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A B S T R A C T
The external environmental conditions around a vessel are essential for efficient and safe ship
operation, among which the sea state is of key importance. Considering the ship as a large
wave buoy, the sea state can be estimated from motion responses without extra sensors installed.
This is a challenging task since the relationships between the waves and the ship motions are
hard to describe accurately. Machine learning approaches can learn these mapping without an
explicit model, which is promising for sea state estimation. Current machine learning approaches
represent the sea state as a set of categories or a number of wave parameters while neglecting
the 2D wave spectrum. This paper proposes a sea state estimation network that estimates the 2D
wave spectrum along with a discrimination network. The discrimination network can detect and
correct high-order inconsistencies of the spectrum. Simulation studies are performed to show
that the proposed method can provide wave spectrum estimation with high accuracy.

1. Introduction
Environmental conditions are of key importance for efficient and safe ship operations. The external wave condi-

tions are one of the crucial factors affecting the dynamics of a vessel. The continuous sea state information around
a ship are valuable for providing onboard decision supports and operational guidance, including takeoff and landing
of helicopters, crane operations. By incorporating knowledge about sea states, the safety of the operations can be
increased and even more efficient. Therefore, in-situ sea state estimation is important for any type of decision support
and system with high level of autonomy.

In oceanography, the general condition of the ocean with respect to wind waves and swell at a certain location
is referred to as the sea state. The waves are stochastic with time and it is almost impossible to evaluate on a wave-
by-wave basis in the time domain (Ochi, 2005). The ocean waves are considered to be a stochastic process and their
statistical properties can be evaluated in the frequency domain. Specifically, the potential and kinematic energies of
stochastic waves are represented by the wave spectrum.

Nowadays, the primary tool for collecting accurate ocean wave statistics is floating wave buoys. However, They
are not practical for a vessel in maneuvering operation since they are fixed at a specific location. Meteorological
satellite can also provide wave statistics, but the resolution is often poor. The x-band wave radar provides in-situ wave
spectrum, but it is expensive to install, requires frequent calibration (Stredulinsky and Thornhill, 2011), and is yet only
equipped on a limited number of vessels. Similar to the wave buoy, the motion responses of a vessel reflect the sea
state conditions and therefore a vessel can also be considered as a large wave buoy. The majority of marine vessels
today are equipped with sufficient sensors that measure the ship motion in 6 degrees of freedom. Therefore, a vessel
is essentially equipped with an environmental condition estimation system (Brodtkorb, Nielsen and Sørensen, 2018).

Estimating the sea state based on ship motions has been a topic of interest in the literature. This task is challenging
due to the operation of the vessel, as well as the inaccurate relationship between waves and the ship motions. Ship
responses, in principle, are non-linearly related to wave excitation. Previous methods usually rely on the response
amplitude operators (RAOs) to relate the waves and the ship motions. RAOs are usually calculated by linearizing
the results from strip theory or computational fluid dynamics and therefore only valid for light and moderate sea
states (Nielsen, 2005). In addition, RAOs might need to be tuned with real-world data. Another possible solution is to
treat the task as a supervised machine learning problem. The fundamental idea is to learn the mapping from measured
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ship motion responses to the actual sea state from historical data. The advantage of data-driven methods is that it does
not require specific knowledge of the vessels to discover the pattern between ship motions and sea states.

Sea state estimation with ship motion responses based on machine learning approaches is usually regarded as a
classification or regression task. The sea state is predefined as multiple categories (Cheng, Li, Ellefsen, Chen, Hildre
and Zhang, 2020) or represented by several integrated wave parameters (Han, Li, Cheng, Skjong and Zhang, 2021a),
e.g., significant wave height and peak period. Pre-defining the sea state categories might be problematic since it is
difficult to use limited categories to cover all possible sea states. The resolution of the estimation results might also be
too low for practical use. The integrated wave parameters are a summary expression of the wave spectrum. These two
methods, either classification or regression, only provide limited information on the sea state. Ideally, a 2D directional
wave spectrum could be estimated to fully describe the sea state. In addition, the 2D directional wave spectrum is
fundamental for operational safety analysis such as extreme value analysis.

In such a context, this work aims to build a machine learning model for estimating the 2D directional wave spectrum
using ship motion responses. The proposed model follows the generative adversarial networks (Goodfellow, Pouget-
Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville and Bengio, 2014) architecture. Two separate deep convolutional
neural networks, an estimation network, and a discrimination network are established. The estimation network uses
the ship motion as input and estimates 2D wave spectrum. The discrimination network tries to classify the 2D wave
spectrum as real or fake. In this way, an adaptive loss is learned and unrealistic wave spectrum will not be tolerated.
Simulation studies show that the proposed method can provide estimates of wave spectrum based on ship motions.
To the best of our knowledge, it is the first time that an adversarial network is used in sea state estimation. The main
contributions of this paper are highlighted as follows:

• A novel model is developed to estimate the 2D directional wave spectrum using the measured ship motion
responses. It can estimate a wide range of sea state conditions.

