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Abstract
In the heavy asset industry, such as oil & gas, offshore personnel need to locate various equipment on the installation on a
daily basis for inspection and maintenance purposes. However, locating equipment in such GPS denied environments is very
time consuming due to the complexity of the environment and the large amount of equipment. To address this challenge we
investigate an alternative approach to study the navigation problem based on visual imagery data instead of current ad-hoc
methods where engineering drawings or large CAD models are used to find equipment. In particular, this paper investigates
the combination of deep learning and decomposition for the image retrieval problem which is central for visual navigation.
A convolutional neural network is first used to extract relevant features from the image database. The database is then
decomposed into clusters of visually similar images, where several algorithms have been explored in order to make the
clusters as independent as possible. The Bag-of-Words (BoW) approach is then applied on each cluster to build a vocabulary
forest. During the searching process the vocabulary forest is exploited to find the most relevant images to the query image.
To validate the usefulness of the proposed framework, intensive experiments have been carried out using both standard
datasets and images from industrial environments. We show that the suggested approach outperforms the BoW-based image
retrieval solutions, both in terms of computing time and accuracy. We also show the applicability of this approach on real
industrial scenarios by applying the model on imagery data from offshore oil platforms.

Keywords Information retrieval · Deep learning · Decomposition · Place recognition

1 Introduction

In our everyday life we are increasingly dependent on
mobile tools, like Google Maps, to find our way. In an
industrial context we face the same challenge for human
navigation, but we would often find ourselves inside an
industrial structure without GPS reception. For instance,
in the heavy asset industry such as oil & gas, offshore
personnel need to locate various equipment on the oil
platform on a daily basis for inspection and maintenance
purposes. Locating equipment in such environments is very
time consuming due to the complexity of the environment
and the large amount of equipment. Ad-hoc methods
are often used, by comparing area plans, Piping and
Instrumentation Diagrams (P&ID) and other available
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information. A more efficient method being explored is
having a Computer-aided design (CAD) model easily
available and indexed so that equipment easily can be
shown in a full CAD model. Thus, locating the relevant
equipment in a full CAD assembly can be straightforward
[12]. However, locating the current position of the worker
is less trivial. As an industrial heavy asset facility will
typically have multiple levels and one would be inside a
steel and concrete structure, one does not have the luxury
of having GPS to provide an initial location hint. Also
since many industrial facilities have strict maintenance
programs, which makes infrastructure installation in general
expensive, installing such positioning infrastructure is often
not an option. Thus, users typically need to compare
large objects in the nearby environment with those in the
CAD model to estimate their current location. This is
quite inconvenient, especially because CAD models do not
provide a photo-realistic representation of the environment.

In this paper, we investigate an alternative approach to
address the navigation problem based on visual imagery
data. At the heart of the visual navigation problem is
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the place recognition task, which involves recognition
and localization of a given query image [5, 31]. Place
recognition may be interpreted as an information retrieval
problem, where the purpose is to retrieve a place (set of
images) by matching a query image with images in a
preexisting database. Despite many studies on the place
recognition problem, both based on traditional Bag-of-
Words (BoW) image retrieval solutions [3, 30, 40] and
deep learning based approaches [22, 38, 41, 42], the place
recognition problem still remains extremely challenging.
This is especially the case for homogeneous environments
where nearly identical objects occur on different locations,
such as in industrial environments. Furthermore, limited
hardware and strong requirements on the processing speed
in the industry add additional layers of complexity to the
problem. Decomposition may be an alternative way to
address this challenge. Similar ideas [4, 21] have been
explored, where decomposition is used to split the images
into groups, and return the group of images most similar to
the image query as output of the image retrieval process.
These solutions are limited in accuracy where a high number
of false positives are identified.

In this study, we propose a hybrid model where decom-
position and convolutional neural network are combined
with the traditional BoW approach. In this model, referred
to as the DCNN-vForest (Decomposition Convolution Neu-
ral Network for vocabulary Forest) model, a set of database
images are decomposed into several independent clusters
(see Fig. 1). In this context, we adopt different clustering
algorithms, such as kmeans [32], kmeans++ [14], and mini
batch kmeans [37], to decompose the image database into
clusters of images aiming to minimize the number of the
shared features among clusters, and maximize the number
of shared features within each cluster. During the search-
ing process, only the most similar clusters are explored,
which significantly speeds up the image search. This per-
formance is reached by the fact that vForest considerably
reduces the word space of the BoW solutions, yielding bet-
ter accuracy than BoW with the same number of words.
The main contributions of this paper are listed in the
following:

1. We combine both global image features determined by a
Convolutional Neural Network (CNN) and local image
features determined by the Scale-Invariant Feature
Transform (SIFT) extractor. Global features are used to
separate the similar images from the non-similar ones,
while the local features are used to describe the images
inside each cluster.

2. We propose two novel strategies that use the clusters
for searching the relevant images to the query image.
The first strategy only explores the most similar cluster
to the query image, while the second approach also

uses the neighborhood information of the most similar
cluster.

3. We conduct extensive analysis of the computational
time and accuracy. The results show that the DCNN-
vForest model outperforms the BoW-based image
retrieval solutions, both in terms of computing time and
accuracy. We also show the applicability of the DCNN-
vForest model on real industrial scenarios by applying
the model on imagery data from offshore oil platforms.

