
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ric

 P
ow

er
 E

ng
in

ee
rin

g

Jostein Hovde Aarvoll

The development of calcGenProg and
GenProgApp

Visualization and graphical user interface for
design of salient pole generator

Master’s thesis in Energy and the Environment
Supervisor: Arne Nysveen

June 2021

M
as

te
r’s

 th
es

is

Jostein Hovde Aarvoll

The development of calcGenProg and
GenProgApp

Visualization and graphical user interface for design
of salient pole generator

Master’s thesis in Energy and the Environment
Supervisor: Arne Nysveen
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electric Power Engineering

Department of Electric Power Engineering

Visualization and graphical user interface for design of
salient pole generator

The development of calcGenProg and
GenProgApp

Author:
Jostein Hovde Aarvoll

Supervisor:
Arne Nysveen

June, 2021

Abstract

This report covers the working principals, and development of the improved version of GenProg
first created by Alexander Lundseng and Ivar Vikan in 2010. The work described in this report can
be considered a direct sequel to the work performed the previous semester, where the objective was
to create a visual representation of the calculated generator, and create a Graphical User Interface
for GenProg. This initial work uncovered several shortcomings of the underlying function GenProg.
The shortcomings are explained and the rework is presented, but only one is presently implemented.

A system of input sanitation and control of the calculated parameters was developed with an
accompanying error message report for the user.

The cross sectional view and graphical user interface initially developed the previous semester was
further improved upon. Such as a complete vectorization of the cross-sectional image, and the
option to only render specific segments of the generator.Several under the hood improvements to
the GUI was also implemented.

The result is presented with a complete design example for a salient pole generator, and an discus-
sion with what was accomplished, and what work lies ahead. Both immediately and subsequently
there after. The project did resolve many of the issues related to GenProg, and provides a strong
foundation for future development.

i

Contents

List of Figures vi

List of Tables vii

1 Introduction 2

2 Nomenclature 3

3 Theory 4

3.1 Detailed description GenProg . 4

3.1.1 GenProg Summary . 4

3.1.2 Stage 1 - Stator Calculations . 4

3.1.3 Stage 2 - Rotor calculations . 5

3.1.4 Stage 3 - Loss calculations . 5

3.1.5 Stage 4 - Thermal calculations . 5

3.1.6 Stage 5 - Reactances and Time Constants 5

3.1.7 Stage 6 - Mechanical calculations . 5

3.2 Tensile strength of steel . 6

3.3 Dynamic pressure . 8

4 Preceding work 9

4.1 Introduction . 9

4.2 Cross-sectional view . 9

4.2.1 Stator ring . 9

4.2.2 Stator slot . 9

4.2.3 Armature winding . 9

4.2.4 Pole Core and Pole shoe . 11

4.2.5 Damper bars . 11

4.2.6 Rendering . 11

4.2.7 Result . 11

4.3 GUI . 14

4.4 GenProg . 14

5 Improved GenProg 15

5.1 GenProg restructure . 15

5.1.1 Background . 15

ii

5.1.2 Method . 15

5.1.3 Improvements and corrected deficiencies . 15

5.1.4 Result of restructure, calcGenProg . 16

5.2 Additional GenProg functionality . 20

5.2.1 Default values . 20

5.2.2 Choosing the slot number . 20

5.3 Slot Calculation Rework . 22

5.3.1 Background and problem . 22

5.3.2 Solution requirements . 22

5.3.3 Detailed description of the slot rework . 22

5.4 Rotor calculation rework . 23

5.4.1 The problem . 23

5.4.2 Proposed solution . 23

6 Improved visualization of the calculated generator 26

6.1 Vectorizing the Cross section . 26

6.1.1 Background . 26

6.1.2 Requirements for the new plotter . 27

6.1.3 Final version of plotter . 27

6.1.4 Added features, cross section . 28

6.2 Indexing the three different phases . 28

6.2.1 Background and motivation . 28

6.3 General improvements to the cross section . 31

6.3.1 Cross sectional script restructure . 31

6.3.2 deletefnc.m and the blank object . 31

6.3.3 Fixes . 34

7 App improvements 36

7.1 Front-end improvements . 36

7.2 Back-end improvements . 36

7.2.1 Parameter handling . 36

7.2.2 Save functionality . 37

8 Type Check 38

8.1 System of detecting and displaying errors . 38

8.1.1 Error code . 38

iii

8.1.2 Error Message, and Calculation Report . 38

8.2 Input Sanitation . 39

8.2.1 Background . 39

8.3 Out Control . 39

8.3.1 Basic parameter check . 39

8.3.2 Ventilation . 39

8.3.3 Pole shoe height . 40

8.3.4 Array validation . 43

8.4 New error procedure . 43

8.5 Result of the type checking . 43

9 Result and discussion 46

9.1 Final result . 46

9.1.1 Graphical user interface . 46

9.1.2 calcGenProg . 47

9.1.3 Input sanitation and output control . 47

9.2 Design of an example generator . 47

9.2.1 Installation and startup . 48

9.2.2 Design process . 48

9.2.3 Running the calculations . 49

9.2.4 Interpret the result . 49

9.2.5 Finalizing the design . 51

9.3 Discussion . 56

9.3.1 GenProg discussion . 57

9.3.2 GenProgApp discussion . 57

9.3.3 Cross-sectional view discussion . 57

9.3.4 Coding discipline . 58

9.3.5 Timesheet . 58

9.4 Conclusion and future work . 58

Bibliography 60

Appendix 61

A Matlab source Code 61

A calcGenProg . 61

B Cross-sectional view . 62

iv

B Variable name and description 63

A calcGenProg . 63

v

List of Figures

1 Flowchart for GenProg . 6

2 Example of how a simple rectangle can be created for use in a cross sectional view.
from preceding project report . 10

3 Visual representation of how the stator ring is created from preceding project report 10

4 One quarter of a circle polygon with evenly spaced x-positions, and their corres-
ponding y-positions. from preceding project report 12

5 Visual representation of a basic pole core from preceding project report 12

6 Exagerated visualization of the two different pole shoe shapes initially implemented 13

7 Cross-sectional view created during preceding project. from preceding project report 14

8 GenProg stator calculations and initial input sanitation 17

9 GenProg rotor calculations . 18

10 GenProg auxiliary calculations . 20

11 Example of the slot dialog box . 21

12 Flowchart for the calculating slot dimensions. Improved variant 24

13 Simplified flow diagram for the suggested solution to the unreliable rotor calculation 26

14 x-matrix for an arbitrary number m object with n boundary positions 27

15 Visual representation of revolver.m . 29

16 Flow diagram for the cross-sectional view matrix creation 31

17 Flow diagram for renderer part of CSGenVec360fnc.m 32

18 The two different blank objects present in the SC function. 33

19 Example of a typical calculation report . 39

20 Example of a critical error, and failed blank-check 39

21 Diagram of the forces applied to the pole shoe of a salient pole generator 41

22 Form factor α for axle with rounded stepping exposed to bending stresses [1] . . . 42

23 Flow diagram of input sanitation for calcGenProg 45

24 Flow diagram for output control, and final error message assembly and display . . 46

25 GPApp in MATLAB . 48

26 GPApp window . 48

27 Calculate values button in GPApp . 49

28 Slot number dialog box for example machine . 50

29 Calculation report for example machine . 50

30 Initial cross-sectional view of the calculated generator 51

31 Final cross-sectional view of the calculated generator 51

32 Example generator harmonics analysis . 55

vi

List of Tables

1 complete list of the core calcGenProg functions and child-functions. 19

2 List of parameter and their corresponding default value 21

3 Function table for form factor α . 42

4 List of errors for input parameters. 44

5 List of output errors . 44

6 Output array validation . 44

7 List of function relating to the type check and output controll for GenProg 45

8 Example generator final set of required input parameters 52

9 Example generator final set of optional parameters 52

10 Example generator Critical Data . 52

11 Example generator Stator Parameters . 52

12 Example generator Slot Parameters . 53

13 Example generator Winding Parameters . 53

14 Example generator Rotor Parameters . 53

15 Example generator Magnetic Parameters . 54

16 Example generator Loss Calculations . 54

17 Example generator Reactances and Time Constants 54

18 Example generator Thermal Calculations . 55

19 Example generator Mechanical Calculations . 55

20 Example generator Harmonics . 55

21 Resource allocation . 58

22 calcGenProg variables A . 63

23 calcGenProg variables B . 64

24 calcGenProg variables C . 65

25 calcGenProg variables D (D2l - d9) . 66

26 calcGenProg variables D (delta0 - dl41) . 67

27 calcGenProg variables E . 67

28 calcGenProg variables F . 68

29 calcGenProg variables G . 69

30 calcGenProg variables H . 70

31 calcGenProg variables I . 71

32 calcGenProg variables J . 71

33 calcGenProg variables K . 72

vii

34 calcGenProg variables L (l1 - lsq) . 73

35 calcGenProg variables L (lth1 - Lw) . 74

36 calcGenProg variables M . 74

37 calcGenProg variables N . 75

38 calcGenProg variables O . 75

39 calcGenProg variables P . 76

40 calcGenProg variables Q . 76

41 calcGenProg variables R (R15 - Rth15) . 77

42 calcGenProg variables R (Rth16 - Rth9) . 78

43 calcGenProg variables S . 79

44 calcGenProg variables T . 80

45 calcGenProg variables U . 80

47 calcGenProg variables W . 81

46 calcGenProg variables V . 81

48 calcGenProg variables X . 81

49 calcGenProg variables Y . 81

50 calcGenProg variables Z . 82

viii

Acknowledgement

The project would not have been possible without the help of my supervisor, Arne Nysveen, who
gave me the freedom to work on, and take the project in a direction where my skills could be best
utilized. I must also thank my father, Hans Christian Hovde, a HVAC engineer who helped with
some of the theory covered in this report. Finally I would like to thank Pia for giving me the
support I needed to continue working despite the challenges I faced.

1

1 Introduction

Background and motivation GenProg is a script developed over several years by students
doing their master thesis at NTNU. Initially I was tasked with creating a graphical user interface
and a visual representation of the calculated machine. Supervisor desired to implement a FEM
analysis, but due to my limited experience with such software the effort shifted towards a simple
cross-section. As the project progressed it became apparent that a significant effort had to be
made towards analyzing and understanding the underlying source code for GenProg. Beyond what
was provided by accompanying documentation, and comments in the source code.

Objectives The goal of the project was to further improve the GenProg application developed
in the Autumn of 2020. From the preceding iteration the overall user experience needed to be
improved, and the core script GenProg needed a major overhaul. More specifically the tasks are
as follows:

• Fix bugs and issues related to the old GenProg script.

• Streamline and optimize the core GenProg function.

• Comprehensive input sanitation.

• Create a robust framework for performing a control of the calculated parameters, and display
this to the user.

• Increase the fidelity of the cross-sectional view by means of vectorization.

• Add new functionality to the cross-sectional application.

• Develop the app for use as an educational tool, and lay the ground work for future develop-
ment.

2

2 Nomenclature

• oldGenProg - The core script GenProg first developed by Lundseng and Vikaan in 2010.

• calcGenProg - restructured and improved variant of GenProg developed for this project. Also
sometimes refered to simply as the improved version

• Initial or previous GenProg refers to the adapted version of GenProg developed as an interim
solution for the previous semesters project. Generally identical to the core script GenProg,
but converted to a function.

• Previous semester project - Semester project by the author of this report. Provides much of
the groundwork for this master project.

• GenProgApp or just app refers to the the graphical user elements of GenProg. (Although
technically not an app, the GUI was created using MATLABs app designer environment and
the name stuck.)

• GUI - Graphical User Interface

• Vector - Unless specified, refers to a 1 dimensional matrix array containing numeric or
Boolean values. Usually a row-vector, but colomn vectors do occur.

• Required parameters - Refers to the 1-dimensional vector containing all the required paramet-
ers for calcGenProg. Abbreviated simply as req or req in the source code and documentation.

• Optional parameters - Referes to the 1-dimensional vector containing all the optional para-
meters for calcGenProg. Abbreviated as opt or opt in code form.

• Object - Refers to a logical geometric object represented by an x and y vector of boundary
positions for use in the cross-sectional view for the calculated generator. Can be considered
a polygon.

• Typecheck - Refers to both the input sanitation and output validation of calcGenProg para-
meters. Resolution - In the context of the cross sectional view the term resolution refers to
the number of positions on a curved object unless otherwise specified.

• var - Variable. Usually an intermediate, or calculated parameter.

• const - Constant. A variable that does not change.

• bool - Boolean data type. Logical true or false.

• mat - Matrix. 2-Dimensional matrix array.

• vec - Vector. 1-Dimensional matrix array.

• Source code - The actual MATLAB code.

3

3 Theory

3.1 Detailed description GenProg

The core script GenProg is based of an example of design procedure written by prof E. Westgaard
dated 1964 [5]. This compendium describes the design of a typical salient pole generator ranging
from 10 to 50 MVA. The document gives a detailed walk-through of a typical design procedure
based of a few key parameters obtained from the customers needs and returns every parameter
used to describe a complete generator. The procedure was then adapted into a set of formulas in
their semester project [4] by Ivar Vikan and Alexander Lundseng. This set of formulas was then
used for their master thesis the following semester [3]. Since then numerous students have used,
and added functionality to the script to suit their needs. However it is assumed the core script
remains in almost the exact same state as when it was first completed almost 10 years ago. A
considerable effort has been made to understand the core script in order to adapt it for use in a
graphical user interface, and improve its inner workings.

3.1.1 GenProg Summary

In this section a brief summary of the GenProg script will be described. The script works of a Input
file usually labeled filename Input.xls. Inside this Excel worksheet the user can define a set of 24
required and up to 42 optional parameters. These parameters are then loaded into the MATLAB
script and over 2500 lines of code calculates a total of 111 parameters which is then written to a
second Excel worksheet titled Output.xls. From here the user can read the output data, and use
them for whatever purpose they wish. The working principal can be divided into several stages.
The actual workings of each stage can be quite different depending on which optional parameters
are defined by the user.

3.1.2 Stage 1 - Stator Calculations

The script starts by working out the basic dimensions of the stator. Depending on what parameters
the user has defined, this stage calculates the inner diameter of the stator iron, Number of slots,
nominal current and voltage as well as many other parameters related to the external dimensions of
the stator. Stage 1 of the script can be considered the most important as most of the other stages,
and sub-stages, can be directly traced back to parameters calculated here. The inner diameter
is used for determining almost all other geometric dimensions in the generator, and the currents
and voltages are used for determining magnetic parameters which again are used for a plethora of
other parameters.

Slot Dimensions and Armature Calculations After the external stator dimensions are de-
termined the script begins calculating the slot dimensions. The script differentiates weather number
of turns per coil is equal to 1 or not. If TNR is equal to one it is assumed the armature is of roebel
strand winding type and if not, it is assumed to be of form winding type. The user can define all the
slot dimensions themselves, but the script can also use the target current density stator parameter
for determining the appropriate slot dimensions.

More Armature Calculations When the slot and armature parameters are determined in the
previous sub-stage, the script can calculate the remaining stator dimensions such as outer diameter
and total copper cross section area. It is at this sub-stage the air gap flux density can be calculated
which is a key parameter for further calculations. In addition to the magnetic parameter it is now
possible to calculate the total resistance for the stator which is used later on to determine losses.

4

3.1.3 Stage 2 - Rotor calculations

After the stator calculations are completed the script begins calculating rotor parameters. The
rotor is assumed to be of round rotor with a uniform air gap in order to simplify some of the
calculations [5]. If the pole dimensions are not set by the user under optional pole dimensions, an
initial pole is calculated based on functions from the previous stator calculations. After the initial
rotor pole parameters are found the script calculates the majority of the magnetic parameters
surrounding the entire generator. Particularly the flux density in stator and the (initial) pole core
as well as in the rotor and stator yoke. As these are the basis for calculating the field parameters.

Field winding After the Required magnetization has been calculated the field winding dimen-
sions can be determined. If the dimensions, and number of field winding’s has not been defined by
the user, the parameters are calculated based of the number required ampere turns, and target field
current density. If the values for flux density in the pole core exceeds allowable limits, the script
increases the pole core width and then runs the same calculations for a new set of parameters. This
is repeated until a stop requirement is reached. The same method is applied if there is not enough
vertical (or horizontal) space available for the field winding. This is the same method described in
Westgaards compendium [5].

