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A B S T R A C T

This article addresses a relocation and recharging problem faced by modern carsharing operators who manage
a fleet of electric vehicles. As customers utilize the fleet, batteries are depleted and vehicles are possibly left in
low-demand locations. Consequently, carsharing operators need to arrange the charging of depleted batteries
and the relocation of poorly positioned vehicles in order to better meet the demand of the customers. Most
of these activities require the intervention of dedicated staff. This article provides a framework for planning
recharging and relocation activities based on periodically routing and scheduling a number of dedicated staff
as a result of updated system information. The periodic planning problem is formulated as a Mixed Integer
Linear Program and solved in a rolling-horizon fashion. For the solution of the problem a fast Adaptive Large
Neighborhood Search heuristic is proposed. Tests based on data for the city of Oslo show that the heuristic
can deliver, in reasonable computational time, high quality solutions for instances compatible with real-life
planning problems.
1. Introduction

Carsharing systems, which have existed in various forms for several
decades, have recently gained traction due to the enabling power
of internet technology and the increased awareness regarding envi-
ronmental issues. A carsharing system is owned and maintained by
a Carsharing Organization (CSO). First-time users typically sign up
through a website or a mobile application to get access to the system,
possibly paying a subscription fee. Users already in the system can then
locate, possibly reserve, and unlock the available cars typically via a
mobile application, and pay based on the time of usage (e.g., a per-
minute fee), sometimes in addition to a drop-off fee based on the zone
of the city where the car is returned (Shaheen et al., 2015; Hansen
and Pantuso, 2018; Pantuso, 2020). Modern carsharing services mainly
exist in two forms. Station-based systems restrict users to pick up and
return cars at available stations. These can be further distinguished into
one- and two-way systems, which, respectively allow and forbid the
user to return the car to a station different from the pick up station.
Free-floating systems do not necessarily include stations and cars can
be picked up and returned at any common parking spot within the
specified business area.

Modern carsharing systems give rise to new and unexplored plan-
ning problems which are attracting the interest of the operations
research community. At different strategic levels, CSOs need to de-
cide, for example, fleet size (George and Xia, 2011; Cepolina and
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Farina, 2012), station locations (Weikl and Bogenberger, 2012), trip-
booking scheme (Correia et al., 2014; Kaspi et al., 2014), and pricing
scheme (Hansen and Pantuso, 2018; Pantuso, 2020). At the opera-
tional level, CSOs deal with recharging/refueling, maintenance and,
particularly in one-way systems, with relocating vehicles in order to
better meet transportation demand. In fact, asymmetric patterns in
transportation demand cause cars to remain parked in low-demand
zones with consequent under-supply in high-demand zones. In some
cases, this phenomenon is contrasted with pricing-based initiatives. As
an example, in the city of Milan, the CSO Share-Now adopts a pricing
scheme which charges users for parking in unfavorable zones of the
city, Share-Now (2021a). However, staff-based relocation of cars is
often unavoidable. This is particularly true for free-floating systems
operating a fleet of (at least some) electric vehicles (example of these
are Share-Now in Copenhagen, Share-Now (2021b) and Vy Bybil in
Oslo, Vy (2021)). In fact, since users are not required to return cars
at charging stations, the CSO’s staff often needs to ensure recharging.

In this paper we introduce the Dynamic Electric Carsharing Relocation
Problem (DE-CRP) for one-way, either free-floating or station-based,
systems. A solution to the problem consists of: (i) an assignment of
cars with low battery level to charging stations, (ii) an assignment of
cars in need for relocation to under-supplied zones/stations, (iii) an
assignment of car-moves to employees, and (iv) routes and schedules
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for the service employees. The problem is dynamic in the sense that
new information about the distribution of cars and their state of charge
is received continuously. In addition, transportation demand changes
in a stochastic way during the business hours or planning horizon. The
overall goal of the problem is to maximize profits by providing a
suitable distribution of vehicles. This is consistent with the business
objective of private CSOs.

The contributions of this paper can be stated as follows.

– First, we formalize the DE-CRP and offer a rolling-horizon so-
lution procedure, based on periodic on-line re-optimization of
charging and relocation activities as the landscape of the problem
changes during the planning horizon.

– Second, we provide a Mixed Integer Programming (MIP) formula-
tion for the periodic re-optimization problem. Compared with the
available literature, the models takes a different approach with
respect to modeling relocation tasks. Particularly, it is based on
a-priori generated possible car-moves, which are then assigned
to available employees. Preliminary results from Hellem et al.
(2018) show that this formulation is superior to a traditional
arc-flow formulation. The re-optimization problem can be seen
as a subproblem of the DE-CRP and is referred to as the Electric
Carsharing Relocation Problem (E-CRP).

– Third, we provide an efficient solution method based on an
Adaptive Large Neighborhood Search (ALNS) for the re-optimization
problem which is able to solve large-scale instances of the prob-
lem within reasonable computational time.

– Finally, we test the proposed solution method in a simulation
framework based on real-time traffic data from Oslo, Norway.

he methodology can adapt to both station-based and free-floating
ystems. In the latter case a discretization of the business area into
ones is necessary, as exemplified in our case study. The remainder
f this paper is organized as follows. In Section 2, the DE-CRP is
iscussed in conjunction with the related literature. In Section 3, the
E-CRP is formally introduced. A solution method for the DE-CRP,
ased on periodic re-optimization of relocation activities is presented in
ection 4. Section 5 introduces the Electric Carsharing Relocation Problem
E-CRP) and the ALNS heuristic for solving it. The simulation used to
est the solution method as well as the test instances are described in
ection 6. A computational study in presented in Section 7 and, finally,
onclusions are drawn in Section 8. The Appendix contains a Mixed
nteger Linear Programming formulation of the E-CRP.

. Literature overview

A variety of strategies have been proposed to address the reloca-
ion of vehicles. The great majority of the studies focus on station-
ased systems. Barth and Todd (1999) examine a station-based electric
arsharing system through a discrete-event simulation model which
ncludes a number of heuristic algorithms to determine when and how a
elocation must happen (i.e., how many vehicles to move from a station
o another). Kek et al. (2009) also consider staff-based relocations in
simulation model. In addition, the authors propose an optimization
odel which allocates staff to relocation activities. The scope of the

ptimization model is to minimize the total relocation cost. Jorge et al.
2014) propose an optimization model to determine the number of
ars to relocate between pairs of stations. The model is also tested
n a simulation framework. Boyacı et al. (2015) take into account
taff-based relocations in an optimization model that determines the
ptimal fleet size, number of stations, and their locations in one-way
tation- and reservation-based car-sharing systems. Boyacı et al. (2017)
ropose a multi-objective MIP to determine the optimal temporal and
patial distribution of vehicles in stations and also the personnel re-
ponsible for the relocation. Nair and Miller-Hooks (2011) propose a
tochastic MIP involving joint chance constraints which generates least-
ost relocation plans such that a proportion of all short-term demand
2

is met. Brandstätter et al. (2016) provide a broader overview of the
methods available for station-based systems, such as the problem of
finding optimal locations and sizes for charging stations as studied
in Brandstätter et al. (2020).

A number of studies add a further level of planning detail, and
consider also the routing of the relocation staff. Bruglieri et al. (2014)
consider the relocation problem for a fleet of electric vehicles in one-
way station-based systems. The authors propose the use of staff travel-
ing by means of folding bicycles that can be loaded into the trunk of
the electric vehicle to relocate. The authors refer to this problem as the
Electric Vehicle Relocation Problem (E-VReP). A solution to the E-VReP
provides the routing and scheduling of each worker employed. Bruglieri
et al. (2017) expand the E-VReP by introducing the costs related to
using repositioning staff and the revenue associated with each relo-
cation request satisfied, and thus seek to maximize the total profit.
Recently, Bruglieri et al. (2019) propose an Adaptive Large Neighbor-
hood Search heuristic to solve large instances of the problem. Gambella
et al. (2018) present two models for the relocation problem, including
staff routing, one during operating hours maximizing the profit of re-
locating cars, and one for non-operating hours maximizing the level of
the most depleted battery. Ait-Ouahmed et al. (2018) also consider the
joint routing of staff and vehicles, and propose a Tabu Search heuristic
that first considers only relocations of cars to meet the demand, and
then assigns service employees to the relocations found in the first
phase. Finally, Wang et al. (2019) propose a method to determine the
number of vehicles needed at each station, the relocations to perform
accordingly, and how relocations are allocated to the available staff.
The determination of the necessary vehicle balance at each charging
station is based on historical data and on the computation of a threshold
which ensures that the probability of the station running out of cars
in a give time horizon is sufficiently low. Following, an optimization
method determines which relocations to perform and how these are
allocated to the available staff.

The literature concerning free-floating systems is more sparse. Kor-
tum and Machemehl (2012) propose a procedure for the relocation of
cars. After an initial allocation, vehicles are moved from one zone to an-
other according to relative levels of demand. The procedure stops when
there is no unmet demand in the entire system or when the vehicles
end in a zone with no demand to carry it into another zone. Weikl and
Bogenberger (2015) introduce a relocation model for systems with both
conventional and electric vehicles. In case of imbalances, the model
is able to recommend profit-maximizing car relocations. Relocations
are combined with the unplugging and recharging of electric vehicles
and the refueling of conventional vehicles. Both Weikl and Bogenberger
(2015) and Kortum and Machemehl (2012) partition the operating area
into zones, which basically transforms the system into a station-based
system.

