒌,𝑠.

We will later need the translation transformation 𝑔 = 𝑹 as well.
In real space it is defined by 𝑹 ∶ |𝒓, 𝑠⟩ = |𝒓 + 𝑹, 𝑠⟩ and given by
the linear transformation 𝐿(𝑹) = 𝑒𝑖𝑹⋅𝒑̂/ℏ, where 𝒑̂ is the momentum
operator5 𝒑̂ = ℏ∇/𝑖. It then follows by a Fourier-transformation that
the fermionic operators transform according to

𝑹 ∶ 𝑐(†)𝒌,𝑠 = (𝑒−𝑖𝑹⋅𝒌)(∗)𝑐(†)𝒌,𝑠. (4.38)

Finally, we discuss the transformation of time-reversal. This opera-
tion is traditionally denotedΘ and consists of flipping the sign of time,
which implies flipping the spin and momentum. Time-reversal is spe-
cial in that it is antiunitary, i.e. it transforms all linear coefficients into
their complex conjugates. Because of this, any representation of time-
reversal is often factorized into a normal linear part and a complex-
conjugation operator 𝐾̂. From its action on the spin-momentum basis
vectors |𝒌, 𝑠⟩, time-reversal transforms the fermionic creation and an-
nihilation operators according to

Θ ∶ 𝑐(†)𝒌,𝑠 = ∑
𝑠′

𝑐(†)−𝒌,𝑠′(−𝑖𝜎𝑦)𝑠′𝑠. (4.39)

Note that the matrix−𝑖𝜎𝑦 is not complex conjugated for the fermionic
annihilation operators because of the antiunitarity of Θ.

4.4 Single-particle Hamiltonian symmetries

Any fermionic single-particle operator can bewritten in the spin-momentum
basis as

𝐻̂ = ∑
𝒌𝒌′𝑠𝑠′

𝐻𝑠𝑠′
𝒌𝒌′𝑐†𝒌,𝑠𝑐𝒌′𝑠′ . (4.40)

5. The form of the linear transformation𝐿(𝑹) follows directly from the multivari-
ate Taylor expansion.
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In this sectionwewill apply the commonfinite symmetry-transformations
discussed in the last Section and see how this reduces the degrees of
freedom in 𝐻̂ so that it can be written in a more concise form. To be-
gin, we reduce the notational burden by expanding the spin-matrix
elements in separate coefficients in the Pauli-matrix basis just as was
done for the BCSHilbert space vector coefficients 𝑣𝑠1𝑠2(𝒌) in Eq. (4.7),
such that

𝐻̂ = ∑
𝒌𝒌′𝑠𝑠′

[𝜉𝒌𝒌′𝜎0 + 𝜸𝒌𝒌′ ⋅ 𝝈]
𝑠𝑠′

𝑐†𝒌,𝑠𝑐𝒌′𝑠′ . (4.41)

The transformation of a quantum mechanical operator such as the
Hamiltonian, is defined by 𝑔 ∶ 𝐻̂ = 𝑄(𝑔)𝐻̂𝑄(𝑔)−1 for some many-
body representation 𝑄(𝑔). Inserting the form of 𝐻̂ in Eq. (4.41) as a
single-particle operator in the spin-momentum basis, yields

𝑔 ∶ 𝐻̂ = ∑
𝒌𝒌′𝑠𝑠′

[𝜉𝒌𝒌′𝜎0 + 𝜸𝒌𝒌′ ⋅ 𝝈]
𝑠𝑠′

(𝑔 ∶ 𝑐†𝒌,𝑠)(𝑔 ∶ 𝑐𝒌′𝑠′), (4.42)

after inserting𝑄(𝑔)−1𝑄(𝑔) between the creation and annihilation op-
erator. We can now use the transformation properties of these opera-
tors presented in Section 4.3.4 to derive the transformation properties
and symmetric form of the Hamiltonian.

For a translation invariant system, we need a translation invariant
Hamiltonian. Using the transformation of 𝑐(†) in Eq. (4.38) under a
translation𝑹, we get that the coefficients 𝜉𝒌𝒌′ and 𝜸𝒌𝒌′ have to satisfy
the equation

(𝑒𝑖𝑹⋅(𝒌′−𝒌) − 1)[𝜉𝒌𝒌′𝜎0 + 𝜸𝒌𝒌′ ⋅ 𝝈] = 0. (4.43)

Since the sigma-matrices are linearly independent and the translation
𝑹 is arbitrary, it follows that both 𝜉𝒌𝒌′ and𝜸𝒌𝒌′ must vanishwhenever
𝒌 ≠ 𝒌′, i.e. these coefficients must be diagonal in 𝒌. The Hamiltonian
can then be written on the reduced form

𝐻̂ = ∑
𝒌𝑠𝑠′

[𝜉𝒌𝜎0 + 𝜸𝒌 ⋅ 𝝈]
𝑠𝑠′

𝑐†𝒌,𝑠𝑐𝒌,𝑠′ . (4.44)

In the vast majority of cases, the system is Hermitian such that the
Hamiltonian is self-adjoint and has real eigenvalues. Enforcing the
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condition 𝐻̂† = 𝐻̂ on the translationally invariant Hamiltonian in
Eq. (4.44) yields the equation

(𝜉∗𝒌 − 𝜉𝒌)𝜎0 + (𝜸∗
𝒌 − 𝜸𝒌) ⋅ 𝝈 = 0, (4.45)

by using the self-adjoint property of the Pauli-matrices. This implies
further, by the linear independence of the sigma-matrices, that the co-
efficients 𝜉𝒌 and 𝜸𝒌 are self-conjugate and hence real.

Time-reversal symmetry of the system implies that 𝐻̂ should be in-
variant under the transformationΘ, which transforms fermionic ladder-
operators according to Eq. (4.39). Applying this transformation to
the fermionic ladder-operators in the translationally invariant Hamil-
tonian of Eq. (4.44), and remembering that𝑄(Θ) is an antiunitary op-
erator, we get the transformed Hamiltonian

Θ ∶ 𝐻̂ = ∑
𝒌𝑠𝑠′

[𝜉∗−𝒌𝜎0 − 𝜸∗
−𝒌 ⋅ 𝝈]

𝑠𝑠′
𝑐†𝒌,𝑠𝑐𝒌,𝑠′ . (4.46)

For the Hamiltonian to be invariant under time-reversal symmetry, its
coefficients thus have to satisfy 𝜉𝒌 = 𝜉∗−𝒌 and 𝜸𝒌 = −𝜸∗

−𝒌.
Finally, we look at the transformation of theHamiltonianunder point-

group elements 𝑔. Using the transformation-property of the fermionic
creation and annihilation operators in Eq. (4.37), then the translation-
invariant Hamiltonian in Eq. (4.44) transforms according to

𝑔 ∶ 𝐻̂ = ∑
𝒌𝑠𝑠′

[𝜉𝑔−1∶𝒌𝜎0 + 𝜸𝑔−1∶𝒌 ⋅ 𝐷𝑔𝝈𝐷
†
𝑔]𝑠𝑠′𝑐

†
𝒌,𝑠𝑐𝒌,𝑠′ . (4.47)

Using the form of the spin-rotation matrix 𝐷𝑔 in Eq. (4.24), we find
that

𝜸𝑔−1∶𝒌 ⋅ 𝐷𝑔𝝈𝐷
†
𝑔 = 𝜸′

𝑔−1∶𝒌 ⋅ 𝝈, (4.48)

for the transformed vector

𝜸′
𝑔−1∶𝒌 = 𝑅(𝒖̂, 𝜙)𝜸𝑔−1∶𝒌, (4.49)

where𝑅(𝒖̂, 𝜙) is the 3×3matrix representation of the proper-rotation
associated with 𝑔 given in Eq. (4.33). Symmetry of 𝐻̂ under point-
group transformation thus implies the symmetry conditions 𝜉𝑔∶𝒌 = 𝜉𝒌
and 𝑅(𝒖̂, 𝜙)𝜸𝑔−1∶𝒌 = 𝜸𝒌 on the coefficients of the Hamiltonian.
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4.5 Projection Operators

Let us assume that we are in a vector space 𝑉 that can be divided into
possibly several different IRs 𝐷(𝛼) of some symmetry group 𝐺. Fur-
ther, let the basis vectors of these IRs be denoted by 𝒃(𝛼)

𝑚 where𝑚 thus
counts the number of basis vectors in each IR. Then, an arbitrary vector
𝒗 ∈ 𝑉 can be written in terms of these basis vectors as

𝒗 = ∑
𝛼

∑
𝑚

𝑐(𝛼)
𝑚 𝒃(𝛼)

𝑚 . (4.50)

A projection operator can be used to extract any combination of a
constant 𝑐(𝛼)

𝑚 multiplied by a basis vector 𝒃(𝛼)
𝑛 , where 𝑚 and 𝑛 can in

general be different. Denoting the projection operator that picks out
the 𝑚th constant multiplied by the 𝑙th basis vector in the IR 𝛽 of the
expansion of 𝒗: 𝑃 (𝛽)

𝑙𝑚 , then

𝑃 (𝛽)
𝑙𝑚 𝒗 = 𝑐(𝛽)𝑚 𝒃(𝛽)

𝑙 . (4.51)

This is extremely useful in finding explicit expressions for the basis
vectors 𝒃(𝛽)

𝑙 of the IRs. To achieve this, the projection operator is de-
fined as

𝑃 (𝛽)
𝑙,𝑚 =

𝑑𝛽
|𝐺|

∑
𝑔∈𝐺

𝐷(𝛽)
𝑙𝑚(𝑔)∗𝑔 ∶, (4.52)

where 𝑑𝛽 is the dimension of IR 𝛽, 𝐷(𝛽)
𝑙𝑚(𝑔) is the 𝑙𝑚 element of the

matrix representation of the group element 𝑔 and finally we have used
the notation 𝑔 ∶ to denote application on vectors by the relevant repre-
sentation. An example is the application of 𝑔 to the basis vectors 𝒃(𝛼)

𝑚 .
Since the relevant representation of 𝑔 in this case is the IR for which
𝒃(𝛼)
𝑚 is a basis vector, the application becomes

𝑔 ∶ 𝑏(𝛼)
𝑚 = ∑

𝑛
𝑏(𝛼)
𝑛 𝐷(𝛼)

𝑛𝑚(𝑔). (4.53)

Usually, the full generality of the projection operators𝑃 (𝛽)
𝑙,𝑚 isn’t needed

and it suffices to consider the diagonal projection operators 𝑃 (𝛽)
𝑙,𝑙 ≡

𝑃 (𝛽)
𝑙 or indeed their sum, in which case the resulting operator can be

written only in terms of the IR characters 𝜒(𝛼)(𝑔) since

𝑃 (𝛽) ≡ ∑
𝑙

𝑃 (𝛽)
𝑙 =

𝑑𝛽
|𝐺|

∑
𝑔∈𝐺

∑
𝑙

𝐷(𝛽)
𝑙𝑙 (𝑔)∗𝑔 ∶=

𝑑𝛽
|𝐺|

∑
𝑔∈𝐺

𝜒(𝛽)(𝑔)∗𝑔 ∶ .

(4.54)
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4.6 Symmetries of the Square Lattice

The symmetry group of the square lattice is denoted𝐶4𝑣 in the Schön-
flies notation. It contains 8 elements in total:

𝑒: The identity element (do nothing),

𝐶4: Rotation by 90∘ in the positive direction (ccw),

𝐶−1
4 : Rotation by 90∘ in the negative direction (cw),

𝐶2
4 : Rotation by 180∘,

𝜎𝑥: Mirror about the 𝑧𝑦-plane,

𝜎𝑦: Mirror about the 𝑧𝑥-plane,

𝜎𝑑1
: Mirror about the downwards diagonal plane,6

𝜎𝑑2
: Mirror about the upwards diagonal plane.

This results in the groupmultiplication table in Table 4.1. We can check
that this is correct by performing the group transformations in the top
row followed by the one in the left column7 and seeing that this results
in the group transformationswhere these two intersect. As an example
consider the vector (𝑥, 𝑦)𝖳. Transforming the basis by the 90∘ coun-
terclockwise rotation 𝐶4 we get (−𝑦, 𝑥)𝖳. Then mirroring this result
about the 𝑦𝑧-plane yields (𝑦, 𝑥)𝖳. We now realize that this is the same
asmirroring the original basis about the axis 𝑦 = 𝑥, hence𝜎𝑥𝐶4 = 𝜎𝑑2

as the multiplication table says.

4.6.1 Conjugation classes

The conjugation classes of a group are the sets of group elements that
are conjugate to each other, meaning that there exists a group element
𝑔 such that 𝑔𝐴𝑔−1 = 𝐵 between conjugate elements 𝐴 and 𝐵. Since
conjugation is an equivalence relation, it subdivides the group ele-
ments exactly into conjugation classes. The conjugation classes of the

6. We are assuming thewestern bias of left-to-rightmovement here. More precisely
it is the plane containing the 𝑧 axis and the line 𝑦 = −𝑥

7. When combining a group-element 𝑔c from the left column and 𝑔r from the top
row, the result should be 𝑔c𝑔r.
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Table 4.1: Group multiplication table of the group 𝐶4𝑣.

𝑒 𝐶4 𝐶2
4 𝐶−1

4 𝜎𝑥 𝜎𝑦 𝜎𝑑1
𝜎𝑑2

𝑒 𝑒 𝐶4 𝐶2
4 𝐶−1

4 𝜎𝑥 𝜎𝑦 𝜎𝑑1
𝜎𝑑2

𝐶4 𝐶4 𝐶2
4 𝐶−1

4 𝑒 𝜎𝑑1
𝜎𝑑2

𝜎𝑦 𝜎𝑥
𝐶2

4 𝐶2
4 𝐶−1

4 𝑒 𝐶4 𝜎𝑦 𝜎𝑥 𝜎𝑑2
𝜎𝑑1

𝐶−1
4 𝐶−1

4 𝑒 𝐶4 𝐶2
4 𝜎𝑑2

𝜎𝑑1
𝜎𝑥 𝜎𝑦

𝜎𝑥 𝜎𝑥 𝜎𝑑2
𝜎𝑦 𝜎𝑑1

𝑒 𝐶2
4 𝐶−1

4 𝐶4
𝜎𝑦 𝜎𝑦 𝜎𝑑1

𝜎𝑥 𝜎𝑑2
𝐶2

4 𝑒 𝐶4 𝐶−1
4

𝜎𝑑1
𝜎𝑑1

𝜎𝑥 𝜎𝑑2
𝜎𝑦 𝐶4 𝐶−1

4 𝑒 𝐶2
4

𝜎𝑑2
𝜎𝑑2

𝜎𝑦 𝜎𝑑1
𝜎𝑥 𝐶−1

4 𝐶4 𝐶2
4 𝑒

group 𝐶4𝑣 are 𝑒 = {𝑒}, 2𝐶4 = {𝐶4, 𝐶−1
4 }, 𝐶2

4 = {𝐶2
4}, 2𝜎𝑑 =

{𝜎𝑑1
, 𝜎𝑑2

} and 2𝜎𝑣 = {𝜎𝑥, 𝜎𝑦}. The character 𝜒Γ(𝑔) of a representa-
tionΓ is the trace of the representationmatrix𝐷Γ(𝑔) of a certain group
element 𝑔. Since the trace is cyclic, then for conjugate group elements
𝐴 and 𝐵

𝜒Γ(𝐵) = Tr(𝐷Γ(𝑔)𝐷Γ(𝐴)𝐷Γ(𝑔−1))

= Tr(𝐷Γ(𝑔−1)𝐷Γ(𝑔)𝐷Γ(𝐴))

= Tr(𝐷Γ(𝑔−1𝑔)𝐷Γ(𝐴)) = 𝜒Γ(𝐴).

(4.55)

This means that the representations of all group elements in a certain
conjugation class have the same character.

It is useful to list the characters of the different conjugation classes
in a table according to the different IRs of a group. This is because
the number of conjugation classes of a finite group is the same as the
number of IRs of that group. This table is known as the character ta-
ble of the group. The character table of the group 𝐶4𝑣 is shown in
Table 4.2. This table can be derived without knowing the details of
the irreducible representations, but instead using character relations
from basic group theory.8 Because of this, the character table can be
of immense help, and is typically the first step in determining the irre-
ducible representations of a group.

8. Many of these relations are derived from the great orthogonality theoremwhich
can be found e.g.in [77].
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Table 4.2: Character table of the group 𝐶4𝑣.

𝐶4𝑣 𝑒 2𝐶4 𝐶2
4 2𝜎𝑣 2𝜎𝑑

Γ1 1 1 1 1 1
Γ2 1 1 1 −1 −1
Γ3 1 −1 1 1 −1
Γ4 1 −1 1 −1 1
Γ5 2 0 −2 0 0

4.6.2 Irreducible representations

The dimensionality of the IR can be found in Table 4.2 by looking up
the first column, i.e. the columngiving the character of the conjugation
class {𝑒}. Since the group element 𝑒 maps to the identity transforma-
tion in all representations, then its trace gives the dimension of the rep-
resentation. From the table, we see that all the IRs are 1-dimensional
except for Γ5 which is 2-dimensional. All the 1-dimensional IR matri-
ces are then completely determined by the character table since they
are just given by the characters themselves, e.g. 𝐷Γ2(𝜎𝑥) = −1.

To find a 2-dimensional representation of 𝐶4𝑣, we can imagine how
a normal 2D vector (𝑥, 𝑦)𝖳 ∈ ℝ2 behaves under its transformations.
We take again the example of a counterclockwise rotation by 90∘ of the
basis which transforms a vector

𝐶4 ∶ (𝑥
𝑦) = (−𝑦

𝑥 ) = (0 −1
1 0 )(𝑥

𝑦) . (4.56)

Obviously, the matrix

𝐷(Γ5)(𝐶4) = (0 −1
1 0 ) , (4.57)

is the representationmatrix of a two-dimensional representation of𝐶4.
Continuing in this way for all the group transformations, yields the
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matrices

𝐷(Γ5)(𝑒) = (1 0
0 1) , 𝐷(Γ5)(𝐶4) = (0 −1

1 0 ) , (4.58a)

𝐷(Γ5)(𝐶−1
4 ) = ( 0 1

−1 0) , 𝐷(Γ5)(𝐶2
4 ) = (−1 0

0 −1) , (4.58b)

𝐷(Γ5)(𝜎𝑥) = (−1 0
0 1) , 𝐷(Γ5)(𝜎𝑦) = (1 0

0 −1) , (4.58c)

𝐷(Γ5)(𝜎𝑑1
) = ( 0 −1

−1 0 ) , 𝐷(Γ5)(𝜎𝑑2
) = (0 1

1 0) . (4.58d)

Taking the trace of these matrices, we see that this representation’s
characters are the same as the ones for the IR Γ5 in the character table
(Table 4.2). This implies that ∑𝑔 |𝜒

Γ5(𝑔)|2 = |𝐶4𝑣|, which implies
in turn that the representation given by the matrices in Eq. (4.58) is
irreducible. Thus, this is indeed the Γ5 IR as advertised, and we have
completed the description of the representation matrices of all the IRs
of 𝐶4𝑣.

4.6.3 Proper rotations of the odd BCS function 𝒅𝒌

Whendiscussing the representation of general group elements on states
in the BCS Hilbert space in Section 4.3.3, we learned from Eq. (4.34)
that the coefficient 𝒅𝒌 ∈ ℝ3 of odd states transforms by a proper rota-
tion 𝑅(𝒖̂, 𝜙). As mentioned before, a proper rotation of a group ele-
ment 𝑔 is the rotation obtained when writing 𝑔 as a rotation followed
by an inversion 𝑃 or the identity transformation. We thus obtain the
representation matrices of the 3D-representations of group elements
𝑔 ∈ 𝐶4𝑣 directly from the 3D rotation matrix 𝑅(𝒖̂, 𝜙), by envisioning
the combination of a rotation and𝐶2

4 = 𝑃 or 𝑒 that leads to 𝑔. Because
of this, we denote the representation matrices of this representation
𝑅(𝑔). As an example 𝜎𝑥 = 𝐶2

4𝑅(𝒙̂, 𝜋), such that the representation
𝑅(𝜎𝑥) = 𝑅(𝒙̂, 𝜋). Written out in its full matrix form, this yields the
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representation matrices

𝑅(𝐶4) =
⎛⎜⎜
⎝

0 −1 0
1 0 0
0 0 1

⎞⎟⎟
⎠

, 𝑅(𝐶−1
4 ) = ⎛⎜⎜

⎝

0 1 0
−1 0 0
0 0 1

⎞⎟⎟
⎠

, (4.59a)

𝑅(𝑒) = ⎛⎜⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟
⎠

, 𝑅(𝐶2
4 ) =

⎛⎜⎜
⎝

−1 0 0
0 −1 0
0 0 1

⎞⎟⎟
⎠

, (4.59b)

𝑅(𝜎𝑥) =
⎛⎜⎜
⎝

1 0 0
0 −1 0
0 0 −1

⎞⎟⎟
⎠

, 𝑅(𝜎𝑦) =
⎛⎜⎜
⎝

−1 0 0
0 1 0
0 0 −1

⎞⎟⎟
⎠

, (4.59c)

𝑅(𝜎𝑑1
) = ⎛⎜⎜

⎝

0 1 0
1 0 0
0 0 −1

⎞⎟⎟
⎠

, 𝑅(𝜎𝑑2
) = ⎛⎜⎜

⎝

0 −1 0
−1 0 0
0 0 −1

⎞⎟⎟
⎠

.

(4.59d)

4.7 Square Lattice Harmonics

Since 𝜓(𝒌) and 𝒅𝒌 are invariant with respect to translation by any re-
ciprocal lattice vector 𝑸, 𝜓(𝒌 +𝑸) = 𝜓(𝒌), they can be expanded in
a discrete Fourier transform over the real lattice, such that

𝜓(𝒌) = 1√
𝑁

∑
𝑹

𝜓𝑹 cos𝑹 ⋅ 𝒌, (4.60)

and
𝒅𝒌 = 1√

𝑁
∑
𝑹

𝒅𝑹 sin𝑹 ⋅ 𝒌, (4.61)

where the exponential of the Fourier transform has been reduced to
trigonometric functions by the parity assumed of the functions.

We are interested in the basis vectors |Γ, 𝑞,𝑚⟩ of the representations
of the symmetry group 𝐶4𝑣 of the 2𝐷 square lattice. In this ket nota-
tion, Γ gives the irreducible representation, 𝑚 enumerates the basis
vectors in case the IR is multi-dimensional, while 𝑞 gives the version
of the IR in case the space of possible |𝑣⟩ permits multiple versions of
the same IR. In the active view of group transformations, the question
of finding the basis vectors translates to finding the basis-functions of
the functions 𝜓(𝒌) and 𝒅𝒌 for even and odd bases, respectively. In
Section 4.3.3, we saw how these functions transformed under group
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transformations. In Section 4.5, we saw how the projection operators
could be used to extract individual basis vectors. We will now use
these operators on the Fourier expansions of 𝜓(𝒌) and 𝒅𝒌 to extract
possible basis-functions given the symmetry group of the square lat-
tice.

4.7.1 Even basis-functions

We remember from Eq. (4.28) that the function 𝜓(𝒌) transforms as

𝑔 ∶ 𝜓(𝒌) = 𝜓(𝑔−1 ∶ 𝒌), (4.62)

under a group transformation 𝑔. Operating on the Fourier expansion
of 𝜓(𝒌) in Eq. (4.60) with the projection operator defined in Eq. (4.52)
by an arbitrary IR Γ, yields

𝑃 (Γ)
𝑙,𝑙 𝜓(𝒌) = 𝑑Γ

8
√
𝑁

∑
𝑹

𝜓𝑹[(𝐷(Γ)
𝑙𝑙 (𝑒) + 𝐷(Γ)

𝑙𝑙 (𝐶2
4 )) cos(𝑹 ⋅ 𝒌)

+(𝐷(Γ)
𝑙𝑙 (𝐶4) + 𝐷(Γ)

𝑙𝑙 (𝐶−1
4 )) cos(𝑅𝑥𝑘𝑦 −𝑅𝑦𝑘𝑥)

+(𝐷(Γ)
𝑙𝑙 (𝜎𝑥) + 𝐷(Γ)

𝑙𝑙 (𝜎𝑦)) cos(𝑅𝑥𝑘𝑥 −𝑅𝑦𝑘𝑦)

+(𝐷(Γ)
𝑙𝑙 (𝜎𝑑1

) + 𝐷(Γ)
𝑙𝑙 (𝜎𝑑2

)) cos(𝑅𝑥𝑘𝑦 +𝑅𝑦𝑘𝑥).
(4.63)

Since 𝒌 ∈ ℝ2, we have in this calculation used the natural 2𝐷 repre-
sentation given by the matrices in Eq. (4.58) of the group elements in
𝐶4𝑣 to calculate the expressions 𝑔−1 ∶ 𝒌 inside the cosine functions.
Inserting the matrix elements of the different IRs of𝐶4𝑣 which we dis-
cussed in Section 4.6, we get the projected functions

𝑃 (Γ1)
1,1 𝜓(𝒌) ∝ ∑

𝑹
𝜓𝑹[ cos𝑅𝑥𝑘𝑥 cos𝑅𝑦𝑘𝑦 + cos𝑅𝑥𝑘𝑦 cos𝑅𝑦𝑘𝑥],

𝑃 (Γ2)
1,1 𝜓(𝒌) ∝ ∑

𝑹
𝜓𝑹[ sin𝑅𝑥𝑘𝑦 sin𝑅𝑦𝑘𝑥 − sin𝑅𝑥𝑘𝑥 sin𝑅𝑦𝑘𝑦],

𝑃 (Γ3)
1,1 𝜓(𝒌) ∝ ∑

𝑹
𝜓𝑹[ cos𝑅𝑥𝑘𝑥 cos𝑅𝑦𝑘𝑦 − cos𝑅𝑥𝑘𝑦 cos𝑅𝑦𝑘𝑥],

𝑃 (Γ4)
1,1 𝜓(𝒌) ∝ ∑

𝑹
𝜓𝑹[ sin𝑅𝑥𝑘𝑥 sin𝑅𝑦𝑘𝑦 + sin𝑅𝑥𝑘𝑦 sin𝑅𝑦𝑘𝑥],

𝑃 (Γ5)
1,1 𝜓(𝒌) ∝ 0,

𝑃 (Γ5)
2,2 𝜓(𝒌) ∝ 0.

(4.64)
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Since the projection operators 𝑃 (Γ)
𝑙𝑙 projects onto the subspace of vec-

tors belonging to the IR Γ, if we let the different basis-functions of the
IRsΓ be denoted𝜓(Γ),𝑞,𝑚(𝒌), thenwe expect the projection to produce
the result

𝑃 (Γ)
𝑙,𝑙 𝜓(𝒌) = ∑

𝑞
𝑐𝑞,𝑙𝜓(Γ),𝑞,𝑙(𝒌), (4.65)

by the property of projection operators in Eq. (4.51). Here 𝑞 again enu-
merates the version of the basis of Γ possible in the space of different
𝜓(𝒌), and 𝑐𝑞,𝑙 are the coefficients of 𝜓(𝒌) in the basis of the IR basis-
functions. Comparing Eqs. (4.65) and (4.64), we see that different sets
of basis vectors can be obtained for the IRs by including different or-
der terms in the 𝑹-sum, i.e. different lattice neighbour sites. It is also
worth noting that the IRΓ5 does not exist in the space of possible𝜓(𝒌),
since it is an odd representation.

Including on-site, nearest neighbour andnext-nearest neighbour sites
in the 𝑹 sum of the projected arbitrary function 𝜓(𝒌) on the Γ1 sub-
space in Eq. (4.65), we see that any such function can be constructed
from the three basis-functions

𝜓(Γ1),1(𝒌) = 1
2𝜋

, (4.66a)

𝜓(Γ1),2(𝒌) = 1
2𝜋

(cos 𝑘𝑥 + cos 𝑘𝑦), (4.66b)

𝜓(Γ1),3(𝒌) = 1
𝜋

cos 𝑘𝑥 cos 𝑘𝑦. (4.66c)

Each of these functions give a complete basis-function set of the Γ1 IR
which can be checked by calculating how they transform under group
elements 𝑔 ∈ 𝐶4𝑣. In this case, since this is the trivial Γ1 represen-
tation, the functions are symmetric under all group elements 𝑔 which
produces the character 1 for all conjugation classes (compare with the
first row in Table 4.2).

These basis-functions are automatically mutually orthogonal since
they belong to different IR version subspaces and their normalization
coefficients have been chosen such that they are normal on the 1st Bril-
louin zone, i.e.

∫
𝜋

−𝜋
∫

𝜋

−𝜋
d𝑘𝑥d𝑘𝑦 𝜓(Γ1),𝑞(𝒌)∗𝜓(Γ1),𝑞′(𝒌) = 𝛿𝑞𝑞′ . (4.67)
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Inserting up to next-nearest neighbor sites for 𝑹 in the projected
functions under the remaining IRs, we find the orthonormal basis-
functions

𝜓(Γ3)(𝒌) = 1
2𝜋

(cos 𝑘𝑥 − cos 𝑘𝑦), (4.68a)

𝜓(Γ4)(𝒌) = 1
𝜋

sin 𝑘𝑥 sin 𝑘𝑦, (4.68b)

of the representations Γ3 and Γ4, respectively. The Γ3 basis is found
by expansion of𝑹 to nearest neighbor, while the one for Γ4 is found at
the next-nearest neighbor. To get a basis vector for the representation
Γ2, we would need to expand beyond the next-nearest neighbor site.

The basis-functions in Eqs. (4.68) and (4.66) are also knownas square
lattice harmonics. The set of square lattice harmonic functions includes
the set of functions found when expanding𝑹 to arbitrary sites. As we
have seen, they can be grouped and found through consideration of
the IRs of the symmetry group of the square lattice. We have so far
only considered even-in-𝒌 basis-functions. In the next section we will
complete our discussion of square lattice harmonics with the inclusion
of odd functions.

4.7.2 Odd basis-functions

Any state made from exclusively odd basis-functions, is fully deter-
mined by the coefficients 𝒅𝒌. As we derived in Section 4.3.3, these
coefficients transform as9 𝑔 ∶ 𝒅𝒌 = 𝑅(𝑔)𝒅𝑔−1∶𝒌 under group elements
𝑔 ∈ 𝐶4𝑣, where 𝑅(𝑔) are the representation matrices in Eq. (4.59).
Otherwise, finding bases for irreducible representations can be done
by following the same procedure as that outlined for even functions in
the last Section.

As an example, we consider finding a basis for the Γ5 irreducible
representation of the group𝐶4𝑣 in the space of odd functions 𝒅𝒌. Act-
ing on the Fourier expansion of the arbitrary function 𝒅𝒌 in Eq. (4.61)
with the projection operators Eq. (4.52) down on the subspace of the

9. See Eq. (4.34).
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IR Γ5 of the symmetry group 𝐶4𝑣, yields the results

𝑃 (Γ5)
1,1 𝒅𝒌 = ̂𝒛√

𝑁
∑
𝑹

𝑑𝑹,𝑧 cos𝑅𝑥𝑘𝑥 sin𝑅𝑦𝑘𝑦, (4.69a)

𝑃 (Γ5)
2,2 𝒅𝒌 = ̂𝒛√

𝑁
∑
𝑹

𝑑𝑹,𝑧 sin𝑅𝑥𝑘𝑦 cos𝑅𝑦𝑘𝑦, (4.69b)

for the two basis-functions of Γ5.10 As in the spin-singlet case, we get
different versions of theΓ5 basis vectors depending on the order of our
expansion in𝑹. Expanding to nearest neighbor sites and normalizing
such that the states are orthonormal, produces the basis-functions

𝒅(Γ5),1
𝒌 = − ̂𝒛

2𝜋
sin 𝑘𝑦, (4.70a)

𝒅(Γ5),2
𝒌 = ̂𝒛

2𝜋
sin 𝑘𝑥, (4.70b)

of the two-dimensional IR Γ5.

4.8 Decomposition of the Potential

Let at first ̂𝑉 be a general two-body operator that acts on an𝑁-particle
state which is a vector in ℋ𝑁 = ⊗𝑁

𝑖=1ℋ. The single particle Hilbert
space ℋ in question, is quantified by momentum and spin, such that
ℋ = span{|𝒌, 𝑠⟩}. Denoting for the moment the specific combina-
tions of 𝒌 and 𝑠 as 𝛼 as a shorthand, then ̂𝑉 acts on basis vectors in
ℋ𝑁 such that

̂𝑉 |𝛼1⟩… |𝛼𝑁⟩ = ∑
1≤𝑖<𝑗≤𝑁

̂𝑉𝑖𝑗|𝛼1⟩… |𝛼𝑁⟩, (4.71)

by definition of being a two-body operator [76]. Here, ̂𝑉𝑖𝑗 is an oper-
ator that only acts on the 𝑖th and 𝑗th ket. Even though ̂𝑉 acts on ℋ𝑁,
because of how it can be written in terms of ̂𝑉𝑖𝑗, and this only acts on
two states at a time, it follows that ̂𝑉 is completely determined by its
action on the reduced two-particle Hilbert spaceℋ2. This implies that
̂𝑉 is fully described by its matrix elements

⟨𝛼|⟨𝛼′| ̂𝑉 |𝛽⟩|𝛽′⟩. (4.72)

10. Since Γ5 is two-dimensional as opposed to the other IRs in 𝐶4𝑣, any complete
basis forΓ5 requires two basis functions that can be related through transforma-
tion by a group element.
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Inserting back the |𝒌, 𝑠⟩ notation, these matrix elements are referred
to as

𝑉𝒌1𝒌2𝒌3𝒌4; 𝑠1𝑠2𝑠3𝑠4 = ⟨𝒌1𝑠1|⟨𝒌2𝑠2| ̂𝑉 |𝒌4𝑠4⟩|𝒌3𝑠3⟩. (4.73)

When ̂𝑉 is a BCS operator acting on the BCS Hilbert space described
in Section 4.2, these matrix elements are denoted

𝑉𝒌𝒌′; 𝑠1𝑠2𝑠3𝑠4 = ⟨𝒌𝑠1|⟨−𝒌𝑠2| ̂𝑉 |𝒌′𝑠4⟩|−𝒌′𝑠3⟩. (4.74)

Since ̂𝑉 is Hermitian, it must be diagonalizable in some basis of
eigenfunctions. Barring accidental degeneracy, a basis for a𝑑-degenerate
eigenvalue is also a basis for an IR of the symmetry group 𝐺 of the
Hamiltonian [77]. In the case of accidental degeneracy, then this 𝑑-
dimensional vector space consists of several non-intersecting subspaces,
where each subspace is a basis for a (possibly different) IR. Note that
this does not mean that (barring accidental degeneracy) there exists
one separate eigenvalue for each IR of 𝐺, since there might be several
different eigenvalues with different eigenspace bases but where all of
them are bases for the same IR. Regardless of these details, the connec-
tion between IRs and the eigenvalues of ̂𝑉 is a great help in finding the
bases for which it is diagonal.

Let the basis for a 𝑑Γ-dimensional IRΓ be denoted {|Γ, 𝑞Γ,𝑚⟩}𝑑Γ
𝑚=1,

where ̂𝑉 has an eigenvalue 𝑉Γ,𝑞Γ for the vectors in this basis, and 𝑞Γ is
an index enumerating the different versions of bases of Γ that ̂𝑉might
have in its set of eigenspace bases. Since ̂𝑉 is diagonal in this set of
bases, then

̂𝑉 = ∑
Γ𝑞Γ

𝑉Γ,𝑞Γ

𝑑Γ

∑
𝑚=1

|Γ, 𝑞Γ,𝑚⟩⟨Γ, 𝑞Γ,𝑚|. (4.75)

Because of the potential for accidental degeneracy,11 we cannot guar-
antee that 𝑉Γ,𝑞Γ ≠ 𝑉Γ′,𝑞Γ′ for differentΓ andΓ′. Inserting this expres-
sion for ̂𝑉 into the matrix elements in Eq. (4.74) lets us write them in

11. A degeneracy of an eigenvalue is accidental if two degenerate eigenvectors belong
to different IR vector spaces, while a non-accidental degeneracy of an eigen-
value happens when the eigenvectors in the eigen-space belong to a several-
dimensional IR.
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terms of IR basis vectors in the momentum spin function representa-
tion:

𝑉𝒌𝒌′; 𝑠1𝑠2𝑠3𝑠4 = ∑
Γ

𝑉Γ,𝑞Γ

𝑑Γ

∑
𝑚=1

ΨΓ,𝑞Γ𝑠1𝑠2 (𝒌)Ψ
Γ,𝑞Γ𝑠3𝑠4 (−𝒌′)†, (4.76)

where
ΨΓ,𝑞Γ𝑠1𝑠2 (𝒌) = ⟨𝒌, 𝑠1|⟨−𝒌, 𝑠2 ∣ Γ, 𝑞Γ,𝑚⟩. (4.77)

We can separate the set of different IR bases into bases that have vec-
tors that transform either symmetrically or anti-symmetricallywith re-
spect to the group element of space inversion𝑃. We call the representa-
tions of such bases even or odd representations. Even representations
are those that map 𝑃 to the identity operator 𝟙 and as a consequence
have functions with the symmetryΨΓ,𝑞Γ,𝑚𝑠1𝑠2 (−𝒌) = ΨΓ,𝑞Γ,𝑚𝑠1𝑠2 (𝒌). Writ-
ing the spin-indices of these functions in terms of Pauli matrices by
using the expansion in Eq. (4.8), and using the fermionic symmetry
following the same logic as Section 4.2, then functions of even repre-
sentations 𝑎 can be written

Ψ𝑎,𝑞𝑎,𝑚𝑠1𝑠2 (𝒌) = 𝜓𝑎,𝑞𝑎,𝑚
𝒌 𝑖𝜎𝑦

𝑠1𝑠2 . (4.78)

Odd representations 𝑏 map 𝑃 to the inversion operator 𝐼 such that
Ψ𝑏,𝑞𝑏,𝑚𝑠1𝑠2 (−𝒌) = −Ψ𝑏,𝑞𝑏,𝑚𝑠1𝑠2 (𝒌). Expanding in Paulimatrices, then yields

Ψ𝑏,𝑞𝑏,𝑚𝑠1𝑠2 (𝒌) = 𝒅𝑏,𝑞𝑏,𝑚
𝒌 ⋅ (𝝈𝑖𝜎𝑦)𝑠1𝑠2 . (4.79)

Separating the sum over IRs Γ into sums over even (𝑎) and odd (𝑏)
representations in the potential operatormatrix elements in Eq. (4.76),
we arrive at the fully expanded expression

𝑉𝒌𝒌′; 𝑠1𝑠2𝑠3𝑠4 = ∑
𝑎𝑞𝑎

𝑉𝑎,𝑞𝑎

𝑑𝑎

∑
𝑚=1

𝜓𝑎,𝑞𝑎,𝑚
𝒌 𝑖𝜎𝑦

𝑠1𝑠2(𝜓
𝑎,𝑞𝑎,𝑚
−𝒌′ 𝑖𝜎𝑦

𝑠3𝑠4)
†

+∑
𝑏𝑞𝑏

𝑉𝑏,𝑞𝑏

𝑑𝑏

∑
𝑚=1

(𝒅𝑏,𝑞𝑏,𝑚
𝒌 ⋅ 𝝈𝑖𝜎𝑦)

𝑠1𝑠2
[(𝒅𝑏,𝑞𝑏,𝑚

−𝒌′ ⋅ 𝝈𝑖𝜎𝑦)
𝑠3𝑠4

]
†
.

