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Abstract—Images from ultrasound-guided regional anesthesia
procedures can be difficult to interpret, especially by non-experts.

In this work, deep convolutional neural networks were used to
segment blood vessels, nerves and bone from two different nerve
block procedures; the axillary nerve block and the femoral nerve
block, which are commonly used to block sensation of pain from
arms and legs respectively.

The results show that the detection performance vary a lot for
different nerves, with the best F1 and Dice scores of 0.84 and
0.67 for the median nerve, and the worst score of 0.54 and 0.51
for the ulnar nerve. Blood vessels and bone are generally easy
to detect, but small veins can be difficult to segment accurately.

Using the trained neural networks, a portable prototype system
able to stream, process and visualize the results in real-time
was created using a laptop, the FAST framework, and a Clarius
L15 HD scanner. The runtime was measured to be about 31
milliseconds per frame.

I. INTRODUCTION

Ultrasound-guided nerve block procedures are commonly
used to block sensations of pain from body parts such as arms
and legs, as an alternative to general anesthesia. Ultrasound
imaging is used to find the target nerves and the surrounding
blood vessels, and to guide the needle used to inject local
anesthetics around the nerves.

Ultrasound images of these procedures can be difficult to
interpret, especially for non-experts. Worm et al. [1] concluded
that ultrasound-guided regional anesthesia education focusing
on still ultrasound images is not sufficient, while ultrasound
videos and graphical enhancers may aid students in learning
to identify nerves in ultrasound. Wegener et al. [2] did an
experiment with 35 novice subjects, who had performed less
than 30 ultrasound guided nerve blocks, on identification of
nerves and related structures in ultrasound images from several
locations. They observed that after a basic training course, one
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group of the participants failed to identify more than half of the
anatomical structures, while the other group, which received an
additional tutorial, failed to identify a third of the structures.
These low identification scores of non-experts indicate that
there is a need for better training tools. Nerves are often
difficult to distinguish from other types of tissue in ultrasound
images. In general, nerves appear as bright structures with
black spots inside, but can vary a lot depending on their
location and surrounding tissue.

Our goal is to use image segmentation to highlight and
label nerves, as well as surrounding structures such as blood
vessels and bone, using deep neural networks in real-time
while scanning to help non-experts.

Segmentation of nerves in ultrasound images has been
studied in several publications over the last decade. Hadjerci
et al. [3] segmented the median nerve of the lower arm from
ultrasound images using k-means clustering to find hypere-
choic tissue, then a texture analysis method using a support
vector machine classifier to identify the nerve. Hadjerci et al.
developed this method further in [4] and [5]. A segmentation
method for the sciatic nerve in the back of the leg in ultrasound
images was presented by Hafiane et al. [6]. This method
involved active contour segmentation driven by a phase-based
probabilistic gradient vector flow. Smistad et al. [7] created a
guidance system for femoral nerve blocks where the femoral
artery and nerve was automatically segmented in real-time.
This system used a combination of the location of the artery,
fascia and presence of hyperechoic tissue to infer the location
of the femoral nerve.

The short axis cross section of blood vessels usually appear
as dark ellipses in an ultrasound image. Several tracking
methods using Kalman filters have been proposed [8], [9],
[10]. Most of these methods require manual initialization, and
are sensitive to user settings such as gain on the ultrasound
scanner.

In recent years, deep convolutional neural networks (CNNs)
have achieved great results in image classification, segmen-



tation and object detection, even on challenging ultrasound
images. CNNs have also been used to find the nerves in
ultrasound images. In 2017, Zhao and Sun [11], and Baby
and Jereesh [12] used a U-net type CNN on the Kaggle
dataset on ultrasound images of nerves in the neck. The
appearance of nerves vary a lot depending on the patient and
the location in the body. Creating a segmentation method
which can accurately find nerves anywhere in the body is
challenging and unsolved. All previous studies therefore target
specific nerves. CNNs have also been used to find blood
vessels in ultrasound images. Smistad et al. [13] used an image
classification network to classify image patches of vessel-like
structures. In 2018, Smistad et al. [14] used a U-net type CNN
to segment different nerves and blood vessels from ultrasound
images of the armpit and demonstrated the benefits of using
image augmentations to improve the accuracy.

