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Abstract

This thesis explores the development and implementation of models and estimation
of continuous lactate concentration in athletes during exercise. The goal of such
a estimator is to accurately and reliably determine the lactate concentration of an
athlete. When exercising it is important to keep the intensity under control, which
can be done by measuring the lactate concentration in the blood intermittently dur-
ing exercise. This requires expensive equipment and discomfort as a small blood
sample is taken. To make lactate concentration a more widely accessible physiologi-
cal marker, a cheaper, less intrusive method of estimating the lactate concentration
is sought in this thesis.

To generate the data required for such an estimator, test protocols where designed
and two test subjects went through the same set of testing days. The data was
gathered, synchronised and organized for further use. A model based on physiolog-
ical principals was chosen and simplified for use in a Kalman filter estimator. The
Matlab implementation of this estimator yielded limited results as the data basis
was not that large. A larger study with a larger data basis might yield results that
are more applicable on other athletes.

Chapter 1 describes the motivation behind the problem, as well as the given problem
description and approach. Chapter 2 introduces the essential theoretical background
for the methods described in Chapter 3. Chapter 4 contains all the results from both
the data gathering process as well as estimations with different inputs. In Chapter
5 these results are discussed and summarized.



Denne avhandlingen utforsker utviklingen of implementering av modeller og estimer-
ing av kontinuerlig laktat konsentrasjon hos utgvere under trening. Malet med en
slik estimator er a bestemme laktakkonsentrasjonen hos en utgver. Nar man trener
er det viktig og styre intesiteten, dette kan gjores ved a male laktatkonsentrasjonen
i blodet underveis i treningen. Dette krever dyrst utstyr og er ubehagelig a gjen-
nomfgr siden det kreves en blodprgve. For a gjgre intensitetstyring etter laktat mer
tilgjengelig for folk sgkes det derfor etter en billigere, mindre invasiv metode for a
estimere laktatkonsentrasjonen under trening.
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Chapter 1

Introduction

1.1 Motivation

Blood lactate concentration is a key parameter in determining athletic performance
in long distance endurance sports. Especially the lactate threshold has been linked
to athletic performance [3]. Blood lactate measuring devices are expensive and
uncomfortable to use, and they do not provide a continuous measurement while
exercising. Thus, a cheaper, more accessible method for continuously estimating
blood lactate values is desirable.

In the term project pursued during Fall 2020, the student aimed to estimate blood
lactate level by using a variety of sensors and physiological measurements collected
from athletes doing high-intensity exercise. The data sources included heart rate,
VO2 and external power, but the lactate level was measured quite seldom and only
after completion of each part of the activity.

1.2 Objective

In this project, the student will gather a data set where lactate was sampled at
a higher rate and further study methods for continuously estimating blood lactate
level by exploiting information from sensors with the following distinct/dissimilar
characteristics:

e Sensors with relatively high sampling rates, used to measure a state with quite
rapid dynamics (e.g., measurements of external power).

e Sensors with relatively high sampling rates, used to measure a state with rather
slow dynamics (e.g., a heart rate monitor).

e Sensors with relatively low sampling rates, used to measure a state with more
rapid dynamics (e.g., VO2 and blood lactate measurements sampled every
30s-5min).



e Sensors with a low sampling rate and measuring over large windows and an
inaccurate scale (e.g., RPE, “rate of perceived effort”).

The data set to be gathered will be collected in a laboratory setting, while being
closely monitored. In this environment, many of the relevant physiological parame-
ters can be measured. To make the blood lactate estimates more useful in regular
training settings and more accessible for the public, the student will also investi-
gate model reduction strategies, and the utilization of cheap and readily available
Sensors.

Specifically, the student will perform the following tasks:

1. Literature review on methods for exploiting data from sensors with very different
dynamics, sampling rates and drift. Specifically, describe the Kalman filter and its
applications in sensor fusion, interpolation and smoothing.

2. Design test protocols and gather the data set, including methods for organizing
the data (calibration, synchronization etc.).

3. Find and apply suitable methods for integrating the data from the various sensors
and estimate blood lactate level.

4. Compare and evaluate the results of the various models or methods applied on
the data set.

1.3 Approach

To solve the given objective an examination of previous literature of similar ap-
plications in estimating physiological sizes is the first step. Then for gathering of
physiological data tests will have to be designed and tested before the real recordings
can begin. Then based on the result of these findings design a model based on the
findings that will serve a starting point for further exploration. Lastly the models
must be evaluated and compared on part of the gathered data.




