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1  |  INTRODUC TION

Continuous advances in sequencing technology have resulted in an 
exponential increase in coverage and genomic resources for many 
species (Reuter et al., 2015; Wetterstrand, 2021). Nonetheless, 

although high-coverage whole-genome data allow a plethora of de-
tailed bioinformatic analyses, low-coverage data remains common in 
fields that cannot always generate large amounts of high-coverage 
sequences, such as molecular ecology and ancient DNA (Bohmann 
et al., 2020; Malé et al., 2014; Peterson et al., 2012; Ripma et al., 
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Abstract
Genomic assignment tests can provide important diagnostic biological characteristics, 
such as population of origin or ecotype. Yet, assignment tests often rely on moder-
ate- to high-coverage sequence data that can be difficult to obtain for fields such 
as molecular ecology and ancient DNA. We have developed a novel approach that 
efficiently assigns biologically relevant information (i.e., population identity or struc-
tural variants such as inversions) in extremely low-coverage sequence data. First, we 
generate databases from existing reference data using a subset of diagnostic single 
nucleotide polymorphisms (SNPs) associated with a biological characteristic. Low-
coverage alignment files are subsequently compared to these databases to ascertain 
allelic state, yielding a joint probability for each association. To assess the efficacy of 
this approach, we assigned haplotypes and population identity in Heliconius butter-
flies, Atlantic herring, and Atlantic cod using chromosomal inversion sites and whole-
genome data. We scored both modern and ancient specimens, including the first 
whole-genome sequence data recovered from ancient Atlantic herring bones. The 
method accurately assigns biological characteristics, including population member-
ship, using extremely low-coverage data (as low as 0.0001x) based on genome-wide 
SNPs. This approach will therefore increase the number of samples in evolutionary, 
ecological and archaeological research for which relevant biological information can 
be obtained.
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2014; Suchan et al., 2016). Such low coverage data may arise for 
various reasons. First, whole genome population-level analyses in 
ecological research may remain cost-prohibitive, leading researchers 
to turn to techniques such as reduced-representation sequencing 
(e.g., Dodsworth, 2015; Marcus, 2021; Nevill et al., 2020; Zeng et al., 
2018). Second, recent strategies targeting organelle (mitochondrial 
or chloroplast) reference databases increasingly use genome skim-
ming sequencing approaches (Bohmann et al., 2020). Finally, DNA 
preservation in subfossil, archaeological, historical, or degraded 
biological material remains variable and is often context-specific 
(Ferrari et al., 2021; Keighley et al., 2021; Tin et al., 2014). In order to 
account for such unpredictability, ancient DNA sequencing studies 
typically screen many specimens, from which a subset with the best 
DNA preservation is selected for deeper sequencing (e.g., Martínez-
García et al., 2021; Star et al., 2018; van der Valk et al., 2021). These 
practices result in a proliferation of specimens for which (extremely) 
sparse genome-wide data is obtained.

Low-coverage sequence data are difficult to jointly analyse 
with specimens that have obtained higher coverage without intro-
ducing various types of statistical bias (e.g., François & Jay, 2020; 
Lee et al.,2010; Patterson et al., 2006; Skoglund et al., 2014). 
Researchers who use low-coverage sequence data are therefore re-
stricted in the analyses they can conduct and are often forced to 
discard specimens that do not yield sufficient coverage. For any in-
vestigation within the field of molecular ecology, the discarding of 
specimens due to low coverage results in wasted resources, and a 
reduced number of specimens for downstream analyses. Moreover, 
for ancient DNA studies this leads to the destruction of limited and 
unique zooarchaeological material for which no meaningful informa-
tion is obtained. Efforts to obtain as much relevant information as 
possible from such specimens are therefore particularly important, 
from a biological and an ethical perspective (Pálsdóttir et al., 2019).

Genomic assignment tests can provide important biological in-
formation in ecological research and in several cases, low-coverage 
data have been effectively used for the determination of a range 
of basic biological characteristics (e.g., Grossen et al., 2018). For in-
stance, the genetic sex of ancient mammals can easily be assigned 
from sparse sequencing data due to its association with extensive 
genomic differentiation on a chromosomal scale. Sexing has been 
applied to ancient low-coverage sequences to infer burial practices 
(Fages et al., 2020; Nistelberger et al., 2019), the impact of historic 
hunting (Barrett et al., 2020), and the behaviour of extinct spe-
cies (Pečnerová et al., 2017). Aside from sex determination, other 
relevant biological characteristics may also be associated with 

large-scale genomic differentiation. In particular, structural variants 
(e.g., chromosomal inversions, haploblocks, or supergenes) have 
been increasingly identified as major drivers of evolutionary and 
ecological processes (Wellenreuther & Bernatchez, 2018), playing 
important roles in population structure and evolution. For instance, 
inversions are involved in the evolution of sex chromosomes (Hughes 
et al., 2010; Lemaitre et al., 2009) and speciation (Noor et al., 2001), 
and are critical for within-species adaptation to local environments 
(Ayala et al., 2013; Barth et al., 2017; Berg et al., 2016; Jones et al., 
2012; Leitwein et al., 2017; Lowry & Willis, 2010; Morales et al., 
2019; Nadeau et al., 2016; Pettersson et al., 2019; Todesco et al., 
2020; Twyford & Friedman, 2015). Chromosomal inversions can af-
fect megabase-sized genomic regions (e.g., Berg et al., 2017; Fang 
et al., 2012; Twyford & Friedman, 2015), and are often characterized 
by high levels of linkage disequilibrium (LD; Hoffmann & Rieseberg, 
2008) due to inhibited recombination between noncollinear inver-
sion haplotypes. Genotyping of such haplotypes using a subset of 
segregating genetic markers is feasible using whole genome se-
quencing data (Donnelly et al., 2010; Salm et al., 2012). Therefore, 
low-coverage data can retrieve relevant biological characteristics, 
potentially yielding useful insights on population continuity, species 
migration and distributions, hunting, historic trade, and burial prac-
tices, depending on archaeological context or ecological setting.

