
The Theory of Bond Graphs in Distributed Systems and Simulations
Stian Skjong Eilif Pedersen

PhD Candidate Associate Professor
stian.skjong@ntnu.no eilif.pedersen@ntnu.no

Department of Marine Technology
Norwegian University of Technology and Science

Keywords: Distributed Systems and Simulations ·Bond Graph
Theory ·Dynamic Stability·Solver Stability·Hybrid Causality
Models
Abstract
The bond graph theory provides a firm and complete strategy
for making mathematical models and are used in this work
to obtain a good relation between connectivity, causality and
model fidelity in distributed systems. By distributing a sys-
tem more computational power is available which makes it
possible to increase the model fidelity in large systems with-
out increasing the time to solve the total system. Also, more
complex models with causality switching properties may be
used for simplifying the connectivity problem between dis-
tributed models and for representing changing dynamics that
also affects the model causality.

Stability of distributed systems are dependent on both solver
stability and dynamical stability, when neglecting the stability
results based on cascaded systems with certain passivity prop-
erties. For linear distributed systems solver with fixed step
size solvers a stability criterion involving the system dynam-
ics, local solver time step and global synchronization time
step can be formulated. In this work a stability criterion for
linear distributed systems solved with the Euler integration
method will be derived and a hybrid causality model, repre-
senting a small power plant, will be used to test the stability
criterion.

1. INTRODUCTION
The bond graph modelling theory provides a complete,

power conserving connectivity potential between different math-
ematical models as well as for energy domains. Different mod-
els or dynamic effects are connected by power variables through
power bonds, dependent on model causality orientations [1].
Such a connection is closely related to real physical systems
where each action forces a reaction. This modelling strategy
is well suited when considering distributed systems and mod-
els, which is the main topic of study in this paper. In dis-
tributed systems the dynamics of surrounding submodels are
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not always known and subsystems may be ”black box” im-
plementations where only the inputs and outputs are known.
Then, a power conserving connectivity strategy would give
a generic input-output mapping between different submodels
since the inputs and outputs are power variables and only de-
pendent on the energy domain and the causality orientation.

In general, a distributed system can be thought of as a
collection of different mathematical models, as shown in fig-
ure 1. These mathematical models should be connected to
each other through a well defined and generic input-output
configuration. Such a configuration can be found in object
oriented modeling languages and strategies such as the bond
graph theory [2]. As can be seen in the figure, each subsys-

Figure 1. A general distributed system.

tem may have internal control loops independent of the sur-
rounding systems as well as control loops including several
subsystems.

One of the many benefits with distributing a system is
that a distributed model standard, such as the function mock-
up interface, FMI [3], can be used when exchanging models.
This means that one can use the favourable modelling and
simulation software at hand as long as it has export function-
alities in accordance with the chosen standard. On the other
hand, a few new challenges arise when distributing a system,
such as stability, connectivity and causality, among others.
Also, a simulation master algorithm is needed for configur-
ing the total distributed system in a co-simulation and con-
trolling the global simulation time. Such a simulation master



is considered and developed in the ViProMa-project, Virtual
Prototyping of Marine Systems and Operations, tailored for
the FMI-standard.

In distributed simulations each distributed submodel is of-
ten solved locally with a time step smaller than, or equal to,
the global synchronization time step. Also, there will be one
global synchronization time step delay between each input-
output connection since information is only exchanged at each
global synchronization time step. This may lead to a differ-
ence in the transmitted power through a power bond when
comparing values locally in two connected submodels. This
power difference is often normalized and referred to as power
residuals and the simulation errors will increase when the
power residuals increase. A global algorithm based on power
residual calculations and implemented in the distributed sim-
ulation master may be used to compensate for the added sim-
ulation errors.