Chapter 2

Theory

2.1 Lactate production

2.1.1 Physiology

To perform any action, the cells which make up our bodies, needs energy. Energy
is released from a compound called adenosine triphosphate (ATP). Only a small
amount of ATP can be stored in a skeletal muscle cell at any given time and thus
there is a need for constant replenishing. To produce ATP the body has three main
energy systems. For short lasting intense efforts, ATP stored in the muscle is utilized
in combination with breaking down phosphocreatine (PCr). These are called the
ATP-PCR system and is not required to have oxygen present to produce energy.
For activity lasting longer than approximately 8 s, there is also a large contribution
of energy from the process of breaking down glycogen to lactate. When the effort is
longer than about 1 min, oxidative phosphorylation generates the majority of ATP

[5].

During easy exercise the energy demand is met through oxidative sources. For
exercise with enough intensity the energy demand may exceed the energy which
the muscle cells is able to produce by oxidative means, thus ATP is sourced from
the breakdown of glucose and glycogen where the endpoint of the reaction chain is
pyruvate. If the muscle cells are lacking oxygen, i.e. anaerobic, pyruvate is reduced
to lactate [7]. This is the main source of lactate into the plasma. To clear lactate
from the plasma the lactate is mainly oxidized in muscle cells, or liver to be reused as
an energy source. For sub-maximal exercise lactate is cleared at a similar rate as it is
produced, leading to a steady state of lactate concentration in the blood. However,
at intensities above the lactate threshold blood lactate will begin to accumulate [13].

2.1.2 Modelling

Academic interest in modelling the kinetics of lactate production and removal dates
back to the beginning of the 20th century. In 1936 the rate of lactate acid removal



during exercise was established to be proportional to the concentration present at the
time [12]. In 1981 Freund and colleagues published a two-compartment model [16].
The model is an application of mass conservation law and has a compartment for the
working muscle as well as the rest of the lactate space. Blood lactate concentration
is then expressed for each compartment by the following differential equation

VLa=PR—REX — MRR+ LU — LR (2.1)

Where V is the volume, La is the lactate concentration, PR is the production rate,
REX is the excretion, MRR is metabolic removal rate, LU is uptake from other
compartments and LR is release to other compartments.

In a paper released in 2002, Alois Mader among other things, built out the idea of
a two compartment model even further. Lactate concentration was described in a
two compartment model as the following

La,, = — Ky (Lam — Lap) + 1.35(Via.ss pir — VLa,ozm) (2.2)
Lab = V;“el(Kl(Lam - Lab) - ULa,a.t,b) (23)

Where La,, and La, is the concentration in the muscle compartment and blood
compartment respectively, Vel is a constant describing the relative volume between
active muscles and blood, typically between 30-50%]9]. K; describes the rate of
exchange between the two compartments leading to a lower exchange rate as the
lactate concentration increases.

K; = 0.065La, !

Furthermore, what drives the model is the description of the production and con-
sumption rate, vjq ¢sprr aNd Vjq05. The rate of production is scaled from the known
maximum rate of production based on current work rate. The oxidative consump-
tion is mostly determined by the current expenditure of VO,. We are left with a
two compartment model which describes at what rate lactate is accumulated in the
muscle compartment and exchanged into the blood compartment.

Understanding of lactate progressively increased during the later 20th century and
by the turn of the century lactate was attributed other roles than just being the dead
end of glycolysis [4]. In 2012 Moxnes and Sandbakk published a mathematical model
of lactate production and removal [11]. The model is a second order differential
equation for two compartments, much like previously mentioned models by Freund.
It was originally constructed for use in cross country skiing, however it has been
adapted for use in cycling as well [15].

Cnlt) = (D0 — do T DG 1) Qe — Qule)
Cm(t) B Ob(t)
—ky, o (2.4)
Cb(t) = klaw (2.5)

Where symbols are explained in Table 2.1

4



Table 2.1: Symbols used in Equation 2.1.2

Ch Blood lactate concentration in the muscle.

Cy Blood lactate concentration in the blood.

Vi Volume of the muscles.

Vi Volume of blood.

\%4 Sum of Vj, and V,,.

Do Rate of pyruvate disappearance due to oxidation.

D(Q.(t) Function relating aerobic to rate of lactate disappearance.

dy Parameter scaling the rate of lactate disappearance.