Our work shares similarities with available studies. For example,
similarly to Bruglieri et al. (2014, 2017, 2019), we assume that ser-
vice employees travel by folding bikes or public transport in-between
relocating cars and, similarly to Weikl and Bogenberger (2015), we
combine recharging and maintenance activities with relocation. In
addition, in this paper we advance the state-of-the-art by means of
the following additions. First, we simultaneously address both the
routing of the employees (as in, e.g., Bruglieri et al. (2014), Gambella
et al. (2018), Ait-Ouahmed et al. (2018) and Wang et al. (2019)) and
joint relocation and recharging decisions (as in Weikl and Bogenberger
(2015)). The state-of-charge of the vehicles is also taken into account
in Wang et al. (2019). The authors ensure that the relocation moves are
feasible with respect to the state-of-charge. However, the authors do
not address recharging decisions. In addition, the method we propose
is tailored for free-floating systems, and as such does not require the
detailed information at the station-level used in the method proposed
by Wang et al. (2019), but rather information at the level of geograph-
ical zones. Second, we propose an alternative formulation based on

a-priori defined car-moves. In contrast, in Bruglieri et al. (2019) the
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problem is based on pick-up and delivery requests, and in Ait-Ouahmed
et al. (2018) solutions are represented using customer demands and the
corresponding relocations needed to fulfill them. The formulation based
on car-moves can potentially reduce the search space and offer better
scalability. Finally, we propose a framework for explicitly addressing
a dynamic problem where new information is received continuously
through the planning horizon, providing a closer representation of the
actual decision process of real-world carsharing operators.

The DE-CRP shares characteristics with Dynamic Vehicle Routing
Problems (DVRP). In the definition of Psaraftis et al. (2016) a VRP is
dynamic if the input of the problem is received and updated concurrently
ith the determination of the route, thus showing an evident parallel
ith the DE-CRP. The interest for DVRPs has increased in the recent
ears, with 51 out of the total 117 published after 2011 (Psaraftis et al.,
016). Particularly, Ulmer et al. (2017) present a Markov Decision
rocess (MDP) framework for DVRPs which generalizes the previous
ork of Thomas (2007) and Secomandi and Margot (2009). They

how how a route-based MDP can be used to model a DVRP while
t the same time being closely coupled with solution methods that
ptimize iteratively. However, MDP models suffer excessively the curse
f dimensionality, as the state-space tends to become too large for
eal-life-size instances. In fact, most solution methods solve the DVRP
sing periodic replanning in a rolling-horizon framework. In this case, a

static vehicle routing problem (VRP) is used for periodically replanning
over portions of the planning horizon as input data is updated. As an
example, Chen and Xu (2006) solve a DVRP with hard time windows
using fixed intervals between consecutive replanning. In Kilby et al.
(1998) replanning is triggered when new demand arrives. Yang et al.
(2002) show how the framework can be used in combination with a
variety of solution methods for the underlying static VRP, including
both heuristics and exact optimization methods. In this paper we also
propose a solution method based on periodic replanning for portions of
the planning horizon.

3. Problem description

In the Dynamic Electric Carsharing Relocation Problem (DE-CRP),
we consider a CSO managing a fleet of electric cars in a car-sharing
service over the entire day (24 h). The positions and charging states
of the cars change throughout the day as a result of the users’ driving
activities. The demand of shared cars in the different areas of the city
also varies over the day. An area of the city may correspond with a well-
defined geographical zone in free-floating systems (as assumed in the
rest of this article) or with a specific station in station-based systems. To
ensure continuity of the service and a profitable distribution of cars, the
CSO needs to charge cars with too low battery levels, perform necessary
maintenance, and relocate cars in order to better meet demand. For
these activities, the CSO uses dedicated service employees.

The service employees use public transport or folding bikes that
can fit in the trunk of a car to reach cars subject to relocation. Cars
subject to relocation are those in areas with an excess of available
cars, or those in need of charging. Upon reaching a car, the employee
performs necessary small maintenance tasks and then moves the car,
corresponding to driving it to a charging station if its battery level
is below a given threshold, or relocating it to a deficit area that has
fewer cars than needed at the given time of the day. Once the car has
been moved, either to a charging station and/or to a deficit area, the
employee travels to another car in need of intervention.

The decision process concerns the service employees. When an
employee arrives at a car, a decision is made about where it should
be relocated, and when the car arrives at its destination, the decision
is to which car the employee should go to next.

Therefore, we define the DE-CRP as the problem of determining:
(i) the assignment of cars in need of charging to available charging
stations, (ii) the assignment of cars in areas with an excess of available
cars to deficit areas, (iii) the assignment of employees to car-moves,
3

that is the relocation of cars from their current position to their assigned
charging stations or to deficit areas, and (iv) routes and schedules for
the activities of the service employees. A route consists of relocations
of cars and travels between relocation activities. A relocation plan,
consisting of the above mentioned decisions, is required for the entire
day, and activities are performed as the system is perturbed by users’
activities. The scope of the CSO is that of performing these activities
such that profits are maximized, where revenue consists of the remu-
neration for rentals, and costs include the cost of the movements with
rental cars, tolls and wear. It should be emphasized that in contrast
to most other vehicle routing and pickup and delivery problems, the
DE-CRP also includes determining where to relocate the different cars.

4. Solution method for the DE-CRP

In practice, CSOs face the problem by periodically planning re-
location and recharging activities throughout the day with updated
information and demand outlook as the system is perturbed by user
activities. Therefore, we adopt this organization of work and set to
solve the DE-CRP by periodically re-optimizing relocation and recharg-
ing activities at a finite number of time points referred to as decision
stages.

Let the system state at a given decision stage describe the current
osition and battery level of each car not currently in use, the position
f each service employee, and the travel times for rental cars, public
ransport and folding bikes. At each decision stage, decisions regarding
portion of the whole planning horizon, referred to as planning period,

re made. Such decisions are based on the current system state and on
emand forecast for the planning period as well as a period of time
fter the planning period referred to as look-ahead period. Particularly,
t each decision stage, a static and open subproblem is solved. We refer
o this problem as the Electric Carsharing Relocation Problem (E-CRP).
he problem is static since we assume that all information is known
t the time of planning and it is open since there is no defined depot
here the service employees must start and end their routes.

Given a solution to the E-CRP, relocations and charging activities
or the first part of the planning period are implemented accordingly,
hile activities further ahead in the future are planned at a future
ecision stage (they are only included to avoid myopic solutions for
he here-and-now decisions in the first part of the planning period).
t should be emphasized that the look-ahead period is only used for
orecasting the ideal state at the end of the planning period. The
esulting rolling-horizon framework is illustrated in Fig. 1.

In the remainder of the article we assume a free-floating system.
s in Weikl and Bogenberger (2015) and Folkestad et al. (2020), the
usiness area of the CSO is divided into zones. A parking zone is a
eographical area where rental cars can be parked and picked up by
he customers. Multiple cars can be located within a parking zone. The
osition of each parked car is tracked and used when calculating the
riving time to the charging stations and the center of the deficit zones.

A parking zone is characterized by an ideal statewhich indicates how
any sufficiently charged cars should be located in the zone at the end

f the planning period to satisfy future demand. Since the replanning of
elocation and recharging activities is done frequently, the uncertainty
n demand is not explicitly handled in the model but instead reflected
n the ideal state.

Each charging station has a finite capacity. Only cars currently
n need of charging can be parked at a charging station. A charging
tation is located inside a parking zone. However, they are considered
eparated entities, as shown in Fig. 2.

We make the following assumptions. There are always available
arking spaces in parking zones. When cars are fully charged, they are
utomatically made available to customers in the surrounding parking
one, unassisted by service employees. This corresponds to mark the car
s available in the booking system when it is fully charged, and it allows
ustomers to pick up the car directly from charging station (with the
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Fig. 1. Solution of the DE-CRP by period re-optimization.
Fig. 2. Location of a charging station. The charging station is separated from its
associated parking zone.

necessary information on how to unplug it). Nevertheless, the charging
spot will remain occupied in future reoptimizations, until the car has
been picked up. We also assume that rental cars with remaining battery
level below a set threshold are unavailable for customers until they are
fully charged again. Similarly, cars which are subject to repositioning
are not available to customers. It is only possible to book a rental car
for use at the current time, i.e. booking future usage is not possible. A
service employee is assumed to use the fastest means of transportation
available, either folding bike or public transportation, when traveling
between car relocations. We assume that the time used to relocate
cars to parking nodes includes the additional time required to find an
available parking spot. Similarly, the time to relocate cars to charging
stations includes additional time required to start the charging process.
Finally, cars currently charging are assumed to be unavailable also for
service employees.