(4.80)

In this use of the dagger notation, the adjoint acts on both the spin- and
momentum matrix indices, such that 𝒅†

−𝒌 = 𝒅∗
𝒌 and 𝜎†

𝑠1𝑠2 = 𝜎∗
𝑠2𝑠1 .
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Ona square lattice, the functions𝜓𝑎,𝑞𝑎,𝑚
𝒌 and𝒅𝑏,𝑞𝑏,𝑚

𝒌 of the eigenspace
basis vectors |Γ, 𝑞Γ,𝑚⟩ are given by the square lattice harmonics. Given
an interaction potential ̂𝑉 with a known form of 𝑉𝒌𝒌′; 𝑠1𝑠2𝑠3𝑠4 , to de-
compose it into the form of Eq. (4.80), we can first find the eigenvalues
by calculating the matrix elements

⟨Γ, 𝑞Γ,𝑚| ̂𝑉 |Γ, 𝑞Γ,𝑚⟩ = 𝑉Γ,𝑞Γ . (4.81)

Then we can simply insert these eigenvalues and the known form of
𝜓𝑎,𝑞𝑎,𝑚
𝒌 and𝒅𝑏,𝑞𝑏,𝑚

𝒌 into Eq. (4.80), andwehave a symmetry-decomposed
potential!

Writing the potential on this form, easily lets us see if there are any
attractive symmetric channels in the potential, which could lead to an
instability and thus a phase-transition by pairing of the electrons ac-
cording to the specified symmetry. A low energy effective theory can
then be found in the unstable symmetry-channel by using the chan-
nel’s square-lattice harmonics in determining the 𝑱s in the Hubbard-
Stratonovich transformation in Eq. (3.26), and thenperforming a saddle-
point approximation.
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Chapter 5
Lattice Models

When we have a model for the free energy of a statistical mechanical
system that is too complicated to calculate analytically, one approach is
to utilize computers and Monte-Carlo (MC) techniques to gain quan-
titative answers to questions about the system’s behaviour. Such tech-
niques often require the discretization of a continuousmodel down on
a numerical lattice. The lattice can in principle be of any form as long
as the continuum limit reproduces the original theory, however in this
thesis we will exclusively focus on a square (cubic) numerical lattice
due to its simplicity.

In this chapter we will introduce different aspects of discretizing
a continuous free-energy model down on a square numerical lattice.
If starting with a continuous model with a spatially dependent field
𝑓(𝒓), then the discretized model will have a corresponding field 𝑓𝒓
only defined on the numerical lattice sites at

𝒓 = ∑
𝜇

𝑟𝜇 ̂𝜇 = ∑
𝜇

𝑎𝜇𝑛𝜇 ̂𝜇 (5.1)

where 𝑎𝜇 is the distance between lattice sites, 𝑛𝜇 ∈ [0, 1,… ,𝑁𝜇 − 1]
and𝑁𝜇 is the total number of sites in the𝜇-direction. The length of the
numerical lattice in this direction is 𝐿𝜇 = 𝑎𝜇𝑁𝜇. The cubic numerical
lattice is specified by 𝑎𝜇 = 𝑎 ∀𝜇 and 𝜇 ∈ {𝑥, 𝑦, 𝑧}. Any integrals
∫d3𝑟 𝐹 [𝑓(𝒓)] will in such a discretization have to be replaced with
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sums such that

∫d3𝑟 ↦ 𝑎3
𝑁𝑎
∑
𝑟𝜇=𝑎

. (5.2)

If we are interested in bulk properties of the model in the thermody-
namic limit, then specifying realistic boundary conditions of the nu-
merical lattice are of less importance. In this case, periodic bound-
ary conditions are from a computational- and theoretical perspective
a convenient choice. We define periodic boundary conditions by the
requirement that 𝑓𝒓+𝐿𝜇𝜇̂ = 𝑓𝒓 for any direction ̂𝜇.

5.1 Discretizing derivatives

In amodelwhere fields only are defined at discrete points in space, any
spatial gradient of the fields must take the form of discrete differences
of the field values at these points. In a cubic grid of pointswith defined
field-values, such differences can be denoted by the forward-difference
operator Δ𝜇. This operator acts on a spatially discrete function 𝑓𝒓 as
a forward-difference in the direction of ̂𝜇 such that

Δ𝜇𝑓𝒓 = 𝑓𝒓+𝑎𝜇̂ − 𝑓𝒓, (5.3)

where 𝑎 is the distance between lattice points. In a Euclidean geome-
try, the natural discretization of a derivative 𝜕𝜇 is 𝜕𝜇 ↦ Δ𝜇/𝑎, which
reproduces the continuum derivative in the limit 𝑎 → 0 with a fixed
grid-size. Using an appropriate set of units, we in most cases can set
𝑎 = 1.

5.1.1 Covariant derivatives

When discretizing continuous gauge theories, some extra caremust be
taken when discretizing a covariant derivative. Because of the gauge
field, the geometry is no longer naively Euclidean. Then we need to
rotate a field-value at one point by a gauge group element to parallel-
transport it to another point, such that the field values at these spatially
separate points can be compared. Given a𝑈(1) gauge symmetry with
gauge field components 𝐴𝜇(𝒓), the appropriate way of discretizing a
covariant derivative is the identification [81]

𝐷𝜇𝑓(𝒓) = [𝜕𝜇 + 𝑖𝑔𝐴𝜇(𝒓)]𝑓(𝒓) ↦
1
𝑎
(𝑓𝒓+𝑎𝜇̂𝑈𝒓,𝜇 − 𝑓𝒓). (5.4)
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The value of 𝑓 at 𝒓 + 𝑎 ̂𝜇 is parallel transported back to 𝒓 by the 𝑈(1)
group element [82]

𝑈𝒓,𝜇 = 𝑒𝑖𝑔𝐴𝒓,𝜇 , (5.5)

where 𝑔 is the coupling constant between 𝑓 and the gauge field𝐴, and

𝐴𝒓,𝜇 ≡ ∫
𝒓+𝑎𝜇̂

𝒓
d𝒓 ⋅ 𝑨(𝒓), (5.6)

is a link-variable, linking 𝒓 to its nearest neighbors.
In the limit of 𝑎 → 0, this identification reproduces the covariant

derivative.1 Furthermore, it produces terms that transform in an anal-
ogous way to the continuum version under gauge transformations,
such that gauge invariant terms remain invariant after discretization.
In the continuous fields, a gauge transformation is defined by

𝑓(𝒓) → 𝑓(𝒓)𝑒𝑖𝜙(𝒓),

𝐴𝜇(𝒓) → 𝐴𝜇(𝒓) −
1
𝑔
𝜕𝜇𝜙(𝒓).

(5.7)

Then the covariant derivative transforms as𝐷𝜇𝑓(𝒓) → 𝑒𝑖𝜙(𝒓)𝐷𝜇𝑓(𝒓),
such that terms such as |𝐷𝜇𝑓(𝒓)|2 are invariant under gauge-transformations.
Inserting the gauge transformation into the discretized field 𝑓𝒓 and the
definition of the link-variables𝐴𝒓,𝜇, we see that these discretized fields
transform as

𝑓𝒓 → 𝑓𝒓 𝑒𝑖𝜙𝒓 ,

𝐴𝒓,𝜇 → 𝐴𝒓,𝜇 − 1
𝑔
Δ𝜇𝜙𝒓,

(5.8)

where the field 𝜙𝒓 is discretely defined on the same lattice points as
𝑓𝒓. Inserting this into the discretization of the covariant derivative on
the right-hand side of Eq. (5.4), we see that indeed the right-hand side
transforms in the same way as the left, i.e. by picking up an overall
factor 𝑒𝑖𝜙𝒓 . This means that the discretized version of terms such as
|𝐷𝜇𝑓(𝒓)|2, which were originally gauge-invariant, will be invariant
under the gauge-transformation in Eq. (5.8) after discretization.

1. To show this, we see from Eq. (5.6) that 𝐴𝒓,𝜇 → 𝑎𝐴𝜇(𝒓). Then we expand the
exponential in 𝑈𝒓,𝜇 to first order and insert on the right-hand side of Eq. (5.4).
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5.1.2 Discretized symmetry

One word of caution when discretizing continuous expressions is that
discretized gradient terms will not in general have all the same spatial
symmetries as the originating continuous terms. This is because the
bias of the forward direction in the forward-difference operator and
the cubic structure of the numerical lattice will in general break such
symmetries.

The effects of the cubic symmetry of the numerical lattice can be
thought of as caused by implicit lattice potentials that increases in in-
fluence towards lower temperatures and higher field strengths when
the model contains an external field [83]. Such lattice potentials can
e.g., cause topological defects to have preferred positions in discretiza-
tions of theories with translational symmetry.2 As an example, con-
sider again the discretization of the term ∫d3𝑟 |𝑫𝑓(𝒓)|2 with dis-
cretized scalar field 𝑓𝒓 = 𝜌𝒓𝑒𝑖𝜃𝒓 . The density term is rotationally sym-
metric3 in 3D, however the discretized version can be written

2∑
𝒓

∑
𝜇

𝜌2𝒓[1 − cos(Δ𝜇𝜃𝒓 + 𝑔𝐴𝒓,𝜇)]. (5.9)

From this form, we can see that the term is only symmetric by rotation
by 90∘ in the planes normal to the𝑥, 𝑦 and 𝑧directions. The discretized
term contains cubic distortions when rotating in directions in-between
these, hence the 𝑆𝑂(3) rotational symmetry is broken down to the
octahedral point group 𝑂.

The forward bias of the forward-difference discretization scheme
can also lead to breaking of symmetries that both the continuousmodel
and the numerical lattice have in common when the scalar field con-
sists of multiple components. Consider a density term of the form

ℜ[𝐷𝑥𝜂𝑥𝐷𝑦𝜂𝑦], (5.10)

where 𝜂𝑥 and 𝜂𝑦 are two scalar fields that transform as components
of spin and ℜ extracts the real part of the complex number. Under
an active 90∘ ̂𝑧-rotation (which is called a 𝐶4 transformation), then

2. More on this in Section 7.
3. By rotationally symmetric we mean that if we were to rotate the field configu-

rations of 𝑓(𝒓) and 𝑨(𝒓) in any direction, by any amount, the term would still
yield the same value.
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𝐷𝑥 → 𝐷𝑦, 𝐷𝑦 → −𝐷𝑥, 𝜂𝑥 → 𝜂𝑦 and 𝜂𝑦 → −𝜂𝑥. Inserting this
into the continuous density term in Eq. (5.10), we see that it remains
precisely the same, i.e. invariant. Now consider the discretization of
this term by the discretization procedure detailed above. This would
read

𝜌𝑥𝒓+𝑥̂𝜌
𝑦
𝒓+ ̂𝑦 cos [𝜃𝑥𝒓+𝑥̂ − 𝜃𝑦𝒓+ ̂𝑦 + 𝑔(𝐴𝒓,𝑥 −𝐴𝒓,𝑦)]

−𝜌𝑥𝒓+𝑥̂𝜌
𝑦
𝒓 cos(𝜃𝑥𝒓+𝑥̂ − 𝜃𝑦𝒓 + 𝑔𝐴𝒓,𝑥)

−𝜌𝑥𝒓𝜌
𝑦
𝒓+ ̂𝑦 cos(𝜃𝑥𝒓 − 𝜃𝑦𝒓+ ̂𝑦 − 𝑔𝐴𝒓,𝑦)

+𝜌𝑥𝒓𝜌
𝑦
𝒓 cos(𝜃𝑥𝒓 − 𝜃𝑦𝒓),

(5.11)

where we have used the notation 𝜂𝑎𝒓 = 𝜌𝑎𝒓𝑒𝑖𝜃
𝑎
𝒓 for the discrete scalar

fields. In terms of these scalar fields and link-variables, a 𝐶4 trans-
formation consists of the mappings 𝜂𝑥𝒓 → 𝜂𝑦𝐶4𝒓

and 𝜂𝑦𝒓 → −𝜂𝑥𝐶4𝒓,
such that e.g., 𝜌𝑥𝒓+𝑥̂ → 𝜌𝑦𝒓′+ ̂𝑦. The link-variables transform as 𝐴𝒓,𝜇 →
𝐴𝐶4𝒓,𝐶4𝜇, such that e.g., 𝐴𝒓,𝑦 → 𝐴𝒓′,−𝑥 = −𝐴𝒓′−𝑥̂,𝑥. Using these
transformations, and shifting the summation index of the external 𝒓-
sum, then the rotated discrete terms take the form

−𝜌𝑥𝒓−𝑥̂𝜌
𝑦
𝒓+ ̂𝑦 cos [𝜃𝑥𝒓−𝑥̂ − 𝜃𝑦𝒓+ ̂𝑦 − 𝑔(𝐴𝒓,𝑦 +𝐴𝒓−𝑥̂,𝑥)]

+𝜌𝑥𝒓𝜌
𝑦
𝒓+ ̂𝑦 cos(𝜃𝑥𝒓 − 𝜃𝑦𝒓+ ̂𝑦 − 𝑔𝐴𝒓,𝑦)

+𝜌𝑥𝒓−𝑥̂𝜌
𝑦
𝒓 cos(𝜃𝑥𝒓−𝑥̂ − 𝜃𝑦𝒓 − 𝑔𝐴𝒓−𝑥̂,𝑥)

−𝜌𝑥𝒓𝜌
𝑦
𝒓 cos(𝜃𝑥𝒓 − 𝜃𝑦𝒓),

(5.12)

which certainly is not the same as Eq. (5.11), i.e. the discretization of
Eq. (5.10) is not invariant under a𝐶4 rotation. Amore immediate way
of seeing the problem is to recognize that the first term in Eq. (5.11)
is a next-nearest neighbor coupling on the numeric lattice that only
couples sites along one diagonal, but not the other as illustrated in
Figure 5.1, thus rotational symmetry is broken by the discretization.

One remedy for this kind of problem is to re-establish the broken
symmetry by an average over symmetry-transformed terms. In the
case of the discretization of ℜ[𝐷𝑥𝜂𝑥𝐷𝑦𝜂𝑦] in Eq. (5.11), the 𝐶4 sym-
metry can thus be re-established by taking the average of Eq. (5.11),
Eq. (5.12), aswell as the terms obtained by transforming the discretiza-
tion in Eq. (5.11) by the rotations 𝐶2

4 and 𝐶3
4 . Let ℱ𝒓 denote the den-

sity terms in Eq. (5.11) and let 𝒯ℱ𝒓 be the terms that result when
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•

• •

•

•••

•

•𝒓−𝑥̂+ ̂𝑦 𝒓+ ̂𝑦 𝒓+𝑥̂+ ̂𝑦

𝒓−𝑥̂ 𝒓 𝒓+𝑥̂

𝒓−𝑥̂− ̂𝑦 𝒓− ̂𝑦 𝒓+𝑥̂− ̂𝑦

Figure 5.1: Couplings between sites on a single 𝑧-layer of the
numerical lattice from the discretization in Eq. (5.11) of the term
ℜ[𝐷𝑥𝜂𝑥𝐷𝑦𝜂𝑦]. On-site terms are illustrated by a point (•),
while nearest neighbor and next-nearest neighbor couplings
are illustrated by dashed and solid lines, respectively. The cou-
plings obtained by evaluating Eq. (5.11) at a point 𝒓 are slightly
emphasized compared to the other lines.

transformingℱ by a symmetry transformation𝒯. The average of symmetry-
transformed terms, which re-establishes the 𝐶4 rotational symmetry,
can then be written

ℱsym
𝒓 = 1

4
∑

𝒯∈{𝟙,𝐶4,𝐶2
4 ,𝐶3

4}

𝒯ℱ𝒓

= 1
4

∑
ℎℎ′=±1

ℎℎ′𝜌𝑥𝒓+ℎ𝑥̂𝜌
𝑦
𝒓+ℎ′ ̂𝑦 cos [𝜃𝑥𝒓+ℎ𝑥̂ − 𝜃𝑦𝒓+ℎ′ ̂𝑦 + 𝑔(𝐴𝒓,ℎ𝑥 −𝐴𝒓,ℎ′𝑦)].

(5.13)

In this expression, the next-nearest neighbour couplings are along all
diagonals around the point 𝒓 such that it is rotationally symmetric un-
der 𝐶4 and thus does not explicitly break symmetries that both the
original theory and the numerical lattice have in common. Such break-
ing of symmetries can, as we have shown above, result from the naive
application of a forward-difference discretization scheme4 when dis-
cretizing terms with multiple gradient-directions and components. In

4. The symmetric expression in Eq. (5.13) can be more easily obtained by the use
of a different discretization procedure than the discretization of the covariant
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models with such terms, the symmetry averaged expression can then
be useful in diminishing the effect of meta-stable states and faster con-
vergence when investigating suchmodels bymeans of numerical com-
putation. Finally, we would like to stress that both versions yield the
same theory in the continuum limit.

5.2 Including an external field

The interaction between superconductors andmagnetic fields is an es-
sential aspect in the study of superconductors and thus we will need
to be able to add external magnetic fields to our models to study this
interaction. An external field is usually included as a constant homo-
geneous magnetic field in a certain direction and is a parameter of the
problem rather than a variable. In other words, we assume the mag-
netic flux to be the same everywhere and unchanging, and rather than
ask what consequence the existence of a superconductor has on this
field, we are interested in the effects the field has on the supercon-
ducting state. Physically this situation is relevant, e.g., if a relatively
small and thin sheet of superconducting material is placed in between
two strong electromagnets as illustrated in Figure 5.2.

One way to introduce a constant magnetic field in a lattice model,
is simply to figure out what kind of vector potential 𝑨(𝒓) would give
a constant magnetic field 𝑩(𝒓) through 𝑩 = ∇ × 𝑨, and then set
the link-variables 𝐴𝒓,𝜇 of Eq. (5.6) accordingly, with the only caveat
being that for a lattice-model with periodic boundary conditions, the
factor 𝑒𝑖𝑔𝐴𝒓,𝜇 has to satisfy periodic boundary conditions as well. This
implies the condition

∀𝜈 𝐴𝒓,𝜇 = 𝐴𝒓+𝐿𝜈 ̂𝜈,𝜇 + 2𝜋𝑚𝜈/𝑔, (5.14)

where 𝑚𝜈 ∈ ℤ and 𝜈 gives a direction on the lattice. For 𝑚𝜈 ≠ 0 this
condition is called a twisted boundary-condition.

derivative in Eq. (5.4). Taking the average of a forward and backward difference
that respects gauge-transformations we get the discretization mapping

𝐷𝜇𝑓(𝒓) ↦ (𝑒𝑖𝑔𝐴𝒓,𝜇𝑓𝒓+𝜇̂ − 𝑒𝑖𝑔𝐴𝒓,−𝜇𝑓𝒓−𝜇̂)/2.

Applying this symmetrized covariant discretizationmapping to the density term
in Eq. (5.10), yields Eq. (5.13).
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Figure 5.2: A thin sheet of superconducting material in the mag-
netic field produced by two magnets pointing in the same direc-
tion above and below the superconductor.

5.2.1 Landau Gauge

As an example, let’s say we are interested in having an external field
in the ̂𝑧-directionwithmagnitude𝐵. The vector-potential components
𝐴𝑥 and 𝐴𝑦 then have to satisfy the equation

𝜕𝑥𝐴𝑦 − 𝜕𝑦𝐴𝑥 = 𝐵. (5.15)

One configuration of the vector potential, which is called the Landau
gauge, that satisfies this condition is 𝐴𝑦 = 𝐵𝑥, with the other vec-
tor potential components set to zero. Inserting this into the defini-
tion of the link-variables in Eq. (5.6) yields 𝐴𝒓,𝜇 = 𝑎𝑟𝑥𝐵𝛿𝜇,𝑦. Here 𝑥
is a continuous variable while 𝑟𝑥 is the 𝑥-component of a lattice vec-
tor. Periodic boundary conditions on the lattice implies the condition
𝐴𝒓,𝑦 = 𝐴𝒓+𝐿𝑥𝑥̂,𝑦 − 2𝜋𝑚/𝑔, which finally restricts the value of the
field𝐵 such that the link-variables in the Landau gauge must take the
form

𝐴𝒓,𝜇 = 𝛿𝜇,𝑦𝑟𝑥
2𝜋𝑚
𝑔𝐿𝑥

, 𝑚 ∈ ℤ, (5.16)

where𝐿𝑥 = 𝑁𝑥𝑎 and𝑁𝑥 is the number of lattice sites in the𝑥-direction.
With this link-variable configuration, the field strength becomes 𝐵 =
2𝜋𝑓/𝑔𝑎2, wherewehavedefined the filling fraction 𝑓 = 𝑚/𝑁𝑥, which
in terms of vortices gives the number of magnetic single-quanta vor-
tices pr. plaquette of the numerical lattice.
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5.2.2 Symmetric Landau gauge

The Landau gauge has the disadvantage that it singles out a direction
in the 𝑥𝑦-plane, since the vector potential is set to 𝑨(𝒓) = 𝐵𝑥 ̂𝑦, and
thus is only spatially dependent in the 𝑥-direction. It could, because
of this, be argued to break a rotational symmetry of the model in the
𝑥𝑦-plane given that Aharenov-Bohm-like effects are significant to the
results. To mitigate any such concern, one can consider a symmetric
gauge given by the choice 𝑨(𝒓) = −𝒓 × 𝐵 ̂𝑧/2, which is rotation-
ally symmetric in the 𝑥𝑦-plane, and like the Landau gauge, produces
the field 𝑩 = 𝐵 ̂𝑧. Inserting this choice of vector potential into the
link-variables, yields, using implicit summation over repeated indices,
𝐴𝒓,𝜇 = 𝜖𝜇𝑧𝜈𝑟𝜈𝑎𝐵/2. Periodic boundary conditions in this case im-
plies two restrictions on the field value 𝐵 because the vector potential
varies in both the 𝑥- and 𝑦-direction. Implementing these conditions,
we can write the link-variables as

𝐴𝒓,𝜇 = 𝜖𝜇𝑧𝜈𝑟𝜈
2𝜋𝑚
𝑔𝐿𝑥

, (5.17)

where𝑚 is a number𝑚 ∈ ℤ chosen such that there exists some 𝑛 ∈ ℤ
such that 𝑚𝑁𝑦 = 𝑛𝑁𝑥, i.e. 𝑚 is some multiple of 𝑁𝑥/𝑁𝑦. Then the
field value is given by 𝐵 = 2𝜋𝑓/𝑔𝑎2 for filling fraction 𝑓 = 2𝑚/𝑁𝑥.

This gauge is a specification of the more general extended Landau
gauge [69, 84], which is borne purely out of the assumptions of a field
𝑩‖ ̂𝑧, 𝑨(𝒓) linear in 𝒓, and twisted periodic boundary conditions.

5.2.3 Fluctuating field

For a normal strongly type-II superconductor, the London penetration
depth 𝜆 is much larger than the superconducting coherence length 𝜉.
In this regime, it is valid to neglect spatial fluctuations in the gauge
field since any deviation around the extremal field configuration is
strongly suppressed. This is called the frozen gauge approximation
and makes the vector potential act only as a constraint on the value of
the uniform magnetic induction given by one of the gauges presented
in the above sections [69]. When the superconducting state consists of
multiple components, on the other hand, it becomes difficult to clas-
sify it simply in terms of type-I or type-II based solely on 𝜆 and 𝜉 [85].
With multiple components, it becomes essential to fluctuate the gauge
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field, because it mediates a significant indirect interaction between the
components [71, 86].

Fluctuations of the gauge field imparts an energy cost on the system
given in SI-units by the free energy5

𝐹𝐴 = 1
2𝜇0

(∇ ×𝑨)2. (5.18)

There are a couple of different ways of discretizing this energy for
inclusion in a lattice model depending on whether one defines the
link-variables compactly, i.e. 𝑔𝐴𝒓,𝜇 ∈ (−𝜋, 𝜋), or non-compactly, i.e.
𝑔𝐴𝒓,𝜇 ∈ (−∞,∞). Both versions belong to the same universality
class and thus produce the same results in a renormalization group
sense, provided that the fluctuations are sufficiently small [81]. For
noncompact link-variables, we simply replace the gradient with the
lattice difference operator from Eq. (5.3) divided by the lattice spac-
ing 𝑎, and the gauge-field components by their corresponding link-
variables such that

𝜕𝜇 ↦ Δ𝜇/𝑎𝜇,
𝐴𝜇(𝒓) ↦ 𝐴𝒓,𝜇/𝑎𝜇.

(5.19)

The discretized free energy pr. lattice site then becomes

𝐹𝐴,𝒓 = (𝜟×𝑨𝒓)2

2𝜇0𝑎4
= 1

2𝜇0𝑎4
∑
𝜇

(𝐴⊡
𝒓,𝜇)2, (5.20)

where we have defined the link-variable plaquette-sum vector, with
components given by

𝐴⊡
𝒓,𝜇 = 𝜖𝜇𝛼𝛽Δ𝛼𝐴𝒓,𝛽 = ∮

⊡𝜇

d𝒓′ ⋅ 𝑨(𝒓′). (5.21)

In the line-integral on the right-hand side, the curve ⊡𝜇 is given by a
plaquette6 normal to the vector ̂𝜇, starting at the lattice point at 𝒓, and

5. One way of deriving said energy is to start with the sourceless Maxwell La-
grangian for a massless vector field ℒ𝑀 = −𝐹𝜇𝜈𝐹𝜇𝜈/4𝜇0. In this relativistic
notation 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇, 𝐴0 = 𝑉, 𝜕0 = 𝜕𝑡/𝑐 and we use the met-
ric 𝑔𝜇𝜈 = diag(1,−1,−1,−1). Assuming time-independence and neglecting
terms consisting only of𝑉 since they do not couple to theHiggs fields (e.g.the su-
perconducting components) in minimal coupling, then the Lagrangian reduces
to ℒ𝑀 → −(∇×𝑨)2/2𝜇0 and the free energy in Eq. (5.18) results.

6. In this context, a plaquette is a square given by 4 neighboring lattice points con-
tained in some plane.
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moving along the square following the right-hand rule. The integra-
tion curve given by the plaquette ⊡𝑧 is shown in Figure 5.3.

Figure 5.3: Integration path defined as ⊡𝑧 along a plaquette of
the numerical lattice in the 𝑥𝑦-plane.

To impose an external field on a system with a fluctuating field,
we divide the link-variables into a fluctuating part 𝐴𝑓

𝒓,𝜇 with peri-
odic boundary conditions, and a constant part𝐴0

𝒓,𝜇, such that𝐴𝒓,𝜇 =
𝐴𝑓

𝒓,𝜇 + 𝐴0
𝒓,𝜇. The field is then imposed by setting the constant part

such that there is a net field induction through the system, e.g.by set-
ting it to one of the gauges in Section 5.2.1 or 5.2.2.
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Chapter 6
Monte-Carlo Techniques

In this chapter, we discuss some techniques useful in MC simulations
of systems in statistical physics. In such systems, these techniques will
be used to calculate thermal averages using random numbers. Let 𝑍
denote the partition function and ℋ the Hamiltonian of the system.
Then the thermal average of an observable 𝒪 is defined as

⟨𝒪⟩ = 1
𝑍

∑
𝜓

𝒪(𝜓)𝑒−𝛽ℋ(𝜓), (6.1)

where 𝜓 denotes states of the system, and we thus sum over all pos-
sible states. In the case of a quantum many-particle system, this sum
turns into a multi-dimensional integral over quantum coherent states.
Now, any attempt at estimating these integrals through an interpola-
tion scheme is destined to fail because if we divide a 1-dimensional
integral into𝑀 pieces and the error of the interpolation scheme scales
as∼ 𝑀−𝜅, then applied to a 𝑑-dimensional integral, its error will scale
as 𝑀−𝜅/𝑑. What MC techniques then provides is a way of using ran-
dom numbers in calculating Eq. (6.1) without actually summing over
all the states. We do this by drawing random states𝜓𝑖 from a carefully
selected probability distribution and using statistics to estimate how
close the resulting thermal average is likely to be to the true thermal
average. Letting 𝑀 be the number of samples, then the error scales as
𝑀−1/2 and is independent of the number of dimensions of the inte-
gral.
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As in the case of the stationary phase approximation, the calculation
of the sum in Eq. (6.1) can be made much more effective by consider-
ing which terms give large contributions. If we have a probability dis-
tribution 𝜋(𝜓) of sampled states 𝜓 that is peaked around states that
give large contributions to ⟨𝒪⟩, then our estimate will converge much
quicker towards the true value than if we were to sample states uni-
formly. In a sense, we are interested in sampling only the important
states, and hence this is called importance sampling. Let { ̃𝜓𝑖} be a
set of states that are uniformly sampled, while {𝜓𝑖} are sampled with
probability distribution𝜋(𝜓𝑖). The statistical estimator ̄⟨𝒪⟩ of the ther-
mal average of the observable 𝒪 is then

̄⟨𝒪⟩ = ∑
𝑖

𝒪( ̃𝜓𝑖)
𝑒−𝛽ℋ( ̃𝜓𝑖)

𝑍({ ̃𝜓𝑖})
= ∑

𝑖
𝒪(𝜓𝑖)

𝑒−𝛽ℋ(𝜓𝑖)

𝜋(𝜓𝑖)𝑍({𝜓𝑖})
. (6.2)

Now, assuming that the state-dependence of the observable is less im-
portant than the exponential, then the largest contributions to the sum
will come from states that are such that 𝑒−𝛽ℋ/𝑍 is large. We thuswant
to pick states such that

𝜋(𝜓𝑖) = 𝑒−𝛽ℋ(𝜓𝑖)/𝑍. (6.3)

Then, given 𝑀 states sampled according to this probability distribu-
tion, the statistical estimator reduces to the arithmetic average

̄⟨𝒪⟩ = 1
𝑀

∑
𝑖

𝒪(𝜓𝑖). (6.4)

6.1 Markov-Chain Monte-Carlo method

The Markov-Chain Monte-Carlo (MCMC) method is a strategy of ob-
taining a sample of random states 𝜓𝑘, where the states are drawn se-
quentially in such a way that the probability 𝑃𝑘(𝜓) of drawing a new
state 𝜓𝑘 = 𝜓 is only dependent on what the last state 𝜓𝑘−1 was. The
chain developed by drawing states in this way, thus has no memory
of the rest of the content of the chain, except for its last link 𝜓𝑘−1. A
chain with this property is called a Markov-Chain, hence the name.

Wewant the sampled states to be drawn according to the probability
distribution 𝜋(𝜓𝑘) discussed above. This is assuredwith the criteria of
ergodicity and detailed balance. Ergodicity means in this context that
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the states are drawn in such a way that if we were to draw infinitely
many states, then we would have drawn all possible states 𝜓 in the
original sum in Eq. (6.1).

The criterion of detailed balance comes from the idea that we want
the probability that a certain state is drawn at any given point, to be in-
dependent ofwhen/where that point is located in the chain. Let𝑃𝑘(𝜓)
be the probability that𝜓 is drawn at the 𝑘th point in the chain. Because
of the Markov-chain property, this probability is fully determined by
the probability that the previous state in the chain transitions into the
state𝜓. Let𝒯(𝜓′ → 𝜓) denote the probability that state𝜓′ transitions
into state𝜓, i.e. that the state𝜓 is drawn given a previously drawn state
𝜓′. Then the probability that the state drawn at the point 𝑘 + 1 in the
chain is 𝜓, is given by

𝑃𝑘+1(𝜓) = ∑
𝜓′

𝑃(𝜓𝑘 = 𝜓′ ∧ 𝜓′ transitions to 𝜓)

= ∑
𝜓′

𝑃𝑘(𝜓′)𝒯(𝜓′ → 𝜓)

= 𝑃𝑘(𝜓) +∑
𝜓′

[𝑃𝑘(𝜓′)𝒯(𝜓′ → 𝜓) − 𝑃𝑘(𝜓)𝒯(𝜓 → 𝜓′)],

(6.5)

where we have used that ∑𝜓′ 𝒯(𝜓 → 𝜓′) = 1 since the state must
transition to some state. Now since we want the probability 𝑃𝑘(𝜓)
to be invariant of the point’s position in the chain 𝑘 and be given by
our desired probability density 𝜋(𝜓), we demand that 𝑃𝑘+1(𝜓) =
𝑃𝑘(𝜓) = 𝜋(𝜓). This implies that the last sum in Eq. (6.5) vanishes.
Because the probability density 𝒯 is arbitrary, the sum needs to van-
ish term-wise, yielding the condition of detailed balance:

𝜋(𝜓′)𝒯(𝜓′ → 𝜓) = 𝜋(𝜓)𝒯(𝜓 → 𝜓′). (6.6)

This states that for the selection process of choosing states for points in
the Markov-chain to be invariant of the relative locations of the points
in the chain, the process must be reversible.

6.2 Metropolis-Hastings method

The Metropolis-Hastings (MH) method is an algorithm for drawing
states in aMarkov-Chain that specifies a transition probability𝒯(𝜓 →
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𝜓′) between states𝜓 and𝜓′ that satisfies the detailed balance criterion.
The algorithm proceeds as follows:

1. Given a state 𝜓𝑘, generate a new state 𝜓𝑝 where the process of
generating this state has an, as of now, arbitrary probability dis-
tribution denoted 𝑞(𝜓𝑝 | 𝜓𝑘) with the only requirement being
that it leads to ergodic selection.

2. Accept this newproposed state𝜓𝑝, with the probability𝛼(𝜓𝑝 | 𝜓𝑘),
defined as

𝛼(𝜓𝑝 | 𝜓𝑘) = min{1,
𝜋(𝜓𝑝)𝑞(𝜓𝑘 | 𝜓𝑝)
𝜋(𝜓𝑘)𝑞(𝜓𝑝 | 𝜓𝑘)

}. (6.7)

3. If 𝜓𝑝 is accepted, we set 𝜓𝑘+1 = 𝜓𝑝. If not, then 𝜓𝑘+1 = 𝜓𝑘.
Finally return to 1. to pick the next state in the chain.

By this procedure, then the probability of transitioning between a state
𝜓 at point 𝑘 to a state 𝜓′ at point 𝑘 + 1 is given by the probability that
the state 𝜓′ is picked and that 𝜓′ is accepted, such that

𝒯(𝜓 → 𝜓′) = 𝛼(𝜓′ | 𝜓) 𝑞(𝜓′ | 𝜓). (6.8)

This transitionprobability satisfies detailed balance since insertingEq. (6.8)
and (6.7) yields

𝜋(𝜓′)𝒯(𝜓′ → 𝜓) = min{𝜋(𝜓)𝑞(𝜓′ | 𝜓), 𝜋(𝜓′)𝑞(𝜓 | 𝜓′)}
= 𝜋(𝜓)𝒯(𝜓 → 𝜓′).

(6.9)

6.2.1 Practical considerations

Usually, the above is a bit too general for practical implementation
since we would have to calculate or know the probability distribution
𝑞(𝜓′ | 𝜓) used in picking new proposed states. If we assume 𝑞 to be
symmetric, such that

𝑞(𝜓′ | 𝜓) = 𝑞(𝜓 | 𝜓′), (6.10)

then we do not need to calculate it explicitly since it cancels out of the
equation for 𝛼 in Eq. (6.7).
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A further simplification can be achieved by inserting the expression
for 𝜋(𝜓) in Eq. (6.3) into the 𝑞 symmetric version of 𝛼, which in this
case reduces to

𝛼(𝜓′ | 𝜓) = min{1, 𝑒−𝛽[ℋ(𝜓′)−ℋ(𝜓)]}. (6.11)

This form has the merit that the acceptance probability is only depen-
dent on the difference between the energy of the updated and original
state. If the state of the system 𝜓 is a collection of site-dependent sub-
states𝜙(𝒓𝑗), e.g., how the state of an Ising-chain is given by a collection
of site-dependent spins, then the calculation ofℋ(𝜓)must include all
the sites. Ifweupdate only a single site𝒓𝑗 of𝜓 to get𝜓′, whichwe call a
local MC update, then all the sites that do not have an interaction with
𝒓𝑗 cancels out in the differenceℋ(𝜓′)−ℋ(𝜓). Then we only need to
calculate the difference in the sub-states that are affected by 𝒓𝑗 to calcu-
late the energy-difference. This is an essential property to have when
creating a parallelized version of this algorithm, since different parts
of the lattice of sites then can be updated in an asynchronous manner
without affecting each other. In other words: by simplifying to the en-
ergy difference, the update scheme becomes local, which makes local
MC updates grid-parallelizable.

To use pseudo-random numbers to accept a new state 𝜓′ with prob-
ability 𝛼, we pick a uniformly distributed number 𝑟 ∈ (0, 1]. Then we
use the fact that

𝑃 [𝑟 ≤ 𝛼(𝜓′ | 𝜓)] = 𝛼(𝜓′ | 𝜓), (6.12)

which implies that updating the state if 𝑟 ≤ 𝛼, is equivalent to up-
dating the state with probability 𝛼. Given the form of 𝛼 in Eq. (6.11),
then

𝑟 ≤ 𝛼(𝜓′ | 𝜓) ⇔ ln 𝑟 ≤ −𝛽[ℋ(𝜓′) −ℋ(𝜓)]. (6.13)

To update the state with probability𝛼, we thus simply take the natural
logarithm of 𝑟, and update the state if the right-hand side of Eq. (6.13)
is true.

To obtain good statistics, we want, as a rule of thumb, the accep-
tance rate to be about 30 − 60% for high temperature states.1 The

1. High temperature states refers to states that are well above any transition tem-
perature of the system.
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acceptance rate is defined as the number of proposed states 𝜓′ that
are accepted, divided by the total number of proposed states, within
some finite time-interval, and will in general be proportional to the ac-
ceptance probability 𝛼(𝜓′ | 𝛼). The acceptance rate can be adjusted by
changing the way new states 𝜓′ are proposed. Let 𝜓 be composed of
site-specific sub-states 𝜙(𝒓𝑗) and let a state 𝜓′ be proposed by chang-
ing the values of the sub-state 𝜙(𝒓0). Choosing values closer to the
original sub-state 𝜙(𝒓𝑜), the differenceℋ(𝜓′)−ℋ(𝜓) decreases such
that 𝛼(𝜓′ | 𝜓) in Eq. (6.11) approaches 1 and thus the acceptance rate
increases.

Proposing states such that the acceptance rate is very high by using
this technique, can lead to new states not changing very much with
each MC update. This can lead to freezing of the simulation, where
the measurements do not change even after a significant number of
MC, updates because a large number of updates in the same direc-
tion is needed to significantly change the measurements. On the other
hand, too low of an acceptance rate will also freeze the simulation
since then obviously states are very unlikely to change, leading to the
same measurements repeatedly. Ultimately, whether the acceptance
rate should be considered too high or too low, should be guided by
the physics of the system since in the case that the system has reached
a global minimum in the energy-landscape and has low temperature,
the proper statistics is obtained by an update scheme that gives a low
acceptance rate. It is not advisable to change the acceptance rate during
a measurement-run over decreasing temperatures, as this has tended
to freeze the measurements at varying temperatures leading to confu-
sion when trying to find a transition point.