X Parameter describing saturation of lactate disappearance rate.
Qmaz Maximal aerobic power.

k1a Parameter scaling the exchange between compartments.

The model was fitted quite well to experimental data, having uncertainty of less than
+ 0.5 mmol/L during varying sub-maximal exercise intensities [11]. The benefit of
models like this is that parameters used in the model will have a physiological
interpretation. These parameters does however need to be adjusted to every new
activity type and athlete.

2.2 RPE

The Borg Rating of Perceived Exertion (RPE) was introduced by Gunnar Borg in
1998 as a tool for measuring physical activity intensity level [2]. The tool is used by
asking a participant how heard they feel their body is working. The idea is that the
body is able to accurately measure it’s own work rate based on sensations such as
heart rate, respiration, sweating and muscle fatigue. Originally the scale went from
six up to twenty to mimic the approximate heart rate during exercise (~ 60-200
BPM), however a scale from one to ten is also commonly used.

2.3 Kalman filtering

2.3.1 Background

The Kalman filter has it’s name from the Austrian Mathematician R.E Kalman who
in 1960 published a paper on a recursive solution of the problem of linear filtering of
discrete data[8]. Since then, the solution has been researched and applied heavily,
especially in the fields of autonomous navigation. The Kalman filter itself consists of
a set of mathematical equations which efficiently computes the solution of a least-
squares problem. The filter provides an estimation of every time step along the
way as well as a dynamically updated estimate of the uncertainty of the estimation.
Today the estimation technique sees use in many different applications ranging from
economics, weather forecasting to estimation of blood glucose concentration|14].




Mathematically we can describe the problem as the following

yr = CTag + v (2.7)

where the random variables w;, and vy describes the noise in the process and mea-
surement. These variables are assumed independent from each other, white, and
distributed normally according to the following

p(w) ~ N(0,Q) (2

.8)
p(v) ~ N(0, R). (2.9)

If x is a n-dimensional state space vector ,y is a m-dimensional measurement vector
and u is a [-dimensional input vector then A is a n X n matrix and B is an x [
matrix which together describes how the state moves forward one time step given
some input, u. CT is a m X n matrix that relates the state and measurement, y.

Let ) be the a priori estimate of the state at time k. This is based on our last a
posteriori estimate, p_; propagated through the process model to produce the a
priori estimate for the next time step. If we define the estimation error as

€ = T — Ty, (210)

ey = T — T, (2.11)
then the a priori error covariance, Py, is

P, = Elexe}] (2.12)
and similarly the a posteriori error covariance, Pk, is

P, = E[éé]]. (2.13)
Now we want an a posteriori state estimated as a linear combination between the a
priori state estimate 2, and the actual measurement y;. We get the following

T =T + Ky — CTzy,) (2.14)

where K is called the Kalman gain which we which to establish with minimizing ﬁk,
the a posteriori error covariance. By substituting Equation 2.14 into Equation 2.11
and then into Equation 2.13 we can take the derivative of the trace of P, with
regards to K and by setting this equal to zero we arrive at the following

Ky, = B,C(CTP,C + Ry,)™! (2.15)

To illustrate the effect of the measurement covariance, Ry and a priori error covari-
ance, P, on the Kalman gain we look at the limits as these go to towards zero

. _ 11

F},S—I}O K,=C (2.16)
lim K, =0 (2.17)
Pr—0




Table 2.2: Prediction step equations.

’ Ty = Ay + Buy ‘

| Py = APAT + Q. |

Table 2.3: Correction step equations.

| B =(-KC)P |

In the case of Equation 2.16 then Equation 2.14 will remain with only y; as the
estimate since we assume there is no uncertainty in the measurement value and
thus the estimate should be equal to the measurement. However in the case of
Equation 2.17 then Equation 2.14 will be equal to the a priori estimate Z; as we
assume there is no uncertainty in the a priori estimate and thus there is no need
for the more uncertain measurement with variance Ry. To implement the Kalman
filter we need to formulate these calculations as an algorithm. We separate the
calculations into two steps, one which uses the underlying model of the process to
predict the state of the next time step based on the current estimate. The equations
can be found in Table 2.2.

The other step is to correct the estimate whenever there is a measurement available.
Here we calculate the Kalman gain using Equation 2.15 and update our a posteriori
estimate and error covariance. The equations can be found in Table 2.3. If there is
no measurement available, no correction step is needed and the a posteriori estimates
are just equal to the a priori estimates.