Stability in models are often split into dynamic stabil-
ity [4, 5] and simulation or solver stability. However, in dis-
tributed systems and simulations these two stabilities are closely
connected since the global synchronization time step sets the
maximal frequency of the exchanged data which may sup-
press the dynamics in the submodels. Also, it can be shown
that the stability of the solver dynamics are dependent on both
the local time steps, the global synchronization time step and
the surrounding submodel dynamics. However, the proof of
this is omitted in this work.

By distributing models it is possible to model more com-
plex systems due to gained computational power as well as
the possibility to use different local solvers. To gain even
more complexity in distributed simulations it is possible to
implement submodels with hybrid causality properties. In this
context a model with hybrid properties is defined as a model
that is able to alter inputs and outputs in discrete time online
during a simulation. This enables modelling of connection
and disconnection of submodels, for example generator syn-
chronization in a power plant , as well as modelling system
failure characteristics that change the dynamics of a model
completely. However this calls for a thorough system stability
analysis as well as choosing power conserving initial condi-
tions.

2. CONNECTIVITY AND CAUSALITY IN DIS-
TRIBUTED SYSTEMS

In most modelling theories connectivity and causality are
closely related. However, in bond graph theory connectivity
can be expressed directly through causality for power bond
connections. This, because the power variables are given by
the energy domain and only equal energy domains can be
connected. The power variables, that as a product gives power
[W ], constitute a true power bond and are always present in
pairs of efforts and flows. As an example, a force F is an ef-

Table 1. Bond graph elements generating states.
Description Bond graph Relation

”Inertia element” f = Φ−1(
∫ t

0 edt)

e = d
dt [Φ( f )]

”Capacitive element” e = Φ−1(
∫ t

0 f dt)

f = d
dt [Φ(e)]

fort and velocity v is a flow and the power is given as P=F ·v.
In this context F and v form a pair of power variables and are
inseparable. Where one of them appears in a model, so does
the other one.

The connectivity problem is then reduced to a combina-
tion of a causality problem and a fidelity problem when stick-
ing to the use of power variables consistently when develop-
ing mathematical models. This is old news in the bond graph
environment, where connectivity is most often discussed in
the concept of causality for a given model fidelity. In general,
the causality of a model is defined by the form of the equa-
tions extracted from the bond graph model and is divided into
differential causality and integral causality. A system that, in
general, has only one degree of freedom can be modelled hav-
ing either integral causality or differential causality, depend-
ing on the model input. In other words, the model input may
act as a model constraints. A system that has multiple degrees
of freedoms may include both integral causalities and differ-
ential causalities in its model representation, but has one in-
tegral form for each unconstrained degree of freedom, since
it is the only causality form producing state equations. Dif-
ferential causality will be treated more thoroughly in section
3.. In summary, both the state space representation and the
connectivity options for a model are explicitly given by the
causality of the bond graph elements in a model represen-
tation for a given model fidelity. Moreover, the causality of
bond graph elements are affected by the model input, due to
possible model constraints, which proves consistency in the
bond graph theory.

In this paper a system consisting of only integral causality
forms, will be said to have a complete integral causality form.
In bond graph theory only two bond graph elements have the
potential of producing states, namely the inertia element, de-
noted I, and the capacitive element, denoted C, as shown in
table 1 with corresponding equations.

To illustrate the concept of connectivity through causality
and model fidelity, consider a simplified model of a diesel
engine, as given in figure 2, where a MSe-element is used as
a governor, mapping fuel energy into torque applied to the
crankshaft, a R-element taking care of the friction losses, an
I-element describing the engine inertia and a connecting port,



uE , that gives the shaft speed as a model output and gets the
shaft torque in feedback.

Figure 2. Bond graph model of diesel engine

Now, consider that the diesel engine model is supposed
to drive a simplified generator model, as given in figure 3,
where yG is torque given as model input, the I-element to the
left describes the rotational inertia and the I-element to the
right is an electrical inductance. The GY-element transforms
the mechanical power to electrical power and the R-elements
are friction and an electrical load, from left to right in the
figure, respectively.