After the pole dimensions and field winding parameters are finalized, the script has completed all
the geometric parameters needed to visualize the generator.

3.1.4 Stage 3 - Loss calculations

The next stage calculates all the losses in the machine. From DC losses in stator and rotor, but
also AC losses, Iron losses, and magnetization losses.

3.1.5 Stage 4 - Thermal calculations

After all the losses has been calculated the thermals for the machine can be calculated. For the
sake of this report it is assumed this section works correctly and no further effort has been made
trying to understand its principals.

3.1.6 Stage 5 - Reactances and Time Constants

The machines equivalent circuit is used to calculate the sub-transient, transient and stationary
reactances and accompanying time contsants.

3.1.7 Stage 6 - Mechanical calculations

The final stage is a very simple calculation to determine the total weight of the entire generator as
well as its rotating inertia.

5

Input data

Stage 1 -
Stator cal-
culations

Stage 2 -
Rotor cal-
culations

Stage 3 -
Loss cal-
culations

Stage 4 -
Thermal

calcu-
lations

Stage 5 -
Reactances
and Time
constants

Stage 6 -
Mechanical

calcu-
lations

Outputs

Figure 1: Flowchart for GenProg

3.2 Tensile strength of steel

The calculation for tensile strength for starts with the von Mises yeld criterion which can be
expressed mathematically as follows:

J2 = k2

where k is the yield stress of the material in pure shear. The magnitude of the shear yield in stress
in pure shear is

√
3 times lower than the tensile stress in simple tension case. This allows for:

k =
σy√

3

σy is the tenisel yeild strength of the material. If we set the von Mises stress equal to the yield
strength and combine the above equations, the von Mises yesld criterion can be expressed as [7]:

σv = σy =
√

3J2

or
σ2
v = 3J2 = 3k2

Substituting J2 with the Cauchy stress tensor components gives:

σ2
v =

1

2
[(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(σ2

yz + σ2
zx + σ2

xy)] (1)

Further proof is beyond the scope of this report (and beyond what can be expected by a electrical
engineer). For the moment it can best be described as the yield strength of ductile materials, such
as steel, when its second invariant of deviatronic stress reaches a critical value. I.E when σv = σy
[7].

6

For the purpose of this project only the 2-dimensional components can be considered I.e σzz = 0,
σyz = σxz = 0. Solving equation 1 for σv gives equation 2:

σv =
√
σ2
x + σ2

y − σxσy + 3σ2
xy (2)

Equation 2 gives an expression for the tensile stress required to permanently deform the ductile
material.

7

3.3 Dynamic pressure

The dynamic pressure is the kinetic energy of a flowing fluid, liquid or gas [6] and can be described
by equation 3.

p =
1

2
ρv2 [Pa] (3)

and the hydraulic power is defined by pressure [Pa] times flow [m3/s] :

Ph = p q [W] (4)

8

4 Preceding work

4.1 Introduction

The preliminary work for this master project was completed over a 6 week period the preceding
semester (Autumn 2020). During this time the initial App was created, and system of creating
a cross sectional view was developed. Due to the nature of the previous semesters work, and its
immediate continuation for this semesters master project, a condensed version of the semester
project report is presented in section 4.

4.2 Cross-sectional view

The script created a matrix array for the object, or set of objects, and displayed them for the user.
All calculations was performed symbolically, meaning all the geometric entities are calculated from
the result of GenProg, and not hard-coded. The cross-section script generates a cross-sectional
image for any arbitrary GenProg calculated machine. The Script can be divided into 7 distinct
categories:

• Stator section

– Stator ring, defined by the inner and outer diameter

– Stator slots, wedges, and separators. Consisting mostly of simple rectangles.

– Armature winding strands

• Rotor section

– Pole core

– Pole shoe

– Field winding

– Damper bar

4.2.1 Stator ring

Initially the stator was created by creating a linear x vector ranging from 0 to Rsi, and a second
x-vector ranging from 0 to Rsy. Inner and outer radius for the stator iron respectively. From this
x-value vector the corresponding y-value vector could be easily calculated by using trigonometrical
formulae. see figure 3 and4.

4.2.2 Stator slot

The advantage of the old system of drawing on a canvas approach made it possible to simply
paint over the undesired elements. Meaning the slots could simply be painted over the stator
ring with a simple square extending a little bit beyond the inner edge, and colored the same
as the background (black). As with the other miscellaneous slot elements like the slot wedges,
separators, and insulation material, an initial object was created, and rotated around the origin of
the generator.

4.2.3 Armature winding

The armature winding matrix was created by starting with a zero winding. Experiments where
conducted in order to create a rounding in the corners of each individual winding. GenProg assumes

9

x

y

x, y

(a) First corner

x

y

−x, y x, y

(b) Second corner

x

y

−x,−y

−x, y x, y

(c) Third corner

x

y

x,−y−x,−y

−x, y x, y

(d) Fourth corner

Figure 2: Example of how a simple rectangle can be created for use in a cross sectional view. from
preceding project report

x

y

Rsi

Rsy

Figure 3: Visual representation of how the stator ring is created from preceding project report

10

a 2% rounding factor. Meaning 2% of the cross-sectional area is lost to rounding of the corners.
The same method used to create the stator ring, was used to create the rounded corners. See figure
4. The zero winding could then be duplicated for each strand per bar, until the initial slot was
filled. Then each strand was duplicated and rotated into each of the remaining slots. Only the
Roebbel strand, and a incorrectly labeled single colomn strand -type was developed. Both of these
armature winding layouts are pretty much deprecated and is not present in the current iteration of
the cross sectional function. The initial cross-sectional script system did not work for form-winding
or TNR 6= 1.

4.2.4 Pole Core and Pole shoe

The pole core was the created using 8 (then reduced to 6 with the inclusion of the pole shoe)
positions. See figure 5 for visual reference. A recurring anchor-point being the inner radius of the
stator, and the minimum air gap. All dimensions are calculated relative to this position. Two
different pole shoe types was included:

• NEBB type

• ASEA type

NEBB Single radius. The Pole shoe shape consists of a arc with a single radius from each end
of the pole core. The arc radius has its origin off-centre from the rest of the generator. See figure
6b for exaggerated geometry.

ASEA The ASEA type pole shoe differs from NEBB in that it utelizes the same radius for the
arc as for the stator iron, but truncates before the edge of the pole shoe is reached. See figure 6a
for visual representation of the geometry with important ratios included.

4.2.5 Damper bars

The damper bars, and the damper slots was placed along the pole shoe edge with a edgedistance
equal to 3mm. The slot pitch τs was translated to the pole shoe surface, and the script tried to
place the damper bars equal to 0.8, or 1.2 times the translated slot pitch. If the number of damper
bars exceeded the available space defined by 0.8 times τs, they where evenly crammed in there
without regards to the slot pitch.

The damper bar slots are placed perpendicular to the tangent of the pole shoe edge, however for the
case of ASEA, the edge is assumed to extend all the way to the pole shoe edge. The consequence
being that the damper bars in the extreme position aren’t placed exactly 3mm from the pole shoe
edge. In some cases the damper bars can protrude beyond the edge of the pole shoe.

4.2.6 Rendering

After the object matrices was generated, they could be fed to a insert shape function together with
a color vector which in turn painted the objects within a n×n×3 RGB matrix. It should be noted
that this process was multiple order of magnitude slower than the actual object creation itself.

4.2.7 Result

The result of the cross-sectional endeavour can appear crude and slow. However the underlying
matrices proved a robust and precise method of representing geometric objects. Only minor changes
was necessary to use the object matrices in the current vectorized cross-sectional view variant. Most
of the adaptations taking place outside the matrix creation. An example can be viewed in figure 7

11

x

y

x1 x2 x3 x4 x5

y1
y3
y4

Figure 4: One quarter of a circle polygon with evenly spaced x-positions, and their corresponding
y-positions. from preceding project report

x

y

P1

P2 P3

P4P5

P6 P7

P8

hpsbps

hpk
bpk

Figure 5: Visual representation of a basic pole core from preceding project report

12

x

y

stator

δ0
1.5 δ0

bps
4 P3

P4

P5P6

(a) Exaggerated visual representation of the ASEA pole shoe shape. from preceding
project report

x

y

stator

l

Rsi

0.3Rsi

bps/2

δ0

P2

P3

P4

(b) Exaggerated visual representation of the NEBB single radius pole shoe shape.
from preceding project report

Figure 6: Exagerated visualization of the two different pole shoe shapes initially implemented

13

Figure 7: Cross-sectional view created during preceding project. from preceding project report

4.3 GUI

The initial draft for a Graphical user interface was created during the aforementioned 6 week period.
The layout was a straight forward interpretation of the Excel worksheet utilized by Lundseng and
Vikan [3]. The GUI elements was created using MATLAB’s app designer environment.

4.4 GenProg

Particular emphasis was placed on not altering GenProgs functionality during the preceding
semester project, in order to not break the workings of the script. If a bug was introduced at
this stage it was deemed not likely to be rectified in a timely manner. The script was simply
altered with a function handle that could be called upon, rather then read from the Excel work-
sheet. The GenProg script was assumed to work perfectly at this stage.

14

5 Improved GenProg

5.1 GenProg restructure

5.1.1 Background

The main issue with GenProg in its previous iteration was the sheer size of the script. It consisted
of approximately 2500 lines of code contained in a single file. This in itself is not a problem, but
when a user tries to run a calculation with a set of input parameters, and the calculation returns
completely unreasonable results (or don’t even run at all), the task of figuring out exactly where
the culprit is located is extremely tedious. Added to this was the fact that several segments of code
was seemingly copy-pasted to more than one location which made reading the code confusing as the
lines repeated itself. It should be noted that the original source code has excellent variable names,
so when comments are not present, it is still possible to deduce what the variable is supposed to
be. However the script needed a major restructuring in order to facilitate future work, and make
the script more readable.

5.1.2 Method

The entire GenProg script was thoroughly read from start to finish and compared to the original
design procedure presented by Westgaard [5]. The script was then divided into several smaller
independent functions. This served three purposes:

1. Give the author of this report a better understanding of how GenProg is supposed to work.

2. Make the GenProg code more comprehensible for later users.

3. The independent functions would facilitate implementation of more advanced features.

In addition the nomenclature was changed where applicable for the input parameters. Previously
the input parameters where initially read from an Excel worksheet, and was then henceforth called

inputvarxls

Since the improved version does not use Excel, new nomenclature indicates a input parameter as:

inputvar_

Please note that the use of an underscore can be used on a per-function basis in addition to the
input parameters passed to the parent function.

5.1.3 Improvements and corrected deficiencies

In addition to the above mentioned procedure several syntax errors was corrected as they where
discovered. Ranging from mundane to potentially critical.

Some honorable mentions include:

• Inocorrect syntax for if-statements. Particularly for if-statements where a variable is checked
whether it is within a specific range. The correct syntax is:

if var > lower limit && var < upper limit

rather than:

15

lower limit < var < upper limit

which was the case for several sections.

• While-loops was also used erroneously. Although not frequently used they never had a way
to exit the while-loop, and had the potential to never enter them in the first place. The
correct discipline is to also include a iteration limit, and set the condition for the while-loop
as a constant rather than a function outside the while loop. Se example below.

var = 1;

it = 0;

while var > 0.1 && it < 100

%code here...

it = it + 1;

end

This ensures that the while-loop is initiated, and it can be terminated after a set number of
iterations. (in this case 100)

• Removed unnecessary disp commands to avoid needlessly cluttering the command window.

5.1.4 Result of restructure, calcGenProg

The the core script GenProg was divided into 23 different functions, and child functions. Each
functions is entirely self-contained, and is only dependent on the arguments passed to it from a
script or parent function. See figure 8, 9, and 10 for complete working principle of the core script
calcGenProg. In addition to the aforementioned figures, table 1 provides a list of all 23 functions
and a short description

16

Parameter
type

check, and
decomp

Error?
Critical
Error?

Stop cal-
culations

Inital
stator cal-
culations

Slot
dimensions

Roebel
winding

Slot
dimensions

Form
winding

Armature
calcu-
lations

Armature
resistance

calcu-
lations

To rotor calculations To loss calculations

Yes yes

No

No

tnr= 1 tnr 6= 1

Figure 8: GenProg stator calculations and initial input sanitation

17

Damper
bar

calculation

From stator calculations

Eqivelent
air gap

Initial pole
dimensions

Magnetic
calcu-
lations

harmonic
calculation

Leakage
inductance

calcu-
lations

Nessesary
magnet-
ization

Final pole
dimensions

while-loop

To loss calculations

No

Yes

Harmonics not cal-
culated during pole
iteration

Figure 9: GenProg rotor calculations

18

Table 1: complete list of the core calcGenProg functions and child-functions.

Function file name Description Parent function:

calcGenprog.m
Parent function containing
all the other main function

N/A

calcStator.m
Function for returning important
stator parameters such as inner diameter and
armature currentsand number of slots.

calcGenProg.m

calcC.m
Function for calculating
stator parameters if generator
voltage is not set by user.

calcStator.m

clacSlots.m
Function for generating list
of possible slot combinations
if not user defined

calcStator.m and
calcC.m

diagSlot.m
Function for displaying list
of possible slot combinations,
and prompting user to choose one

calcStator.m and
calcC.m

calcSlotDimTNReq1.m
Function for returning slot
dimensions for roebbel coil armature

calcGenProg.m

calcSlotDimTNRnoteq1.m
Function for returning slot
dimensions for form coil armature

calcGenProg.m

calcArm.m
Function for returning
remaining stator calculations

calcGenProg.m

calcAirgap.m Function for returning minimum air gap calcArm.m
calcRac.m Stator resistance calculation calcGenProg.m

calcDamp.m
Function for calculating
damper bar parameters

calcGenProg.m

calcCarter.m Function for calculating Carters coefficient calcGenProg.m
calcPoleDim.m Function for calculating initial pole dimensions calcGenProg.m

calcMagnetic.m Function for calculating magnetic parameters
calcGenProg.m and
calcFieldDim.m

calcMagneticUdrop.m Function for calculating magnetic voltage drop calcMagnetic.m

calcHarm.m
Function for calculating
harmonics in the machine

calcGenProg.m

calcInd.m Function for calculating inductance parameters
calcGenProg.m and
calcFieldDim.m

calcMagNes.m Function for calculating nessesary magnetization
calcGenProg.m and
calcFieldDim.m

calcFieldDim.m
Function for calcaulating
field winding dimensions,
and final pole dimensions

calcGenProg.m

calcLoss.m Function for calculating losses in the machine calcGenProg.m

calcThermal.m
Function for calculating thermal
parameters for the machine

calcGenProg.m

calcReacTime.m
Function for calculating the machines reactances
and time constants

calcGenProg.m

calcMech.m
Function for calculating mechanical
properties for the machine

calcGenProg.m

19

Loss
calculation

Thermal
calcu-
lations

Reactances
and time
constants

Mechanical
calcu-
lations

From rotor calculation
From Armature resistance
calculations

Calculations complete

Figure 10: GenProg auxiliary calculations

5.2 Additional GenProg functionality

5.2.1 Default values

In addition to the restructure some functions where developed to add to the GenProg core func-
tionality. The first being the defaultVal.m function which serves to gather the default value of
parameters. It was discovered that some key required parameters was only labeled as such because
the script required a non-zero value for them. Previously this was handled by simply asking the
user to type the value in to the command window, but this would obviously be cumbersome in
context with the GenProg App, and GUI. By introducing a set of default values for parameters the
list of required parameters was reduced from 24 down to 12. This change is only visible for the app
section of this project as any interaction with the Excel worksheet still uses the old combination of
24 required parameters and 42 optional. See table 2 for list of the current default parameter and
their value.

5.2.2 Choosing the slot number

Previously number of slots in stator was an optional parameter where if set to 0 (not defined
by user) the script would generate a table of possible combinations, and write this to a separate
Excel worksheet. The script then waited for the user to check this table, and type the desired
number of slots into the command window. This was obviously not practical with regards to the
app functionality of GenProg. The source code for generating the possible slot alternatives was
kept mostly intact, and only formatted to remove duplicates, and arrange them ascending. The
function calcSlots.m returns a slot table with n rows containing the number of slots, and q as a
fraction and q as a decimal number.