6.3 Thermalization procedures

Thermalization in a MCMC simulation, refers to the process of dis-
carding a set number of MC updates before starting to measure the
states in the Markov-chain. The reason for doing this is because the
first states in the chain will usually be very unlikely in the ensemble of
states, and thus including themwill give these states an artificially high
statistical weight, unless we measure long enough. That time could be
very long indeed if the starting states are very unlikely, thus, to get
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Figure 6.1: Thermalization of a 643 single-component 𝑋𝑌-system
from random initial states to a numerical temperature 𝑇 = 0.5.
The different curves represent the energy of different realizations
of the same system initialized at different random states over
several MCSs. The random initial states have a relatively high
energy that stabilizes to the same value for all realizations in an
exponential fashion.

measurements in a reasonable time, these unlikely starting states are
discarded.

How many states to discard, is usually estimated with the help of
an energy vs. Monte-Carlo sweep (MCS)2 plot as shown in Figure 6.1.
Since the initial state usually has a different energy than the average
energy in theMarkov-chain, the energy can be seen to rapidly stabilize
to the average value in such a plot.

Whether the energy stabilizes from above or below will depend on
what the initial state is, and what the temperature of the simulation
has been set to. An ab-initio state in which the values of the sub-states
are set to uniformly distributed random values within their validity
range, normally corresponds to a high temperature and high energy

2. A Monte-Carlo sweep is a term used for attempting to update all the different
sites of a system once.
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state, hence thermalizing from such a state will have the energy stabi-
lize from above. Another possibility for an ab-initio state, is some kind
of mean-field minimal solution of the Hamiltonian, where sub-states
at different sites are correlated. In this case, the energy will usually be
low, and the thermalization energywill thus stabilize from below. This
option has the disadvantage that if the mean field solution lies inside
some local energy minimum, then simulations that start in this state
might not be able to get out and find the global minimum. In contrast,
simulations that are thermalized from random high energy states will
have the possibility of finding the global minimum, even if some simu-
lations also fall down in the local minimum of the mean-field solution.
In general, it is recommended to thermalize several independent sys-
tems from different initial conditions and check that they yield quanti-
tatively similar results to make it less likely that the results come from
a local minimum or meta-stable state.

A last suggestion for an initial state of the system is the last state of a
previous simulation. In this case, the thermalization will stabilize de-
pending on the relative temperature of the two simulations. To be sure
that the measurements are not correlated with the measurements of
the last simulation, one should discard a number of states equal to the
auto-correlation time of the system. The continuation from a previous sim-
ulation is a useful practice if gathering results over an extended tem-
perature range where the systems need a large thermalization time in
order to stabilize. One would then typically start measuring at a high
temperature, and then decrease the temperature successively in steps
with a separate thermalization- and measure-period for each step.

For systems prone to fall into local minima, it was found that a more
careful thermalization process analogous to the measurement proce-
dure described above, decreased the probability of freezing into such
minima. Instead of thermalizing from a high energy / high temper-
ature state directly down to the desired temperature, which we call
quenching, a cooldown period was added. During the cooldown pe-
riod, the temperature was lowered stepwise from a high temperature
𝑇0 to a target temperature 𝑇, with intermediate temperatures

𝑇𝑘 = ( 𝑇
𝑇0

)
𝑘
𝑁𝑇0. (6.14)
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Figure 6.2: Energy pr. site of a 643 site model system of a 𝑝 + 𝑖𝑝
chiral superconductor during the cooldown stage. The temper-
ature is lowered as a geometric sequence and a fixed number of
MCSs are done at each temperature step. Comparing with the
thermalization in Figure 6.1, we see that the cooldown period
gives a significantly more gradual thermalization.

The intermediate temperatureswere geometrically distributed over the
cooldown region to ensure a higher density of intermediate steps to-
wards lower temperatures. At each temperature step, a fixed number
ofMCSs were performed such that moreMCSswere done towards the
lower temperature than higher. Thiswas done because the simulations
in general took longer to thermalize when the temperature decreased.
An example of how the energy changed during such a thermalization
period is shown in Figure 6.2.

The cooldown period was then followed by a conventional thermal-
ization stage where the temperature was held constant at 𝑇. In most
cases, the energy had already stabilized at this point, such that the
energy measurements during this extra thermalization stage typically
only showed fluctuations around the mean.
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6.4 Parallel tempering

Parallel tempering is a method of simulating multiple systems over a
range of different temperatures where the systems can exchange po-
sitions with their neighbors in this temperature range according to a
MH-like update step. Since the different systems all have the same pa-
rameters except for temperature, when viewed from the perspective
of a single temperature, this leads to a normal Metropolis-Hastings
MCMC simulation with an occasional global update of all sites of the
system, whenever the system at that temperature exchanges with the
system at a neighboring temperature. From the dual perspective of
a single system, parallel tempering (PT) allows the system to make a
random walk in temperature space.

This global updating, or movement in temperature space, has the
advantage that it can prevent systems from getting stuck in local min-
ima, by allowing them to move to a higher temperature where it is
easier to fluctuate to a more favorable configuration. In systems that
have a jagged energy-landscape with lots of local minima, this can be
of great benefit and can reduce the required time it takes to measure
observables with a certain accuracy by several orders of magnitude
[87].

To implement parallel tempering MCMC in a temperature-centric
perspective, let {𝑇𝑖}𝑀𝑖=1 be a sorted list of 𝑀 ascending temperatures,
and let {𝜆𝑖}𝑀𝑖=1 be a list of indices𝜆, that identify replica states {𝜓𝜆}𝑀𝜆=1
of the system such that the replica with temperature 𝑇𝑖 is given by𝜓𝜆𝑖

and its energy is given by 𝐸𝜆𝑖
. The simulation then proceeds accord-

ing to the algorithm

1. Perform Δ𝑡 normal MC updates on all replica states, e.g., using
the MH method.

2. For each replica state 𝜓𝜆, calculate the corresponding energy
𝐸𝜆.

3. For each pair of neighboring temperatures 𝑇𝑖 and 𝑇𝑖+1 where
𝑇𝑖 < 𝑇𝑖+1:

a) Calculate the quantity

Δ = (𝐸𝜆𝑖+1
−𝐸𝜆𝑖

)( 1
𝑇𝑖+1

− 1
𝑇𝑖

). (6.15)
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b) Then swap the indices𝜆𝑖 ↔ 𝜆𝑖+1 withprobabilitymin{1, 𝑒Δ}.
This can as in the MH method be done by generating a
random number 𝑟 ∈ [0, 1) and then swapping indices if
ln 𝑟 ≤ Δ.

4. If the replicas𝜓𝜆 have internal knowledge of their temperatures,
then distribute 𝑇𝑖 to 𝜓𝜆𝑖

, for all temperatures 𝑇𝑖.

5. Sample observables and return to 1.

This algorithm is easily parallelizable since the bulk of computing
time will be going to doing the Δ𝑡 MC-updates, which can be per-
formed in parallel by having each replica state 𝜓𝜆 be assigned to a
separate thread / processor. If each thread in addition keeps track of
the replica’s energy at the end of theMCupdates, the only information
that needs to be transferred betweenworker processes and the process
doing the PT update step, is the values of the energies to the PT pro-
cess, and afterwards: the set of new temperatures back to the worker
processes. The PT process itself only needs to calculate 𝑀 − 1 simple
expressions and move around the indices in an array.

For the PT method to generate good statistics efficiently, some care
should be taken in the distribution of the temperatures 𝑇𝑖. A rule of
thumb is to distribute them geometrically, i.e. according to

𝑇𝑖 = (𝑇𝑀
𝑇1

)
𝑘−1
𝑀−1

𝑇1, (6.16)

with the argument that lower temperatures generally have a lower re-
laxation rate. With geometric distribution, the temperatures are denser
towards the low end such that the acceptance rate of swaps of replicas
at neighboring temperatureswould in general becomeflatter andmore
independent of temperature. Should the specific heat diverge at some
point 𝑇𝑐 in the temperature range, as in the case of a phase transition,
then this distribution would no longer be optimal since the acceptance
probability of temperature swaps is inversely proportional to 𝐶𝑣, and
thus the acceptance rate would no longer be flat. In this case, more
temperatures should be distributed around 𝑇𝑐 in order for systems to
be able to random walk from one side of 𝑇𝑐 to the other.

From the perspective of an individual replica, the overall goal with
the distribution of temperatures is to maximize the number of times
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the replica moves from the lowest temperature 𝑇1, up to the highest
temperature 𝑇𝑀, and back to the lowest temperature again. This will
then maximize the number of statistically independent visits of the
system to each temperature. The hope is that a flat acceptance ratewith
respect to the distributed temperatures will facilitate a good number
of such roundtrips. The number of roundtrips can be optimized with
more advanced methods such as the feedback-optimized parallel-tempering
MCmethod, which models the movement of replicas by parallel temper-
ing as a diffusion process [88].

6.5 Grid parallelization

Asimplewayof utilizingmultiple processor cores (or cpus) on amulti-
processor system, is to run independent MC simulation on each pro-
cessor. This is usually very efficient if a parameter of the system such as
temperature is to be varied over some interval. Then, each simulation
could have a different value of this parameter. In this case, it is recom-
mended to also implement PT since the extra overhead is minimal and
the speedup of the simulations can be significant.

Alternatively, all the simulations can run with the same value on
different processes, and the samples from the individual simulations
can then be combined to a super-sample. This is often referred to as
“dummy-parallelization”. It has the advantages that the individual
sampling-runs can be shortened, and the implementation of the paral-
lelization is straight-forward. A drawback with this method is how-
ever that separate simulations have to be thermalized individually,
such that the more the super-sample is split on different processes,
the more processor time is wasted on thermalization. Additionally, if
the individual simulation-runs depend on some sort of freezing, like
how vortices freeze to the numeric lattice, then individual simulations
could freeze at different angles such that they cannot be combined to
form good statistics.

A solution to the above issueswith this simple parallelization, is pro-
vided by grid-parallelization. This parallelizationmethod is suited for
simulations that consist of interacting sites either in 2D or 3D where
local MC updates are to be performed. We will focus on the case of a
3D simulation where the sub-sites are organized in a numerical cubic
lattice. The idea is to split the cube into different sub-cuboids as illus-
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Figure 6.3: Illustration of the subdivision of the numerical grid
into sub-cuboids. The right side illustrates that the sites in each
sub-cuboid can be categorized as either internal sites, which can
be updated asynchronously on different sub-cuboids and is il-
lustrated in the figure by the internal orange cube, or sites in a
border region.

trated on the left side of Figure 6.3. Each sub-cuboid’s internal sites can
then be updated in the normalMC fashion, in parallelwith the internal
sites of other sub-cuboids. If the individual sites of the original system
interactswith neighboring sites,3 then it will be necessary for each sub-
cuboid to have a border whose thickness depends on the range of the
interaction. The sites in this border-region will then have an interac-
tionwith sites in the border-region of other sub-cuboids, such that care
must be taken not to update a site based on the value of a neighboring
site that is no longer valid. One solution to this is simply updating all
the sites in the border-regions serially, i.e. update the border sites in
a single sub-cuboid, communicate the updated values to the affected
neighboring sub-cuboids, then move to the next sub-cuboid, etc. Or it
could be even more effective to parallelize the updates of the border
sites as well by further subdividing the border-sites into different cat-
egories. As an example, one could define internal border-sites on the
face of a sub-cuboid to be the border-sites that only depend on sites in

3. In the case of a local MH update this can take the form of an energy-difference
of the system at a proposed update-site that depends on the value of fields at
neighboring sites.

89



Chapter 6 Monte-Carlo Techniques

the single neighboring sub-cuboid that is in the direction of the face-
plane normal vector. Then all the right-facing internal border-sites can
be done in parallel on all sub-cuboids, followed by all the top-facing
internal border-sites, etc. The specifics of how the border-categories
should be defined in order to achieve full parallelization, will in gen-
eral depend on the specifics of the interaction between the sites.

6.6 Reweighting

Reweighting techniques aremethods for finding estimates of parameter-
dependent observables based on previously obtained samples of these
observables from MC-simulations that have been done at parameter
values independent of the ones we are interested in. Given a set of
samples of some observable {𝑜𝑖}𝑀𝑖=1 from previousMC simulation(s),
these techniques provide a set of weights {𝑤(𝛽′)𝑖}𝑀𝑖=1 that can be used
to estimate the observable at a parameter value 𝛽′ by the reweighting

̂𝑜(𝛽′) = ∑
𝑖

𝑤(𝛽′)𝑖𝑜𝑖. (6.17)

This is very usefulwhen estimating someobservable over a temperature-
range, since then a single simulation can yield results not only for a sin-
gle temperature, but for an extended region. If this region is close to a
phase-transition, then this can be used as a way of avoiding the critical
slowing down of simulations at phase transitions by instead simulat-
ing at temperatures close to the critical temperature 𝑇𝑐, and then using
reweighting techniques to estimate results at 𝑇𝑐. All this is possible
because a simulation at a given temperature4 produces an extended
statistical distribution of energy values for the sampled states. This en-
ergy distribution will in general overlap with the energy-distribution
produced when simulating at a temperature that is sufficiently close
to the original. Because of this overlap, it is possible to statistically
extrapolate the value of observables at the neighboring temperature.

Reweighting techniques are categorized as single-histogramandmulti-
histogram reweighting-techniques depending onwhether theyuse sta-
tistical information froma single histogramor can combine histograms
generated at multiple parameter values. The single-histogram tech-
niques are used to estimate values of the observables at neighboring

4. It is possible to use reweighting techniques on other parameters of the simulation
as well, as long as they are, like inverse-temperature, linear in the action.
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temperature-values and has the virtue of being comparatively simple
to implement and understand. The multi-histogram techniques, on
the other hand, have the advantage that the additional statistical in-
formation in general gives better estimates, and can even give better
estimates at the original temperatures that the simulations were per-
formed at, but have a more involved implementation.

In our simulations we used a Julia implementation5 of the multi-
histogram technique originally developedbyBojesen, a techniquewhich
they used in [89], and which was updated for the current Julia release
and modified by us.

6.6.1 Ferrenberg-Swendsen single-histogram method

Toderive the Ferrenberg-Swendsen single-histogram reweighting tech-
nique, let 𝑜𝑖 be samples of an observable𝒪 from sample states𝜓𝑖 sam-
pled at parameter value𝛽 of a systemwith aHamiltonianℋ, such that
𝒪(𝜓𝑖) = 𝑜𝑖. Then, from out discussion of importance sampling, the
estimate of the average of the observable when the states are sampled
according to a probability distribution 𝜋(𝜓𝑖), is given by

⟨ ̂𝒪⟩𝛽 =
∑𝑖 𝑜𝑖𝑒

−𝛽ℋ(𝜓𝑖)/𝜋(𝜓𝑖)
∑𝑖 𝑒

−𝛽ℋ(𝜓𝑖)/𝜋(𝜓𝑖)
. (6.18)

Using a simulation with importance sampling at parameter-value 𝛽 to
generate the sampled states, the probability distribution was

𝜋(𝜓𝑖) =
𝑒−𝛽ℋ(𝜓𝑖)

𝑍𝛽
= 𝑒−𝛽ℋ(𝜓𝑖)

∑𝜓 𝑒−𝛽ℋ(𝜓) , (6.19)

where the sum in the denominator is over all possible states 𝜓 and
not only sampled states. Inserting 𝜋(𝜓𝑖) into ⟨𝒪⟩𝛽 in Eq. (6.18), this
equation reduces to the arithmetic average, however ifwe now imagine
wanting an estimate of ⟨𝒪⟩𝛽′ at an arbitrary parameter value 𝛽′, then
insertion yields

⟨ ̂𝒪⟩𝛽′ =
∑𝑖 𝑜𝑖𝑒

−(𝛽′−𝛽)ℋ(𝜓𝑖)

∑𝑖 𝑒
−(𝛽′−𝛽)ℋ(𝜓𝑖)

. (6.20)

5. This implementation is available at https://github.com/Sleort/
FerrenbergSwendsenReweighting.jl/tree/1.0.3 update
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This expression then gives an estimate of the average of the observ-
able 𝒪 at an arbitrary parameter value 𝛽′ using states 𝜓𝑖 that were
sampled at a specific parameter value 𝛽. This is called the Ferrenberg-
Swendsen single-histogram reweighting technique [90], and in terms
of the reweighting expression in Eq. (6.17) we can read off that the
weights of this technique are given by

𝑤(𝛽′)𝑖 = exp [ − ln(∑
𝑗

𝑒−(𝛽′−𝛽)[ℋ(𝜓𝑗)−ℋ(𝜓𝑖)])]. (6.21)

Although simple, this technique’s ability to extract information about
observables around the simulatedparameter-value,makes it extremely
valuable in for instance the study of scaling relations, and to accurately
calculate the peak of thermodynamic variables at phase-transitions
where the MC-simulations themselves take a significant amount of
computing time.

6.6.2 Numeric evaluation of exponential sums

The reason for introducing the extra exponential in the form of𝑤(𝛽′)𝑖
in Eq. (6.21) is because sums of exponential numbers generally are
hard to do numerically using finite-precision floating point numbers,
however the logarithm of such a sum can be found using an iterative
scheme. Let 𝑆(𝑘) be a sum of 𝑘 exponential numbers decreasing in
magnitude that presumably are too large to be stored individually,
such that

𝑆(𝑘) = 𝑒𝑎1 + 𝑒𝑎2 +…+ 𝑒𝑎𝑘 , (6.22)

with 𝑎𝑖+1 ≤ 𝑎𝑖, is numerically hard to do. Assuming however that
fractions of the numbers can be stored, then we can numerically calcu-
late

ln𝑆(2) = 𝑎1 + ln(1 + 𝑒𝑎2−𝑎1). (6.23)

Following the iteration

ln𝑆(𝑘) = ln𝑆(𝑘−1) + ln(1 + 𝑒𝑎𝑘−ln𝑆(𝑘−1)), (6.24)

then ln𝑆(𝑘) can be found for arbitrary 𝑘 without ever storing a single
exponential number, only fractions of such numbers that are close to
each other.
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6.6.3 Multi-histogram Ferrenberg-Swendsen method

Let {𝜓𝑘
𝑖 }

𝑁𝑘
𝑖=1 be sets of states sampled at the 𝑁0 inverse temperatures

{𝛽𝑘}
𝑁0
𝑘=1 of a system with Hamiltonian ℋ. The energy of these states

is then given by 𝐸𝑘
𝑖 , and samples of an observable 𝒪 at these states

are given by 𝒪(𝜓𝑘
𝑖 ) = 𝑜𝑘𝑖 . The energy-samples can then be used to

construct 𝑁0 histograms

ℎ𝑘(𝐸) =
𝑁𝑘

∑
𝑖=1

𝛿𝐸,𝐸𝑘
𝑖
, (6.25)

giving the number of sampled states at a certain energy in the simu-
lation with parameter value 𝛽𝑘. The goal is to use these histograms to
estimate the density of states of the system which we for the purpose
of the derivation of this method will define 𝑛(𝐸) = ∑𝜓 𝛿𝐸,ℋ(𝜓). The
essential steps in this derivation can be found in the original paper in
Ref. [91], as well as Ref. [92] and [93]. With these definitions, the en-
ergetic probability distribution of the system at an inverse temperature
𝛽 is given by

𝑊(𝛽,𝐸) = 𝑛(𝐸)𝑒−𝛽𝐸/𝑍𝛽, (6.26)

where 𝑍𝛽 = ∑𝜓 𝑒−𝛽ℋ(𝜓) is the partition function. Based on the sam-
pled histograms, 𝑊(𝛽𝑘, 𝐸) at temperature 𝛽𝑘 can be estimated by
̂𝑝𝑘(𝐸) = ℎ𝑘(𝐸)/𝑁𝑘, i.e. ⟨ ̂𝑝𝑘(𝐸) ⟩ = 𝑊(𝛽𝑘, 𝐸). This implies that

⟨ ℎ𝑘(𝐸) ⟩ = 𝑁𝑘𝑊(𝛽𝑘, 𝐸), and assuming for now that the samples
of states 𝜓𝑘

𝑖 and 𝜓𝑘
𝑗 are statistically independent, it can be shown by,

among other things, insertion of the definition of ℎ𝑘(𝐸) in Eq. (6.25),
that

⟨ ℎ𝑘(𝐸)2 ⟩ = 𝑁𝑘𝑊(𝛽𝑘, 𝐸)[1 + (𝑁𝑘 − 1)𝑊(𝛽𝑘, 𝐸)]. (6.27)

Inserting these cumulants of the histograms into the variance, we get

𝛿2ℎ𝑘(𝐸) = ⟨ ℎ𝑘(𝐸)2 ⟩ − ⟨ ℎ𝑘(𝐸) ⟩2 ≈ 𝑔𝑘𝑁𝑘𝑊(𝛽𝑘, 𝐸), (6.28)

by assuming𝑊(𝛽𝑘, 𝐸) ≪ 1. The factor 𝑔𝑘 = 1+2𝜏𝑘, where 𝜏𝑘 is the
autocorrelation time of the samples at 𝛽𝑘, is included to generalize the
result to samples where 𝜓𝑘

𝑖 and 𝜓𝑘
𝑗 are not statistically independent.

By solvingEq. (6.26)w.r.t. 𝑛(𝐸) and inserting the estimator of𝑊(𝛽𝑘, 𝐸),
an estimator of the density of states is given by

𝑛̂𝑘(𝐸) = ̂𝑝𝑘(𝐸)𝑍𝛽𝑘
𝑒𝛽𝑘𝐸, (6.29)
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where 𝑍𝛽𝑘
is assumed known, an assumption we will have to recon-

cile later. By the error propagation formula, then the variance of this
estimator is given by

𝛿2𝑛̂𝑘(𝐸) = (𝑍𝛽𝑘
𝑒𝛽𝑘𝐸/𝑁𝑘)2𝛿2ℎ𝑘(𝐸). (6.30)

The estimator 𝑛̂𝑘(𝐸) is an estimator of 𝑛(𝐸) using only a single his-
togram. We combine the estimators of single histogramsusing aweighted
sum

𝑛̂(𝐸) = ∑
𝑘

𝑟𝑘𝑛̂𝑘(𝐸), (6.31)

where the coefficients 𝑟𝑘 must satisfy the condition∑𝑘 𝑟𝑘 = 1 for the
expectation value of 𝑛̂(𝐸) to give the density of states. The coefficients
𝑟𝑘 are determined by minimizing the variance 𝛿2𝑛̂𝑘(𝐸) subject to the
constraint ∑𝑘 𝑟𝑘 = 1 using a Lagrange multiplier, which yields the
estimator

𝑛̂(𝐸) =
∑𝑁0

𝑘=1 𝑔
−1
𝑘 ℎ𝑘(𝐸)

∑𝑁0
𝑙=1 𝑁𝑙𝑔−1

𝑙 𝑒−𝛽𝑙𝐸𝑍−1
𝛽𝑙

. (6.32)

The assumption that 𝑍𝛽𝑘
is known is now reconciled. Since we can

write the partition function using the density of states through

𝑍𝛽 = ∑
𝜓

𝑒−𝛽ℋ(𝜓) = ∑
𝐸

𝑛(𝐸)𝑒−𝛽𝐸, (6.33)

then we use the density of states estimator to estimate the partition
function and use this estimate of the partition function ̂𝑍𝛽𝑘

in the den-
sity of states estimator. This then creates an implicit equation for ̂𝑍𝛽𝑘

that must be solved self-consistently. Inserting the definition of ℎ𝑘(𝐸)
and exchanging sums to remove the histograms, this equation takes
the form

̂𝑍𝛽 =
𝑁0

∑
𝑘=1

𝑁𝑘

∑
𝑖=1

𝑔−1
𝑘 𝑒−𝛽𝐸𝑘

𝑖

∑𝑁0
𝑙=1 𝑁𝑙𝑔−1

𝑙 𝑒−𝛽𝑙𝐸𝑘
𝑖 ̂𝑍−1

𝛽𝑙

, (6.34)

which gives 𝑁0 equations for 𝑁0 unknowns ̂𝑍𝛽𝑘
when evaluated at

the different 𝛽 = 𝛽𝑚.
Solving Eq. (6.34) is usually done with the help of an iterative so-

lution method for non-linear equations such as the Newton-Raphson
method. To numerically calculate a solution, it is inconvenient to work
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with the full quantities ̂𝑍𝛽𝑚
since these are usually extremely large.

Instead, it is sufficient to calculate the variables

𝐿𝑚 ≡ ln ̂𝑍𝛽𝑚
− ln ̂𝑍𝛽1

, (6.35)

since the weights in the reweighting of observables can be written in
terms of them. Dividing Eq. (6.34) by 𝑍𝛽1

, we get that the 𝑁0 − 1
equations we need to solve self consistently for the 𝑁0 − 1 variables
𝐿𝑚, are given by

𝐿𝑚 = ln{
𝑁0

∑
𝑘=1

𝑁𝑘

∑
𝑖=1

𝑔−1
𝑘 𝑒−𝛽𝑚𝐸𝑘

𝑖

∑𝑁0
𝑙=1 𝑔

−1
𝑙 𝑒−𝛽𝑙𝐸𝑘

𝑖 −𝐿𝑙
}. (6.36)

This form has the big advantage that the overall logarithm allows us
to not have to calculate the exponential sums directly, but instead only
calculate logarithms of these sums. For each sum ∑𝑖 𝑒

𝑎𝑖 containing
exponentials, which are potentially too large to be stored numerically,
we simply re-exponentiate the entire sum to exp ln∑𝑖 𝑒

𝑎𝑖 and then
use the method outlined in Section 6.6.2 to calculate ln∑𝑖 𝑒

𝑎𝑖 . Be-
cause of the overall logarithm, the exponential drops out in the last
re-exponentiation such that we never have to store a single exponen-
tial number.

After finding self-consistent values for the𝑁0 −1 variables 𝐿𝑚, the
weights 𝑤𝑘

𝑖 for reweighting the observable 𝒪 can be found. In terms
of the density of states 𝑛(𝐸), the thermal average of the observable is
written

⟨𝒪⟩𝛽 =
∑𝐸 𝒪(𝐸)𝑛(𝐸)𝑒−𝛽𝐸

∑𝐸 𝑛(𝐸)𝑒−𝛽𝐸 . (6.37)

Inserting the reweighting estimate of 𝑛̂(𝐸) in Eq. (6.32) for 𝑛(𝐸), we
get the reweighting estimate

⟨ ̂𝒪⟩𝛽 =
̂𝑍𝛽1

̂𝑍𝛽

𝑁0

∑
𝑘=1

𝑁𝑘

∑
𝑖=1

𝑜𝑘𝑖 𝑔−1
𝑘 𝑒−𝛽𝐸𝑘

𝑖

∑𝑁0
𝑙=1 𝑁𝑙𝑔−1

𝑙 𝑒−𝛽𝑙𝐸𝑘
𝑖 −𝐿𝑙

, (6.38)

where ̂𝑍𝛽1
/ ̂𝑍𝛽 is given by

̂𝑍𝛽
̂𝑍𝛽1

=
𝑁0

∑
𝑘=1

𝑁𝑘

∑
𝑖=1

𝑔−1
𝑘 𝑒−𝛽𝐸𝑘

𝑖

∑𝑁0
𝑙=1 𝑁𝑙𝑔−1

𝑙 𝑒−𝛽𝑙𝐸𝑘
𝑖 −𝐿𝑙

, (6.39)
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through Eq. (6.34). The two equations for ⟨ ̂𝒪⟩𝛽 in Eqs. (6.38) and
(6.39) together with the self-consistency equation in Eq. (6.36), is suf-
ficient to describe the multi-histogram method. Notice that in these
equations the histograms onwhich themethodwas derived do not fig-
ure but have been replaced by the more fundamental energy samples.
This form makes the method more convenient to implement for sys-
tems with continuous energy distributions since it removes the need
for a sum over all possible energies.

When calculating the exponential sums in the weights implied by
Eqs. (6.38) and (6.39), numerical overflow can be avoided by first us-
ing logarithms to calculate the logarithmof a set of relatedun-normalized
weights as before, then subtracting themaximum logarithmic value for
each weight such that each weight is ≲ 1 and then using the sum of
these weights to properly normalize in the end.

6.6.4 Initial guess

An iterative non-linear solver usually needs an initial guess at the solu-
tion. In the case of the multi-histogram method equations, a good ini-
tial guess can beprovided by the single-histogramFerrenberg-Swendsen
method. Since only fractions of partition function values are needed,
we may set that ̂𝑍𝛽1

= 1 and use the Ferrenberg-Swendsen method
based on the 𝛽1 energies to estimate the value ̂𝑍0

𝛽2
of ̂𝑍𝛽2

at neighbor-
ing inverse-temperature 𝛽2 by the formula

̂𝑍0
𝛽2

=
𝑁1

∑
𝑖=1

𝑒−(𝛽2−𝛽1)𝐸1
𝑖 . (6.40)

In terms of the numerically convenient variables 𝐿𝑚, then this first
guess 𝐿0

2 takes the form

𝐿0
2 = ln [ 1

𝑁1

𝑁1

∑
𝑖=1

𝑒−(𝛽2−𝛽1)𝐸1
𝑖 ]. (6.41)

Continuing to estimate the partition function ̂𝑍𝛽𝑚
through the single-

histogram Ferrenberg-Swendsen method based on the data at 𝛽𝑚−1,
then we may find all subsequent 𝐿0

𝑚 by applying the iteration scheme

𝐿0
𝑚 = 𝐿0

𝑚−1 + ln [ 1
𝑁𝑚−1

𝑁𝑚−1

∑
𝑖=1

𝑒−(𝛽𝑚−𝛽𝑚−1)𝐸𝑚−1
𝑖 ]. (6.42)
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Chapter 7
Vortices in superconductors

In conventional type-I superconductors, the Meissner effect prevents
any magnetic field from penetrating the superconductor when it is in
the superconducting state. In a type-II superconductor, the transition
between the normal- and superconducting state is more gradual than
in the type-I case due to an intermediate transitional state where topo-
logical defects in the superconducting field becomes stable, allowing
quanta of magnetic field to pass through the material. The transitional
value of the external field strength belowwhich nomagnetic field pen-
etrates the superconductor is called 𝐵𝑐1. The upper transitional field
strength above which the material stops being superconducting al-
together is called 𝐵𝑐2. The state with regions of topological defects
through which magnetic field quanta can penetrate, which are inter-
spersed in a sea of superconducting state, exists between these values.
It is important to note that the Meissner effect is still present in this
transitional state — preventing magnetic field lines from penetrating
the superconducting state. However, at topological defects, the mate-
rial switches to the normal state and thus allows magnetic field-lines
to penetrate at these points. The final continuous transition to the nor-
mal state at 𝐵𝑐2 is then caused by the proliferation of vortex-loops,
sending the whole material to the normal state.

The regions of normal state containing a topological defect of the
superconducting state and through which magnetic field quanta can
penetrate are known as superconducting vortices because they are sur-
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rounded by a circulating superconducting current. This current is set
up by the presence of the magnetic field and shields the rest of the
superconducting condensate from its influence.

Whether a superconductor is type-I or type-II can conventionally be
predicted by examination of the relative value of the magnetic field
penetrationdepth𝜆 and the superconducting coherence length 𝜉, which
together form the GL parameter 𝜅 = 𝜆/𝜉. These parameters come out
of the description of the superconducting state given by the GL the-
ory of a single-component complex fieldminimally coupled to a gauge
field. If 𝜅 ≫ 1, thenwe saywe have a strongly type-II superconductor,
while is 𝜅 ≪ 1, the superconductor is strongly type-I. The transitional
value between type-I and type-II has a theoretical mean-field value of
𝜅 = 1/

√
2, however numerical calculations have given it the value

𝜅 = (0.76 ± 0.04)/
√
2 all within the conventional GL formalism.

In a type-II conventional superconductor without any structural de-
fects, as we increase the field strength, we introducemore vortices into
the material in order to carry the required number of magnetic field
quanta. At first these vortices behave like a liquid where they mutu-
ally repel each other if they get close. As more vortices are introduced
to the system, the inter-vortex repulsion leads to them forming a two-
dimensional lattice with equidistant lattice spacing. Since the triangu-
lar lattice is the lattice with the highest packing fraction, i.e. the lattice
that has the highest density of sites at a given lattice spacing, the lattice
formed will be triangular. Such a triangular (hexagonal) lattice of sin-
gle quanta vortices is known as the Abrikosov lattice since it consists
of single quanta vortices which are known as Abrikosov vortices.

7.1 Vorticity observables

A condensate described by a complex field 𝜓 with phase 𝜃 can have
topological defects given bydiscontinuities in the field 𝜃due to its com-
pact nature (𝜃 ∈ [0, 2𝜋)). Such topological defects can be quantified
by a non-zero winding-number 𝑁𝑣, which measures how the phase
𝜃(𝒓) moves around the unit circle as we change the position 𝒓 in a
closed loop around the defect. These topological defects then lead to
singularities in the field∇𝜃which allows a nonzero value of∇×∇𝜃 at
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these points.1 Integrating over a surface 𝑆 with surface normal vector
̂𝑠 of the system and using Stokes’ theorem then yields

∫
𝑆
d2𝑟(∇ ×∇𝜃) ⋅ ̂𝑠 = ∮

𝜕𝑆
∇𝜃 ⋅ d𝒓 = 2𝜋𝑁𝑣, 𝑁𝑣 ∈ ℤ, (7.1)

where 𝜕𝑆 is a path around the boundary of 𝑆 traversed counterclock-
wise. The last equality comes from the observation that 𝜕𝑆 is far away
from the singularity such that∇𝜃 is continuous along the path and𝑁𝑣
thus counts the number of times the vector 𝜃 rotates counterclockwise
back to its initial position. If there is no topological defect inside the
boundary 𝜕𝑆 then 𝜃 will increase as much as it decreases along the
path, such that 𝑁𝑣 = 0. If a topological defect in the form of a vortex
is present, then 𝑁𝑣 ≠ 0 [94]. 𝑁𝑣 can then be interpreted as the total
vorticity of the field 𝜃 over the surface 𝑆. Since𝑁𝑣 is the total vorticity,
which can consist of several individual defects, then from Eq. (7.1) we
see that

𝒏𝑣 = ∇×∇𝜃
2𝜋

(7.2)

must be interpreted as a vector of the local density of vorticity.
If the system described above contains a gauge field that is coupled

to 𝜓, then anymeaningful observable needs to be gauge-invariant. We
clearly see that the expression in Eq. (7.2) is gauge-dependent by send-
ing 𝜃 → 𝜃+𝜙. Tomake a gauge-invariant observable under the gauge-
transformation in Eq. (5.7), we see that we need to modify the defini-
tion to

𝒏𝑣 = ∇× (∇𝜃 + 𝑔𝑨)
2𝜋

. (7.3)

This expression then defines 𝒏𝑣 as a gauge invariant vector of local
vorticity density of the compact field 𝜃.

In latticemodelswewant to discretize the vorticity density in Eq. (7.3)
in order to effectively calculate it inMCsimulations of the latticemodel.
In such a discrete model we have to take care to re-compactify the
quantity ∇𝜃 + 𝑔𝑨 to only be defined on some interval of length 2𝜋.
Using the discretizationmapping of 𝜕𝜇 and𝐴𝜇(𝒓) from Eq. (5.19), we
want Δ𝜇𝜃 + 𝑔𝐴𝒓,𝜇 ∈ [−𝜋, 𝜋). Defining the operator

̂𝐶𝜋 𝑥 = mod(𝑥 + 𝜋, 2𝜋) − 𝜋, (7.4)

1. From vector calculus we know that for a continuously differentiable field 𝑓(𝒓),
it is the case that ∇×∇𝑓 = 0 ∀𝒓.
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the discretized vorticity density can be written

𝒏𝑣,𝒓 =
̂𝑒𝜇𝜖𝜇𝜈𝜆Δ𝜈

̂𝐶𝜋(Δ𝜆𝜃𝒓 + 𝑔𝐴𝒓,𝜆)
2𝜋𝑎2

= 1
2𝜋𝑎2

∑
𝜇

̂𝑒𝜇 ∑
⊡𝜇

̂𝐶𝜋(Δ𝜆𝜃𝒓 + 𝑔𝐴𝒓,𝜆).
(7.5)

Implicit summation over repeated indices is used on the first line, while
on the second, the components of the vector𝒏𝑣,𝒓 arewritten as plaquette-
sums. Plaquette sums are sums of directiondependent quantities along
a path ⊡𝜇, which is described below Eq. (5.21) and illustrated in Fig-
ure 5.3. In the plaquette-sum, the directional quantity is always chosen
along the path, and the path is traversed according to the right-hand
rule with normal vector ̂𝑒𝜇 [81, 95].

If the lattice system has an external field that yields a filling frac-
tion 𝑓, e.g.produced by one of the gauges in Section 5.2, then each
plaquette-sum in Eq. (7.5) will have a contribution 𝑓/𝑎2. To motivate
this assume, e.g., that 𝜃𝒓 is the same everywhere such that Δ𝜆𝜃𝒓 = 0
and insert the Landau gauge from Eq. (5.16) into the 𝑧-component of
𝒏𝑣,𝒓. This yields 𝑓/𝑎2. Hence, to assure that the vortex observable
yields the actual vortex quanta integer values when evaluated on a lat-
tice with a uniform external field in the 𝑧 direction with filling fraction
𝑓, we have to use the lattice function

𝑛𝑧
𝒓 = (𝒏𝑣,𝒓)𝑧 −

𝑓
𝑎2

. (7.6)

If the system consists of multiple condensate components 𝜓ℎ =
𝜌ℎ𝑒𝑖𝜃ℎ , then we can define a separate vorticity flux density 𝑛𝑧,ℎ

𝒓 for
each componentℎ by letting 𝜃 ↦ 𝜃ℎ in the definitions of𝑛𝑧

𝒓 in Eqs. (7.5)
- (7.6).

7.2 Unconventional vortices

In a conventional superconductor, the isotropic (i.e. 𝑠-wave) nature of
the superconducting state implies that stable vortices can only contain
a single quanta of magnetic flux. In other words, if through some ran-
dom thermal fluctuation, a defect appears that contains 𝑛 quanta of
magnetic flux, this will soon decay into 𝑛 individual vortices that each
contains a single magnetic flux quantum. We call these 𝑛 individual
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vortices: single-quanta vortices. For the individual stable topological
defects to contain multiple quanta of magnetic flux, the superconduct-
ing state has to be unconventional in some way. One way in which a
superconductor can host stable vortices with multiple quanta is if the
superconducting state for some reason has an unconventional symme-
try. This could, e.g., be caused by unconventional (i.e. non-phononic)
mechanisms of Cooper-pair formation such as Van der Waals or spin-
mediated interaction [66]. In this case, multiple components might
be needed in order to describe the symmetry, which can result in the
stabilization of vortices with double as well as fractionalized quanta
[96].