• Extensive simulation studies are performed to validate the proposed method and comparison with model-based
method is made.

• The proposed model performs well in estimating different types of spectra and is robust regarding noisy mea-
surements.

The remainder of this paper is organized as follows: A literature review on sea state estimation using ship motion
responses is given in Section 2. The proposed adversarial neural network is introduced in Section 3. The experimental
setup and experiment are discussed in Section 4. Section 5 concludes the paper.

2. Literature review
Estimating the sea state information based on the motion responses has been investigated in the literature. Previous

works differ in whether the estimation problem is formulated in the frequency domain or time domain. In the frequency
domain solution, the time series motion responses are first transformed into the frequency domain through fast Fourier
transform or autocorrelation analysis. The RAOs are used to relate the wave spectrum to the motion spectrum. To
obtain the wave spectrum, the fundamental idea is to minimize the difference between the measured ship spectrum
and the calculated ship spectrum (Nielsen, 2006). A wave spectra, e.g., JONSWAP, Bretschneider with the 𝑐𝑜𝑠2𝑠
spreading model, can be assumed. In this way, a nonlinear optimization process is formed, the wave parameters in the
hypothetical wave spectrum can be obtained through optimization techniques (Tannuri, Sparano, Simos and Da Cruz,
2003; Han et al., 2021a). This method is computationally intensive and may not converge since the objective function
is nonlinear and non-convex. A non-parametric approach, in which the wave spectrum is represented in a discrete
frequency-directional domain, can also be applied. The problem is an ill-posed problem and therefore different kinds
of prior are used, e.g., the smoothness of wave spectrum (Iseki and Ohtsu, 2000; Ren, Han, Verma, Dirdal and Skjetne,
2021) and the sparsity of wave spectrum (Ren et al., 2021). These methods can be extended to ships with forward
speed by incorporating the Doppler shift function (Iseki and Ohtsu, 2000). The effectiveness of this method is shown
with a container ship (Nielsen and Dietz, 2020).

For the time domain solution, the focus is on real-time sea state updates obtained from continuous response mea-
surements. A framework based on the Kalman filter is established (Pascoal and Soares, 2009; Pascoal, Perera and
Soares, 2017), in which an irregular wave represented as a number of regular waves. In the Kalman filter framework,
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Figure 1: Schematic illustration of the proposed model for 2D directional wave spectrum estimation using ship motion
responses.

the amplitude and frequency of the regular waves are treated as states. The waves are considered constant between two
discrete time intervals. A similar second-order nonlinear observer is developed to estimate the frequency of wave (Bel-
leter, Galeazzi and Fossen, 2015). In addition, the optimization can be performed directly in the time domain (Nielsen,
Galeazzi and Brodtkorb, 2016). However, the latter two approaches can only estimate a single sinusoid wave.

The above methods are model-based approaches that require a model to relate the wave and the ship motion. Ma-
chine learning is another solution that learns that mapping from measured ship motion responses to the sea state. The
sea states are usually predefined into various categories (Tu, Ge, Choo and Hang, 2018; Cheng et al., 2020) or repre-
sented as several integrated wave parameters (Mak and Düz, 2019; Han, Li, Skjong, Wu and Zhang, 2021b) depending
on whether this task is formulated as a classification task or a regression task. Various machine learning models, e.g.,
multi-layer perceptron, Gaussian process, deep learning models, have been utilized. However, these methods can not
provide a detailed 2D wave spectrum that is usually required in practical applications. Kawai, Kawamura, Okada,
Mitsuyuki and Chen (2021) estimated the 2D wave spectrum using convolutional neural network. The problem is
still considered as a regression problem. They estimated 8 parameters of the Ochi-Hubble-type spectrum from the
neural network, and then reconstructed the 2D wave spectrum. In this paper, no specific form of wave spectrum is
assumed. The focus of this paper is to bridge the gap by developing a machine learning model that estimates the 2D
wave spectrum directly without assuming the structure of wave spectrum.

3. Methodology
The proposed method consists of two separate networks, as outlined in Figure 1. The inputs are the cross spectrum

of the ship motion. The cross spectrum is normalized and then fed into the estimation network to be converted into
a 2D wave spectrum. In this paper, no specific form of wave spectrum is assumed, and the output 2D wave spectrum
from the estimation network is represented as a 36 by 100 matrix. In other words, there are 36 discrete directions and
100 discrete frequencies. The discrimination network takes a 2D wave spectrum as input and distinguishes whether it
is generated from the estimation network or is the actual wave spectrum. In the training phase, the estimation network
tries to generate a realistic wave spectrum while the discrimination network tries to distinguish it. In this way, the
two networks are improved together and the high-order statistics of the output wave spectrum are penalized to force
the estimation network to provide continuous and realistic results. At inference time, the discrimination network is
omitted, and the estimation network is used to output the estimated 2D wave spectrum from ship motion responses.
3.1. Channel-wise normalization