Figure 3. Bond graph model of generator

It can be seen from the two models that a connectivity
problem arises if the two systems were implemented as two
independent submodels, both having a complete integral causal-
ity form, and connected in a distributed system. This, because
both models give shaft speed as output and get a torque in
feedback. However, since both models should experience the
same speed when connected, one of the I-elements describing
rotational inertia should be constrained and change causality
in order to assure connectivity. Another solution is to combine
the two I-elements into one and put it in either the generator
model or the engine model, which is done in figure 4.

GeneratorEngine

Figure 4. Distributed system of diesel engine and generator.

As can be seen in the figure, the engine has the shaft
speed as output and gets a torque in feedback. Note that if
the I-element were moved to the generator submodel, the en-
gine output would be torque and the shaft speed would have
been given in feedback from the generator model. This means

that we can choose which submodel to implement the inertia
effects without affecting the connectivity. Another possible
way of solving the connectivity problem between the engine
model and the generator model is to model a stiff coupling
between the generator and the engine, increasing the total
model fidelity. This would also increase the number of state in
the total system by one. However, this solution is not always
preferable, even though there often exists such couplings in
real systems. This, because a coupling introduces a fast time
constant that most likely would stand out from the other time
constants in the total system which is usually not preferable.

In this section the causality, connectivity, model fidelity
and power variables have been discussed and the strong con-
cept of causality and power variables in bond graph theory
help bringing explicit solutions to the connectivity problem
in distributed systems. However, the modeller is still left with
a lot of choices such as model fidelity and how to divide a
total model into submodels for distribution purposes. This
means that the bond graph theory doesn’t set restrictions for
the modeller, but adds constraints in form of causality and
power variables that help solving connectivity problems.

Another nice contribution from the bond graph theory is
the bond graph itself. When understanding the concept of
bond graphs it is easy to characterize different dynamics and
understand the model dynamics out from looking at the mnemonic
bond graph elements as well as determining model connectiv-
ity and extracting state space equations. These are nice fea-
tures when studying hybrid causality models.

3. HYBRID CAUSALITY MODELS
Model switching is a well known term in the field of math-

ematical modelling. In general it involves switching between
different models online during a simulation but where the
input- and output configurations are fixed. Such systems are
well treated in [6] and will not be studied in this work. How-
ever, hybrid causality models that have more or less fixed dy-
namics but the opportunity to switch between inputs and out-
puts is of great interests in distributed systems. This, because
of the connectivity. By implementing hybrid causality proper-
ties in a model the connectivity would only depend on the en-
ergy domain. Another reason for implementing hybrid causal-
ity properties in a model is to be able to switch causality on-
line during a simulation. This is a nice feature when working
with systems having discrete events, for example switches in
power electronics. When establishing hybrid causality prop-
erties for a model it is also possible to add hybrid dynamics
to it. However, this is not in the scope of this work.

One of the reasons for investigating hybrid causality mod-
els is to be able to make fast and robust simulation models of
systems that seems to change causality when certain events
occur. One example of such a system is a hydraulic system
with an accumulator that fails if it runs dry. In this case, one



of the other hydraulic components that still works need to
provide the pressure to the other hydraulic components, seen
from a connective point of view. Another example is a set of
generators in a marine power plant that are to be connected to
a common weak power grid. Then, only one of the generators
can set the power grid voltage, and the rest of the components
connected to the power grid provides with a current, either as
a consumer or a producer.

In this paper the theory of hybrid causality models will
be presented in accordance with the bond graph theory to-
gether with the definition of discrete- and continuous time
events, which will be elaborated later on. To present the hy-
brid causality the distributed diesel engine and generator model
given in 2. will be used. However, now it is assumed that
the engine model and the generator model, together called
a genset, are implemented as one model and connected to a
electrical load that may be distributed.

3.1. Example: Distributed Genset model Con-
nected to an Electrical Load

Consider the genset model with complete integral causal-
ity as shown in figure 5, including the model parameters. Note
that the engine torque is in this model set to a constant τ.