The rest of the paper is organized as follows. Section 2
reviews on the existing image retrieval and place recognition
based solutions. Section 3 presents the proposed approach
and its main components. Section 4 presents the experimen-
tal study and results. Section 5 presents the main finding
of applying the DCNN-vForest model on imagery data
from heavy asset industry. Finally, section VI concludes the
paper.

2 Related work

This research focuses on two topics: image search and
autonomous navigation. In the following, existing literature
in the two research topics have been analyzed and reviewed.

2.1 Image search

Arandjelovic et al. [2] proposed a solution to the
reverse image search problem applied to a large scale
image dataset covering city scenes. They apply a weakly
supervised learning algorithm, to predict the origin of
the given query image. This approach outperforms the
traditional reverse image based solutions, however it
is not straightforward to learn an accurate model for
reverse image search, in particular for large corpus
like city images data. Cao et al. [9] developed Deep
Visual-Semantic Quantization (DVSQ) for learning deep
quantization models, and semantic information from the
image database. It combines both learning deep visual-
semantic embeddings and quantizers using hybrid networks
and well-specified loss functions. Zhang et al. [44]
proposed the Unsupervised Generative Adversarial Cross-
modal Hashing (UGACH) approach to capture meaningful
nearest neighbours of different modalities for cross-modal
image retrieval. It used the generative adversarial network
for unsupervised representation learning of image features.
Liu et al. [30] proposed End-to-End BoW (E2BoW) using
the deep convolutional network. Instead of performing
different steps in making the vocabulary tree of the bag
of words model, this algorithm investigates only a single
step by learning the image features, identifies the visual
words, and then determines the cosine similarity between
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Fig. 1 Illustrative example of
the DCNN-vForest model. The
image database is grouped into
three clusters, marked by
different colors. For each query
image at the bottom, only
clusters with the most similar
images are explored and this
leads to an overall increase in
performance

the image database and the query image. These approaches
are costly, both in terms of computational and memory
resources, and that the number of neurons of the last fully
connected layer is highly depend to the number of bag
words of the image database. Yang et al. [40] proposed
the Hierarchical Deep Embedding (HDE) approach with the
use of multiple feature extractors for retrieving the Aurora
satellite images. It incorporates the local features (using
SIFT algorithm), the regional and the global features (using
CNN model) in constructing the vocabulary tree of the
image database. This approach requires large computational
effort, but it outperforms the state-of-the-art solutions in
terms of accuracy. To improve the runtime performance
of such an approach, Zhan et al. [43] proposed a GPU-
based parallel approach in extracting the features, where one
GPU-block is responsible for computing the local features
using SIFT, and another GPU-block is responsible for
determining the global features using CNN. This approach
gives a lower computation time compared to the previous
one, however, the GPU resources concurrently assigned to
two jobs (local and global extractors), reduces the capability
of the approach to run complex CNN architectures such as
VGG19. Ahmad et al. [27] proposed a hybrid bag of words
and VLAD solution. The features of the image databases
are first extracted using the VLAD network, and the bag
of words algorithm is then performed from the features

extracted. Doan et al. [19] proposed an incremental hidden
Markov model for recognizing images in autonomous
driven system, which allows to exploit the temporal features
of the images in the query, and study the correlation between
the temporal and the spatial dimensions of the images
database. In the same context, Vysotska et al. [39] deal with
seasonal weather change to localize vehicles in a map by
combining hashing-based image retrieval, and contextual
information represented by a data association graph. Hong
et al. [25] proposed a text-based algorithm for reverse image
search. The textual descriptors are first generated from
map images. To remove noise, the Levenshtein distance is
then calculated between the recognized text, and textual
descriptor of the query. The topological localization which
explores both spatial and temporal information is finally
adopted to recognize the place of the query. Chancan et al.
[11] incorporated the image retrieval with the neuroscience-
oriented model and propose a one-dimensional continuous
attractor neural network with a compact, sparse two-layer
neural network inspired by brain architecture. Cao et al.
[8] addressed the variation of the perceptual condition issue
such as all weather, times-of-day, seasons and viewpoint
shifts, and developed an adapted light detection and ranging
algorithm. A new scene representation is integrated by
merging context and layout descriptors to reach accurate
place recognition across seasons. The sequence-based
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temporal consistency is also developed to handle scenes
with similar objects with local structural changes. Givek
[24] developed the Scale-Space Multi-View Bag of Words
(SSMV-BoW) approach for addressing the overlooking
spatial information limitation of the BoW. It considers
multi-scaling when determining the features with the SIFT
extractor. The semantic information of the visual features is
also used in the image search process.