A more specific example is that this can happen when a magnetic
field penetrates a sample ofmaterial that is in a 𝑝+𝑖𝑝 superconducting
state, i.e. a state where the pairing function is described by two compo-
nents that each have a 𝑘𝑥±𝑖𝑘𝑦 dependence on the crystal momentum
𝒌 in the continuum limit. The linear 𝑘-dependence implies a finite an-
gular momentum of the Cooper pairs with 𝑙 = 1, and that the phases
of the components are locked by an angular momentum difference
Δ𝑙 = 2 in the ground state. This has the consequence 𝑛+ = 𝑛− + 2
on any non-trivial winding numbers 𝑛+ and 𝑛− of the two different
components, which implies that if a vortex exists some place where
the sub-dominant component has winding number 𝑛− = 0, then the
dominant component must have 𝑛+ = 2 and thus the vortex must be
a double quantum vortex.2

In the type of superconductor described above, the winding num-
bers 𝑛+ and 𝑛− fully determine the structure of possible vortices. In
the following we will use the notation (𝑛+, 𝑛−) to specify these types
of vortices, and assume that ‘+’ is the dominant component. The pos-
sibilities for single-quanta vortices in this notation are thus the vortices
(1,−1) and (−1,−3). The latter type has a higher winding number
in the sub-dominant component, which implies a more complex core
structure and has a higher energy cost pr. vortex [97]. This means that

2. It is the winding number of the dominant component that determines the num-
ber of magnetic flux quanta that the vortex is allowed to contain because the
sub-dominant component is zero in locations far away from the vortex core by
the nature of being sub-dominant. Thus, it doesn’t contribute to the closed loop
integral in Eq. (7.1) when integrating the supercurrent in a circle around the
vortex.
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of the two, it is the (1,−1) variety that will be expected to be stable in
experiments.

It is also possible to have double quanta vortices, which are either
of the (2, 0) or (−2,−4) variety. Again, the type of vortex with the
higher winding number in the sub-dominant component exhibits a
more complex core structure. For the choices of various internal pa-
rameters of such systems that we have studied, it is the (2, 0) type of
vortex that is associated with the lowest energy cost and thus the one
that is stable [97–99].

As we have mentioned, the different types of vortices will in general
have different types of core-structures even though they may permit
the same number of magnetic flux quanta to penetrate. One diagnos-
tic tool to separate different kinds of vortices, is thus to observe the
structure of the vortex core. Aside from plotting the actual vorticity
𝑛± of the component through Eq. (7.6), this can be done by e.g., plot-
ting the amplitudes of the dominant and sub-dominant component,
plotting the phase-difference 𝜃+ − 𝜃− of the different components, or
plotting themagnetic field in the region of the vortex core. A rendition
of the essential features of plots of dominant component vorticity den-
sity 𝑛+ and phase-difference is shown in Figure 7.1 for the two vortex
types (1,−1) and (2, 0). We see from the figure that the double quanta
vortex type (2, 0) can be distinguished from the single quanta vortex
by having an extended ring of vorticity density, as well as having a
core region in the phase difference plot that is rotated by 𝜋/2 radians
from the asymptotic value of this phase difference. These featureswere
used in our work to identify double and single quanta vortices in MC
simulations.

7.3 Ensembles of vortices

With increasing field strength, more quanta of magnetic flux will pen-
etrate the mixed phase and thus it will contain an increasing number
of vortices that form flux-lines through the system. If any structural
defects are present in the system, then this leads to local suppression
of the superconducting condensate such that vortices are less energet-
ically costly, and vortices will thus be predominantly located in such
regions. This is called pinning of vortices because these regions attract
vortices, and since their location is determined by external factors and
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(a) (b)

(c) (d)

Figure 7.1: Schematic of vorticities and corresponding phase dif-
ference signature 𝜃+ − 𝜃− of vortices in a system with external
magnetic field 𝑩 = 𝐵 ̂𝑧. a and c show vorticity and phase-
difference respectively for a singly quantized vortex with winding
number 𝑛+ = 1 and 𝑛− = −1. b and d show vorticity and phase
difference respectively for a doubly quantized vortex with wind-
ing number 𝑛+ = 2 and 𝑛− = 0. The figures are directly based
on the ones presented in Ref. [98].

not by the inter-vortex interactions themselves. Free vortices are mo-
bile in response to an electric current and this leads to energy-loss and
resistance in themixed phase. Pinning-regions have the effect of resist-
ing such movement and thus can contribute to increasing the amount
of resistance-free current [100].

In the absence of such pinning, vortex tubes that run through the
material in the direction of an external magnetic field can be ordered
in a lattice according to their mutual interaction. Such a lattice is called
an Abrikosov lattice or a flux line lattice since the vortex lines/tubes
carry quanta of flux of the external magnetic field. The Abrikosov lat-
tice then exists in the mixed phase of type-II superconductors and is
destroyed when either the temperature or magnetic field strength is
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increased beyond a certain level𝐵𝑐2(𝑇 )where the material enters the
normal non-superconducting phase. This transition can be character-
ized in terms of a proliferations of unbound vortex loops which de-
stroys the phase-coherence of the superconducting state [101].

If the interaction between the flux-lines is weak compared to en-
tropic forces such as thermal fluctuations, then fluctuations of the vor-
tex flux-lines can cause melting of the vortex lattice. In this molten
state, the vortex flux-lines still interact repulsively which yields an av-
erage preferred inter-vortex distance given by the balance between inter-
vortex repulsion, and the inclusion of the necessary number of vortices
to carry the external magnetic field. However, any directionally de-
pendent long-range correlation is lost. This corresponds to the behav-
ior of particles in a liquid, and the molten state is thus called a vortex
liquid. Such states are commonly found in high-𝑇𝑐 superconductors
such as YBa2Cu3O7–δ. The transition between an ordered lattice of
vortices and a vortex liquid is known as a vortex lattice melting tran-
sition. This transition can also be achieved by tuning the strength of
the magnetic field. This implies a magnetic field strength 𝐵𝑐1, below
which theMeissner effect completely excludes all magnetic fields, and
a strength 𝐵𝑀 > 𝐵𝑐1 above which the vortices behave as a liquid, i.e.
without any long range correlations except that of an average distance.
Finally, superconductivity is destroyed at 𝐵𝑐2 > 𝐵𝑀 when a prolifer-
ation of vortex loops destroys all vortex correlations, and the material
enters the normal state. These different states of the vortex lattice map
out a region in the 𝐵 − 𝑇 parameter space such as the one shown in
Figure 7.2. There can also exist intermediate glassy phases of vortex
matter between the extremes of a completely ordered lattice and a liq-
uid when pinning of vortices is combined with low temperature in an
external magnetic field [102, 103].

The structure and behavior of a flux-line lattice in the mixed phase
of a type-II superconductor is dependent on the symmetry and na-
ture of the superconducting phase. In conventional single-component
superconductors with 𝑠-wave symmetry, the vortices interact asymp-
totically3 through isotropic repulsion that can be modeled by a mod-
ified Bessel function of the second kind [28, 105, 106]. In a clean ma-

3. In this context “asymptotically”means in the asymptotic limit of large separation
between vortices.
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Figure 7.2: Simplified phase diagram of the states of vortex matter
in a type-II superconductor in the 𝐵 − 𝑇 phase space. This is
based on the Lindemann criterion [104].

terial, this interaction leads experimentally to a triangular (hexago-
nal) lattice of vortices due to this lattice symmetry having the largest
packing-fraction of any two-dimensional lattice, i.e. it is the lattice that
gives the highest density of vortices given a set inter-vortex distance
and thus gives the lowest energy configuration [107, 108]. Theory
predicts that also a square lattice of single quanta vortices should be
possible at higher fields for 𝜅 ≳ 1/

√
2 [105], however in the London-

approximation, which is valid at𝜅 ≫ 1, the triangular symmetry is the
most stable for all fields [109]. Interestingly, the vortex lattice symme-
try can be incommensurate to the underlying crystal lattice structure.

In theoretical models of unconventional superconductors, such as
superconductors with multiple components and non-isotropic sym-
metry, even more complex behavior of the mixed phase is predicted.
We have already mentioned the appearance of a vortex-liquid state
separate from the vortex lattice state in high-𝑇𝑐 superconductors, which
are overwhelmingly of the extreme type-II category and described by a
single component unconventional 𝑑-wave symmetry. In superconduc-
torswithmultiple componentswhere each component can bemodeled
by a conventional London-approximation, a phase transition from the
superconducting state to a superfluid state is possible in the mixed
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phase by melting of a composite Abrikosov vortex lattice into a state
with a remaining ordered neutral mode [70].

7.3.1 Vortex matter in 𝑝𝑥 + 𝑖𝑝𝑦-superconductors

In our work we have been specifically interested in the vortex matter
of superconductors with 𝑝-wave symmetry. These types of supercon-
ductors are described by two components that are intrinsically cou-
pled and give rise to unconventional composite vortices as described
in Section 7.2. The stable single-quanta composite vortices, which are
denoted as vortex type (1,−1) in the notation of Section 7.2, are the-
oretically predicted to form lattices with square symmetry [110–112].
Such symmetry has been observed in the vortex lattice of the uncon-
ventional superconductor Sr2RuO4 [113–116] and is thus part of the
body of evidence supporting a 𝑝-wave symmetry of the superconduct-
ing state of this material. The theoretical predictions are supported by
numerical calculations that also show that at lower fields a triangu-
lar vortex lattice consisting of double-quanta (2, 0)-vortices is the pre-
ferred configuration [98]. Since these calculations did not account for
thermal fluctuations in a convincing way, we used large-scaleMC sim-
ulations to consider this effect on the vortex matter. Our results sup-
port the transition of a triangular vortex lattice consisting of double-
quanta vortices to a square vortex lattice consisting of single-quanta
vortices at higher fields and temperatures. These results are presented
in Paper II.

7.4 Observables of lattice symmetry

In this section we discuss two tools usable in lattice theories for con-
sidering the symmetry of vortex line lattices. These tools are based on
the observables of vortex flux density discussed in Section 7.1, but in
this case, we are interested in measuring the structural correlations of
a collection of vortex lines.

7.4.1 Structure function

The structure function of a discrete cuboid system of 𝑁𝜇 lattice sites
along the ̂𝜇 direction andwith local vorticity𝑛𝑧

𝒓 as defined in Eq. (7.6),
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is defined as

𝑆(𝒌⟂) =
1

(𝑓𝑁𝑥𝑁𝑦𝑁𝑧)2
⟨∣∑

𝒓
𝑎2𝑛𝑧

𝒓𝑒𝑖𝒌⟂⋅𝒓⟂ ∣
2
⟩, (7.7)

where 𝑎 is the lattice spacing, 𝒓⟂ is the projected lattice vector 𝒓⟂ =
𝒓 − (𝒓 ⋅ ̂𝑧) ̂𝑧 down on the 𝑥𝑦-plane, and 𝑓 is the filling fraction, i.e.
the number of vortex quanta pr. plaquette in the 𝑥𝑦-plane. The filling
fraction 𝑓 relates to the inclusion of an external magnetic field in the
𝑧-direction as described in Section 7.1. This function takes a recipro-
cal 2D momentum vector as an argument and measures the structural
correlation of the vortex lattice at this Bragg-point with normalization
such that 𝑆(0) = 1.

To motivate this expression, consider a continuous cuboid system
with a uniform field in the 𝑧-direction with average flux density of the
number of magnetic flux quanta: ̃𝑓, which gives rise to a lattice of vor-
tex lines along the 𝑧-direction. Let 𝑛𝑧(𝒓) be a flux density distribution
of local vorticity in the 𝑧-direction such that if a vortex line with wind-
ing number 𝑛 ∈ ℤ goes through the point 𝒓0, then∫

𝐴
d2𝑟 𝑛𝑧(𝒓0) = 𝑛,

where 𝐴 is an area that contains the vortex line. Taking the average
over the 𝑧-direction keeps the value 𝑛 of any vortex flux-lines since
they will be coherent over this dimension of the system. In contrast,
any contributions from vortex loops, which could result from random
thermal fluctuations, will vanish in the limit of a large system size,
hence

𝑤(𝒓⟂) = ∫
𝐿𝑧

0
d𝑟𝑧 𝑛𝑧(𝒓)/𝐿𝑧, (7.8)

contributes to filtering out the vortex lines from the thermal noise. This
𝑤 produces a distribution of vortex lines over the extent of the system
in the𝑥𝑦plane. Sincewe are interested in structural correlations in this
system, we perform the 2D Fourier transform and look at its amplitude
through

̃𝑆(𝒌⟂) = ∣∫d2𝑟 𝑤(𝒓⟂)𝑒𝑖𝒌⟂⋅𝒓⟂ ∣
2
. (7.9)

This function then produces a reciprocal lattice of the 2D lattice of vor-
tex lines where Bragg-points that correspond to structural correlations
have increased value. To arrive at the structure-function, we need only
now to take the thermal average to average over thermal fluctuations
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of the vortex lattice lines and normalize such that 𝑆(0) = 1. To find
this normalization constant, we need to calculate the integral

∫d2𝑟 𝑛𝑧(𝒓) = ?, (7.10)

over the systems extent in the 𝑥𝑦 plane. However, from the definition
of 𝑛𝑧(𝒓), the answer is given to us. Since 𝑛𝑧(𝒓)measures the flux den-
sity of vorticity in the 𝑥𝑦-plane, then the integral is simply the total
vorticity, which can be written as ̃𝑓𝐿𝑥𝐿𝑦 by the definition of ̃𝑓. Finally
then, we arrive at the normalized dimensionless quantity

𝑆(𝒌⟂) =
1

( ̃𝑓𝐿𝑥𝐿𝑦𝐿𝑧)2
⟨∣∫d3𝑟 𝑛𝑧(𝒓)𝑒𝑖𝒌⟂⋅𝒓⟂ ∣

2
⟩. (7.11)

Discretizing this expression through the method in Section 5, i.e. by
letting ∫d𝑟 ↦ 𝑎∑𝒓, 𝑛

𝑧(𝒓) ↦ 𝑛𝑧
𝒓 and 𝐿𝜇 = 𝑎𝑁𝜈, then we find that

the filling fraction 𝑓, which is the number of vortex quanta pr. plaque-
tte of the lattice,4 is related to ̃𝑓 through 𝑓 = 𝑎2 ̃𝑓, and we reproduce
the expression in Eq. (7.7).

As an example of how the structure function singles out specific
structural correlations, consider Figure 7.3. Figure 7.3b shows a plot
of the structure function for all crystal momenta 𝒌⟂ in the 1st Bril-
louin zone. The 6 yellow points surrounding the origin corresponds
to correlations in the structure of the vortex lattice in these 6directions,
which implies a hexagonal lattice. The hexagonal lattice is shown di-
rectly in Fig. 7.3a, which in this case is a hexagonal lattice of double-
quanta vortices. Choosing specific points in the plot of Fig. 7.3b and
plotting the structure function’s value at different values of a parame-
ters of the system, e.g., temperature, is a common method for evaluat-
ing different phases of the structure of the vortex lattice, for example
for measuring when the vortex lattice melts into a vortex liquid (see
e.g. [70, 71, 117–119]).

7.4.2 Angular histogram

Building on the idea of measuring a specific point in the structure
function to signify a structural transition, we developed an angular

4. We note that by the definitions here, 𝑓 is a dimensionless quantity, while ̃𝑓 has
dimension inverse length square.
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Figure 7.3: Plots of vorticity of the +-component of a 𝑝 + 𝑖𝑝
superconductor system. Figure a shows a plot of the real space
vorticity, which corresponds to a thermal average of a discretized
version of 𝑤(𝒓⟂) from Eq. (7.9). Fig. b shows the corresponding
structure function, which shows a hexagonal structure of the
vortex line lattice.

histogram approach that is robust towards rotations of the vortex lat-
tice. We found this to be important in measuring the transition from a
hexagonal to a square vortex lattice since the angular symmetry of the
model allowed the hexagonal vortex lattice to freeze in various direc-
tions. To combat this rotation, we built a histogram of the angular dis-
tance between peaks in the structure function over several MC steps.
For a hexagonal lattice, such a histogram is peaked at the bin contain-
ing the angular distance 𝜋/3, while a square lattice would be peaked
at 𝜋/2. Plotting these bins of angular distance over various tempera-
tures, we were able to measure the transition from the square to the
hexagonal lattice as seen in Figure 7.4.

The histogram was constructed algorithmically by creating a set of
angular distances between peaks of the structure function for each
MC step. We first found the radius where the peaks were located,
by searching the average structure function over the entire MC series
within a specified radius interval for the radius 𝜌𝑚 that produced the
largest value of the discretization of the integral

∫
2𝜋

0
d𝜃 𝑆(𝜌, 𝜃), (7.12)

where𝑆(𝜌, 𝜃) is the structure function given in polar coordinates about
the Bragg-point 𝒌⟂ = 0. The entire series of MC data was then di-
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Figure 7.4: Plot of the bins of angular distance 𝛿𝜃 = 𝜋/3 and
𝛿𝜃 = 𝜋/2, as a function of simulation temperature.

vided into blocks containing Δ𝜏 numbers of individual MC measure-
ments of the structure function. Each such interval of structure func-
tionmeasurementswas then averaged over to yields separate averaged
measurements of the structure function. The averaging over sufficient
number of measurements Δ𝜏 is absolutely necessary in order to re-
veal the hidden vortex lattice from the noise. From each block 𝑡, a
structure function ring 𝑆𝑡(𝜃) was then created by selecting the high-
est value of the blocked structure function over a ribbon centered at
radius 𝜌𝑚 such that

𝑆𝑡(𝜃) = max
𝜌𝑚−𝛿𝜌≤𝜌≤𝜌𝑚+𝛿𝜌

{𝑆𝑡(𝜌, 𝜃)}. (7.13)

A collection of 𝑛 peak positions 𝑃 𝑡 = {𝜃𝑝}was then found for each
block by finding the highest possible 𝑆𝑚 such that 𝑆𝑡(𝜃) crossed the
line at 𝑆𝑚 a number of times equal to 2𝑛. From this set of peaks, then
all possible distances between these peak positions were constructed
by

Θ𝑡 = {𝛿𝜃𝑖𝑗 = |𝜃𝑝𝑖 − 𝜃𝑝𝑗 | | 𝑖 ≠ 𝑗, 𝜃𝑝𝑖 , 𝜃
𝑝
𝑗 ∈ 𝑃 𝑡}. (7.14)

Let Θ = ⋃𝑡 Θ
𝑡 be the union of all block sets of mutual angular peak

distances. The final histogram ℎwas then constructed based on all the
distances inΘ. Let the bin in this histogram of the interval [0, 2𝜋) that
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contains the angular distance 𝛿𝜃 be denoted Δ𝛿𝜃 such that

Δ𝛿𝜃 = [𝛿𝜃 − 𝛿𝜃−, 𝛿𝜃 + 𝛿𝜃+), (7.15)

for somenon-negative 𝛿𝜃− and 𝛿𝜃+. The value of the histogramℎ(Δ𝛿𝜃)
at this bin was then calculated by

ℎ(Δ𝛿𝜃) = 1
|Δ𝛿𝜃||Θ|

∑
𝛿𝜃′∈Θ

𝛿𝛿𝜃′∈Δ𝛿𝜃, (7.16)

where |Δ𝛿𝜃| is the size of bin Δ𝛿𝜃, |Θ| is the number of mutual dis-
tances 𝛿𝜃′ in Θ and 𝛿𝛿𝜃′∈Δ𝛿𝜃 is the Kronecker delta function defined
as

𝛿𝛿𝜃′∈Δ𝛿𝜃 = { 1 ∶ 𝛿𝜃′ ∈ Δ𝛿𝜃
0 ∶ 𝛿𝜃′ ∉ Δ𝛿𝜃 . (7.17)

An example of the resulting histogram from calculating ℎ(Δ𝛿𝜃),
given equal size of the Δ𝛿𝜃 intervals is shown in Figure 7.5. In this
figure we observe a large peak at 𝛿𝜃 = 𝜋/2 ≈ 1.6. This correlation
comes from the fact that there are 4 peaks in the structure function that
are equidistant to each other in angular distance from the origin. From
this we draw the conclusion that the histogram represents a signature
of a square vortex lattice. The even larger peak at 𝛿𝜃 = 𝜋 comes from
a mathematical symmetry of the 2D Fourier transform that says that
ℱ(𝒌) = ℱ(−𝒌)∗. The small peak at 𝛿𝜃 = 3𝜋/2 is a remnant of the
peak at 𝜋/2, while the peak at low 𝛿𝜃 is an artifact coming from noise
in the data.
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Figure 7.5: Plot of the bins of ℎ in Eq. (7.16) for a simulation of a
square vortex lattice. The bins corresponding to 𝛿𝜃 = 𝜋/3 and
𝛿𝜃 = 𝜋/2 are colored orange to mark the main contributions from
a triangular- and square lattice, respectively.
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Chapter 8
Outlook

In this thesis we have introduced some of the fundamental techniques
we employed in our theoretical investigations into the nature of un-
conventional superconductivitywith 𝑝-wave pairing symmetry. These
investigations have resulted in three papers.

In Paper I we used a group-theoretical approach to motivate the
form of the effective interaction potential between electronswhose low
energy excitations could be described in terms of Cooper-pairs with 𝑝-
wave symmetry. This potential was then used as a basis for deriving
the effective free energy for such a superconductor when it was influ-
enced by explicit spin-orbit interaction. We found that the effective
free energy had the expected form given by its group-theoretical con-
straints, but that previous assumptions about its coefficients needed
revision because of the effect of spin-orbit coupling.

In Paper II we used large-scale Monte-Carlo simulations to investi-
gate the vortex matter of a 𝑝-wave superconductor with a free energy
similar to the one derived in Paper I. We found a transition between
a square vortex-lattice of single-quanta vortices and a hexagonal vor-
tex lattice consisting of double quanta vortices as the temperature was
lowered in a finite field parallel to the crystallographic 𝑐-axis.

In Paper IIIwe investigated this same superconductorwhen exposed
to zero external magnetic field and found an Ising phase transition in
the neutral sector of the theory. This transition did not separate from
the phase-transition of the charged sector in contrast to other models
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of two-component superconductors. The reason for the connection be-
tween the charged and neutral modes seemed to be because of their
group-theoretical nature as components of a single irreducible rep-
resentation. This identification implies equal stiffness for both com-
ponents and an explicit coupling through mixed gradient and mixed-
component terms in the effective free energy.

Looking towards the future, it now seems less likely that the un-
conventional superconductor Sr2RuO4 should be theoretically mod-
eled as a 𝑝 + 𝑖𝑝 superconductor despite the strong evidence for its
spontaneous time-reversal-symmetry breaking nature [120–122] and
the good agreement between theory and experiment for the qualita-
tive nature of its vortex lattices [98, 115]. Rather, the prevailing view
based on the current evidence has shifted to suggesting a degeneracy
between a 𝑑𝑥2−𝑦2 and a 𝑔𝑥𝑦(𝑥2−𝑦2) superconducting state [123, 124].
It might in this regard be interesting to use Monte-Carlo simulations
to investigate the vortex lattice behavior of such a superconductor and
see how it matches with experiments on Sr2RuO4.

In the exploration of such a novel symmetry state it might be ben-
eficial to utilize more modern forms of Monte-Carlo analysis such as
those offered by the advances in machine-learning to yield convincing
results in an efficient manner [125–127].

Building on the results of Paper I, it would be of interest to investi-
gate numerically how the kinetic dimensionless phenomenological pa-
rameters in the Ginzburg-Landau model depend on the microscopic
parameters, especially spin-orbit coupling strength and spin-orbit cou-
pling spin 𝑧-component.
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A Ginzburg-Landau free energy for a superconducting chiral p-wave order parameter is derived from a two-
dimensional tight-binding lattice model with weak spin-orbit coupling included as a general symmetry-breaking
field. Superconductivity is accounted for by a BCS-type nearest-neighbor opposite-spin interaction where we
project the potential onto the p-wave irreducible representation of the square lattice symmetry group and assume
this to be the dominating order. The resulting free energy contains kinetic terms that mix components of the
order parameter as well as directional gradients—so-called mixed gradient terms—as a virtue of the symmetry
of the order parameter. Spin-orbit coupling and electron-hole anisotropy lead to additional contributions to the
coefficients of these terms, increasing the number of necessary phenomenological parameters by one compared
to previous work and leading to an increase in the coefficient measuring Fermi-surface anisotropy for Rashba
spin-orbit coupling in the continuum limit.

DOI: 10.1103/PhysRevB.98.014510

I. INTRODUCTION

Spin-orbit coupling (SOC) couples the spin of the electron
to its momentum which splits spin-degenerate electronic bands
and is a recurring theme in many novel superconducting
systems. If SrTiO3 is slightly doped with Ca, there is a region
in the temperature-versus-carrier concentration phase diagram
where superconductivity and ferroelectricity coexist and where
the material has broken spatial inversion symmetry—a key
cause of SOC [1,2]. When SOC is a significant factor, the
associated symmetry of the superconductivity is often of
an unconventional character. In this context, unconventional
means superconductivity where the order parameter does not
have the usual spin-singlet s-wave pairing symmetry [3]. One
example is the one-atom layer of the Tl-Pb compound on a
Si(111) surface studied in Ref. [4]. This system exhibits two-
dimensional (2D) superconductivity at a critical temperature
of Tc ∼ 2.25 K followed by a Berezinskii-Kosterlitz-Thouless
transition and has Rashba SOC leading to a maximum splitting
of spin bands by ∼250 meV. In this case the superconductivity
is argued to be nonconventional because the average distance
between Cooper pairs is longer than the Ginzburg-Landau (GL)
coherence length.

Another example is the 2D electron liquid in the celebrated
LaAlO3/SrTiO3 interface (for a review see Ref. [5]). By
using a back gate to apply an electric potential across the
interface, which tunes the carrier density, Tc can be increased
to ∼300 mK [6]. In a certain region, tuning this gate voltage
affects the Rashba spin-orbit coupling dramatically—reaching
values of 10 meV. This region also seems to be correlated
to where superconductivity develops [7]. The unconventional
symmetry resulting from large Rashba SOC is evident from
the critical field parallel to the interface being much larger
than what would be expected from the Pauli limit [8].

Finally, it should be mentioned that it was initially the
discovery of superconductivity in the heavy fermion system

CePt3Si [9,10] that helped intensify research efforts into
noncentrosymmetric superconductors. This system exhibits an
increase in critical magnetic field compared to the Pauli limit
as well as suppression of superconductivity by nonmagnetic
impurities. Other lines of evidence for the unconventional
character of the order parameter include indications of line
nodes in the superconducting gap from penetration depth [11],
thermal conductivity measurements [12], among others. For a
more thorough overview of noncentrosymmetric systems, see
Ref. [13].

In this paper, the Ginzburg-Landau free energy density is
derived for a 2D square lattice with spin-orbit coupling where a
chiral px + ipy symmetry is assumed to describe the dominat-
ing pairing channel. This particular pairing state has attracted
much attention because of its topological properties, which
include the existence of topologically protected Majorana edge
states as well as Majorana bound states in the core regions
of half-integer vortices [14]. In the context of superfluidity,
p-wave pairing is realized as the A phase in 3He [15] and has
long been hypothesized to be the dominant superconducting
pairing symmetry in Sr2RuO4 [16–18].

The vortex structure of a phenomenological Ginzburg-
Landau theory for a 2D chiral p-wave pairing symmetry
[3,19] was studied using numerical simulations in Ref. [20].
A magnetic field breaks the degeneracy between the two com-
ponents of the order parameter so that one becomes dominant
whereas the other only exists close to topological defects, such
as vortices. The simulations found that the superconducting
vortices tend to arrange themselves in a square lattice of
single-quantized vortices when the magnetic field is very close
to the upper critical field, however for slightly lower field
strengths the phase diagram is dominated by a triangular lattice
consisting of double-quanta vortices, which are coreless. The
relative angular momentum between the dominant and the
subdominant components of the order parameter determines
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the kinds of vortices possible in the system and originates
in the structure of the mixed gradient terms in the GL free
energy. These terms also drive the subdominant component
[21]. An interesting question is therefore what physical pa-
rameters influence the phenomenological coefficients of these
types of terms. Mixed gradient terms have also been found
in a multicomponent GL theory for a s + is pairing state
derived through the Eilenberger equations for quasiclassical
propagators [22]. This state breaks time-reversal symmetry,
similar to the chiral p-wave state, and is found to exist in
a doped four-band model for iron pnictides [23]. In this GL
theory however, the terms could be eliminated by a simple
spin rotation in contrast to the p-wave case.

Expressions for Ginzburg-Landau theory coefficients for
general order parameters have previously been derived assum-
ing either pairing in the normal BCS spin basis and ignoring
spin-orbit coupling or by pairing in a single spin-orbit split
nondegenerate band [24]. Additionally, GL theory has been
derived for a superconductor with p-wave symmetry and a
coexistent ferromagnetic state [25]. The derivations in this
paper will largely follow the methods used in these two
references.

The difference between the current paper and Ref. [24] is
that spin-orbit coupling is considered a symmetry-breaking
field on the ordered state when deriving the GL theory. The
spin-orbit coupling strength is assumed to be small compared to
the Debye cutoff frequency. A similar system was considered in
Ref. [26] where the spin-orbit coupling strength was assumed
to be small relative to a Zeeman field. A pairing state with
p-wave symmetry in the diagonalized bands was discovered
as a result of a Kohn-Luttinger-type interaction coming from
the transformation of a repulsive U Hubbard model to the new
bands. In the present case, the interaction is assumed to give
rise to a chiral p + ip pairing symmetry in the nondiagonal
spin bands. This leads to a number of additional terms in the
generalized effective mass compared to the limit of zero spin-
orbit coupling.

The paper is organized as follows: In Sec. II the model
is introduced, first in terms of the single-particle properties
in Sec. II A, and then in Sec. II B the pairing interaction
is presented with a brief justification. A sketch of how the
Ginzburg-Landau free energy was derived is given in Sec. III
and its form reduced to the same as in Ref. [20]. The con-
tributions from spin-orbit coupling to the phenomenological
coefficients are finally discussed in Sec. IV. Details of the
calculations are relegated to the Appendices. Units are chosen
throughout the papers such that kB = h̄ = a = 1 for lattice
spacing a.

II. TIGHT-BINDING MODEL

A. Single-particle problem

The system is modeled as a two-dimensional square lattice,
which has symmetry group C4v where fermions can exist at
each lattice site. In the clean limit there is no disorder in the
system implying that the Fourier-transformed single-particle
Hamiltonian is diagonal in wave-vectors k. Including anti-
symmetric spin-orbit coupling [13] by spin-dependent hopping
between lattice sites, the single-particle Hamiltonian can be

written

Ĥ0 =
∑

s1s2 =↑↓
k

[ε(k) + γ (k) · σ ]s1s2c
†
ks1

cks2 , (1)

where σ consists of Pauli matrices, cks is the annihilation
operator for a fermion with wave-vector k and spin s, and
the sum over k runs over the first Brillouin zone. Hermiticity
of the Hamiltonian implies that ε(k) and γ (k) are real.
Time-reversal symmetry implies the restrictions ε(k) = ε(−k)
and γ (k) = −γ (−k). If parity symmetry is enforced, γ (k)
vanishes, and this vector is hence identified with the parity
breaking antisymmetric spin-orbit coupling. The Hamiltonian
in Eq. (1) becomes diagonal by a unitary transformation to the
helicity basis given by

ak = 1√
2

(
iγ̂ y−γ̂ x√

1−γ̂ z eiφ+ iγ̂ y−γ̂ x√
1+γ̂ z eiφ−

−√
1 − γ̂ zeiφ+

√
1 + γ̂ zeiφ−

)†

ck, (2)

where φ± are arbitrary phases and γ̂ i = γ i(k)/|γ (k)|, assum-
ing γ has some nonzero component on the xy plane in spin
space, or a similar transformation if γ ‖êz (cf. Appendix B). The
dispersion relations of the eigenvalues of the single-particle
Hamiltonian are given by

εh
k = ε(k) + h|γ (k)|, (3)

where h ∈ {±} enumerates the two different helicity bands
when written in exponentials and is used as ±1 when written
as a factor.

B. Pairing interaction

To include p-wave superconductivity in the model, an
attractive BCS-type weak-coupling interaction is introduced
between electrons given by

V̂ = −1

2

∑
kk′q

∑
s1s2s

′
1s

′
2

Vkk′,s1s2s
′
1s

′
2

× c
†
(q/2)+ks1

c
†
(q/2)−ks2

c(q/2)−k′s ′
2
c(q/2)+k′s ′

1
(4)

for

Vkk′,s1s2s
′
1s

′
2
= Vb

db∑
m=1

d
(bm)
k,s1s2

(
d

(bm)
k′,s ′

1s
′
2

)∗
, (5)

where d
(bm)
k,s1s2

are coefficients for basis vectors for the db-
dimensional irreducible representation b. These basis vectors
are odd and linear in k, i.e., a p-wave-like momentum de-
pendence in the continuum limit. Since superconductivity is
introduced in the spin basis, it is assumed that the spin-orbit
coupling is sufficiently weak compared to the superconducting
energy scale for this pairing between opposite momentum
fermions to be valid, i.e., spin-orbit coupling is treated as a
symmetry-breaking field on the superconducting state [13].

The exact forms of the basis vectors are found in the process
of proving that such an interaction exists for the square lattice.
This is performed by finding the possible eigenvectors for a
general two-particle Hermitian operator V̂ that has eigenvec-
tors consisting of pairs of particles with opposite momentum.
The eigenspace of a Hermitian operator can be separated into
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DERIVATION OF A GINZBURG-LANDAU FREE ENERGY … PHYSICAL REVIEW B 98, 014510 (2018)

irreducible spaces that are representations of the symmetry
group of the lattice. By expanding in the spin-momentum basis
of the two-particle Hilbert space, any such eigenvector |d〉 can
be written

|d〉 =
∑

k,s1s2

ds1s2 (k)|k,s1〉|−k,s2〉. (6)

The eigenvectors will also include a cutoff function fc(εk)
since the attractive interaction is assumed to only exist on the
Fermi surface. This cutoff function is implicit in the notation
for ds1s2 (k). If the coefficient ds1s2 (k) is odd in k, then because
of the fermionic particle exchange symmetry and because it
is periodic in reciprocal lattice vectors it can be expanded in
terms of lattice vectors R as

ds1s2 (k) = 1√
N

∑
R

[βR sin(R · k) · σ iσ y]s1s2 . (7)

These general vectors are then projected down on the space
consisting of basis vectors of a particular irreducible represen-
tation (irrep.) b of interest by the projection operators [27,28],

P
(b)
ll = db

|C4v|
∑
g∈C4v

D
(b)
ll (g)∗g:, (8)

where D
(b)
ll are matrices of the irrep., g: denotes transformation

of a vector by the group element g, and the index l runs
over the dimension db of the irrep. The group C4v contains
one two-dimensional irrep. E. Projecting down on this irrep.
and assuming the eigenspace of V̂ only is constructed from
nearest-neighbor sites yields a vector space constructed from
the orthonormal basis vectors given by the spin-momentum
coefficients,

d
(Ey )
s1s2 (k) = − ẑ√

N
sin ky · (σ iσ y)s1s2 (9a)

≡ d(Ey )(k) · (σ iσ y)s1s2 , (9b)

d (Ex )
s1s2

(k) = ẑ√
N

sin kx · (σ iσ y)s1s2 (9c)

≡ d(Ex )(k) · (σ iσ y)s1s2 . (9d)

These are p-wave basis vectors since they are linear in
k in the continuum limit. Note that the assumptions of a
single 2D square lattice implies that basis vectors that have
k dependencies with components in the êz direction are
neglected. When V̂ is expanded in its eigenvector basis, it
is therefore possible that it has a channel consisting of the
eigenvectors in Eq. (9) and it has been proved that Eq. (4) is a
possible interaction.

This p-wave channel interaction could originate as the
dominant channel of a simpler interaction. As an example,
consider the attractive nearest-neighbor interaction,

V̂ = −V

2

∑
〈i,j〉

∑
s=↑↓

c
†
i,sc

†
j,−scj,−sci,s , (10)

which could be considered an effective one-band model from
a reduction of a multiband system [29]. Finding basis vectors
in the eigenspace of nearest-neighbor interactions analogous

to the irrep. E,V̂ becomes diagonal in this basis and can be
written in the form of Eq. (4) but with coefficient,

Vkk′,s1s2s
′
1s

′
2
= V

[ ∑
a=A1,B1

ψ (a)
s1s2

(k)
[
ψ

(a)
s ′

1s
′
2
(k′)
]∗

+
∑

m=x,y

d (Em)
s1s2

(k)
[
d

(Em)
s ′

1s
′
2

(k′)
]∗]

, (11)

where a runs over the one-dimensional irreps. A1 and B1 which
has basis vectors given by

ψ (A1)
s1s2

(k) = 1√
2N

(cos kx + cos ky)(iσ y)s1s2 , (12)

ψ (B1)
s1s2

(k) = 1√
2N

(cos kx − cos ky)(iσ y)s1s2 , (13)

and give the extended s-wave channel and d-wave channel,
respectively. Note that these basis vectors are normalized on
the first Brillouin zone and even though they have the same
coupling constant V , the critical temperature Tc of the different
channels is affected by physical parameters in the single-
particle part of the Hamiltonian, such as doping level and
spin-orbit coupling strength and is thus in general different.
The channel with the highest critical temperature will then
completely dominate as the relevant order for temperatures
immediately below Tc. This temperature can be calculated by
solving the linearized gap equation by, e.g., the method used
in Ref. [26] but is considered outside the scope of this paper.

III. DERIVATION OF GINZBURG-LANDAU FREE ENERGY

The Ginzburg-Landau coefficients are calculated by de-
riving the free energy F of the system described in Sec. II.
This free energy is defined as F = − 1

β
ln Z, where Z is the

partition function and β is inverse temperature. The partition
function is defined as Z = Tr e−β(Ĥ−μN̂), where Ĥ = Ĥ0 + V̂

is the Hamiltonian of the system, μ is the chemical potential,
and N̂ is the number operator. Calculating the trace in the
path-integral formalism where the annihilation and creation
operators get replaced by Graßmann fields ξ and ξ ∗, the
Hubbard-Stratonovich transformation is preformed on the p-
wave subspace of the potential V̂ , whereas the other subspaces
are neglected. It is assumed that there exists some region in
the doping level and SOC strength parameter space where
the p-wave coupling is associated with the highest critical
temperature such that neglecting the other subspaces of the
interaction is justified. Given the potential in Eq. (11), the
p-wave subspace is two dimensional, and its contribution to
the partition function can thus be written in terms of a path
integral over the two complex fields η(x) and η(y) as

eSint =
∫
D[η,η∗] exp

{
−
∫ β

0
dτ
∑
qm

[
2|η(m)

q |2
V

+ (Jm∗
q η(m)

q + Jm
q η(m)∗

q

)]}
, (14)
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where Jm
q is defined as

Jm
q =

∑
ks1s2

[
d (Em)

s1s2
(k)
]∗

ξ(q/2)−k,s2ξ(q/2)+k,s1 , (15)

and

Sint = V

2

∫ β

0
dτ
∑
qm

Jm∗
q Jm

q . (16)

In these equations both the Graßmann fields ξ and the complex
fields η are dependent on imaginary time. The time dependence
in the complex fields η, which are the order parameters of
the system, is neglected since the goal is a time-independent
Ginzburg-Landau theory, whereas the time dependence in
the Graßmann fields are converted to sums over Matsubara
frequencies. The system is assumed to be close to the transition
temperature Tc so that the free energy can be expanded to
second order in the order parameters after integrating out the
fermionic degrees of freedom. The integration itself is pre-
formed by expressing the part of the exponent with quadratic
dependence on fermionic fields as an Hermitian form ξ †Ǧ−1ξ

using four-component Matsubara vectors ξ such that the result
depends on the determinant of Ǧ−1 by

Zferm =
∫
D[ξ,ξ ∗] exp

(
−1

2

∑
ξ †Ǧ−1ξ

)

=
√

det Ǧ−1 = exp

(
1

2
Tr ln Ǧ−1

)
. (17)

The expansion to second order in the order parameter is
preformed by splitting Ǧ−1 into a diagonal matrix Ǧ−1

0
independent of η and a matrix φ̌ for which each element
is proportional to the order parameter components η(a). The
logarithm in Eq. (17) is then expanded by

Tr ln Ǧ−1 = Tr ln Ǧ−1
0 + Tr Ǧ0φ̌ − 1

2 Tr Ǧ0φ̌Ǧ0φ̌. (18)

The first term is absorbed into the normalization of the path
integral over η, whereas the second term vanishes trivially
which leaves the contribution of the third term. The single-
particle problem in Eq. (1) and thus the spin-orbit coupling
are included in this integration over fermionic degrees of
freedom. The order parameter is assumed to be slowly varying
in real space, which justifies a gradient expansion. Given these
assumptions and approximations, the free energy density in
momentum space takes the form

fq = Aab(η(a)
q )∗η(b)

q + Kab,ij (η(a)
q )∗η(b)

q qiqj , (19)

where the Einstein summation convention has been used to
drop the summation over directions i,j = x,y and dimensions
of the subspace a,b = x,y. We denote Aab as the potential-
energy tensor whereas Kab,ij is the generalized effective mass
tensor [24]. It is worth noting that the same expression is
obtained regardless of what choice is made for the phases φ±
in Eq. (2), and whether γ has a component on the xy plane or
not.