Several methods have been developed for assigning inversion 
haplotypes in order to facilitate GWAS analysis for SNPs within in-
versions in the human genome (scoreInvHap, Ruiz-Arenas et al., 2019; 
pfido, Salm et al., 2012; InvClust, Cáceres & González, 2015; inveRsion, 
Cáceres et al., 2012; and methods proposed by Bansal et al., 2007; 
Sindi & Raphael, 2010). These methods rely on LD break-points and 
structural variation (e.g., InvClust, inveRsion, and scoreInvHap, as well 
as the methods proposed by Bansal et al. and Sindi et al.) or haplotype 
tagging (inveRsion) to identify inversion sites and then conduct various 
types of SNP calling within those sites. All of these methods are spe-
cifically developed for identifying inversions in human genomes (e.g., 
Ma & Amos, 2012) and their use in disease- and other phenotype-
association studies (Ruiz-Arenas et al., 2019; Salm et al., 2012). They 
have not been tested with sparse genomic data and are specific to 
use with inversions; indeed, pfido was designed for just one inversion 
in the human genome (Salm et al., 2012). Because of their reliance 
on signatures of structural variation, they cannot be applied to other 
types of variation, such as genome-wide population differentiation. 
There is currently no approach specifically designed to classify ex-
tremely low-coverage data with a broad applicability to score differ-
ent types of large-scale genomic differentiation in a range of species.

F I G U R E  1  The BAMscorer pipeline. The BAMscorer pipeline has two main modules—reference database creation and alignment file 
scoring. (a) Sequence data must be pre-processed and input into the pipeline as a VCF file. smartPCA (Patterson et al., 2006; Price et al., 
2006) is used to generate eigenvalues and SNP loading weights, which are then used to assign population groups or inversion types in 
the reference database and create a database of highly-divergent loci in a given region of interest. (b) These positions are called from the 
alignment files to be scored. The positions are then compared to the database for allelic similarity. The likelihood of a given allele at a locus 
belonging to a haplotype is coded as the frequency of that allele at the locus in each database. AB allele frequencies are calculated as the 
average of frequencies present in AA and BB haplotypes. A joint probability is estimated for each alignment file belonging to each of the 
three haplotypes (for genome-wide assignment only AA and BB are used) and these values are scaled to one, outputting a probability index 
of genomic assignment for each individual
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Here, we developed a new method that allows efficient assign-
ment of different biological characteristics using extremely low-
coverage sequence data. First, a database is created that contains 
the allele frequency association of individual SNP loci with a spe-
cific biological characteristic (e.g., an inversion type or population 
membership). These databases are based on moderate- to high-
coverage sequences of a subset of specimens (Figure 1a). Second, 
sequence alignment data of (ancient) specimens are compared to 
this database and a joint probability (e.g., see Star et al., 2017) is 
calculated based on the binomial distribution of their frequency as-
sociation (Figure 1b). This two-step approach is analogous to score-
InvHap (Ruiz-Arenas et al., 2019), yet there are some key differences. 
Importantly, in contrast to earlier approaches, this probability cal-
culation does not make any assumptions regarding specific signa-
tures of structural variation and can therefore be applied to different 
types of genetic differentiation. For instance, our approach includes 
differentiation between inversion haplotypes or genome-wide dif-
ferences associated with ecotype or population structure. Our pro-
gram depends solely on freely available, commonly used software 
and file formats, and is freely available for download at: https://
github.com/lanea​tmore/​BAMsc​orer.

We investigated the efficiency of our approach in assigning hap-
lotypes for three chromosomal inversions in species that differ in 
their availability of reference specimens (P3 on Chr15, Heliconius 
numata, n = 20; Chr12, Clupea harengus, n = 19; and LG01, Gadus 
morhua, n = 276). These inversions display clinal distributions that 
are associated with biological characters such as wing pattern phe-
notypes (Joron et al., 2006, 2011; Nadeau, 2016), adaptation to 
water temperature and salinity (Pettersson et al., 2019), and migra-
tory behaviour (Berg et al., 2016). Finally, we investigated the accu-
racy of this approach for the genome-wide population assignment of 
Atlantic cod specimens (Barth et al., 2019; Pinsky et al., 2021). To as-
sess the program, we first built reference databases for each species 
and then used these databases to identify biological characteristics 
in nonreference alignment files. We used both ancient and modern 
sequences for scoring, including the first ancient whole-genome se-
quences recovered from Atlantic herring bones.

2  |  MATERIAL S AND METHODS

2.1  |  Reference and scoring databases

For each species investigated, two different data sets were used. 
The first data set was used to create the reference SNPs database 
(hereafter referred to as the ‘reference database’) and the second 
data set (hereafter referred to as the ‘scoring database’), contain-
ing individuals not found in the reference database that were scored 
utilizing the BAMscorer program. Reference databases were pro-
cessed and filtered as described below to be input to the BAMscorer 
program as VCF files. Scoring databases were aligned to appropri-
ate reference genomes and left as unfiltered BAM files for scoring. 
All the data used in this manuscript—including the newly generated 

archaeological Atlantic herring data—are publicly available. Below 
we describe each data set in terms of composition, sample size and 
biological characteristics.