Since the input for the proposed network is the cross-spectrum of the ship motion, the cross-spectrum is assigned
into different channels to form multi-channel 1D inputs. The inputs are then normalized to the range [0, 1] with
Han et al.: Preprint submitted to Elsevier Page 3 of 15
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Figure 2: Examples of augmentation on the spectral inputs.

respect to its channel. Specifically, each channel (each component of the cross-spectrum) maintains its statistics and it
is normalized individually.
3.2. Data augmentation with noise

Data augmentation is a technique for improving the robustness and training of neural networks. The idea is to
simulate various expected variations in the datasets by manipulating the training samples. Since the inputs for the
proposed estimation network is a spectral representation of the motion responses, the augmented spectral signal is
formulated as follow:

𝑃𝑛 = 𝑃 + 𝑃 ⊙ 𝛼

𝛼 ∼  (0, 𝜎2)
𝜎 ∼  (0, 0.1)

(1)

where 𝑃𝑛 and 𝑃 are the augmented and original spectrum, respectively. ⊙ is the element-wise Hadamard product. 
denotes the normal distribution while  denotes the uniform distribution. In this approach, the original spectrum is
augmented randomly in each training epoch since the noise level 𝜎2 is drawn from a distribution. The noise added also
depends on the value of the spectrum. Figure 2 shows two examples of the augmented spectrum.
3.3. Network architectures

Estimation network. The proposed estimation network follows an encoder-decoder structure. In the network,
the input is passed through a series of 1D convolution layers that progressively downsample, to a bottleneck layer,
then the process is reversed, and upsampling is achieved by a series of transposed 2D convolution layers. In this way,
the network takes the 1D data as inputs and outputs a 2D wave spectrum. The network uses modules in the form of
convolution-BatchNorm-ReLu. The ResNet block (He, Zhang, Ren and Sun, 2016) is used in this network since it
provides better performance in many applications. For the output layers, the Sigmoid activation function is applied.

Discrimination network. The discrimination network follows a convolutional neural network structure, in which
the modules in the form of convolution-BatchNorm-LeakyReLu are used. The LeakyReLu activation function is used
since it can stabilize the training (Radford, Metz and Chintala, 2015).

Details of the architectures of the estimation network and discrimination network are presented in Appendix A.
3.4. Adversarial training

A hybrid loss which is a weighted sum of two terms is used. The first is the mean square error that encourages
the estimation model to predict the wave spectrum. The second loss term is based on the adversarial convolutional
network. This loss term is large if the adversarial network can discriminate the output of the estimation network from
the actual wave spectrum. The aim of the adversarial term is to penalize mismatches in the high-order spectral power
value statistics, e.g., the power value of wave spectrum should be smooth in the near region, which is not accessible
by the mean square loss function.

Given a training ship motion responses 𝑥 and a corresponding wave spectrum 𝑦, the estimator 𝐸 and the discrimi-
nator 𝐷 would be competed in a two-player min-max optimization routine:
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Min
𝐸

Max
𝐷

(𝐸,𝐷) = 𝑚𝑠𝑒 (𝐸(𝑥), 𝑦) − 𝜆[𝑏𝑐𝑒(𝐷(𝑦), 1) + 𝑏𝑐𝑒(𝐷(𝐸(𝑥)), 0)] (2)

where 𝑚𝑠𝑒 is the mean square loss, 𝑚𝑠𝑒(�̂�, 𝑧) = |�̂�−𝑧|2. 𝑏𝑐𝑒 is the binary cross-entropy loss, 𝑏𝑐𝑒(�̂�, 𝑧) = −𝑧 log �̂�−
(1 − 𝑧) log(1 − �̂�). 𝜆 is a hyperparameter to balance these two different losses.

The training of the estimation model minimizes the mean square error loss while at the same time trying to fool
the discriminator model. The objective function of the estimation model is:

𝐸 = 𝑚𝑠𝑒 (𝐸(𝑥), 𝑦) − 𝜆𝑏𝑐𝑒(𝐷(𝐸(𝑥)), 0) (3)
In practice, the term −𝑏𝑐𝑒(𝐷(𝑥,𝐸(𝑥)), 0) is replaced by +𝑏𝑐𝑒(𝐷(𝑥,𝐸(𝑥)), 1) (Goodfellow et al., 2014). This

means that the probability that the adversarial model predicts the estimated wave spectrum to be the actual one is
maximized, instead of minimizing the probability that the adversarial model predicts the estimated wave spectrum to
be synthetic.