τ :

: J

: b : R

: L

r
uV

Figure 5. Distributed genset model.

In this model the voltage is given as an input, uV . Assume
that an electrical load model with current as output is to be
connected to the genset model. The connectivity in this case
would fail if the genset model isn’t able to adapt to the re-
quired causality. However, connectivity of the two distributed
models can be ensured by switching causality on the induc-
tance I-element in the genset model. It is then possible to use
a switched 1-junction, denoted 1s [7] to switch between the
causalities. In addition, by adding one more port, ui, a hybrid
causality model can be modelled as shown in figure 6.

τ :

: J

: b : R

: L

r
uV
ui

Figure 6. Distributed hybrid causality genset model.

The genset model shown in the figure has a complete inte-
gral causality option giving current as output and a causality
option including a differential causality giving voltage as out-
put, making the connectivity fit all possible loading models.
Note that an external signal is given to the 1s-element and the
I-element in order to switch between the causality options.

From the bond graph a state space equations for the com-
plete integral causality form can be expressed as

ω̇ =
1
J
(τ−bω− ri)

d
dt

i =
1
L
(rω−uV −Ri)

y = i

(1)

where ω is the shaft speed of the genset, i is the electrical
current, J is the rotational inertia, b is a friction constant, r
is the gyrator modulus, L is the inductance, R is an electrical
resistance parameter and y is the model output. The equations
for the differential causality option can be written as

ω̇ =
1
J
(τ−bω− rui)

v = rω−L
d
dt

ui−Rui

y = v

(2)

where y is the voltage output and ui is the current input. As ex-
pected, one state has been lost due to the differential causality.
When the input current ui is given it is possible to solve the
differential causality algebraically, atleast if the models are
linear. However, for a generic distributed model that doesn’t
have insight in the dynamics of its connected models it is
difficult to solve the differential causality algebraically. It is
important to stress that such a derivative term, d

dt ui, requires
suited solvers but additional simulation errors will be intro-
duced. Hence, if the differential term can be replaced by some-
thing that completes the state space formulation, for example
an estimate of the derivative term, simple solvers can be used.
Then the model is not dependent on an advanced solver or
knowing the algebraic solution for the differential causality
problem.

3.2. Solution of the Differential Causality Prob-
lem

A low-pass filter with differential properties can be used
to estimate the differential term and is given as the transfer
function

H f (s) =
s

T s+1
(3)



Transforming this transfer function in to the time domain re-
sults in

ẋ f =
1
T
(u− x f )

y f =
1
T
(u− x f )

(4)

where x f is the new state that completes the state space model
and y f is the estimate of d

dt u. By substituting (4) into (2) we
obtain a complete state space model expressed as

ω̇ =
1
J
(τ−bω− rui)

ẋ f =
1
T
(ui− x f )

yd =−( L
T
+R)ui +

L
T

x f + rω

(5)

where yd is the output voltage. It can been shown that the filter
time constant T can be chosen such that the errors introduced
by the filtering properties are small and in most cases negli-
gible. For stability analysis and simulation purposes the pa-
rameters used in the genset model are given in table 2. Before

Table 2. Genset parameters.
Symbol Value

J 10 kgm2

b 0.1 Nm/s
r 10 NmHs
L 0.05 H
R 0.01 Ω

τ 200 Nm
T 0.001 s

performing simulation of the genset model it is important to
discuss stability in the sense of hybrid causality models and
is treated in the following.

3.3. Stability of Hybrid Causality Models
Stability of hybrid causality models for continuous sys-

tems can be studied by analysing the dynamics in both the
solver and the system for all causality orientations. In addi-
tion, one must assure that the power is conserved during dis-
crete time events such as when switching causality. Stability
for distributed hybrid causality models are left out here, but
will be studied in section 4..