Chapter 3

Method

3.1 Experimental data gathering

3.1.1 Subjects

Two recreationally trained subjects as listed in Table 3.1 are recruited to gather
data.

Table 3.1: Subjects for data gathering.

Subject A Subject B
Gender Male Female
Age 23 24
Weight 79 65
AT 270 160

3.1.2 Equipment

All tests were preformed on an indoor bike ergometer (Concept2, Morrisville, United
States). Before data gathering the bike ergometer was calibrated using inbuilt soft-
ware. Blood lactate levels were measured using a handheld lactate test meter,
Lactate Pro2 LT-1730 (ArkRay Inc, Kyoto, Japan), by taking 5 uL blood samples
from the fingertips. Heart rate data was recorded using a heart rate monitor (Polar
H7, Polar Electro, Kempele, Finland) connected to a watch.

3.1.3 Testing protocols

Before each day subjects are asked to train lightly in the 24 hours leading up to the
session. Before commencing on the session a standardized warm up of ten minutes
at a low effort (approximately at half of AT) is done. In each test the subjects are
blinded to the blood lactate measurements to not interfere with the RPE given.

8



3.1.4 Anaerobic threshold

The test procedure consists of a 10 minute warm up before an incremental ramp
of five minutes where after each stage the blood lactate is measured and power is
increased by 20 Watt. This is repeated until a value of 1.5 mmol/l above the resting
lactate concentration values is reached. The power achieved at this stage was then
recorded for further use and denoted as the anaerobic threshold.

3.1.5 Day 1

Blood lactate levels are sampled with one minute intervals, whereas the RPE is
sampled after each interval.

3.1.6 Day 2

Blood lactate levels are sampled with a varying interval in the following pattern,
at 0, 2, 4, 5, 6 and 7 minutes after the start of each interval, whereas the RPE is
sampled after each interval.

3.1.7 Day 3

On day three the subjects does a continuous effort of 14 minutes with varying
intensity. The blood lactate levels, as well as RPE, is sampled with one minute
intervals.

Table 3.2: Data gathering sessions.

Day 12 3

Number of intervals 10 3 1

Length of intervals [min] | 2 6 14
Intensity [% of AT] 110 90 Varying

Length of break[min] 1 2 0

3.2 Lactate kinetics modelling

3.2.1 Overview

The goal of the model is to take the external output of the athlete measured on the
bike and produce a continuous estimation of the lactate concentration in the blood
compartment. The measurements used to correct the estimation is taken by blood
samples from the finger and thus is from the blood lactate compartment.




Table 3.3: Constants used in Equation 3.2, Equation 3.3 and Equation 3.4.

Constant | Value

To2 0.60
K 2
Viel 0.35

3.2.2 Continuous model

To continuously estimate the lactate concentration of the athlete a Kalman filter is
used. The underlying process of lactate concentration is modelled as follows. Let x
be the state space vector, then

T La,,
r=|z2| = | Layp (3.1)
I3 VO2

We have three states which if we differentiate we have

Lam - _Kl (Lam - Lab) + (Ula,ss - Ula,ox,m) (32)
Ldb - ‘/;el(Kl (Lam - Lab) - vla,ox,b)
: VO2 - V02
vog = L2 T2 (3.4)
Tvo2
where
Viaon = K2V O2 (3.5)
2
Vla,oz,m = gvla,ox (36)
: (3.7)
Vig,oz,b = 5 Via,ox .
la,ox,b 3Ul ,

Let u be the input vector, then

o= ] = V) 55

Ulq,ss 18 @ constant, K3 multiplied by the external power at that time step, and V0?2
is the oxygen consumption rate that the athlete will stabilize at some time given an
intensity. Thus we can formulate it on the form

&= Ax + Bu
where
K, K1 e
A= Kl‘/;el _Kl‘/rel _ITQVYCI (39)
0 0 =L
Tvo2
1 0
B=10 o0 (3.10)
O 1

10



Table 3.4: Standard deviation in measurement with Lactate Pro 2. All sizes given
in mmol/l.

Range | Standard Deviation
0-1.9 .06
2.0-4.9 A1
5-0-9.9 22
10.0-14.9 D2
15+ .60

The measurement y is the concentration of lactate in the blood compartment, Lay,.

y=CTz (3.11)
CT=1[0 1 0] (3.12)

For further use in a discrete Kalman filter the model is discretized using a time step
of one second.

