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Norsk sammendrag: 

Topologioptimering og gitre (lattices) er metoder for å produsere lettvektstrukturer som samtidig 
kan maksimerer (eller minimerer) ulike mekaniske egenskaper i forhold til massen. Målet med 
denne avhandlingen er å undersøke de mekaniske egenskapene til prøver laget med to ulike 
topologioptimeringsmetoder (SIMP og RAMP) og gitteroptimering for en enkel to dimensjonal 
trepunkts nedbøying problem. Prøvene ble testet eksperimentelt og simulert med 
elementmetoden. 14 ulike geometrier har blitt 3D printet og testet. Ti topologioptimerte 
strukturer ble generert med SIMP og RAMP metoden i Abaqus, med sluttvolumfraksjoner i 
intervallet 30%-70% for hver 10% steg. Tre gitterstrukturer ble produsert med en Python-kode 
med utgangspunkt i data fra et topologioptimeringsresultat fra Abaqus. En referansegeometri ble 
også produsert og testet. Alle prøvene ble utført på en universell testmaskin med trepunkts 
bøyefester. De topologioptimerte prøvene og referansen ble simulert i Abaqus. Resultatene fra 
eksperimentene ble brukt til å sammenlikne stivheten, bære-evnen, og arbeid-til-brudd for de 
ulike geometriene. De eksperimentelle resultatene ble også sammenliknet med simuleringene. 
Resultatene viser at både topologioptimering og gitterstrukturer har høyere spesifikke 
egenskaper, i forhold til massen, sammenliknet med referansen, med unntak for enkelte 
geometrier når det gjelder arbeid-til-brudd. Noen observasjoner fra testingen og generelle 
problemstillinger knyttet til den praktiske bruken av disse optimeringsmetodene blir diskutert. 

English abstract: 

Topology optimization and lattice structures are light weighting methods that can maximize (or 
minimize) different mechanical responses of structures relative to their mass. The aim of this 
thesis is to study the mechanical properties of sample geometries produced using two different 
topology optimization methods (SIMP and RAMP) and optimized lattices for a simple two-
dimensional mid-point bending problem. Sample geometries were tested experimentally and 
through finite element analysis. Fourteen different geometries were 3D printed and tested. Ten 
topology optimized geometries were generated with the SIMP and RAMP methodologies in 
Abaqus, with volume fractions in the interval between 30%-70% for each 10% step. Three 
optimized lattices were generated with a Python code utilizing topology optimization results from 
Abaqus. A reference geometry was also manufactured and tested. All samples were tested on a 
universal testing machine, using a standard three-point bending fixture. The topology optimized 
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and reference geometries were simulated in Abaqus. Results from the experiments were used to 
compare the stiffness, load capacity, and work to fracture of the sample geometries. Experimental 
results were also compared to the simulations. The results show that both the topology optimized 
and optimized lattice structures have higher specific mechanical properties, when normalized 
over mass, than the reference, except for work to fracture for some of the geometries. Some 
observations from the experiments and general perspectives on the practical application of these 
optimization methods are discussed. 

 

Stikkord: 

Topology Optimization 

Lattices 
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Specific stiffness 

Specific load capacity 

Specific work to fracture 
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Introduction 
Structural optimization has a long history in engineering. Truss structures, I-beams, and 

hollow tubes are examples of optimization methods that aim to minimize mass, deflection, 

or compliance in structural applications. Such classical optimization problems can be solved 

analytically and without the aid of computers. With the rapid expansion of computational 

resources, significantly more complex optimization methods have been developed and 

made available. One such method is topology optimization. Topology optimization is an 

integrated part of many engineering software tools and can be used to create highly 

complex geometries that would be difficult to find with other means. 

Producing the geometries created by topology optimization is often challenging, if not 

impossible, with traditional manufacturing techniques, such as machining, casting, sheet 

bending and forming. Digital additive manufacturing technology enables the production of 

such complex geometries, and as this technology becomes more widespread, advanced 

optimization can be applied to a larger degree in structural engineering applications. 

Another promising optimization and light weighting scheme is the use of lattice structures. 

Lattices are space-filling cellular structures. They can be both stochastic (Voronoi, branched, 

or foam-like lattices) or uniform (graph lattices or triply periodic minimal surfaces) (Pan et 

al. 2020). Replacing solid material with lattice structure can reduce mass. This can be done 

by shelling a part, i.e. removing interior material, and filling it with lattice structure. Lattice 

parameters can be manipulated to achieve improved performance. For example, the lattice 

thickness can be controlled by using a stress field from a finite element analysis, adding 

material where the stresses are high or removing where they are not. Lattice orientation 

can also influence its reaction to loading, increasing or decreasing its stiffness. Additive 

manufacturing has enabled the fabrication of complex lattice geometries. 

Combining topology optimization, lattices, and additive manufacturing can produce highly 

optimized, light weight parts that meet the structural requirements for diverse applications. 