We define the E-CRP as the problem of determining, for a portion
of the planning horizon referred to as the planning period (see Fig. 1):
(i) the assignment of cars in need of charging to available charging
stations, (ii) the assignment of cars in excess zones to deficit zones, (iii)
the assignment of employees to car relocation tasks, and (vi) routes
and schedules for the relocation activities of the service employees.
When an E-CRP is solved, the system state is known and a demand
forecast for the planning period and look-ahead period (see Fig. 1) is
provided. A Mixed Integer Linear Formulation of the E-CRP is presented
in Appendix.

5. An adaptive large neighborhood search heuristic for the E-CRP

Preliminary testing of the model (summarized in Appendix) using
Xpress 29.01.10 run on a 3.4 GHz Intel E5 processor showed that
4

instances with more than ten zones and ten cars could not be solved in a
Fig. 3. Solution time, blue dashed line, and gap, orange solid line, for the preliminary
testing of solving problem (4) using Xpress 29.01.10 run on a 3.4 GHz Intel E5
processor. The number of cars in the system is approximately the same as the number
of zones. A time limit of 7200 s has been used.

reasonable time, see Fig. 3. We can therefore conclude that solving real-
life instances of problem (4) in reasonable time using only a commercial
solver is in practice impossible. Instead, we propose an Adaptive Large
Neighborhood Search (ALNS) heuristic, as introduced by Ropke and
Pisinger (2006), which has proven to be efficient for solving large-
scale vehicle routing problems. Similarly to Ropke and Pisinger (2006),
Shaw removal and k-regret are utilized for the Large Neighborhood Search
(LNS), while Tabu Search (TS) is adopted as the local search.

The heuristic is divided into two recurring processes, TS and LNS.
The TS performs a local search until 𝐼𝑑𝑒𝑠 iterations without improve-
ments have been performed. Then, the LNS destroys and repairs the
solution provided by TS, guiding the search into a new neighborhood of
the search space in which TS is reactivated. The algorithm terminates
after 𝐼𝑅 LNS iterations without improvement or 𝑇 𝑚𝑎𝑥 seconds (when
the first of the two conditions is met). The pseudo-code of the ALNS
heuristic is provided in Algorithm 1. After the construction of an initial
solution, TS performs a local search in a neighborhood M provided
by the function FindNeighborhood. The neighborhood consists of all
the solutions which can be obtained by altering the current solution
using one or several of the available local search operators (LSOs). The
heuristic chooses the best solution in the given neighborhood. If the
solution improves the current best solution, it is updated. Here 𝑓 (𝑠)
denotes the objective function value of solution 𝑠. Otherwise, after
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Fig. 4. Solution representation. 𝛾𝑘 is the set of car-moves, in order, for service
employee 𝑘. 𝛽 is the set of unused car-moves. 𝑟𝑖𝑐 represent moving car 𝑐 to destination
𝑖.

𝐼𝑑𝑒𝑠 iterations without improvements, the search restarts in another
neighborhood by applying LNS, and the weights of the heuristic (the
parameters that calibrate its behavior, and which are discussed later)
are updated.

Algorithm 1: Adaptive Large Neighborhood Search Heuristic
Input:  Set of candidate car-moves
Output: Ordered list of car-moves for each service employee

𝑘 ∈ 
1 Solution 𝑠 = ConstructionHeuristic()
2 Best solution 𝑠𝑏𝑒𝑠𝑡 = 𝑠
3 while stopping criteria not met do
4 M = FindNeighborhood(s)
5 𝑠 ∈ argmax𝑠∈M 𝑓 (𝑠)
6 if 𝑓 (𝑠) > 𝑓 (𝑠𝑏𝑒𝑠𝑡) then
7 𝑠𝑏𝑒𝑠𝑡 = 𝑠
8 else if non-improving TS iterations ≥ 𝐼𝑑𝑒𝑠 then
9 𝑠 = LargeNeighborhoodSearch(𝑠)
10 end
11 UpdateWeights()
12 end

5.1. Solution representation

The key entity of the solution representation is a car-move, which
define a feasible relocation of a car from its origin to a given destina-
tion. This means to relocate a sufficiently charged car from an excess
zone to a deficit zone, a parking-move, or a car in need of charging to
a charging station, a charging-move. Let  be the set of all feasible car-
moves. The set of car-moves is created from the current state of the
carsharing system.

A solution 𝑠 is represented by two lists, 𝛾 and 𝛽. The first list,
𝛾, contains the used car-moves and is divided into one list for each
service employee. Let  denote the set of service employees and 𝛾𝑘
the ordered list of car-moves performed by service employee 𝑘. The
second list, 𝛽, contains the unused car-moves, not present in 𝛾. At most
one car-move for each car may be present in 𝛾. The route of service
employee 𝑘 is derived by iteratively visiting the origin and destination
of each car-move 𝑟 ∈ 𝛾𝑘. Fig. 4 shows an example of this. Two service
employees relocate five cars. Employee 1 relocates cars 1, 2, and 3 with
destinations 2, 3, and 5, respectively, while employee 2 relocates cars
4 and 5 with destinations 2 and 5.

5.2. Feasibility and objective function

The ALNS allows infeasible solutions during the search to widen
the search space. Two types of violations are allowed. First, 𝛾𝑘 may
contain more car-moves than service employee 𝑘 can handle within the
planning period 𝑇 . In this case, a solution is punished at a cost 𝐶𝐿 for
each car-move that is handled outside the planning period. The ordered
list of car-moves performed by employee 𝑘, 𝛾𝑘, can easily be made
feasible by moving the car-moves outside the planning period from 𝛾
5

𝑘

to 𝛽. Second, the capacity of charging stations may be violated. Such
violation is punished at a cost 𝐶𝐼 for each car in excess of capacity.

The objective value is calculated by means of Eq. (1). The number
of parking-moves that are rewarded is denoted 𝜏𝑃 , and the reward per
move is 𝐶𝐷. The variable 𝜙 is the number of charging-moves performed
within the planning period, and 𝐶𝐶ℎ is the reward per move. The
total time used by service employee 𝑘 is denoted 𝑡𝑘, and idle time and
overtime is punished by 𝐶𝑇 and 𝐶𝐸𝑇 in the third and fourth terms,
respectively. The idle time cost is introduced to address that we deal
with only a portion of the entire planning horizon in the E-CRP. Idle
time costs encourage employees to complete their tasks as soon as
possible, and thus leave the company in a better position to address the
next re-optimization. The variable 𝜇𝑟 is 1 if car-move 𝑟 is performed,
and 0 otherwise, and 𝐶𝑅𝑇𝐻

𝑟 is the cost of wear, tolls and electricity for
car-move 𝑟 where 𝐶𝑅 is the cost per time unit and 𝑇𝐻

𝑟 the time needed
to perform the car-move. Note that (𝐹 )+ is short for max(𝐹 , 0).

The terms on the second line of (1) are penalties for infeasibility and
rewards for early charging. The variable 𝜏𝐶 denotes the total capacity
violation at all charging stations, while the variable 𝜇𝐸

𝑟 is 1 if car-move
𝑟 is performed after the planning period, and 0 otherwise. To test an
early charging strategy, we also include a revenue for charging early,
where 𝑡𝑟 is the time charging-move 𝑟 is performed and 𝑡𝑟 = 𝑇 if it is not
performed. 𝐶𝐶ℎ𝐸 is the reward per unit of time and 𝐶ℎ is the set of
charging-moves .

Thus the heuristic prioritizes early charging moves as these may
be beneficial in a dynamic setting to reduce the number of cars that
become unavailable later. Notice that the last term of (1) is not included
in the objective function of model (4).

𝑓 (𝑠) = 𝐶𝐷𝜏𝑃 + 𝐶𝐶ℎ𝜙 −
∑

𝑘∈
𝐶𝑇 (𝑇 − 𝑡𝑘)+ −

∑

𝑘∈
𝐶𝐸𝑇 (𝑡𝑘 − 𝑇 )+

−
∑

𝑟∈
𝐶𝑅𝑇𝐻

𝑟 𝜇𝑟

− 𝐶𝐼𝜏𝐶 −
∑

𝑟∈
𝐶𝐿𝜇𝐸

𝑟 +
∑

𝑟∈𝐶ℎ

𝐶𝐶ℎ𝐸 (𝑇 − 𝑡𝑟)+ (1)

5.3. Construction of the initial solution

An initial solution is created in a greedy fashion. Initially, 𝛽 contains
all car-moves and 𝛾 is empty. The heuristic iterates through the service
employees, thus the employees are handled one at a time. For each
employee, 𝑘 ∈ , the best insertion (in terms of objective value) of a
car-move at the end of 𝛾𝑘 is performed, given that the corresponding
car 𝑐 does not yet have a car-move in 𝛾. The remaining car-moves for
car 𝑐 remain in 𝛽. Tasks are added to one employee until no more
task improving the objective function are found. The heuristic then
continues in the same way with the next employee, each time adding
a move at the end of a given 𝛾𝑘.