3.2.3 Measurement covariance

To determine the covariance of the measurements values from a study of handheld
lactate measuring devices [1] gave the values give in Table 3.4 for the standard
deviation for the Lactate Pro 2. Thus the covaraiance, Ry, can be determined
dependently on the value of the measurement, ;.

3.2.4 Process noise

The covariance matrix, @), is kept diagonal and subject to tuning to increase per-
formance of the Kalman filter.

3.2.5 Tuneable constants

To adjust the model between subjects two variables, K3 and Ky, is set to values that
minimizes the mean square error between the estimate and measurement at the time
of the measurement. Specifically the fminsearch from the optimization toolbox in
MATLAB [10]. The two variables where minimized using data points from the first
two days of testing.

3.2.6 Outlier removal

When a measurement is more than two standard deviations away from the estimate
it is considered an outlier and the correction step of the Kalman filter is skipped for
that iteration.

11



3.2.7 Implementation

The Kalman Filter was implemented in MATLABJ[10]

12



Chapter 4

Results

4.1 Data gathering

For all figures, red dots is measured lactate concentration given in mmol/l and black
line is power given in watts.

Anaerobic threshold

The results from the anaerobic threshold test is summarized in Table 4.1 and Ta-
ble 4.2.

4.1.1 Day one intervals

Figure 4.1 shows the results from day one of data gathering.

Table 4.3: Subject A’s RPE at Time minutes after start of day one.

Time

RPE

6| 14 | 22
66 |7

Table 4.4: Subject B’s RPE at Time minutes after start of day one.

Time

RPE

6|14 | 22
516 |6

Table 4.1: Values of blood lactate concentration after ended stage at indicated power
for subject A.

Power|[watt] 190 210 230 250 270
Lactate concentrationjmmol/l] 1.4 23 24 3.0 3.9

13



Table 4.2: Values of blood lactate concentration after ended stage at indicated power

for subject B.

Power|[watt] 140 160 180
Lactate concentrationjmmol/l] 2.2 4.1 12.5

Blood lactate [mmol/L]
T

Blood lactate [mmol/L]

(a) Subject A. (b) Subject B.

Figure 4.1: Day one intervals. Power, Heart Rate and blood lactate measurements
are plotted.

4.1.2 Day two intervals

Figure 4.2 shows the results from day two of data gathering. Unfortunately the first
half of subjects B’s test day was lost to data corruption.

Table 4.5: Subject A’s RPE at Time minutes after start of day two.

205 (81114 ]17]20 232629
678 919199 1010

Table 4.6: Subject B’s RPE at Time minutes after start of day two.
215 (8|11 14|17 |120 |23 |26 |29
677 TLT T TN T]T

14



Blood lactate [mmol/L]

L
10:20

L
10:10

Time [min]

0
10:30
Jun 30, 2021

(a) Day two intervals subject A.

Figure 4.2: Day two intervals. Power, Heart Rate and blood lactate measurements

are plotted.

Blood lactate [mmol/L]

Power [walt]
— — —HR [BPM)

® Lactate Measurements [mmol]

L L L
10:08 10:10 10:12

Time [min]

L L L
10:02 10:04 10:06

L
10:14

20
10:16
Jul 07, 2021

(b) Day two intervals subject B.

4.1.3 Day three continuous efforts

Figure 4.3 shows the results from day three of data gathering.

Table 4.7: Subject A’s RPE at Time minutes after start of day three.

2
4

4
)

Time

1 3
RPE | 3 4

5016|7819
617|876

10|11]12] 131 14

T8 8| T |7

Table 4.8: Subject B’s RPE at Time minutes after start of day three.

Power, Heart Rate

65 s o
L]
oL
100
55 . sl .
L]
[ ] 3
= g4
3, ° ° 3 180 o
245 . g g
E f ’“‘ E g
e, e o 5
8 835 \ S S 3
2as 3 / - - A H
H ° < 8 o ! *\/”/ Vi &
2 I N ¥
200 r e L]
I id 0
] L] ’ L] L] 120
. 250 ° .
2 e - T T ] /
- - ;
\\\\\\\\\\ - e L] - 100
2f¢ 2
! L]
. . . . . . . . . . . . . . w0
foo o0z Tood 00 o0 o0 o o fo00 o2 o8 006 o0 Tor0 pres ot
Time [min] Jul 06, 2021 Time [min] Jul 09, 2021

(a) Day three, subject A.

(b) Day three, subject B.