In this work, we have targeted two common ultrasound-
guided regional anesthesia procedures; the axillary and femoral
nerve blocks which are used to block nerves in arms and legs
respectively. Compared to previous work, our deep learning
method can segment multiple different nerves, blood vessels
and bone in real-time. Using the trained neural networks,
a portable prototype was created which streams ultrasound
images from a Clarius ultrasound scanner, and then segments
and visualizes the results in real-time on a laptop.

II. METHODS

A. Data and annotation

Ultrasound videos from 108 subjects of the armpit was
collected both from healthy volunteers and patients. Several
different ultrasound scanners were used: Ultrasonix Sonix
MDP L14-5, SonoSite M-Turbo/Edge HDFL38 and Clarius
L15 HD. The imaging depth varied from 2.5 to 5 cm. A
smaller dataset from 20 subjects of the groin was also collected
to test the method on the femoral nerve block as well.

The ultrasound videos were annotated by an expert anes-
thesiologist using Annotation Web [15] to delineate nerves,
blood vessels and bone. For the armpit, the musculocutaneous
(MSC), median and ulnar nerves were annotated, and for the
groin, the femoral nerve was annotated. The ultrasound and
annotation images were resized to a fixed size of 256× 256.
The aspects ratio of the images were preserved by padding
with zero or cropping at the bottom of the images.

B. Neural network architecture

The CNN architecture used in this study was a fully-
convolutional encoder-decoder U-net type network [16]. This
architecture has six levels with cross-over connections and
uses 2 × 2 max pooling in the encoder and 2 × 2 repeat
upsampling in the decoder. Two 3× 3 convolution layers are
used at each level, together with ReLU activation. Network
input is an ultrasound image of size 256 × 256 . The output
is a segmentation of the same size as the input image. For
the axillary nerve block, the network has six output channels
(background, blood, bone, MSC, median and ulnar nerve),

Fig. 1. Detection performance of each structure for the axillary nerve block.
The black vertical lines represents the standard deviation.

Fig. 2. Detection performance of each structure for the femoral nerve block.
The black vertical lines represents the standard deviation.

while for the femoral nerve block, there are four output chan-
nels (background, blood, bone, femoral nerve). The networks
have about two million parameters and was designed for real-
time use with a runtime of only a few milliseconds on a
modern GPU.

C. Training

The neural networks were trained using Keras with 10-fold
cross-validation, Adam optimizer, 150 epochs and a Dice loss
function. Random augmentations were used during training
to reduce overfitting [14]. The following augmentations were
used:

• Gamma intensity transformation.
• Rotation - Maximum angle: 10 degrees.
• Gaussian shadows - Dark shadows applied to the image

at random locations and with random sizes.
• Depth - Cuts the image bottom at random depths.
• JPEG compression - Compresses the image with a ran-

dom quality setting.
• Elastic image deformation.



Fig. 3. Example of an ultrasound axillary image segmented and visualized
in real-time with FAST.

D. Real-time application

A real-time application was created using FAST 1 [17],
[18], a framework for GPU-based high-performance image
processing and visualization, and the Clarius Cast research
toolkit2 which can be used to stream ultrasound images from
Clarius ultrasound scanners while scanning. The prototype
consists of a Surface Book laptop and a Clarius L15 HD
scanner as shown in Fig. 5. Ultrasound images are streamed
over a WiFi hotspot created by the scanner. The segmentation
results were visualized with FAST using transparent colors
and text labels on top of the ultrasound images as shown in
figures 3-5.

E. Evaluation

Since precise detection is more important in this application
than exact delineation of the structures, precision, recall and
F1 scores were calculated for every structure. A segmentation
region was counted as a true positive if there was more than
25% overlap with the true segmentation, the same as used in
[14]. Segmentation regions smaller than a circle of 7 pixels
radius were ignored. The Dice similarity metric was also
calculated for all structures. 10-fold cross validation was used
to calculate the performance on the entire dataset.