2.1.1  |  Heliconius butterflies

Heliconius numata butterflies are known to exhibit distinct wing-
pattern morphs that are associated with different genomic haplo-
types (Joron et al., 2006). These wing-pattern morphs are generally 
thought to be mimicry adaptations to predation and signalling be-
tween butterflies, therefore are probably under strong selective 
pressures (Chouteau et al., 2017; Joron et al., 2011). Research has 
suggested a supergene on chromosome 15 that determines the wing 
pattern morph of a particular butterfly (Joron et al., 2006, 2011). 
There are three inversion sites within the P supergene—P1, P2, and 
P3—which are associated with Heliconius wing-pattern morphs (Jay 
et al., 2018; Joron et al., 2011). We chose to focus on P3, which 
can be used to discriminate between the major types of wing-
pattern morphs (Jay et al., 2021). Two databases were obtained for 
Heliconius butterflies, one as a reference database and one as a scor-
ing database.

The reference database was obtained from Nadeau et al. (2016), 
which contains 20 individual genomes from various H. numata sub-
species. This reference database encompasses several different wing 
morphs, which are associated with inversions at the P supergene 
(Chouteau et al., 2017; Jay et al., 2021). The scoring database con-
sisted of 40 individual genomes obtained from Jay et al. (2021). This 
database, which has no overlap with the reference database from 
Nadeau et al. (2016), contains several different H. numata subspecies 
and encompasses various wing pattern morphs, therefore different 
P3 inversion types. The reference database was well-balanced be-
tween the three possible inversion types, with seven individuals be-
longing to types AA and BB and six individuals belonging to the AB 
heterozygous type.

Both the reference and scoring databases were aligned to the 
Heliconius melpomene Hmel2.5 reference assembly (http://ensem​
bl.lepba​se.org) using PALEOMIX v.1.2.13 (Schubert et al., 2014) with 
BWA-mem. The ~1.1 Mb P3 inversion is found on reference scaffold 
Hmel215003o (between 2,000,001 and 3,100,000 bp). Genotypes 
for the reference database were called using the GATK4 pipeline 
(Van der Auwera & O’Connor, 2020) and the following filtering pa-
rameters: FS<60.0 && SOR<4 && MQ>30.0 && QD >2.0 && INFO/
DP<5500, SnpGap 10, minGQ 15 minDP 3, maf 0.001, with indels 
removed and biallelic variants selected. The reference database, 
therefore, is contained in a single VCF file, whereas the scoring data-
base is a collection of unfiltered alignment files.

2.1.2  |  Atlantic herring

Atlantic herring show a high degree of genomic structure that is 
probably associated with environmental characteristics such as 

https://github.com/laneatmore/BAMscorer
https://github.com/laneatmore/BAMscorer
http://ensembl.lepbase.org
http://ensembl.lepbase.org
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salinity and sea surface temperature and behaviours, such as spawn-
ing season (Lamichhaney et al., 2017; Martinez Barrio et al., 2016). 
Several inversion sites have been identified that are thought to be 
linked with some of these adaptations (Han et al., 2020; Pettersson 
et al., 2019). These sites show structure between various popula-
tions of Atlantic herring as well as between the true Atlantic herring 
(Clupea harengus) and the Baltic herring (Clupea harengus membras), a 
slightly smaller subspecies living in the Baltic Sea (Han et al., 2020).

For Atlantic herring, an ~8Mb inversion on chromosome 12 
was investigated, which may be associated with a ‘supergene’ de-
noting different Atlantic herring ecotypes associated with salinity 
(Han et al., 2020; Pettersson et al., 2019). The inversion is located at 
chr12:17,900,000–25,600,000 bp and is linked to salinity adaptation 
for autumn-spawning herring populations (Han et al., 2020). A mod-
ern reference database was obtained from Han et al. (2020), which 
consisted of 20 individual genome sequences. These sequences 
encompassed all major populations of Atlantic and Baltic herring 
identified by Pettersson et al. (2019) and Han et al. (2020), with the 
exception of the spring-spawning Baltic herring. There were 6 Baltic 
individuals and 14 Atlantic individuals in the reference database.

To assess the applicability of BAMscorer for conducting assign-
ment tests on ancient genomes, the scoring database was created 
from nine newly sequenced ancient Atlantic herring genomes (see 
following section for DNA extraction and sequencing methodol-
ogy). Both modern and ancient herring reads were aligned to the 
Atlantic herring reference genome (GCA_900700415.1, Pettersson 
et al., 2019). The modern reads were aligned as described above for 
the Heliconius butterflies. Ancient herring reads were aligned as de-
scribed in Ferrari et al. (2021), using BWA-aln, which is commonly 
held to be the most appropriate mode for aligning ancient genome 
sequences (Schubert et al., 2012).

Genotypes for the reference database were called and filtered 
following the same protocol as for the Heliconius, while the scoring 
database was not processed further. Two individual outliers in the 
reference database were observed and subsequently checked for 
relatedness using KING (Manichaikul et al., 2010; Note S1). These 
individuals appeared to be duplicates and were removed from the 
database to ensure accuracy of metadata.

In the scoring database of ancient individuals, most specimens 
have excellent DNA preservation (Table S1) and all show the typical 
fragmentation and misincorporation patterns of authentic ancient 
DNA data (Jónsson et al., 2013; Figure S1). The aligned sequences 
were down-sampled to 100,000 reads and are now available on ENA 
(accession number PRJEB45393). Similar as for Heliconius, the refer-
ence database for Atlantic herring thus consisted of a single VCF file 
and the scoring database of a collection of alignment files.