A second function is invoked to take the resultant slot table and displays a dialog box for the user
to select the desired number of slot from a list. See figure 11 for an arbitrary example where the
user has not defined the number of slots in the machine.

20

Table 2: List of parameter and their corresponding default value

Parameter variable name Default value
turns per coil tnr 1
parallel circuits pnr 1
height of a single
armature strand

hcus 0.0018 [m]

height of slot wedge hspk 0.006 [m]
height middle strip
divider

hm 0.007 [m]

heigth glide strip
and spring

hgls 0.002 [m]

roebbel sepperator drs 0.0005 [m]
strand insulation dicu 0.0001 [m]
height between slot wedge
and air gap

hds 0.001 [m]

number of parallel strands
in armature

ndlp 2

current density in stator Ss 3 [A/mm]
current density rotor Sfi 3 [A/mm]
maximum flux density
stator tooth

Btmx 1.7 [T]

maximum flux density
pole core

Bpmx 1.6 [T]

maximum flux density
yoke

Bymx 1.3 [T]

stationary reactance xd 1.2 [pu]
transient reactance xd’ 0.4 [pu]
sub-transient reactance xd” 0.15 [pu]
core section length bcs 0.04 [m]
cooling duct length bv 0.008 [m]
field voltage Vf 200 [V]

Figure 11: Example of the slot dialog box

21

5.3 Slot Calculation Rework

5.3.1 Background and problem

As the project moved on to improve the user experience it was realized from the generated cross
sectional view that the GenProg script calculated slightly wrong slot dimensions with regards to
the amount of copper, and available space for said copper when the winding is of roebel type. This
was a know issue from the previous semester. Another glaring weakness is how the script handles
input data in this section: If the user has defined the total slot height, it assumed the rest of the
slot dimensions was also set by the user. Meaning: The user had to decide whether to define all the
slot parameters, or none of them. If the user enters the slot dimensions there is no guarantee the
calculated parameters are correct in that there is enough space for the desired amount of copper
or number of armature strand and so on. In other words you run the risk of creating a nonphysical
machine.

5.3.2 Solution requirements

Based on the aforementioned deficiencies it was decided to rework how GenProg calculates the slot
dimensions. The requirements was as follows:

• Modify the functions for calculating the slot dimensions with a clear hierarchy of which
parameter override which.

• Always return valid values for the slot.

• Inform the user if the function encounters a discrepancies with the input parameters and the
calcualted parameters.

This was done for both the roebel-strand, and form coil winding types. tnr = 1 and tnr 6= 1
respectively. Although there are some slight differences between the two cases, the basic working
principle can be seen in figure 12. The detailed description described in section 5.3.3 still apply to
both cases.

5.3.3 Detailed description of the slot rework

The slot dimension calculations can be divided into two branches. The first being weather the user
has defined the total slot height, and the second not defined the total slot height. See figure 12 for
complete flow diagram.

Total slot height defined by user Before the function for slot dimensions is called, the script
already has the total slot width from the initial slot calculations performed by calcStator.m func-
tion. Meaning if the user has also defined the total slot height the area available for the copper is
finite. First step is calculating the available width for the copper strands. If the number of par-
allel stands combined with the width of one strand (both parameters are user definable) exceeds
the available width, the number of parallel strands is discarded, and the width of one strand gets
precedence.

The height of one strand is considered a constant, meaning it either has a default value, or user
defined value. This simplifies the process of finding number of vertical strands, as it is finite as
well. If the user defined number vertical of strands exceed the maximum number of vertical strands
available in the slot layer, the user defined value is discarded in favour of the maximum calculated
value.

22

Total slot height NOT defined by user The number of parallel strands and width of one
strand procedure is identical to the other branch, but the required copper area is calculated before-
hand as a function of the current in one winding, and the target current density parameter. Since
the slot width already has been defined, the only variable is vertical height, and number of vertical
strands is found by dividing required copper area by number of parallel strands and width of one
strand.

When the number of parallel and vertical strands are calculated, the remaining miscellaneous
calculations and parameters can be calculated without difficulty. The main difference between the
function for TNR = 1 and TNR 6= 1 is that for the case for TNR 6= 1 the calculations is firstly
done per turn, and then added up to make up the entire coil. This case also omits the top and
bottom most strand which is a necessity for TNR = 1.

It should be noted that if the user has not defined either TNR, number of vertical strands and
number of parallel strands (ndlp), the script will automatically choose ndlp = 2 and TNR = 1 as
shown in table 2. In other words the parent function for GenProg will always choose the roebel
winding for the armature without user intervention. It possible to call the script for TNR 6= 1
with number of turns per coil equal to 1. All the user has to do is define number of parallel strands
6= 2. There is no option to manually choose winding layout. This was done deliberately in order
to ensure the script always returned valid parameters, and remove any possibility for the user to
choose incorrectly.

5.4 Rotor calculation rework

5.4.1 The problem

The problem with the rotor calculations only appear when the user has NOT defined both the
pole core height and total field winding height. This initiates a segment of the code that iterates
for the final pole core and field winding dimensions. This can be visualized in figure 9 by the
while-loop decision. In reality there are two nested while-loops, one for the pole core height, and
one for target current density. The problem is the stop-criterion for both loops is the delta-value
from the previous, and current iteration given as a ratio. When this ratio approaches zero the
calculations are considered complete. (both loops stop when the ratio is below 5%). On paper this
sounds reasonable, but the problem arises when either the initial guess of the pole core (which is
performed in Pole dimension in figure 9) is too far off from the correct value, or when any of the
intermittent calculations, i.e magnetic calculations, Leakage inductance calculations, or necessary
magnetization (in figure 9) returns an invalid parameter. Either while loop can rapidly converge
to a negative value, or infinity. Both of which will exit the while-loop under the presumption that
the values are satisfactory. This bug was recognized early in the projects cycle, but was mistakenly
assumed to be a bug arisen from the restructure of GenProg. And not with GenProg itself as was
the case. This segment of the source code also had a problem with the parameters not converging
at all, and seemed to oscillate. This was at the time solved by implementing a iteration limit
described in section ?? to stop the while loop when the iterations ran amok.

Much effort was put into trying to resolve the issue, but a combination of the limited time frame,
and the seemingly random behaviour made it clear that it would be easier, and faster, to create
a fundamentally new solution. Rather than fixing the bug in the old source code. It also became
apparent that there was not enough time for either of the alternatives, so the proposed solution is
only described here, and only serves as a suggestion.

5.4.2 Proposed solution

The biggest problem with the current rotor calculation is the potential for invalid parameters. In
order to ensure a valid set of rotor calculations, the problem should be approached with a finite
lower limit, and gradually increased until the parameters reach an appropriate stop criteria, or
the upper limit is reached. This approach stands in contrast with the current system of an initial

23

function initiation

Main
insulation
calculation

Total slot
heigth

defined?

Strand
width

Available
copper
height

Number
vertical of

strands

Required
copper
area

Strand
width

Number
of vertical

strands

Misc
remaining

calcu-
lations

Comparison
of input

parameters
and

calculated
parameters

warn if discrepancy

function return

YesNo

Figure 12: Flowchart for the calculating slot dimensions. Improved variant

24

guess, and then hope the calculations converge on correct values.

Since the stator is already calculated at this stage of GenProg, and clearly defined, the upper and
lower limit can be found geometrically. For example: ”how big can each individual pole be before
there are no more space?” or: ”how many field winding can you stack on top of each other before
they collide with the ones from the next pole over” and so on. It should be noted that in the old
(and new) version of GenProg the parameter target pole flux density, Bpmx is unused throughout
the source code.

After the upper and lower limit is found, these can be used directly, or the function can iterate to
find a more optimal solution based on one or multiple stop criteria. During the iteration process
the parameter(s) that is to be changed, should do so linearly. I.e with a fixed step-length. This
would help remedy some of the more nonlinear characteristics of the magnetic calculations that can
cause the calculations to oscillate. GenProg consists of mostly simple calculations that require an
almost negligible amount of computing power and is well suited for cyclic iteration. A proprietary
benchmark showed that the entire GenProg script could run 100 000 times in 8 seconds on an
average desktop computer. The performance gained by using a more sophisticated method does
not warrant the potential for erroneous result.

The solution can be taken a step further by incorporating the stator calculations as well. If the
stop criteria is reached before the upper limit is reached, the stator should be made with a smaller
radius, or shorter height. Correspondingly if the upper limit is reached before the stop criteria,
the stator should be made bigger. Either radially, or vertically. The stop criteria is yet to be
determined, but some obvious suggestions include:

1. Current density field winding

2. Flux density in the pole core

The entire stator and rotor calculations can be described by the flow diagram in figure 13. For a
reasonably optimal solution, the stop criteria, and upper limit are equal.

Workaround As an interim solution the total field winding height, and pole core height are
required by the user, and the visualization of the generator must be used to alter the design.

25

Function initiation

Stator cal-
culations

Iteration
on Rotor

parameters

Limit
reached

Function return

Upper limit reached
Increase stator diameter

Stop criteria reached
Reduce stator diameter

Upper limit and stop criteria equal

Figure 13: Simplified flow diagram for the suggested solution to the unreliable rotor calculation

6 Improved visualization of the calculated generator

6.1 Vectorizing the Cross section

6.1.1 Background

From the preceding semester project a point matrix image of the calculated generator was displayed
for the user. However this image was more of an interim solution before a properly vectorized cross
section image could be developed. The old system of a point matrix was easy to create, and gave
a reasonable visualization of the calculated machine, but it lacked fidelity and flexibility. The
image could only be square, meaning only 90 mechanical degrees could be rendered. This coarse
diagram then needed a ridiculous resolution in order to be useful for fine adjustment of the design.
This again required an unreasonable amount of RAM just to store the matrix. See section 4 for a
condensed version of the preliminary work detailing the old cross-sectional system.

The old system utilized a set of of objects represented by boundary positions. Each object has at
least 3 boundary positions, where each boundary position was represented by an x-position and
a y-position. Each object could then be represented by a x-vector and a corresponding y-vector.
Objects with the same dimensions (meaning same number of boundary conditions), could then be
stacked on top of each other, where each row is a new object. See figure 14 for an arbitrary set of
objects. This feature was created for storing for example all the armature strand objects, as they
easily reach 10s of thousands for a complete machine, and pass them all to the plotter function as
a single matrix.

Initially these x- and y-matrices was then fed to a plotter which translated the object to the correct
position within the frame. It should be noted that the point matrix consisted of coordinates in
millimeters, and the plotter translated these millimeter positions into the resolution of the frame
in such a way that the outer radius of the stator reached 90% of the frame edge. See figure 7 for
reference. This process was slow, and a cross-sectional image with a resolution of 10 000 by 10 000

26

object1 = [x11, x12, · · · , x1n] (row 1)

...

objectm = [xm1, xm2, · · · , xmn] (row m)

Figure 14: x-matrix for an arbitrary number m object with n boundary positions

could take up to 90 seconds to render, in addition to using large amounts of RAM. The lack of
speed could be attributed to the plotter having to physically fill in the space the object occupied
with a color vector for every pixel, and store the resultant matrix array. This method was from
very early on understood to only be a temporary solution before a robust method of vectorizing the
objects could be developed. The objects themselves being of sufficient fidelity with their Carteisian
coordinates in millimeters and double float-point accuracy required no further alterations. See
section 4 for a more in depth description of how the point matrices are generated.

Please note that the old plotter utilized the inserShape command function from the toolbox Com-
puter Vision Toolbox, and this function required the object to be represented by one vector contain-
ing both the X and Y boundary coordinates. However the X and Y coordinates where individually
generated and later combined to facilitate the use of the aforementioned command.

6.1.2 Requirements for the new plotter

The requirement for the new plotter function was as follows:

• Use the preceding method of x and y vectors for representing the complete object in order
to keep the amount of new code to a minimum.

• Increase the performance meaning the completed image should be quick and responsive for
the user to pan and zoom.

• Vastly increased fidelity over the old system.

In MATLAB this functionality already exists in the shape of the plot command. So this was used
as a basis for the new plotter. Several iterations of the plotter was continuously developed as new
functionality was needed, but the final iteration can be seen in figure 3 in appendix A.

6.1.3 Final version of plotter

The final iteration of the plotter revolves around the use of polyshape command. Polyshape creates
a logical polygon object from the aforementioned x and y matrices. This object class is natively
supported by the plot command.

The function iterates through each row in the matrices. The plotter assumes the x and y matrices
are of equal size. Each row is handled separately and plotted row-by-row. An interesting feature
was discovered when some elements in a position vector was a NaN, or Not a Number. Technically
numeric, but neither real or complex. When the polyshape function encounters such a numeric
value it indicates a new polygon. If all the remaining positions are Not a Number no new polygon
is ever initiated. This feature was exploited for added functionality described in chapter 6.3.2.

When the polyshape function encounters two individual positions that are equal the function
returns a warning indicating that there are duplicate positions and the polygon has been altered.
This is not of critical importance, but if the cross-sectional view source code returns objects with a
lot of NaN’s the command window can be cluttered with warnings. A simple system of detecting,
and deleting the NaN’s before the actual polyshape is created and plotted is present. Only NaN’s
are deleted as this is the only duplicate positions that should normally occur.

27

6.1.4 Added features, cross section

Previously the cross sectional view could be considered a canvas where an object or a segment
of an object could be painted over as a way of removing them. For the vectorized code this is
no longer possible, and therefore a robust method of deleting, subtracting, and merge the object
became necessary. for this purpose three important functions was developed:

• unionfnc.m Function for merging objects. Takes one original object, and one (or more)
object(s) to be merged to the original. Both inputs and outputs are in the familiar x-vector,
y-vector format. Please note the initial name for this function was rotorfnc.m as it was first
used to merge the rotor ring object with the pole core objects. It was later renamed as it
could be used for other parts of the script, but any reference to rotorfnc.m in the source code
refers to unionfnc.m.

• subtractfnc.m Function for subtracting multiple objects from one object. As unionfnc.m
this function also uses the established x-vector, y-vector format. It should be noted that
this function had a peculiar boundary case where somehow the subtract function returned
a invalid polygon. Why this occured was never quantified, so a work-around solution was
created. A simple if statement checks whether the returned polygon is valid (contains at
least three points). If not returns three NaN’s as positions. In essence a null polygon that
will be ignored by the plotter.

• deltefnc.m The final important function was the deletefnc.m function. As the name implies,
the function was developed together with the blank matrix shown in the flow diagram in
figure 17. See chapter 6.3.2 for detailed description of the entire blank system. The function
serves as a method of only rendering specific parts of the calculated machine.

6.2 Indexing the three different phases

6.2.1 Background and motivation

One of the projects future goals is to at some point be able to export the calculated generator to
COMSOL in order to run a FEM analysis on the machine. Although this was not possible in the
given time-frame, the work described in this report has been done to facilitate FEM implementation
in the future. As a part of this on-going effort a robust system of laying out the armature winding
was created. For the moment it is only utilized in the cross sectional view of the generator.

The problem The challenge with indexing the armature winding according to their phase stems
from the fact that the number of slots per phase per pole usually does NOT equal an integer. For
fractional slot winding machines this number is always an integer + a fraction. For the rest of this
section this is number is referred to as q, and can be easily calculated by equation 5:

q =
Qs

m Np
(5)

where Qs is total number of slots, m is number of phases and Np is number of poles in the machine.

Obviously one slot layer can only contain the winding of one phase, so in order for the fraction to
be complete the winding must be distributed unevenly. The problem can be summarized by saying
there is a discrepancy between the mechanical degrees, and electrical degrees between the the rotor
poles and stator slots respectively. A considerable amount of time was spent on trying to quantify
the problem and find a solution. Numerous alternatives was tested with basis in the fraction part
of q, as this was seen as the most elegant alternative, but none yielded sufficient result.