III. RESULTS

The F1 detection scores of the musculocutaneous (MSC),
median and ulnar nerves as well as blood vessels and bone
for the axillary nerve block were 0.72, 0.84, 0.54, 0.85, 0.91
respectively. For the femoral nerve block, the accuracy for
the femoral nerve, blood vessels and bone were 0.79, 0.90,
0.78. The Dice scores were 0.56, 0.57, 0.51, 0.72, 0.74 and
0.46, 0.85, 0.27 for the axillary and femoral nerve blocks
respectively. Figures 1 and 2 shows bar plots of the F1 score,
recall, precision and dice for each structure of the axillary and
femoral nerve blocks respectively. Figures 3 and 4 shows a

1https://fast.eriksmistad.no
2https://github.com/clariusdev/cast/

Fig. 4. Example of an ultrasound femoral image segmented and visualized
in real-time with FAST.

Fig. 5. Real-time prototype consisting of a FAST application, a Surface Book
laptop and a Clarius L15 HD scanner.

segmentation example of an axillary and femoral ultrasound
image visualized with FAST. The real-time application devel-
oped (Fig. 5) was able to stream, process and visualize the
results in real-time using about 31 ms per frame on a laptop
with a GTX 1060 GPU.

IV. DISCUSSION

The results show a large variation in detection accuracy for
different nerves. For instance, the median nerve is detected
with an F1 score of 0.84, while the ulnar nerve is detected
with an F1 score of 0.54. This illustrates the challenge of
segmenting nerves; their appearance and visibility varies a lot
depending on the surrounding tissue which interferes with the
ultrasound waves. Due to these variations, transfer learning
for segmenting nerves from different areas of the body may
not improve results, and comparing segmentation accuracy of
different nerves may not be reasonable because some nerves
are easier to get a good ultrasound image of than others. The
detection performance for blood vessels and bone is quite high,

https://fast.eriksmistad.no
https://github.com/clariusdev/cast/


although detection of these structures can also be challenging
in patients with more body fat as this reduces ultrasound image
quality and increases the distance between the ultrasound
probe and the structures to be imaged.

Based on our experience, the MSC nerve is usually sur-
rounded by muscle tissue in the image and therefore often
appear as a clear hyperechoic structure surrounded by hy-
poechoic muscle tissue. Still, there are other structures which
appear similar and thus may contribute to the slightly lower
F1 score of 0.72 compared to the median and femoral nerve.
The median nerve does not always appear hyperechoic, but is
often located near the axillary artery which is easily detected.
This may have contributed to the high median accuracy. The
ulnar nerve is less distinct and clear, and often surrounded
by veins and thus the most difficult nerve to find among the
nerves targeted in this work.

The femoral nerve is a large nerve often located close to
the large femoral artery resulting in high F1 scores. Although
the F1 score of the femoral nerve was high (0.79), the Dice
score was low (0.46), this may be the result of this nerve
being larger than the other nerves. One can also observe a
much larger standard deviation on the femoral nerve block in
Fig. 2 compared to the axillary nerve block in Fig. 1. This
is most likely because only data from 20 subjects were used
for training the femoral nerve block models, while data from
over 100 subjects were used for the axillary models. Transfer
learning from the axillary model was tested, but did not give
any significant performance improvement.

The neural networks used in this work only segment one
frame at a time, thus the networks have no temporal memory.
Humans, on the other hand, look at an ultrasound sequence
when interpreting these images. Studying the dynamics and
speckle patterns of the ultrasound image sequence aids consid-
erably in interpretation of the ultrasound images. Thus, future
work should include looking into temporal neural networks
for ultrasound segmentation as recently explored by several
groups [19], [20].

V. CONCLUSION

Deep neural networks were trained to segment nerves,
blood vessels and bone in ultrasound images from the armpit
and groin. The results showed a large variation in detection
performance for different nerves, illustrating the fact that some
nerves are better visualized with ultrasound imaging than
others. The networks were used to develop a prototype which
was able to stream, segment and visualize ultrasound images
while highlighting and labeling the nerves, blood vessels and
bone in real-time using a laptop and a Clarius L15 ultrasound
scanner.
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