2.2 Autonomous navigation

Anwar et al. [1] suggested the use of transfer learning for
reducing the training time of deep learning architectures for
applications in autonomous navigation for drones. A fine-
tuned process is also investigated for the last fully connected
layers. Carrio et al. [10] introduced a new strategy for
drone localization based on both segmentation and object
detection models. The training data of the object detection
model, composed of both images of flying drones and
segmentation maps, are first created. The obtained bounding
boxes are used for 3D position estimation of the detected
drones. Sina et al. [34] proposed a solution to the navigation
of constrained robots problem in a dark underground mine
environment, while exploring unknown regions. It improved
the vision ability of the aerial areas by minimizing the
number of sensors allocated in the navigation system. De
Queiroz Mendes et al. [36] developed a hybrid framework
which combines the convolutional neural network and
encoder-decoder architectures for autonomous navigation.
It also proposed a new loss function to optimize the
single image depth estimation. The integration of multiple
semantic surface and depth knowledge is also investigated
in the training process. Phil et al. [26] suggested the use of
evolutionary algorithm [17], and in particular the particle
swarm optimization in the autonomous navigation process.
It simulates the behaviours of particles when exploiting
the embodied dynamics, and project this simulation in the
robotic system for autonomous navigation. Matthias et al.
[20] developed a strategy for localization verification of the
robots in autonomous navigation setting. It means checking
the correctness of the current position of the robot in a real
time scenario. The convolutional neural network with the
recurrent neural network is used to estimate the temporal
patterns when the localization is missing. A weak classifier
is combined with these patterns to boost the identification
of the missed localization. Lee et al. [29] combined the
multi-task learning, the convolutional neural network, and
controllers to improve the stability of the actual autonomous
driving system. The cars on the road are first detected
using both regression and classification tasks with hybrid
multi-task convolutional neural network architecture. The
controller algorithm is then applied to mitigate collisions
in a real-time scenario. Mao et al. [35] addressed the

multi-scale vehicle detection, and the overlapping objects
issues in autonomous vehicle settings. It extended the
YOLOv3 by improving the feature extraction process while
using the inverted residuals strategy on the convolution
layers. Spatial pyramid pooling blocks are also integrated
for deriving the multi-scale information of each car. Finally,
and in order to solve the overlapping between cars, the
non maximum suppression operator is replaced by the soft
non maximum suppression operator. Dinh et al. [15] used
the transfer learning for improving the autonomous vehicle
system on two cameras with different focal lengths. The
output of the autonomous vehicle model with the parameters
of the first camera is projected to the parameters of the
second camera. The evolutionary computation algorithm is
also integrated to find the different correlations among the
parameters of both cameras.

2.3 Discussion

From this literature review, solutions to image retrieval,
place recognition and autonomous navigation algorithms
are divided into two categories: i) Solutions exploring
traditional pipelines such as bag of words to find the
relevant output according to the user settings. ii) Other
solutions which explore artificial intelligence to train deep
learning models in retrieving the relevant information
according to different user settings. All these solutions
suffer from two main issues: The first one is that the existing
solutions are not able to recognize areas in homogeneous
buildings, where same objects may be occurring in different
places and in different rooms. The second issue is that
none of the existing solutions meet our requirements in
place recognition when it comes to both accuracy and
runtime. Motivated by the success of decomposition-based
algorithms [6, 16, 18] in solving complex problems, in
the next section, we propose a DCNN-vForest algorithm
to efficiently explore the image database, and accurately
satisfy user queries.

3 DCNN-vForest

This section presents the proposed DCNN-vForest frame-
work, which combines decomposition, convolutional neural
network, and BoW to solve the image retrieval problem.
This is a generic framework, where any decomposition and
searching algorithms may be used. As illustrated in Fig. 2,
the designed framework consists of three main steps:

1. Decomposition. Images in the database are grouped
into clusters of visually similar images. In particu-
lar, the clustering aims to minimize the number of
shared features across clusters, and maximize the
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Fig. 2 DCNN-vForest
Framework

number of shared features within each cluster. To effi-
ciently explore the problem, the global features, derived
using the convolutional neural network, have been clus-
tered using three different decomposition algorithms:
kmeans, kmeans++, and mini batch kmeans.

2. Vocabulary Forest Construction. In this step, the
vocabulary forest is built based on the output of
the previous step. Thus, a vocabulary tree is created
for each cluster of images using the BoW approach.
To accurately manage and store the vocabulary tree
for each cluster, a new structure is defined, called
a vocabulary forest (vForest for short). This vForest
contains information related to both the vocabulary
trees, and the centers of the clusters created in the
decomposition step.

3. Searching Process. In this step the vForest is explored
to find the most similar images to the query image.
Instead of exploring the entire set of image features,
only the most similar clusters to the image query are
visited. We propose two different strategies in order
to efficiently explore the vForest. The first one only
targets the most similar cluster to the image query, while
the second one also targets the neighbours of the most
similar cluster to the image query.

The detailed explanation of each step is given in the
following subsections.

3.1 Decomposition

3.1.1 Principle

The aim of this step is to divide the image database
into k clusters, C = {C1, C2...Ck}, where each cluster
Cs = {I (s)

1 , I
(s)
2 ...I (s)

|Cs |} is a subset of the images I . We

first compute the global features for each image in the
database with the convolutional neural network using the
pre-trained model of VGG16 architecture on ImageNet1.
Using global image features ensures that dissimilar images
will be assigned to different clusters. This cannot be done
with local features (such as corners or edges), since even
dissimilar images may share such local features. This
clustering will speed up the image-retrieval process: If we
assume that the clusters are fully distinct, i.e., they do not
share any image features, the retrieval process could be
restricted to the cluster that is most similar to the query
image, and the result would be the same as if checking
against all clusters. Unfortunately, fully feature-distinct
clusters are unrealistic. For real-world image databases,
there will always be some overlap between the features
of individual clusters. However, by minimizing the feature
overlap between the clusters and maximizing the feature
overlap within each cluster, one can reach a configuration
that is closest to the ideal case of feature-distinct clusters.
More formally, we have to optimize the two following
functions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

argmin
C

k∑

i=1

k∑

j=1
Sim(F(Ci),F(Cj )), i �= j

∨

argmax
C

|C|∑

s=1
Sim(F(I

(s)
i ),F(I

(s)
j )), ∀(i, j) ∈ [1..|Cs |]2, , i �= j .