This technological synthesis can have a significant positive impact on the performance of 

engineering structures and may also reduce their environmental impact. In many 

applications, for example transportation or aerospace, mass reduction can decrease energy 

consumption, increase vehicle performance or payload, and/or increase range (Gay et al. 
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2003). Additive manufacturing (AM) may also have lower environmental impacts than 

traditional manufacturing techniques, especially for metallic components.  Liu et at. (2018, 

p.843) present findings that suggest that optimized, AM metallic parts can have life cycle 

impacts roughly one third of conventional metal parts. 

 

Figure 1: Top row, left to right, examples of topology optimized geometries that have been manufactured, bracket and coat 
hanger, bracket on far right has not been manufactured. Bottom, left: Examples of lattice structures, from left to right, 
triply periodic minimal surface (TPMS, gyroid), graph lattice with graded cell size and orientation (octet), stochastic Voronoi 
lattice (with graded lattice thickness), and a stochastic orthofoam lattice. Bottom, right: Combined topology optimized and 
lattice structure. (All images author’s own work). 

1.1. Research question 
While topology optimization and lattice structures, combined with AM, seem like promising 

technologies for the future it seems reasonable to study their structural effectiveness. This 

thesis aims to investigate, through experiments and simulations, the structural performance 

of specific solutions to a clearly defined optimization problem using both topology 

optimization and optimized lattice structures. The main research question is: 

• How does the structural performance of topology optimized geometries and 

optimized lattices compare to that of a reference geometry? 

To gain more insight into how changing optimization parameters effects the outcome, a 

secondary research question has been formulated: 
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• How are the optimization outcomes effected by the choice of parameters and 

methods? 

1.1.1. Operationalization 

The operationalization of this research question will be carried out by defining a simple two-

dimensional structural problem that will form the basis for comparison of optimization 

methods. An initial reference geometry will be the starting point for all optimized 

geometries, and all geometries must fit within this initial geometry. Restricting the problem 

to 2D has the benefit of reducing the requirements for computational resources and 

programming complexity, while also allowing standard testing methods to be utilized. 

Although the initial problem is 2D, all geometries will be extruded along the out-of-plane 

normal vector (e.g. the z direction for the xy plane) to create 3D geometries. These 3D 

geometries will be fabricated and tested using testing apparatus available at NTNU Gjøvik. 

Simulations of the geometries will also be conducted to compare with, and corroborate, the 

experimental results. 

 

Figure 2: Schematic illustration of project workflow 

Fig. 2: Schematic illustration of project workflow 

Step Description Section in thesis 

1) Model of initial 2D problem in Abaqus 1.3. 



 

4 
 

A2) Topology optimization (TO) in Abaqus 1.2.1.-1.2.2. 

(theory), 1.3.2.-

1.3.4. 

AA3) 3D printing of TO geometry 2.1.2.-2.1.4. 

AA4) 3-point bending tests of TO geometry 2.2. 

AA5) Experimental results TO geometry 3.1. 

AB3) Simulation of TO geometry in Abaqus 2.3. 

AB4) Simulation results 3.2.-3.3. 

B2) TO in Abaqus, SIMP method, penalization factor = 1 Table xx, same as 

A2) 

B3) Creation of lattice geometry in Python using data generated by 
TO in Abaqus 

1.3.5. 

B4) Post-processing of lattice geometry for 3D printing 1.3.5.4. 

B5) 3D printing of lattice geometry Same as AA3) 

B6) 3-point bending tests of lattice geometry Same as AA4) 

B7) Experimental results lattice geometry Same as AA5) 

 

1.2. Theoretical foundations 

1.2.1. Topology optimization 

Topology optimization is a mathematical method for finding the optimum distribution of 

material for a given set of constraints. It is an iterative method that solves the optimization 

problem on a discretized domain using finite element analysis (FEA). The topology 

optimization approach studied here is based on the method proposed by Bendsøe & Sigmun 

(2003). This method is deterministic, in the sense that using the same methods, parameters, 

and discretization will yield the same results. In contrast to size and shape optimization, 

where the shape of the design is known in advance, the goal of topology optimization is to 

find an unknown optimal shape. (Bendsøe 1995, p. 5). A well-formulated optimization 

problem requires the definition of a specific design space, often called Ω, that is a subset of 

Euclidean 2D or 3D space. This geometric constraint is necessary to make the set of 

potential solutions finite. (Stolpe & Svanberg 2001, p. 116). The optimization method seeks 

a globally optimal solution for this specific design space. 

Topology optimization problems are formulated with an objective function that is to be 

minimized or maximized, e.g. global compliance, strain energy or eigenfrequencies. 
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Additional conditions are added that constrain the problem, for example a volume or mass 

fraction of the final topology. The optimal solution to the topology optimization problem is 

found within the domain of the imposed constraints. 

Topology optimization seeks to create a composite consisting of two, or more, materials 

with different, non-zero elastic properties. One material has very low elastic properties and 

represents a void, the other represents a specific material, e.g. steel. In its idealized 

formulation, topology optimization seeks to distribute infinitesimal points of these different 

materials within the design space. Solving a continuum topology optimization problem is 

exceedingly difficult, if not impossible, so finite element analysis (FEA) is used as a solution 

method. In FEA, the design space is discretized and a material property between 0 and 1 is 

attributed to each element, with 0 representing a void, 1 material, and intermediary values 

a combination of the properties of the two materials. The ascription of values to the 

elements is often called the element density function. (Stolpe & Svanberg 2001). 