For the adversarial model, only the binary classification loss is related. Therefore, training the adversarial model
is equal to minimizing the following objective function:

𝐷 = 𝑏𝑐𝑒(𝐷(𝑦), 1) + 𝑏𝑐𝑒(𝐷(𝐸(𝑥)), 0) (4)
3.5. Implementation details

The proposed model is implemented in Pytorch. To optimize the proposed network, we alternate between one
gradient descent step on 𝐸, then one step on 𝐷. The Adam solver (Kingma and Ba, 2014) with minibatch is used
to minimize the objective function for 𝐸 and 𝐷. The minibatch size is set as 256 in the training procedure. For the
estimation network 𝐸, a learning rate of 1×10−4 with 𝑙2 regularization term of 1×10−3 is used. For the discriminating
network 𝐷, a learning rate of 1 × 10−5 with 𝑙2 regularization term of 1 × 10−3 is used. The hyperparameter 𝜆 is set as
0.01 to balance the losses.

4. Experimental setup
4.1. Data

The wave spectrum-ship motion pairs are generated from simulations. In the simulations, a double-peak wave
spectrum (Hogben and Cobb, 1986) is adopted since it covers a wide range of possible spectrum shapes and it models
both the wind waves and the swell waves. The directional wave spectrum is given by:

𝐸𝑔(𝜔, 𝜃) =
1
4

2
∑

𝑖=1

(

((4𝜆𝑖 + 1)∕4)𝜔4
𝑚,𝑖

)𝜆𝑖

Γ(𝜆𝑖)

𝐻2
𝑠,𝑖

𝜔4𝜆𝑖+1
𝐴(𝑠𝑖) × cos2𝑠𝑖 (

𝜃 − 𝜃𝑚,𝑖
2

) exp[−
4𝜆𝑖 + 1

4
(
𝜔𝑚,𝑖

𝜔
)4] (5)

where 𝐻𝑠 is the significant wave height, 𝜃𝑚 is the mean wave direction and 𝜔𝑚 is the model angular frequency. 𝑠 and
𝜆 are two shape parameters. Γ demotes the Gamma function. The function 𝐴(𝑠) is defined as:

𝐴(𝑠) =
22𝑠−1Γ2(𝑠 + 1)
𝜋Γ(2𝑠 + 1)

(6)

Note that the above wave spectrum model 𝐸𝑔(𝜔, 𝜃) is only used to generate the simulation data for this study and
will not be used in our estimation network model. NTNU’s research vessel R/V Gunnerus with a length between
perpendiculars of 28.9m, a breadth of 9.6m, and a draught of 2.7m is used as the example vessel (NTNU, 2021). The
complex-valued response amplitude operators (RAOs) of the vessel are obtained from ShipX (Fathi, 2004). The ship
motion cross-spectra is then calculated as:
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Table 1
Sampling range for the wave spectrum parameters (𝑖 = 1, 2)

𝐻𝑠,𝑖 𝜔𝑚,𝑖 𝜃𝑚,𝑖 𝑠 𝜆𝑖
[0.5, 4] [(1/8)𝜋, (2/5)𝜋] [0, 2𝜋] [1, 26] [0.8, 1.5]

𝑆𝑖𝑗(𝜔) = ∫

𝜋

−𝜋
Φ𝑖(𝜔, 𝜃)Φ𝑗(𝜔, 𝜃)𝐸𝑔(𝜔, 𝜃)𝑑𝜃 (7)

where Φ(𝜔, 𝜃) is the complex-value transfer function and Φ(𝜔, 𝜃) is its complex conjugate.
In this study, the wave spectrum is discretized into a 36×100 grid after generating from Eq. (5), where 36 different

headings with interval of 10◦ and 100 angular frequencies from 0.2𝑟𝑎𝑑∕𝑠 to 3𝑟𝑎𝑑∕𝑠 is considered. It is equal to the
output wave spectrum shape from our estimation network, and therefore validation can be easily performed. Three
corresponding ship motions, sway velocity, pitch, heave, are used. This results in 9 power spectra (6 real part and
3 imaginary part) and therefore the size of response spectrum is 9 × 100. The used wave spectrum consists of 10
parameters [𝐻𝑠,1, 𝜔𝑚,1, 𝜃𝑚,1, 𝑠1, 𝜆1,𝐻𝑠,2, 𝜔𝑚,2, 𝜃𝑚,2, 𝑠2, 𝜆2]. These parameters are sampled randomly to generate 1000
different wave spectrum, the sampling range is described in Table 1. Note that 𝑠 is an integer. The corresponding ship
motion cross spectrum is then calculated, forming a dataset with 1000 wave spectrum-ship motion pairs. The dataset
is then divided into 500 as training set and the rest 500 as test set. The reason why 500 samples are used in the test set
is because these samples can cover the wave space of interest.
4.2. Time series generation

Ship motions, in principle, are measured in the time domain. To generate time series of ship motions under a
specific wave spectrum, we follow the procedure in (St Dinis and Pierson Jr, 1953). The time-domain ship motion
response 𝑅(𝑡) can be expressed as follow:

𝑅(𝑡) =
𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
𝑎𝑚𝑛|Φ(𝜔𝑚, 𝜃𝑛)| cos

(

𝜔𝑚 + 𝜖𝑚𝑛
)

𝑎𝑚𝑛 =
√

2𝐸(𝜔𝑚, 𝜃𝑛)Δ𝜔𝑚Δ𝜃𝑛

𝜖𝑚𝑛 = arctan
(

ℑ[Φ(𝜔𝑚, 𝜃𝑛)]
ℜ[Φ(𝜔𝑚, 𝜃𝑛)]

)

(8)

where 𝑀 is the discrete number of wave frequencies and 𝑁 is the discrete number of headings. 𝜙 denotes the complex
transfer function and 𝐸 is the wave spectrum. Δ𝜔𝑚 and Δ𝜃𝑛 are the increments of the discrete wave frequencies and
the discrete headings. It is noteworthy that for an equidistant frequency discretization, the time series response 𝑅(𝑡)
will repeat itself after a period of 2𝜋∕Δ𝜔. A simple way to handle this problem is to use non-equidistant frequency
discretization:

𝜔𝑖+1 = 𝜔𝑖 + 𝑐 ⋅ 𝑝𝑖 (9)
where 𝑐 is a small factor and it is chosen as 0.01 while 𝑝𝑖 is a stochastic variable with values between 0 and 1. We
generate 1800 seconds long time series responses for sway velocity, pitch, and heave.

To simulate the noisy measurements, Gaussian white noise is then added to the time series motion response. The
signal-to-noise ratio (SNR) is used in this study to measure the noise level. The SNR is defined in eq. (10), where
𝜎𝑠𝑖𝑔𝑛𝑎𝑙 and 𝜎𝑛𝑜𝑖𝑠𝑒 is the standard deviation of the measured motion response and noise, respectively.

𝑆𝑁𝑅 =
𝜎2𝑠𝑖𝑔𝑛𝑎𝑙
𝜎2𝑛𝑜𝑖𝑠𝑒

(10)
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Figure 3: Distribution of the integrated wave parameters in the generated dataset.
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Figure 4: A sample from the generated dataset. The left upper graph is the 2D wave spectrum and its integrated wave
parameters. The right upper graphs are the cross spectrum of motion responses. The lower three graphs are the time
series data of these three ship motions.

4.3. Integrated wave parameters
The overall outcome of the proposed model is given by a directional wave spectrum 𝐸(𝜔, 𝜃). For comparison, the

integrated wave parameters are then evaluated. The spectral moment of order 𝑛 is defined as (Faltinsen, 1993):

𝑚𝑛 = ∬ 𝜔𝑛𝐸(𝜔, 𝜃)𝑑𝜔𝑑𝜃 (11)

Thus, the significant wave height 𝐻𝑠 and the mean wave period 𝑇𝑚 can be calculated as follows:

𝐻𝑠 = 4
√

𝑚0

𝑇𝑚 = 𝑚−1∕𝑚0
(12)

The mean wave direction 𝐷𝑚 and the mean directional spread 𝜎𝑠 is given by:
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𝐷𝑚 = arctan(𝑑∕𝑐)

𝜎𝑠 =
(

2 − 2
𝑚0

√

𝑑2 + 𝑐2
)0.5 (13)

where 𝑑 and 𝑐 are defined as:

𝑑 = ∬ 𝐸(𝜔, 𝜃) sin 𝜃𝑑𝜔𝑑𝜃

𝑐 = ∬ 𝐸(𝜔, 𝜃) cos 𝜃𝑑𝜔𝑑𝜃
(14)

The mean directional spread 𝜎𝑠 is a parameter representing the spread of the spectrum. Specifically, 𝜎𝑠 decreases
as the shape parameter 𝑠 increase in the cos2s spreading function. The smaller the 𝜎𝑠, the directional spread is broader.
The wave spreads equally in all directions when 𝜎𝑠 is close to 1.4.
4.4. Description on the generated data

Figure 3 shows the distribution of the integrated wave parameters of the generated dataset. The significant wave
height 𝐻𝑠 ranges from around 0.7𝑚 to 5.3𝑚. The mean wave period 𝑇𝑚 is around 2𝑠 to 14𝑠 while the mean directional
spread 𝜎𝑠 is around 0.2 to 1.4. The mean wave direction 𝐷𝑚 is distributed uniformly from 0◦ to 360◦. This dataset
covers a wide range of sea states that the vessel might encounter in the real world.