Figure 4.3: Day three intervals. Power, Heart Rate and blood lactate measurements

are plotted.
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4.2 Estimation results

Figure 4.4 through Figure 4.9 shows the output from the Kalman filter.

Table 4.9: Mean square error (MSE) between measurements and a priori estimated
output at time of measurement. Results from three different estimation situations,
first with all measurements available, second with every other measurement removed
and third with now measurements available.

Subject ‘ All measurements ‘ Every other measurement removed ‘ No measurements

A 0.34 0.56 0.71
B 0.87 1.55 1.01
Kalman filter
7r -1 450
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Figure 4.4: Estimation of continuous effort from subject A with all measurements
available.
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Figure 4.5: Estimation of continuous effort from subject A with no measurements.
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Figure 4.6: Estimation of continuous effort from subject A with every other mea-
surement removed.
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Figure 4.7: Estimation of continuous effort from

available.
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Figure 4.8: Estimation of continuous effort from subject B with no measurements.
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Figure 4.9: Estimation of continuous effort from subject B with every other mea-
surement removed.
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Chapter 5

Discussion

5.1 Data gathering

5.1.1 Design of test protocols

The choice of test protocols was done to try to capture different sides of each test
subjects physiology. A 3x6 minute interval at 90% of the anaerobic threshold should
stabilize at a lactate concentration which is sustainable. This intensity is relevant
for longer endurance events that lasts for hours. A 10x2 minute interval at 110%
of AT tried to elicit the cumulative fatigue of exercising at intensities above the
anaerobic threshold for prolonged periods of time. Lastly the continuous bout on
the third testing day was meant to simulate a race condition where the intensity is
ever-changing and meant to be used as a validation data set for the estimator.

5.1.2 Reliability of lactate measurements

When following the correct procedure, with nothing going wrong the accuracy of a
handheld lactate analyzer such as the Lactate pro 2 can be quite high[1]. However
some samples may become contaminated and thus yielding wildly inaccurate mea-
surements. This duality between great accuracy on one hand and great inaccuracy
on the other hand creates issues when Kalman filtering. These issues are somewhat
mitigated through the use of RPE and outlier detection, but nonetheless creates a
problem as it may be hard to classify weather the lactate concentration is rising
more rapidly than what the model predicts or if there is a bad measurement.

5.1.3 Sample size

A sample size of two is not a large sample size when developing physiological models.
Each subject’s lactate concentration was only measured about 50 times each over
the course of three days, leaving only a little over 100 data points as the data
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basis for developing a model. Naturally a large sample size with more testing days
and a higher amount of test data would vastly improve confidence in any models
developed. It would also ease the issues regarding reliability of the measurements
as more measurements would lessen the penalty of removing bad measurements

5.1.4 Intensity control

The goal of intensity control of the intervals where for the intensity to be equal
between subjects. To control the intensity the external power was used and subjects
where asked to hold the power measurement at the desired power. The power was
normalized between subjects by determining their anaerobic threshold and then
prescribing intervals based on percentages of the subjects AT. When looking at
Table 4.1 and Table 4.2 subject B’s AT was set to only the second step of subjects
B AT test. This is less than the three steps that is recommended by Olympiatoppen
[6]. The 20 watt steps also reduces the precision when the end AT is lower than
subject A’s. Thus the intensity, at least the reported RPE, was higher for subject
A.

5.2 Estimation

5.2.1 Accuracy

In Table 4.9 the mean square error (MSE) for subject A is lower than for subject B
for all three situations with different availability of measurements. However when
manually assessing Figure 4.4 and Figure 4.7 it is not as clear cut which subject has
better estimation performance. The two outliers in the data set from subject B’s
third day likely causes the MSE to increase, but these two measurements are most
likely to be erroneous due to some external contamination.

5.3 Conclusions

It hard to conclude with any amount of certainty weather or not the estimator is
able to achieve what it set out to do. Both because of a lacking data foundation,
but also due to the nature of uncertainty in handheld lactate analyzers that runs an
inherent risk of contamination.

5.4 Further work

For further work a larger and more comprehensive data gathering process should
take place. For development of broadly applicable and reliable models a larger
groundwork of data is required. A data set which includes some sets that have

21



such accuracy and reliability that they can be considered ground truth would make
development and validation of estimators easier. Other methods might also yield
better results than Kalman filter approach. Incorporating heart rate and RPE more
tightly into the estimation process is also something that did not make it into this
report, and should definitely be investigated further.
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