5.4. Local neighborhood search

In each iteration, the Tabu Search generates a local neighborhood
M, using a chosen LSO. The LSOs that are available are called Intra,
Inter, Inter-2, and Swap. The Intra LSO moves a car-move within the
list of car-moves for one given service employee, while the Inter LSO
moves a car-move from one service employee to another. The Inter-
2 LSO moves two consecutive car-moves from one service employee
to another, while the Swap LSO swaps two car-moves between two
service employees. We also use similar LSOs where car-moves to/from
𝛽 (i.e. the list of unused car-moves) are moved from/to 𝛾𝑘 (i.e. a route
for a given service employee), and a car-move from 𝛾𝑘 is replaced with
a car-move from 𝛽 for the same/different car.

Different ways of generating the neighborhood M were tested and
preliminary testing showed that a Random Weighted Enumeration
method gave the best results. Here, the TS first selects one LSO in



EURO Journal on Transportation and Logistics 10 (2021) 100055S. Hellem et al.

p
t
s
𝜃
t

𝑤

a roulette wheel fashion, based on adaptive weights (described in
Section 5.6). Second, a neighborhood with 𝑀𝑚𝑎𝑥 solutions is generated
randomly with the selected LSO. We use a best improvement strategy
when searching in M for an improving solution, meaning that a most
improving neighbor is selected (note that there might be multiple ones).
If there does not exist any improving neighbor solutions, a neighbor
that worsens the solution the least is chosen. The selected LSO is added
to the tabu list. The tabu list is adaptive, limited by an upper and lower
threshold. If the last 𝐼𝐵 iterations have been unsuccessful in finding a
local improvement, the length of the tabu list is doubled. Likewise, if at
least one of the previous 𝐼𝑆 iterations has been successful, the length
of the tabu list is halved.

5.5. Large neighborhood search

The large neighborhood search consists of combinations of destroy
and repair heuristics. The destroy heuristics remove car-moves from 𝛾.
Subsequently, repair heuristics insert car-moves into 𝛾. The degree in
which a current solution is destroyed and repaired is denoted 𝛤 , 𝛤 = 0.1
means that 10% of the car-moves in 𝛾 are removed. The destroy and
repair heuristics are chosen in a roulette wheel fashion, individually,
based on adaptive weights.

The destroy heuristics are Random Removal, Worst Removal and
Shaw Removal. Random Removal sequentially removes car-moves ran-
domly and uniformly from 𝛾, to diversify the search. Worst Removal
greedily removes the car-moves causing the largest decrease in the
objective function value from the current solution 𝛾. The intention
is that more beneficial car-moves can replace these car-moves. Shaw
removal was first introduced by Shaw (1997). The technique increases
the number of unique objects in the solution, defining a relatedness
measure 𝑅(𝑟1, 𝑟2) between car-moves 𝑟1 and 𝑟2 to identify which objects
to remove. Eq. (2) shows our definition of 𝑅(𝑟1, 𝑟2). Here, function
𝛥(𝑛, 𝑚) gives the geographical distance between nodes 𝑛 and 𝑚, while
function 𝑐(𝑟) returns one if the destination of car-move 𝑟 is a charging
node. The functions 𝑜(𝑟) and 𝑑(𝑟) give the origin and destination of
car-move 𝑟, respectively.

𝑅(𝑟1, 𝑟2) =𝜔1𝛥(𝑜(𝑟1), 𝑜(𝑟2)) + 𝜔2𝛥(𝑑(𝑟1), 𝑑(𝑟2)) + 𝜔3|𝑐(𝑟1) − 𝑐(𝑟2)|

+ 𝜔4|𝑇
𝐻
𝑟1

− 𝑇𝐻
𝑟2
| + 𝜔5|𝑇

𝑆
𝑟1
− 𝑇 𝑆

𝑟2
| (2)

The first and second terms consider the relatedness between car-moves’
origin and destination, respectively. The third term checks if both car-
moves are charging-moves or parking-moves, while the two final terms
compare handling time and start time, respectively. The parameters
𝜔1,… , 𝜔5 weight the importance of each of the five measures. The
lower the values of 𝑅(𝑟1, 𝑟2), the more related the two car-moves are.
Initially, a random car-move is chosen from 𝛾 and inserted into a list
of removed car-moves. While keeping track of the car-moves that are
already removed, a random car-move 𝑟1 from this list is chosen. The
car-move in 𝛾 most similar to 𝑟1 according to Eq. (2) is then removed
and placed in the list of removed car-moves. This process repeats until
a proportion 𝛤 of the car-moves in 𝛾 is removed.

The repair heuristics are Greedy Insertion and Regret Insertion. Greedy
Insertion greedily inserts car-moves yielding the greatest improvement
to the objective function value. The Regret Insertion is similar to the
𝑘-Regret used in Ropke and Pisinger (2006). The heuristic considers
the alternative costs of inserting a car-move into 𝛾 by comparing the
objective function value of the best insertion with the 𝑘 best insertions,
favoring the car-move with the largest difference. We have used both
the 2-Regret and the 3-Regret Insertions heuristics.

5.6. Adaptive weights adjustments

Adaptive weights guide both the TS and LNS. Each LSO 𝑞 in the
TS, as well as the destroy and repair heuristic in the LNS, has a weight
𝑤 associated with it, which is updated based on its performance once
6

𝑞

Fig. 5. The Rolling Horizon framework components. The Simulation Model can be
exchanged by a component tracking actual events in a real world scenario.

in every segment of iterations, similar to Ropke and Pisinger (2006).
A segment for the LSO used in the TS consists of 𝐼𝑊 consecutive
iterations. Similarly, a segment for the destroy and repair heuristics
used in the LNS consists of minimum 𝐼𝑑𝑒𝑠 iterations.

Eq. (3) shows how the weights 𝑤𝑞 for all LSOs are updated. 𝜃𝑞 is the
number of times LSO 𝑞 have been used in the last segment, while 𝛼 is a
arameter that controls the degree for which weights are updated. 𝜇𝑞 is
he accumulated score in the current segment based on its performance,
imilar to Ropke and Pisinger (2006). In the special case where 𝜇𝑞 and
𝑞 are both zero, the last term in Eq. (3) is set to zero. The weights for
he LNS heuristics are updated in a similar way.

𝑞 = 𝑤𝑞(1 − 𝛼) + 𝛼
𝜇𝑞
𝜃𝑞

(3)

6. Simulation, implementation and test instances

We test the performance of the periodic re-optimization frame-
work for the DE-CRP through simulation within a Rolling Horizon
framework, which is described in Section 6.1. Section 6.2 presents the
hardware and software used as well as the test instances which are
based on real traffic data from the city of Oslo.

6.1. Simulation environment

The simulation environment consists of three components, as il-
lustrated in Fig. 5. The E-CRP Solver finds solutions to the E-CRPs
using the ALNS heuristic. The E-CRP is solved periodically given the
current system state and demand forecast for the planning period and
look-ahead period. The Customer Demand component provides both
predicted and realized customer demand. Finally, the Simulation Model,
which is the core of the simulation environment, simulates the real-life
system by keeping track of the evolution of the system state as demand
materializes and service employees move around the city to relocate
and recharge the cars. Fig. 5 illustrates the connection between the
three components. The Simulation Model feeds the current system state
to the E-CRP Solver. After the E-CRP Solver is done, it returns the routes
for each service employee and the relocations to the Simulation Model.
The Simulation Model simulates both the travels of the employees and
the realized customer demand.

Let parameters 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑒𝑛𝑑 represent the start and end time of the
planning horizon of the DE-CRP, i.e the total time which we simulate
over. Let 𝑇𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 represent the frequency of the decision stage, that
is how often replanning is performed by calling the E-CRP solver (i.e,
the ALNS heuristic). Let 𝑇 represent the length of the planning period
when solving the E-CRP, and let the look-ahead period have the same
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length as the planning period. Let 𝑇𝑐ℎ𝑎𝑟𝑔𝑒 specify the time (in minutes)
it takes to fully charge a rental car with an empty battery. Let 𝑇𝑟𝑎𝑛𝑔𝑒 be
the time a fully charged rental car can drive. Let cars with battery level
below the threshold 𝜉𝑢𝑝𝑝𝑒𝑟 be considered for recharging. Customers can
still rent cars with battery levels between 𝜉𝑢𝑝𝑝𝑒𝑟 and 𝜉𝑙𝑜𝑤𝑒𝑟 as the battery
level is sufficient for shorter trips. Rental cars with battery levels below
𝜉𝑙𝑜𝑤𝑒𝑟 are not available to customers.