Figure 4 presents a sample from the dataset. The sea state is described as a 2D wave spectrum. The integrated
wave parameters 𝐻𝑠, 𝑇𝑚, 𝐷𝑚, 𝜎𝑠 are the summation of the 2D wave spectrum. The cross spectrum of motion responses
as well as the time series of the ship motion is presented. In the cross spectrum, the subscripts 1, 2, 3 denotes sway
velocity, pitch, heave, respectively. The cross spectrum of motion responses will be used as the input and the target is
to estimate the 2D wave spectrum.
4.5. Evaluation metrics

To evaluate and compare the performance of the proposed model, the mean absolute error (MAE) is used:

𝑀𝐴𝐸 = 1
𝑘

𝑘
∑

𝑖=1
|�̂�𝑖 − 𝑦𝑖| (15)

where 𝑘 is the number of samples, �̂� and 𝑦 is the estimated and actual value, respectively. In this paper, the MAE of
the discrete wave spectrum and the MAE of the integrated wave parameters are evaluated. For abbreviation, the MAE
of the wave spectrum is referred to as the pixel error in the rest of the paper. For mean wave direction, Eq. (15) is
modified into 𝑀𝐴𝐸 = 1

𝑘
∑𝑘

𝑖=1min
(

|�̂�𝑖 − 𝑦𝑖|, 360 − |�̂�𝑖 − 𝑦𝑖|
) to consider that 0◦ and 360◦ are the same.

5. Experimental results
In this section, the performance of the proposed method will be evaluated. Two baseline models are implemented

for comparison:
• Bayesian wave buoy analogy method: This method is a model-based method for directional wave spectrum

estimation using ship motion responses. The wave spectrum is represented in a discrete frequency-directional
domain. The fundamental idea is to minimize the difference between the measured and the calculated spectrum.
However, this forms an ill-posed inverse problem, and therefore smooth prior is introduced to solve the problem
in the Bayesian framework. In this paper, a two hyperparameters method (Nielsen, 2008) is used. The two
hyperparameters are responsible for the smooth prior of wave spectrum in the discrete frequency and discrete
direction, respectively. Details of this method is described in Nielsen (2008).
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Figure 5: Examples of contour plots of the estimated directional wave spectrum based on perfect motion spectrum.

Table 2
MAE of different methods on the test set

Methods Pixel Integrated wave parameters
𝐻𝑠(𝑚) 𝑇𝑚(𝑠) 𝐷𝑚(◦) 𝜎𝑠

WBA 0.033 0.606 0.573 12.88 0.234
Proposed w/o AT 0.043 1.265 0.952 18.80 0.353
Proposed w AT 0.018 0.239 0.361 13.95 0.153

• Neural network model without adversarial training: This model is the estimation network proposed in this
paper. The discriminator network is neglected by setting the hyperparameter 𝜆 as 0. This model is implemented
to show the effect of adversarial training.

In the following, the Bayesian wave buoy analogy method is denoted as “WBA”, the neural network model without
adversarial training is denoted as “Proposed w/o AT”, and the proposed neural network model with adversarial training
is denoted as “Proposed w AT”.
5.1. Experiment with perfect response spectrum

In this part, the perfect measured response cross spectrum is used for validation. Figure 5 presents the estimated
directional wave spectrum from three random samples in the test set. The colors of values larger than the color bar upper
limits remain the same as that of the upper limit. It is shown that the Bayesian WBA method provides a similar shape
of the spectrum as the actual ones but the values are less accurate. The reason is that the performance of this method
depends on the two hyperparameters and the initial guess of the wave spectrum. In this paper, several combinations
Han et al.: Preprint submitted to Elsevier Page 9 of 15
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Figure 6: Actual and estimated integrated wave parameters for perfect response spectrum.

0°

45°

90°

135°

180°

225°

270°

315°

0.51.01.52.02.5

Actual

0°

45°

90°

135°

180°

225°

270°

315°

0.51.01.52.02.5

WBA

0°

45°

90°

135°

180°

225°

270°

315°

0.51.01.52.02.5

Proposed w/o AT

0°

45°

90°

135°

180°

225°

270°

315°

0.51.01.52.02.5

Proposed w AT

0°

45°

90°

135°

180°

225°

270°

315°

0.51.01.52.02.5

0°

45°

90°

135°

180°

225°

270°

315°

0.51.01.52.02.5

0°

45°

90°

135°

180°

225°

270°

315°

0.51.01.52.02.5

0°

45°

90°

135°

180°

225°

270°

315°

0.51.01.52.02.5

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.5

1.0

1.5

2.0

Figure 7: Examples of contour plots of the estimated directional wave spectrum for JONSWAP-type wave spectrum.

of hyperparameters and initial guesses are used to yield the best-estimated spectrum. For the neural network model,
the model without adversarial training clearly presents spurious lines in the wave spectrum. Even though the shape
of the estimated wave spectrum is similar to the actual wave spectrum, it has high total wave energy. The model with
adversarial training better enforces the spatial consistency of the wave spectrum. It also smooths and strengthens the
high energy density area of the wave spectrum.

Table 2 summarizes the overall performance in terms of MAE. Compared with the neural network model without
adversarial training, the error of the WBA method in terms of pixel-level and integrated wave parameters is relatively
low. By incorporating adversarial training, these errors are reduced significantly. In this comparison, our model with
adversarial training has the smallest error.