Starting with the complete integral causality model, the
dynamics can be reformulated as

ẋ = Ax+Buv +C (6)

where x = [ω, i]T is the state vector, B is the input mapping
matrix, C is a vector including the constant engine torque τ

and

A =

[
− b

J − r
J

r
L −R

L

]
(7)

It can be verified that the eigenvalues of A are λ =−0.105±
14.1418i for the parameters used in table 2. Also, by spec-
ifying that uV = Rl i, where Rl =10 Ω is the electrical load,
removes the B-matrix and the A-matrix can be rewritten as

A =

[
− b

J − r
J

r
L −R+Rl

L

]
(8)

The corresponding eigenvalues for the A-matrix is now given
as λ1 = −1.0141 and λ2 = −199.1959. If the Euler integra-
tion method is used for solving the system in a simulation the
stability criterion for a stable solution is given as

∆t ≤ 2
λi
, ∀i (9)

whenever the eigenvalues are real, where ∆t is the solver time
step. The same analysis can also be done for the reformulated
differential causality. Setting x = [ω, x f ]

T gives

Ad =

[
− b

J 0
0 − 1

T

]
(10)

and the eigenvalues λ1 = −0.01 and λ2 = −1000.0. Note
that the subscript d is used to separate the complete integral
causality model and the reformulated differential causality
model. If also in this case ui =

y
Rl

it can be shown that the
Bd-matrix disappear and the Ad-matrix is rewritten as

Ad =

 − b
J −

r2

JRl

(
R
Rl
+ L

Rl T +1
) − Lr

JRlT
(

R
Rl
+ L

Rl T +1
)

r
RlT

(
R
Rl
+ L

Rl T +1
) L

RlT 2
(

R
Rl
+ L

Rl T +1
) − 1

T


(11)

which gives the eigenvalues λ1 =−1.014 and λ2 =−165.968.
For both these causality models ∆t = 0.001 would give sta-
ble results when using Euler integration and is chosen as the
solver time step.

Next, we need to assure that the power is conserved dur-
ing a causality change if the model is to switch causality on-
line during a simulation. This can be assured by choosing the
initial conditions correctly.

3.4. Initial Conditions and Simulation
If the power is to be conserved during causality switching

in a hybrid causality model, the values of the model inputs
and outputs right before and after a causality change must
be conserved. When switching causality from complete dif-
ferential causality to reformulated differential causality the



shaft speed would remain the same, but the initial conditions
for the new state would be given as

x f =
T
L

[
uV +

(
L
T
+R
)

i− rω

]
(12)

where i, ω and uV are the last obtained or received values
before the discrete event. It can be verified that this initial
condition gives yd = uV by inserting (12) into yd given in (5).
The same idea can be used to find initial conditions for i when
switching from the reformulated differential causality model
to the complete integral causality model. Hence,

i =
yd

Rl
(13)

which gives i = ui.
The hybrid causality genset model is implemented, to-

gether with the simple load models, and simulated with the
parameters presented above. The total simulation time is set
to 5 s and the global distributed communication time step, Td ,
is set equal to the solver time step. This is the same as not
distributing the system since the same solver is used, with the
same time steps, and data is exchanged after each solved time
step. The simulation starts with the complete integral causal-
ity model, switches to the reformulated differential causal-
ity model at t=1 s before returning to the complete integral
causality model at t=3 s. The simulation results are shown in
figure 7 and 8.

0 1 2 3 4 5
0

5

10

15

20

ω
 [
ra
d s
]

cIC
rDC

0 1 2 3 4 5

Time [s]

0

5

10

15

20

i 
[A

]

Figure 7. Simulation of shaft speed and current.

In figure 7 cIC and rDC are abbreviations for the com-
plete integral causality model and the reformulated differen-
tial causality model, respectively. As can be seen in the figure
both the shaft speed and the current seem to be continuous
throughout the whole simulation and is verified by figure 8,
which shows the voltage and current from the genset model’s
input and output ports. Both uV and ui are continuous and ui
is identical to the results obtained in figure 7.
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Figure 8. Simulation results of load voltage and current.