2.1.3  |  Atlantic cod

The Atlantic cod reference database was created using 276 Atlantic 
cod individuals representing most major geographical locations 
(western Atlantic, eastern Atlantic, and Baltic Sea) in the species’ 

range (Barth et al., 2019; Pinsky et al., 2021). In Atlantic cod, four 
large chromosomal inversions have been identified that are associ-
ated with differences in migratory behaviour and environmental ad-
aptations (Berg et al., 2016; Kirubakaran et al., 2016; Sodeland et al., 
2016). These chromosomal inversions originated independently, 
between 0.40 and 1.66 million years ago (Matschiner et al., 2021). 
A data set of 15 unrelated archaeological specimens were obtained 
from Star et al. (2017) to use for the scoring. Modern and ancient 
reads were aligned to the gadMor2 reference genome (Star et al., 
2011; Tørresen et al., 2017) as above for Heliconius and Atlantic 
herring. SNP calling and filtering for the reference was performed 
as described in Barth et al. (2019) using the GATK haplotype caller 
v.3.4.46 (McKenna et al., 2010), bcftools v.1.3 (Li, 2011), VCFtools 
v.0.1.14 (Danecek et al., 2011), again mirroring methods used for 
Heliconius and Atlantic herring. For Atlantic cod, we investigated 
both an inversion locus, as well as genome-wide patterns of diver-
gence. First, we targeted an ~16 Mb double chromosomal inversion 
on LG01 which is associated with differences in migratory behaviour 
(Berg et al., 2016; Kirubakaran et al., 2016; Sodeland et al., 2016). 
This inversion is located at LG01:9,100,000–26,200,000  bp, and 
the reference database contained 217 nonmigratory and 30 migra-
tory specimens. Second, we analysed genome-wide data separating 
24 western Atlantic from 252 eastern Atlantic cod specimens and 
genome-wide data separating 23 Baltic from 229 eastern Atlantic 
cod specimens. For the whole genome analyses, we excluded the 
location of four major inversions (on LG01, LG02, LG07, and LG12, as 
described in Berg et al., 2016, 2017) following the coordinates used 
in Star et al. (2017).

2.2  |  Ancient DNA extraction and sequencing

Nine Atlantic herring bones from two Polish sites, dated be-
tween the 9th and 15th century CE (Domagała & Franczuk, 1992; 
Iwaszkiewicz, 1991; Makowiecki, 2003; Makowiecki et al., 2016; 
Table S1), were UV-treated for 10  min per side and cleaned with 
ultra-pure water. DNA was extracted including a predigestion step, 
following Damgaard et al. (2015). Then, 10–40 mg of bone were pul-
verized with micro pestles in the digestion buffer (1 ml 0.5 M EDTA, 
0.5  mg/ml proteinase K, and 0.5% N-Lauryl sarcosine). Following 
overnight digestion, DNA was extracted with nine volumes of a 3:2 
mixture of QG buffer (QIAGEN) and isopropanol. MinElute purifica-
tion was carried out using the QIAvac 24 Plus vacuum manifold sys-
tem (Qiagen) in a final elution volume of 65 μl. Parallel nontemplate 
controls were included. Single-indexed blunt-end sequencing librar-
ies were built from 16 μl of DNA extract or nontemplate extraction 
blank, following the single-tube (BEST) protocol (Carøe et al., 2018) 
with the modifications described in Mak et al. (2017). All labora-
tory protocols up to indexing of sequencing libraries were carried 
out in a dedicated ancient DNA clean laboratory at the University 
of Oslo following standard anti-contamination and authentication 
protocols (Cooper & Poinar, 2000; Gilbert et al., 2005; Llamas et al., 
2017). Library quality and concentration were inspected with a 
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High Sensitivity DNA Assay on the Bioanalyser 2100 (Agilent) and 
sequenced on an Illumina HiSeq 2500 platform at the Norwegian 
Sequencing Centre with paired-end 125 bp reads, demultiplexed al-
lowing zero mismatches in the index tag.

2.3  |  The BAMscorer Pipeline

2.3.1  |  Module 1: creation of SNP 
reference databases

The initial step of the BAMscorer pipeline is to create a reference da-
tabase of divergent SNPs associated with each haplotype or popula-
tion in a set of focal individuals (Figure 1a). These divergent SNPs are 
referred to as belonging to ‘AA’, ‘BB’, or ‘AB’ genotypes (or groups). 
The BAMscorer program does not conduct SNP calling, but takes 
a preprepared VCF file as input. SNP calling methods and filtering 
parameters are therefore at the discretion of the user and can be 
done using a reference genome as we have done with our species or 
with de novo SNP calling techniques as is often used for reduced-
representation sequencing. As long as the reference data is input to 
BAMscorer as a VCF file, a reference database can be created.

Reference SNP databases are created as follows:

1.	 The VCF file is first prepared with VCFtools v.0.1.16 (Danecek 
et al., 2011) and PLINK v.1.9 (Purcell et al., 2007), selecting 
only those regions of interest (i.e., where inversions are located, 
or genome-wide).

2.	 A Principal component analysis (PCA) is run as implemented in 
smartPCA (EIGENSOFT v.7.2.1; Patterson et al., 2006; Price et al., 
2006) to calculate axes of differentiation and individual SNP load-
ings between homozygote inversion haplotypes or populations. 
As a default, the BAMscorer pipeline selects diagnostic loci in the 
top and bottom 5% of the SNP loading distribution, although the 
optimal SNP loading cutoff value should be determined by the 
user. Visualization of the SNP loading profile can help decide such 
cutoffs (see further below). The BAMscorer program is capable of 
filtering SNPs in the reference database based on both symmetri-
cal and asymmetrical distribution cutoffs.

3.	 SNPs that pass cut-off filters form the divergent SNPs database 
for each haplotype or population. To assist the user in the selec-
tion of individuals to represent each haplotype, heterozygosity is 
calculated per individual based on SNPs in the divergent database.

4.	 Individuals from the reference database VCF file are scored for 
PC1 and heterozygosity values, and manually classified into types: 
when whole genome data are investigated, individuals are sepa-
rated into groups called AA and BB; when inversions are investi-
gated, individuals are separated into three clusters, representing 
genotypes that comprise homozygous AA and BB and heterozy-
gous AB haplotypes. Inversion genotypes are known to fall into 
specific clusters in PCA analysis (see Figure 1a), which allow for 
easy identification using separation on PC1 and assessing levels 
of individual heterozygosity.