Figure 6 shows the correlation between the actual and estimated integrated wave parameters of the test data. The
black line denotes that the estimated parameter is equal to the actual one. It is observed that both methods provides
relatively accurate results. The WBA tends to provide lower estimated 𝐻𝑠 than the actual one and it is not that accurate
for 𝜎. The proposed method with adversarial training provides more accurate estimation in terms of 𝐻𝑠 and 𝜎. How-
ever, the proposed network have low variability in terms of estimating 𝑇𝑚 and 𝐷𝑚 for most samples, some of which
are quite different from actual estimates.
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Figure 8: MAE of the integrated wave parameters for the JONSWAP and Torsethaugen wave spectrum.
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Figure 9: Actual and estimated integrated wave parameters for JONSWAP and Torsethaugen spectrum (proposed w AT).

5.2. Generalization to JONSWAP-type wave spectrum
As presented in Section 4.1, the training data is generated through a double Pierson-Moskowitz type wave spectrum.

This type of spectrum might not cover the possible wave spectrum. Therefore, the zero-shot learning ability of this
model to other types of wave spectrum is investigated.

In this part, the generalization ability of the model is evaluated with the JONSWAP-type wave spectrum. The
JONSWAP type spectrum has a more pronounced peak in the spectrum than the Pierson-Moskowitz (PM) type wave
spectrum. The JONSWAP wave spectrum and the Torsethaugen wave spectrum (a double peak JONSWAP-type spec-
trum) are used to generate two extra test sets with 100 samples, respectively. The trained model is then used to estimate
the 2D wave spectrum. Figure 7 shows the estimated 2D wave spectrum from two examples in the two extra test sets,
respectively. The proposed model presents a less narrow spectrum than the actual one, which might be due to the
Pierson-Moskowitz type wave spectrum used in the training data. Nonetheless, the proposed model still provides a
reasonable estimate.

Figure 8 summarizes the MAE of𝐻𝑠, 𝑇𝑚,𝐷𝑚, 𝜎 for the JONSWAP and Torsethaugen wave spectrum. The proposed
model achieves the lowest deviation among these three methods. It demonstrates that the proposed model successfully
captures the relation between ship motion and wave spectrum, therefore, it is able to estimate the type of wave spectrum
not present in the training data.

Figure 9 shows that correlation of actual and estimated integrated wave parameters from JONSWAP and Torsethau-
gen wave spectrum. It is shown than the proposed model provides accurate estimation in terms of 𝐻𝑠, 𝑇𝑚, and 𝐷𝑚for both wave spectrum. However, the model gives higher 𝜎 than the actual one. The reason might be that for the
training data samples a broader range of directional spreading functions than the test data here. Specifically, the 𝑠
parameter in the cos2s spreading function is sampled in the range of [1, 26] for the training data while [5, 26] for the
JONSWAP-type spectrum, which results in a smaller range of 𝜎. The model can not adjust to the distribution shift
since it is in zero-shot setting.
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Figure 10: Examples of contour plots of the estimated directional wave spectrum with different SNR levels.
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Figure 11: MAE of the integrated wave parameters for the motion responses under different SNR levels.

5.3. Effect of noisy ship motion measurement
Ship motions are measured in the time domain. In order to use the proposed approach, the ship motion in the time

domain must be transformed into the frequency domain through cross spectrum analysis. The cross spectrum analysis
typically is performed through fast Fourier transform or multivariate autoregressive modeling, which would inevitably
introduce a certain deviation from the actual motion response spectrum. In addition, noise in the measured ship motion
would introduce a certain degree of error. In this section, the effect of cross spectrum analysis and the noises in ship
motion on the estimated results will be evaluated. The cross spectrum analysis in this paper is performed through the
Welch method. White noise is added and four different SNR levels, 10, 5, 2, 1, are investigated. For simplification,
the time series ship motion without noise added is denoted as “SNR=+∞”. In “SNR=+∞”, only the effect of cross
spectrum analysis is included.

Figure 10 presents an example of an estimated 2D wave spectrum under different SNR levels. From the estimates
for the perfect response spectrum and SNR=+∞, the power value and spectral shape are changed due to the cross
spectrum analysis. As the SNR level decreases, the quality of the estimates, usually but not definitely, also decreases.
In general, the estimated 2D wave spectrum is relatively close to the actual wave spectrum.

Figure 11 compares the MAE of integrated wave parameters in WBA and the proposed model under different SNR
levels. The proposed model is less sensitive to noise than the WBA. The WBA method shows low error in 𝐷𝑚 while
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the proposed model has low error in 𝐻𝑠, 𝑇𝑚 and 𝜎.