The pseudo-code for the Simulation Model is shown in Algorithm
2. The simulation is run after every decision stage in the Rolling
Horizon framework. Parameters such as 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 are fed
to the Simulation Model specifying the start and the duration of the
period to simulate within each pair of decision stages. The Simulation
Model divides events into departures and arrivals. Departures consist of
potential relocations and customer requests, while arrivals include relo-
cations and customer rentals that are performed within the simulation
time.
Algorithm 2: Simulation Model

Input: 𝑇𝑠𝑡𝑎𝑟𝑡, 𝑇𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡, CustomerArrivals, EmployeeArrivals,
EmployeeRoutes

Output: System state
1 CustomerRequests =

CustomerDemand.getActualDemand(𝑇𝑠𝑡𝑎𝑟𝑡, 𝑇𝑠𝑡𝑎𝑟𝑡 + 𝑇𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡)
2 NextEvent = findNextEvent()
3 𝑡 ← NextEvent.getTime()
4 while 𝑡 < 𝑇𝑠𝑡𝑎𝑟𝑡 + 𝑇𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 do
5 System state, CustomerArrivals, EmployeeArrivals =

doEvent(NextEvent)
6 NextEvent ← findNextEventAfter(𝑡)
7 updateBatteryLevels(𝑡, min(NextEvent.getTime(), 𝑇𝑠𝑡𝑎𝑟𝑡 +

𝑇𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡))
8 𝑡 ← NextEvent.getTime()
9 end

Lines 4–9 in Algorithm 2 show the simulation of tasks from 𝑇𝑠𝑡𝑎𝑟𝑡
until the end of the simulation period, 𝑇𝑠𝑡𝑎𝑟𝑡 + 𝑇𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡. The variable

is used to track the start time of the previous event. Repeatedly, the
imulation Model finds the next event to happen after the time 𝑡. This is
simple process of finding the earliest arrival or departure of service

mployees and customers. Another event which may occur is that a
ental car finishes charging. In this case, the fully charged car is moved
rom its charging node to the associated parking node. Every time a
ew task is approved, the battery levels of the cars are updated in line
.

.2. Test instances and implementation

We have generated test instances based on the geographical layout
nd on historical traffic flow from the city of Oslo, including the city
enter and surrounding suburban areas. The nodes are created using
grid structure, defining each node as a square of size 500 × 300
eters. Each node represents a parking node and charging stations are
niformly distributed in the operating area to the available parking
odes. A subset of the 225 nodes in Fig. 6 defines each test instance.
ravel time data for car, bike and public transport is collected from
oogle maps. The travel time between two nodes is defined by the

astest travel option available, car for charging and parking moves
nd bike or public transport for the transportation between car-moves.
here are usually many parking slots along the streets and many
arking garages within the studied area (and in particular for electric
ars). We therefore believe that the assumption that there is always
vailable parking spaces is valid.

Three instance classes are created for the DE-CRP as shown in
able 1. Common for all instance classes is that all charging stations
ave a capacity of six charging cars, and that there are approximately
hree times as many cars as nodes. The simulation is done over a 12-
7

our period starting at 6 AM in the morning. This entails solving several
able 1
nstance classes and respective size and constant parameters used for generating
nstances in the Rolling Horizon framework.
Test instance Nodes Cars Service employees Charging stations

D-20-65-5-3 20 65 5 3
D-50-170-12-6 50 170 12 6
D-120-380-24-12 120 380 24 12

Table 2
Expected number of cars requested for the three scenarios used in the Poisson
process.

Notation Number of cars demanded/hour

High demand 𝜆𝐻 4
Medium demand 𝜆𝑀 1
Low demand 𝜆𝐿 0.3

different instances for each instance class, where each instance repre-
sents a snapshot of the carsharing system at a given re-optimization
time, as explained below. On average, 22.5 cars are requested in each
node during the 12-hour period. This implies that there are 6–7 times
more customer requests than cars in the system.

For each instance in each instance class, ideal states are generated
based on historical traffic flow patterns in the city of Oslo, obtained
from Google Maps and assuming that customers renting cars are most
likely to follow the traffic flow pattern. In the morning, traffic flows
from the suburban areas into the city center. These flows decrease
towards noon. From noon until 3–4 PM, the traffic from the city center
to the suburban areas gradually increases with a rush hour peak around
4 PM. These findings led to a simple three-folded categorization of
nodes: nodes with morning rush and lower demand in the afternoon,
nodes with a steady and moderate level of demand during the entire
planning horizon, and nodes with low morning demand but high after-
noon demand. Consequently, the demand in each node, corresponding
to the ideal state, is assumed to follow a Poisson process with arrival
rate changing during the day. The arrival rate is indicated by parameter
𝜆𝑠, 𝑠 ∈ {𝐻,𝑀,𝐿} as reported in Table 2. For instance, this means
that nodes with morning rush have a rate of 𝜆𝐻 in the morning which
linearly decreases towards 𝜆𝐿 in the afternoon. For simplicity, we have
assumed that customers always travel at least for ten minutes. To
this, the travel time between the departure and destination node is
added. Since customers may have errands to run, each travel time of
customers is adjusted by a factor drawn from a uniform distribution
𝑈 ∼ unif(1, 1.4).

The parameters common to all test instances are shown in Table 3.
At 𝑇𝑠𝑡𝑎𝑟𝑡 = 6 AM, it is assumed that the distribution of available
rental cars is close to the ideal state. The initial battery levels of the
cars are uniformly distributed. The cost parameters from Section 5
are inherently dependent on the specific CSO, e.g., the expected profit
for an individual available shared car and the cost of wear, tolls
and employees. In absence of a focal real-case, in our tests the cost
parameters have the following values: 𝐶𝐷 = 10, 𝐶𝐶ℎ = 30, 𝐶𝑇 =
0.01, 𝐶𝐸𝑇 = 0.5, 𝐶𝑅 = 0.2, 𝐶𝐼 = 100, 𝐶𝐿 = 10, 𝐶𝐶ℎ𝐸 = 0.1. These
values have been chosen based on two principles. First, the relative
size of each cost component should reflect the importance of each cost.
Secondly, each cost should incorporate its value in a dynamic long-
term environment, e.g., the benefit of charging a car is not observable
directly, but is beneficial when simulating an entire day.

The final ALNS parameters are reported in Table 4 and based on
comprehensive testing performed by Hellem et al. (2018). In addi-
tion, Hellem et al. (2018) show that the ALNS heuristic produces
high quality solutions to the E-CRP for instances where the commer-
cial software Xpress fails. Furthermore, Hellem et al. (2018) show
that, compared with a greedy construction heuristic, the fully cali-
brated ALNS heuristic finds solutions on average 45.1% closer to the

best-known.
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Fig. 6. Nodes in the city of Oslo. Used as a basis for all test instances created.
Table 3
Parameters used in the Rolling Horizon framework and the Simulation model.

Notation Value

Start time business hours 𝑇𝑠𝑡𝑎𝑟𝑡 6 AM
End time business hours 𝑇𝑒𝑛𝑑 6 PM
Time increments 𝑇𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 15 min
Planning period 𝑇 60 min
Overtime 𝑇

𝐿
10 min

Charging time 𝑇𝑐ℎ𝑎𝑟𝑔𝑒 210 min
Car range 𝑇𝑟𝑎𝑛𝑔𝑒 120 min
Upper battery threshold 𝜉𝑢𝑝𝑝𝑒𝑟 40%
Lower battery threshold 𝜉𝑙𝑜𝑤𝑒𝑟 20%

The hardware and software used to implement and test the solution
method for the DE-CRP are presented in Table 5. The ALNS heuristic
from Section 5 and the simulation model from Section 6 have been
implemented in Java 9.0.4. The maximum computation time to solve
each E-CRP in the Rolling Horizon simulation framework is set to three
minutes.

7. Computational study

We tested the performance of the periodic re-optimization frame-
work for the DE-CRP on the test instances described in Section 6.2.
In the following, we first show the results from testing the proposed
solution method, before we discuss managerial insights.

7.1. Results

The evaluation of the solution method is based on the objectives
presented in Section 3. The degree of demand served, referred to as
DS, is the most important key performance indicator. The number
of rental cars charged by the service employees during the business
hours is also presented. To calibrate the solution method, two tests
are considered; Section 7.1.1 tests the length of the planning period
when solving each subproblem E-CRP, 𝑇 , while Section 7.1.2 tests the
replanning frequency, 𝑇𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡. Each test is run over ten days with
different realizations of customer requests. The average scores over all
8

Table 4
ALNS: Final parameter values.

Parameter Value Description

𝑇𝑀𝐴𝑋 180 Max running time (seconds)
𝐵𝐼𝑁𝐼𝑇 2 Initial tabu list size
𝐵𝑀𝐼𝑁 2 Minimal tabu list size
𝐵𝑀𝐴𝑋 1024 Maximal tabu list size
𝐼𝑅 125 000 Max number of iteration without improvement
𝐼𝑊 5 ln |𝐶| The number of iterations before the LSO

weights are updated
𝐼𝐷𝐸𝑆 120 ln |𝐶| Iterations without global improvement before

destroy and repair
𝐼𝐵 6 Iterations without local improvement before

increasing the tabu list size
𝐼𝑆 3 Iterations with local improvements before

decreasing the tabu list size
𝑀𝑀𝐴𝑋 25 ln |𝐶| Neighborhood size

𝛤 0.4 The destroy/repair factor

𝑅𝑁
𝑄 1 LSO score for finding a new local solution

𝑅𝐺
𝑄 23 LSO score for finding a new global best

solution
𝑅𝐿

𝑄 13 LSO score for finding a new better local
solution

𝑅𝐺
𝑈 23 Destroy and repair score for finding a better

global solution
𝑅𝐿

𝑈 13 Destroy and repair score for finding a new and
better local solution

𝛼 0.1 Update factor for both LSO and repair and
destroy weights

𝜔1 …𝜔5 0.315, 0.315,
0.315, 0.005,
0.05

Weights for Shaw Removal

days are used as a basis for comparison. To reduce the variance of the
results, all models are run on the same set of realized customer requests.