(1)

Note that F(Ci) is the set of features of the images of the
cluster Ci , F(Ii) is the set of features of the image Ii , and
Sim(F1,F2) is the similarity measure between two sets of
features F1 and F2.

1http://www.image-net.org/

http://www.image-net.org/
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3.1.2 Decomposition operators

In the following, we define the main operators used in the
decomposition process.

– Global feature extractor. We used VGG16 to extract
the global features of the images. It is composed of
several convolution and max pooling layers followed
by the rectified linear activation function (ReLu), and
it ends up with a fully connected layer and Softmax
activation function. Extracting the global features from
a fully connected layer generates a vector of 4,096
features, which is considered to be insufficient for
computer vision applications. Therefore, the features
are extracted from the last max pooling layer by
excluding the fully connected layer. This results in a
vector of 25,088 features.

– Distance computation. The distance between two
images Ii and Ij is defined as

D(Ii, Ij ) =
|F(Ii )|∑

l=1

|F(I l
i ) − F(I l

j )|, (2)

where F(I l
j ) is the lth feature of the image Ii .

– Shortest distance. Let us consider an image Ii , the set
of clusters C, and let μ(C) be the set of centroids of C.
We define Dmin(Ii, C) to the shortest distance between
the image Ii and the centroids of the clusters in C,
which is given by

Dmin(Ii, C) = min{D(Ii, μj )|μj ∈ μ(C)}. (3)

– Centroids updating. Let us consider the set of images
of the cluster Ci = {I (i)

1 , I
(i)
2 , ..., I (i)

|Ci |}. The aim is to
find a centroid of this set which is also an image, and we
define μi to be the centroid of cluster Ci . The features
of μi will be the average of all feature values of the
images within cluster Ci . The j th feature of μi , noted
Fj (μi) is determined as

Fj (μi) =
∑|Ci |

l=1 Fj (I
(i)
l )

|Ci | , (4)

where Fj (I
(i)
l ) is the j th feature of the image I

(i)
l . Note

that Eq. 4 will be applied for all 25,088 elements in the
feature vector of μi .

3.1.3 Algorithms

In the following, we propose different clustering algorithms
in order to optimize the functions reported in Eq. 1, which
minimize the number of shared features among clusters, and
maximize the number of shared features inside each cluster.

– kmeans for image decomposition. kmeans for image
decomposition aims to maximize the function

J =
k∑

i=1

∑

I
(i)
j ∈Ci

D(F(I
(i)
j ), μi)

2. (5)

First, the images are assigned randomly to the k clusters
and a centroid is computed for each cluster. Then, every
image is assigned to a cluster whose centroid is the
closest to that image. These two steps are repeated until
there is no further assignment of the images to the
clusters.

– kmeans++ for image decomposition. The main
drawback of the kmeans algorithm is the centroid
updating. In order to solve this issue, kmeans++ for
image decomposition is developed. It aims to explore
the centroid space, and accurately update the centers
of the image clusters. The shortest distance for each
image is first determined. For the centroid updating, the
clusters are created recursively, where at each iteration
t , the image Ii will be assigned to the cluster Ct with
probability

P(Ii, Ct ) = D(Ii, μt )
2

∑

Ij ∈I

D(Ij , mt )2
. (6)

This process will be repeated until all images are
assigned to the cluster clusters. Except for centroid
updating, the same kmeans process is applied.

– Mini batch kmeans for image decomposition. It is
a variant of the kmeans algorithm which uses mini-
batches in order to reduce the decomposition time. The
mini-batches are subsets of the image database, and
are randomly generated. The union of all mini-batches
should be equal to the entire database. The use of mini-
batches allows the algorithm to faster converge to the
local optimum.

3.2 Vocabulary forest construction

3.2.1 Principle

After decomposing into clusters, we create a new structure
called the vocabulary forest. It is an extended representation
of the vocabulary tree used by the BoW-based solutions.
Thus, the first two steps of the BoW pipeline (feature
extraction and vocabulary tree construction) are applied on
each cluster Cs , which results in a set of k vocabulary
trees, where each vocabulary tree vocs contains information
related to the cluster Cs . We define the vocabulary forest
vForest by a tuple < voc, g >, where voc is the set of k

vocabulary trees, and g is the set of centroids of the clusters
in C. In the following, we describe the main operators of
this step, which are the SIFT extractor and construction of
the vocabulary tree of each cluster.
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3.2.2 SIFT extractor

This step aims to determine the local features of each
image in each cluster. The SIFT extractor is a well-known
algorithm to identify the most relevant features in a given
image. It is decomposed into four main stages:

1. Feature point detection: The feature points are identi-
fied based on difference on Gaussian function of the
image. Thus, the Gaussian of the image is first com-
puted. Each point is then computed with its eight neigh-
bours. The local minima and maxima will be considered
as a set of keypoint candidates.