28

R

-T

S

-R
T

-S

Figure 15: Visual representation of revolver.m

The solution The solution ended up being more of a brute force approach. First the function
determines the total number of sectors in the machine, meaning how many times the pattern
repeats itself for the winding layout. This is equal to the greatest common divisor for number of
slots, and number of pole pairs. One sector rotation is then assumed to be 360 mechanical degrees.
The corresponding electrical degree can then be written out as a vector containing all the degrees
in one sector. This electrical degree can then be fed into a second function named revolver.m which
takes an electrical degree as an argument, and returns a column vector where each row represent
each phase R, S, and T. The function can be explained by a simple analogy. Consider for a moment
the cylinder of a revolver with 6 shots. Each shot represents either the positive or negative R, S,
and T phase. Only one cartridge can line up with the firing mechanism at a time, meaning it does
not matter how many times you spin the cylinder. You will always line up with one of the six
shots contained within the cylinders 360 degrees.

Example The best way to illustrate this is with an example. Take an arbitrary machine with
q = 2 + 1

2 = 2.5. If this machine is three phase, and has 20 poles it would give a total of 150 slots.
The greatest common denominator is 10, so the machine has 10 sector with each sector having 15
slots, and 2 poles. This gives the following electrical degrees for each slot in one sector:

eldeg = [0 24 48 72 96 120 144 168 192 216 240 264 288 312 336]

This column vector is fed element by element through the revolver function, and the following
matrix array is generated:

Phase R =
Phase S =
Phase T =

1 1 1 0 0 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0 −1 −1
0 0 0 −1 −1 0 0 0 0 0 1 1 1 0 0


For the second layer in the slot, the winding layout is multiplied by -1 and circularly shifted by
the coil pitch. In this example the second layer is shifted to the right by 5 indents. This then boils
down to a 6 × n matrix (where n is Qs/sectors) and each row represent either phase R, S, and
T in two layers of the stator slots.

Phase R =
Phase S =
Phase T =
Phase R =
Phase S =
Phase T =


1 1 1 0 0 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0 −1 −1
0 0 0 −1 −1 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 −1 −1 −1 0 0 0 0 0 1 1
0 0 0 1 1 0 0 0 0 0 −1 −1 −1 0 0
−1 −1 −1 0 0 0 0 0 1 1 0 0 0 0 0



}
First Layer

}
Second Layer

Implementation At the moment this winding layout matrix is only used for the visual repres-
entation of the calculated generator, but it is hoped that simple the 1, -1, and 0 and each column

29

representing one slot in the sector can be utilized when the script is expanded with FEM analysis
in COMSOL. For the complete code in its entirety see function 1 and 2 in appendix B.

30

function initiation

Import
parameters

from
the app

Calculation
of constant
parameters

Stator and
rotor ring

matrix
creation

Wedge
matrix

creation

Empty
slot matrix

creation

Isolation
matrix

creation

Armature
matrix

creation

R, S, and
T indexed
armature
matrices
creation

Pole shoe
matrix

creation

Pole
matrix

creation

Field
winding
matrix

creation

Damper
bar matrix
calculation

Renderer

Blank matrix calculation

Winding layout

Figure 16: Flow diagram for the cross-sectional view matrix creation

6.3 General improvements to the cross section

6.3.1 Cross sectional script restructure

In much the same manner as described in chapter 5.1 the source code function for generating the
cross-sectional view was restructured with legibility in mind. Chronologically this was done before
the restructure of GenProg, but the process itself was much simpler. In part because the script was
infinitely more familiar, and lacked GenProgs interdependence. The restructured working principle
can be viewed in figure 16 and 17.

6.3.2 deletefnc.m and the blank object

From the very beginning it was the desire of the supervisor to be able to only display a particular
segment of the generator. Previously the point matrix method did not provide such functionality
as described in section 6.1.1. The image was locked to 90 degrees because it was not possible to
remove excess machine objects, in addition to other limitations. Objects outside the frame could
be ignored since they where not visible.

The method used was the deletefnc.m function combined with a blank object. In essence the
function compares a object, and the blank object. Based on this comparison the function determines
weather the input-object is inside, outside, or on the border of the blank object. Combined with
a render array which determines which parts of the generator to be rendered.

31

Render array (Logical)Matrices
Blank area

matrix

Stator

Slot
wedges and
separators

Armature
insulation

Armature
windings

RST
indedxed
armature
windings

Rotor core

Field
winding

Damper
bars

Stator ring
Empty stator slots

Slot wedges
Slot separators

Armature insulation

Armature winding

RST armature winding

Rotor Ring
Rotor core

Damper bars

Field winding

Damper bars

deltefnc.m

plotp2p.m

Displaying final image

Figure 17: Flow diagram for renderer part of CSGenVec360fnc.m

32

(a) Inverse Pizza slice (b) Key-hole variant

Figure 18: The two different blank objects present in the SC function.

Blank object Before deletefnc.m is described in detail it is useful to understand the blank object
first. At the moment only the inverse pizza slice and keyhole is present, but the possibilities are
limitless. See figure 18a 18b for visual representation. The inverse Pizza slice variant has an outer
radius slightly larger than the outer radius of the calculated machine. The empty slice is equal to
the degrees-to-render parameter from the app. If this is set to 0 (default) the angle to render is
equal to the angle between two poles.

The Key-hole variant is a complete circle with the same radius as the semi-circle found in the
inverse Pizza slice, and a Key-hole that encompass one slot, and the immediate surrounding stator
iron.

deletefnc.m The function compares the blank object with one or multiple sets of objects. Based
on this comparison one of three things can occur:

1. The object is completely outside the blank object.

2. The object is completely inside the blank object.

3. The object is on the border of the blank object.

If the object that is to be compared consists of several rows (i.e more than one object) each row
is compared separately. The function utilizes the inpolygon command, witch takes the x and y
vectors for both the blank object and the object to witch it is to be compared, and returns a logical
array with the same dimensions as the compared object. If none of elements are true, the object
is completely outside the blank area, and the object can be retained as-is. If all the elements are
true the object is completely inside the blank area, and can be omitted entirely. If however, some
of the elements are true, but not all of them, the object is in a border condition, where some of it
is inside and the rest is outside.

This poses a problem. The object can simply be subtracted using the subtractfnc.m function
previously explained in section 6.1.4, but if the resultant object has different dimensions (meaning
different number of positions) it cannot be put back into the same matrix array as the rest of the
objects that perhaps are not in a border condition. This is best explained using an example.

Take the damper bars for an arbitrary machine. The damper bars consist of a circle along the
leading edge of the pole shoe. Each circle consists of 24 positions. A machine has 7 damper bars
per pole, and since the user has not defined the number of degrees to render, it will use the default
value. From this calculation all the damper bars for the two poles in the image will be generated.
For this example this will result in a 14 by 24 x and y-matrix. This poses a problem because two of
these damper bars will be in a border condition, and after being subtracted with the blank object
they do not share the same dimensions as with the rest of the damper bars.

This was solved by exploiting a feature that was discovered when developing the plotp2p.m function.
The plotter interpreted a NaN as a divider between two objects, but if multiple where chained

33

together no new object is ever initiated. Therefore the deltefnc.m function simply compares the
the input vector with the original, and if not equal simply fills in the remaining positions with
NaN’s.

This proved to be simple and robust method of removing excess machine objects. without altering
the the previously created object matrices.

6.3.3 Fixes

Although the actual amount of minor fixes was not documented, and usually not severe enough
to require a considerable amount of time, a few are worth mentioning here.

Linspace Previously all the vector arrays was created with the following syntax:

vector = start : steplength : stop

For vectors with simple start, stop, and increments where all variables are neatly partiable with
each other, the start and stop number is guaranteed to be included. This is not always the case,
and a problem could be encountered where the stop variable was not included as the last element
in the vector. Although rare, it was first encountered for a special machine when playing around
with the number of damper bars parameter. From the previous semester report the degree per
damper bar vector was generated with the following code:

radBarvec = NDs/2* degPerBar - degPerBar/2 : -degPerBar :...

-NDs/2 * degPerBar + degPerBar/2;

But for some combinations of number of damperbars, NDs, the last element was not included in the
vector. This caused the function to crash because of a discrepancy between number of damperbars
and number of elements in radBarVec. The solution was the linspace command which ensures the
start and stop value is included in the vector. The syntax for the command is:

vector = linspace(start, stop, steps);

And for the damperbar scenario:

radBarvec = linspace(NDs/2 * degPerBar - degPerBar/2 ,...

-NDs/2 * degPerBar + degPerBar/2 , NDs)

The linspace command mostly replaced the column operator in the improved cross sectional view
source code, as it was a much more robust way of creating vectors. It should be noted that the
cross sectional view script frequently utilizes for-loops where the number of something is used as a
parameters rather than the length of the vector used within it. This programming discipline makes
the loops easier to read, but the matrices actually manipulated within need to be of correct size.

The exact cause of the phenomenon is not known, but is likely due to float point inaccuracies.

Rounding From the previous semester the rounding of certain elements was done by means of
a linear x-vector, and the corresponding y-vector was calculated by means of trigonometry. From
figure 4 we can see that a large amount x-positions was required to get the desired fidelity when
the angle approach zero. With the old point matrix image, this was not recognized at the time, as
the images fidelity was not good enough to observe the issue . In addition the default value for the
rounding resolution was 100. With the new vectorized cross sectional view it was discovered that
the time spent rendering the frame was roughly proportional to the number of positions within

34

the frame rather than the size of the frame as was the case previously. As part of optimizing the
new vectorized image, the resolution for all the objects with rounded corners was reduced. At this
stage it became obvious that the method should be altered to use a linearly spaced angle vector
and then calculate the x- and y-positions element by element. This gave a rounded object with a
completely homogeneous appearance. In contrast to what i described in section 4.

Default values As mentioned in section 7.1 and 6.3.3 the default values for ring resolution, shoe
resolution, and winding resolution was removed as an optional parameter from within the app. By
means of trial and error a resolution, here meaning the number of positions on the rounded object,
of 100 gave adequate visual fidelity for the stator ring, rotor ring, and the pole shoe. A resolution
of more than a 100 yielded little in regards to visual fidelity, at an increasing cost of render-time.
For the damper bars a resolution of only 24 gave good enough fidelity as the objects where usually
small compared to other objects in the frame. The armature and field windings initially had a
resolution of 10 per corner, but this could be reduced to as low as 2 or even 1 without much lost
visual fidelity. The armature windings have by far the greatest impact on performance because
of the sheer amount of armature strands in a frame, rather than the resolution of the rounding
itself. A variant where only a simple solid rectangle could be rendered as a simplified imitation
of a geometrically advanced armature bar. However this was only theorized and not implemented
due to result achieved from just experimenting with the rounding resolution.

35

7 App improvements

7.1 Front-end improvements

The basic Layout of the app is mostly unchanged from the previous semester project. The most
obvious change is the removal of the Cross sectional view from the centre of the app window. This
was done as a result of the cross-sectional view improvements. The responsiveness of the cross-
section windows was very poor in the app windows. Almost to the point of being unusable, and it
was decided to move the cross-sectional view to a separate window. This freed up valuable screen
real estate, and allowed the user to resize the cross sectional view windows separately. Several of
the edit-fields was renamed, and / or moved to a more appropriate tab. Some honorable mentions
include:

• Specific ratio was changed to: Slot / tooth ratio

• Current density input for rotor and stator was changed to Target current density

• Number of strands in a bar, Number of strands per turn, and number of strands on top of
eachother per turn was changed to Number of strands per bar, Number of horizontal strands
per turn, and Number of vertical strands per turn respectively. This was done to reflect the
slot dimensions rework described in section 5.3.

• Cross section properties tab was refined by removing options for the rounding resolutions.
This was done to reflect changes done within the cross sectional part of the script.

• The option to choose the winding layout was removed as this property is determined sym-
bolically based on the calculated parameters.

• Removed several depricated edit-fields from the cross sectional view properties tab.

7.2 Back-end improvements

7.2.1 Parameter handling

Most of the resources allocated on improving the GenProg App was sunk into improving the back-
end part of the app. One of the main issues with the GenProg app is its amount of parameters.
Initially the parameters was put into numeric arrays, and then used as arguments for the different
functions. This provided a simple and non-intrusive method of controlling the parameters passed
on to the GenProg parent function, and the cross-section function, without significantly altering
the source code. This was particularly important for old GenProg as it was suffering from a
severe case of Please don’t touch it. No one knows how it works. This boiled down to 2 input
vectors and 10 output vectors. All of which needed to be read and written for several different app
functionalities. Each element in each vector corresponds to a specific edit field in the app window.

A function was created for the following list of operations.

• Reading input parameters from an Excel worksheet and writing to the corresponding edit
field in the app window

• Reading input parameters from the app window for use in in GenProg

• Save input parameters from the app to an existing, or new Excel worksheet

• Writing calculated parameters from GenProg to the app window edit fields

• Reading calculated parameters from the app window for use in the cross-sectional view func-
tion

36

This way of relating to the parameters poses a couple of problems. Very early on these functions was
moved outside the app designer environment because it improved the readability of the code view
for the GenProg app, but this meant that if the developer wanted to rename, or move parameters,
the change had to be done in all 5 functions individually, in addition to where ever they where
used. Obviously this was not good enough, and a better solution had to be developed.

Solution Before a more elegant solution can be devised an interim solution is created. App
designer has functionality for a system of global variable that can be declared for use inside the
app (private) or globally (public). This means that the 2 + 10 arrays that previously had to be
passed back and forth between functions, could be stored only one place, and accessed without the
need to pass it around as was the case previously. This made it vastly more practical to add or
move parameters, and since this was handled within the app editor, renaming one edit field would
also change the correct variable everywhere. In its current iteration its as simple as just renaming
the edit field in the app designer, without the need to manually edit the edit-field variable in the
underlying script.

7.2.2 Save functionality

A save functionality is of course a necessity with this type of software. Although a save button
was present from last semester, it was a dummy component as the project ran out time before it
could be properly implemented.

In order to save some time and complexity only the input parameters are saved. Either to a
brand new Excel Worksheet, or overwrite an existing one (Manual backup of worksheets before
overwriting is encouraged). The save function was made in such a way to copy the old format of
24 + 42 required and optional parameters respectively. Although this numbering is not technically
the case anymore, this ensures backwards compatibility with existing documents.

In the future a better solution for storing and reading parameters should be developed. Excel
worked well enough previously, but the platform should be phased out because problems when
interacting with the Excel worksheet and Matlab simultaneously. Newer versions of Matlab even
warns the user to not use xlsread as its not recomended starting with version Matlab R2019a due to
performance and compatibility. Problems where encountered when using the the app on Macintosh
machines, but could be worked around by converting from .xls format to the newer .xlsx format.

37

8 Type Check

8.1 System of detecting and displaying errors

8.1.1 Error code

Two different systems was developed and tried before a final version was decided upon. Initially
the solution was envisioned with a kind of rating system where a warning or error was given a
relative score indicating the severity or lack thereof. This system worked well, but it was deemed
impossible to cover all the errors that could occur. Therefore efforts shifted towards making a
robust and simple system for adding errors down the line instead. The problem with this initial
system was that each error needed both an index location and a value, meaning the error string
had to be a set length, in addition to having a value. This again made the addition of new errors
tedious as it required changes in multiple locations in order to work, and more importantly if done
incorrectly did not work at all.

The second iteration omitted the index / value system entirely in favor of a more traditional system
of a simple error code. An error vector is initiated and when an error or warning is detected, its
error code is simply appended. At the end of the GenProg function the error vector is used to
generate a simple dialog box containing all the error and warning messages for the user. This
greatly simplified the process of adding new errors as the developer only needs to add an error
code, error or warning condition, and a corresponding error message. See section 8.4 for complete
procedure for adding new errors.

The error vector can be retained for the entire GenProg function (or any other function), but in its
current iteration only the input parameters and the complete calculated parameters are controlled.
See table 4, 5 for complete list of implemented errors and warning.

The type of error can be categorized into three distinct categories.

• Critical error - Only occurs during the initial stage and is intended to stop GenProg before
any calculation is performed as it will cause a crash.

• Error - An error that is severe, but will not cause GenProg to crash, but cause it to calculate
invalid parameters.

• Warning - Intended to give the user a warning or point attention to a particular parameter.

8.1.2 Error Message, and Calculation Report

One unique error code corresponds to a unique error message. The error codes are divided into
brackets of 100 where each centuriate indicates the type of error. At the moment only three
brackets exists with exception for one special case, the pole shoe height.