Note that Eq. (19) does not contain terms linear in q.
Such terms, Lifshitz invariants, are in general allowed by
symmetry when the crystal does not contain an inversion center
[13]. When the order parameter only has a single component,
these terms exist only in the presence of an external magnetic

field and give rise to a helical nonuniform superconducting
state. However for a multiple-component order parameter,
symmetry allows Lifshitz invariants also in the absence of
any external field [30,31]. In Eq. (E29) in Appendix E, we
give an expression for the partition function that holds for
a general odd-momentum order parameter, which do exhibit
terms linear in q. These terms can be shown to be proportional
to d(bm′ )(k)∗ × d(bm)(k) and thus disappear for unitary odd-
momentum pairing states, such as the pairing state given by
the basis vectors in Eq. (E29).

A. Form of the free energy density tensors

The potential-energy tensor derived in Eq. (19) is given by

Aab = 2δab

V
−
∑
khh′

dab{1 − hh′[1 − 2(γ̂ z)2]}χhh′
, (20)

where χhh′
is the Matsubara-frequency sum over Green’s

functions given by

χhh′ = 1

β

∑
n

1(
iωn − εh

k

)(− iωn − εh′
k

) , (21)

and

dab = [d(Ea )(k)]∗ · d(Eb)(k). (22)

In Eq. (21) the chemical potential has been absorbed into the
definition of εh

k . As in Eq. (3), h,h′ ∈ {±}’s enumerate the
helicity bands and are used as ±1 when written as factors. Since
the only k dependencies in this sum are in the Fermi energies,
it is invariant with respect to symmetry transformations. This
means that the momentum sum vanishes if a 
= b since the
summand then becomes odd with respect to each of the
components of k [cf. definition of d(Ea )(k) in Eq. (9)].

The generalized effective mass tensor in Eq. (19) can be
expressed as

Kab,ij = 1

8

∑
khh′

dab({hh′[1 − 2(γ̂ z)2] − 1}χhh′
ij

+2h′hχhh′
gij ), (23)

where

gij = ∂i γ̂ · ∂j γ̂ − 2 ∂i γ̂
z∂j γ̂

z

−(γ̂ · ∂i∂j γ̂ − 2γ̂ z∂i∂j γ̂
z), (24)

and

χhh′
ij = − 1

β

∑
n

{
∂

∂ε

1

iωn − εh
k

∂

∂ε

1

−iωn − εh′
k

vh
i vh′

j

−
(

∂2

∂ε2

1

iωn − εh
h

)
1

−iωn − εh′
k

vh
i vh

j

−
(

∂

∂ε

1

iωn − εh
k

)
1

−iωn − εh′
k

m−1
hij

}

+h ↔ h′. (25)
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The inverse effective mass of the h band is given by

m−1
hij = ∂2εh

k

∂ki∂kj
= m−1

ij + h ∂i∂j |γ |, (26)

whereas the h-band Fermi velocity is given by

vh
i = ∂

∂ki
εh

k = vi + h ∂i |γ |. (27)

B. Approximation of free energy density tensors in terms of
Fermi-surface averages

More useful expressions can be obtained for Aab and Kab,ij

by expressing the sums over momenta k as averages over
energy surfaces defined as

〈(·)〉ξ ≡ 1

N0(ξ )

∑
k

(·)δ[ε(k) − ξ ], (28)

where N0(ξ ) is the density of states at energy ξ . Including the
chemical potential in the definition of ε(k), the Fermi surface
is obtained at ξ = 0. Let h[k,ε(k)] be a generic summand
in one of the k sums with an explicit ε(k) dependence. The
momentum sum is exchanged for a Fermi-surface average by
inserting an energy integral over a δ function such that∑

k

h[k,ε(k) =
∫ εc

−εc

dξ N0(ξ )〈h(k,ξ )〉ξ

≈
〈∫ εc

−εc

dξ N0(ξ )h(k,ξ )

〉
0

. (29)

The integral is cut off at εc because of the assumption that the
interaction potential only allows pairing to happen within some
energy shell around the Fermi surface. The energy average is
assumed to be constant over this energy shell such that only the
value at ξ = 0 is considered. To simplify the resulting integrals,
it is assumed that the critical temperature is small compared to
the energy cutoff such that

ec ≡ εcβ

π
� 1. (30)

The spin-orbit coupling is additionally assumed to be small
compared to the pairing energy range such that εc � |γ | ∀k.
With these approximations Aab becomes

Aab = δab

[
2

V
− 8NF ln(2ece

C)〈dab〉0

− 16NF 〈dab[1 − 2(γ̂ z)2]f (ρk)〉0

]
, (31)

whereas Kab,ij becomes

Kab,ij = NF β27ζ (3)

(2π )2
〈dabvivj 〉0 + N ′

F

ln(2ece
C)

2
〈dabm−1

ij 〉0

+NF

{
− 2

β2

π2
〈dab(γ̂ z)2f3(ρk)vivj 〉0

+ β27ζ (3)

(2π )2
〈dab[1 + (γ̂ z)2]∂i |γ |∂j |γ |〉0

+β

π

〈
dab

[
ρk

2e2
c

[1 + (γ̂ z)2] − (γ̂ z)2f2(ρk)

]
∂i∂j |γ |

〉
0

+〈dabf (ρk)gij 〉0

}

+N ′
F

{
β

π

〈
dab

[
f2(ρk)(γ̂ z)2 + ρk

7ζ (3)

4
[1 + (γ̂ z)2]

]

× (vi∂j |γ | + ∂i |γ |vj )

〉
0

−〈dab(γ̂ z)2f (ρk)m−1
ij 〉0

}
. (32)

The energy range [−εc,εc] is assumed to be sufficiently
small such that N0(ξ ) ≈ NF + N ′

F ξ is a good approximation.
NF = N0(0) is the value of the density of states at the Fermi
level, whereas N ′

F = N ′
0(0) is a measure of the particle-hole

asymmetry (PHA). The f functions are all convergent sums
that vanish in the limit of no spin-orbit coupling defined as

f (ρ) = Re
∞∑

n=0

(
1

2n + 1 + iρ
− 1

2n + 1

)
, (33)

f2(ρ) = Im
∞∑

n=0

1

(2n + 1 + iρ)2
, (34)

f3(ρ) = Re
∞∑

n=0

(
1

(2n + 1 + iρ)3
− 1

(2n + 1)3

)
. (35)

The dimensionless spin-orbit coupling ρk = β|γ |/π. ζ (·) is
the Riemann-f function and C in eC is the Euler-Mascheroni
constant. In Eq. (32) the terms are grouped such that the first
is independent of both SOC and PHA, then comes a term only
dependent on PHA, the bracket proportional to NF consists of
terms caused by SOC whereas the bracket proportional to N ′

F

consists of terms dependent on both PHA and SOC.

C. The limit of zero spin-orbit coupling

In the limit of zero spin-orbit coupling, the unit vectors γ̂

become indeterminate, however the expressions for the free
energy tensors Aab and Kab,ij still have a well-defined limit
since all the unit-vector dependencies vanish. To see this,
first consider the limit of |γ | → 0 of χhh′

. In this limit, the
band-energies εh

k → ε such that, after preforming the sum over
Matsubara frequencies, Eq. (21) becomes

lim
|γ |→0

χhh′ = tanh βε

2

2ε
≡ S[ε(k)]. (36)

Since χhh′
becomes independent of h, γ̂ z vanishes under the

sum over h and h′ in Eq. (20) and leaves

lim
|γ |→0

Aab = 2δab

V
− 4

∑
k

dabS[ε(k)]

= δab

[
2

V
− 8I 〈dab〉0

]
, (37)

for the energy integral,

I =
∫ εc

−εc

dξ N0(ξ )S[ξ ] ≈ NF ln(2ece
C). (38)
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This corresponds to the Aab calculated in Ref. [24] if V → 2V

and 8dab = tr[�†
a�b].

In χhh′
ij , the limit reduces vh

i → vi and m−1
h ij → m−1

ij as well
as the previously mentioned limit of Fermi energies εh

k → ε

such that

lim
|γ |→0

χhh′
ij = vivj

1

ε

∂2

∂ε2
(εS[ε]) + m−1

ij

∂

∂ε
S[ε]

≡ 4S2[ε]vivj + 2S1[ε]m−1
ij . (39)

Sinceχhh′
ij is independent ofh andh′ in the zero spin-orbit limit,

the second line in Eq. (23) as well as the parentheses in the first
line vanish under the hh′ sum. Inserting the above expression
for lim|γ |→0 χhh′

ij into Kab,ij and converting to Fermi-surface
averages yields

lim
|γ |→0

Kab,ij = −
∑

k

dab(2S2[ε]vivj + S1[ε]m−1
ij )

= −2〈vivjd
ab〉0I2 − 〈m−1

ij dab
〉
0I1 (40)

for the integrals [24],

I1 =
∫ εc

−εc

dξ N0(ξ )S1[ξ ] ≈ −N ′
F

2
ln(2ece

C), (41)

I2 =
∫ εc

−εc

dξ N0(ξ )S2[ξ ] ≈ −NF

7β2ζ (3)

8π2
. (42)

This corresponds to the result for Kab,ij found in Ref. [24] if
8dab = tr[�†

a�b].

D. Reduction by symmetries

By considering the symmetry of the coefficients Kab,ij

and Aab, the form of the free energy density fq in Eq. (19)
can be further restricted. Assuming we have chosen a proper
pseudospin representation [13], the spin-orbit coupling vector
γ (k) has the property,

γ (k) = R̃gγ
(
R−1

g k
)

(43)

for proper and improper rotations g where Rg is the 3 × 3
rotation matrix and R̃g = −Rg for improper rotations. This
relationship leads to the conclusion that [γ̂ (k)z]2 and γ̂ (k)2 are
invariant under all C4v symmetries. This implies that Kaa,iī and
Kaā,ii are both odd with respect to each of the components of
k and thus vanish under the k sum. Here the notation ā means

ā =
{
y, if a = x,

x, if a = y.
(44)

Remember that a,b,i,j ∈ {x,y}. Using the symmetries
Kaā,ij = Kāa,ij and Kab,ij = Kab,ji , the free energy density
can be expressed as [3]

fq = −α
(∣∣η(x)

q

∣∣2 + ∣∣η(y)
q

∣∣2)
+ κ1

(∣∣qxη(x)
q

∣∣2 + ∣∣qyη(y)
q

∣∣2)
+ κ2

(∣∣qyη(x)
q

∣∣2 + ∣∣qxη(y)
q

∣∣2)
+κ3

[(
qxη(x)

q

)(
qyη(y)

q

)∗ + H.c.
]

+κ4
[(

qyη(x)
q

)(
qxη(y)

q

)∗ + H.c.
]

(45)

for coefficients α = −Axx, κ1 = Kxx,xx, κ2 = Kxx,yy , and
κ3 = κ4 = Kxy,xy . Rotating the coordinate system such that

(
qx

qy

)
=
(

cos θ − sin θ

sin θ cos θ

)(
q̃x

q̃y

)
, (46)

defining the chiral basis of the order parameters as(
η+
η−

)
= 1√

2

(
1 i

1 −i

)(
η(Ey )

η(Ex )

)
, (47)

as well as using dimensionless variables [19], the free energy
density can be further reduced to the form

fq = −(|η+
q̃ |2 + |η−

q̃ |2) + |q̃η+
q̃ |2 + |q̃η−

q̃ |2

+ Re{[ei2θ (ν + �) + e−i2θ (1 − �)][q̃xη+
q̃ (q̃xη−

q̃ )∗

− q̃yη+
q̃ (q̃yη−

q̃ )∗]}
+ Im{[e−i2θ (ν + �) − ei2θ (1 − �)][q̃xη−

q̃ (q̃yη+
q̃ )∗

+ q̃yη−
q̃ (q̃xη+

q̃ )∗]}. (48)

Here the dimensionless parameters are � = 2(κ2 − κ3)/(κ1 +
κ2) and ν = (κ1 − 3κ2)/(κ1 + κ2) [19]. In the above expres-
sion, the parameter � is new compared to the expression
in Ref. [19] and is necessary because of the additional con-
tributions to Kab,ij in Eq. (32) as will be discussed below.
Dimensionless variables were introduced by the substitution,(

η

q̃

)
→
(

η/
√

α√
2α

κ1+κ2
q̃

)
. (49)

Choosing θ = 0 and transforming to real space yields a free
energy density of the form

fGL = −(|η+|2 + |η−|2) + |Dη+|2 + |Dη−|2 + (ν + 1)

× Re{[Dxη
+(Dxη

−)∗ − Dyη
+(Dyη

−)∗]}
+ (ν − 1 + 2�) Im{[Dxη

−(Dyη
+)∗

+Dyη
−(Dxη

+)∗]}. (50)

Here Di stands for a dimensionless gradient in the i direction
in real space, and the space dependence of the order parameter
is implicit.

IV. SUMMARY

Mixed gradient terms in a Ginzburg-Landau free energy are
defined as terms of the form (Dxη

+)∗Dyη
− [21], i.e., terms

mixing different components and directional gradients. These
terms drive the subdominant component of a chiral p-wave
superconductor that exists in the core of topological defects,
such as vortices when a magnetic field breaks the degeneracy
between the superconducting components. The core structures
of vortices are also influenced by these terms in that the struc-
tures of the terms determine the relative phase of the two order
parameters and thus the different kinds of vortices possible
[20,21]. It is evident from the definition that the order parameter
needs multiple components for such terms to be present. The
number of components of the order parameter depends on
the number of dimensions of the irreducible representations
that the pairing interaction furnishes. If the symmetry group
contains a two-dimensional irreducible representation and the
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interaction contains this irrep. as a subspace of its eigenvalue
space, then the order parameter associated with this subspace
has two components. In the weak-coupling BCS framework
this discussion is based on, on-site Hubbard interaction on
a square 2D lattice in the clean limit only consists of the
one-dimensional s-wave representation. If spin-orbit coupling
is included as a symmetry-breaking field, then the gap function
is rotated in the new basis so that it gains a momentum
dependence determined by the SOC spin texture [13,32]. In
the case of Rashba spin-orbit coupling, the transformation is
such that the intracomponent elements of the gap function and
thus the pairing amplitude in the spin-orbit split bands and
gains a p-wave-like momentum dependence. Such systems
could thus be called effective p-wave superconductors [33],
however their topological properties are different from those
of true triplet p-wave superconductors and, importantly, the
order parameter does not gain additional components. For the
2D square lattice, this means that a pairing interaction that acts
at least as far as nearest-neighbor lattice sites is necessary for
a multicomponent order parameter to be present. This type
of interaction was also found to be sufficient to contain a
two-dimensional subspace given by the p-wave irreducible
representation basis vectors.

The two mixed gradient terms found in the Ginzburg-
Landau free energy fGL are determined by two phenomeno-
logical parameters � = 2(κ2 − κ3)/(κ1 + κ2) and ν = (κ1 −
3κ2)/(κ1 + κ2) where κ1 = Kxx,xx, κ2 = Kxx,yy , and κ3 =
Kxy,xy for the generalized effective mass tensor Kab,ij .

If both SOC and the particle-hole asymmetry are set to zero,
and we assume nearest-neighbor hopping, Kab,ij reduces to

Kab,ij = ζab

NF β27ζ (3)

(4π )2Nt2
〈vavbvivj 〉0, (51)

where ζab = (−1)δab−1. With this reduction, ν can be written
as

ν =
〈
v4

x

〉
0 − 3

〈
v2

xv
2
y

〉
0〈

v4
x

〉
0 + 〈v2

xv
2
y

〉
0

, (52)

as in Refs. [19,20] and is thus a measure of the Fermi-surface
anisotropy. The coefficient in front of the last mixed gradient
term becomes �0 and proportional to 〈v2

xv
2
y〉0

. It will therefore
exist as long as there is superconducting order, and the Fermi
velocity does not vanish. The coefficient in front of the first
mixed gradient term is, on the other hand, (ν + 1). From
Eq. (52) we see that for a completely anisotropic square Fermi-
surface ν = −1 such that this term vanishes. The remaining
term can in this case be rotated away by a rotation of the order
parameter components as in Refs. [22].

With the simplification ofKab,ij in Eq. (51), the parameter�
becomes � = −(ν − 1) and the form of fGL reduces to that of
Ref. [19] except for a minus sign. This discrepancy originates
with the choice made for the basis of the p-wave subspace.
To get equality, you would simply choose both eigenvectors
positive in Eq. (9), which would yield an irreducible represen-
tation equivalent to E. Then Kab,ij would reduce in the same
way except missing the factor ζab such that � = 0 and fGL

would reduce to the same form.

If the particle-hole asymmetry given by N ′
F is present,

Kab,ij gains a contribution from the Fermi-surface average
〈vavbm

−1
ij 〉0. For nearest-neighbor hopping, m−1

ij is diagonal
such that κ3 is not affected by it, however because of its
contribution to κ1 and κ2 the terms get rescaled. In the
continuum limit this leads to increasing coefficients for the
mixed gradient terms compared to the normal kinetic terms in
the free energy.

In the continuum limit ν is expected to vanish by Eq. (52)
since the Fermi surface becomes isotropic. However, including
Rashba spin-orbit coupling with a SOC vector of the form
γ = α(ky êx − kx êy) leads to

ν ≈ 1

2

(
α

kF t

)2

, (53)

where t > 0 is the nearest-neighbor hopping amplitude and kF

is the Fermi wave-vector magnitude because of the contribution
to the κ coefficients from the term NF 〈dabgij 〉0 in Kab,ij . From
this result we conclude that ν is no longer only a measure
of Fermi-surface anisotropy, but also a measure of spin-orbit
coupling strength. The coefficient in front of the last mixed
gradient term in Eq. (50) now becomes 1/(1 − ν), whereas
the other mixed gradient term coefficient is 1 + ν for the
choice θ = 0. This shows that, in the continuum limit, the
mixed gradient terms become more prominent compared to
the normal gradient terms as the Rashba spin-orbit coupling
strength increases.
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APPENDIX A: SYMMETRIES OF THE SINGLE-PARTICLE
PROBLEM

Combining the two different spin options for the annihila-
tion operators in Eq. (1) in a vector ĉk, then under time-reversal
θ̂ , the operators transform as [34]

θ̂ ĉkθ̂
−1 = iσ y ĉ−k, (A1a)

θ̂ ĉ†kθ̂
−1 = ĉ†−k(−iσ y). (A1b)

Since θ̂ contains a conjugation operator, the time-reversal
of the single-particle Hamiltonian in Eq. (1) becomes

θ̂ Ĥ0θ̂
−1 =

∑
k

θ̂ ĉ†kθ̂
−1[ε(k)∗ + γ (k)∗ · σ ∗]θ̂ ĉkθ̂

−1

=
∑

k

ĉ†−k[ε(k)∗ + γ (k)∗ · (−iσ y)σ ∗(iσ y)]ĉ−k

=
∑

k

ĉ†k[ε(−k)∗ − γ (−k)∗ · σ ]ĉk. (A2)

If the Hamiltonian should be time-reversal invariant, then
the coefficients must have the symmetries ε(k) = ε(−k)∗ and
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TABLE I. Character table for the group C4v . The first row gives
the conjugation classes, whereas the first column denotes the different
irreducible representations. Note that E is the only two-dimensional
irreducible representation.

C4v e C2
4 2C4 2σv 2σd

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 1 −1 1 −1
B2 1 1 −1 −1 1
E 2 −2 0 0 0

γ (k) = −γ (−k)∗. Since the Pauli matrices are self-adjoint,
taking the adjoint of Ĥ0 yields

Ĥ
†
0 =

∑
k

ĉ†k[ε(k)∗ + γ (k)∗ · σ ]ĉk. (A3)

If the Hamiltonian should be Hermitian, then the coefficients
must satisfy ε(k) = ε(k)∗ and γ (k) = γ (k)∗. Time-reversal
invariance together with Hermiticity thus implies that the
coefficients are real, that ε(k) is even in k, and that γ (k) is
odd in k, which were the symmetries mentioned in Sec. II A.

APPENDIX B: DIAGONALIZATION OF THE
SINGLE-PARTICLE PROBLEM

It is easily verified through substitution that the basis defined
in Eq. (2) diagonalizes the Hamiltonian in Eq. (1) as long
as |γ̂ z| 
= 1, regardless of whether Ĥ0 is Hermitian or time-
reversal invariant. This means that the same diagonalization
is used when γ represents spin-orbit coupling (time-reversal
invariant but not parity invariant), and when it represents an
external magnetic field (parity invariant but not time-reversal
invariant). The matrix determining the basis in Eq. (2) is found
by solving the characteristic equation of the corresponding
linear-algebra problem and finding the normal eigenvectors
that correspond to each eigenvalue.

In the case that γ (k)‖êz the basis transformation instead
reads

ak = 1

2

(
(1 + γ̂ z)eiφ+ (1 − γ̂ z)eiφ−

(1 − γ̂ z)eiφ+ (1 + γ̂ z)eiφ−

)†
ck. (B1)

This results in the same expression for the eigenvalues εh
k =

ε(k) + h|γ (k)| as is obtained from the basis transformation in
Eq. (1).

APPENDIX C: BASIS VECTOR FOR THE IRREDUCIBLE
REPRESENTATION E OF C4v

The group of symmetry transformations of the two-
dimensional square lattice is denoted C4v in the Schönflies
notation or 4mm in the abbreviated Hermann-Mauguin no-
tation [27]. In Ref. [27] the character table of C4v is as
shown in Table I. For the one-dimensional irreps. the matrix
elements of the representation are the characters themselves.
For the two-dimensional irrep. E, the matrix elements of the

representation are given by

D(E)(e) =
(

1 0
0 1

)
,

D(E)
(
C2

4

) =
(−1 0

0 −1

)
,

D(E)(C4) =
(

0 −1
1 0

)
,

D(E)
(
C−1

4

) =
(

0 1
−1 0

)
,

D(E)(σx) =
(−1 0

0 1

)
,

D(E)(σy) =
(

1 0
0 −1

)
,

D(E)(σd1 ) =
(

0 −1
−1 0

)
,

D(E)(σd2 ) =
(

0 1
1 0

)
. (C1)

This can be verified by calculating the traces of the matrices
χ (E)(g) and showing that they satisfy the condition,∑

g∈C4v

|χ (E)(g)|2 = |C4v|, (C2)

which imply that this is an irreducible representation as well
as showing that the matrices satisfy the group multiplication
relations for group elements in C4v .

Since the goal is to find a basis for this representation E

consisting of eigenvectors of the Hermitian operator V̂ , these
basis vectors can be written in the form of Eq. (6), repeated
here for convenience,

|d〉 =
∑

k,s1s2

ds1s2 (k)|k,s1〉|−k,s2〉. (C3)

This eigenvector space is projected down on the irreducible
subspace of the irreducible representation by the projection
operator in Eq. (8). This operator includes the symbol g: which
means that the state should be transformed by the group-
element g. For spin-momentum eigenstates, the transformation
law is given by [34]

g:|k′,s ′〉 =
∑

s

|gk′,s〉Dgss ′ (C4)

for the matrix,

Dgss ′ = δss ′ cos(φ/2) − iû · σ ss ′ sin(φ/2), (C5)

where the rotation given by the angle and normal vector
(φ,û) is given by the proper rotation associated with g. The
transformation of vectors in the product space of two spin-
momentum eigenstates is thus given by

g:|k′
1,s

′
1〉|k′

2,s
′
2〉 =

∑
s1s2

|gk′
1,s1〉|gk′

2,s2〉Dgs1s
′
1
Dgs2s

′
2
. (C6)

Writing this as an active transformation where the transforma-
tion acts on the coefficients of the eigenvectors in Eq. (C3)
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results in

g:ds1s2 (k) =
∑
s ′

1s
′
2

Dgs2s
′
2
Dgs1s

′
1
ds ′

1s
′
2
(g−1k). (C7)

Coefficients that are odd in k can be written as

ds1s2 (k) = d(k) · (σ iσ y)s1s2 , (C8)

because of fermionic particle exchange asymmetry. The trans-
formation rule in Eq. (C7) is then simplified to

g:d(k) = R(û,φ)d(g−1k), (C9)

whereR is the conventional 3 × 3 rotation matrix, which shows
that d transforms as a vector. Since the k dependency of d(k)
must be such that it is invariant with respect to translations by
reciprocal lattice vectors it can be expanded as a Fourier series
in the fundamental lattice vectors R such that

d(k) = 1√
N

∑
R

βR sin R · k. (C10)

Applying the projection operators in Eq. (8) onto d(k) using
the transformation law in Eq. (C9) and the matrix elements of
the representation given in Eq. (C2), the x̂ and ŷ components
of β vanish leaving

P
(E)
ll d(k) = ẑ

2
√

N

∑
R

βz
R[sin(R · k) + (−1)l sin(ẑ · R × k)].

(C11)

This expression implies immediately that the simplest potential
that contains a nonvanishing representation E is a nearest-
neighbor potential where R ∈ {(0, ± 1),(±1,0)}. Inserting
these possible lattice vectors R in the sum

∑
R in Eq. (C11),

vectors in the projected space can be written

P
(E)
ll d(k) = ẑ

2
√

N

{(
βz

(1,0) − βz
(−1,0)

)
[sin kx + (−1)l sin ky]

+ (βz
(0,1) − βz

(0,−1)

)
[sin ky − (−1)l sin kx]}.

(C12)

Such vectors can clearly all be written using the basis vectors
made up of

d±(k) = ẑ(sin kx ± sin ky). (C13)

Although this is a basis for the irreducible vector space
associated with the irreducible representation E, it does not
transform as the matrices given in Eq. (C2). Recall that a basis
{bi} for a representation D transforms according to

g:bi =
∑

j

bjDji(g). (C14)

Instead {d±} transforms like an equivalent representation to
the matrices in Eq. (C2). This is simply solved by rotating the
basis into new basis vectors,

d(Ey )(k) = −ẑ sin ky, (C15a)

d(Ex )(k) = +ẑ sin kx, (C15b)

which when properly normalized gives the basis set in
Eq. (9).

APPENDIX D: SPECTRAL DECOMPOSITION OF
NEAREST-NEIGHBOR INTERACTION

To find the representations the potential in Eq. (10) consists
of, first it is Fourier transformed into

V̂ = −
∑
qkk′s

Ṽ (k − k′)

×c
†
(q/2)+k,sc

†
(q/2)−k,−sc(q/2)−k′,−sc(q/2)+k′,s (D1)

for

Ṽ (k − k′) = V

2N

∑
δ

eδ·(k−k′), (D2)

where δ sums over nearest-neighbor lattice vectors. The spec-
tral decomposition of V̂ is found by expressing V̂ in terms
of its eigenvectors. Since V̂ is a two-body operator, it is
completely determined by the matrix elements 〈αβ|V̂ |α′β ′〉
where |αβ〉 are states in the two-particle Hilbert space. For
BCS-type potentials this two-particle Hilbert space consists of
states where the particles have opposite momentum and any
eigenvector can thus be expanded as in Eq. (6). This means
that in terms of spin-momentum eigenstates, the potential can
be written as

V̂ = 1

2

∑
qkk′

∑
s1s2s3s4

Vk,k′;s1s2s3s4

× c
†
(q/2)+k,s1

c
†
(q/2)−k,s2

c(q/2)−k′,s4
c(q/2)+k′,s3

(D3)

for the matrix elements,

Vk,k′;s1s2s3s4
= 〈k,s1|〈−k,s2|V̂ |k′,s3〉| − k′,s4〉
= −2Ṽ (k − k′)δs1s3δs2s4σ

x
s1s2

. (D4)

The space associated with a single eigenvalue can in general
be written as a sum of irreducible spaces where each irreducible
space consists of basis vectors forming a basis for an irre-
ducible representation of the symmetry group [27]. If the space
consists of several irreducible representations, these are said to
have accidental symmetry since the fact that vectors belonging
to two different irreducible spaces have the same eigenvalue
is not necessary by symmetry and thus, in a sense, accidental.
Writing the basis vectors for an irreducible representation � as
|�,m�〉 where m� enumerates the dimensions of the irrep.,
this implies that {|�,m�〉} is a complete orthonormal basis
set. Inserting this complete set on either side of the potential
operator, in the space of two-particle states the potential can
be represented by

V̂ =
∑

�

V�

d�∑
m=1

|�,m�〉〈�,m�| (D5)

for the eigenvectors,

V� = 〈�,m�|V̂ |�,m�〉. (D6)

Note that it does not matter which of the d� different basis
vectors one inserts for m� since all will give the same eigen-
value as long as they are basis vectors in the same irreducible
space. These eigenvalues can then be evaluated by inserting a
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complete set of spin-momentum eigenstates as

V� =
∑
kk′

∑
s1s2s3s4

Vk,k′;s1s2s3s4

× (d (�,m� )
k,s1s2

)∗
d

(�,m� )
k′,s3s4

. (D7)

Inserting the irreducible representation basis vectors in
Eqs. (13), (12), and (9) yield the eigenvalues,

VA1 = VB1 = VEx
= VEy

= −V. (D8)

Conversely, Eq. (D5) may be inserted into Eq. (D4) such that
the spin-momentum eigenstate matrix elements can be written
as

Vk,k′;s1s2s3s4
=
∑

�

V�

d�∑
m�=1

d
(�,m� )
k,s1s2

(
d

(�,m� )
k′,s3s4

)∗
. (D9)

If all the eigenvectors given by irreducible representations have
been accounted for, this must reproduce Eq. (D1). Inserting
the singlet irreducible irreducible representations with even
functions ψ (a)(k) as well as the triplet irreducible basis vectors
with odd vector functions d(Ei )(k) from Eqs. (13), (12), and (9)
yield

V̂ = −V
∑
qkk′s

( ∑
a=A1,B1

ψ (a)(k)ψ (a)(k′)∗

+
∑
i=x,y

d (Ei )
z (k)d (Ei )

z (k′)∗

⎞
⎠

× c
†
(q/2)+k,sc

†
(q/2)−k,−sc(q/2)−k′,−sc(q/2)+k′,s

= −V

N

∑
qkk′s

Ṽ (k − k′)

× c
†
(q/2)+k,sc

†
(q/2)−k,−sc(q/2)−k′,−sc(q/2)+k′,s , (D10)

which indeed is the initial potential presented in Eq. (D1).
This shows that Eq. (11) is the diagonalized form of Eq. (10)
and the nearest-neighbor interaction thus consists of the irre-
ducible representations A1, B1, and E which correspond to the
extended s-wave, d-wave, and p-wave channels, respectively.

APPENDIX E: INTEGRATION OVER FERMIONS

The single-particle problem Hamiltonian Ĥ0 defined in
Eq. (1) and interaction potential V̂ defined in Eq. (4) for b equal
to the two-dimensional irreducible representation E of C4v

with eigenvectors given in Eq. (9) defines the relevant system.
The finite temperature partition function for this system can
then be written as a path integral over Graßmann fields ξ and
ξ ∗ as

Z =
∫
D[ξ ∗ξ ] e−S, (E1)

for the action,

S =
∫ β

0
dτ

{∑
kss ′

ξ ∗
k,s{δss ′ [∂τ + ε(k)] + γ · σ ss ′ }ξk,s ′

− V

2

∑
qm

Jm∗
q Jm

q

}
, (E2)

where Jm
q ’s are defined in Eq. (15). By Hubbard-Stratonovich

transforming the interaction potential exponential at the ex-
pense of introducing new auxiliary complex fields η(m)

q and
η(m)∗

q as in Eq. (14), the partition function can be factorized
into a path integral over the auxiliary fields and a path integral
over the quadratic fermionic Graßmann fields by

Z =
∫
D[η∗η] exp

[
−
∫ β

0
dτ
∑
qm

2
∣∣η(m)

q

∣∣2
V

]
ZF , (E3)

such that

ZF =
∫
D[ξ ∗ξ ] e−SF . (E4)

Because of the Hubbard-Stratonovich transformation, the
fermionic action SF now consists of only quadratic combi-
nation of Graßmann fields where one part of it comes from
the single-particle problem on the first line of Eq. (E2) and
the other is proportional with the new complex fields η. To
simplify the calculation, the Graßmann fields are transformed
through Eq. (2) to the helicity basis in which the single-particle
Hamiltonian is diagonal. Denoting the unitary matrix in the
transformation in Eq. (2), U (k)sh such that

ξks =
∑

h

U (k)shζkh, (E5)

the fermionic action SF can be written

SF =
∫ β

0
dτ

{∑
kh

ζ ∗
kh(∂τ + εh

k )ζkh

+
∑
k1k2

h1h2m

[
η

(m)
k1+k2

d̃
(Em)
k1k2;h1h2

ζ ∗
k1h1

ζ ∗
k2h2

+ η
(m)∗
k1+k2

(d̃ (Em)
k1k2;h1h2

)∗ζk2h2ζk1h1

]}
, (E6)

where in the last equality we have inserted the helicity basis
and defined the helicity transformed irrep. basis vectors,

d̃
(Em)
k1k2;h1h2

=
∑
s1s2

d (Em)
s1s2

(
k1 − k2

2

)
U (k2)∗s2h2

U (k1)∗s1h1
. (E7)

The imaginary-time dependence of the ζ fields is expanded
in a series of Matsubara frequencies through the unitary
transformation,

ζkh(τ ) = 1√
β

∑
n

e−iτωnζkhn, (E8)

for ωn = (2n + 1)π/β. This expansion results in a remaining
time dependence in the auxiliary complex fields η(τ ) which is
itself transformed into a bosonic Matsubara-frequency depen-
dence through the identification,

1

β

∫ β

0
dτ η

(m)
k1+k2

(τ )eiτ (ωn1 +ωn2 ) = η
(m)
k1+k2,n1+n2+1. (E9)

In the single-particle Hamiltonian, this transformation ex-
changes the ∂τ for −iωn2 . The fermionic action is now written
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as a bilinear form

SF = 1

2

∑
k1k2
n1n2

ζ T
k1n1

Ǎk1k2,n1n2ζ k2n2
, (E10)

through the 4 × 4 matrix Ǎ by collecting the fermionic fields
in four-component vectors,

ζ T
kn = (ζk+n,ζk−n,ζ

∗
k+n,ζ

∗
k−n). (E11)

Since each vector contains all the different Graßmann fields
(both fields ζ and ζ ∗), the integral becomes the Pfaffian of the
antisymmetric component of Ǎ [35]. Reusing the notation Ǎ

for this antisymmetric component, the fact that the Pfaffian of
an antisymmetric matrix can be expressed as the square root
of the determinant of this matrix [36], is used to write

ZF = Pf(Ǎ) = ±
√

det(Ǎ) = exp
(

1
2 Tr ln Ǎ

)
. (E12)

The limit of zero spin-orbit coupling is used to argue that
+ should be used in front of the square root. The fact that
exchanging two rows of a matrix leaves the determinant
invariant is then used to write SF as the familiar sesquilinear
form

SF = 1

2

∑
k1k2
n1n2

ζ
†
k1n1

(Ǧ−1)k1k2,n1n2ζ k2n2
, (E13)

where the inverse Gor’kov Green’s-function Ǧ−1 is expressed
as

Ǧ−1 = Ǧ−1
0 + φ̌. (E14)

The two terms represent the inverse mean-field Green’s func-
tion,

(Ǧ−1
0 )k1k2,n1n2 = δk1k2δn1n2

×
(−iωn1 + ε+

k1
0

0 −iωn1 + ε−
k1

)
⊗ σ z,

(E15)

and the order-parameter-dependent 4 × 4 matrix,

(φ̌)k1k2,n1n2 = 2
∑
m

∑
n

δn,n1+n2+1

×
(

0 η
(m)
k1+k2,n

D
(m)
k1k2

η
(m) ∗
k1+k2,n

D
(m) †
k2k1

0

)
,

(E16)

where the 2 × 2 matrix D
(m)
k1k2

consists of the transformed irrep.
basis vectors, (

D
(m)
k1k2

)
h1h2

= d̃
(Em)
k1k2;h1h2

. (E17)

The result in Eq. (E12) is then expanded to second order in the
order parameter through Eq. (18). The first term is independent
of η and is thus absorbed in the normalization constant of the η

path integral. The second term vanishes when taking the trace,
leaving the third term such that

ZF = exp

(
−1

4
Tr Ǧ0φ̌Ǧ0φ̌

)
. (E18)

Since Ǧ−1
0 is a completely diagonal matrix, its inverse is trivial

to find. By simple matrix multiplication and summing over the
momentum and Matsubara-frequency indices for the trace, it
is found that

Tr Ǧ0φ̌Ǧ0φ̌ = 8
∑

mm′kk′
hh′n1n2

η
(m)
k+k′,n1

η
(m′)∗
k+k′,n1

d̃
(Em)
kk′;hh′ d̃

(Em′ )∗
kk′;hh′(

iωn2 − iνn1 + εh
k

)(
iωn2 − εh′

k′
) . (E19)

Since the goal is a time-independent Ginzburg-Landau theory, the order parameter is assumed to be time independent such that
η

(m)
k,n = δn0η

(m)
k . Inserting this assumption back into Eq. (E19) which is inserted into ZF in Eq. (E18) and then inserting this back

into the expression for Z in Eq. (E3) yields the expression,

Z =
∫
D[η∗η] exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∑
qm

β
2
∣∣η(Em)

q

∣∣2
V

− 2
∑

mm′kk′
hh′n

η
(Em)
k+k′η

(Em′ )∗
k+k′

d̃
(Em)
kk′;hh′ d̃

(Em′ )∗
kk′;hh′(

iωn + εh
k

)(
iωn − εh′

k′
)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (E20)

After shifting the momentum indices in the second term by

k → q/2 + k,

k′ → q/2 − k, (E21)

inserting the expression for d̃
(Em)
k1k2;hh′ from Eq. (E7) as well as the elements of the transformation matrices U (k)sh from Eq. (2), Z

can be rewritten in terms of the gap function [24],

�s1s2 (k,q) =
∑
m

η(m)
q d (Em)

s1s2
(k), (E22)

the spin-orbit-dependent matrix,

u(k)hss ′ = (σ 0 + hγ̂ · σ )ss ′ , (E23)
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and Green’s functions,

Gh(k,iωn) = (iωn − εh
k

)−1
, (E24)

as

Z =
∫
D[η∗η] exp

{
−
∑
qm

β
2
∣∣η(Em)

q

∣∣2
V

+ 1

2

∑
kqs1s2
s ′

1s
′
2

�s1s2 (k,q)�s ′
1s

′
2 (k,q)∗

∑
nhh′

Gh
(q

2
+ k, − iωn

)
u
(q

2
+ k
)h

s ′
1s1

×Gh′(q
2

− k,iωn

)
u
(q

2
− k
)h′

s ′
2s2

}
. (E25)

For further development, the center-of-mass momentum q of the Cooper pairs is assumed to be small compared to the fundamental
lattice constant so that the momentum dependencies in Eq. (E25) can be expanded to second order by

u
(q

2
± k
)h

≈ σ 0 + hσ ·
(

±γ̂ + qi

2
∂i γ̂ ± qiqj

8
∂i∂j γ̂

)
, (E26)

and

∑
n

Gh
(q

2
+ k, − iωn

)
Gh′(q

2
− k,iωn

)
= β

(
χh′h + qi

2
χh′h

i + qiqj

8
χh′h

ij

)
, (E27)

where the Einstein-summation convention notation has been used for repeated indices and ∂i = ∂/∂ki . χhh′
and χhh′

ij are defined
as in Eqs. (21) and (25), whereas

χh′h
i = lim

q→0

∂

∂qi

1

β

∑
n

Gh(q + k, − iωn)Gh′
(q − k,iωn). (E28)

Inserting these expansions, the resulting expression for Z becomes

Z =
∫
D[η∗η] exp

{
− β

∑
qm

2
∣∣η(m)

q

∣∣2
V

− β

2

∑
kq mm′

hh′

η(m)
q η(m′)∗

q

(
tr
[
d

(Em′ )†
k

(
hh′γ̂ · σd

(Em)
k γ̂ · σ T − d

(Em)
k

)]
χh′h

− qi

2
tr
[
d

(Em′ )†
k σd

(Em)
k

] · [γ̂ (h − h′)χh′h
i + ∂i γ̂ (h + h′)χh′h]+ qiqj

8

{
tr
[
d

(Em′ ) †
k

(
hh′γ̂ · σd

(Em)
k γ̂ · σ T − d

(Em)
k

)]
χh′h

ij

+ 2hh′χh′h tr
[
d

(Em′ )†
k

(
γ̂ · σd

(Em)
k ∂i∂j γ̂ · σ T − ∂i γ̂ · σd

(Em)
k ∂j γ̂ · σ T

)]})}
, (E29)

where tr[·] is a trace over the spin indices and d
(Em)
k is the matrix in spin space whose matrix elements are given by d (Em)

s1s2
(k). The

specific form of d (Em)
s1s2

(k) given in Eq. (9) leads to considerable simplifications of Eq. (E29) since the corresponding spin-vectors
d(Em)(k) are parallel and only retain the ẑ component. Inserting this fact, the partition function reduces to

Z =
∫
D[η∗η] exp

{
− β

∑
qm

2
∣∣η(m)

q

∣∣2
V

− β

2

∑
kqmm′

hh′

η(m)
q η(m′)∗

q tr
[
d

(Em)
k d

(Em′ )†
k

]

×
[
{hh′[1 − 2(γ̂ z)2] − 1}χhh′ + qiqj

8

({hh′[1 − 2(γ̂ z)2] − 1}χhh′
ij − 2h′hχhh′

gij

)
]}

. (E30)

Since the spin trace in Eq. (E30) can be written

tr
[
d

(Em′ )†
k d

(Em)
k

] = 2(d(Em′ ))∗ · d(Em), (E31)

the free energy tensors Aab and Kab,ij can now be identified from Eq. (E30) since their relation to the partition function is given
by

Z =
∫
D[η∗η] exp

{
−β
∑

q

[
Aab

(
η(a)

q

)∗
η(b)

q + Kab,ij

(
η(a)

q

)∗
η(b)

q qiqj
]}

. (E32)
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APPENDIX F: ENERGY INTEGRALS IN FERMI-SURFACE AVERAGES

The details of how to obtain the explicit expression for Kab,ij and Aab in Eqs. (31) and (32) from Eqs. (20) and (23) were in a
large part left out. In this Appendix, one of the integrals is worked out in detail, and the others needed to obtain these expressions
will be listed.