Since creating continuous, isotropic materials with graded elastic properties is problematic, 

topology optimization methods attempt to assign either a value of 0 or 1 to all elements in 

the design space. Different methods exist for penalizing intermediary density values for 

elements. In this thesis two approaches are used and tested, the Solid Isotropic Material 

with Penalization (SIMP) and the Rational Approximation of Material Properties (RAMP) 

methods. SIMP and RAMP are interpolation schemes that penalize intermediary values of 

the density function.  

The SIMP method uses a power law, where the elastic property of element j is given by: 

𝐸𝑝(𝑥𝑗) = 𝐸0 + 𝑥𝑗
𝑝Δ𝐸 

Where Ep is the elastic property (Young’s modulus) of element j, E0 is the elastic property of 

the void material, xj is the density function of element j and ΔE = E1 – E0. Since xj ϵ (0,1], 

choosing values for p > 1 will reduce the stiffness achieved for material fraction used for 

intermediary values of the density function. (Stolpe & Svanberg 2001, p.119) 

Stolpe & Svanberg (2001) suggest an alternative method for interpolation that has become 

known as RAMP. The elastic property of element j is given by: 

𝐸𝑞(𝑥𝑗) = 𝐸0 +
𝑥𝑗

1 + 𝑞(1 − 𝑥𝑗)
Δ𝐸 
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Choosing values for q > 0 will also penalize intermediary values of the density function. 

(Stolpe & Svanberg 2001). 

Figure 3 (Stolpe & Svanberg 2001, 

p.119) shows the effect on the 

Young’s modulus of an element 

with intermediary values for the 

density function for different values 

of p and q. The geometries created 

and tested in this thesis have used 

values of 1, 2, and 3 for both the 

SIMP and RAMP methods. Only 

optimized geometries created with 

p=q=3 have been tested 

experimentally. Lattice geometry 

has been created using topology 

optimization results from SIMP with 

p=1.  

In figures 4 and 5 the distribution of element densities from the topology optimization 

processes in Abaqus for the SIMP method with penalization parameters of 3 and 1 are 

plotted. For the geometries created using p=3, we can see that the fraction of elements with 

a density value of 1 are highest for the 70% volume fraction and decrease with smaller 

fractions. 

 

 

Figure 3: Effect of SIMP and RAMP interpolation on Young’s modulus for 
a given element fraction 
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With a penalization factor of 1, the element densities are more varied, with the weight of 

elements shifting towards higher densities for higher volume fractions. The data for these 

plots has been generated by Abaqus during the topology optimization processes studied in 

this thesis. 

 

 

Figure 4: Fraction of elements with element density xj for SIMP method with penalization 
factor of 3. 

Figure 5: Fraction of elements with element density xj for SIMP method with penalization 
factor of 1. 
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1.2.2. General description of topology optimization algorithm 

Software implementations of topology optimization algorithms generally follow the same 

solution strategy. Different optimization strategies and parameters are available across 

software platforms, lending varying degrees of control over the optimization process. 

1.2.2.1. Step 1: Definition of design space (Ω) and boundary conditions 

Topology optimization starts by defining a design space (Ω). This design space can include 

holes or obstacles, i.e. regions where there cannot be material, as well as areas where 

material is enforced, for example to allow contact with other components. The design space 

can be represented in many ways - CAD models, meshes, point lists etc. 

The boundary conditions for the problem are required to find a solution. Mechanical loads, 

displacements, thermal loads, or other forces acting on the component must be defined. 

There can be single loads, multiple loads, or multiple load cases, where different loads act 

on the structure independently of each other. The design space must be constrained from 

rigid body movement in at least one point.  

1.2.2.2. Step 2: Discretization of design space 

Topology optimization requires the design space to be discretized. This is usually achieved 

with finite elements. Elements should be relatively small to reduce the influence they have 

on the result. Mesh types can also influence the results of topology optimization, especially 

large triangular elements for 2D problems, where such elements give the material 

unrealistic stiffness. (Full Integration 2019).  

1.2.2.3. Step 3: Initialization 

The SIMP and RAMP optimization processes usually begin by setting all elements to the 

constraining value defined in the problem formulation, for example all elements are given a 

density of 0.5 if the final volume fraction is 0.5. The material properties of the discretized 

geometry are adjusted accordingly. For example, reducing the volume fraction to 0.5 would 

reduce the stiffness of the material accordingly, or actually more when using the SIMP and 

RAMP interpolation schemes. A finite element analysis is then conducted on the discretized 

geometry with the altered properties. 

Depending on what the objective function is, the properties of each element are updated 

based on the results of the finite element analysis. For example, elements that experience 

high stresses have material added, while elements with low stresses can have material 
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removed. The material properties of each element are then updated, and a new finite 

element analysis is conducted. 