• 1-99 Input error or warning

• 100-199 Output error or warning

• 200-299 Output array validation

When the error code vector reaches the end, all the errors can be fed element by element to a error
message array that compiles the complete error message array, and display it as a dialog box for
the user. See figure 19 for an example of a calculation report.

38

Figure 19: Example of a typical calculation report

Figure 20: Example of a critical error, and failed blank-check

8.2 Input Sanitation

8.2.1 Background

The original GenProg script lacked ANY input sanitation. As stated in Lundseng and Vikans
master report from 2010 it is the users responsibility to ensure the input-parameters are correct
[3]. It was believed that a comprehensive input-sanitation of the required and optional parameters
would ensure a more stable GenProg, and help the user understand why the calculation returned
what it did. The input sanitation is incorporated into the new calcGenProg.m parent function and
is performed before any calculation is attempted. The logical function can be viewed at the top in
figure 8. If any Critical is detected, the script stops, and returns empty output vectors.

Blank check As mentioned in section 5.1 the required parameters (reduced from 24 down to 12
parameters) is required to have a value. Besides the regular type check of the input parameters, the
function typeCheckBlank.m performs a blank check of the required parameters vector, and returns
a logical array with a true if the script detected one or more zero-element in required parameters.
The first element denotes whether a blank has been detected or not, and is considered a critical
error.

Please note that both moment of inertia and skewing can be zero, and the blank check ignores
these parameters if a blank is detected.

8.3 Out Control

8.3.1 Basic parameter check

currently only a few parameters are checked directly after GenProg is completed. These are:
Efficiency and current density in both the stator and rotor. See table 5 for complete list.

8.3.2 Ventilation

GenProg calculates a number of thermal parameters including Cooling air flow and Maximum air
speed. This can be used to calculate the dynamic pressure using equation 3 and the hydraulic

39

power using equation 4. A typical fan is considered to have an efficiency of 50% (including safety
margins) so a rough estimate for the required cooling fan power can be expressed. The function
outVentCheck.m compares this rough estimate of fan power with the generators rated power. A
warning and error is generated at 1% and 20% respectively after discussions with supervisor and
an HVAC engineer.

The motivation for this out control was because of the way GenProg calculates the thermal para-
meters. Unless specified by the user, the thermal calculations is performed with gradually increas-
ing airflow until the thermals where within specifications. This meant that GenProg could calculate
incredibly unrealistic cooling parameters, and a simple condition like mentioned above could give
the user some indication to check their input parameters for excessive loading conditions.

outVentCheck also trigger an error when the Maximum cooling air speed exceeds 20 m/s. Excessive
air speeds should be avoided as the associated pressure drop in cooling ducts requires building
specifications that are outside specified standards. As a reference ISO 15138 which covers Heating,
ventilation and Air-conditioning in offshore and petroleum installations recommends 10 m/s and
a maximum of 15 m/s as anything over this requires considerations for extra noise insulation and
high losses [2].

8.3.3 Pole shoe height

After discussions with supervisor regarding the cross sectional view, and after the restructure
described in section 5.1, it became apparent that a more sophisticated method of calculating the
pole shoe height should be implemented. Unless specified by the user, its default value is 50mm.
This poses a problem as the pole shoe must be strong enough to contain the copper field winding
during a run away situation in order to prevent a catastrophic failure.

Initially a calculation of the pole shoe height was supposed to be implemented as a part of calc-
GenProg, but this was not possible without a major rework of the entire rotor calculation. The
pole shoe height is required before the field dimensions are calculated. As an interim solution the
pole shoe height calculation is implemented as an output control after calcGenProg is completed.

Implementation In order to simplify the calculation, a sheer break is assumed to not be a factor.
Meaning the shoe is assumed to break due to tensile stress, and not sheer stress. This simplifies the
calculation because it allows us to set σy = 0 in equation 2, and only consider the horizontal stress
(σx) and biaxial stress σxy. From figure 21 we can see the forces manifest themselves in the corner
between the pole shoe and pole core. This is where a failure will first occur. The general plane
stress must not exceed the yield strength of the material in order to avoid permanent deformation.
In addition it is assumed the force F is applied directly along the y-axis.

From equation 2 the expression for σx and σxy needs to be calculated.

The formula for σx is as follows:

σx =
M

I
=

1
2 lF
hpst3

12

=
6Fl

hpst3
(6)

Where t is the length of the machine (z-axis), M is resulting torque at inner corner, I is Second
moment of area. The Force F can be calculated by the centrifugal force of the field winding on
the pole shoe:

F = mcuf ω
2
rr

Please note that the effective pole shoe height is used. By subtracting the damper bar area and
slot from hps. This is not strictly correct, but for the purpose of this project it is deemed close
enough, and serves as a worst case scenario where a damper bar is located dirrectly underneath
the joint between the pole core and pole shoe. Finding the actual effective pole shoe height proved
too difficult.

40

hps

r

bps − bpk = l

F

σx

τs

Figure 21: Diagram of the forces applied to the pole shoe of a salient pole generator

The formula for σxy is:

σxy =
F

hpst
= τs (7)

Which is the torque exerted on the pole shoe.

The expression for σx and σxy can be put into equation 2 and gives equation 8 which can be
calculated numerically:

σv =

√(
6Fl

hpst2

)2

+

(
F

hpst

)2

(8)

Steel After discussion with supervisor it was decided the calculated general plane stress, σv, must
not exceed 2/3 of the tensile yield strength of the material. The steel chosen was a type intended
for use in automotive industry with a yield strength of around 590 MPa, or N/mm2. It should
be noted that this can easily be changed for another value at a later time, and purely serve as a
proof of concept. In the future there should be an option for trying different types of material, and
maybe even observe how this change impacts the design.

Form Factor The yield strength of the pole shoe is dependent on form factor α. The form factor
can be found in a number of ways, but a simple stepped approach was chosen based on figure 22.
The form factor is chosen from the ratio of the radius r and the effective pole shoe height. See
table 3.

The stress concentration factor β is mentioned in literature [1], but is not implemented in the
calculations.

Then we can establish the final expression:

σnom = α σv (9)

41

Table 3: Function table for form factor α

ratio = r/heff α
ratio > 0.1 1.9
0.1 ≥ ratio > 0.05 2.2
ratio ≥ 0.05 3

Figure 22: Form factor α for axle with rounded stepping exposed to bending stresses [1]

42

OutPoleShoeCheck.m only generates an error if the nominal stress σnom exceeds the allowable
stress for the material. I.e:

σnom >
2

3
590 [MPa]

If the function detects an error it will recursively call itself with gradually increasing pole shoe
height (1mm increments) until no error is generated. The new Pole shoe height is then displayed
to the user as a part of the calculation report together with the necessary increase in height.

Note: This error is the only error where the user is given feedback on a recommended new value.
This was done as a interim solution until it can be implemented as an integral part of the rotor
calculations.

8.3.4 Array validation

Two functions was developed for checking weather the calculated parameters are valid. Each of
the 10 output vectors are checked for non numeric and negative values. If any of the calculated
parameters are not numeric or positive, it indicates that something has gone wrong in that specific
section of calcGenProg, and should be investigated further by the user.

8.4 New error procedure

The procedure for adding new errors would be as follows:

1. Create an error condition where appropriate. This can be wherever the user whishes, but it
is good practice to combine the error conditions in a tidy and orderly manner so it can easily
be found.

2. Append the error vector either directly or in the parent function by using the following
command:

err(end+1) = errorcode

Make sure the error code is unique.

3. Add an error message to errList.m at the correct indent and bracket. Example: error code
= 225, the error message should be placed as the 25th element in the 201 - 300 bracket.

8.5 Result of the type checking

In total the entire typecheck function tree consists of 13 functions and child-functions and a total
of 39 unique errors and warnings. A list of errors and warnings can be viewed in tables 4,5 and 6.
A list of developed functions can be viewed in table 7.

43

Table 4: List of errors for input parameters.

Code Type Comment
1 Critical Error Length of required parameters is not equal to 12
2 Critical Error Any element of required parameters are not numeric
3 Error Any element of required parameters are not positive
4 Criticial Error Length of optional parameters is not equal to 54
5 Critical Error Any element of optional parameters is not numeric
6 Error Any element of optional parameters is not positive
7 Critical Error Number of poles is not an even number
8 Error Target current density stator exceeds 3.5A/mm2

9 Error Target current density rotor exceeds 3.5A/mm2

10 Critical Error Nominal voltage and utilization factor is mutually exclusive
11 Critical Error Gross iron length and Air gap flux density is mutally exclusive

Table 5: List of output errors

Code Type Comment
101 Warning Efficiency lower than 95%
102 Error Efficiency lower than 85%
103 Warning Current density stator warning 3A/mm2

104 Error Current density stator Error 6A/mm2

105 Warning Current density rotor warning 3A/mm2

106 Error Current density rotor warning 6A/mm2

107 Warning Substantial hydraulic power required for cooling
108 Error Required hydraulic power higher than 20% of generator rated power
109 Error Cooling air speed too high
110 Error Pole shoe height critical. Risk of failure during maximum rotational speed.

Table 6: Output array validation

Code Type Comment
201 Error Stator parameters not positive
202 Error Stator parameters not numeric
203 Error Rotor parameters not positive
204 Error Rotor parameters not numeric
205 Error Magnetic parameters not positive
206 Error Magnetic parameters not numeric
207 Error Losses not positive
208 Error Losses not numeric
209 Error Reactances and time constants not positive
210 Error Reactances and time constants not numeric
211 Error Thermal parameters not positive
212 Error Thermal parameters not numeric
213 Error Mechanical parameters not positive
214 Error Mechanical parameters not numeric
215 Error Critical data not positive
216 Error Critical data not numeric
217 Error Extra parameters not positive
218 Error Extra parameters not numeric

44

Table 7: List of function relating to the type check and output controll for GenProg

Function file name Description Parent function
typeCheck.m Initial function for checking input parameters calcGenProg.m

parDecomp.m
Function for unpacking the two input vectors,
required and optional parameters

typeCheck.m

typeCheckBlank.m Function for checking for missing required parameters typeCheck.m

returnErr.m
Function for returning empty output matrices
if a critical error is detected

calcGenProg.m

parComp.m
Function for compressing the calculated parameters
into the 10 output matrices

calcGenProg.m

outControll.m Initial function for output controll calcGenProg.m
outValid.m Function for validating the output matrices outControll.m

outVecValid.m
Function for checking if any element in a matrix is
either negative, or not numeric

outValid.m

outVentCheck.m Function for generating errors related to ventilation outControll.m
outPoleShoeCheck.m Function for generating errors related to the pole shoe outControll.m

sprintErr.m
Function for assembling and displaying
errors and warning messages

calcGenProg.m

errList.m
Function for returning a single error string
from a single error code

sprintErr.m

parList.m
Function for returning a string contiaing the name of a
required parameter. Used in conjunction with the
result of the blank chek.

sprintErr.m

GenProg initiation

Parameters
decom-
pression

Initial
input

parameter
check

Check for
missing
input

parameters

Critical
error

detected?

Cancel GenProg calculations

Proceed with GenProg calculations

Yes

No

Figure 23: Flow diagram of input sanitation for calcGenProg

45

GenProg

Parameter
com-

pression

Output
matrix

validation

Initial
parameter

check

Ventilation
check

Pole shoe
height
check

Error
message
assembly

and
display

Figure 24: Flow diagram for output control, and final error message assembly and display

9 Result and discussion

9.1 Final result

9.1.1 Graphical user interface

This section includes result and discussion for both the app improvements and cross sectional view.

App The app was further developed from the previous semesters project with the following
features and improvements:

• Reduced number of required parameters from 24 to 12.

• Corrected and resolved several linguistics and grammatical errors in edit fields.

• Restructured several parameter sentences to improve legibility.

• Added save functionality.

• Improvements to how the app reads and writes to the different edit fields.

• Reduce the amount of work needed to make changes to the graphical user interface.

• Moved the cross-sectional view outside the main app window.

• Developed a system of displaying a calculation report for the user.

Cross sectional view The following features and improvements was added to the cross-sectional
view:

• Completely vectorized the cross-sectional view.

46

• Developed functionality to only render specific parts of the calculated generator, or omit
them entirely.

• Method for indexing the three phases in the armature winding.

• Restructured the matrix creation into tidy and coherent individual functions and child func-
tions.

• Separated the armature winding matrix creation into two different types: Form winding, and
Roebel winding.

• Changed the method for determining the armature winding layout from a strictly user defined
option to a symbolical variant.

9.1.2 calcGenProg

The following features and improvements was made to GenProg :

• Adapted the core GenProg script into separate unique functions and child-functions.

• Resolved several syntax flaws in if-statements.

• Improved how while-loops where used with guaranteed initiation, and return strategies.

• Completely rework the slot and armature winding calculations.

• Changed variable nomenclature.

• Adapted the existing function for choosing number of stator slots for use in a GUI environ-
ment.

• Added a system of assigning default values to parameters.

• Completely phased out Excel in calcGenProg.

9.1.3 Input sanitation and output control

The input sanitation and output control was created as a integral part of calcGenProg. It includes
the following features:

• Developed a system for sanitizing the input parameters.

• Detect, and stop the calculations if a critical error where to occur.

• General validation for the 10 output vectors

• Miscellaneous parameter control for a limited set of specific calculated parameters.

• Estimating the structural integrity of the pole core using von Mises yield criterion.

• Validating the validity of ventilation parameters.

9.2 Design of an example generator

To illustrate the result a complete design example is presented in section 9.2. From installing the
app, to viewing the result of the calculations.

47

9.2.1 Installation and startup

Step 1 - Locate the installation file GPapp.mlappinstall in the source-code, and follow install
instructions. This will add the GPApp to MATLABs app tab.

Step 2 - To start the app simply launch it from the app tab within MATLAB. Make sure the
current folder selected contains all the Excel files the user wishes to read from, and save to.

Figure 25: GPApp in MATLAB

Step 3 - The App windows is presented to the user. From here the design process can begin.

Figure 26: GPApp window

9.2.2 Design process

The user can either choose one of the available machine designs from the drop down menu, or
design it completely from scratch. For the most basic machine only the required parameters tab
needs be considered.

Apparent power An even value of 100MVA is chosen. It should be noted that the core func-
tionality of calcGenProg is based on a compendium written by Westgaard [5], for machines ranging
from 10-50MV.

Power factor NVE recommends a power factor of 0.86, and a minimum of 0.9. For our fictional
generator a power factor of 0.80 is chosen.

48

Speed of rotation and Number of Poles Must be chosen together in order to achieve 50hz
frequency. An arbitrary number of poles equal to 14 is chosen, which gives a speed of rotation
equal to 428.6 rpm.

Runaway speed Not all that critical and twice the speed of rotation is a realistic baseline.

Maximum delta temperature A maximum of 95 degrees is industry standard, and corresponds
to insulation class B.

Moment of inertia Can be omitted entirely, and set to 0 as the generator does not require
additional rotating mass.

Generator maximum voltage Minimum of
√

2 higher than the desired nominal voltage, but
a safety margin is recommended for adverse running conditions.

Slot / tooth ratio Can be played around with, but a good starting point is around 0.7.

Filling factor A filling factor of 0.95, or 95 % is realistic for the stator iron.

Negative sequence voltage A negative sequence voltage of 20% is required by NVE.

Skewing We are intending to create a fractional slot machine and therefore it is not necessary to
include skewing. If q is equal to an integer, skewing is recommended to reduce harmonic vibrations.

9.2.3 Running the calculations

When the required parameters have been filled in, the user is ready to run the calculations. Start
by pressing Calculate values.

Figure 27: Calculate values button in GPApp

Number of slots During the calculation process the app will promt the user for number of slots.
The user can choose from a list of appropriate values, and we choose 180 slots for our example
machine. The user should make note of the number chosen, and fill it in under optional parameters
when the calculations are completed. This is to prevent the app from prompting the user next
time time the calculations are performed.

9.2.4 Interpret the result

After calcGenProg is completed, all the 112 calculated parameters are displayed in their respective
edit fields on the right hand side of the app window. From here the user can see all the describing
parameters for the calculated machine. To help the user interpret the calculated parameters a
calculation report is generated with a list of error codes and the accompanying error, or warning
message. From the example we see that the following errors and warnings should be addressed:

49

Figure 28: Slot number dialog box for example machine

• Pole shoe height should be increased by an additional 28 mm.