To see clearly what part of the generalized mass tensor Kab,ij is dependent on spin-orbit coupling and which is not, the
summation over h′ in Eq. (23) is performed to yield the expression,

Kab,ij = 1

4

∑
kh

dab
{
χhh

ij + (γ̂ z)2
(
χhh

ij − χ
h,−h
ij

)+ (χhh − χh,−h)gij

}
. (F1)

Inserting χhh′
ij from Eq. (25) into this expression and performing the approximation outlined in Eq. (29) for converting to

Fermi-surface averages yields the expression,

Kab,ij = 1

2

∑
h

〈
dab
{[

Ih
2 vh

i vh
j − Ih

1 m−1
hij

]+ (γ̂ z)2
[(

Ih
2 + Ih

4

)
vh

i vh
j − Ih

3 v−h
i vh

j − (Ih
1 − Ih

5

)
m−1

hij

]− 1

2

[
Ih − Ih

0

]
gij

}〉
0. (F2)

Here the I ’s represent energy integrals across the energy shell around the Fermi energy of varying combinations of Green’s
functions as well as the density of states N0(ε). As an example, consider the integral,

Ih
5 =

∫ εc

−εc

dξ
N0(ξ )

β

∑
n

1

iωn − ξ − h|γ |
∂

∂ξ

1

−iωn − ξ + h|γ | . (F3)

First the approximation N0(ξ ) ≈ NF + N ′
F ξ is used to split the integral in two: Ih

5 = Ih
5,1 + Ih

5,2 such that Ih
5,1 is the part that is

proportional to NF , whereas Ih
5,2 is proportional to N ′

F . The integrand of Ih
5,1 is then split using partial fractions such that

Ih
5,1 = NF

β

∑
n

1

2(iωn − h|γ |)
∫ εc

−εc

dξ

[
1

(−iωn − ξ + h|γ |)2
− 1

ξ 2 + (ωn + ih|γ |)2

]

= NF

β

∑
n

1

2(iωn − h|γ |)
[
− 2εc

ε2
c + (ωn + ih|γ |)2

− 2

ωn + ih|γ | tan−1

(
εc

ωn + ih|γ |
)]

= NF

π

∑
n

1

i(ωn + ih|γ |)
[
− ec

e2
c + (2n + 1 + ihρ)2

− 1

2n + 1 + ihρ
tan−1

(
ec

2n + 1 + ihρ

)]

≈ −NF β

iπ2

∑
n

1

(2n + 1 + ihρ)2
tan−1

(
ec

2n + 1 + ihρ

)

≈ −βNF h

π
Im

∞∑
n=0

1

(2n + 1 + iρ)2

= −βNF h

π
f2(ρ). (F4)

On the third line the dimensionless variables ec = βεc/π and ρ = β|γ |/π were introduced. It was assumed that the critical
temperature was low compared to the Debye frequency such that ec � 1 and the first term on the third line could be ignored since
it goes as ∼1/ec whereas the arctan goes like ∼π/2. On the last line, the sum over n was separated into the sum over positive and
negative n, resulting in the imaginary component of the first sum by shifting the summation index. For n ∈ [0,nc], ec/(2n + 1) � 1
such that tan−1 is approximately π/2. nc depends on ec and since ec � 1 then nc � 1 as well such that adding the terms in the
sum for n > nc does not change the limiting behavior.

Similarly, the integrand of Ih
5,2 is split using partial fractions, albeit in a slightly different way which produces

Ih
5,2 = −N ′

F

2β

∑
n

∫ εc

−εc

dξ

[
1

(−iωn − ξ + h|γ |)2
+ 1

ξ 2 + (ωn + ih|γ |)2

]

= −N ′
F

π

∑
n

[
1

2n + 1 + ihρ
tan−1

(
ec

2n + 1 + ihρ

)
− ec

(2n + 1 + ihρ)2 + e2
c

]

≈ −2N ′
F

π
Re

∞∑
n=0

⎡
⎣ tan−1

(
ec

2n+1+iρ

)
2n + 1 + iρ

− tan−1
(

ec

2n+1

)
2n + 1

+ tan−1
(

ec

2n+1

)
2n + 1

⎤
⎦

≈ −N ′
F f (ρ) − N ′

F

2
ln(2ece

C). (F5)
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Inserting these results back into Eq. (F3) then yields

Ih
5 ≈ −NF βh

π
f2(ρ) − N ′

F f (ρ) − N ′
F

2
ln(2ece

C). (F6)

The remaining integrals are calculated in a similar manner. In the cases where ρ/ec remains in the expression after integrating,
this is expanded to first order in O(ρ/ec), e.g., in Ih

0 . Terms proportional to e−ec are also neglected, such as in Ih
2 . With these

approximations the integrals become

Ih =
∫ εc

−εc

dξ
N0(ξ )

β

∑
n

1

ω2
n + (ξ + h|γ |)2

≈ NF ln(2ece
C) + hN ′

F |γ |[1 − ln(2ece
C)], (F7a)

Ih
0 =

∫ εc

−εc

dξ
N0(ξ )

β

∑
n

1

ξ 2 + (ωn + ih|γ |)2
≈ NF ln(2ece

C) + 2NF f (ρ), (F7b)

Ih
1 =

∫ εc

−εc

dξ
N0(ξ )

β

∑
n

1

iωn − ξ − h|γ |
∂

∂ξ

1

−iωn − ξ − h|γ |

≈ −NF h|γ |
2ε2

c

− N ′
F ln(2ece

C)

2
, (F7c)

Ih
2 =

∫ εc

−εc

dξ
N0(ξ )

β

∑
n

(
∂

∂ξ

1

iωn − ξ − h|γ |
∂

∂ξ

1

−iωn − ξ − h|γ | − 1

iωn − ξ − h|γ |
∂2

∂ξ 2

1

−iωn − ξ − h|γ |
)

≈ 7ζ (3)β2

4π2
(NF − h|γ |N ′

F ), (F7d)

Ih
3 =

∫ εc

−εc

dξ
N0(ξ )

β

∑
n

∂

∂ξ

1

iωn − ξ − h|γ |
∂

∂ξ

1

−iωn − ξ + h|γ |

≈ NF β2

π2

[
f3(ρ) + 7ζ (3)

8

]
, (F7e)

Ih
4 =

∫ εc

−εc

dξ
N0(ξ )

β

∑
n

1

iωn − ξ − h|γ |
∂2

∂ξ 2

1

−iωn − ξ + h|γ |

≈ −NF β2

π2

(
f3(ρ) + 7ζ (3)

8

)
+ N ′

F βh

π
f2(ρ), (F7f)

Ih
5 =

∫ εc

−εc

dξ
N0(ξ )

β

∑
n

1

iωn − ξ − h|γ |
∂

∂ξ

1

−iωn − ξ + h|γ |

≈ −NF βh

π
f2(ρ) − N ′

F ln(2ece
C)

2
− N ′

F f (ρ). (F7g)

The expression for Kab,ij in Eq. (32) is then obtained by inserting these integrals into Eq. (F2) and summing over h. The
integrals Ih and Ih

0 are used to obtain the expression for Aab in Eq. (31).
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We use large-scale Monte-Carlo simulations to study thermal fluctuations in chiral p-wave superconductors in
an applied magnetic field in three dimensions. We consider the thermal stability of previously predicted unusual
double-quanta flux-line lattice ground states in such superconductors. In previous works it was shown that,
neglecting thermal fluctuations, a chiral p-wave superconductor forms a hexagonal lattice of doubly-quantized
vortices, except extremely close to the vicinity of Hc2 where double-quanta vortices split apart. We find
dissociation of double-quanta vortices driven by thermal fluctuations. However, our calculations also show that
the previous predictions of hexagonal doubly-quantized vortices, where thermal fluctuations were ignored, are
very robust in the considered model.

DOI: 10.1103/PhysRevB.103.214517

I. INTRODUCTION

Higher angular momentum odd-parity chiral superfluid and
superconducting states are highly nontrivial pairing symme-
tries that result in novel topological as well as thermodynamic
properties. Examples are chiral p-wave and chiral f -wave
states. A prominent example of a condensed matter system
where such a phase is firmly established is within the very
rich phase diagram of superfluid 3He, where the so-called
A phase is a chiral p-wave superfluid. This unconventional
superfluid phase was first discovered in seminal works of Os-
heroff et al. [1–4]. It is the interplay between spin and orbital
degrees of freedom, with the multicomponent nature of the
matter field of the superfluid or superconducting states, that
makes the physics of such condensates much richer than the
corresponding physics in simple superfluids like 4He [5]. The
A phase of 3He has been used to explain exotic phenomena
such as a nonvanishing orbital angular momentum in thermal
equilibrium and unconventional dissipation behavior due to
coreless vortex textures [6–8].

On the other hand, chiral p-wave pairing in solid state
systems, i.e., superconductors, has remained less well estab-
lished. One candidate superconductor with such chiral pairing
that has been intensely investigated since its discovery is the
superconducting phase of Sr2RuO4 [9]. The crystallographic
structure of this compound is a perovskite, similar to the
high Tc cuprates. The normal metallic phase features trans-
port properties consistent with a 2D strongly correlated Fermi
liquid phase [10], and superconductivity arises out of this
normal state at T ≈ 1.5 K. Contrary to the high-Tc cuprates
however, Sr2RuO4 is a weak-coupling superconductor. For an
early review of the basics physics and superconductivity of
Sr2RuO4, see Ref. [11].

Conventional pairing is excluded in Sr2RuO4 by the many
unusual experimental properties of Sr2RuO4. Early works

revealed a number of unusual features and gave indication
of chiral p-wave superconductivity. The early experimental
results included the indication of suppression of supercon-
ductivity by nonmagnetic impurities [12–14]. A conventional
superconductor is expected to have a Tc independent of addi-
tion of small fractions of such impurities but rather depend
only on the number of magnetic impurities. Early NMR
Knight shift experiments showed a temperature-independent
Knight shift and thus a residual spin susceptibility as T → 0,
which is a hallmark of spin-triplet pairing [15,16]. Instead of
being isotropic, the gap in Sr2RuO4 is indicated to contain line
nodes or near nodes by both the temperature dependence of
the specific heat and thermal conductivity as well as scanning
tunneling microscopy measurements of the density of states.
Other early works on the anisotropy of the thermal conductiv-
ity also were interpreted in favor of chiral p-wave pairing state
[17–19]. Evidence for unconventional pairing in Sr2RuO4 is
provided by the combination of evidence for spontaneous
breaking of time-reversal symmetry and spin-triplet pairing.
Muon spin-relaxation experiments find spontaneous magneti-
zation in the superconducting state. Kerr effect experiments
find a temperature dependent Kerr twisting angle [20–22]
which, significantly, depends on the sign of the magnetic field.

One of the main predictions of theories of superconductors
with chiral p-wave symmetry is the existence of domains
of different chiralities of the superconducting order param-
eter, and as a result of this, the existence of chiral edge
currents between domains of different chirality. These chiral
edge currents should produce magnetic signatures observ-
able by scanning Hall probe microscopy. No experimental
proof of such chiral edge currents exists, in spite of several
attempts to detect them [23]. Another issue is that recent
17O Knight shift results have seen a substantial reduction of
spin susceptibility at low temperatures, which led to recently
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strengthened arguments against the hypothesis of spin-triplet
pairing [24]. However, the evidence for spontaneous symme-
try breaking [21,22], ultrasound [25], thermodynamics [26],
and unconventional vortex physics [27] strongly indicates a
multicomponent order parameter. Recent works suggested the
possibility of chiral d-wave, s + id , and s + ig order param-
eters for the superconducting state of Sr2RuO4 [26,28,29].
The intense experimental pursuit and controversies associated
with chiral p-wave pairing motivates the current work focused
on magnetic response of such systems. Moreover, the model
we consider is consistent with a certain chiral d-wave order
parameter [28] that is presently discussed in connection with
Sr2RuO4.

Furthermore, UPt3 is a heavy fermion topological type-II
superconductor with an unconventional superconducting state
believed to be a chiral f -wave pairing state with E2u irre-
ducible representation. At a phenomenological level, it can
be described by a Ginzburg-Landau (GL) theory of a two-
component complex matter field with the components related
by a time-reversal transformation and oppositely directed
internal orbital angular momentum [30]. The experimental
evidence for such a two-component description of the super-
conducting state of UPt3 was recently strengthened when its
time-reversal symmetry breaking character was demonstrated
by showing that the energy of the vortex lattice state depends
on the relative direction of the external magnetic field [31].
The theoretical description we will use is thus relevant to this
system.

Early numerical work showed that such a two-component
GL theory for UPt3 admits anisotropic vortices with nontrivial
core structures and a hexagonal vortex lattice consisting of
doubly-quantized vortices at field strengths H < 0.3Hc2 in
the ground state [32]. At higher field strengths H > 0.3Hc2,
the doubly-quantized vortices were found to dissociate into
singly-quantized vortices. However, the lattice symmetry of
the resulting singly-quantized aggregate vortex state was not
determined.

The GL theory used in this paper, which posits a chi-
ral symmetry of the superconducting state, is based on the
(two-dimensional) �−

5u representation of the D4h symmetry
group [33]. Lowest Landau-level calculations based on this
GL theory have predicted a square lattice of vortices when
the external magnetic field is applied parallel to the c axis
for high field strengths close to upper critical Hc2 [34]. For
fields parallel to the c axis close to the lower critical field
Hc1, an extended London theory predicted a singly-quantized
rectangular vortex lattices continuously deforming to singly-
quantized square vortex lattices as the magnetic field strength
was increased [35]. (Below we will define precisely what is
meant by singly-quantized and doubly-quantized vortices.)
Numerical energy minimization of the free energy has shown
that isolated doubly-quantized vortices are generically sta-
ble and actually are energetically favorable compared to two
isolated single-quanta vortices [36,37]. In a part of param-
eter space, this is corroborated by calculations of isolated
topological defects based on Eilenberger’s equation where a
�−

5u symmetry was assumed [38]. This led to the expectation
that double-quanta vortices form hexagonal lattices, while
the single-quanta vortices form square lattices based on the
symmetry of the current distribution of the isolated vortices.

The numerical studies of isolated vortices were extended
to a finite ensemble of vortices in Ref. [39], where a finite-
element method was used to minimize the GL free energy
when increasing the external magnetic field strength. These
computations found a robust hexagonal lattice of doubly-
quantized vortices at field strengths up to a very close vicinity
of Hc2 when the field was parallel to the c axis. This is in-
consistent with the vortex phase diagram of Sr2RuO4 [27]. To
examine the vortex structure at fields close to Hc2, a temper-
ature dependence was inserted into the quadratic coefficient
of the free energy which allowed the system to be moved
horizontally in the T -H phase space. Extremely close to Hc2,
the double-quanta vortices were seen to dissociate into single-
quanta vortices that arranged themselves in a square lattice
through a mixed phase where both single and double quanta
vortices were present. This type of behavior was, on one hand,
quite robust, but on the other hand has never been observed in
the materials that are candidates for chiral superconductivity.

The manner in which thermal effects were included in
Ref. [39] was at a mean field level, i.e., entropic effects were
not fully accounted for. This then leaves open the question
of whether these unusual vortex states and the field-induced
transitions between them are actually stable when thermal
fluctuations are included. In particular, a weak binding energy
as well as different entropic contributions of different lattices
can alter the conclusion of the dominant character of two-
quanta vortex lattice.

In other words, we will investigate in this paper whether the
predicted field regime of a transition from a doubly-quantized
hexagonal to a square singly-quantized vortex lattice with
increasing temperature [39] is dramatically over- or under-
estimated by not fully accounting for entropic effects. This
is particularly important in this system because the mean-
field-based Ginzburg-Landau model in an external field gives
two different vortex-lattice states that are close in free energy.
Moreover, the mean-field results found the transition from one
vortex lattice to the other at a temperature of about 80% of the
zero-field critical temperature Tc. At such elevated tempera-
tures it is by no means obvious that thermal entropic effects
can be neglected, even though the thermal fluctuations are not
critical. Thus, an assessment of whether the conclusion based
on a mean-field analysis is robust against more accurate esti-
mates of the entropy of the system is required. Specifically, we
attempt to answer if the double-quanta vortex lattice survives
inclusion of thermal fluctuations since there is more entropy
in a single-quanta vortex lattice, opening the possibility that it
may be entropically stabilized at substantially lower fractions
of Tc than the mean-field calculation would predict. Our ap-
proach is related in spirit to that of Ref. [40], where a decay
of single-quanta vortex lattice into a half-quanta lattice was
considered at elevated temperatures.

The purpose of the present paper is therefore to consider
the stability of doubly-quantized hexagonal vortex lattices and
singly-quantized square vortex lattices when all thermal fluc-
tuation effects are included in gauge fields and phases of the
complex matter fields. In strongly type-II one-component su-
perconductors, a good approximation is to neglect amplitude
fluctuations [41–46]. In chiral superconductors, the situation
is more subtle because of a number of massive normal modes
that are linear combinations of phase modes, magnetic modes,
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and amplitude modes [47]. Then the London-like approxi-
mation amounts to dropping the most massive modes and
neglecting some of the mixing.

We present the results of extensive Monte-Carlo simula-
tions of a chiral p-wave GL theory with an external field
parallel to the c axis. This paper is organized as follows. In
Sec. II, we present in detail the model we will consider, along
with a discussion of its parametrization. We then discuss a
subtle point on the discretization of this model on a numerical
grid and the choice of basis for the two-component matter
field. In Sec. III, we present details of the Monte-Carlo simu-
lations along with definitions of the observables we will use.
In Sec. IV, we present results of our detailed Monte-Carlo
simulations at a filling fraction f of field-induced vortices of
f = 1/64 at various temperatures, starting from high tempera-
tures and proceeding to lower temperatures. We find two types
of stable vortex lattices and an interesting transition region
where the vortex lattices thermally reconstruct. Conclusions
are presented in Sec. VI. Some mathematical details are rele-
gated to appendices.

II. GINZBURG-LANDAU MODEL

A. Dimensionless units and reduction of parameters

We consider the clean limit of the Ginzburg-Landau energy
density of the two-dimensional �5u irreducible representation
of the tetragonal D4h symmetry group which in the chiral basis
using dimensionless variables and units reads [35,39]

F = g−2|∇ × A|2 + |Dxη|2 + |Dyη|2 + 2κ̃5|Dzη|2 (1a)

+ (1 + ν) Re[(Dxη+)∗Dxη− − (Dyη+)∗Dyη−] (1b)

− (1 − ν) Im[(Dxη+)∗Dyη− + (Dyη+)∗Dxη−] (1c)

+ 2|η+η−|2 + ν Re(η∗2
+ η2

−) +
∑
h=±

(−|ηh|2 + 1

2
|ηh|4).

(1d)

The two dimensions of the representation are spanned by
the complex fields η±. The covariant derivative Da = ∇a −
iAa, and ν and g are dimensionless material parameters with
the restriction that |ν| < 1. Deriving the effective Ginzburg-
Landau energy from a microscopic model [48], it is seen
that ν = (〈v4

x 〉 − 3〈v2
x v

2
y 〉)/(〈v4

x 〉 + 〈v2
x v

2
y 〉), where va is the a

component of the Fermi velocity and the brackets: 〈·〉 indicate
an average over the Fermi surface. ν thus parameterizes the
anisotropy of the Fermi surface in that ν = 0 for a cylindrical
surface, while ν �= 0 for a Fermi surface distorted by fourfold
anisotropy.

The model in Eq. (1) is a restricted version of the full �5u

free energy which in SI units can be written [33,35,49]

F = −α|η|2 + β1

2
|η|4 + β2

2
(ηxη

∗
y − ηyη

∗
x )2 + β3|ηxηy|2

+ κ1(|Dxηx|2 + |Dyηy|2) + κ2(|Dyηx|2 + |Dxηy|2)

+ κ3[(Dxηx )∗Dyηy + (Dyηy)∗Dxηx]

+ κ4[(Dxηy)∗Dyηx + (Dyηx )∗Dxηy]

+ κ5(|Dzηx|2 + |Dzηy|2) + |∇ × A|2
2μ0

, (2)

TABLE I. Name, mean-field energy density, and solution modulo
an overall phase of the mean field minimization of F in Eq. (4).
The A phase is the phase that exhibits spontaneous time-reversal
symmetry breaking in zero magnetic field and is the one we focus
on in this paper. The B and C phases are time-reversal symmetric
odd-parity superconducting states with line nodes in the gap on the
Fermi surface.

Name F (η+, η−) u2

A phase − α2

2(β1−β2 )+β3
u(0, 1) ∨ u(1, 0) 2α

2(β1−β2 )+β3

B phase − α2

2β1+β3
u(±i, 1) α

2β1+β3

C phase − α2

2β1
u(±1, 1) α

2β1

where Da = ∇a − i(q/h̄)Aa, q is the charge of the Cooper
pair, h̄ is Planck’s reduced constant, and μ0 is the vacuum
permeability. In this expression, the conventional xy basis is
used for the complex fields ηx and ηy. Rotating this to the
chiral basis through the transformation

η± = 1√
2

(ηx ± iηy) (3)

yields the energy density

F = −α|η|2 + (2(β1 − β2) + β3)
|η+|4 + |η−|4

4

+ (β1 + β2)|η+η−|2 − β3

2
Re η2

+η∗2
−

+ κ1 + κ2

2
(|Dxη|2 + |Dyη|2) + κ5|Dzη|2

+ (κ1 − κ2) Re[Dxη+(Dxη−)∗ − Dyη+(Dyη−)∗]

+ (κ4 − κ3) Im[Dxη+(Dyη+)∗ + Dyη−(Dxη−)∗]

+ (κ4 + κ3) Im[Dxη+(Dyη−)∗ + Dyη+(Dxη−)∗]

+ |∇ × A|2
2μ0

. (4)

Taking the mean field limit and looking at the fourth-order
terms yields the constraint that for the mean field energy
to be bounded from below, β1 > 0, β3 > −2β1, and β3 >

2(β2 − β1). Minimizing F w.r.t. η± yields the three distinct
mean field solutions in Table I. The regions of the β3/β1,
β2/β1-parameter space for which each of these solutions min-
imizes F is shown in Fig. 1. One of these solutions, known
as the A phase, exhibits spontaneous time-reversal symmetry
breaking. This is the phase we are interested in examining.

We now focus on the A phase. To write F on a dimen-
sionless form, we scale the dimensionless energy density
F̃ and dimensionless fields η̃± by their mean field values
in the A phase such that F = 2α2/[2(β1 − β2) + β3]F̃ and
η± = √

2α/[2(β1 − β2) + β3]η̃±. We also choose the length
scale such that the coefficient in front of the first term in
the kinetic part of F becomes trivial in dimensionless units,
i.e., ∇a = √

2α/(κ1 + κ2)∇̃a. Finally we scale the gauge field
Aa = h̄

√
2α/(κ1 + κ2)/qÃa such that D̃a = ∇̃a − iÃa. To sim-

plify the notation, we neglect the tilde in the dimensionless
variables in the following. With these choices of units, F takes
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FIG. 1. Mean field phase diagram spanned by the fourth order
material constants βi. The A, B, and C regions correspond to the mean
field solutions given in Table I. The white region below the phases
give unbounded mean field energy and is unphysical. The blue line
β3 = 3β2 − β1 gives the values of parameter space spanned by the
parameter choices used in the reduced free energy density. This line
can be parametrized in terms of the single dimensionless parameter
ν for −1 < ν < 1.

the dimensionless form

F = − |η|2+|η+|4+|η−|4
2

+ 2

1 + �β̃
|η+η−|2 + ν Re η2

+η∗2
−

+ |Dxη|2 + |Dyη|2 + 2κ̃5|Dzη|2 + |∇ × A|2
g2

+ (1 + νk ) Re[Dxη+(Dxη−)∗ − Dyη+(Dyη−)∗]

+ �k̃ Im[Dxη+(Dyη+)∗ + Dyη−(Dxη−)∗]

+ (νk − 1 − 2�) Im[Dxη−(Dyη+)∗ + Dyη−(Dxη+)∗],
(5)

for dimensionless parameters

�β̃ = β3 − 3β2 + β1

β1 + β2
, (6a)

ν = β3

2(β2 − β1) − β3
, (6b)

νk = κ1 − 3κ2

κ1 + κ2
, (6c)

�k̃ = 2
κ4 − κ3

κ1 + κ2
, (6d)

� = κ3 + κ4 − 2κ2

κ1 + κ2
, (6e)

κ̃5 = κ5

κ1 + κ2
, (6f)

g = q

h̄

√
μ0

(κ1 + κ2)2

2(β1 − β2) + β3
. (6g)

So far, no assumptions have been made about the values
of the material parameters α, βi, and κi. Based on mi-
croscopic derivations of the kinetic constants in the weak
coupling and clean limit [48], we have that κ2 = κ3 = κ4 ∝
〈v2

x v
2
y 〉 and κ1 ∝ 〈v4

x 〉. For the case of a cylindrical Fermi
surface, another microscopic derivation of the Ginzburg-
Landau coefficients [50] shows that in the weak coupling
approximation the relations β2/β1 = κ2/κ1 and β3 = 3β2 −
β1 hold. The validity of these constraints has been ex-
tended to noncylindrical Fermi surfaces in Refs. [34,49].
Using these relationships, we see that �β̃ = �k̃ = � = 0,

g = q/

√
μ0κ

2
1 (1 + κ2/κ1)/β1/h̄, and ν = νk , such that Eq. (5)

reduces to Eq. (1) with the previously mentioned interpreta-
tion of ν as measuring the Fermi surface anisotropy.

The weak coupling relationship β3 = 3β2 − β1 constrains
the system to be along the blue dashed line in parameter
space in Fig. 1. This line can in turn be parametrized in
terms of ν such that β2/β1 = (1 − ν)/(ν + 3) and β3/β1 =
−4ν/(ν + 3). From the discussion in the last paragraph, we
can show that ν can be expressed in terms of Fermi-surface av-
erages over Fermi velocities as described below Eq. (1). From
this interpretation it follows that a cylindrical, i.e., isotropic
Fermi surface is equivalent with ν = 0, while a square, i.e.,
anisotropic Fermi surface is equivalent with ν = ±1. Going
back to the interpretation of ν as given in terms of the β

parameters, we thus see that the Fermi surface is cylindrically
symmetric for 3β2 = β1, which is where the blue line crosses
the x axis in Fig. 1. As ν approaches 1, where the Fermi
surface must be square, the system approaches the B phase. As
ν approaches −1, the system approaches the C phase instead.

B. Lattice Ginzburg Landau model

The GL energy E = ∫
F d3r in Eq. (1) is discretized on a

3D cubic lattice of points r containing values for the complex
fields η±

r as well as link variables

Ar,μ =
∫ r+lμ̂

r
Aμ(r) drμ (7)

between the points at r and r + lμ̂, where l is the lattice point
separation spacing. On the lattice, E = ∫

F d3r is written as
a lattice sum over the discretized energy density

E = l3
∑

r

F r, (8)

where r runs over the sites of the numerical lattice and the
lattice energy density F r is given by

F r = F r
K + F r

An + F r
MG + F r

V + F r
A. (9)

This defines an effective lattice gauge theory derived from the
continuum theory in Eq. (1). In Eq. (9), F r is split into various
gradient terms, a potential-energy term F r

V, and a magnetic
field energy density term F r

A, respectively. The gradient terms
have been written as a sum of three different terms to be
detailed below, namely a standard isotropic term F r

K, a term
contributing to anisotropy in the kinetic energy F r

An, and a
mixed gradient term F r

MG.
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In the discretized energy density, covariant derivatives are
treated by a forward difference scheme

Dμηh = (∂μ − iAμ)ηh �→ l−1
(
ηh

r+lμ̂e−ilAr,μ − ηh
r

)
, (10)

where the field value ηh
r+lμ̂ has been parallel transported back

to the point r via the Abelian U(1) parallel transporter Ur,μ =
e−ilAr,μ [51]. In the following, we set the lattice spacing l = 1.

Writing the complex fields ηh
r in terms of their amplitudes

ρh
r and phases θh

r , the discretized expression derived from the
kinetic part of F given by the covariant derivatives in Eq. (1a)
is written on the standard cosine form [52]

F r
K = 2

∑
μ,h

[
ρh 2

r − ρh
r ρh

r+μ̂ cos
(
θh

r+μ̂ − θh
r − Ar,μ

)]
. (11)

Here, h denotes the two chiral components h ∈ {±}, while μ ∈
{x, y, z} and we have set the parameter κ̃5 = 1/2 such as to
make the kinetic energy density isotropic.

Introducing the notation h̄ = −h, q ∈ {x, y} and the sym-
bol ζαβ = 1 − 2δαβ , the anisotropic part of F in Eq. (1b) is
discretized to

F r
An = (1 + ν)

∑
qh

ζqyρ
h̄
r ρh

r+q̂ cos
(
θh

r+q̂ − θ h̄
r − Ar,q

)
. (12)

These terms mix the two components and give different
signs of the contributions depending on the direction q̂, i.e.,
anisotropic contributions to the kinetic energy.

The contribution F r
MG in Eq. (9) is named the mixed gra-

dient terms since these terms mix the gradient directions as
well as the different components as seen in Eq. (1c). In the
discretized form, it is given by

F r
MG = − (1 − ν)

∑
q

[
ρ+

r ρ−
r sin(θ−

r − θ+
r )

+
∑

h

ζ+h ρh
r+q̂ ρ h̄

r sin
(
θh

r+q̂ − θ h̄
r − Ar,q

)

+ρ+
r+ ˆ̄q

ρ−
r+q̂ sin(θ−

r+q̂ − θ+
r+ ˆ̄q

− (Ar,q − Ar,q̄))

]
,

(13)

where q̄ ∈ {x, y} \ {q}.
The discretized potential part of F r is written as

F r
V = (ρ+

r ρ−
r )2(2 + ν cos 2(θ+

r − θ−
r ))

+
∑

h

[
−(

ρh
r

)2 + 1

2

(
ρh

r

)4
]
. (14)

The first term in Eq. (14) originates with the term 2|η+η−|2 +
ν Re(η∗2

+ η2
−) in Eq. (1d). Of particular interest in the present

context is the factor cos 2(θ+
r − θ−

r ). This term is minimized
for 2(θ+

r − θ−
r ) = π for ν > 0, thus potentially locking the

phase difference, and breaking the global U (1) invariance
of the system associated with the phase difference θ+

r − θ−
r

down to Z2. The last line in Eq. (14) comes from the last term
in Eq. (1d) and represents a soft constraint on the fluctuations
of the amplitude ρh

r . Finally, the gauge field energy is given
a noncompact discretization [53] such that Ar,μ ∈ (−∞,∞)
and

F r
A = g−2(� × Ar )2 = g−2

∑
μ>λ

(�μAr,λ − �νAr,λ)2, (15)

where μ, λ ∈ {x, y, z} and �μAr,λ = Ar+μ̂,λ − Ar,λ.
The model in Eq. (1) has thus been formulated on a lattice

in terms of two parameters, namely the coupling constant
of the gauge field to the matter field g and the parameter ν

describing the anisotropy of the Fermi surface. We will con-
sider the model in this restricted parameters space to make the
problem tractable in Monte-Carlo simulations. The parameter
values ν = 0.1 and g = 0.3 have been used for most of the
simulation results presented in this paper.

C. XY basis and pseudo-CP 1 constraint

The full Ginzburg-Landau model is still too complex to
simulate on a lattice of sufficient size. Therefore, a London
approximation is typically used for this kind of problem (see,
e.g., Refs. [41–46]). Taking the London limit in the chiral
p-wave case, however, requires special care. As discussed in
detail in Ref. [47], all phase and density degrees of freedom
are in general coupled. However, as discussed in the same
reference, the mixing between different modes for certain
parameters is small, making the London limit an adequate
approximation. The required conditions that must hold in this
study are: (i) the dominant length scale in magnetic field
should be much larger than the core size, and (ii) the ex-
ternal field should be sufficiently low so that vortex cores
do not overlap. Since we are interested primarily in vortex
dissociation transition, the binding energy comes from mixed
gradient terms, which are retained in our approximation. The
low temperature configuration we obtain is consistent with
the solutions found at low temperatures in the full Ginzburg-
Landau model [39].

To simplify the model, we introduce a pseudo-CP 1 con-
straint on the complex fields η±

r . Since these fields are related
to corresponding xy-basis fields ηa

r for a ∈ {x, y} through
the orthonormal transformation in Eq. (3), we may rotate
the expressions for the discretized free energy densities in
Eqs. (14), (11), (12), and (13) back to this basis. It is this
xy basis that is used in all simulations when evaluating the
free energy for accepting new states through the Metropolis-
Hastings algorithm, since, as we shall see, this ensures that
mixed component terms are retained in the London limit.

The conventional kinetic energy contribution in Eq. (11) is
invariant under the change of basis, such that

F r
K = 2

∑
aμ

[
ρa 2

r − ρa
r+μ̂ρa

r cos
(
θa

r+μ̂ − θa
r − Ar,μ

)]
. (16)

The expression for the onsite potential terms, however,
becomes slightly more involved, perhaps most succinctly
expressed as

F r
V = (1 + ν)

ρx 4
r + ρ

y 4
r

4
+

∑
a

[
−ρa 2

r + 1

2
ρa 4

r

]

+ (1 − ν)
(
ρx

r ρ
y
r

)2
[

1 + 1

2
cos 2

(
θ x

r − θ y
r

)]
. (17)

The anisotropy term remains similar in both basis, with the
xy-basis version having the form

F r
An = (1 + ν)

∑
aq

ζaqρ
a
r+q̂ρ

a
r cos

(
θa

r+q̂ − θa
r − Ar,q

)
, (18)
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the minor difference being that ζaq now depends on both
summation indices. Finally, the mixed-gradient terms take the
form

F r
MG = (1 − ν)

∑
a

[
ρa

r ρ ā
r cos

(
θa

r − θ ā
r

)

−
∑

q

ρa
r+q̂ρ

ā
r cos

(
θa

r+q̂ − θ ā
r − Ar,q

)
+ ρa

r+x̂ρ
ā
r+ŷ cos

(
θa

r+x̂ − θ ā
r+ŷ − (Ar,x − Ar,y)

)]
. (19)

The process of discretization commutes with the basis rota-
tion, i.e., first rotating the basis in Eq. (1) and then discretizing
the result yields the same expressions for F r.

The model is now simplified by taking the London limit
in the xy basis, i.e., neglecting xy-basis amplitude fluctua-
tions such that ρa

r = ρa∀r. The mean field A-phase solution
of Eq. (1) in the xy basis gives amplitudes ρx = ρy = 1/

√
2

which will be used in the following. Using the xy basis has
the comparative advantage over the chiral basis in that setting
the London-limit amplitudes equal to the mean field solution
amplitude values does not eliminate the mixed component
terms. Taking the limit in the xy basis allows the chiral basis
amplitudes to fluctuate since from Eq. (3) they are related to
their xy counterparts through

ρ± 2
r = ρx 2 + ρy 2

2
± ρxρy sin

(
θ x

r − θ y
r

)
. (20)

From this equation, we see that the xy basis London limit
implies the restriction

ρ+ 2
r + ρ− 2

r = ρx 2 + ρy 2 = 1, (21)

and in this sense the London limit in the xy basis may equiva-
lently be viewed as a CP 1 constraint on the chiral amplitudes
ρh

r . Note that a phase locking of θ x
r − θ

y
r = ±π/2 corresponds

to spontaneous time-reversal symmetry breaking in zero mag-
netic field, i.e., |η+

r |2 �= |η−
r |2.