1.2.2.4. Post-processing of topology optimization results 

Since the algorithm calculates a density value for every element in the design space, the 

solution has the same resolution and edge shape as the discretized mesh. This means that 

quadrilateral meshes will have ‘pixelized’ edges in the raw data in 2D, while 3D tetrahedral 

meshes have faceted faces. In Abaqus, topology optimization results are shown with smooth 

edges, and exported geometry has been smoothened as well. Filtering and smoothening are 

common postprocessing techniques to remove mesh-induced geometric irregularities. The 

geometry reviewed in this thesis has used the default smoothening and filter settings in 

Abaqus. 

1.2.2.5. Additional methods: Gradient-based and condition-based optimization 

Some algorithms track the change of the global structural performance, according to the 

objective function, in relation to the change in element density after designated number of 

iterations. Based on this gradient, a differentiable approximation to the initial problem can 

be found. Gradient based optimization can be significantly faster. Several methods are 

suggested in the literature, e.g. Svanberg (1987) or Zhou & Saitou (2018). Abaqus does not 

include such a gradient based approach but does have an optimization algorithm called 

condition based. This algorithm does not calculate the local stiffness and is therefore faster, 

but has more limited capabilities (About structural optimization, n.d.). In this thesis, only the 

density-based algorithms based on Bendsøe & Sigmund (2003) are used. This method does 

not employ gradients, nor is it condition based. 

1.3. 2D Topology and Lattice Optimization Problem 
A two-dimensional problem is defined to test topology and lattice optimization 

methodologies. This is a three-point bending problem that replicates the load and boundary 

conditions encountered using an Instron 5966 Universal testing machine with a 3-point 

bending fixture. The reason for choosing this setup is that the optimized geometry in 2D can 

be extruded to make 3D objects that can be tested, allowing comparison of modelling and 

testing results.  
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1.3.1. 2D problem 

The initial design space is an 80 [mm] by 20 [mm] planar area. The planar area is supported 

at both ends by semicircular rigid bodies with a radius of 5 [mm], representing the supports 

of the 3-point bending fixture. A span length of 70 [mm] is used. Loading is introduced at the 

midpoint of the top edge by a rigid semi-circular body. A fixed displacement of 1 [mm] is 

applied to this body. All contacts between support and loading bodies are ‘hard contact’. 

 

 

Figure 6: Problem domain. An 80x20 mm2 planar area, supported by semi-circular rigid bodies, load applied by semi-
circular rigid body. The quadrilateral mesh is shown. 

A quadrangular mesh, with edge lengths of 0.5 (mm), is used to discretize the planar area.  

Quadrilateral elements are used instead of triangular, as triangular meshes can give the 

discretized body an artificially high stiffness. 

1.3.2. Topology optimization parameters 

A series of optimization processes were run on the same geometry, each with different 

parameters. Different combinations of optimization method, final volume fraction, 

penalization parameter, and final maximum material density were tested systematically.  

Since the only loading was a prescribed displacement, the optimization process sought to 

minimize the energy stiffness measure of all elements, under the constraint of a prescribed 

volume fraction. The energy stiffness measure is calculated by: 

𝑃 ⋅ 𝑢

2
−

𝑅 ⋅ 𝑢⋆

2
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where P is the external loading, u are the corresponding nodal deflections, u* are the 

prescribed nodal displacements, and R are the nodal reaction forces. (Design responses, 

n.d.). Given that P=0, and that R<0, minimizing R entails finding the largest possible negative 

value for R within the problem constraints. If u* is a fixed value, then R must be as large as 

possible to minimize the energy stiffness measure.  

Geometries with volume fractions ranging from 0.7 to 0.3 (70-30%), in increments of 0.1 

(10%) were created. Both SIMP and RAMP strategies were tested at all the volume fraction 

steps. 

Abaqus allows the user to specify the penalization parameter. Penalization values of 1, 2, 

and 3 were used to create geometries. Early in the optimization trials, it became apparent 

that some of the geometries displayed poor properties, such as discontinuous material 

domains. These geometries came from using intermediary values, greater than 1 and less 

than 3, for the penalization parameter. Only a few optimization runs were carried out with 

such intermediary values for the penalization parameter. Only geometries with penalization 

parameter values of 1 and 3 were created for all volume fractions. As mentioned earlier, a 

penalization parameter of 1 with the SIMP method results in the non-penalization of 

intermediary values for the density function. For the RAMP method, setting the penalization 

factor to zero should have the same effect, but these optimization runs would fail in 

Abaqus. For these reasons, the RAMP method was only tested with intermediary 

penalization factors for some of the volume fractions. 

Abaqus allows the user to specify the desired range of end densities for the elements, from 

minimum to maximum. In the tests run, a combination of a penalization value of 1 with an 

end density interval of (0,0.75) was used as the basis for creating lattice structures. 

All the other optimization parameters – convergence criteria, maximum number of 

iterations, etc. – were kept at the default values. This may have affected the results of some 

of the optimization processes to some extent since this limit was reached in three cases. In 

only one of these cases was the geometry included in the experiments. Judging from the 

output files, the energy stiffness measure only changed by 1.17% in the last five iterations. 
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1.3.2.1. Material properties for topology optimization 

Only elastic and density properties of the material were specified in the topology 

optimization setup. When the optimized geometries were being calculated it was not known 

what material the samples were going to be 3D printed in. For the elastic properties, a 

Young’s modulus of 210 [GPa] and a Poisson’s ratio of 0.3 was defined. A dummy density 

value of 1.0 [g/cm3] was used. 