• Armature current density too high.

• Field current density too high.

Figure 29: Calculation report for example machine

Looking at the generated cross sectional visualization in figure 30 the some observations can be
made:

• Rotor yoke collides with field winding.

• Visual inspection of the pole shoe height reveals the inadequate thickness to withstand the
stresses exerted during a runaway situation.

50

Figure 30: Initial cross-sectional view of the calculated generator

9.2.5 Finalizing the design

From the aforementioned lists the following adjustments are made:

• Reduce target current density of the armature winding, and field winding to 2.5 A/mm

• Manually set pole core height and total field winding height

• Increase pole shoe height from 50mm to 75mm.

Finalizing the design The parameters should be adjusted and calculations repeated until the
app no longer generates any error codes, or the machine satisfies the users requirement.

(a) Final cross section (b) Final cross section slot only

Figure 31: Final cross-sectional view of the calculated generator

Table 8 through 20 contains all the final input parameters and calculated parameters for the
final machine. These parameters gives an accurate description of a salient pole generator which
cross section can be viewed in figure 31. Note that the Pole shoe height parameter had to be
further increased to 80 mm to accommodate the increased weight of the field winding, and that
the ventilation airspeed exceeds the recommended maximum of 15 m/s. To further alter the design
the possibility of reducing the surface loading should be considered in order to reduce the required
cooling. Either by increasing the length, or radius of the machine.

51

Table 8: Example generator final set of required input parameters

Parameter Value Variable name
Apparent power 100 MVA Sn
Power factor 0.8 Cosphi
Speed of rotation 428.6 rpm ns
Number of poles 14 Np
Runaway speed 730 rpm nr
Maximum delta temprature 95 dTmx
Moment of inertia 0 M
Generator maximum voltage 15 kV Vmx
Slot / tooth ratio 0.7 budbd
Iron filling factor 0.95 kFe
Negative sequence voltage 20% Vnmx

Table 9: Example generator final set of optional parameters

Parameter Value Variable name
Target Nominal Voltage 10500 V Un
Number of slots 180 Qs
Target current density Stator 2.5 A/mm2 Ss
Target current density Rotor 2.5 A/mm2 Sfi
Pole core height 300 mm hpk
Total field winding height 300 mm hf
Pole shoe height 80 mm hps

Table 10: Example generator Critical Data

Parameter Value Variable name
Apparent power 100 MVA Sn
System voltage 10500 V Un
Nominal current 5499 A In
Power factor 0.8 Cosphi
Efficiency 98.36 % Eff
Rotational speed 428.6 rpm ns

Table 11: Example generator Stator Parameters

Parameter Value Variable name
Utilization factor 7.428 C
Inner diameter 3.924 m Di
Outer diameter 4.714 m Dy
Gross iron length 1.74 m lb
Net iron length 1.52 m ln
Number of cooling ducts 37 nv
Number of turns per phase 30 Ns
Relative polepitch 0.8556 y
Coil span 11 Ww
Skewing 0 s

52

Table 12: Example generator Slot Parameters

Parameter Value Variable name
Number of slots 180 Qs
Slots per pole and phase 4.286 q
Winding factor 0.931 kw
Slot height 134.4 mm hs
Slot width 28.2 mm bu
Tooth width 40.29 mm bd
Slot pitch 68.49 mm tauu
Wedge height 6 mm hspk
Bar separator height 7 mm hm
Slot wedge spacer height 2 mm hgls
Distance wedge and air gap 1 mm hds
Roebel separator 0.5 mm drs

Table 13: Example generator Winding Parameters

Parameter Value Variable name
Number of turns per coil 1 tnr
Number of parallel circuits 2 pnr
Armature loading 802.8 A/cm As
Stator current density 2.5 A/mm2 Ss
Number of strands per bar 56 ndl
Main insulation 2.768 mm dij
Width of a strand 11.08 mm bcus
Height of a strand 1.8 mm hcus
Strand insulation 0.1 mm dicu
Winding length 6.074 m lav
Cross section of stator bar 1095 mm2 Acus
Stator winding resistance 20◦ 0.00157 Ω Rdc20
Stator winding resistance 75◦ 0.00191 Ω Rdc75
Stator winding resistance factor 1.112 Kra
Slot resistance factor 1.188 Krad
Maximum resistance factor 1.642 Kmax

Table 14: Example generator Rotor Parameters

Parameter Value Variable name
Minimum air gap 32.17 mm delta0
Equivalent air gap 40.02 mm deltame
Pole shoe width 611.3 mm bps
Pole shoe height 80 mm hps
Pole core width 469 mm bpk
Pole core height 300 mm hpk
Number of turns per pole 54 nf
Field current 1177 A If
Field winding width 69.66 mm bcuf
Field winding heigth 5.26 mm hcuf
Cross section field winding 360.5 mm2 Af
Current density field winding 3.12 A/mm2 Sf
Rotor winding resistance 20◦ 0.1719 Ω Rf20
Rotor winding resistance 75◦ 0.2091 Ω Rf
Relative pole width 0.7 alfar
Number of damper bars 7 NDs
Cross section of damper bars 366.6 mm2 AcuD

53

Table 15: Example generator Magnetic Parameters

Parameter Value Variable name
Air gap 0.966 T Bdelta
Stator core 1.3 T Bys
Stator tooth 1.961 T Bdmax
Pole core 1.86 T Bdrmx
Rotor ring 1.525 T Byr

Air gap 30 760 At Umdelta
Stator core 127 At Umys
Stator tooth 2098 At Umd
Pole core 1925 At Umdr
Rotor ring 1019 At Umyr

Relative magnetization 1.797 pu Efpu
Relative induced voltage 1.055 pu Eipu
Total required magnetization 63 550 At Tetamn

Table 16: Example generator Loss Calculations

Parameter Value Variable name
Iron loss Stator core 209.1 kW PFe
Windage and bearing losses 353.8 kW Pfw
Copper loss rotor 158.9 kW Prnl

DC stator loss 173.2 kW Pcusdc
AC stator loss 19.32 kW Pcusac
Additional copper loss rotor 126.7 kW Prfl
Additional losses 290.3 kW Padd
Magnetization losses 19.99 kW Pmagn

Total losses 1332 kW Ptot

Table 17: Example generator Reactances and Time Constants

Parameter Value Variable name
Armature reaction reactance (d-axis) 0.9384 pu Xmd
Armature reaction reactance (q-axis) 0.5282 pu Xmq
Leakage reactance 0.0860 pu Xsigma
Synchronous reactance (d-axis) 1.024 pu Xdpu
Synchronous reactance (q-axis) 0.614 pu Xqpu
Transient reactance (d-axis) 0.2436 pu Xdt
Sub-transient reactance (d-axis) 0.1806 pu Xdtt
Sub-transient reactance (q-axis) 0.2077 pu Xdtt
Transient time constant (d-axis) 1.949 s Tdt
Sub-transient time constant (d-axis) 0.0630 s Tdtt
Sub-transient time constant (q-axis) 0.0465 s Tqtt

54

Table 18: Example generator Thermal Calculations

Parameter Value Variable name
Cooling air flow 30.85 m3/s qth
Maximum air speed 19.16 m/s vim

Maximum temperature rise in:
Stator winding 72 ◦K Temp2(6)
Stator tooth 59 ◦K Temp2(4)
Stator core 52 ◦K Temp2(2)
Stator end winding 55 ◦K Temp2(7)
Field winding 50 ◦K Temp2(13)
Rotor end winding 39 ◦K Temp2(10)
Pole core 14 ◦K Temp2(14)

Air temperature rise in:
End winding area 2 ◦K Temp2(21)
Air gap 9 ◦K Temp2(20)
Stator winding surrounding area 21 ◦K Temp2(19)
Middle of cooling duct 23 ◦K Temp2(18)
End of cooling duct 23 ◦K Temp2(17)
Outlet 25 ◦K Temp2(16)

Table 19: Example generator Mechanical Calculations

Parameter Value Variable name
Calculated moment of inertia 233.5 tm2 M2
Weight of machine 307.7 tonne Gtot

Table 20: Example generator Harmonics

Parameter Value Variable name
Telephone Harmonic Factor 0.0043 % THF

Figure 32: Example generator harmonics analysis

55

9.3 Discussion

One of the main goals was to develop the entire GenProg system into an educational tool and many
of the decisions taken during the course of the project was taken to reflect this goal. In terms of
achieving this goal the project was only partially successful. As discussed in section 9.3.1 and 9.3.2,
some unmistakable shortcomings were discovered and not rectified in the given time frame. It was
hoped that the input sanitation would guarantee the validity of the calculations, but this turned
out not to be the case and a major rework was necessary, but not completed in full.

However the calculation report given to the user, and the cross-sectional view gives the user an
intuitive way of interpreting the result from the calculations, that was not present in the old version
of GenProg. And the introduction of a default value section in the source code helped reduce the
number of required parameters which could confuse an inexperienced user. It should be noted that
the current set of default parameters and their value should be expanded upon in the future to
further reduce the amount of required parameters.

56

9.3.1 GenProg discussion

Initially it was believed a thorough input sanitation was enough to guarantee a valid result from
GenProg, with only minor alterations the core source code. However, early in the projects time-
cycle it was realized this was a naive assumption and a major restructure had to take place at some
point or in order to rectify short comings of GenProg, and facilitate more advanced functionality
in the future. The fact that that it gave the author of this report an in-depth understanding of
the working principals of how a Generator is actually put together, and how GenProg worked, was
more a of a useful by-product rather than the primary objective in itself.

The restructure revealed three shortcomings of GenProg. The only one that was adequately recti-
fied and implemented, was the slot dimensions, and armature winding calculation rework described
in section 5.3. The second shortcoming was the calculation of the rotor dimensions if the user has
not defined some key pole dimensions. A proposed solution was described, but regrettably not
implemented due to time constraints. As a result the proposed solution is pure speculation, and
should be treated as such for the future work. The third shortcoming discovered is the magnetic
calculation. Particularly the magnetic voltage drop calculation for the steel need a second look.
It is believed a lot of the problems encountered with GenProg can be attributed this section of
GenProg, and its highly nonlinear characteristic.

9.3.2 GenProgApp discussion

Most of the work associated with the App Part of GenProg was under-the-hood, and not immedi-
ately obvious for the user if familiar with the initial version developed in the preceding semester.
Effort was made to simplify future changes to the already established elements as these changes
frequently occurred during discussion with supervisor. These changes (meaning moving of app
elements to different panels, and renaming labels to clarify the language etc) initially required
considerable work due to how the information was handled both inside and outside the app envir-
onment.

For future development the department expressed a desire to one day move the entire GenProg
system into the cloud and make it open source. This would entail that all the app elements of
GenProg has to be re created on an appropriate platform anyway. Developing the app in its current
state has not been a priority for the author, as its benefit for future work is deemed limited. In
fact for a properly open-source system the entire calcGenProg calculations should be rewritten in
a different language. For example Python, as MATLAB code requires a software license, and is
not really suited for web, or open-source applications.

It should also be noted that the app designer environment is somewhat limited in terms of ad-
vanced graphical user input functionality. Supervisor expressed a desire to implement advanced
functionality like being able to click on specific objects in the cross sectional view, and then open-
ing a dialog box with all the parameters for that component. For example clicking on one of the
slot areas would open a dialog box with all the relevant parameters. This solution would be very
intuitive, and makes a lot of sense from an educational point of view. However app designer does
not include tools to easily create such functionality, so it would require the development of an
entirely new system. This again probably is possible, but would require a phenomenal effort for it
to work as intended. Of which there is no guarantee. In fact it would probably be more efficient to
create a new GUI on a different platform entirely where such functionality is easier to implement.
It is reasonable to assume that MATLAB, and the app designer platform has reached a ceiling of
what is currently possible. It should be noted that currently the app source code is close to 4000
lines of code, and would not benefit from becoming any larger than it already is.

9.3.3 Cross-sectional view discussion

The work on the cross sectional view seamlessly continued from the previous semester, and was
adapted to a fully vectorized variant. The old point matrix image from the previous semester
project is completely deprecated. However it should be noted that a a tiny variant (1000 x 1000)

57

could be used to immediately get a thumbnail-like representation of the calculated generator. The
vectorized image still takes a couple of seconds to render (on a moderately powerful desktop PC),
but has infinitely more fidelity compared to the old variant. Both the point matrix and fully
vectorized variants use almost the same set set of matrices to generate the visual representation
of the calculated generator. This proves that the time spent on developing said matrices was
not wasted in the preceding semester. Even though it came at the expense of other intermediate
objectives.

The addition of the indexing of the three different phases in the armature winding is only used in
the cross sectional window, but as explained in section 6.2, it is hoped the system can be utilized
in a future FEM analysis implementation.

9.3.4 Coding discipline

As was the case with the preceding project, the comments in the source code developed for this
project is thorough and in-depth. The developer is painfully aware of what it is like to continue
working on a project where a considerable amount of source code is written by someone else. For
the readers convenience a complete list of variables is provided in appendix B for core calcGenProg
source code. For the source code explicitly created for this project the comments accompanying an
arbitrary parameters should be adequate. See appendix A for a few examples. For the complete
source code please refer to attached folder.

9.3.5 Timesheet

Note that the resource allocation described in table 21 is an approximation, and not definitive as
it was created after the fact, and not measured over the course of project. It is assumed a total of
750 hours is 100%.

Table 21: Resource allocation

Intermediate objective Percent Hours
Vectorizing cross-sectional view 15% 110
Cross-section restructure 5 % 37.5
clacGenProg restructure 40 % 300
GenProgApp 10 % 75
Writing the report 30 % 225

9.4 Conclusion and future work

Unfortunately effort still remains for GenProg to fulfill its potential as a design software for salient
pole generators. However immediately succeeding work should focus on the following tasks as the
foundation is more or less completed.

• The rotor calculations should be reworked as described in section 5.4.

• The magnetic calculations needs a second revision.

• Implementation of FEM analysis of the calculated machine, and later as a an integral part
of the calculations themselves.

Long term goals was expressed by the department for a web-based solution. Due to the nature of
such a solution, it is the authors conviction that it is mutually exclusive with the implementation
of FEM analysis software. The first reason being a eventual web application should move away
from MATLAB, and use another language, which makes COMSOL interaction more complicated.
The second reason is speed. The current version of calcGenProg is extremely fast, and requires

58

relatively little computing power to run. From past experience a FEM analysis does use a lot
of computing power, and as such is not well suited for the linear iteration process described in
section 5.4 of this report. A more sophisticated method of iterating might be required in order
to reduce the amount of FEM simulations required for a single calcGenProg calculation, but even
this has limited potential, as a fully implemented FEM analysis will likely require more computing
power to perform in a timely manner. This will stand in stark contrast to the current version of
calcGenProg that require very little in this regard.

59

Bibliography

[1] Heninng Johansen. Beregning av spenninger generelt. 2017.

[2] Petroleum and natural gas industries — Offshore production installations — Heating, vent-
ilation and air-conditioning. Standard. International Organization for Standardization, Mar.
2018.

[3] Ivar Vikan and Alexander Lundseng. Beregning av generatorer ved modernisering av kraftverk
(NTNU). 2010.

[4] Ivar Vikan and Alexander Lundseng. Beregning av Vannkraftgeneratorer (NTNU). 2009.

[5] Proff E. Westgaard and O.W. Andersen. Dimensjoneringsesempel for synkronmaskin. 1965.

[6] Wikipedia. Dynamic pressure — Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/
w/index.php?title=Dynamic%20pressure&oldid=1015639325. [Online; accessed 06-May-2021].
2021.

[7] Wikipedia. Von Mises yield criterion — Wikipedia, The Free Encyclopedia. http://en.wikipedia.
org/w/index.php?title=Von%20Mises%20yield%20criterion&oldid=1006628220. [Online; ac-
cessed 17-April-2021]. 2021.

60

http://en.wikipedia.org/w/index.php?title=Dynamic%20pressure&oldid=1015639325
http://en.wikipedia.org/w/index.php?title=Dynamic%20pressure&oldid=1015639325
http://en.wikipedia.org/w/index.php?title=Von%20Mises%20yield%20criterion&oldid=1006628220
http://en.wikipedia.org/w/index.php?title=Von%20Mises%20yield%20criterion&oldid=1006628220

Appendix

A Matlab source Code

A calcGenProg

function [windLay,sec] = calcWindLayout(Qs,Np_,Ww)

%function for calculating winding layout...