5.	 For individuals in the homozygote AA and BB haplotypes/groups, 
allele frequencies of the divergent SNPs are calculated. Two data-
bases are created, containing the allelic state (i.e., A, C, G, T) and 
allele frequencies of the major (first database) and minor (second 
database) alleles in the AA and BB haplotypes. Databases con-
taining few individuals often contain fixed alleles due to limited 
sampling. The uncertainty associated with sampling fixed alleles 
is addressed in the BAMscorer program by calculating a minimum 
expected frequency of (1/((2*N)+1)) for the minor allele, where N 
is the number of individuals in the reference database for fixed 
alleles in the region of interest. When scoring inversions, the sam-
ple probability of obtaining alleles from heterozygous AB geno-
types are calculated by averaging the observed allele frequencies 
in the AA and BB haplotypes. We note that due to the nature 
of inversions, it is highly likely that a heterozygous genotype will 
fall directly in between the homozygous genotypes (see Figure 2). 
This may not be the case for all genomic regions and is certainly 
not always the case for whole-genome variation. We therefore 
recommend running BAMscorer with the—wg flag for genomic 
regions that do not follow such a pattern and/or whole-genome 
analysis, as this will provide an assignment of either type AA or 
type BB without attempting to estimate the average allele fre-
quencies between the two.
Once optimal database parameters have been identified (a full 

list of parameters can be found at https://github.com/lanea​tmore/​
BAMsc​orer), the SNP database can be reused for BAM scoring on 
many different data sets of the same species.

2.3.2  |  Module 2: BAM scoring

The reference database can then be used to assess the scoring 
database (Figure 1b). The scoring database consists of unfiltered 
alignment files in BAM format. BAM files can be generated at the 
user's discretion as long as the coordinate system matches that of 
the reference database. Rather than conducting SNP calling on the 
scoring database, BAMscorer takes the position of each SNP in the 
reference database and pulls these loci from each BAM file in the 
scoring database. A consensus read for each locus is determined 
via a simplified genotype calling process, and then the alleles in the 
alignment files are compared to the reference database to determine 
the probability of a given individual belonging to each genotype or 
genetic cluster.

A detailed overview of the BAM scoring process is as follows:

1.	 The divergent SNPs databases are used to score alignment files 
(BAM format) for a given set of (low-coverage) individuals. For 
each locus in the divergent SNPs database, matching reads 
are pulled from the BAM file using the python module pysam 
(https://github.com/pysam​-devel​opers/​pysam). The ‘consensus' 
read is determined based on the most highly-represented al-
lele in all reads for each position. In the event that there are 
equal numbers of reads for multiple alleles at a given locus, 

https://github.com/laneatmore/BAMscorer
https://github.com/laneatmore/BAMscorer
https://github.com/pysam-developers/pysam
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F I G U R E  2  Inversion and population assignment for H. numata (P3 inversion), C. harengus (Chr12 inversion) and G. morhua (LG01 
inversion, population differentiation) using extremely low-coverage data. (a) Inversion and population PCA plots generated for the three 
species (silhouettes) using smartPCA (Patterson et al., 2006; Price et al., 2006). Haplotype clusters (AA; blue, AB; beige, BB; sepia) and 
main population clusters (eastern Atlantic; dark green, western Atlantic; light green) are named. The number of individuals (red) and the 
weighted FST differentiation between inversion-loci (between AA and BB) or genome-wide (red arrow) is indicated. The Baltic population is 
indicated by a red ‘*’ amongst the eastern Atlantic populations. (b) SNPs most associated with either inversion (A or B) haplotype or large-
scale population differentiation (western or eastern Atlantic) are selected based on their SNP weight loading distribution along PC1. Those 
with lowest and highest loadings are most associated with differentiation along PC1. SNP weight indicates the percentage of SNPs selected 
from the most extreme end(s) of the distribution (red). (c) Assignment probability for individual specimens generated by downsampling BAM 
files 1000–40,000 reads. At each interval, and for each individual, the downsampling is iterated 20 times in order to generate box plots. 
Probabilities are calculated based on the joint binomial distribution of observing divergent SNPs associated with either haplotype group 
or population. Also indicated is the number of individuals scored (red, note these are not the same individuals used to create the original 
databases) and fold coverage (red dotted line, x coverage) at which more than 0.99 median assignment probability is obtained
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one allele is then chosen at random, although these instances 
were extremely rare in the low-coverage data analysed here. 
This process provides a subset of observed alleles at divergent 
loci in each inversion or population for each individual BAM 
file. Using pysam for genotype calling directly from BAM files 
is the most accurate method when dealing with low-coverage 
data (Ros-Freixedes et al., 2018).

2.	 The probability of observing a variant associated with a specific 
haplotype is calculated using the allele frequencies of matching 
positions in the reference databases. For example, if the position 
in the BAM file matches the dominant allele in haplotype group 
AA, the probability for that locus belonging to the AA genotype is 
coded as the allele frequency of the dominant allele in haplotype 
group AA. If the allele also matches the major or minor allele in 
haplotype group BB, the probability for that locus belonging to 
the BB genotype is coded as the allele frequency of that allele 
in the BB reference set. This allows a proxy calculation for het-
erozygous sites in the BAM file without requiring the extensive 
computational requirements it would take to determine genotype 
likelihood directly for each position. Both the dominant and minor 
allele frequencies for each genotype in the reference database for 
alleles in homozygote AA and BB haplotypes are used, thereby 
providing a likelihood estimation that the consensus read pulled 
from the BAM file is any one of the following: AA dominant, AA 
minor, BB dominant, BB minor. For inversions, three probabilities 
are recorded for each position—the frequency of that allele in 
haplotype groups AA, BB, and AB (only AA and BB for genome-
wide analysis).