It should be mentioned that the filter time constant T af-
fects the dynamics of the genset and should be set small in
order to minimize the changes. However, since the reformu-
lated differential causality model is initialized after a causal-
ity switch with power conserving initial conditions, it will not
affect the results in discrete time, only slightly the results in
continuous time when T is kept relatively small.

Next, it would be of interests to distribute the genset model
and the loading model. This is done by implementing the
genset model as one submodel, the loading models as one
submodel and connect the models together in a distributed
simulation where Td ≥ ∆t. This requires a through stability
analysis of the total distributed system in order to guarantee
total system- and simulation stability.

4. STABILITY IN DISTRIBUTED SYSTEMS
A stability analysis of a simulation model involves in gen-

eral two different stability analysis, namely dynamic stability
analysis and solver stability analysis. Dynamic stability anal-
ysis for continuous systems or simulation models are covered
in [8], [5] for nonlinear systems and in [4] for linear sys-
tems. In general, dynamic system stability can be analysed
by the use of Lyapunov stability theory, where a positive def-
inite storage function describing the energy in the system is
used as a lyapunov function candidate in the analysis. How-
ever, the stability of a distributed system simulation is more
complex than a continuous system because the solver stabil-
ity and the dynamic stability are more close and more or less
dependent of each other. However, if each distributed sub-
system has certain passivity properties, dynamic stability and
solver stability can be analysed separately as often done for
continuous systems.

In this paper stability of linear distributed systems solved
by fixed step solvers will be studied. This involves both the



system dynamics and the solver dynamics, and, as will be
shown, a new stability criterion can be found for such systems
without considering passivity properties.

4.1. Stability of Linear Distributed Systems with
Fixed Step Solvers

Consider a linear system of differential equations describ-
ing a distributed submodel i given as

ẋi = Aixi +Biui

yi = Hixi
(14)

where xi is the state vector, ui is the input vector, yi is the
output vector and the matrices Ai, Bi and Hi are given by the
system dynamics. If the Euler integration method is used to
solve this subsystem with the time step ∆ti, the results for the
next solver time step can be expressed as a function of the
previous results,

xi(t0 +∆t) = xi(t0)+∆ti[Aixi(t0)+Biui(t0)]

= (I+∆tiAi)xi(t0)+∆tiBiui(t0)
(15)

where I is the identity matrix. By assuming that the model
inputs and outputs are held constant between each global time
step Td , chosen such that

ni =
Td

∆ti
(16)

where ni is a positive integer for all subsystems i in the dis-
tributed system, the next simulation step can be expressed as

xi(t0 +2∆t) = xi(t0 +∆t)+∆ti[Aixi(t0 +∆t)+Biui(t0)]

= (I+∆tiAi)
2xi(t0)+ [(I+∆tiAi)+ I]∆tiBiui(t0)

(17)

When ni steps have been taken, the global time is given as
t0 +Td and the solution can be expressed as

xi(t0+Td)= (I+∆tiAi)
nixi(t0)+

ni

∑
j=1

(I+∆tiAi)
j−1

∆tiBiui(t0)

(18)
because u(t0) = u(t0 +∆t) = ...= u(t0 +Td). Further, if Ai is
nonsingular the sum can be rewritten as

ni

∑
j=1

(I+∆tiAi)
j−1 =

1
∆ti

A−1
i [(I+∆tiAi)

ni − I] (19)

and thus, the solution for each global time step Td can be ex-
pressed as

xi(t0 +Td) = Anixi(t0)+Bn1ui(t0) (20)

where

Ani = (I+∆tiAi)
ni

Bni = A−1
i (Ani − I)Bi

(21)

By assuming that a distributed system has two submodels
with the input-output mappings given as

u1 = H2x2

u2 = H1x1
(22)

the solution of the total distributed system can be written as

xd(t0 +Td) = Sdxd (23)

where xd = [x1, x2]
T is the total distributed system state vec-

tor and Sd is denoted the total distributed system solution ma-
trix given as

Sd =

[
An1 Bn1H2

Bn2H1 An2

]
(24)

The stability for a linear distributed system can be assured if
the magnitude of the eigenvalues of Sd are less than 1,

|eig(Sd)|< 1 (25)

if ni ∈ N≥1 ∀i where N≥1 is all integers larger than 1. This
last condition assures global time synchronization between
the submodels. Also, the distributed system is said to be only
marginally stable if atleast one of the eigenvalues has a mag-
nitude equal to 1.