2. Feature point localization: The set of keypoint candi-
dates are refined to derive the correct localization of
the keypoints. The set of keypoints are extended to
sub-pixel using the Taylor expansion.

3. Orientation assignment: For each keypoint detected in
the previous stage, its 16x16 neighbours are selected.
The edge orientation of each neighbour is calculated,
where the angle histogram is deduced using the
histogram of oriented gradients.

4. Feature descriptor generation: This stage aims to
generate the descriptor of each keypoint, which consists
of 128 features. The orientation histogram is calculated
based on the histogram determined in the previous
stage.

At the end of this step, the pairs of keypoints
and descriptors are calculated for every image in each
cluster. Each keypoint is characterized by its pixel
coordinates, where the descriptor is composed by 128
features representing the different orientation histograms of
its 16x16 neighbours. Figure 3 shows the visualization of
the features using one image from the Offshore dataset,
which will be used in the experimentation part.

Fig. 3 SIFT Features Visualization

3.2.3 Building vocabulary trees

The collection of features extracted from a given cluster is
used to compute the visual words. Here, for each cluster,
the visual words from these features are determined using
the hierarchical kmeans algorithm, where each center will
be considered as one visual word. This results in one
vocabulary tree for each cluster of images. Afterwards,
each image in every cluster is represented by a frequency
histogram of words, computed by exploring the vocabulary
tree associated with the cluster. Different metrics can
be used to determine the frequency histogram. In this
research work, TFIDF (Term frequency Inverse Document
Frequency) [28] is adopted to determine the frequency
histogram of the image I i assigned to the cluster Ci , and is
defined as

T FIDF(I i, w) = T F(I i, w) × IDF(w, Ci), (7)

where

T F(I i, w) = fIi ,w
∑

w′∈I i fI i ,w′
, (8)

IDF(w, Ci) = log

( |Ci |
|{I i ∈ Ci/w ∈ I i}|

)

, (9)

and where fIi ,w is the frequency of the visual word w in the
image I i .

3.3 Searching process

The online processing has the goal of finding the relevant
images to the given input image by querying the vForest
structure. The features of the query image are extracted
using both CNN and SIFT algorithms, described in
Sections 3.1.2 and 3.2.2, respectively. The former is used
to determine the similarity between each centroid in the
vForest structure and the CNN features of the query image.
The search will then be limited to the most similar clusters
using the SIFT features of the query image. Different
strategies may be used to explore the clusters:

1. 1-Nearest cluster neighbour. In this strategy, we only
explore the nearest cluster to the query image. To
do that, we compute the similarity between the query
image and each centroid, and we choose the cluster with
highest similarity score.

2. l-Nearest clusters neighbours. In this strategy, we
explore the l nearest clusters of the query image. The
search starts by exploring the images of the most similar
cluster to the query image, then the second most similar
cluster to the query image, and so on until the lth similar
cluster of the query image.
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After selecting the cluster(s) to be used in the searching
process, the corresponding vocabulary tree(s) is explored.
To find the relevant images to the image query from a
given cluster, the corresponding vocabulary tree is used to
compute the visual words from SIFT features of the query
image. The score function between the image query and
each image I i in Ci is then calculated, which is defined
using the TFIDF value of all visual words belonging to both
the image query and the image I i as

Score(Iq, I i) =
∑

w∈(Iq∨I i )

T F IDF(I i, w). (10)

The top relevant images are those with highest score
values and are returned to the user. When considering
multiple vocabulary trees, the same process is applied
to each vocabulary tree and the most relevant images
from all selected vocabulary trees are considered as
relevant.

3.4 Theoretical complexity

Algorithm 1 presents the pseudo-code of DCNN-vForest
framework. The decomposition and the vocabulary forest
construction steps are the most time consuming tasks,
however, both steps are performed only once, independently
from the number of image queries. The image search on
the other hand is executed for each query image, and
it’s execution time is crucial when used in a navigation
setting. The theoretical complexity of the searching process
depends on the number of clusters visited during the search
process, the number of images, the number of words and
the number of clusters, noted l, n, w and k, respectively.
The theoretical complexity of BoW-based solutions for
retrieving one query isO(n×w×log(w)). If we assume the
decomposition step generates clusters with approximately
the same number of images each, then the DCNN-vForest
applied the BoW approach for each visited cluster with size
n
k
. Therefore, the theoretical complexity of DCNN-vForest

for retrieving one query is O(l × n
k

× w × log(w)). Ideally,
only a single cluster is explored, which costs O(n

k
× w ×

log(w)), and in the worst case, all clusters are explored,
which costs O(n × w × log(w)). From these theoretical
analysis, we can argue that the lower bound of DCNN-
vForest complexity time is O(n

k
× w × log(w)), which

is k times faster than BoW-based solutions, and the upper
bound of DCNN-vForest complexity time is O(n × w ×
log(w)), which is equal to the complexity of BoW-based
solutions.