%quick input sanetization...

pp = Np_/2; %pole pairs

sec = gcd(Qs,pp); %number of sectors...

nrPpPS = pp/sec; %number of Pole-pairs per sector...

drad = (sec/Qs)*360*nrPpPS; %degree step length

eldeg = 0:drad: nrPpPS * 360 - drad; %degree vector with all slot in a sector and their corresponding electrical degree

windLay = zeros(3 , Qs/sec); %empty vector for RST phase...

for j = 1:length(eldeg)

windLay(:,j) = revolver(eldeg(j)); %uses "revolver" to determine correct phase placement...

end

windLay = [windLay; circshift(windLay,Ww,2) * -1]; %phase shift for second layer...

end

Listing 1: Function for generating winding layout

function [out] = revolver(deg)

%function for returning R S T phase of the winding layout for a given electrical angle...

deg = rem(deg,360); %reducing angle

if deg >= 0 && deg < 60

out = [1;0;0]; %R positve

elseif deg >= 60 && deg < 120

out = [0;0;-1]; %T negative

elseif deg >= 120 && deg < 180

out = [0;1;0]; %S positive

elseif deg >= 180 && deg < 240

out = [-1;0;0]; %R negative

elseif deg >= 240 && deg < 300

out = [0;0;1]; %T positive

else

out = [0;-1;0]; %S negative

end

end

Listing 2: Revolver function

61

B Cross-sectional view

function plotp2p(app,x,y,color)

%function for plotting. Creates a "polygon" from boundary coordinates.

[rows,colm] = size(x);

for i = 1:rows

%remove NaN elements

delete = false(1,colm);

if any(isnan(x(i,:)))

tempx = x(i,:);

tempy = y(i,:);

for j = 1:length(tempx)

if isnan(tempx(j))

delete(j) = true;

end

end

tempx(delete) = [];

tempy(delete) = [];

else

tempx = x(i,:);

tempy = y(i,:);

end

pol = polyshape(tempx,tempy);

% pol = plot(app.UIAxesCS , pol);

% pol.FaceColor = color;

% pol.FaceAlpha = 1;

% hold(app.UIAxesCS, 'on')

pol = plot(pol);

pol.FaceColor = color;

pol.FaceAlpha = 1;

hold on

end

end

Listing 3: Function plotp2p.m

62

B Variable name and description

A calcGenProg

Alphabetical sorting of most of the parameters utilized by calcGenProg. Please note in order to
extract the alphabetized list the old GenProg had to be used. Some parameters may be deprecated.

Table 22: calcGenProg variables A

Variable Full name Type Comment
ADs Permeability factor for a damperbar var
Acus Area single armature bar var
Afadd Extra area for cooling fin rotor winding var
Amin Unknown var Related to cooling
Ams Estimated armature loading var Based on utilization

factor
Apk Permeability pole core - pole core var
As Surface armature loading var
Asigma Permeability pole - pole var
aSf Delta current density field winding var Pole iteration
af Ratio between middle and max field

winding length
const

alfar Relative pole arc const
aqth1 Unkonwn var Initiation variable
as Distance extreme damper bars var
ath11 Thermal coefficient armature winding -

stator iron
const

ath16 Unknown thermal coefficient var
ath27 Unknown thermal coefficient var
ath3 Unknown thermal coefficient var
ath8 Unknown thermal coefficient var
AcuD Area single damper bar var
Af Area single field winding var
Aftot Total field winding CS area var
Ampk Leakage coefficient var
Amsdelta Estimated armature loading var Based on utilization

factor
Aps Permeability pole shoe - pole shoe var
Ascm Surface armature loading var in centimetre
a Coefficient for calculating pole leakege

flux
var

aaSf Unknown initiation variable var pole iteration
aksq Decleration variable for skewing var
alphaKra Coefficient for determining AC resist-

ance
var

aqth2 Unknown var Initiation variable
ath1 Thermal coefficient

stator frame - stator iron
const

ath13 Unknown thermal coefficient var
ath26 Unknown thermal coefficient var
ath28 Unknown thermal coefficient var
ath43 Unknown thermal coefficient var

63

Table 23: calcGenProg variables B

Variable Description Type Comment
Bd Maximum tooth flux density var
Bdmax Maximum tooth flux density var As a function of the

slot height
Bdrmx Flux density rotor yoke var
Bxx Unknown variable var Substitutes Bdrmx
Bys Flux density stator yoke var
bcs Core section length var
bcuf3 Temp field winding width var Pole iteration
bcus Width armature strand var Input
bdmin Minimum stator tooth width var
bf Inner width field winding var
bif Insulation field winding var Input
bpk Pole core width var Input
bu Slot width var
bv Cooling duct length var
Bdelta Flux density air gap var
Bdmin Minimum tooth flux density var As a function of the

slot height
Bpmx Maximum flux density pole core var Input, Not utilized
Bymx Maximum flux density yoke var Input
bD Maximum flux density stator tooth var
bcu Total armature copper width var
bcuf Field winding width var Input
bd Stator tooth width var
beta Empirical coefficient for

calculating stator dimensions
const

bi Field - core insulation var
bi Field - core insulation var Input
bps Pole shoe width var
budbd Slot tooth ratio var
bve Equivelant air gap width var
Bdelta Flux density air gap var Input
Bdrmn Flux density top of pole core var
Btmx Maximum tooth flux density var
Byr Flux density rotor yoke var
bcr Field winding cooling fin length const
bcuf Field winding width var
bcus Width armature strand var
bdmax Maximum stator tooth width var
beta2 Unknown variable var
bif Insulation field winding var
bpk Pole core width var
bps Pole shoe width var Input
bu Slot width var Input

64

Table 24: calcGenProg variables C

Variable Description Type Comment
C Utilization factor var
C2 Temp utilization factor var Pole iteration
C2delta Temp utilization factor variable var Pole iteration
Cend Coefficient for permeability for

end area
const

Ckonst Temp utilization factor variable var Pole iteration
Cm Unknown variable var Related to calculat-

ing drag losses
Cm2 Unknown variable var Related to calculat-

ing drag losses
Cosphi Powerfactor var
C Utilization factor var Input
cp Thermal conductivity insulation const

65

Table 25: calcGenProg variables D (D2l - d9)

Variable Description Type Comment
D2l Empirical coefficient for

calculating stator dimensions
var

Df2 Diameter through centre field winding var
Dps Diameter through centre pole shoe var
Dry Rotor yoke outer diameter var
d12 Unknown thermal coefficient var
d2 Unknown thermal coefficient var
d38 Unknown thermal coefficient var
d42 Unknown thermal coefficient var
dTmx Maximum delta temprature var
delta0 Air gap length var Input
deltame Equivalent air gap var
deltath16 Unknown thermal coefficient var
dij Main insulation var
dl12 Unknown thermal coefficient var
dl42 Unknown thermal coefficient var
D4l Empirical coefficient for

calculating stator dimensions
var

Di Stator inner diameter var
Dr Rotor yoke middle diameter var
Dw Unknown variable var
d15 Unknown thermal coefficient var
d29 Unknown thermal coefficient var
d39 Unknown thermal coefficient var
d7 Unknown thermal coefficient var
dTmxt Unknown variable var Related to thermal

calculations
delta2 Load angle var
deltamx Maximum actual air gap var
deltath28 Unknown thermal coefficient var
dij Main insulation var Input
dl17 Unknown thermal coefficient var
drs Roebel sepparator width var
Delta ps Unknown variable var
DiMax Maximum stator inner diameter var
Dr2 Unknown variable var
Dy Stator outer diameter var
d17 Unknown thermal coefficient var
d3 Unknown thermal coefficient var
d4 Unknown thermal coefficient var
d9 Unknown thermal coefficient var

66

Table 26: calcGenProg variables D (delta0 - dl41)

Variable Description Type Comment
delta0 Air gap length var
deltade Equivalent air gap d-axis var
deltaqe Equivalent air gap q-axis var
dicu Armature strand insulation var
diw Turn insulation var
dl29 Unknown thermal coefficient var
drs Roebel sepparator width var Input
Df Diameter through centre of field wind-

ing
var

Di Stator inner diameter var Input
Dri Outer diameter rotor axle const
d1 Unknown thermal coefficient var
d18 Unknown thermal coefficient var
d30 Unknown thermal coefficient var
d41 Unknown thermal coefficient var
dTa Allowed temperature rise in cooling air const
delta0e Equivalent air gap var
deltadef Intermediate variable var Related to mag-

netic voltage drop
deltaqef Intermediate variable var Related to mag-

netic voltage drop
dicu Armature strand insulation var Input
diw Turn insulation var Input
dl41 Unknown thermal coefficient var

Table 27: calcGenProg variables E

Variable Description Type Comment
EP Extra parameters vector
EQpuCx Unknown intermediate variable var Per unit
Eb Intermediate relative magnetization var
Eff Efficiency var
Efpu Relative magnetization var Absolute value
EfpuCx Relative magnetization var
Ei Intermediate relative induced voltage var
Eipu Relative induced voltage var Absolute value
EipuCx Relative induced voltage var
epsilon Slot reduction var

67

Table 28: calcGenProg variables F

Variable Description Type Comment
FId Maximal flux density in single stator

tooth
var

FIm Maximal flux density through armature
winding

var

FIsigma Pole leakage flux var
FIsigmaps Pole shoe leakage flux var
Fa Intermediate armature reaction var
Fdelta Intermediate magnetic voltage drop for

air gap
var

FeOld Old Iron sheets bool Indicates use of old
iron sheets

Fg Unknown thermal coefficient var
Fw Unknown magnetic variable var
f frequency var
fi2 Phase shift during nominal load var
ficu Resistance coefficient var
fimksi Unknown intermediate variable var
fj Coefficient net vs gross iron length const
fsp Unknown thermal coefficient const
fw Average winding factor const

68

Table 29: calcGenProg variables G

Variable Description Type Comment
G Thermal conductivity matrix mat
G13 Unknown thermal coefficient var
G18 Unknown thermal coefficient var
G27 Unknown thermal coefficient var
G3 Unknown thermal coefficient var
G43 Unknown thermal coefficient var
GD2 Total moment of inertia var
GD2flywheel Moment of inertia for flywheel var
Gadd Additional mass from misc components var
Gpk Total pole core mass var
Gpspm Pole shoe mass per meter length var
Gtot Total machine mass var
gamma2 Mechanical degree between two adja-

cent poles
var

G1 Unknown thermal coefficient var
G15 Unknown thermal coefficient var
G2 Unknown thermal coefficient var
G28 Unknown thermal coefficient var
G38 Unknown thermal coefficient var
G7 Unknown thermal coefficient var
GD2add Moment of inerta for misc components var
GDp2 Total moment of inertia for poles and

field windings
var

Gf Total field winding mass var
Gpkpm Pole core mass per meter length var
Gr Rotor yoke mass var
g Average phase shift between two rods

in the same slot
var

gammaFe Density iron const
G11 Unknown thermal coefficient var
G16 Unknown thermal coefficient var
G26 Unknown thermal coefficient var
G29 Unknown thermal coefficient var
G39 Unknown thermal coefficient var
G8 Unknown thermal coefficient var
GD2add Moment of inerta for misc components var Input
GDr2 Moment of inertia rotor yoke var
Gflywheel Flywheel mass var
Gps Total pole shoe mass var
Gsw Total armature winding mass var
gamma Coefficient related to minimum air gap const
gammacu Density copper const

69

Table 30: calcGenProg variables H

Variable Description Type Comment
Hdrmn Field strength top of core var
h2 Unknown thermal coefficient var
harm Harmonic data matrix mat
harma Intermediate harmonic data matrix mat
hcuf Single field winding height var
hcus Armature strand thickness var Input
hf Total field winding height var
hgls Slot wedge spacer + spring var Input
hk4 Unknown harmonic variable var
hm Bar separator var
hpk Pole core height var Input
hpt Pole tooth height var
hspk Slot wedge height var Input
hyr Rotor yoke height var
Hdrmx Field strength bottom of pole core var
h3 Unknown variable var
harm2 Harmonic component matrix mat
harmb Intermediate harmonic data matrix mat
hcuf Single field winding height var Input
hds Distance slot wedge and air gap var
hf Total field winding height var Input
hk Harmonic indexing variable var
hk44 Harmonic helper variable var
hm Bar separator var Input
hps Height pole shoe var
hs Total slot height var
hstav Armature bar heigth var
hyr Rotor yoke height var Input
h1 Unknown thermal variable var
h7 Unknown thermal variable var
harm3 Intermediate harmonic data matrix mat
hcu Total copper heigth in one slot var
hcus Armature strand thickness var
hds Distance slot wedge and air gap var Input
hgls Slot wedge spacer + spring var
hk3 Harmonic indexing variable var
hkr Field collar height var
hpk Pole core height var
hps Pole shoe height var Input
hspk Slot wedge height var
hs Total slot height var Input
hys Stator yoke height var

70

Table 31: calcGenProg variables I

Variable Description Type Comment
IDtot Maximum damper bar current var
INT Index variable for

magnetic voltage drop
var

Ic Armature winding current var
Idpu Current d-axis var Per unit
IdpuCx Complex current d-axis var Per unit
If Field current var
In Nominal current var
Inm Armature bar current var
Inpu Nominal current var
InpuCx Complex nominal current var
InputFile Excel worksheet file name str Deprecated

Table 32: calcGenProg variables J

Variable Description Type Comment
None

71

Table 33: calcGenProg variables K

Variable Description Type Comment
Kch Unknown constant const
Kfl Coefficient for air gap shape const
Kr aver Unknown variable var
Krad Resistance coefficient

for armature winding
var

Krau Resistance coefficient
for top layer

var

k1 Intermediate variable for calculating
permeability factor

var

kC Carters coefficient var
kCs Carters coefficient for armature slot var
kFed Tooth saturation coefficient var
kL Skin effect coefficient var
kckj Carters coefficient for cooling duct var
kdx d-axis coefficient var
kfi Field winding leakage reactance coeffi-

cient
var

km Ratio air gap induction idle vs middle var
kmf Pole flux leakage coefficient var
kpw Unknown cooling coefficient var
ksi Reduced conductor height var
kvw Bearing and fan loss coefficient var
kwsv nth harmonic winding coefficient var
Kf Frequency correction factor const
Kmx Resistance coefficient for top strand var
Kra Resistance factor for armature winding var
Krao Resistance coefficient for bottom layer var
k Damper bar resistance coefficient re-

ferred to stator
var

k2 Intermediate variable for
number of slots determination

var

kCr Carters coefficient for damper bars var
kFe Iron filling factor var
kFey Yoke saturation coefficient var
k Af Cooling fin cross section coefficient var
kd Unknown dividing factor var
kf Unknown conversion factor const
kl Factor for linear rise in driving field

winding
var

kmek Surface roughness coefficient const
kp Unknown variable var
kqx q-axis coefficient var
ksq Skewing factor var
kw Winding factor var

72

Table 34: calcGenProg variables L (l1 - lsq)

Variable Description Type Comment
l1 Unknown thermal parameter var
l2 Unknown thermal parameter var
l7 Unknown thermal parameter var
lambdaair Thermal conductivity cooling air var
lambdad Permeability factor for single tooth var
lambdalew Permeability factor for winding head(?) const
lambdau Permeability factor for slot with two

winding layers
var

lambdaw Permeability factor for winding head(?) const
lav Total armature winding length vvar
lav Total armature winding length vvar Input
lb Gross iron length var
lb Gross iron length var Input
LC Loss calculations vec Output
Ld Tooth leakage inductance var
Ldelta Air gap leakage inductance var
Ldeltav Intermediate leakage

inductance variable
var

Ldt Transient d-axis inductance var
Ldtt Sub-transient d-axis inductance var
Le End plate thickness const
lew Unknown intermediate variable var
Lfmd Mean field winding length var
Lfmx Maximum field winding length var
Lfp Inner field winding length var
lfs Copper length in single phase winding var
Lfsigma Field winding leakage inductance var
lm Equivalent iron length var
Lma Armature reaction inductance var
Lmd Armature reaction inductance d-axis var
LmD Damper bar leakage inductance var Referred to stator
LmDd Damper bar leakage d-axis inductance var Referred to stator
LmDq Damper bar leakage d-axis inductance var Referred to stator
Lmq Armature reaction inductance q-axis var
ln Net iron length var
Lqtt Sub-transient q-axis inductance var
lrac Intermediate Resistance

calculation variable
var

lrr Rotor ring length var
Lsigma Total leakage inductance var
lspolh Intermediate thermal calculation vari-

able
var

Lsq Twist leakage inductance var

73

Table 35: calcGenProg variables L (lth1 - Lw)