Since the xy-basis London limit removes two real degrees
of freedom from the problem, we expect two constraints in the
chiral basis as well. The second constraint takes the form of
the relationship

tan θ+
r = tan

(
θ−

r + π

2

)
(22)

between the chiral phases. A derivation of this relationship can
be found in Appendix A. This implies that θ+ = θ− + π/2 +
πn for n ∈ {−2,−1, 0, 1} since phases are defined compactly
by θ ∈ [−π, π ). That the phases are not completely locked
to each other allows there to be a vortex singularity in one
component independent of the other.

D. Symmetrization and lattice potential

The discretization procedure in Eq. (10) does not in gen-
eral guarantee that the resulting discrete lattice free energy is
symmetric under the same transformations as the original con-
tinuum theory. It only guarantees that the continuum limit of
the discrete theory satisfies these symmetries. To ensure that
the lattice energy density is invariant under a fourfold rotation
of the numerical lattice, we introduce a symmetrization of the

discretized xy-basis free energy density as follows

F s = 1
4

[
F r + C4F r + C2

4F r + C3
4F r

]
, (23)

where C4 is a counterclockwise rotation by π/2 radians about
the ẑ axis, and we allow lattice translations because of periodic
boundary conditions (see next section).

Under this rotation, we let the gauge-field link variables
Ar,μ transform as the components of a vector field such that

C4 : Ar,μ = AC4r,C4μ. (24)

Since link variables are only defined for positive directions
from any numerical lattice point r, we use the relationship
Ar,−μ = −Ar−μ̂,μ whenever the transformation in Eq. (24)
results in a negative link direction. As a nontrivial example
C4 : Ar+x̂,y = −AC4r+ŷ−x̂,x.

To figure out how the complex fields ηa transform, we
remember that they are the coefficients of the vector d =∑

a ηaba whose basis vectors {ba} transform according to the
irreducible representation �5u [48]. Inserting the C4 represen-
tation matrix then yields the transformation

C4 :

(
ηx

r

η
y
r

)
=

(
0 −1

1 0

)(
ηx

C4r

η
y
C4r

)
=

(−η
y
C4r

ηx
C4r

)
. (25)

Inserting this transformation into the continuous free en-
ergy density F in Eq. (2), and remembering to also transform
the covariant gradients, it is readily verified that all terms are
invariant under C4 as indeed they need to be since C4 ∈ D4h.
For the discretized xy-basis version of the same free energy
in Eqs. (11)–(15), it is then similarly possible to check that
all terms are invariant under C4 except for the mixed gradient
terms in Eq. (19). The reason why this term is not symmetric
but the continuum version is, is again that the forward differ-
ence discretization procedure in Eq. (10) introduces artificial
anisotropies in the system; usually referred to as lattice po-
tentials and does not in general guarantee that the discretized
version satisfies all continuum symmetries. In this particular
case, it manifests as an explicit asymmetry because the gradi-
ents are in different directions in the same term.

Since all other terms than the mixed gradient terms are
already symmetric w.r.t. C4, it suffices to only present the
rotated version of this particular term when calculating the
symmetrized lattice free energy density F s. The details of this
expression can be found in Appendix B.

E. Boundary conditions and Landau gauge

The gauge field link variables are split into a fluctuating
and a constant part such that Ar,μ = A f

r,μ + Ac
r,μ. Periodic

boundary conditions are used in the fluctuating part A f
r,μ, as

well as in the discretized field components such that ηa
r =

ηa
r+Lμ

. For the constant part Ac
r,μ, twisted boundary conditions

are used by employing the extended Landau gauge forcing a
fixed magnetic flux through the system. The extended Landau
gauge is given by

Ac
r,q = 2πmq

Lq̄
rq̄, Ac

r,z = 0, (26)

where mq ∈ Z and the conditions in Refs. [54,55] have al-
ready been incorporated. This definition makes the full link
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variable boundary conditions periodic modulo 2π , which
prevents geometric frustration. Equation (26) together with
periodic boundary conditions for A f

r,μ forces the system to sat-
isfy the property

∮
A · dr⊥ = 2π f LxLy. This gives a magnetic

flux B = 2π f ẑ through the system for filling fraction

f = my

Lx
− mx

Ly
. (27)

The filling fraction then gives the number of magnetic field
vortex quanta pr. plaquette in the xy plane. In the results
presented in this paper the choice my = 1, mx = 0, which
reduces the gauge to the normal Landau gauge, has been used
for a system with Lx = Ly = 64 which yields f = 1/64. The
qualitative conclusions have however been tested for the sym-
metric choice my = 1, mx = −1. This choice is symmetric in
the sense that in this case we may write Ac = −r × B/2 for
B = 4π/Lẑ.

III. DETAILS OF THE NUMERICAL CALCULATIONS

A. Monte-Carlo update method

For the Monte-Carlo simulations, the Metropolis-Hastings
method [56] was used to sample states with a probability
distribution given by the free energy in Eq. (9). This method
fulfills the detailed-balance criteria such that importance sam-
pling gives thermodynamic averages as simple arithmetic
averages over the sampled states [57–59]. This method, as
well as all other numerics, was implemented in the Julia
programming language [60] version 1.0.3.

As described in Sec. II B, the free energy was discretized
on a cubic lattice of size Lx × Ly × Lz. Each lattice point con-
tains one fluctuating variable for each of the xy-basis phases:
θ x

r and θ
y
r , and three fluctuating link variables for the gauge

field, one for each direction of space: Ar,x, Ar,y, and Ar,z. A
Monte-Carlo update consists in this case of proposing new
values of all these variables, which proposes a new state of
a single lattice point and then rejecting or accepting this state
according to the Metropolis-Hastings method. A Monte-Carlo
sweep then consists of doing this for each individual lattice
point. New values of the phases were proposed uniformly
on an open interval θ x

r , θ
y
r ∈ [0, 2π ) using the Julia rand()

function which uses the Mersenne-Twister algorithm [61].
The gauge-field link variables were updated by a uniformly
distributed random value A′

r,q in a symmetric region centered
on the previous value Ar,q, such that A′

r,q − Ar,q ∈ [−A, A].
The parameter A which sets the size of the region was set to
A = 0.1 based on the fact that at this value at high tempera-
ture, the percentage of proposed states that were accepted was
∼30%.

In order to facilitate efficient computation on highly par-
allelized computer systems, the numerical lattice was divided
into sublattices that communicated with each other as their
lattice points were updated. The number of sublattices was
chosen according to what gave the fastest average perfor-
mance of Monte-Carlo sweeps, which for cubic systems of
size L = 64 turned out to be 16 sublattices. A single MC
sweep was then performed in, on average, 0.11 ± 0.01 s.

B. Observables

To study the model in Eq. (1) in the chiral basis, the xy-
basis variables were converted into their chiral counterparts
through Eq. (3). Since the trigonometric formulas for obtain-
ing the chiral phases θh

r diverge when |η±| → 0, these were
expanded to fourth order to handle this case. The technical
details of this can be found in Appendix C.

To characterize the vortices, we calculate the curl of the
gauge-invariant phase difference of each chiral component,
namely (∇ × (∇θh − A))/2π . This amounts to calculating
the lattice curl of the gauge-invariant phase difference �qθ

h
r −

Ar,q around a fundamental plaquette of the numerical lattice.
By adding the constant magnetic flux density f , we obtain a
quantity which we will call the local vorticity of each compo-
nent [53]

nh
r,z = 1

2π
εzi j�i

(
� jθ

h
r − Ar, j

)
π

+ f , (28)

where implicit summation over indices is understood and εzi j

is the Levi-Civita symbol. (φ)π is shorthand notation for
mod (φ + π, 2π ) − π , which draws the argument back into
the primary interval [−π, π ). The filling fraction f is defined
in Eq. (27) and gives the number of fundamental vortex quanta
pr. planar plaquette as determined by the extended Landau
gauge [53,62,63]. Note that �qθ

h
r − Ar,q in general does not

give the current of each component in the p-wave case, but
is sufficient to distinguish the structure of vortices and to
compare with the results in Ref. [39]. The z-averaged vorticity
is then naturally defined as

nh
r⊥,z = 1

Lz

Lz−1∑
rz=0

nh
r,z, (29)

which is used through its thermal average 〈nh
r⊥,z〉 in order to

obtain detailed information about the real space structure of
the vortex lattices as well as of the vortex cores in the present
model.

A related observable is the z-averaged gauge invariant chi-
ral phase difference

δθr⊥ =
〈

1

Lz

Lz−1∑
rz=0

(θ+
r − θ−

r )π

〉
, (30)

where 〈·〉 denotes thermal averaging. This observable is also
useful in studying the nature of the vortices.

To extract a clearer picture of the overall spatial correla-
tions of the vortex lattice we define the structure function

Sh(k⊥) = 1

( f LxLy)2

〈∣∣∣∣∣
∑
r⊥

nh
r⊥,ze

ik⊥·r⊥

∣∣∣∣∣
2〉

, (31)

which essentially amounts to taking the planar Fourier trans-
form of the z-averaged vorticity. The fast-Fourier algorithm
was used to efficiently compute the structure function for all
Bragg points k⊥. The structure function is normalized such
that Sh(0) = 1.

For any vortex lattice signature, the structure function is
expected to exhibit peaks at characteristic Bragg points sit-
uated equidistantly from the origin. For a hexagonal lattice
we expect six peaks with π/3 mutual angular distance, while
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for a square lattice we expect four peaks with π/2 mutual
angular distance. To distinguish these two signals clearly, the
histogram

h(δ�φh) = 1

δ�φh
∣∣{�φh

i

}∣∣ ∑
{�φh

i }
δ�φh

i ∈δ�φh (32)

is constructed, where δ�φh is some angular interval bin. The
angular distances �φh

i are obtained by calculating Sh(k⊥)
using a certain number of Monte-Carlo measurements, then
finding the radius |k⊥|m which yields the largest value of∫ 2π

0 Sh(|k⊥|, φ)dφ. A ribbon is then constructed around this
radius from which the largest value of Sh(k⊥) is picked for
each angle such that

Sh(φ) = max{Sh(|k⊥|, φ) : ||k⊥| − |k⊥|m| < kr}. (33)

The angular positions {φi} of the six highest peaks in Sh(φ) are
then found. Finally all mutual distances between these posi-
tions are found {�φi} = {|φk − φ j | : φk < φ j} which is used
to calculate the histogram h(δ�φh). The process is repeated
for independent Monte-Carlo measurements of Sh(k⊥) until
there are sufficient �φi to construct the histogram.

The above quantities, taken together, provide considerable
information on not only the symmetry of the vortex lattices at
various temperatures but also on the structure of the vortex
cores corresponding to each lattice symmetry. The critical
temperature at the position of the upper critical field crossover
line Hc2(T ) was found by examining the specific heat

Cv = β2
(〈E2〉 − 〈E〉2

)
(34)

and a chiral order parameter that we will now describe.
The Higgs field components η+ and η− are related through
the time-reversal transformation, hence a difference in their
density signify a spontaneous breaking of Z2 time-reversal
symmetry. Since this density can be measured by the com-
ponent amplitudes, a useful chiral order parameter is given by

δu2 =
∣∣∣∣∣
〈

1

LxLyLz

∑
r

(
ρ+ 2

r − ρ− 2
r

)〉∣∣∣∣∣
= 2ρxρy

LxLyLy

∣∣∣∣∣
〈∑

r

sin
(
θ x

r − θ y
r

)〉∣∣∣∣∣. (35)

From the last line it is clear that it is the locking of the xy phase
difference that is responsible for the breaking of time-reversal
symmetry.

C. Thermalization and measurement steps

Before measurements of observables were performed, the
lattice was initialized with random values for all fluctuating
variables at each lattice point, resulting in high energy states.
Then, a two-step thermalization procedure was done which
consisted of a stepwise decrease in temperature to decrease
the chance of a metastable state, followed by a number of
basic Monte-Carlo sweeps (thermalization). The steps dur-
ing the cooldown procedure were distributed as a geometric
series between a high and low temperature, so that more
MC sweeps would be concentrated at lower temperatures.
During cooldown, ≈ 1.3 × 105 MC sweeps were distributed

equally on 1024 temperature steps. This was then followed by
≈1.3 × 105 additional MC sweeps that were discarded before
measurements began. To confirm that this yielded a properly
thermalized state, we checked that the internal energy of the
system as a function of MC time had converged and remained
stable during measurements.

256 intermediate MC sweeps were performed between
each measurement to diminish autocorrelation effects. The
number of measurements of observables varied between simu-
lations, from 1024 for sampling at high temperatures, to 4096
when estimating Cv close to the phase transition.

Measurements were performed sequentially by lowering
the temperature, such that the last state of the lattice in the
measurement series at one temperature was used as the initial
state when thermalizing the simulation for the next lower
temperature. To prevent the simulation from getting stuck in a
metastable state, several series of simulations were performed
using independent initial states to verify the validity of the
results.

D. Post-processing

Multihistogram Ferrenberg-Swendsen reweighting [64,65]
was used to calculate the specific heat Cv accurately
at temperatures close to the peak in Cv . The nonlinear
Ferrenberg-Swendsen equations for free energy were solved
self-consistently and iteratively using the Julia NLsolve li-
brary in which automatic forward differentiation was used to
find the Jacobian and a trust-region method was used as the
iterative algorithm [66].

The jackknife method [67] and Ferrenberg-Swendsen
reweighting [64,65] were used to compute averages and un-
certainties of observables. The number of blocks dividing the
measurement series in the jackknife method was set to 128.
This gave a block length where the estimate of variance had
leveled off, indicating that autocorrelations had effectively
been reduced.

IV. LATTICE STRUCTURES

Before we present our numerical results based on our
large-scale Monte-Carlo simulations, we provide a schematic
introduction to the results to assist the reader. In Fig. 2, we
show schematically vorticities and phase windings that we
expect to find for two different types of vortices. In the follow-
ing, the notation will be as follows. A phase winding in chiral
component η+ of 2πn+ and in chiral component η− of 2πn−
will be denoted (n+, n−). A vortex with (n+, n−) = (1,−1)
will be denoted as singly quantized. A vortex with (n+, n−) =
(2, 0) will be denoted as doubly quantized.

For a singly-quantized vortex, the vorticity is expected to
have a magnetic field-profile centered at the origin, with a
maximum magnetic field at the origin, see Fig. 2(a). The
corresponding phase winding is shown in Fig. 2(c). Note
the fourfold symmetry in the color pattern, the radial mono-
tonicity in the phase value away from the origin, and the
2π discontinuity along the horizontal axis. For a doubly-
quantized vortex, the vorticity is expected to have a magnetic
field profile centered at the origin, with a minimum magnetic
field at the origin and a ring of maxima away from the origin,
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(a) (b)

(c) (d)

FIG. 2. Schematic of vorticities and corresponding phase differ-
ence signature θ+ − θ− of vortices for H > 0. (a) and (c) shows
vorticity and phase difference, respectively, for a singly-quantized
vortex with winding number n+ = 1 and n− = −1. (b) and (d) shows
vorticity and phase difference, respectively, for a doubly-quantized
vortex with winding number n+ = 2 and n− = 0. The figures are
directly based on the ones presented in Ref. [39].

see Fig. 2(b). The corresponding phase winding is shown in
Fig. 2(d). The main difference from the phase winding in
Fig. 2(c) is the inner circle close to the origin, where phase
windings are rotated by π/2 compared to the phase windings
in Fig. 2(c). For a detailed discussion of this point, see also
Sec. III of Ref. [39].

This will be our main diagnostic tool for identifying
whether vortices are singly or doubly quantized. As a check
on this, we will count the total vorticity in each component
and check that this corresponds to the total vorticity of the
system, given by the external magnetic field.

In the following, we focus on results obtained for the pa-
rameter set ν = 0.1, g = 0.3, f = 1/64. The parameter ν =
0.1 corresponds to a moderately fourfold anisotropic Fermi
surface. To set the temperature scale of our finite-field simu-
lations, we have found it useful to first perform Monte-Carlo
simulations in zero field to locate the maximum of the specific
heat Cv . This maximum occurs at T ≈ 2.016 ± 0.002 for f =
0, which we denote as the critical temperature Tc of the super-
conductor. A rounded and suppressed peak in the specific heat
persists at f > 0. For f = 1/64, this rounded peak (no longer
a phase transition) occurs at T = 1.86 ± 0.04. T = 1.86 is
therefore a natural temperature scale for the vortex system
at f = 1/64. For this filling fraction, we only expect to see
vortex lattice structures for T < 1.86.

We will mainly present results starting with high temper-
atures and then proceeding to lower temperatures. At high
temperatures, we will find a plasma phase totally domi-
nated by thermally induced vortex loops. Proceeding to lower
temperatures where a vortex-lattice forms, we find a singly-

quantized square vortex lattice. Lowering the temperatures
further, we eventually find a doubly-quantized hexagonal
lattice. At the end, we briefly discuss a “mixed” phase of
singly-quantized and doubly-quantized vortices, located at
intermediate temperature between the doubly-quantized and
singly-quantized vortex lattice phases.

A. Specific heat and chiral order parameter

To investigate what the relevant temperature scale in our
system is, we have performed Monte-Carlo simulations com-
puting the specific heat and chiral order parameter at f = 0
and f = 1/64. Figure 3 shows the specific heat as a function
of temperature at f = 0. A sharp peak is seen at a tempera-
ture T = 2.016 ± 0.002 and marks the phase transition from
the superconducting to the normal state. Also shown is the
specific heat at f = 1/64, which at T ∗ = 1.86 ± 0.04 shows
a broadened and suppressed peak compared to f = 0. This
peak marks the finite-field crossover to the normal state. In
what follows we will refer to this crossover temperature as
T ∗( f ).

The inset shows the chiral order parameter as a function of
T at f = 0 and f = 1/64. For f = 0, it vanishes at the same
temperature as the sharp peak in the specific heat is located
and shows that the f = 0 phase transition in this model is
associated with spontaneous time-reversal symmetry break-
ing. For f = 1/64, the presence of a magnetic field explicitly
breaks time-reversal symmetry by selecting a preferred chiral-
ity, which leads to a finite order parameter at T ∗( f ).

These results form a useful background for choosing rel-
evant temperatures at which to study vortex-lattice states at
finite f . Below, we will study such vortex states in the tem-
perature regime T ∈ [1.5–1.8], and from the above results we
conclude that these represent significant temperatures on the
scale of the critical temperature Tc. Hence, our Monte-Carlo
simulations at such temperatures will yield useful information
concerning the thermal stability of the vortex states we find.

B. Vortex states upon lowering temperature

1. Plasma state

For f = 1/64 and at high temperatures T � 1.90, the su-
perconductor is in a normal state where thermal fluctuations
have induced a proliferation of massive amounts of closed
vortex loops in the system. The resulting state is therefore a
vortex-plasma phase. This leads to the tableau shown in Fig. 4,
which depicts results of simulations at T = 2.0. The uniform
distribution of vorticity in space leads to a circular pattern at
low k-vector magnitude with increasing value with increasing
magnitude of the k vector. At higher k-vector magnitude, the
value of the structure function exhibits a square anisotropy
with higher values close to kcorners = π (1 − 2n, 1 − 2m) for
n, m ∈ {0, 1}. This anisotropy is due to short range correla-
tions since as k approaches kcorners, k measures shorter and
shorter correlations because of periodic boundary conditions.
At these length scales, the quadratic numerical lattice upon
which the continuum model has been discretized gains sig-
nificance and leads to the apparent anisotropy. The limits of
the color bar reveal that this anisotropy is very small, with a
maximum value less than 0.010. There is no real signal of
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FIG. 3. Specific heat dependence on temperature for a system with g = 0.3, ν = 0.1, and L = 64. The blue points marked by a hollow
square are for f = 0, while the green dataset with points marked by a black dash is for a system with f = 1/64. The inset shows the chiral
order parameter δu2 for the two filling fractions f = 0 and 1/64, with azure circles showing f = 0 while orange dashes show f = 1/64. In
the inset, the error bars are for the most part too small to be seen.

FIG. 4. Vortex state at T = 2.0 for a system with ν = 0.1, g = 0.3, and f = 1/64. The system is dominated by thermally induced vortices.
(a) Thermal average of the structure function. (b) Thermal average of real space vorticity. (c) Angular dependence of the structure function in a
circular thin annulus around k = 0. (d) Histogram of angular difference �θ between peaks in the angular dependence of the structure function.
The colored bars are the bins that include �θ = π/3 and �θ = π/2. These would correspond to hexagonal and square lattices, respectively.
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FIG. 5. Singly-quantized square vortex lattice state for a system with ν = 0.1, g = 0.3, f = 1/64, and T = 1.786. (a) shows the structure
function of a square vortex lattice. (b) shows the vortex lattice structure in real space. The vortices are located at the bright spots. All vortices
have a field maximum at the center of the vortex, cf. Fig. 2(a), consistent with singly-quantized vortices. (c) shows the fourfold angular
distribution of the structure function. (d) shows a histogram of the angular difference between peaks in the structure function. The colored
histograms denote angular difference between peaks in the structure functions corresponding to π/3 and π/2. The dominant peaks are found
at �θ = π/2, π , and 3π/2, corresponding to a square lattice.

vortex-lattice correlations detected at this temperature. The
histogram in Fig. 4(d) reveals a large spike at �θ = π . This
originates with the fact that the Fourier transform has the
property F (k) = F (−k)∗, such that the structure function is
equal at k and −k.

2. Singly-quantized square vortex lattice

We next discuss the vortex lattice state that first emerges as
the temperature is lowered below the crossover temperature
to the normal state, which is T ∗ = 1.86 at ν = 0.1, g = 0.3,
and f = 1/64. Figure 5 shows the results of Monte-Carlo
simulations performed at T = 1.786, computing the structure
function (a), vorticities (b), angular distribution of peaks in the
structure function (c), and histograms of angular difference
between peaks in the structure function (d). The structure
function clearly has fourfold symmetry, such that the vortex
lattice is square. This is also discernible in panel (b), although
less obvious than in (a). The angular dependence of the struc-
ture function shown in (c) shows four clear peaks separated
by π/2. The histograms of �θ in (d) show that the most
dominant nontrivial bin is π/2, marked by the orange bar.
The broadening around the large orange bar is due to thermal
fluctuations. The smaller orange bar represents the counts
at angular difference of π/3, corresponding to a hexagonal
lattice. The square lattice peak dominates the hexagonal peak,
leading to the conclusion that the symmetry of the lattice is
square, consistent with the result for the structure function in

(a). The peak in (d) at low angular value is attributed to the
square lattice peaks being jagged due to the temperature being
close to Tc.

Figure 5(b) shows the square lattice structure as a real
space average. One notable feature of the results of Fig. 5,
apart from the square vortex-lattice structure shown in (a), is
that the magnetic field maximum associated with the vortices
in (b) are located at the center of the vortices. Referring
back to our discussion of Fig. 2, we see that this is consis-
tent with singly-quantized vortices in each chiral component
(n+ = 1, n− = −1).

The nature of these points of increased vorticity is investi-
gated further by comparing the position of these points with a
real-space plot of average local phase difference between the
two components: 〈θ+

r − θ−
r 〉 in Fig. 6. The figures show that

points of increased vorticity correspond well with intersec-
tions between two regions of positive average phase difference
and two regions of negative average phase difference. This
corresponds to the same phase-difference pattern that is de-
picted in Fig. 2(c), again characteristic of singly-quantized
vortices.

The single quantum nature of the vortices is further corrob-
orated by the fact that the boundary conditions enforce a total
of 64 quanta of magnetic flux at any step of the Monte-Carlo
simulations. In Fig. 5, there are 62 clearly identifiable points
of increased vorticity. It could be that the system shows 62
single-quanta vortices and the remaining two vortices are too
thermally distorted to form enough of a coherent thermal
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(a)

(b)

FIG. 6. Vortex positions and phase differences for the parameters
used in Fig. 5. (a) shows an enhanced version of Fig. 5(b). The
center of each vortex is marked by a green dot. The azure dots mark
the positions of increased vorticity in the real space average. This
corresponds to a maximum of the magnetic field at the center of the
vortex, cf. the schematics of Fig. 2(a). (b) shows the phase difference
around each vortex, whose position is indicated by a green dot. Note
the fourfold symmetry of the phase-difference pattern around the
vortices, cf. the schematics of Fig. 2(c). (a) and (b) corroborate, along
with the results of Fig. 5, that at ( f = 1/64, T = 1.786) the vortex
lattice is a singly-quantized square lattice.

average to be identified, or it could be that the system has
60 single quanta vortices and two double-quanta vortices. In
any case, it is clear that the vortex state is dominated by
singly-quantized vortices.

The superconducting field amplitude of conventional su-
perconductors is suppressed in the presence of vortices. In the
case of a two-component field, the subdominant component
may be induced in the vicinity of the vortex core where the
dominant component is suppressed [39]. This is evident in
Fig. 7 where the dominant component amplitude ρ+ on the
left exhibits dark regions that correspond to the location of

increased vorticity in Fig. 5(b) and Fig. 6(a). On the right,
the subdominant component exhibits increased amplitude in
these regions as is required by the pseudo-CP 1 constraint in
Eq. (21). We conclude from this that the stable vortex state at
ν = 0.1, g = 0.3, f = 1/64, T = 1.786 is a singly-quantized
square vortex lattice.

3. Doubly-quantized hexagonal vortex lattice

We next consider the system at f = 1/64 and a lower
temperature T = 1.5. The plot of the average structure func-
tion in Fig. 8(a) shows six clear, equidistantly placed peaks.
Figure 8(b) shows the average vorticities in real space. The
vorticity distribution around each vortex is clearly of the
same type as depicted in Fig. 2(b), characteristic of doubly-
quantized vortices. The angular dependence of the structure
function in a thin annulus around k = 0 is shown in Fig. 8(c),
where six clear equidistantly placed peaks are seen. This is
again reflected in the histogram for �θ in Fig. 8(d) where a
large peak is observed at �θ = π/3 followed by peaks at in-
teger multiples of this. The real space vorticity average shows
32 independent ring structures (note that periodic boundary
conditions have been used), which indicates that each struc-
ture has two quanta of magnetic flux.

Figure 9(a) shows an enhanced version of Fig. 8(b). The
ringlike structure of enhanced vorticity surrounding the center
of each vortex is clearly seen, consistent with what is depicted
in Fig. 2(b). This is indicative of doubly-quantized vortices
(n+ = 2, n− = 0). The double quantum nature of the vortices
is also observed in the plot of real space phase difference
average in Fig. 9(b). It shows a clear inner 4π phase change
at low radius from the vortex center, where positive phase
difference is observed at an angle π/4 and 5π/4 from the
vortex center and negative phase difference at 3π/4 and 7π/4.
This pattern is repeated at larger radii away from the vortex
core but then rotated by π/2 degrees giving the vortices a
distinct core structure not observed in the single-quantum
case. It is finally noted that the real space average vorticity
in Fig. 8 shows decreased vorticity in the vortex core for the
positive component.

The component amplitudes in Fig. 10 again reflect the
hexagonal lattice pattern in Figs. 8 and 9. The dominant
component on the left is clearly seen to be suppressed in the
vicinity of the vortex cores, while the amplitude plot of the
subdominant component on the right shows that this compo-
nent in coincidentally induced.

The conclusion is thus that the simulations at f =
1/64, T = 1.5 clearly show a hexagonal lattice of doubly-
quantized vortices. Our simulations show that these doubly-
quantized vortex states remain stable down to the lowest
temperatures we have considered and persist up to tempera-
tures of T = 1.7. The temperature regime T ∈ [1.7–1.75] will
be discussed further below.

4. Mixed doubly and singly quantized vortex lattices

We next discuss the temperature regime where the tran-
sition from a higher-temperature singly-quantized square
vortex lattice to a lower-temperature doubly-quantized hexag-
onal vortex lattice takes place. For f = 1/64, the transition
takes place in the narrow range T ∈ [1.73–1.775]. Recall
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(a) (b)

FIG. 7. Component amplitudes averaged in the z direction for a system with ν = 0.1, g = 0.3, f = 1/64, and T = 1.786. (a) shows 〈ρ+
r⊥〉

while (b) shows 〈ρ−
r⊥〉. The color limits are set to amplify the spatial dependence, but we note that the average of ρ+ is significantly higher than

ρ−.

that the zero-field transition takes place at Tc = 2.016 and
the crossover temperature to the normal state at f = 1/64
is T ≈ 1.86. The four tableaus in Fig. 11 show examples
of states of the system at intermediate temperatures T =
1.7, 1.725, 1.742, T = 1.751.

At T = 1.7 and T = 1.725, the dominant structure is
a doubly-quantized hexagonal vortex lattice. The structure
function of the vortex lattice is predominantly hexagonal, see

FIG. 8. Doubly-quantized hexagonal vortex lattice state for a
system with ν = 0.1, g = 0.3, f = 1/64, and T = 1.5. (a) shows
the structure function, showing a hexagonal lattice. (b) shows the
lattice structure in real space. Vortices are located at the dark spots
surrounded by a bright ring. All vortices have a vorticity maximum
distributed in a ring around the center of the vortex, and a care-
ful count shows that there are 32 such doubly-quantized vortices,
consistent with the system size Lx × Ly = 64 × 64 and f = 1/64.
This vortex distribution is to be compared with the schematics of the
upper right panel of Fig. 2. (c) shows the sixfold angular distribu-
tion of the structure function. (d) shows a histogram of the angular
difference between peaks in the structure function. The colored his-
togram corresponds to an angular difference between peaks in the
structure function of π/3. We see that the dominant peaks are found
at �θ = π/3 and 2π/3, which corresponds to a hexagonal lattice.

Figs. 11(a) and 11(e), but note the weakening of four of the
peaks in the structure function in Fig. 11(e) compared to
11(a). 〈nh

r⊥,z〉 in Figs. 11(b) and 11(f) shows vortices charac-
terized by a center with low vorticity surrounded by a ring of
higher vorticity. In this background, vortex structures start to
appear that have a center of high vorticity, characteristic of
singly-quantized vortices. Increasing the temperature further,
the hexagonal pattern in the structure function is gradually
replaced by a square pattern.

At T = 1.742, the structure function features two strong
peaks at opposite wave vectors, with two weaker peaks in the
orthogonal directions. The overall symmetry of the structure
function is now closer to one characteristic of a square lattice,
see Fig. 11(i). Namely, the four weaker spots in the sixfold
symmetric structure functions in Figs. 11(a) and 11(e) have
moved closer to each other. Although there is still a con-
siderable number of doubly-quantized vortices present, i.e.,
vortices with low vorticity at the center surrounded by a ring
of higher vorticity, it is evident that a substantial number of
singly-quantized vortices have appeared, see Fig. 11(j).

Increasing the temperature slightly to T = 1.751, this
becomes more pronounced. In Fig. 11(m), the fourfold sym-
metry of the structure function is evident, while Fig. 11(n)
shows that there are still doubly-quantized vortices present.
The transition from hexagonal to square vortex lattices upon
increasing the temperature from T = 1.7 to T = 1.75 is mir-
rored in the peak-distance histogram with the bin at �θ =
π/3 losing value and eventually being superseded by the bin
at �θ = π/2, see Figs. 11(c), 11(g), 11(k), and 11(o), as well
as Figs. 11(d), 11(h), 11(l), and 11(p).

For a clearer picture of the temperature range over which
this transition happens, we have computed the temperature de-
pendence of these two histogram bins, shown in Fig. 12. The
bin at �θ = π/3 (hexagonal vortex lattice) clearly dominates
at lower temperatures and becomes equal in height to the bin
at �θ = π/2 (square vortex lattice) at T ≈ 1.75. The temper-
ature dependence of the two bins mirrors the dissociation of
double quanta vortices into single quanta vortices which we
have noted is already starting at T ≈ 1.7. The histogram bins
approach the value h+(δ�θ ) = 1/2π after the U (1) crossover
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(a)

(b)

FIG. 9. Phase difference and + vorticity of the system in Fig. 8.
The blue circles represent rings with increased vorticity in (a). These
rings are then overlaid on the real space average of phase difference
in (b).

transition, which is an equal weight of the histogram on all
bins. The lack of angular variations in the structure function
means that the system is in the vortex plasma phase.

The temperature regime in which the lattice reconstruction
takes place is thus rather narrow and close to the Hc2(T )
crossover line. This is consistent with previous computations
that ignored thermal fluctuations [39], where the transition
was induced by increasing the strength of the magnetic field
up to values close to Hc2.

V. COMPARISON WITH MEAN-FIELD THEORY

Figure 12 gives a precise indication of where the vortex-
lattice melting temperature in this system is, which is the
temperature at which the two bins approach equal values and
above which their values remain constant. This occurs at T ∗ ≈
1.88, only slightly above the estimated T where the broad

peak in the specific heat is located at T = 1.86. The tempera-
ture window for which a square singly-quantized vortex lattice
dominates is therefore conservatively estimated to be in the
range T ∈ [1.75–1.86]. Below T = 1.7, a doubly-quantized
hexagonal vortex lattice is stabilized. Using the melting tem-
perature as a measure of the transition to the normal state, i.e.,
as a measure of the upper critical field line, we see that the
hexagonal lattice of double-quanta vortices is stable up to a
temperature of about 0.9T ∗.

We now compare these results quantitatively with previ-
ously found mean-field results, where entropic effects were
not fully accounted for [39]. Figure 13 displays three quali-
tatively different vortex phases obtained from simulations of
mean-field theory in an external field at various temperatures.
The procedure is to discretize the physical degrees of freedom
η±, and A using a finite-element framework, and to numeri-
cally minimize the free energy (1d) in an external magnetic
field (for details, see Ref. [39]).

The mean-field temperature is accounted for by modifying
the quadratic term of the potential (1d) to be (TMF − 1)|ηh|2.
There, the zero-field critical temperature is Tc,MF = 1, and the
crossover line to the normal state at fMF ≈ 1/30 is estimated
from our numerical results to be T ∗

MF = 0.9. For a better
comparison of the role of the temperatures for the fluctuating
theory with that of the mean field, the results of the tempera-
tures for mean-field simulations are expressed in units of the
crossover temperature T ∗

MF.
At low temperatures, the minimal energy state is clearly a

hexagonal lattice of double-quanta vortices. When approach-
ing the crossover temperature, the double-quanta vortices start
to split into single-quanta vortices. Around 0.86T ∗

MF, there
are few single quantum vortices, and the double quanta still
dominate. Closer to the crossover, around 0.92T ∗

MF, most of
the vortices have dissociated and the single quantum vor-
tices dominate. Eventually, the entire hexagonal lattice of
double-quanta vortices has dissociated into a structure of
single-quanta vortices. A generous estimate gives that the
range of the mean-field temperature where the single-quanta
vortices dominate is about 0.1T ∗

MF. In general the entropic ef-
fects promote stability of the lattice of single-quanta vortices.
However, our Monte-Carlo simulations demonstrate that in
the regime of parameters we have considered, the double-
quanta vortex lattice is robust in a regime of temperatures
approximately equal to what was found in previous work [39].

VI. SUMMARY

In this paper, we have considered effects of thermal fluc-
tuations on the vortex states in a model of a chiral p-wave
superconductor with two complex matter fields (η+, η−) with
opposite chiralities, for a filling fraction of f = 1/64 vortices
per square plaquette in the (x, y) plane of a cubic numeri-
cal lattice, with an applied magnetic field in the z direction.
We have considered temperatures in the interval T ∈ 1.5–2.0,
with the zero-field critical temperature ( f = 0) estimated to
be Tc = 2.016 ± 0.002 and the crossover line to the normal
state at f = 1/64, estimated to be T ∗ = 1.86 ± 0.04.

At T = 1.5 we have found that the stable field-induced
vortex configuration is a hexagonal vortex lattice of doubly-
quantized vortices. At the higher temperature T ≈ 1.75, this
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(a) (b)

FIG. 10. Component amplitudes averaged in the z direction for a system with ν = 0.1, g = 0.3, f = 1/64, and T = 1.5. (a) shows 〈ρ+
r⊥〉

while (b) shows 〈ρ−
r⊥〉. In contrast to Fig. 7 the color limits are the same in both subplots since the lower temperature signal does not require

amplification to discern spatial variance.

FIG. 11. A tableau of simulation results for the temperatures T = {1.7, 1.725, 1.742, 1.751} in ascending order from left to right and top
to bottom. The system has parameters ν = 0.1, g = 0.3, and f = 1/64. The real space z-averaged vorticity in (b), (f), (j), and (n) exhibits both
single and double quanta lattice structures. The remaining figures show the transition from signals of a hexagonal lattice to a square lattice as
the temperature increases.
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FIG. 12. Histogram temperature dependence for two different bins in a system with f = 1/64, g = 0.3, ν = 0.1, and L = 64. The
histogram is given by Eq. (32) and gives normalized bins of the angular distance �θ between peaks in the structure function. The bin at
�θ = π/2 corresponds to the signal of a square lattice structure in the structure function and is marked with blue hollow squares. The bin
at �θ = π/3 is the signal for a hexagonal vortex lattice and is marked with black bar markers and green error bars. The transition from a
doubly-quantized hexagonal lattice to a singly-quantized square lattice as T increases occurs at T ≈ 1.75.

vortex lattice transitions, over a narrow temperature regime,
to a square vortex lattice of singly-quantized vortices. At even
higher temperatures, the vortex lattice structure function is
washed out by thermally induced vortex loops when tempera-
tures approach and cross the crossover line at f = 1/64, T ∗ =
1.86 ± 0.04, rendering the system in a vortex-plasma phase.
Our results indicate that double-quanta vortices can be quite
robust and do not very easily dissociate into single quanta
vortices when thermal fluctuations are included.
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FIG. 13. Vortex phases of the mean-field theory in an external
field for g = 0.3 and ν = 0.3 with the corresponding filling fraction
is fMF ≈ 1/30. The panels on the top line display the relative phase
Eq. (30) while the bottom line shows the relative densities defined in
Eq. (35). Note that both relative phase and densities in the mean field
are not thermal average.

Thus, previous results, based on ground state computations
and minimization of internal energy, predicting doubly-
quantized hexagonal vortex lattices at low magnetic fields
transitioning to singly-quantized square vortex lattices at
higher magnetic fields very close to Hc2, are stable to fully
accounting for entropic effects in the free energy. Therefore,
double-quanta vortices are a quite robust property of chiral
p-wave superconductors. Our results, however, do indicate a
slight broadening of the temperature regime above which a
square vortex lattice is entropically stabilized compared to
earlier mean-field results. The main finding is that, for the
regimes considered in the paper, this entropic stabilization
does not significantly diminish the temperature range where
a doubly-quantized hexagonal vortex state exists.
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APPENDIX A: DERIVATION OF EQ. (22)

Writing tan θ± in terms of the complex fields yields

tan θ± = −i
η± − η± ∗

η± + η± ∗ . (A1)

Inserting the transformation to the xy basis in Eq. (3) and
making the London-limit approximation |ηx| = |ηy|, Eq. (A1)
becomes

tan θh = sin θ x + h cos θ y

cos θ x − h sin θ y
. (A2)

Using the trigonometric identity

sin x + cos y = 2 sin

(
x − y

2
+ π

4

)
sin

(
x + y

2
+ π

4

)
,

(A3)
after including h and −h in the argument of sin in the numer-
ator and denominator of Eq. (A2) respectively, tan θh can be

written

tan θh = h
sin

(
hθ x−θ y

2 + π
4

)
sin

(
hθ x+θ y

2 + π
4

)
sin

( − θ x+hθ y

2 + π
4

)
sin

(
θ x−hθ y

2 + π
4

)

= −h
sin

(
θ x+θ y

2 + h π
4

)
sin

(
θ x+θ y

2 − h θ
4

)
= − 1

−h̄
sin

(
θx+θy

2 +h̄ π
4

)
sin

(
θx+θy

2 −h̄ π
4

) = − 1

tan θ h̄
. (A4)

This equation shows that both tan θ+ and tan θ− are de-
termined by one variable, θ x + θ y, which is what makes it
possible to relate θ+ to θ−. Finally, by shifting the argument
of the last tan we get Eq. (22), i.e., the relationship tan θh =
tan(θ h̄ + π/2).