1.3.3. Convergence time 

The number of iterations in the optimization process varied between methods, parameter 

settings, and volume fractions. This gives some indication of the computational difficulty of 

the optimization problem for the given settings, but comparing computational requirements 

based on this measure will have limited reliability, as it is unknown to what extent each 

iteration is computationally equivalent. 

1.3.4. Summary of topology optimization processes 

Table 1 and 2 summarize the optimization processes that have been run. The geometry that 

has been tested experimentally, and that has been used for lattice generation, is indicated. 

To confirm if the default optimization method in Abaqus is SIMP, runs using both the default 

and SIMP were conducted. With all parameter settings equal, the default and SIMP method 

converged in the same number of iterations and produced the same geometry. 

Table 1: Summary of topology optimization processes tested with SIMP method 

Volume 

fraction 

Penalization 

factor 

Iterations Tested 

Experimentally 

Used for 

lattice 

generation 

Comments 

0.70 

3 

38 Yes - Default 

42 No - 
Min. density set to 0.001, 

longer convergence time 

2 23 No -  

1 21 No -  

0.60 
3 

34 No - Default method 

45 No - 
Starting density set to 0.75, 

longer convergence time 

34 Yes - SIMP method 

2 50 (max) No -  



 

13 
 

1 

27 No - Starting density 75% 

18 No - 
Starting density 75%, final 

density 0.1-75% 

18 No -  

0.50 

3 47 Yes -  

2 50 (max) No -  

1 
17 No -  

16 No - Final density 1-75% 

0.40 

3 35 Yes -  

2 48 No - Geometry errors 

1 
16 No -  

17 Yes Yes Final density 1-75% 

0.30 
3 32 Yes -  

1 17 No - Final density 1-75% 

 

Table 2: Summary of topology optimization processes tested with RAMP method 

Volume 

fraction 

Penalization 

factor 

Iterations Tested 

Experimentally 

Used for 

lattice 

generation 

Comments 

0.70 

3 38 Yes -  

2 36 No -  

1 24 No -  

0.60 

3 37 Yes -  

2 41 No -  

1 50 (max) No -  

0.50 

0.50 

cont. 

3 41 Yes -  

2 41 No -  

1 46 No - Geometry errors 

0.40 3 43 Yes -  

0.30 3 50 (max) Yes -  
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1.3.5. 2D optimized lattices 

Intermediary values of the density function indicate that the elastic modulus, and mass, for 

an element were a fraction of the full value. In practice it is difficult to create a homogenous 

isotropic material with graded elasticity and mass. It is possible to create an anisotropic 

material, in this case a lattice structure consisting of homogenous unit cells, that has 

variable elasticity and mass by manipulating parameters of each unit cell. With additive 

manufacturing technology, such as Fused Filament Forming (FFF), it is also possible to 

realize such structures in practice. 

In this thesis, lattice optimization using a basic 2D unit cell consisting of a hollow square (see 

figure 7) will be explored. Parameters that could be used to manipulate the elasticity 

(stiffness) and material density of the unit cell are: cell size, wall thickness, skewing, and 

orientation of the cell. Figure 7 shows a representation of the unit cell used in the lattice 

geometry in this thesis (left) and its elastic properties (right). 

Wu et al. (2021) have proposed a method for lattice optimization where the cell orientation, 

size and skewing are the optimization parameters. Using homogenization to create an 

elasticity tensor for an anisotropic 2D unit cell, Wu et al. (ibid.) developed a topology 

optimization finite element code that manipulated the elastic properties of each element by 

altering the values for the side length and orientation angle.  Wu et al (Ibid.) aligned the unit 

cells with the principal stress directions σ1 and σ2, citing Pedersen (1989) who posits that 

this orientation is optimal.  

 

 

 

 

 

 

 

 

 

Figure 7: (Left) shows the basic 2D unit cell, extruded to a 3D shape. This is the unit cell used in the lattice 
geometry in this thesis, as well as by Wu et al. (2021). (Right) is a representation of the 3D elastic properties of 
the unit cell on the left. Red indicates higher stiffness, green intermediary, and blue lower. 
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Allowing the unit cells to align with the principal stress directions should give the entire 

lattice structure higher stiffness and strength. Looking at figure 6 (right) we can see that the 

unit cell is stiffer in the in-plane direction parallel with the walls than diagonally across the 

corners. A force working diagonally across the cell leads to bending dominated deformation 

of the unit cell, while a force working parallel to the walls leads to predominantly axial 

deformation, which the unit cell is more able to resist. Shear forces parallel to the cell walls 

cause diagonally oriented deformation of the cell. If the unit cell is locally oriented along the 

principal stress directions, the shear forces will, in theory, be zero. All forces acting on the 

cell will then be axial, thereby loading the cell in its strongest direction. Figure 8 shows the 

Mohr’s circle interpretation of a 2D stress state in a solid isotropic material. The maximum 

principal (σ1) and minimum principal (σ2) stresses are found on a line where the shear stress 

(τ12) components are zero. Rotating the unit cell by θ brings the cell walls in alignment with 

the principal stress direction. 