3.5 Illustration

Figure 4 illustrates the DCNN-vForest construction on
images from the offshore dataset. On the top of the
figure, the images are decomposed into clusters of visually
similar images, using the global features extracted using
the convolution neural network. In this context, each
cluster presents one room or location on the offshore
oil platform. For instance, the first cluster represents a
location with pumps covered by blue isolation, the second
cluster represents locations with containers, and the third
cluster represents a hall area of the offshore oil platform.
The middle row illustrates the vocabulary trees, where
each tree consists of visual words generated from features
representative for the corresponding cluster of images. The
bottom shows the word vector for two images from the
cluster with images containing pumps covered by blue
isolation.

4 Results

Several experiments were conducted to evaluate the
performance of the proposed DCNN-vForest framework.

Four datasets were used in the experiments. Three of
them are well-known datasets, widely used for visual
navigation problem, and the last one is captured from
an offshore oil platform. The latter contains images
representative for industrial platforms and is provided by
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Fig. 4 DCNN-vForest Illustration

our industrial partners. The detailed description of the four
datasets used in the experiments is given below:

1. Offshore. Dataset from an industrial installation. It
contains 1,153 images. Each image is associated by a
tag representing its location on the installation.

2. Kitti. Well-known dataset typically used in place
recognition problems. The data is collected by up to
15 cars equipped with two high-resolution color and
grayscale video cameras. The ground truth is provided
by the GPS localization system of the cars [23]. We
used 3GB of data with 3,025 images. The data is public
and may be retrieved on http://www.cvlibs.net/datasets/
kitti/index.php.

3. ZUMAV. Dataset collected using a camera equipped on
a Micro Aerial Vehicle (MAV) flying over urban streets
at low altitudes (5-15 meters above the ground) [33].
We used 1.37GB of data with 4,020 images. The data
is public and can be retrieved from http://rpg.ifi.uzh.ch/
zurichmavdataset.html.

4. Indoor.One of the top ten datasets used in image classi-
fication problems. It contains 67 different categories for
indoor scene recognition. The number of images varies
across categories, but there are at least 100 images per
category. We used 1GB of the data with 3908 images
divided into different categories. This dataset is pub-
lic and can be retrieved from https://www.kaggle.com/
itsahmad/indoor-scenes-cvpr-2019.

The characteristics of the four databases are shown in
Table 1.

Each dataset is divided into two disjoints subsets, one
for training, and another for testing. The training data are
used to build the vocabulary forest, and the test data are

considered as query images. The evaluation of the proposed
framework is performed in two main steps:

1. Evaluation of decomposition step: The evaluation of
the decomposition step is performed using distortion
Elbow score [7]. It is the most common metric used
for determining the optimal number of clusters. It is
computed as the sum of the squared distance between
each image and its closest centroid, which is formally
defined as,

Elbow(C) =
|C|∑

i=1

|Ci |∑

j=1

D(I
(i)
j , μi) (11)

It is also important to create balance clusters which
will be addressed later in the image search step.
Therefore, we propose a new measure to evaluate the
decomposition step, based on the number of images
in each cluster. The aim is to obtain similar number
of images per cluster. It is determined by the average
number of images per cluster, divided by the by the
number of images of the biggest cluster. The result
is between 0, and 1, where the perfectly balanced

Table 1 Data description

Database # Images Resolution Size in GB # Classes/Places

Offshore 1,153 3,264 X 2,448 0.55 6

Kitti 3,025 1,392 X 512 3.00 7

ZUMAV 4,020 1,920 x 1,080 1.37 4

Indoor 3,908 247 X 325 1.00 67

http://www.cvlibs.net/datasets/kitti/index.php
http://www.cvlibs.net/datasets/kitti/index.php
http://rpg.ifi.uzh.ch/zurichmavdataset.html
http://rpg.ifi.uzh.ch/zurichmavdataset.html
https://www.kaggle.com/itsahmad/indoor-scenes-cvpr-2019
https://www.kaggle.com/itsahmad/indoor-scenes-cvpr-2019
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configuration will be 1. It is formally defined as,

Balance(C) = |I |
|C| × max(C)

, (12)

where max(C) is the number of images of the biggest
cluster in C.

2. Evaluation of Searching Step: Evaluation of Searching
Step: Different evaluation criteria are used depending
on whether the ground truth of the dataset is in the form
of from classification or localisation.

In the case of classification, the well-known mAP
(mean Average Precision) [13], which is defined as:

mAP =

r∑

i=0
AvgP (i)

n
, (13)

where r is the number of images to be retrieved, n is
the number of all image queries, and AvgP (i) is the
average precision while considering the first i ranked
images. The mAP criterion is chosen because it scores
the fraction of selected images that are correct.

The second evaluation is established where the
ground truth a position associated to each images. In
this context, we propose a new measure to evaluate the
results. It aims to calculate the ratio of accepted images.
An image is accepted if its position is close to the
position of the query image. The purpose is maximize
the following function:

φ(T ,R) =

|T |∑

i=1
φi(Ti ,R(i))

|T | , (14)

where

φi(Ti ,R(i)) =
∑n

j=1 φij (Ti ,R(i)
j )

n
, (15)

and

φij (Ti ,R(i)
j ) =

{
1, if (1/Pos(Ti ,R(i)

j )) ≤ dmax

0, otherwise
(16)

Note that,
T : The set of test images.
R: The set of sets of the most similar images to all
images in T .
R(i): The set of most similar images to the query image
Ti .
R(i)

j : The j th similar image to the query image Ti .