6. Conclusion
Estimating the sea state based on the measured ship motion response is a complicated and arduous task. Previous

machine learning approaches can not capture the directional wave spectrum. This paper presents an estimation net-
work and discriminant network based on convolutional neural networks. The high-order inconsistencies of the wave
spectrum from the estimation network are penalized by the estimation network, thereby forcing the estimation network
to produce accurate and realistic results. Simulation studies show that the proposed model guarantees the smoothness
of the wave spectrum and provides accurate estimation results. The generalizability of the method is demonstrated by
estimating the JONSWAP-type spectrum that is not in the training set. Comparison with the model-based Bayesian
WBA approach indicates that the proposed model is more robust to measurement noises.

Nonetheless, the proposed method suffers from the typical drawback of the machine learning model, e.g., a large
amount of data is required. The necessity of collecting wave spectrum makes it even harder to collect in real-world
scenarios. In addition, the training of adversarial networks might be unstable and requires careful tuning. Future works
will focus on transferring the model trained in simulated environments to the real world, as well as including the vessels
with advancing speeds.

Appendix
A. Network architectures

The estimation network and discrimination network architectures used in this case are detailed in Figure A.1a
and Figure A.1b, respectively. Convolutional layers are denoted as “Conv” while transposed convolutional layers are
denoted as “TranConv”. The right of the figure suggests the signal dimension in terms of ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑙𝑒𝑛𝑔𝑡ℎ × 𝑐ℎ𝑎𝑛𝑛𝑒𝑙.
For instance, the inputs for the estimation network are 9 components of the 1D motion spectrum (1 × 100 × 9) and the
output is the 2D wave spectrum (36 × 100 × 1).
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Figure A.1: Architectures of the estimation and discrimination network.

Kawai, T., Kawamura, Y., Okada, T., Mitsuyuki, T., Chen, X., 2021. Sea state estimation using monitoring data by convolutional neural network
(cnn). Journal of Marine Science and Technology 26, 947–962.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 .
Mak, B., Düz, B., 2019. Ship as a wave buoy: Estimating relative wave direction from in-service ship motion measurements using machine learning,

in: International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers. p. V009T13A043.
Nielsen, U.D., 2005. Estimation of directional wave spectra from measured ship responses, in: 12th International Congress of the International

Maritime Association of the Mediterranean: Maritime Transportation and Exploitation of Ocean and Coastal Resources, pp. 1103–1112.
Nielsen, U.D., 2006. Estimations of on-site directional wave spectra from measured ship responses. Marine Structures 19, 33–69.
Nielsen, U.D., 2008. Introducing two hyperparameters in bayesian estimation of wave spectra. Probabilistic Engineering Mechanics 23, 84–94.
Nielsen, U.D., Dietz, J., 2020. Ocean wave spectrum estimation using measured vessel motions from an in-service container ship. Marine Structures

69, 102682.
Nielsen, U.D., Galeazzi, R., Brodtkorb, A.H., 2016. Evaluation of shipboard wave estimation techniques through model-scale experiments, in:

OCEANS 2016-Shanghai, IEEE. pp. 1–8.
NTNU, 2021. Research vessel r/v gunnerus. URL: https://www.ntnu.edu/oceans/gunnerus.
Ochi, M.K., 2005. Ocean waves: the stochastic approach. 6, Cambridge University Press.
Pascoal, R., Perera, L.P., Soares, C.G., 2017. Estimation of directional sea spectra from ship motions in sea trials. Ocean Engineering 132, 126–137.

Han et al.: Preprint submitted to Elsevier Page 14 of 15

https://www.ntnu.edu/oceans/gunnerus


Wave spectrum estimation with adversarial networks

Pascoal, R., Soares, C.G., 2009. Kalman filtering of vessel motions for ocean wave directional spectrum estimation. Ocean Engineering 36, 477–488.
Radford, A., Metz, L., Chintala, S., 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv

preprint arXiv:1511.06434 .
Ren, Z., Han, X., Verma, A.S., Dirdal, J.A., Skjetne, R., 2021. Sea state estimation based on vessel motion responses: Improved smoothness and

robustness using bézier surface and l1 optimization. Marine Structures 76, 102904.
St Dinis, M., Pierson Jr, W.J., 1953. On the motions of ships in confused seas. Technical Report. NEW YORK UNIV BRONX SCHOOL OF

ENGINEERING AND SCIENCE.
Stredulinsky, D.C., Thornhill, E.M., 2011. Ship motion and wave radar data fusion for shipboard wave measurement. Journal of ship research 55.
Tannuri, E.A., Sparano, J.V., Simos, A.N., Da Cruz, J.J., 2003. Estimating directional wave spectrum based on stationary ship motion measurements.

Applied Ocean Research 25, 243–261.
Tu, F., Ge, S.S., Choo, Y.S., Hang, C.C., 2018. Sea state identification based on vessel motion response learning via multi-layer classifiers. Ocean

Engineering 147, 318–332.

Han et al.: Preprint submitted to Elsevier Page 15 of 15