 

Figure 8: Mohr’s circle representation of 2D stress state. (Source: 
https://commons.wikimedia.org/wiki/File:Mohr_diag17.JPG, accessed 12.04.2021, author Taltastic)  

  

The topology optimization results in Abaqus include stress data (σ11, σ 22, σ 33, and σ 12) 1for 

every element centroid. It is also possible to extract the principal stress data directly from 
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Abaqus, but these values were calculated using Python. Since this is a 2D plane strain 

problem the s33 values all equaled 0. σ1 and σ2 values were calculated for all elements 

centroids in the design space. The angle between the global coordinate system (x,y(,z)) and 

the principal stress direction in a material point is 2θ, see figure 8. Finding the angle θ is 

done by: 

θ =
1

2
arctan (

2σ12

σ11 − σ22
) 

Using the arctan function is problematic in this application since the function values are only 

in the interval [−
π

2
,
π

2
]. This could end up rotating the actual angle θ by π radians and would 

require additional steps to mitigate. The Numpy atan2 function was used instead as its 

function values are in the interval [−π, π]. It calculates the angle with the basis vector 𝑒1⃗⃗  ⃗ =

[1,0]. Using the atan2 function provided correct results for the angle θ. 

Inserting the θ value in the following formula defines a discrete vector field for all element 

centroids consisting of unit vectors expressed in the global coordinate system. 

𝑭𝝈𝟏 = [
𝑟 ⋅ 𝑐𝑜𝑠(θ)

𝑟 ⋅ 𝑠𝑖𝑛(θ)
] 

  

Where F is a discrete vector field. Setting r to 1 provides unit vector components in the 

global x and y direction for all element centroids in the discrete vector field. This approach 

yielded a discrete vector field for σ1. 

The discrete vector field for σ2 was found by relying on the fact that σ2 is perpendicular to σ1 

in all points. In R2 this can be done with the following formula: 

𝑭𝜎2 = [
−𝑟 ⋅ 𝑠𝑖𝑛(θ)

𝑟 ⋅ 𝑐𝑜𝑠(θ)
] 

Again, setting r to 1 yields discrete unit vector components for σ2 in the global x and y 

directions for all element centroids.  

 

1.3.5.1. Methodology for generating lattice geometry in Python 

A Python code has been written to generate the lattice geometry studied in this thesis. Due 

to time constraints, a basic approach was implemented. The basis for the lattice geometry 
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was two sets of lines, one for each of the principal stress fields, plus additional lines along 

the boundaries. These lines were found by following the discrete vector fields from a set of 

starting positions, using a numerical method. See table 3 for starting points used to 

generate the lattices. In general form, the scheme for finding the next point pi+1 is: 

𝑝𝑖+1 = 𝑝𝑖 + s ⋅ 𝑭(𝑝𝑖) 

Where pi is the position at the previous step, s is the step size (chosen to be 0.25 mm) and 

F(pi) is the unit vector at point pi found from the discrete vector field for σ1 or σs. Since the 

vector field F is not defined for every point of space in Ω, the unit vector in F that is closest 

to point pi is used. Starting from an initial point p0 new points were found until an end 

condition was met. As the problem is symmetric, only half of the design space Ω was filled 

with lines, and the stop conditions for line generation were x=40.25 and y=20. 

Line group Starting points (x,y) 

σmin (compressive) stress field (5,0), (10,0), (15,0), (20,0), (25,0), (30,0), (35,0), 
(40,0)  

σmax (tensile) stress field 

Points for this line were seeded along the σmin 
line starting from (5,0) with 3.75 mm spacing 

along the curvature. Initially 5mm spacing was 
used but was later reduced. 

 

 

Since the fields Fσ1 and Fσ2 are perpendicular to each other in every point, the set of lines 

described above was used to create a grid of unit cells when merged. Figure 8 illustrates the 

stream plot for the design space. It also shows the material density contours from the 

topology optimization. The data represented by this image are used to generate the lattice 

geometries.  

One disadvantage with the chosen methodology is that the cell size changed throughout the 

geometry. Only at the initial positions are the cell size dimensions correct. This reduces the 

validity of the comparison with the unoptimized lattice geometry, which has uniform cell 

Table 3: Starting points for lattice generation 
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size throughout. 

 

Figure 9: Co-projection of stream plot for principal stress fields and density function. Red lines indicate the σ1 (tensile) field, 
while the green lines are the σ2 (compressive) field. The contour lines, shaded purple to light green, are for the values of the 
density function, a scalar field. The grey scale image in the background is a representation of the density function scalar 
field. 

1.3.5.1.1. Brief comment on the stress fields 

In this specific problem the stress fields discussed above were purely tensile (σ1) and purely 

compressive (σ2). Other geometries and loading conditions can lead to compressive stresses 

in the S1 field and visa versa.  