3.	 Joint probabilities of all observed alleles belonging to a particular 
haplotype group or population are calculated for each individual 
using the following equation:

Whereby the probability (p) of the scored individual (i) and genotype 
(g) is the product of allele frequencies (f) of the number (n) of observed 
SNP loci (l) in each database. Finally, the joint probability scores for 
all genotypes are scaled to one to provide a final probability estimate 
of an individual belonging to a certain haplotype or population. We 
also provide the number of SNPs in the reference database that were 
recovered from each individual BAM file to inform on how well scored 
a specific individual is.

2.4  |  Analyses

We ran the above pipeline on each of the four databases outlined 
above: Heliconius P3 inversion, Atlantic herring chr12 inversion, 
Atlantic cod LG01 inversion, and the whole-genome data set for 
Atlantic cod (in two different scenarios). For each of these data 
sets, we also tested program parameters to assess the impact 
of noise and filtering in the reference database on BAMscorer 

accuracy. We created separate reference databases for each in-
version using SNP loading cutoff values between 1% and 25% 
and an additional set of reference databases for the genome-wide 
analysis of Atlantic cod with SNP loading cutoff weights between 
1% and 5%. We further assessed the impact of SNP filtering in 
reference database creation by limiting analysis to asymmetrical 
tails of the SNP loading distribution (e.g., taking only SNPs in the 
top 5% of loading weights).

2.5  |  Assessing scoring certainty

To investigate the sensitivity of the BAMscorer pipeline, we down-
sampled each BAM file in the five databases (P3 from Heliconius, Jay 
et al., 2021; chr12 from Atlantic herring; and LG01 and two whole-
genome population comparisons from Atlantic cod, Star et al., 2017). 
Following an approach described in Nistelberger et al. (2019), BAM 
files containing whole-genome shotgun data were downsampled to 
contain between 1000 and 40,000 reads (in most instances this is 
a mere fraction of the available data). At each read interval, and for 
each individual, the downsampling was randomly iterated 20 times. 
We compared accuracy of the scoring results of the extremely 
downsampled Heliconius data using BAMscorer by comparing these 
results to a separate PCA analysis using all data for the individuals 
in both databases. All of the individuals from the scoring database 
clustered with one of the three inversions in the reference database 
(Figure S2) and this clustering fully agreed with the assessment using 
BAMscorer. For Atlantic herring and Atlantic cod, accuracy of re-
sults was confirmed by prior knowledge of the inversion types or 
geographic origin of specimens. We assume that the ancient Polish 
herring have a Baltic origin given the archaeological context and age, 
and should therefore more closely match with the chr12 BB hap-
lotype group, which is associated with the Baltic individuals in our 
reference database.

3  |  RESULTS

We investigated three chromosomal inversions and one genome-
wide analysis using BAMscorer. The Heliconius P3 inversion is the 
smallest (1.1 Mb) inversion, followed by the Atlantic herring Chr12 
(8 Mb) and Atlantic cod LG01 inversion (16 Mb, Table 1). Principal 
component analysis (PCA) as implemented through BAMscorer se-
lect_snps separates the three main inversion genotypes along PC1 
for the Heliconius P3, Atlantic herring Chr12, and Atlantic cod LG01 
databases (Figure 2a), reproducing earlier observations (Barth et al., 
2019; Han et al., 2020; Nadeau et al., 2016; Pinsky et al., 2021). 
Similarly, the whole genome analysis separates western from east-
ern Atlantic cod specimens along PC1 (Figure 2a, Pinsky et al., 2021) 
and Baltic from other eastern Atlantic cod (Figure S3, Barth et al., 
2019). For the data analysed here, BAMscorer select_snps typically 
runs within 15 min when using the test scoring database provided on 
a MacBook Pro (running MacOS Catalina with a 1.4 GHz Quad-Core 

pi,g =

n
∏

l=1

fl
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Intel Core i5 and 16GB RAM). The SNP weight loading distribution 
underlying genetic divergence between inversion haplotypes of pop-
ulations is either approximately symmetrical (Heliconius and Atlantic 
herring) or asymmetrical (Atlantic cod, Figure 2b). SNP weights are 
proportional to the correlation (across samples) between each SNP 
and each PC (Patterson et al., 2006; Price et al., 2006). SNPs that 
are strongly associated with divergence will have the highest SNP 
weight loading values and are therefore biologically informative.

An important consideration of our approach therefore lies in the 
selection of loci based on their SNP loading distribution patterns. In 
order to maximize the probability of observing loci in low-coverage 
sequencing data, as many loci as possible should be included in the 
database. Yet, adding those loci that are not significantly associated 
with either inversion haplotype or specific population will add noise 
and uncertainty. We therefore tested the accuracy of our approach 
using a range of SNP loading filtering parameters. For inversions, 
databases were created using cutoff values between 1% and 25%, 
depending on the species under investigation. For our genome-wide 
analyses, we set the SNP loading cut-off weights between 1% and 
5%. The default parameter in the BAMscorer pipeline is to take sym-
metrical portions from each side of the SNP loading distribution (the 
5% cutoff value takes the top and bottom 5% of SNPs), yet we also 
noticed asymmetrical SNP loading distribution values. We therefore 
also investigated the effect of selecting SNPs from either the top or 
bottom of the SNP loading distribution.

For the Heliconius P3 inversion, the ability to confidently score 
heterozygous individuals (Jay et al., 2021) erodes with increasing 
SNP weight values (Figure 3), and the optimal cutoff to simultane-
ously score all possible genotypes lies at 2% and 1701 SNPs. For 
Atlantic herring Chr12, not all inversion types are observed in the 
ancient read data, yet no major increase in ability of scoring is ob-
tained after a SNP weight of 10% and 28,205 SNPs (Figure S4). For 
Atlantic cod, best separation of ancient data (Star et al., 2017) was 
obtained by selecting SNPs from the single, most extreme end of 
the SNP weight loading distribution (Figure 2b, Figures S5–S7). For 
Atlantic cod LG01, SNP selection is similar to the Heliconius P3, in 
that the optimal cutoff is a trade-off in scoring homozygotes and 
heterozygotes, which for cod lies at 15% and 47,564 SNPs (Figure 
S6). Finally, best population separation for Atlantic cod using whole 
genome data is obtained at 5% and 221,790 SNPs for the trans-
Atlantic separation (Figure S7), and 5% and 217,328 SNPs for the 
Baltic separation (Figure S3).