7.1.1. Planning period
This test explores the effects of changing the length of the planning

period 𝑇 . The length of the planning period restricts the number of
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Table 5
Hardware and software used in testing.

Processor 3,4 GHz Intel E5
Memory 512 GB RAM
Operating system CentOS 7.4
Java version 9.0.4

relocations that the ALNS outputs for the service employees. Ideally,
the E-CRP model would consider the whole planning horizon. However,
there are three main arguments against using long planning periods in
the proposed solution method. First, longer planning periods increase
the search space due to the increased number of possible routes for
the service employees. The larger search space may, in turn, increase
the computational time needed for the ALNS to find good solutions.
Second, the future states of the system are stochastic due to varying
customer demand and travel times. A solution looking optimal at the
moment may, therefore, not even be feasible after the next couple of
minutes due to unforeseen events. Finally, since the solution method
for the DE-CRP re-plans sequentially, the actions performed by the
service employees are usually only the first couple of actions provided
by the ALNS. Hence, the use of longer planning periods involves more
calculations of needless actions that are not likely to be performed.
Table 6 substantiates these arguments where a planning period of
60 min slightly outperforms the alternatives. When using shorter plan-
ning periods, the solutions provided by the ALNS become more greedy,
explaining the reduction in demand served when using a planning
period of 40 min. In addition, with a planning period of 60 min, the
method is able to charge a higher number of cars. This is in turn
beneficial as it puts the CSO in a better position with regards to being
able to satisfy future demand (beyond the planning horizon of the
subproblem). The cars that are being charged are in most cases not
available for rental due to low battery levels.

7.1.2. Frequency of replanning
This test explores the effects of changing the replanning frequency

𝑇𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡. Given the result from Section 7.1.1, all tests use a planning
period of 60 min. The results of three different replanning frequencies
are presented in Table 7. A replanning frequency of 15 min performs
slightly better than replanning frequencies of 10 and 20 min when it
comes to demand served. Replanning more often should, intuitively,
do no worse than replanning more seldom. However, it is noteworthy
that optimizing too often may have negative effects. One possible
explanation is that high replanning frequencies imply small changes
to the system’s state between decision stages. Replanning too often
may, therefore, diminish the possible long-term benefits of the routes.
However, it may increase the number of cars charged. One explanation
is that cars are classified earlier as in need of charging by the simulation
model. In addition, frequent replanning increases the probability of
charging rental cars. The probability increases because the ALNS has
the option to charge cars early more frequently.

7.1.3. Comparison with a greedy construction heuristic
For each individual decision stage, i.e. for each E-CRP subproblem,

the ALNS has an average performance increase of 45.1% based on
the objective function from Appendix compared with the construc-
tion heuristic. Table 8 shows the results from using the construction
heuristic in the Rolling Horizon simulation framework. Interestingly,
when solving the DE-CRP, the difference in DS is only 7.86%. This
implies that the uncertainty faced when solving the DE-CRP reduces the
performance gap between the two methods. However, it is noteworthy
that the difference of 7.86% in DS corresponds to an additional 175
customers served throughout the 12-hour period for the largest test
instance. Furthermore, the construction heuristic charges fewer cars,
9

most likely due to inefficient relocations. s
Fig. 7. Development of cars in need of charging for D-50-170-12-6.

.2. Managerial insights

In this section we discuss some managerial insights for CSOs that
an be gained from various tests. Sections 7.2.1 and 7.2.2 discuss
nsights of operational character, while tactical and strategic concerns
re addressed in Sections 7.2.3 and 7.2.4.

.2.1. Benefits of charging cars early
One objective of the proposed solution method is to charge cars

n need of charging. However, there are no guarantees that these
elocations are done by the service employees if they are not among the
irst relocations in the solutions to the E-CRP subproblems. Hence, pri-
ritizing early charging of cars seems beneficial and has been rewarded
.1 per time unit in this study.

In the following, we test the effect of including this early charging
eward by comparing it with the results without (denoted Regular).
he results show that rewarding early charging improves the demand
erved by approximately 4%. As shown in Fig. 7, rewarding early
harging of cars, keeps the number of cars in need of charging at a low
nd steady level compared to the Regular setting. When charging cars
arly, the short-term demand served is slightly decreased. However, it
s evident that the long-term costs of not meeting future demand are
igher than the short-term losses.

The benefit of charging early boils down to the preferences and
pening hours of the CSO. For instance, if a CSO only allows car
entals during the daytime, it seems beneficial to prioritize serving
emand short-term and do most of the recharging of cars during the
ight. However, charging all cars during the night requires a sufficient
umber of service employees to work the night shift. For instance,
harging all cars in test instance D-50-170-12-6 would require 12 h of
ork with the given workforce. To prevent too much work at night, it

an therefore be advantageous to use strategies like early charging.

.2.2. Destinations to consider for relocation
Appendix introduced the set of car-moves which defined the pos-

ible destinations each car can be relocated to. Similar to the method
n Kirchler and Calvo (2013) for the Dial-a-Ride problem, it is possible
o reduce the search space by removing car-moves not likely to be
art of good solutions. Fig. 8 shows the distributions of all car-moves
resent in the best solutions to instance D-50-170-12-6 found by the
LNS heuristic. The distribution is calculated by comparing the car-
oves to the longest available travel time present in the test instance.
he figure indicates that it may be possible to significantly reduce the

earch space without degrading the quality of the solutions found by the
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Table 6
Demand served and cars charged for different planning periods.

Instance 𝑇 = 40 min 𝑇 = 60 min 𝑇 = 80 min 𝑇 = 100 min 𝑇 = 120 min

DS % Cars charged DS % Cars charged DS % Cars charged DS % Cars charged DS % Cars charged

D-20-65-5-3 58.35 53 64.10 58 60.48 53 59.48 60 58.98 53
D-50-170-12-6 60.36 139 63.74 136 62.81 131 61.31 129 61.77 124
D-120-380-24-12 57.51 279 58.31 285 57.37 266 58.41 255 56.19 251

Average 58.74 157 62.05 160 60.22 150 59.30 146 58.98 144

Green cells indicate best values for each test instance.
Table 7
Demand served and cars charged for different re-planning frequencies.

Instance 𝑇𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 = 10 min 𝑇𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 = 15 min 𝑇𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 = 20 min

DS % Cars charged DS % Cars charged DS % Cars charged

D-20-65-5-3 59.96 59 64.10 58 63.06 58
D-50-170-12-6 63.47 144 63.74 136 63.52 140
D-120-380-24-12 56.61 279 58.31 285 58.40 279

Average 60.01 161 62.05 160 61.66 159

Green cells indicate best values for each test instance.
Table 8
Comparing the calibrated solution method to the Construction heuristic.

Instance Construction heuristic

DS % Cars charged

D-20-65-5-3 54.73 47
D-50-170-12-6 55.5 112
D-120-380-24-12 52.33 229

Average 54.19 129
𝛥 to ALNS −7.86 pp −31

Fig. 8. Distributions of car-moves for test instance D-50-170-12-6. Parking-moves and
charging-moves are the distributions for car-moves present in best-found solutions. All
available car-moves are the distribution for all car-moves identified.

ALNS. This implies that cars should in most cases be relocated locally,
a finding which considerably simplifies the operational problem. This
can be utilized to reduce the computational time for solving the E-
CRP subproblems at each decision stage. Testing indicates that these
findings also hold for instances D-20-65-5-3 and D-120-380-24-12.

7.2.3. Number of service employees
The optimal number of service employees used in a carsharing

system is dependent on the problem instance as well as the CSO’s
preference regarding the trade-off between costs and customer satis-
faction. Intuitively, increasing the number of service employees strictly
improves the performance of the system. However, it is evident from
10
Fig. 9. Difference in demand served when varying the number of service employees.
The difference is compared to using 12 employees from the original test instance
D-50-170-12-6.

Fig. 9 that the marginal value of additional service employees is dimin-
ishing. Having too few service employees is punished by low levels of
demand served, while too many service employees yields no significant
improvement in demand served. Based on the specific cost and revenue
values of the CSOs, the optimal number of employees should be chosen
where the marginal revenue of an additional employee is close to the
marginal cost of an employee.

7.2.4. Number of charging stations
For the rental cars to be available for customers during the operating

hours, charging of cars is crucial. However, the number of cars that
can be charged is restricted by the number of available charging
stations. Due to capital costs associated with charging stations, this
test explores the importance of a sufficient number of charging stations
in the carsharing system. Based on test instance D-50-170-12-6, two
additional test instances are generated; one with six charging stations
and one with 24 charging stations.