Pos(Ti ,R(i)
j ) is the difference between the position of

the image Ti , and the position of the imageR(i)
j .

dmax is a scenario specific threshold.

All implementations are executed on a computer with
a i7 CPU, coupled by a GeForce GTX 1070 GPU. We
used Python 3.7.4, and scikit-learn library for building,
and evaluating the clusters of images. The tuning of the
DCNN-vForest parameters are first explained. The best
configuration of DCNN-vForest is then compared to the
BoW-based image retrieval based solutions.

4.1 Parameter setting

The aim of this experiment is to tune the parameters of the
DCNN-vForest framework. In the following, the parameters
setting of each step of DCNN-vForest is studied.

The quality of the decomposition is measured by
evaluating both the Elbow, and the balance functions,
as shown in Fig. 5. The three decomposition algorithms
kmeans, kmeans++, and mini-batch kmeans are used
for comparison. However, for each execution, only one
algorithm of the three is selected. Starting by Elbow which
is a visual metric to estimate the optimal number of clusters.
It involves running the decomposition algorithm multiple
times with an increasing the number of clusters (from 5 to
50) and then plotting the distortion score. As the number
of clusters increases, the distortion score is decreasing. This
is because the images will be closer to the centroids they
are assigned to. The idea behind the Elbow metric is to
identify the value of the number of clusters where the score
begins to decrease most rapidly before the curve reaches
a plateau. Therefore, the optimal number of clusters is
selected just before reaching the plateau. For instance, the
optimal number of clusters on Offshore dataset is 35 for
kmeans, 25 for kmeans++, and 35 for mini-batch kmeans.
We remove the mini-batch kmeans configurations for the
Indoor dataset, because the distortion score is not close
to monotone, and is therefore unreliable. An explanation
of these result for the Indoor dataset is that the clusters
obtained are unbalanced (many images are associated to a
single cluster, leaving other clusters almost empty). Indeed,
the balance score is also important in the decomposition
results. Obtaining clusters of similar size is crucial for the
searching step. Consequently, we select the configurations
with high balance score. The selected configurations for
each dataset is as follows: Offshore (kmeans++ with 25
clusters), Kitti (kmeans with 25 clusters), Indoor (kmeans
with 15 clusters), and ZUMAV (mini-batch kmeans with
40 clusters). Table 2 shows the best configurations of the
DCNN-vForest selected for each dataset.

The next experiment is to tune the parameters of the
image search step. We varied the strategy used in retrieving
the relevant images. Thus, we varied the percentage of
the number of visited clusters from 10% to 100%, and
we computed the runtime, and the accuracy of each
configuration. The results are reported in Fig. 6. According
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Fig. 5 Elbow and balance scores
of the decomposition step with
varying the number of clusters
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to the results, we can remark that the accuracy of DCNN-
vForest increases with increasing the number of visited
clusters, until it stabilizes in a given number of visited
clusters. In some databases, few number of clusters are

needed to be explored to reach high accuracy as the case
of Kitti, however, in some databases, high number of
clusters are needed to be explored to reach high accuracy,
as the case of ZUMAV. In addition, the runtime increases
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Table 2 Best configurations of DCNN-vForest

Database Best configuration

Offshore kmeans++ with 25 clusters

Kitti kmeans with 25 clusters

ZUMAV mini-batch kmeans with 40 clusters

Indoor kmeans with 15 clusters

with increasing number of visited clusters. Therefore, the
number of visited clusters is selected by choosing the
lowest number which gives higher accuracy value. The
best values of the DCNN-vForest for each dataset is given
as follows: Offshore (kmeans++ with 25 clusters, and 12
visited clusters), Kitti (kmeans with 25 clusters, and 10
visited clusters), Indoor (kmeans with 15 clusters, and 7
visited clusters), and ZUMAV (mini-batch kmeans with 40
clusters,and 16 visited clusters).

4.2 DCNN-vForest vs state-of-the-art image search
algorithms

This section studies the performance of vForest compared
to BoW [3], HDE [40], and SSMV-BoW [24]. Throughout
this section, the parameters for clustering are kept fixed and
the number of words per vocabulary tree varies from 100
to 1,000. The number of words are deliberately kept low,
to reach an acceptable runtime performance in the image
search process. However, each cluster of images is expected
to consist of similar images, which is likely to result in
good accuracy, even with the relatively small number of
words.

The construction time of the vocabulary trees are shown
in Fig. 7. It shows that the construction time is reduced with
a factor of three in the place recognition cases and by 10%
in the classification case. This difference of performance
has two contributing factors: in the classification case the
image database is split in fewer clusters, and therefore a
larger portion of the images in each cluster, furthermore, the
images in each cluster are expected to have more common

similarities in place recognition problem compared to the
image database for classification.

The runtime performance of the query is presented in
Fig. 8. As can be seen, the query time is lower for DCNN-
vForest than the other solutions (BoW, HDE, and SSMV-
BoW) indicating that the ability to ignore large portions
of the image databases saves more time than the overhead
cost of evaluating the neural net and select the most
relevant clusters. Similarly, Fig. 9 shows that the accuracy
is also improved with the DCNN-vForest algorithm, for all
evaluated datasets.