After deciding the best-possible cut-off values, several obser-
vations can be made regarding the scoring accuracy of BAMscorer 
score_bams depending on the number of reads for each of the 
comparisons. First, accurate scoring is obtained in extremely low-
coverage data for all comparisons (Figure 2c). For Heliconius, accurate 
haplotype determination is obtained with 20,000 reads and 0.009x 
nuclear coverage. For all other comparisons, even less reads—by an 
order of magnitude—are required. Second, the scoring accuracy of 
heterozygous genotypes requires more reads compared to homozy-
gous genotypes (see Heliconius P3 and Atlantic cod LG01, Figure 2c). 
Thus, different levels of accuracy are obtained depending on each 
sample's haplotype or population of origin. Third, an increase in scor-
ing accuracy at lower numbers of reads is observed for those com-
parisons for which more SNPs could be obtained (Table1, Figure 2c). 
Best scoring accuracy is obtained for the population comparison of 
Atlantic cod, for which population of origin can be determined with 
1000 reads or less than 0.0001x nuclear coverage (Figure 2c). The 
Baltic cod population (separated from other eastern Atlantic pop-
ulations on PC2 indicated with red ‘*’, Figure 2a), can be identified 
by iteratively investigating a smaller subset containing the eastern 
Atlantic specimens only (Figure S3). Finally, BAMscorer score_bams 
takes—on average—approximately 5 min to complete each compari-
son using a single Intel Xeon-Gold 6138 2.0 GHz CPU with 10 Gb of 
ram. It takes a similar amount of time to run the test scoring database 
on the MacBook Pro system as described above.

4  |  DISCUSSION

The BAMscorer program allows genomic assignment on extremely 
low-coverage sequence data, thereby increasing the capacity for 
conducting population genomics analysis on sparse genome-wide 
data. Sequence data with low coverage is often discarded as there is 
little usable information that can be reliably recovered in compara-
tive analyses with higher coverage specimens (e.g., François & Jay, 
2020; Lee et al., 2010; Patterson et al., 2006; Skoglund et al., 2014). 
Applying our method will allow samples with sparse genome-wide 
data to be used. The method is, additionally, fast and can be ap-
plied to large quantities of data at one time, providing an efficient 
overview of the biological characteristics of a large data set. This ap-
proach will therefore expand the amount of information that can be 
gleaned from sparse genome-wide data (Bohmann et al., 2020), and 

TA B L E  1  Inversion and genome characteristics of Heliconius, Atlantic herring, and Atlantic cod. Each comparison differs in terms of size 
of inversion, overall genome size and relative size of inversion in regards to species-specific genome size, as well as in terms of the optimum 
number of divergent SNPs (see methods) and individuals used for the reference databases and scoring

Species
Inversion name, 
location

Inversion 
size (Mbp)

Genome 
size (Mbp)

Relative 
size (%)

Divergent 
SNPs (n)

Database 
individuals (n)

Scored 
individuals (n)

H. numata (Heliconius) P3, Chr15 1.1 273 0.4 1701 20 40

C. harengus (Atlantic Herring) Chr12 8 726 1.1 28,205 19 9

G. morhua (Atlantic cod) LG01 16 643 2.5 47,564 276 15

G. morhua (Atlantic cod) Whole genome na 643 na 221,790 276 15
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reduce sample dropout in the ancient DNA analyses pipeline where 
destructive sampling is wide-spread (Pálsdóttir et al., 2019).

We applied our method to three biological examples that have 
different levels of genomic differentiation. In Heliconius butterflies, 
inversions have not been found to be sympatric barriers to inter-
specific gene flow (Davey et al., 2017), and there is a high degree of 
interbreeding between the seven different H. numata wing pattern 
morphs (Chouteau et al., 2017). Within the wing pattern morph su-
pergene on chromosome 15, there is incomplete genetic segregation 
between several of the P locus inversion types, including the P3 in-
version site (Jay et al., 2021). This could suggest incomplete lineage 
sorting—a phenomenon known to be highly prevalent in mimetic 
species such as H. numata (Kozak et al., 2015; Savage & Mullen, 
2009)—and/or introgression among H. numata morphs. Although 
BAMscorer exhibited less power in distinguishing this complex 
pattern of genomic divergence between H. numata morphs than 
between fish ecotypes, the approach still showed a high degree of 
efficiency. Within the Heliconius we were able to correctly identify 

all morphs without error at just 0.009x coverage, including hetero-
zygous individuals, for which identification becomes significantly 
more challenging at low sequencing effort.