Fig. 10 shows that halving the number of charging stations results
in fewer cars available for customers. Hence, DS is reduced by 3.76%.
When doubling the number of charging stations, DS is increased by
1.87%. However, the increase in demand served diminishes when
doubling the number of charging stations. Similar to the case of service
employees, the number of charging stations should be chosen such
that the marginal revenue from adding a charging station equals the

marginal cost.
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Fig. 10. Development of cars in need of charging over the planning horizon for
instances with a different number of charging stations.

8. Conclusions

This paper presents a solution method for the Dynamic Electric Car-
sharing Relocation Problem (DE-CRP). The DE-CRP considers routing
of both service employees and rental cars in a free-floating carsharing
system. Folding bikes have been assumed as a means of transportation
for the service employees, as it offers high flexibility in urban areas. The
presented solution method adopts a Rolling Horizon framework, solving
subproblems (E-CRPs) of the DE-CRP at different decision stages.

The subproblems are solved using an Adaptive Large Neighborhood
Search (ALNS) heuristic based on Ropke and Pisinger (2006). The
objective is to maximize profits by providing a suitable number of
cars charged following an expected ideal distribution of rental vehicles.
A solution consists of routes for each service employee, which cars
to relocate, and where to relocate them. The solution method allows
solutions where service employees originate and end at all locations in
the operating area. Thus, the method is capable of solving the E-CRP
that arises in free-floating carsharing systems with electric vehicles, at
any point in time.

The E-CRP is a variation of classical vehicle routing and pickup
and delivery problems. The problem structure of the E-CRP allows
identification of the minimal set of possible relocation destinations for
each car. Each element in this set is denoted a car-move. The proposed
solution method derives solutions by searching in and combining el-
ements from the set of car-moves. The use of car-moves is a novelty
which significantly simplifies the pickup and delivery aspect of the
E-CRP, and thus reducing the complexity of the problem.

A simulation model is developed to test the proposed solution
method on problem instances for the DE-CRP. The simulation model
mimics the work day of an artificial carsharing organization. The solu-
tion method is able to provide efficient solutions for test instances of at
least 120 nodes and 380 rental cars. When stress-testing the solution
method, it serves 62% of customers on average during a period of
12 h. This equals 1 674 customer rentals served. Compared to a greedy
heuristic, an additional 200 customers are served using the proposed
solution method.

In conclusion, solving the DE-CRP with the proposed solution
method provides high-quality solutions in reasonable computation time
for the problem instance tested. Novel search methods have been
introduced that effectively deal with the large search space of the prob-
lem. In total, we consider the proposed solution method a significant
contribution to the creation of efficient, and lasting carsharing systems.

Still, a number of questions remain to be addressed in future re-
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search. In this article, the level of granularity of the discretization of the c
business area was arbitrarily decided before the analysis. Furthermore,
every zone of the city was subject to the same discretization. It could
be argued that central zones of the city might benefit from a finer
discretization, or that a different level of granularity might partially
affect the results. The effect of the discretization strategy on the reloca-
tion actions is to be clarified. We also assumed that cars must be fully
charged once plugged in. This might reduce the ability of the model
to satisfy demand. An extension of the model is envisaged where the
decision of unplugging a partially charged car in order to fulfill demand
is endogenous to the model. Finally, the current method takes the ideal
state (i.e., the ideal number of cars) in each zone as an input coming
from an exogenous analysis of historical demand. However, demand is
influenced by supply (and thus by the deployment of the fleet) as well
as by competition. This interplay also requires a dedicated analysis.
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Appendix. The E-CRP subproblem

We propose a Mixed Integer Linear Programming formulation for
the E-CRP subproblem. The appendix is self-explanatory meaning that
all notion used in the formulation is introduced here. In the cases when
the same sets and parameters are used in the heuristic presented in
Section 5 and here, the same notation is used.

The operating area is modeled as a complete graph, where nodes
represent parking zones and charging stations and edges represent
movements between zones and stations. The weight of an edge rep-
resents the travel time, and might change between decision stages due
to different traffic conditions. Each parking node may be a surplus or
a deficit node, if the number of available cars in the corresponding
parking zone is higher or lower, respectively, than the ideal state. Let
 be the set of nodes,  𝐶 the set of charging nodes and  𝑃 the set of
parking nodes, with  𝐶 ⋂

 𝑃 = ∅ and  =  𝐶 ∪ 𝑃 . Furthermore,
et  𝑃+ ⊆  𝑃 be the set of surplus nodes and  𝑃− ⊆  𝑃 the
et of the deficit nodes, with  𝑃+ ⋂

 𝑃− = ∅. However, since some
arking nodes are at their ideal state we do not necessarily have  𝑃 =
𝑃− ∪ 𝑃+. Furthermore, let  𝑃𝐶 ⊆  𝑃 be the set of parking nodes

ith cars in need of charging. Note that  𝑃𝐶 may be disjoint from both
𝑃+ and  𝑃− as some nodes in  𝑃𝐶 might be at their ideal state.
Let  be the set of cars potentially subject to relocation, i.e. those

ither in a surplus node or those in need of charging. Let  be the set
f car-moves. A car-move 𝑟 is defined as a triplet (𝑐, 𝑜(𝑟), 𝑑(𝑟)) with 𝑐 ∈ 
eing a car, 𝑜(𝑟) ∈  𝑃+∪ 𝑃𝐶 its origin node, and 𝑑(𝑟) ∈  𝑃−∪ 𝐶 its
estination node. Particularly, for sufficiently charged cars in surplus
odes, car-moves always go to deficit nodes and are referred to as
arking-moves. Similarly, for cars in need of charging, car-moves always
o to charging nodes and are referred to as charging-moves. A car in
eed of charging can only be subject to charging moves. This means
hat even if the charging station is within a deficit zone, the car in need
f charging is not counted towards the deviation from the ideal state.

Parking-moves and charging-moves are illustrated in Fig. 11. Let 𝑐
e the set of possible car-moves for car 𝑐. Let 𝑃𝐷

𝑖 be the set of parking-
oves with destination deficit node 𝑖. Similarly, let 𝐶𝑂

𝑖 be the set of
harging-moves that originate in node 𝑖 ∈  𝑃𝐶 . Finally, let 𝐶𝐷

𝑖 be
he set of charging-moves that end in charging node 𝑖. Note that we

onsider only car-moves that contribute to increasing demand satisfied,
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Fig. 11. Car-moves divided into parking-moves and charging-moves.
i.e., only car-moves from surplus nodes or from nodes with cars in need
of charging.

The E-CRP assigns car-moves to service employees and decides the
order in which they are carried out. This is done in the following way.
Let  the set of service employees. Let  be an ordered set of possible
abstract tasks to perform, where || is the total number of tasks an
mployee might perform during the planning horizon. The set of tasks
s identical for all employees, that is each employee is assigned an
dentical abstract set of tasks  to perform. The set of tasks is ordered,
n the sense that task 𝑚 ∈  must be performed before task 𝑚+1 ∈ .
n abstract task 𝑚 ∈  becomes concrete when it is assigned to a car-
ove from . As an example, assume employee 𝑘 is assigned to perform

wo car-moves, 𝑟1 and 𝑟2, both in , and to be performed in this order.
hen, tasks 𝑚1 and 𝑚2 ∈  become concrete: task 𝑚1 ∈  corresponds
o car-move 𝑟1 and task 𝑚2 ∈  corresponds to car-move 𝑟2. This will

be further clarified when introducing the decision variables.
For each car-move 𝑟 ∈  let 𝑇𝐻

𝑟 be the time needed to perform the
car-move. This time includes driving time, parking, possibly plugging
to a power source, and basic maintenance. We track the position of
each parked car and calculate the driving time from this location to the
charging station, for charging-moves, or the center of the deficit zones,
for parking-moves. Cars may be unavailable at the start of the planning
period. Hence, let 𝑇 𝑆𝐶

𝑟 indicate the earliest start time of car-move 𝑟.
The same applies to service employees. In fact, at the beginning of the
planning period, they might still be completing some tasks assigned
to them during the previous planning period. Therefore, let 𝑇 𝑆𝑂

𝑘 be
he earliest start time for service employee 𝑘. Furthermore, let node
(𝑘) ∈  be the position of employee 𝑘 at time 𝑇 𝑆𝑂

𝑘 . Travel times
etween nodes 𝑖 and 𝑗, using folding bikes or public transport, are
enoted by 𝑇𝑖𝑗 . The total planning period is denoted 𝑇 . However, some
vertime 𝑇

𝐿
is allowed.

The initial deficit of cars from the ideal state in parking node 𝑖,
s denoted 𝑆0−

𝑖 . For parking nodes 𝑖 ∈  𝑃𝐶 , 𝑆𝐶
𝑖 denotes the initial

umber of cars that require charging. Every charging node 𝑖 has an
vailable capacity of 𝑁𝐶𝑆

𝑖 . Since 𝑁𝐶𝑆
𝑖 represents the available, and

ot the total, capacity, it should be noted that it can vary from one
ecision stage to the next. We count the number of cars currently being
harged at charging station 𝑖 in the beginning of the planning period
nd subtract this number from the actual capacity to get 𝑁𝐶𝑆

𝑖 .
Let 𝐶𝐶ℎ be the remuneration for each car recharged, and 𝐶𝐷 the

remuneration for each car relocated to decrease the deficit in a parking
node. These parameters may correspond to, for example, the expected
revenue generated by a fully/partially charged car. Let 𝐶𝐸𝑇 be the cost
er time unit used beyond the allocated planning period. This cost is
ossibly artificially set in order to prioritize timely completion of tasks,
specially during the day when the system is used the most. Let 𝐶𝑅 be
he cost per unit of time of the relocation activities, which includes
ear, tolls and electricity. Finally, let 𝐶𝑇 be the cost per unit of idle

ime of the service employees, used to increase the activity within the
lanning period.