1.3.5.2. Wall thickness of optimized lattices 

Wu et al. (2021) used a constant wall thickness for easier manufacturing. The lattices 

geometries reviewed in this thesis used constantly varying wall thicknesses. Wall thickness 

was driven by data generated from the topology optimization. The line sets described in the 

previous section can represent the center path between adjacent unit cells. On either side 

of these lines, a wall thickness was added. Since the initial unit cell was 5 x 5 [mm2], the 

maximum wall thickness on either side is 5/2 = 2.5 [mm]. Wall thickness of the lattice was 

generated using the magnitude of the principal stress in point pi to set the distance from the 

center path. 

𝑝𝑖̂ = 𝑝𝑖 +
𝜎(𝑝𝑖)

𝜎𝑚𝑎𝑥
⋅ 2.5 ⋅ 𝐹𝑠(𝑝𝑖) 

Where p̂i is the point designating the wall thickness, σ(pi) is the principal stress magnitude in 

point pi, σmax is the maximum principal stress in the design space, and Fs is the unit vector 

field value in point pi for the perpendicular principal stress direction. This method was the 

one used for producing lattice geometry. Three modifications of the ratio σ/σmax were used 

to create lattice geometry that was tested. For the geometry called ‘Lattice 1’, σmax for the 

principal stress σ1 (tensile) was set to the maximum value of σ1, and for the σ2 lines, σmax 
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was set to the minimum (largest absolute) value of σ2. Since the largest value for σ1 was 

around 37 and the largest value for σ2 was around 257, the wall thickness of the tensile 

members was relatively greater compared to the compressive members. A second 

geometry, called ‘Lattice 2’ was made with an alteration to the σmax value. In this 

configuration σmax was set to the highest overall value (σ2) for both tensile and compressive 

members of the lattice. With this modification, the wall thickness of the tensile members 

was greatly reduced, but the compressive members were still relatively thin. Another 

modification was made to the wall thickness function. The ratio σ/σmax was altered to: 

(
𝜎(𝑝𝑖)

𝜎𝑚𝑎𝑥
)

1
2

 

Raising this ratio to the power of 0.5 increased the value of ratio between 0 and 1, adding 

more thickness to the walls in the compressive principal stress direction. 

The geometry called ‘Lattice 3’ was similar to ‘Lattice 2’ but changed the power of the 

σ/σmax ratio to ⅓, increasing the intermediary values of the wall thickness further. 

Figure 10 presents a schematic illustration of the lattice generation process. 

 

Figure 10: Schematic of the lattice generation process. In 1) a set of points (representing a line) following the unit vector 
field for one of the principal stresses is defined. In 2) points are defined on either side of the line from 1). The unit vector 
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field for the other principal stress controls their direction, and the magnitude of the principal stress in point pi determines 
the distance from point pi. In 3) the points are triangulated. A list of points (a n x 3 matrix) and a list of connections (a m x 3 
matrix) is used to generate an STL file. The grey dashed line represents the valid area for geometry. In post-processing, 
parts of the geometry that were outside this area were trimmed. The process is shown in 2D here, while the resulting 
geometry is 3D. 

1.3.5.3. Modification for FFF/FDM 3D printing: Minimum wall thickness 

Figure 11 (left) shows a CAD geometry representing different wall thicknesses. From left to 

right the wall thicknesses are [0.50, 0.45, 0.35, 0.25] [mm]. On the right in figure 10 is the 

interpretation of this CAD geometry by the slicer software that generates G-code for the 

printer. Even with the nozzle diameter set to 0.20 mm, only the 0.50 mm wall thickness is 

produced. Wall thicknesses less than 0.50 mm must be avoided if the geometry is to be 

produced using the printers available at NTNU, Gjøvik. In the Python code that generates 

the lattice geometry, a basic approach was implemented. Any wall thinner than 0.25 mm 

was given a thickness of 0.25 mm. Since the code generated a wall thickness on either side 

of the center line, this produced a wall thickness of 0.5mm in the final part. 

 

Figure 11: CAD geometry and its interpretation by 3D printing slicer software.  

1.3.5.4. Post-processing and printing of lattice geometry 

After the points designating the wall thickness were generated in the Python code, a 

connectivity list representing edges in triangles was created. Using a module called numpy-

stl 2.16.0 (Hattem ND), STL files were generated based on the list of points and connectivity 

list. An STL file was exported from the Python script and post-processed using the 

PrusaSlicer software. First the STL files were repaired using the built-in function. Second, 

since only half of the geometry was created in the Python code, it was mirrored to create 

the final lattice structure. The lattice structures were then sliced and printed using the same 

settings, printers, and material as the topology optimized samples. Figure 12 shows the 

three different tested lattice geometries. 
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Figure 12: The three generated lattices. From top to bottom: Lattice 1, Lattice 2, 
Lattice 3. 
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2. Testing and simulation of optimized geometries 

Topology and lattice optimized geometries, along with reference geometries, were 

manufactured and tested.  The topology optimized and reference geometries were also 

simulated in Abaqus using finite element analysis. In this section/chapter the experimental 

and simulation process will be reviewed in detail. Starting with the production process, 

continuing with the experimental setup, and finishing with the simulation process. 