These stability results can be applied to the genset model
for both causality orientations and if the condition in (25)
holds, the distributed hybrid causality model of the genset
connected to the load model will be stable. This, because sta-
bility during switching has already been assured through the
choice of initial conditions.

4.2. Stability of Distributed Genset Simulation
Starting with the complete integral causality model, the

system dynamics can be rewritten as

ẋ1 = A1x1 +B1uV +C1

y1 = H1x1
(26)

where subscript 1 refers to the complete integral causality
model, x1 = [ω, i]T is the state vector,y1 is the output from
the genset model and

A1 =

[
− b

J − r
J

r
L −R

L

]
, B1 =

[
0
− 1

L

]

C1 =

[
τ

J
0

]
, H1 =

[
0 1

] (27)



Next, the input from the load model is given as uV = Rl i,
which means that we might write

x1(t0 +Td) = Sdx1(t0)+Cn1 (28)

where
Sd = An1 +Bn1H1Rl (29)

An1 and Bn1 is given as in (21) and

Cn1 = A−1
1 (An1 − I)C1 (30)

The Cn1 matrix gives only a bias to the total solution and is
not relevant in the stability analysis. When the solver time
step is set to ∆t =0.001 s it is possible to plot the magnitude
of the eigenvalues in Sd as a function of ni and the results are
shown in figure 9.
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Figure 9. Magnitude of eigenvalues in the Sd-matrix as a
function of n1.

As can be seen in the figure, |λ2|> 1 when n1≥ 10, which
means that Td =0.009 s is the largest stable global time step
for the chosen solver time step. This is illustrated in figure 10
where the first plot is the simulation results when Td =0.009
and the second plot is the results with Td =0.01 s.

The results show clearly that the model is not stable when
Td =0.01 s, which proves the stability analysis of the total dis-
tributed system.

The reformulated differential causality model can be ex-
pressed as

ẋ2 = A2x2 +B2ui +C2

y2 = H2x2 +K2ui
(31)
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Figure 10. Comparison of distributed simulation results for
the complete integral causality model with different Td .

where x2 = [ω, x f ]
T , y2 is the model output and

A2 =

[
− b

J 0
0 − 1

T

]
, B2 =

[
− r

J
1
T

]

C2 =

[
τ

J
0

]
, H2 =

[
r L

T

]
K2 =− L

T −R

(32)

In this case ui =
y

Rl
which means the total solution of the dis-

tributed system can be expressed as

x2(t0 +Td) = Sdx2(t0)+Cn2 (33)

where
Sd = An2 +

1
Rl +K2

Bn2H2 (34)

and where An2 and Bn2 is given as in (21) and

Cn2 = A−1
2 (An2 − I)C2 (35)

Figure 11 shows the magnitude of the eigenvalues of Sd when
the solution matrix is a function of n2.

As can be seen in the figure the reformulated differential
causality model seems to be stable for any value of n2, which
means that the complete integral causality model will be the
restrictive model when simulating the hybrid causality model
in a distributed setting with the load model. The results from a
distributed simulation of the total system, including causality
switching as in figure 8, are given in figure 12 and 13 when
∆t =0.001 s and Td =0.009 s. The total simulation time is set
to t =10 s.