Figure 10 shows the retrieved images for representative
query images, one from each dataset. The results reveal
that the DCNN-vForest outperforms the BoW in terms
of evaluation score for all cases. Furthermore, visual
inspection shows that the top three relevant images are
relevant to the query images in the localisation datasets,
while this is not the case for the classical BoW algorithm.
This is especially true for the Offshore dataset, where the
BoW algorithm fails to find any relevant images. This is
explained by the fact that the DCNN-vForest splits the
data into clusters of visually similar images, allowing the
visual words to be more representative to the images in each
cluster. These results confirm the applicability of DCNN-
vForest in dealing industrial offshore data for autonomous
navigation systems, which is missing on state-of-the-art
BoW solutions. These results confirm the applicability of
DCNN-vForest when dealing with industrial offshore data
for autonomous navigation systems, which is missing on
state-of-the-art BoW solutions.

5 Discussions and future directions

This section discusses the main findings from the experi-
ments using the DCNN-vForest method on the place recog-
nition problem.

1. The first finding of this study is that the query time
improvements achieved by only considering images
with similar features exceeds the overhead of evaluating

Fig. 6 Accuracy and Runtime of
the image search of the
DCNN-vForest with varying the
number of visited clusters
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Fig. 7 Comparison of runtime
of vocabulary tree, and
vocabulary forest construction
with different number of words
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the neural net and choosing the most appropriate
cluster(s). This leads to a considerable reduction in
query time for all datasets. Furthermore, the runtime
performance is dependent on the uniformity of the
cluster sizes.

2. The second finding is that the proposed framework
improves the accuracy of the BoW algorithm. This
is mainly due the similarity of the images in each

cluster, which makes is easier to find common features
(words) describing the images. Furthermore, feature
vector determined by the CNN contains information on
a global level, in contrast to the SIFT feature extractor
that operates on a local level only.

3. The third finding of this study is that the choice
of decomposition algorithm and number of clusters
are crucial for the performance of the proposed

Fig. 8 Runtime of the image
search of the DCNN-vForest,
and State-of-the-art Image
Search Algorithms
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Fig. 9 DCNN-vForest Vs
State-of-the-art Image Search
Algorithms: Accuracy
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method. According to our experiments, and analysis
on different datasets, there is a high relation between
the data correlation and the parameters setting of
the decomposition step. More correlated datasets can
benefit from a higher number of clusters, separating the
data more accurately.

4. The last finding of this study is that the BoW compo-
nents influence on the results of the image search. For
instance, large number of visual words used in build-
ing the vocabulary tree of each cluster increase the
accuracy performance, however it needs considerable
amount of time and memory for processing and storing
the vocabulary trees.

The results presented in this paper is promising, and
opens up for further studies on:

1. Decomposition algorithms that creating more balanced
clusters and separates the dataset better. In this research
work, three kmeans-based algorithms are explored to
decompose the image database into clusters of simi-
lar images, an interesting direction for future work is
to study the adaptation of other decomposition algo-
rithms such as, density-based algorithms, hierarchical
algorithms, and fuzzy-based decomposition algorithms,
or methods from other fields such as entity resolution
and/or record linkage.

2. Auto tuning of parameters, including number of clusters
and number of words in each vocabulary tree and how
many clusters to visit per query. In this paper, a brute
force parameter sweep is performed for each dataset,

which is highly time consuming. One possibility is to
apply meta learning to learn the different parameters
of the DCNN-vForest. The learning stage is done from
properties extracted from the training image databases
such as the number of images, the number of pixels,
the image features...). A challenge here is to design the
training data and to learn the parameters required.

3. Applying the DCNN-vForest method in real life
applications to further validate its performance and
applicability. This will provide further insight in the
performance of the proposed method. One promising
application visual localization of robots in industrial
environments. DCNN-vForest is promising here, where
one can access a large image data base including similar
images taken of the same location from different views.

6 Conclusion

This paper propose a new algorithm for using image
retrieval to efficiently solve the challenge of place
recognition. The goal is to determine the location from
where the query image was taken by using the location
of the most similar image. The proposed method is a
hybrid approach for image retrieval by combining deep
learning and decomposition frameworks. It integrates the
convolution neural network to extract the relevant features
of the image database. The extracted features are used
to divide the whole image database into clusters, each of
which contains similar images. A vocabulary tree is then
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Fig. 10 DCNN-vForest Vs.
BoW Illustration on Real Case
Scenarios



Y. Djenouri et al.

created for each cluster to build a vocabulary forest. In
the searching process, only the relevant clusters of images
are explored instead of scanning the whole image database.
Furthermore, since each cluster contains similar images,
acceptable accuracy can be achieved with a small number
of words compared to what is needed when using the BoW
algorithm directly. Combined, these two factors allows the
DCNN-vForest algorithm to be used in industrial settings
where state-of-the-art BoW implementations are too time
consuming to be used in real-time applications. The method
is validated on well known and openly available image
databases, two for place recognition in urban environments
and one for classification in indoor environments. In each
case, the performance is compared with a state-of-the-art
BoW implementation. The same BoW implementation is
used to create and evaluate each tree in the DCNN-vForest
implementation. In all cases, both runtime performance and
accuracy is significantly improved when all parameters are
equal. The main goal of the work is to provide support for
navigation in an industrial offshore site where GPS is not
available, and BoW did not yield sufficient accuracy within
the time budget. The initial results show good potential for
using the DCNN-vForest also in this case.
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