Let decision variables 𝑥𝑘𝑟𝑚 indicate that service employee 𝑘 per-
orms car-move 𝑟 as task number 𝑚. As an example, 𝑥𝑘1 ,𝑟2 ,𝑚5

= 1
ndicates that the fifth task (𝑚5) on the agenda of employee 𝑘1 is car-
ove 𝑟2. Thus, abstract task 𝑚5 becomes concrete when associated
ith a car-move (𝑟2 in this case). Hence, the route of the service
12

mployee can be derived from the sequence of the tasks assigned.
Fig. 12. Example illustrating a service employee 𝑘 performing three car-moves. Dashed
lines indicate traveling by folding bike or public transport, between car-moves. Solid
lines indicate service employee movements with cars to relocate. In this example, all
car-moves go to the same destination shown by node 𝑑, which corresponds to 𝑑(1),
𝑑(2) and 𝑑(3).

Fig. 12 illustrates an example in which a service employee performs
three car-moves. Initially the service employee is in its origin 𝑜(𝑘). The
employee then travels to the origin of the first car-move, 𝑜(1), and
relocates the corresponding car in need of charging to its destination
𝑑(1) (shown as node 𝑑 in the figure), which has been determined
through the optimization. From 𝑑(1) the employee travels (by means
of a folding bike or by public transport) to the origin of the second car-
move 𝑜(2) and completes the second car-move by relocating the car to
𝑑(2), which coincides with 𝑑(1) and is therefore shown as node 𝑑. The
service employee finally travels to the origin of the third car-move 𝑜(3)
and relocates the car to 𝑑(3) (again shown as node 𝑑 in the figure since
it coincides with 𝑑(1) and 𝑑(2)). This example also serves to illustrate
that the problem is open-ended, that is, there is no depot and the routes
of the service employees can terminate in any node, and that each node
can be visited several times. Furthermore, let variable 𝑡𝑘𝑚 indicate the
time when task 𝑚 is started by employee 𝑘 and let variables 𝑡+𝑘 and
𝑡−𝑘 represent the time used in excess and in short of 𝑇 , respectively,
by employee 𝑘. A complete list of the notation can be found in the
appendix.

Hence, the E-CRP can be stated as follows:

max 𝑧 =
∑

𝑖∈ 𝑃−

∑

𝑘∈

∑

𝑟∈𝑃𝐷
𝑖

∑

𝑚∈
𝐶𝐷𝑥𝑘𝑟𝑚 +

∑

𝑖∈ 𝑃𝐶

∑

𝑘∈

∑

𝑟∈𝐶𝑂
𝑖

∑

𝑚∈
𝐶𝐶ℎ𝑥𝑘𝑟𝑚

−
∑

𝑘∈
𝐶𝑇 𝑡−𝑘

−
∑

𝑘∈
𝐶𝐸𝑇 𝑡+𝑘 −

∑

𝑘∈

∑

𝑟∈

∑

𝑚∈
𝐶𝑅𝑇𝐻

𝑟 𝑥𝑘𝑟𝑚 (4a)

∑

𝑘∈

∑

𝑟∈𝑐

∑

𝑚∈
𝑥𝑘𝑟𝑚 ≤ 1 𝑐 ∈  (4b)

∑

𝑟∈
𝑥𝑘𝑟𝑚 ≤ 1 𝑘 ∈ , 𝑚 ∈  (4c)

∑

𝑟∈
𝑥𝑘𝑟(𝑚+1) ≤

∑

𝑟∈
𝑥𝑘𝑟𝑚 𝑘 ∈ , 𝑚 ∈  ⧵ {||} (4d)

∑ ∑

𝑃𝐷

∑

𝑥𝑘𝑟𝑚 ≤ 𝑆0−
𝑖 𝑖 ∈  𝑃− (4e)
𝑘∈ 𝑟∈𝑖
𝑚∈
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𝑡

∑

𝑘∈

∑

𝑟∈𝐶𝑂
𝑖

∑

𝑚∈
𝑥𝑘𝑟𝑚 ≤ 𝑆𝐶

𝑖 𝑖 ∈  𝑃𝐶 (4f)

∑

𝑘∈

∑

𝑟∈𝐶𝐷
𝑖

∑

𝑚∈
𝑥𝑘𝑟𝑚 ≤ 𝑁𝐶𝑆

𝑖 𝑖 ∈  𝐶 (4g)

𝑡𝑘𝑚 + 𝑇𝐻
𝑟 𝑥𝑘𝑟𝑚 +

∑

𝑣∈
𝑇𝑑(𝑟)𝑜(𝑣)𝑥𝑘𝑣(𝑚+1) −𝑀𝑟(1 − 𝑥𝑘𝑟𝑚) ≤ 𝑡𝑘(𝑚+1)

𝑘 ∈ , 𝑟 ∈ , 𝑚 ∈  ⧵ {||} (4h)

𝑡𝑘𝑚 ≤ 𝑡𝑘(𝑚+1) 𝑘 ∈ , 𝑚 ∈  ⧵ {||} (4i)

𝑇 𝑆𝐶
𝑟 𝑥𝑘𝑟𝑚 ≤ 𝑡𝑘𝑚 𝑘 ∈ , 𝑟 ∈ , 𝑚 ∈  (4j)

(𝑇 𝑆𝑂
𝑘 + 𝑇𝑜(𝑘)𝑜(𝑟))𝑥𝑘𝑟1 ≤ 𝑡𝑘1 𝑘 ∈ , 𝑟 ∈  (4k)

𝑘||

+
∑

𝑟∈
𝑇𝐻
𝑟 𝑥𝑘𝑟||

+ 𝑡−𝑘 − 𝑡+𝑘 = 𝑇 𝑘 ∈  (4l)

𝑡𝑘||

+
∑

𝑟∈
𝑇𝐻
𝑟 𝑥𝑘𝑟||

≤ 𝑇 + 𝑇
𝐿

𝑘 ∈  (4m)

𝑥𝑘𝑟𝑚 ∈ {0, 1} 𝑘 ∈ , 𝑟 ∈ , 𝑚 ∈  (4n)

𝑡𝑘𝑚 ≥ 0 𝑘 ∈ , 𝑚 ∈  (4o)

𝑡+𝑘 ≥ 0 𝑘 ∈  (4p)

𝑡−𝑘 ≥ 0 𝑘 ∈  (4q)

Objective function (4a) consists of the sum of the benefit for reach-
ing the ideal state at deficit nodes and the benefit for recharging cars
with depleted battery, minus the cost of the employees’ idle time, the
cost for exceeding the planning horizon, and the cost of all relocation
activities as a consequence of wear, tolls and electricity. The cost for
the idle time of employees is introduced to take into account that,
in the E-CRP, we deal with only a portion of the entire planning
horizon. Idle time costs encourage employees to complete their tasks
as soon as possible, and thus leave the company in a better position
to address the next re-optimization. The objective function includes
the main drivers of a CSOs decisions: on the one hand the need of
ensuring a ‘‘well deployed’’ and ready to use (i.e., charged) fleet, on the
other hand, the need to contain the costs deriving from ensuring such
level of service. Constraints (4b) state that each car can be relocated
at most once (i.e., only one of the car-moves associated with the car
can be performed). Constraints (4c) make sure that each task of each
employee can consist of at most one car-move. This also means that
some task may not be associated with a car-move (i.e., not performed).
Constraints (4d) state the precedence between consecutive car-moves.
Constraints (4e) and (4f) limit the number of cars that can be moved
to deficit nodes and the number of cars in need of charging, respec-
tively. Constraints (4g) enforce the capacity of the charging stations.
Constraints (4h) ensure consistent tracking of the time used for each
employee, car-move and task. Basically, it means that the time when
starting a car-move must be greater than or equal to the time the
employee started on its preceding car-move plus the time he/she spent
to perform that preceding car-move and the time needed to travel from
the destination of that preceding car-move to the beginning of the
current one. Here, 𝑀𝑟 is a constant large enough to make the constraint
redundant when 𝑥𝑘𝑟𝑚 = 0. Constraints (4i) state that the starting time of
two consecutive tasks must be non-decreasing. Constraints (4j) ensure
that no car-move can start before the earliest availability of its car.
Constraints (4k) state that the first task assigned to an employee cannot
start before its earliest availability plus the time to reach the origin of
the first car-move. Constraints (4l) keep track of the deviations from
the planning period. Constraints (4m) enforce the upper bound on over
time. Finally, constraints (4n)–(4q) define the domain for the decision
variables.
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