As can be seen in the figures the simulation results look
identical with the ones given in figure 7 and 8, which means
that the hybrid causality genset model works quite well also in
a distributed setting when connected to the given load models.
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Figure 11. Magnitude of eigenvalues in the Sd-matrix as a
function of n2.
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Figure 12. Simulation of shaft speed and current.
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Figure 13. Simulation results of load voltage and current.

5. CONCLUSION
In this work linear distributed systems have been studied

by the use of bond graph theory, with the main focus on con-
nectivity, hybrid causality and stability. The reason for study-
ing these topics is because connectivity and stability are im-
portant topics in distributed systems. Hybrid causality mod-
els, and switched models in general, are state of the art in
the field of mathematical modelling and closely related to the
bond graph theory.

The bond graph theory provides a clear relation between
connectivity, causality and model fidelity, which is quite help-
ful when making distributed mathematical models. As it turns
out, connectivity is only dependent on the causality for a given
energy domain when sticking to the bond graph modelling
theory. This helps establishing a standard for connecting dis-
tributed models in a given energy domain, through the power
variables. Moreover, when considering hybrid causality mod-
els, the criteria for connecting submodels is reduced to only
assuring that the energy domains are equal.

Hybrid causality models opens for modelling more com-
plex systems with discrete time events, such as opening or
closing of switches in power electronics. In this work the
differential causality part of the hybrid causality model has
been reformulated to integral causality in order to complete
the state space model and enable the use of simple solvers in
simulations. However, stability of such systems must be anal-
ysed, both for the solver dynamics and the system dynamics,
in order to guarantee stable solutions in simulations. Stability
during causality switching can be established by choosing the
initial conditions carefully.

Stability of linear distributed systems can be analysed by
including both the solver dynamics and the system dynamics
in the same analysis, as have been done in this paper. This re-
sults in a criterion for choosing the local solver time steps and
the global synchronization time step. However, only the Eu-
ler integration method has been considered in this work. The
solution matrix can also be derived for both Runge Kutta 2
and 4 integration methods as well as for the Euler integration
method.

Simulations for a simple distributed hybrid causality genset
model connected to a distributed electrical load has been per-
formed and the results verifies the stability criterion. Also,
the results show that the model outputs are continuous which
indicates that the reformulation of the differential causality
gives good results.

ACKNOWLEDGEMENTS
Thanks to the partners in the ViProMa project, Norwe-

gian Research Counsel project number 225322, for providing
financial support for studying distributed systems for marine
systems and operations.



REFERENCES
[1] Dean C. Karnopp, Donald L. Margolis, and Ronald C.

Rosenberg. System Dynamics: Modeling and Simulation
of Mechatronic Systems. John Wiley & Sons, Inc., New
York, NY, USA, 2006.

[2] W. Borutzky. Bond graph modeling from an object ori-
ented modeling point of view. Simulation Practice and
Theory, 7(5-6):439 – 461, 1999.

[3] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß,
H. Elmqvist, A. Junghanns, J. Mauss, M. Monteiro,
T. Neidhold, D. Neumerkel, H. Olsson, J. v. Peetz,
S. Wolf, Atego Systems Gmbh, Qtronic Berlin, Fraun-
hofer Scai, and St. Augustin. The functional mockup in-
terface for tool independent exchange of simulation mod-
els. In In Proceedings of the 8th International Modelica
Conference, 2011.

[4] Chi-Tsong Chen. Linear System Theory and Design. Ox-
ford University Press, Inc., New York, NY, USA, 3rd edi-
tion, 1998.

[5] H.K. Khalil. Nonlinear Systems. Pearson Education.
Prentice Hall, 2002.

[6] R. Goebel and R.G. Sanfelice. Hybrid Dynamical
Systems: Modeling, Stability, and Robustness. Princeton
University Press, 2012.

[7] A.C. Umarikar and L. Umanand. Modelling of switch-
ing systems in bond graphs using the concept of switched
power junctions. Journal of the Franklin Institute, 2005.

[8] Francois E. Cellier and Ernesto Kofman. Continuous
System Simulation. Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 2006.