Both Atlantic herring and Atlantic cod exhibit temporally and 
geographically isolated spawning reproductive behaviour, although 
overall levels of genetic differentiation are relatively low (e.g., FST 
~0.1 or less; Barth et al., 2017; Berg et al., 2016, 2017; Martinez 
Barrio et al., 2016; van Damme et al., 2009). Nonetheless, the di-
vergence time of the LG01 inversion haplotypes of Atlantic cod is 
estimated to be around 600,000 years ago (Matschiner et al., 2021), 
driving divergence in many thousands of SNPs, which explains the 
success of BAMscorer at extremely low-coverage for the LG01 
inversion. Similarly, strong selective pressures on Baltic herring 
have driven differentiation between these populations and their 
Atlantic conspecifics, as herring populations entering the Baltic Sea 
~8000 years ago would have had to adapt to new, brackish condi-
tions. Even though divergence time between Atlantic and Baltic her-
ring cannot be older than 8000 years, herring exhibit distinct signals 

F I G U R E  3  SNP selection by varying SNP weight in H. numata (P3 inversion). SNP weight is here defined as the percentage of SNPs with 
the most extreme values at both sides of the SNP loading distribution. Confidence in probability assignment is obtained by down-sampling 
BAM files 1000–40,000 reads. At each interval, and for each individual, the downsampling is iterated 20 times in order to generate box 
plots. Probabilities are calculated based on the joint binomial distribution of observing divergent SNPs associated with either haplotype 
group. Also indicated is the number of individuals (n, red) and number of SNPs (SNPn, red) and the chosen cutoff value (red dotted lines) at 
which all three haplotype groups can be efficiently separated
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of adaptation to low salinity conditions at several thousand loci (Han 
et al., 2020; Lamichhaney et al., 2012). Our results therefore indicate 
a high degree of accuracy in determining inversion types even for 
subspecies and haplotypes with a range of divergence times.

We obtain the highest power in scoring accuracy for the whole 
genome analyses of Atlantic cod. Both comparisons investigate pop-
ulations that have diverged relatively recently: the western and east-
ern Atlantic populations around 65,000 years ago (Matschiner et al., 
2021), and have genome-wide nuclear genetic divergence measured 
at FST ~0.11 (Pinsky et al., 2021). The Baltic was colonized between 
8000 and 6000 years ago (Berg et al., 2015) and has genome-wide 
nuclear genetic divergence at FST ~0.04. Neither of these popula-
tions or areas exhibits fixed mitogenomic differentiation (Martínez-
García et al., 2021). The high scoring accuracy that is obtained at 
a low number of reads in this whole-genome analysis—despite low 
overall genetic divergence—suggests a wide range of applicability in 
different biological settings.

Additionally, the accuracy of our results indicate that the method 
is robust to deamination damage, a common feature of ancient ge-
nomic sequences. By sampling ancient alignment files from different 
places in the genome, the scoring is robust to the noise created by 
deamination damage, which typically occurs at the ends of reads. 
Our ancient sequences for cod and herring exhibited up to 17% de-
amination damage (Figure S1), yet a high scoring accuracy was ob-
tained despite the presence of such damage.

There are several practical considerations and limitations to take 
into account while using the BAMscorer program. First, each exam-
ple provided here is associated with different levels of genomic di-
vergence and size of genomic regions under investigation. We find 
that there are no optimal program settings that apply to all cases. 
Each of our three species required different filtering parameters, 
such as optimum SNP loading weight cut-off value, and required dif-
ferent minimum numbers of reads to obtain high scoring accuracy. 
Similarly, differences in these parameters were also required within 
species, such as when analysing the inversion on LG01 as compared 
to the genome-wide data in Atlantic cod. It is thus recommended 
that users explore the filtering parameters as we have done above 
to ascertain the appropriate parameters, as an understanding of the 
biological system in question is important for assessing the efficacy 
of BAMscorer.

Second, the whole-genome (population) application of 
BAMscorer is currently limited to assigning two clusters or popu-
lations simultaneously. We are in the process of developing a more 
generic approach that will allow scoring of an undefined number 
of populations and aim to make this available in future versions of 
the BAMscorer. The current version of BAMscorer, however, can be 
applied iteratively to sequentially score finer scales of genomic dif-
ferentiation within data sets containing multiple clusters (see Figure 
S3). Moreover, BAMscorer is reliant on existing reference data to 
create the database from which alignment files are scored. This is 
a limiting factor in any assignment test, and probably unavoidable. 
However, we found that even with a relatively low number of ref-
erence genomes (our reference databases ranged from 19 to 276 

individuals), we were still able to efficiently identify haplotypes in 
low-coverage data. The requirements for the reference databases 
are therefore not especially demanding in order for BAMscorer to 
be used efficiently.

Finally, an assignment test only evaluates the scenario as given 
by the user. It is therefore important to use BAMscorer with an un-
derstanding of the biological system in question and with these lim-
itations in mind. We further recommend that users assess the impact 
of filtering parameters for creating the BAMscorer reference SNP 
database for each biological system. To provide an understanding of 
how much data BAMscorer is actually getting from each BAM file, 
we provide a read-out of the number of SNPs in the reference data-
base that were read from the BAM file in question.

We have here introduced a novel software program that can 
be used to increase the information gleaned from extremely low-
coverage sequence data. We have found that biological character-
istics and genomic assignment can be recovered from sequences 
with as little as 1000 aligned reads (at ~0.0001x coverage in the 
case of Atlantic cod). The method is flexible and can be used on var-
ious types of genomic data. Because all SNP calling and alignment 
takes place prior to using the BAMscorer program, the program it-
self is not dependent on a reference genome and can therefore be 
used with SNPs calling generated de novo, as is often the case for 
reduced-representation sequencing. The program is further scal-
able for BAM files from 1000 to 50 M reads and can handle up to 
hundreds of thousands of SNPs without sacrificing computational 
efficiency.

We have shown that BAMscorer can differentiate between 
subspecies, populations, ecotypes, and genomic inversions and can 
successfully recover relevant biological information from extremely 
low-coverage data. As the underlying methodology is general in de-
sign, it can be applied to any low-quality samples and reduced rep-
resentation sequence data such as ddRAD (Peterson et al., 2012) or 
hyRAD (Suchan et al., 2016), two common methods for cost-efficient 
sequencing used in ecology and evolution studies for modern and 
historic specimens. We expect that the capacity to quickly identify 
population of origin, determine between domestic and wild types 
(e.g., farmed vs. wild salmon; Glover et al., 2013, 2017), assess eco-
type distribution, and to identify hybrids will be a useful additional 
tool in the fields of wildlife forensics and conservation genomics.
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