APPENDIX B: SYMMETRIZED MIXED GRADIENT TERM

Using the transformation properties of ηa
r and Ar,μ in Eqs. (24) and (25) on the expression for the discretized mixed gradient

term in the xy basis in Eq. (19) repeated here for convenience:

F r
MG = (1 − ν)

∑
a

[
ρa

r+x̂ρ
ā
r+ŷ cos

(
θa

r+x̂ − θ ā
r+ŷ − (Ar,x − Ar,y)

) − ρa
r+x̂ρ

ā
r cos

(
θa

r+x̂ − θ ā
r − Ar,x

)
− ρa

r+ŷρ
ā
r cos

(
θa

r+ŷ − θ ā
r − Ar,y

) + ρa
r ρ ā

r cos
(
θa

r − θ ā
r

)]
, (B1)

we obtain the rotated mixed gradient terms

C4F r
MG = − (1 − ν)

∑
a

[
ρa

r−x̂ρ
ā
r+ŷ cos

(
θa

r−x̂ − θ ā
r+ŷ + (Ar,y + Ar−x̂,x )

) − ρa
r−x̂ρ

ā
r cos

(
θa

r−x̂ − θ ā
r + Ar−x̂,x

)
− ρa

r ρ ā
r+ŷ cos

(
θa

r − θ ā
r+ŷ + Ar,y

) + ρa
r ρ ā

r cos
(
θa

r − θ ā
r

)]
, (B2)

C2
4F r

MG = (1 − ν)
∑

a

[
ρa

r−x̂ρ
ā
r−ŷ cos

(
θa

r−x̂ − θ ā
r−ŷ − (Ar−ŷ,y − Ar−x̂,x )

) − ρa
r−x̂ρ

ā
r cos

(
θa

r−x̂ − θ ā
r + Ar−x̂,x

)
− ρa

r ρ ā
r−ŷ cos

(
θ ā

r−ŷ − θa
r + Ar−ŷ,y

) + ρa
r ρ ā

r cos
(
θa

r − θ ā
r

)]
, (B3)

C3
4F r

MG = − (1 − ν)
∑

a

[
ρ ā

r−ŷρ
a
r+x̂ cos

(
θ ā

r−ŷ − θa
r+x̂ + (Ar−ŷ,y + Ar,x )

) − ρ ā
r−ŷρ

a
r cos

(
θ ā

r−ŷ − θa
r + Ar−ŷ,y

)
− ρ ā

r ρa
r+x̂ cos

(
θa

r+x̂ − θ ā
r − Ar,x

) + ρ ā
r ρa

r cos
(
θ ā

r − θa
r

)]
. (B4)

In these expressions, a, q ∈ {x, y}. Adding Eqs. (B1)–(B4), several terms cancel. As is immediately obvious, all the onsite terms
such as the last term in Eq. (B1) cancel each other. Considering the last term on the first line of Eq. (B2), we let r → r + x̂ which
is allowed because of periodic boundary conditions, and we see that this cancels the last term on the first line of Eq. (B1). The
first term on the last line of Eqs. (B2) and (B1) can be seen to cancel through a simple relabeling of the a summation index. The
same cancellations happen for the analogous terms in Eqs. (B3) and (B4) such that the average of Eqs. (B1)–(B4) and thus the
full symmetrized expression for the mixed gradient terms can be written on the simple form

F s
MG = (1 − ν)

4

∑
a

∑
h,h′=±

hh′ρa
r+hx̂ρ

ā
r+h′ ŷ cos

(
θa

r+hx̂ − θ ā
r+h′ ŷ − Ar,hx + Ar,h′y

)
. (B5)

This expression, together with Eqs. (15), (16), (17), and (18), constitute the free energy used in the simulations.
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APPENDIX C: NUMERICAL BASIS ROTATION

In this Appendix, we present the numerical details for how
chiral matter field amplitudes and phases are calculated from
their xy-basis counterparts. The chiral amplitudes ρh

r are easily
found from the xy-basis variables through Eq. (20):

ρh
r =

√
ρx 2 + ρy 2

2
+ hρxρy sin

(
θ x

r − θ
y
r
)
. (C1)

The chiral phases are obtained by the set of equations

sin θh
r = ρx sin θ x

r + hρy cos θ
y
r√

2ρh
r

, (C2)

cos θh
r = ρx cos θ x

r − hρy sin θ
y
r√

2ρh
r

. (C3)

As long as ρh
r > 0, θh

r ∈ [−π, π ) can be found through simple
trigonometric relations which we include for completeness.
Given that cos θh

r > 0 then θh
r = tan−1 tan θh

r . If cos θh
r < 0

then θh
r = tan−1 tan θh

r − πsgn tan θh
r . The final case is that

cos θh
r = 0 in which case θh

r = π/2sgn sin θh
r .

In the chiral ground state of the system θ x
r − θ

y
r → −hπ/2

which makes ρh
r → 0 when ρx = ρy. This makes Eqs. (C2)

and (C3) numerically unstable as both numerator and de-

nominator approach zero. To accurately calculate θh
r , these

equations are expanded around the ground state value. Setting
θ x

r − θ
y
r = −hπ/2 + 2πn + δ and expanding to fourth order

in δ yields

sin θh
r → δ

|δ| cos θ x
r

[
1 − δ2

8
+ δ4

384

]

− |δ|
2

sin θ x
r

[
1 − δ2

24
+ δ4

1920

]
, (C4a)

cos θh
r → |δ|

2
cos θ x

r

[
1 − δ2

24
+ δ4

1920

]

− δ

|δ| sin θ x
r

[
1 − δ2

8
+ δ4

384

]
. (C4b)

The expressions on the right are independent of h.
Then if sin θh

r � 0, θh
r = − cos−1 cos θh

r . If not, then θh
r =

cos−1 cos θh
r . To find δ we simply calculate δ = mod (θ x

r −
θ

y
r , 2π ) − 3π/2 for h = + and δ = mod (θ x

r − θ
y
r , 2π ) −

π/2 for h = −. With this expansion in δ, the errors from
calculating θh

r were found to be smaller than the floating point
error.
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We use large-scale Monte Carlo computations to study the phase transitions of a two-component
chiral p-wave superconductor in zero external magnetic field. We find a first order phase transition
from the normal state to a chiral superconducting state, due to interplay between vortices and
domain walls.

I. INTRODUCTION

Chiral superconductors constitute a class of unconven-
tional superconductors whose order parameter features
finite angular momentum and a phase that winds around
the Fermi surface [1]. The chiral nature of the gap func-
tion arises from spontaneously broken time reversal sym-
metry (TRS), which yields a two-fold degenerate super-
conducting state with broken U(1)×Z2-symmetry. Chi-
ral superconductors are of fundamental interest because
they are predicted to display topological properties such
as Majorana modes in vortex cores and edge currents
leading to a quantized thermal Hall conductance [2–5].

The prototypical chiral p-wave superfluid state is real-
ized in A-phase of superfluid 3He [6–8]. The search for
chiral p-wave pairing in a bulk superconductor has been
going on since the discovery of superfluid 3He. For many
years, the leading candidate has been the extensively in-
vestigated superconductor Sr2RuO4; a highly anisotropic
layered material with tetragonal crystal structure and
strong spin-orbit coupling [9–13]. ARPES-measurements
have revealed three bands crossing the Fermi-surface,
supporting a multi-component theory [14]. Several
groups have also found that in zero field there is a sin-
gle phase transition, where TRS is broken along with the
onset of superconductivity [10, 11, 15, 16], while split
transitions were reported to arise under strain [17]. How-
ever the evidence against the chiral p-wave superconduc-
tivity has been growing in recent years. The first no-
table example was the absence of chiral edge currents
that should produce magnetic signatures at the bound-
ary between domains of opposite chirality [18–20]. Re-
cently, the mounting evidence against the chiral p-wave
pairing lead to the discussion of other order parameters
in an attempt to reconcile all the experimental data, such
as near-degenerate between d- and g-wave pairing for
Sr2RuO4 [21, 22]. Recent studies of ultrasound [23, 24],
and vortex state [25] point to multicomponent order pa-
rameter.

Another candidate for chiral triplet superconductivity
is the type-II heavy fermion superconductor UPt3 [26–
28]. Unlike Sr2RuO4, it is claimed to feature two separate
phase transitions in zero applied magnetic field, where
TRS is spontaneously broken within the superconduct-

ing phase [29–31]. The superconducting state in UPt3

is believed to be chiral f -wave with an order parameter
that has the two-dimensional irreducible representation
E2u [32]. Although this is a higher order pairing than chi-
ral p-wave, our theoretical description will be relevant for
UPt3 since the order parameter symmetry group has the
same irreducible representation. In more recent works,
chiral superconductivity has also been claimed in other
systems, such as Van der Waals materials and nano tubes
[33–35].

Even after decades of research, the nature of multicom-
ponent superconductivity in Sr2RuO4 remains a puzzle.
This fact and the emergence of new candidates for chiral
superconductors raise the need to understand the nature
of superconducting phase transition in a chiral p-wave
superconductor beyond mean-field approximations and
possible clues it may yield in real materials.

The question of fluctuations in a chiral p-wave super-
conductor is nontrivial because it breaks two symme-
tries: U(1) and Z2. Therefore, in general, fluctuations
can cause a single transition or a sequence of transitions.
A similar question arises for s+ is superconductors, that
shares the U(1) × Z2 symmetry and has been studied
by numerical methods [36, 37]. Recent experiments re-
ported fluctuations-induced splitting of the phase tran-
sition [38]. Analogous questions for chiral p-wave su-
perconductors were studied in [39], but no Monte-Carlo
calculations were performed for this problem. In this pa-
per, we use large-scale Monte-Carlo calculations to study
the phase transition a chiral two-component supercon-
ductor transition in Ginzburg Landau (GL)-theory for
an E2u order parameter. Before we proceed to calcula-
tions, we note that the problem is related to the more
general question of the phase transitions in multicompo-
nent gauge theories, where large-scale Monte-Carlo stud-
ies were performed. For a U(1) × U(1) two-component
London superconductor, it has been shown that for mod-
erate values of the gauge charge and equal amplitudes
in the two ordering fields there is a single first order
phase transition where both symmetries are broken at
the same temperature. For high values of the gauge
charge the single transition line splits into two sepa-
rate transitions predicting an intermediate metallic su-
perfluid with broken global U(1) symmetry but restored
local U(1) symmetry [40–44]. In Refs. [40, 45] the merg-
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ing of the two phase transitions was coined a preemp-
tive phase-transition, where ordering in one symmetry
sector of the model leads to ordering in the other. For
the case of interacting U(1) × U(1) neutral superfluid a
detailed study of the first order character of the phase
transition was presented in [42], where also the exis-
tence of a tricritical point was reported. Similarly, for
a SU(2)-symmetric model, where the amplitudes of the
two matter fields (Ψ1,Ψ2) are related by a CP1 constraint
|Ψ1|2 + |Ψ2|2 = 1, a single transition was found for mod-
erate values of the gauge charge, which split into two
transitions for higher values [46, 47]. The model we con-
sider in this paper is different from a U(1) × U(1) Lon-
don superconductor, due to the presence of a term that
explicitly breaks the global U(1) symmetry down to a
Z2-symmetry. It is also different from s + is supercon-
ductor due to the structure of a so-called mixed gradient
terms (MGT). These terms are products of two gradient
terms, as in the standard kinetic energy, but where the
two factors are gradients in different directions involving
different order-parameter components (see below). Such
terms are common for chiral p-wave superconductors [48]
and can also originate for instance with spin-orbit cou-
pling [49]. Such terms will provide an additional direct
coupling between the U(1)- and Z2-symmetry sectors of
the model.

II. MODEL

A. Ginzburg Landau model

We consider a superconductor with tetragonal crystal
structure and spin orbit coupling, belonging to the point
group D4h. Gauge invariance and TRS yields the full
symmetry group of the system G = D4h × U(1)× Z2. In
the two-dimensional odd-parity representation E2u, the
superconducting gap function may be written as d(k) =
(ηxkx+ηyky)ẑ. The complex matter fields (components)
describe two types of Cooper pairs in the theory, and can
be written in terms of an amplitude and a phase on the
form ηi = ρie

iθi . This leads to a GL energy functional
E =

∫
f d3r where the dimensionless energy density is

given by [48, 50, 51]

f =− α(|ηx|2 + |ηy|2) +
u0

2

(
|ηx|4 + |ηy|4

)
(1a)

+ γ|ηxηy|2 cos 2(θx − θy)

+ |Dηx|2 + |Dηy|2 + |∇ ×A|2 (1b)

+ γm [(Dxηx)(Dyηy)∗ + (Dyηx)(Dxηy)∗ + h.c.] .
(1c)

The matter fields are minimally coupled to the gauge
field A through covariant derivatives D = ∇ − igA
and the energy is normalized to the condensation energy
B2
c/4π. The decay of magnetic fields in this model usu-

ally involves multiple modes and multiple length scales
[52], that yields further differences compared to s + is

models previously studied in Monte-Carlo simulations
[36, 37]. These are parametrized by the gauge-charge
through g. In what follows we will not distinguish be-
tween the subdominant electromagnetic scales.

The mean field ground state of Eq. (1) is found by set-
ting A = 0 and ignoring spatial variations in the matter
fields. Minimization of the potential energy in Eq. (1a)
then yields the ground state

|ηx| = |ηy| =
√

α

u0 − γ
≡ ρ0, (2)

θx − θy = ±π/2 ≡ θ0. (3)

We find two degenerate solutions due to the phase-
locking term. Theses are related by a Z2 symmetry oper-
ation which will be discussed in more detail in Sec. II C.
Finally, we note that this ground state gives an order pa-
rameter on the form kx ± iky, corresponding to a super-
conducting state with chiral p-wave pairing which spon-
taneously breaks the U(1)× Z2 symmetry of the theory.

B. The London limit

In order to perform Monte Carlo simulations on the
free energy introduced in Eq. (1), we will work within
the London approximation where the amplitudes of the
matter fields are frozen. The London limit is commonly
used for similar models [40, 41]. However, in the case of a
multi-component order parameter, and with the addition
of Ising anisotropy and MGT, such an approach requires
considerable care and is generally not applicable [52].

We will first explicitly assess the validity of this ap-
proach, following a similar but not identical method to
the one presented in [52]. To this end, we expand all
fluctuating fields to second order in deviations from their
mean-field values, introducing

εi = ρi − ρ0, (4)

θ∆ =
1

2
(θx − θy − θ0) , (5)

pi = Ai −
1

g
∂iθΣ, (6)

θΣ = (θx + θy)/2, (7)

where pi essentially is a gauge-invariant current. Ex-
panding the energy to second order in these fluctuations
and Fourier transforming, we obtain an expression on the
form

f = f0 + vGv†, (8)
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where f0 is the ground state energy, G(k) is a matrix
describing the coupling between fluctuations in different
fields and v is the fluctuation vector given by

v(k) =
(
ε+ ε− θ∆ px py

)
. (9)

We have introduced a rotated amplitude basis ε± = (εx±
εy)/
√

2 in order to simplify the structure of the coupling
matrix. The exact form of the coupling matrix, along
with details of the derivation are given in Appendix A.

To determine what fluctuations are most important,
the coupling matrix is diagonalized to obtain the lowest
eigenvalue λ∗ along with the corresponding eigenvector
ψ∗. In the absence of MGT, the coupling matrix is al-
ready diagonal and the eigenvectors are pure modes with
fluctuations in only one field. In the long wavelength
limit, we then find that the phase-difference mode θ∆

corresponds to the lowest eigenvalue for low values of the
Ising anisotropy

γ ≤ 0.17 (10)

when α = u0 = g = 1.0. Above this value amplitude fluc-
tuations become important as the ε− mode corresponds
to the lowest eigenvalue. The effect of MGT is that the
eigenvectors become mixed modes with multiple non-zero
entries for non-zero momentum [52]. To investigate the
degree of mixing, we plot the k-dependence of the non-
zero entries in ψ∗ in Fig. 1b with the corresponding pa-
rameters without MGT in Fig. 1a. For low momentum
magnitude k the phase difference mode is now weakly
mixed with ε+ amplitude fluctuations, but phase differ-
ence fluctuations are still dominant.

Note that although taking a London limit eliminates
some of the mixing at the level of bare model, we find
below that the phase transition is first order, so in a fluc-
tuating model the mixing should reappear at the level of
a large-scale effective field theory. Otherwise, at the level
of bare model, the London limit is a good approximation
for the regime of small mixing.

C. Charged and chiral symmetry sectors

In this section we introduce the chiral basis, which
is obtained by a unitary transformation η± = (ηx ±
iηy)/

√
2. Under TRS, the chiral components transform

as K̂η± = η∗∓. It is common to recast the model in terms
of these chiral components [51, 53, 54], but in the present
setting we introduce them because they provide an or-
der parameter in the Z2 symmetry sector. If we cal-
culate the chiral component amplitudes in terms of the
xy-components, we find

|η±| =
√

1

2
[|ηx|2 + |ηy|2 ± 2|ηxηy| sin(θx − θy)]. (11)

By inserting the ground state values form Eqs. (2) and
(3), we see that one of the chiral amplitudes is spon-
taneously chosen. Coming from the low-temperature

(a)

(b)

FIG. 1. Non-zero entries of the eigenvector ψ∗ corresponding
to the lowest eigenvalue of the coupling matrix, plotted along
the line kx = ky. In (a) there are no MGT and the coupling
matrix is diagonal with pure modes. In (b) we have included
MGT, which cause mixed modes with fluctuations in multiple
fields. In both cases fluctuations in the phase difference are
dominant in the long wavelength limit.

regime, chiral symmetry is then restored by a prolif-
eration of topological defects in the form of Ising do-
main walls separating areas of opposite chirality. From
Eq. (11) we see that these domain walls can be de-
scribed by a gradient in the phase-difference of the xy-
components.

The superconducting phase transition is associated
with spontaneous symmetry breaking of the local U(1)-
symmetry. The low temperature phase is well understood
at mean-field level, where the gauge field A acquires a
mass, yielding a Meissner-effect. In the context of single-
component superconductors it has been shown that go-
ing beyond mean-field, the (non-local) order parameter
of the U(1)-sector is still the gauge field mass, which now
corresponds to the inverse magnetic penetration length
of the problem. Upon heating the system, the mass of
the gauge field is eventually destroyed at some critical
temperature. The phase transition is driven by a pro-
liferation of thermally excited topological defects in the
form of charged vortex-loops [55, 56].

In the London limit, we can perform a separation of
variables to rewrite the model in terms of charged and
chiral terms
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f =
ρ2

0

2
[∇(θx + θy)− 2gA]

2
+
ρ2

0

2
[∇(θx − θy)]

2
+ γρ4

0 cos 2(θx − θy) + |∇ ×A|2 (12)

+ γmρ
2
0 cos(θx − θy) {[∂x(θx + θy)− 2gAx][∂y(θx + θy)− 2gAy]− [∂x(θx − θy)][∂y(θx − θy)]} .

This form highlights the interplay between the symme-
try sectors of the model in an intuitive way. We have
the charged sector given by the phase-sum coupling to
a gauge field with strength 2g. The chiral sector is gov-
erned by the phase-difference, where we have a 3D XY-
model with an easy axis anisotropy that demotes the
symmetry from global U(1) down to Z2. Then finally
there are the MGT that provide an explicit coupling be-
tween the two sectors. Note that even in the absence of
MGT, the two symmetry sectors are still connected as
the phase-sum and phase-difference are not independent
variables.

III. MONTE CARLO SIMULATIONS

The critical properties of the model in Eq. (1) in the
London limit are investigated using Monte Carlo simu-
lations. This is achieved by discretizing the model on a
numerical cubic lattice, where the matter-fields live on
lattice points and the gauge field is discretized through
renormalized non-compact link-variables [57]. Periodic
boundary conditions are used because we are interested
in bulk properties of the model. In simulations, we use
the Metropolis Hastings algorithm with a local update
scheme and parallel tempering between different temper-
atures to numerically evaluate various observables [58–
60]. The gauge-field is discretized through renormalized
non-compact link-variables defined as

Ar,µ ≡ −
1

g

∫ r+µ̂

r

Aµ(r′) dr′ ∈ (−∞,∞), (13)

for µ ∈ {x, y, z}. These are non-compact in the sense
that they don’t have a 2π periodicity [57] and this means
that the discretization of the pure gauge term in Eq. (1b)
will have the form∫

d3r |∇ ×A|2 7→ f r
A =

1

g2

∑
r,µ

(∆×A)2, (14)

where (∆ × A)µ = εµνλ∆νAr,λ using the Levi-Civita
symbol and summation over repeated indices. ∆µ

is a discrete forward difference operator such that
∆µAr,ν = Ar+µ̂,ν −Ar,ν . We note that writing out the
sums over µ, ν and λ, Eq. (14) can be written in term of
plaquette sums. The link variables are renormalized in
the sense that we multiply the field by a factor −1/g to
simplify the covariant derivatives.

The covariant derivatives are discretized using forward
difference where the order-parameter component value at

r + µ̂ is parallel-transported back to r by the gauge-field
link variables by

Dµηa(r) 7→ ηar+µ̂e
−iAr,µ − ηar . (15)

This ensures that the resulting lattice-discretized GL-
theory remains invariant under the gauge-transformation

ηar 7→ eiλrηar
Ar,µ 7→ Ar,µ + ∆µλr,

(16)

where λr is an arbitrary real field.
The resulting lattice theory is, from a renormalization

point of view, a member of the same universality class
as the continuum GL-model and is therefore expected to
yield the same quantitative behaviour, at least in strongly
type-II regime [61]. The remaining expressions for the
discretized effective free energy density f r are presented
in Appendix B.

To measure ordering in each of the symmetry sectors
at the phase transition, we introduce two order param-
eters. As discussed in section II C, the Z2 transition is
characterized by an imbalance between the chiral com-
ponents introduced in Eq. (11). Hence, we can measure
spontaneous symmetry-breaking of TRS using the chiral
amplitude difference

δη± =

〈∣∣∣∣∣ 1

L3

∑
r

|η+(r)|2 − |η−(r)|2
∣∣∣∣∣
〉
. (17)

This is zero in the high-temperature phase and tends to
2ρ2

0 in the low-temperature phase. The superconducting
phase is characterized by a non-zero gauge field mass
m = λ−1

L . This can be computed via the dual stiffness
[41]

ρµµq =
1

(2π)2L3

〈∣∣∣∣∣∑
r

(∆×A)µe
iqr

∣∣∣∣∣
〉
∼ q2

q2 + λ−2
L

.

(18)
The low q-limit of this expression tends to zero in the su-
perconducting phase, where λL is finite, and some con-
stant in the normal state, where λL is infinite. Hence,
we measure the dual stiffness at the lowest non-zero mo-
mentum allowed by our discretization as an order param-
eter in the U(1)-symmetry sector. Finally, both phase-
transitions are accompanied by singularities in the spe-
cific heat

Cv = β2
〈
(E − 〈E〉)2

〉
, (19)

where β is the inverse temperature.
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In numerical simulations, we thermalise systems of
sizes up to 323 from both an ordered state given by
Eqs. (2) and (3), or fully disordered states in some cases,
over 3 × 105 Monte Carlo sweeps. We then make mea-
surements of the energy, dual stiffness and chiral order
parameter over 1 × 106 Monte Carlo sweeps. The mea-
surements are done every 40’th sweep to account for the
auto-correlation time. Ferrenberg-Swendsen multi his-
togram reweighting has been used to post-process the
raw data [62, 63].

IV. RESULTS

In this section we present results from large scale
Monte Carlo simulations using the parameter regime dis-
cussed in Sec. II B. For all simulations we have fixed
α = 1.0, u0 = 1.0 and g = 1.0.

A. Model without mixed gradient terms

Results without MGT, γm = 0, are shown in Fig. 2.
We find that ordering in both symmetry sectors occurs
simultaneously. In Fig. 2a the chiral order parameter
has a kink as it drops to zero at the critical temperature.
The dual stiffness in Fig. 2b displays similar behaviour;
in the Meissner phase, where λL is finite, it tends to
zero and in the normal state it grows, as the thermal
gauge fluctuations become larger. The normal phase and
Meissner phase are separated by a jump in both order
parameters accompanied by a singularity in the specific
heat in Fig. 2c. In summary, we find that with decreasing
temperature the system goes from a normal state to a
chiral superconducting state with spontaneously broken
U(1)× Z2 symmetry.

The fact that they coincide is explained by a pre-
emptive phase transition scenario, discussed previously
for multi-component superfluids and superconductors
[40, 45], see the earlier discussion in terms of j-currents
in [42]. The process of proliferating topological defects in
the two symmetry sectors is cooperative. Namely, as the
charged vortices in the U(1)-sector proliferate, the stiff-
ness of the Ising domain walls drops to zero triggering a
proliferation in the Z2 sector. The smoking gun signature
of a preemptive phase transition is that it is first order,
with a latent heat related to the sudden drop in the chi-
ral/charged order parameters at the phase transition. An
intuitive way of understanding this is to consider the case
where the two symmetry sectors are completely decou-
pled. The chiral sector is then, with increasing temper-
ature, headed towards a continuous second order phase
transition in the Ising universality class. At some lower
temperature, charged vortices in the U(1)-sector will pro-
liferate which also triggers the Z2 phase transition due
to the interplay between domain walls and vortices. This
scenario is sketched in Fig. IV A, where the order pa-
rameters in both symmetry sectors are cut off at the

(a)

(b)

(c)

FIG. 2. Results from Monte Carlo simulations of model in
Eq. (1) with γ = 0.1 and γm = 0.0 for L = 24, 28, 32. (a)
Chiral amplitude difference given by Eq. (17). (b) Dual stiff-
ness given by Eq. (18). (c) Specific heat given by Eq. (19).
We find a single phase transition at Tc ' 3.745 characterized
by ordering in both symmetry sectors and a singularity in the
specific heat.

preemptive transition temperature resulting in a single
first order transition. To investigate this numerically, we
plot the energy probability distribution in Fig. 4a. We
find a pronounced double peak, indicative of a first or-
der phase transition where two phases co-exist at the
critical temperature. Furthermore, we have performed a
finite-size scaling analysis of the difference in free energy
between the double peak value and the valley minimum
∆F = ln(Pmax/Pmin)/β, where Pmax and Pmin are the
energy probabilities at the double peak and the valley
minimum, respectively. For a first order phase transi-
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tion, this quantity should scale asymptotically as Ld−1

[64] for large system sizes. Such scaling is confirmed in
Fig. 4b.

FIG. 3. Schematic drawing of the preemptive phase transition
scenario. The the chiral and charged order parameters would
exhibit two separate continuous phase transitions, were it not
for the mutual interplay between the two sectors. At some
intermediate temperature, interplay between topological de-
fects in the two symmetry sectors lead to ordering in both,
resulting in a single first order phase transition at Tc.

B. Full model

We now consider the full model in Eq. (1) and exam-
ine how the MGT modify results from the previous sec-
tion. In Ref. [48] the MGT share coefficient with the Ising
anisotropy term, so due to the restrictions on γ we stick
to low values of γm. Fig. 5 shows results for the phase
transition at γm = 0.1. The results are very similar to
the case without MGT, which can be seen by comparing
with Fig. 2. The critical temperature decreases slightly,
and we can also see that finite size effects become more
prominent as the peak in specific heat changes more with
system size. To investigate whether this is still a preemp-
tive phase transition, the energy probability distribution
along with finite size scaling of ∆F are plotted in Fig. 6.
We find a clear double peak and quadratic scaling, which
both indicate a first order preemptive phase transition.
By comparing with Fig. 4, we observe that the first or-
der behavior is even stronger in case of non-zero MGT, as
the double peak structure is now resolved for the smallest
system with L = 24.

To characterize the strength of the transition, we calcu-
late the difference in entropy between the two coexisting
states at the phase transition. The entropy is calculated
from the free energy F = E–TS. Because the two states
have the same free energy the entropy difference is given
by ∆S = ∆E/Tc ≡ ckb. In Table I we show the co-
efficient c for the change in entropy per lattice site for

(a)

(b)

FIG. 4. (a) Energy per lattice site probability distribution at
the critical temperature for system parameters γ = 0.1 and
γm = 0.0 and system sizes L = 24, 28, 32. For larger system
sizes we see an increasingly pronounced double peak, indicat-
ing a first order phase transition. (b) Finite size scaling of the
difference in free energy between the double peak value Pmax

and the valley minimum Pmin, ∆F = ln(Pmax/Pmin)/β, mea-
sured at the critical point. Ferrenberg Swendsen multi his-
togram reweighting has been used to obtain histograms with
peaks of similar height.

γm Tc c
0.0 3.745 0.091
0.1 3.743 0.120
0.2 3.736 0.121

TABLE I. Critical temperature Tc and coefficient for the
change in entropy ∆S = ckB for different strengths of the
MGT with γ = 0. As γm increases the critical temperature
decreases and the change in entropy increases, making the
phase transition stronger first order. Data is taken from sim-
ulations with L = 32, and Tc is determined using multi his-
togram re-weighting to find the temperature where the two
peaks in the energy probability distribution have the same
height.

increasing values of γm. We see a significant increase
from the case without to the case with MGT, meaning
the phase transition becomes more strongly first order.
As γm is increased further, this trend continues. This
can be explained by the fact that the MGT introduce
stronger interaction between vortices and domain walls
that results in a larger latent heat and stronger first order
behaviour.
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(a)

(b)

(c)

FIG. 5. Results from Monte Carlo simulations of model in
Eq. (1) with g = 1.0, γ = 0.1 and γm = 0.1 for L = 24, 28, 32.
(a) Chiral amplitude difference given by Eq. (17). (b) Dual
stiffness given by Eq. (18). (c) Specific heat given by Eq. (19).
We find a single phase transition at Tc ' 3.743 characterized
by ordering in both symmetry sectors and a singularity in the
specific heat.

V. SUMMARY

In this paper we have investigated fluctuation effects
on the phase transition in a GL model for chiral super-
conductivity. Within the parameter regime used, a single
phase transition from the normal state to a chiral super-
conducting state with spontaneously broken U(1) × Z2-

symmetry is found. We show that this is a preemptive
first-order phase-transition, where interplay between the
topological defects in both symmetry sectors cause them
both to disorder at the same temperature. We have also

(a)

(b)

FIG. 6. (a) Energy per lattice site probability distribution at
the critical temperature for system parameters γ = 0.1 and
γm = 0.1 and system sizes L = 24, 28, 32. For larger system
sizes we see an increasingly pronounced double peak, indicat-
ing a first order phase transition. (b) Finite size scaling of
∆F . Ferrenberg Swendsen multi histogram re-weighting has
been used to obtain histograms with peaks of similar height.

investigated the effect of MGT, which enhance the first
order character of the phase-transition.
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Appendix A: Coupling matrix

The energy in Eq. (1) is expanded to second order in
the fluctuation fields introduced in Eqs. (4)-(6). For the

potential in Eq. (1a), we find

fV =− α
(
u2
x + u2

y

)
+
u0

2

(
u4
x + u4

y

)
− γu2

xu
2
y

+
(
−α+ 3u0u

2
x − γu2

y

)
ε2x +

(
−α+ 3u0u

2
y − γu2

x

)
ε2y

− 4γuxuyεxεy + 8γu2
xu

2
yθ

2
∆,

(A1)

where f0 is the ground state energy. The Maxwell term
keeps the exact same form to second order in p, since it
only differs by a gradient from A

fA = |∇ × p|2. (A2)

Finally for the various gradient terms, we expand the
gradients to first order since all relevant combinations
are squared

Diηx = [∂iεx − i(gpi − ∂iθ∆)ux] ei(θΣ+θ0/2), (A3)

Diηy = [∂iεy − i(gpi + ∂iθ∆)uy] ei(θΣ−θ0/2). (A4)

These expressions can now be combined to form all the
terms in the energy functional. After Fourier transform-
ing and rotating the amplitude basis, we can write the
energy on the form in Eq. (8)

f = f0 + vGv†. (A5)

where v is given in Eq. (9). We can write the coupling
matrix as a sum of three contributions, a diagonal part
with massive terms, a diagonal part with k-dependant
terms and an off-diagonal part from the MGT.

G = GD + GMGT (A6)

GD =


2α(u0+γ)
u0−γ + k2 0 0 0 0

0 2α+ k2 0 0 0

0 0 8γα2

(u0−γ)2 + 2α
u0−γ k

2 0 0

0 0 0 2α
u0−γ g

2 + k2 0

0 0 0 0 2α
u0−γ g

2 + k2

 (A7)

GMGT = ±γm
√

2α

u0 − γ


0 0 −2kxky 0 0
0 0 0 −igky −igkx

−2kxky 0 0 0 0
0 igky 0 0 0
0 igkx 0 0 0

 (A8)

In Eq. (A7), we note that the Meissner effect gives rise
to massive gauge-field fluctuations, which yield a mass-
less Goldstone mode associated with the phase-sum when
g = 0. The phase-difference mode is also seen to evolve
to a massless Goldstone mode when the Ising-anisotropy

parameter γ = 0. Furthermore, Eq. (A8) shows that the
MGT have an effect for g = 0, coupling fluctuations in
the ε+ amplitude mode to fluctuations in the phase dif-
ference θ∆. Finite g will moreover couple the ε− ampli-
tude mode to gauge-invariant currents. Contrary to the
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one-component case, the eigenmodes are in general com-
plicated linear combinations of amplitude modes, phase-
difference modes, and gauge-invariant currents [52]. Only
in a limited parameter regime do the eigenmodes simplify
significantly.

Appendix B: Lattice regularized free energy

In this section we apply the regularization procedure
introduced in Section III to the dimensionless effective
free energy density in Eq. (1). The resulting expression
was used in the Metropolis-Hastings algorithm to find the
energy-difference between different field-configurations as
well as when calculating the energy as an observable
which again was used in calculating of the specific heat.

Inserting the discretization of the covariant derivative
in Eq. (15) yields

|Dµηa|2 7→|ηar+µ̂|2 + |ηar |2 − 2 Re
(
ηar+µ̂η

a ∗
r e−iAr,µ

)
∼2
[
(ρar)2 − ρar+µ̂ρ

a
r cos(θar+µ̂ − θar −Ar,µ)

]
.

(B1)

In the second line we have introduced the notation
ηar = ρare

iθar for the amplitude and phase of the compo-
nents of the order parameter. We have also used peri-
odic boundary conditions to map the term |ηar+µ̂|2 back

to |ηar |2 by a simple shift of the index in the sum
∑

r fr.
Using the formula above we immediately get the

lattice-regularized conventional kinetic energy density

f r
K = reg

{∑
a

|Dηa|2
}

=
∑
µa

reg
{
|Dµηa|2

}
= 2

∑
µa

[
(ρar)2 − ρar+µ̂ρ

a
r cos

(
θar+µ̂ − θar −Ar,µ

)]
,

(B2)

where µ runs over x, y and z, while a ∈ {x, y}. Using
the notation

ā =

{
y : a = x
x : a = y

. (B3)

the MGT in Eq. (1c) can be written on the more compact
form

fMGT = 2γm
∑
a

Re
[
Dxηa(Dyηā)∗

]
. (B4)

Inserting the discretization of covariant derivatives we
find in Eq. (15) gives

Dxηa(Dyηā)∗ =
(
ρar+x̂e

i(θar+x̂−Ar,x) − ρareiθ
a
r

)
×
(
ρār+ŷe

−i(θār+ŷ−Ar,y) − ρāre−iθ
ā
r

)
= ρar+x̂ρ

ā
r+ŷe

i(θar+x̂−θ
ā
r+ŷ−(Ar,x−Ar,y))

− ρar+x̂ρ
ā
re
i(θar+x̂−θ

ā
r−Ar,x)

− ρarρār+ŷe
−i(θār+ŷ−θ

a
r−Ar,y)

+ ρarρ
ā
re
i(θar−θ

ā
r ) (B5)

Taking the real part of this gives

Re
[
Dxηa(Dyηā)∗

]
= ρar+x̂ρ

ā
r+ŷ cos

(
θar+x̂ − θār+ŷ − (Ar,x −Ar,y)

)
− ρar+x̂ρ

ā
r cos

(
θar+x̂ − θār −Ar,x

)
− ρār+ŷρ

a
r cos

(
θār+ŷ − θar −Ar,y

)
+ ρarρ

ā
r cos

(
θar − θār

)
, (B6)

This gives the final expression for the discretized MGT

f r
MGT = 2γm

∑
a

[
ρarρ

ā
r cos

(
θar − θār

)
− ρar+x̂ρ

ā
r cos

(
θar+x̂ − θār −Ar,x

)
− ρar+ŷρ

ā
r cos

(
θar+ŷ − θār −Ar,y

)
+ ρar+x̂ρ

ā
r+ŷ cos

(
θar+x̂ − θār+ŷ − (Ar,x −Ar,y)

)]
,

(B7)

where we have switched the superscripts a ↔ ā on the
third line. To ensure that this discretized term is ren-
dered invariant under the four-fold rotations of the square
numerical lattice, we may average as follows

f r
MGT → f̃ r

MGT (B8)

=
1

4

[
f r

MGT + C4f
r
MGT + C2

4f
r
MGT + C3

4f
r
MGT

]
(B9)

where C4 denotes a 90 degree counterclockwise rotation
of the xy-coordinate system. We then find

f̃ r
MGT =

γm
2

∑
a

[
ρar+x̂ρ

ā
r+ŷ cos

(
θar+x̂ − θār+ŷ − (Ar,x −Ar,y)

)
− ρar−x̂ρār+ŷ cos

(
θar−x̂ − θār+ŷ + (Ar−x̂,x +Ar,y)

)
+ ρar−x̂ρ

ā
r−ŷ cos

(
θar−x̂ − θār−ŷ − (Ar−ŷ,y −Ar−x̂,x)

)
− ρar+x̂ρ

ā
r−ŷ cos

(
θar+x̂ − θār−ŷ − (Ar,x +Ar−ŷ,y)

)]
,

(B10)

The potential terms in Eq. (1) are simply discretized
by mapping to the amplitude phase-notation and become

f r
V =

∑
a

[
−α(ρar)2 +

u0

2
(ρar)4

]
+γ (ρxrρ

y
r)2 cos 2(θxr −θyr ).

(B11)
These expressions together with the regularization of the
pure gauge-potential term in Eq. (14) then give the com-
plete discretized free energy density

f r = f r
V + f r

K + f̃ r
MGT + f r

A. (B12)
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