Variable Description Type Comment
lth1 Thermal conductivity structural steel const
lth12 Thermal conductivity

winding insulation
var

lth15 Thermal conductivity copper const
lth17 Thermal conductivity

winding insulation
var

lth18 Thermal conductivity copper const
lth2 Thermal conductivity steel const
lth29 Thermal conductivity

winding insulation
var

lth3 Unnknown thermal constant const
lth30 Thermal conductivity copper const
lth38 Thermal conductivity steel const
lth39 Thermal conductivity copper const
lth4 Thermal conductivity steel const
lth41 Thermal conductivity steel const
lth42 Thermal conductivity

winding insulation
var

lth7 Thermal conductivity steel const
lth9 Thermal conductivity steel const
lthl41 Unknown thermal constant const
Lu Slot leakage inductance var
Lw winding head leakage inductance var

Table 36: calcGenProg variables M

Variable Description Type Comment
m Number of phases const
M Moment of inertia var
M2 Moment of inertia for entire machine var Deprecated
MC Mechanical calculations vec Output
mcu Unknown intermediate variable var
MD Main data, or Nameplate data vec Output
mds Total tooth mass var
mFe Total staor mass var Without teeth
MP Magnetic parameters vec Outupt
my0 Permeability air const
myair Viscosity air const
myrpk Assumed permeability pole core const
myryr Assumed permeability rotor yoke const

74

Table 37: calcGenProg variables N

Variable Description Type Comment
N Unknown constant const
Ncr Number of cooling field windings var
ndl Number of strands per armature turn var
ndlh Number of vertical armature strands var
ndlh Number of vertical armature strands var Input
ndlp Number of horizontal armature strands var
ndlp Number of horizontal armature strands var Input
ndl Number of strands per armature turn var Input
NDs Number of damper bars per pole var
NDs Number of damper bars per pole var
nf Number of field winding turns var
nf Number of field winding turns var Input
Np Number of poles var
nr Runaway speed var
ns Synchronous rotational speed var
Ns Number of armature windings in series

per turn
var

Nsp Number of stator slots above one pole var
Nu Unknown intermediate variable var
nv Number of stator cooling ducts var
Nw Unknown variable var

Table 38: calcGenProg variables O

Variable Description Type Comment
OBra Actual surface loading var Rotor
OBrt Allowable surface loading var Rotor
OBsa Actual surface loading var Stator
OBst Allowable surface loading var Stator

75

Table 39: calcGenProg variables P

Variable Description Type Comment
p Pole pairs var
P Rated power var
P10 Iron losses for 1kg of steel var
P10 Iron losses for 1kg of steel var Input
P2 Unknown thermal coefficient var
Padd Auxillary losses var
Pcusac AC armature losses var
Pcusdc DC armature losses var
Pend Unknown intermediate loss variable var
Pend0 Iron losses at end of core, idle var
PendL Iron losses at end-plate, nominal var
PendP Iron losses at end-plate, idle var
PFe Total iron losses in stator yoke var
PFed Iron losses stator teeth var
PFey Iron losses in stator yoke var
Pfw Bearing and fan losses var
Pmagn Excitation losses var
Pmagn Excitation losses var Input
pnr Number of parallel circuits var
pnr Number of parallel circuits var Input
polklaring Pole tolerance var
Pps Unknown intermediate loss variable var
Ppsfl Unknown intermediate loss variable var
Ppsfl a Unknown intermediate loss variable var
Ppsnl Pole shoe losses var
Pqth Losses that must be transported out of

the machine
var

Pr Rotor losses var
Pre Rotor losses at end of pole var
Prfl Additional rotor losses due to full load

condition
var

Prhow Total surface drag losses var
Prhow1 Intermediate loss variable var
Prhow2 Intermediate loss variable var
Prl Rotor losses along pole core var
Prnl Rotor idle losses var
psicu Intermediate resistance variable var
psimksi Intermediate harmonic variable var
Ptot Total losses var
Pwarming Losses that cause heating of ventilation

air
var

Table 40: calcGenProg variables Q

Variable Description Type Comment
q Number of slots per phase and pole var
qm Number of voltage phase vectors var
Qs Number of slots var
Q Number of slots var Input
qth Cooling air-flow var
qth Cooling air-flow var Input

76

Table 41: calcGenProg variables R (R15 - Rth15)

Variable Description Type Comment
R15 Unknown thermal parameter var
R18 Unknown thermal parameter var
R2 Unknown thermal parameter var
R30 Unknown thermal parameter var
R38 Unknown thermal parameter var
R39 Unknown thermal parameter var
R7 Unknown thermal parameter var
Rac AC armature resistance var
Raco Resistance top armature bar var
Racpu AC armature resistance var Per-unit
Racu Reistance bottom armature bar var
Rdc DC armature resistance var
Rdc20 DC armature resistance at 20 ◦C var
Rdcprm DC armature resistance per metre var
Re Thermal conductivity matrix mat
Re2 Inverse thermal conductivity matrix mat
Re3 Intermediate matrix for use in thermal

calculation
mat

Re3x Intermediate thermal index variable var
Re3y Intermediate thermal index variable var
Rf Field winding resistance at 75 ◦C var
Rf20 Field winding resistance at 20 ◦C var
rho20 Resistivity coefficient at 20 ◦C const
rho75 Resistivity coefficient at 75 ◦C const
rhoth Density of air at 40 ◦C const
Rlrdelta Reynolds number for end of rotor var
Rlsdelta Reynolds number for rotor surface var
RmD Damper bar resistnace var Referred to stator
Rmf Field winding resistance var Referred to stator
RP Rotor parameters vec Output
Rqth Unknown thermal parameter var
rr Pole shoe radius var
Rrdc Rotor resistance var
Rref Resistance refferance value var
RT Reactances and time constant vector vec Output
Rth1 Thermal resistance stator

iron - stator frame
var

Rth10 Thermal resistance heat
generated in stator iron

var

Rth11 Thermal resistance
armature winding - stator teeth

var

Rth12 Thermal resistance armature rod
centre - outer edge insulation

var

Rth13 Thermal resistance
armature rod - cooling air

var

Rth14 Unknown thermal resistance var
Rth15 Thermal resistance

armature rod centre - armature rod end
var

77

Table 42: calcGenProg variables R (Rth16 - Rth9)

Variable Description Type Comment
Rth16 Unknown thermal resistance var
Rth17 Unknown thermal resistance var
Rth18 Unknown thermal resistance var
Rth19 Unknown thermal resistance var
Rth2 Unknown thermal resistance var
Rth20 Unknown thermal resistance var
Rth21 Unknown thermal resistance var
Rth22 Unknown thermal resistance var
Rth23 Unknown thermal resistance var
Rth24 Unknown thermal resistance var
Rth25 Unknown thermal resistance var
Rth26 Unknown thermal resistance var
Rth27 Unknown thermal resistance var
Rth28 Unknown thermal resistance var
Rth29 Unknown thermal resistance var
Rth3 Unknown thermal resistance var
Rth30 Unknown thermal resistance var
Rth31 Unknown thermal resistance var
Rth32 Unknown thermal resistance var
Rth33 Unknown thermal resistance var
Rth34 Unknown thermal resistance var
Rth35 Unknown thermal resistance var
Rth36 Unknown thermal resistance var
Rth37 Unknown thermal resistance var
Rth38 Unknown thermal resistance var
Rth39 Unknown thermal resistance var
Rth4 Unknown thermal resistance var
Rth40 Unknown thermal resistance var
Rth41 Unknown thermal resistance var
Rth42 Unknown thermal resistance var
Rth43 Unknown thermal resistance var
Rth5 Unknown thermal resistance var
Rth6 Unknown thermal resistance var
Rth7 Unknown thermal resistance var
Rth8 Unknown thermal resistance var
Rth9 Unknown thermal resistance var

78

Table 43: calcGenProg variables S

Variable Description Type Comment
s Skewing var
S11 Unknown thermal parameter var
S12 Unknown thermal parameter var
S13 Unknown thermal parameter var
S15 Unknown thermal parameter var
S16 Unknown thermal parameter var
S17 Unknown thermal parameter var
S18 Unknown thermal parameter var
S26 Unknown thermal parameter var
S27 Unknown thermal parameter var
S28 Unknown thermal parameter var
S29 Unknown thermal parameter var
S3 Unknown thermal parameter var
S30 Unknown thermal parameter var
S38 Unknown thermal parameter var
S39 Unknown thermal parameter var
S4 Unknown thermal parameter var
S41 Unknown thermal parameter var
S42 Unknown thermal parameter var
S43 Unknown thermal parameter var
S8 Unknown thermal parameter var
S9 Unknown thermal parameter var
Sd Stator tooth smallest area var
SD Allowed damper bar current density const
Sf Current density field winding var
Sfi Initial current density field winding var
Sfm Initial current density field winding var 1e6
Sfmm Current density field winding var 1e-6
sigf Intermediate reactance variable var
sigmacu75 Conductance copper at 70 ◦C var
Sl12 Unknown thermal parameter var
Sl17 Unknown thermal parameter var
Sl29 Unknown thermal parameter var
Sl41 Unknown thermal parameter var
Sl42 Unknown thermal parameter var
Sn Rated apparent power var
SP Stator parameters vec Output
Ss Current density stator var
Ssmm Current density stator var 1e-6
Ss Current density stator var Input
Su Total armature slot area var

79

Table 44: calcGenProg variables T

Variable Description Type Comment
Ta Unknown thermal parameter var
Tam Unknown thermal parameter var
taumd Middle pole core pitch var Metre
taumn Lower pole core pitch var Metre
taumx Upper pole core pitch var Metre
taup Pole pitch var Metre
taupr Pole shoe arc length var Metre
taups Pole pitch var Number of slots
taupt Pole shoe pitch var Metre
taur Damper bar pitch var Relative
tauu Slot pitch var Metre
tauukj Cooling duct width var
tauyr Mean arc length per pole rotor yoke var
tauys Mean stator yoke flux travel length var
TC Thermal calculations var Output
Tdt Transient time-constant var
Tdt0 Transient time-constant var Per-unit
Tdtt Sub-transient d-axis time-constant var
Tdtt0 Sub-transient d-axis time-constant var Per-unit
Temp Intermediate temperature matrix mat
Temp2 Temperature matrix mat
Tetamn Total required magnetization var
Tetasigma Intermediate leakage magnetization var Ampere-turn
thc Thermal conductivity insulation const
THF Armature winding

Telephonic Harmonic Factor
var

tnr Number of turns per coil var
tnr Number of turns per coil var Input
Tp Intermediate thermal vector vec
Tqtt Sub-transient q-axis time-constant var
Tqtt0 Sub-transient q-axis time-constant var Per-unit

Table 45: calcGenProg variables U

Variable Description Type Comment
Umd Slot magnetic voltage drop var
Umdelta Air-gap magnetic voltage drop var
Umdr Pole core magnetic voltage drop var
Umtot Total magnetic voltage drop var
Umyr Rotor yoke magnetic voltage drop var
Umys Statro yoke magnetic voltage drop var
Un Nominal terminal voltage var
Unpu Nomnial terminal voltage var Per-unit
Un Nominal terminal voltage var Input

80

Table 47: calcGenProg variables W

Variable Description Type Comment
w Angular velocity ω var
Wew Mean pole pitch var
Wewm Pole pitch var Metre
wm Mechanical angular velocity var
Ww Coil span var

Table 46: calcGenProg variables V

Variable Description Type Comment
v Winding factor index variable var
V Rotor peripheral speed var kilo-feet / min
Vf Excitation circuit voltage var
vi Cooling air-speed var
VId Angle d-axis current var
vim Cooling air-speed var
vmid Mean cooling duct air-speed var
Vmx Maximum generator voltage var Unused
Vnmx Negative sequence voltage var Percent
vpl Intermediate thermal parameter var
Vr Maximum peripheral velocity var
vy Cooling air-speed var

Table 48: calcGenProg variables X

Variable Description Type Comment
xadw Intermediate relative armature reaction

reactance
var

xd Maximum synchronous reactance var Input
xd1 Maximum transient reactance var Input
xd2 Maximum sub-transient reactance var Input
Xdpu Synchronous reactance d-axis var
Xdt Transient reactance d-axis var
Xdtt Sub-transient reactance d-axis var
xdw Initial relative synchronous reactance var
Xf Field winding relative leakage reactance var
xlw Initial relative leakage reactance var
Xma Armature reaction reactance var
Xmd Armature reaction reactance d-axis var
Xmdpu Armature reaction reactance d-axis var Per-unit
Xmq Armature reaction reactance q-axis var
Xmqpu Armature reaction reactance d-axis var Per-unit
Xqpu Synchronous reactance q-axis var Per-unit
Xqtt Sub-transient reactance q-axis var
Xsigma Leakage reactance var Per-unit

Table 49: calcGenProg variables Y

Variable Description Type Comment
y Coil span var
Y Unknown constant const
yQ Relative pole pitch var
y Coil span var Input

81

Table 50: calcGenProg variables Z

Variable Description Type Comment
zeta Intermediate resistance variable var
zetad Intermediate d-axis

time-constant factor
var

zetaq Intermediate q-axis
time-constant factor

var

zt Number of vertical strands per slot varz

82

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ric

 P
ow

er
 E

ng
in

ee
rin

g

Jostein Hovde Aarvoll

The development of calcGenProg and
GenProgApp

Visualization and graphical user interface for
design of salient pole generator

Master’s thesis in Energy and the Environment
Supervisor: Arne Nysveen

June 2021

M
as

te
r’s

 th
es

is

	List of Figures
	List of Tables
	Introduction
	Nomenclature
	Theory
	Detailed description GenProg
	 GenProg Summary
	Stage 1 - Stator Calculations
	Stage 2 - Rotor calculations
	Stage 3 - Loss calculations
	Stage 4 - Thermal calculations
	Stage 5 - Reactances and Time Constants
	Stage 6 - Mechanical calculations

	Tensile strength of steel
	Dynamic pressure

	Preceding work
	Introduction
	Cross-sectional view
	Stator ring
	Stator slot
	Armature winding
	Pole Core and Pole shoe
	Damper bars
	Rendering
	Result

	GUI
	GenProg

	Improved GenProg
	GenProg restructure
	Background
	Method
	Improvements and corrected deficiencies
	Result of restructure, calcGenProg

	Additional GenProg functionality
	Default values
	Choosing the slot number

	Slot Calculation Rework
	Background and problem
	Solution requirements
	Detailed description of the slot rework

	Rotor calculation rework
	The problem
	Proposed solution

	Improved visualization of the calculated generator
	Vectorizing the Cross section
	Background
	Requirements for the new plotter
	Final version of plotter
	Added features, cross section

	Indexing the three different phases
	Background and motivation

	General improvements to the cross section
	Cross sectional script restructure
	deletefnc.m and the blank object
	Fixes

	App improvements
	Front-end improvements
	Back-end improvements
	Parameter handling
	Save functionality

	Type Check
	System of detecting and displaying errors
	Error code
	Error Message, and Calculation Report

	Input Sanitation
	Background

	Out Control
	Basic parameter check
	Ventilation
	Pole shoe height
	Array validation

	New error procedure
	Result of the type checking

	Result and discussion
	Final result
	Graphical user interface
	calcGenProg
	Input sanitation and output control

	Design of an example generator
	Installation and startup
	Design process
	Running the calculations
	Interpret the result
	Finalizing the design

	Discussion
	GenProg discussion
	GenProgApp discussion
	Cross-sectional view discussion
	Coding discipline
	Timesheet

	Conclusion and future work

	Bibliography
	Appendix
	Matlab source Code
	calcGenProg
	Cross-sectional view

	Variable name and description
	calcGenProg