2.1. Experimental testing 

2.1.1. Samples 

A total of 14 different geometries were manufactured and tested. Five sample groups with 

0.70, 0.60, 0.50, 0.40, and 0.30 volume fractions were produced with both the SIMP and 

RAMP topology optimization methods. Three optimized and two reference lattice 

geometries were produced. The reference lattice geometry consisted of the same unit cell 

on a rectangular grid with cell edges parallel to the main axis directions. Reference samples, 

representing the initial three-point bending problem, were fabricated. Each sample group 

had 

two Figure 13: Tested topology optimized geometries. SIMP on the left and RAMP on the right. From top in 
descending order by volume fraction. 
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samples. Table 4 summarizes the sample groups. Figure 13 shows the topology optimized 

geometries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2. Pre-processing 

All samples were manufactured using fused filament forming (FFF)/fused deposition 

modeling (FDM) additive manufacturing method. STL files of the geometries were processed 

using PrusaSlicer V2.3.0 for Windows 64. Layer height was set to 0.20 mm. A standard 

material preset, Generic PLA, in the slicer was used. The default present 0.20 mm QUALITY 

was used in the PrusaSlicer. ‘Quality’ in the setting name refers to the print speed and 

acceleration being lower than for the ‘SPEED’ standard setting. Print times are longer with 

this setting, but print resolution, details, tolerances, and quality are higher. Two 

modifications were made to the ‘QUALITY’ setting. Infill density was changed to 100% and 

infill pattern, by necessity, was changed to rectilinear. The standard infill for the ‘QUALITY’ 

setting is gyroid, but at 100% infill this pattern cannot be printed on Prusa printers with the 

standard settings. Rectilinear infill is the default for 100% dense prints, and this was the 

reason for accepting this setting.  A summary of the most important settings is provided in 

table 5. The Prusa Mk3 was selected as the printer in the software. No other modifications 

Optimization method 

Volume Fraction 

0.70 

(70%) 

0.60 

(60%) 

0.50 

(50%) 

0.40 

(40%) 

0.30 

(30%) 

SIMP 
SIMP7001 

SIMP7002 

SIMP6001 

SIMP6002 

SIMP5001 

SIMP5002 

SIMP4001 

SIMP4002 

SIMP3001 

SIMP3002 

RAMP 
RAMP7001 

RAMP7002 

RAMP6001 

RAMP6002 

RAMP5001 

RAMP5002 

RAMP4001 

RAMP4002 

RAMP3001 

RAMP3002 

 

Lattices 

Lattice 1 Lattice 2 Lattice 3 

 LE1_1 

LE1_2 

LE2_1 

LE2_2 

LE3_1 

LE3_2 

 

Reference  

(original geometry) 

REF1 

REF2 
 

Table 4: Manufactured and tested samples. 
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to the standard settings were made. After configuring the print settings, the objects were 

sliced, and the G-code file was exported to a SD-card. 

Printer setting Value 

Bed temperature 60°C 

Nozzle temperature 215°C (first layer)/210°C (remainder) 

Perimeters 2 

Support material None 

Print speeds Peri.:45mm/s, small peri.:25mm/s, ext.peri.:25mm/s, infill: 80mm/s 

Cooling Fan always on, auto cooling enabled 

Nozzle diameter 0.4mm 

Infill 100% Rectilinear 

 

 

2.1.3. Printing 

Prusa Mk3 printers were used for all printing. All samples were 3D printed using white E-PLA 

from Add:North, who produce their filament in Ölsremma, Sweden. Prior to print 

initialization, the printer was turned on and preheated to the standard PLA settings: 215°C 

nozzle temperature and 60°C bed temperature. When the target nozzle temperature was 

reached the filament was loaded into the printer. Before printing, the print bed was cleaned 

using ethanol (approx. 75% vol.). Ideally, window cleaner (Windex) should have been used, 

but this was not available in the print lab at the time of manufacturing. Printing was done 

directly on the smooth polyetherimide (PEI) standard Prusa print bed. After initiating the 

print, the process was monitored during first layer printing and was left to run with only 

intermittent inspection thereafter. After print completion and cool down of the samples, 

they were removed from the print bed and weighed. 

2.1.4. Storage, conditioning, and preparation of samples 

After printing, the samples were placed in zip-lock bags with a desiccant for at least 24 

hours before testing. Digital image correlation was used during the testing of the optimized 

and reference samples produced in E-PLA. These samples were therefore speckled using 

generic black and gray acrylic spray paint 24 hours before testing and left to air dry before 

being returned to the bags. 

Table 5: Summary of significant printer settings 
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2.2. Testing of the samples 

2.2.1. Testing apparatus 

All samples were subjected to the same flexural test on an Instron 5966 universal tester. A 

5kN three-point bending fixture was used. Force measurements were made with an Instron 

10kN load cell attached to the cross head. Experiment control and data acquisition was 

done with the integrated Instron/Blue Hill software. Data was logged at 2Hz. 

Digital image correlation (DIC) was used during the testing of the topology optimized and 

reference sample. A Teledyne Genie Nano 5GigE M4040 Mono camera was used for image 

capture. A Fujinon CF50ZA-1S 1:2.4/50mm lens was mounted on the camera. The camera 

was mounted on a tripod with a micro-adjustment interface. During all tests, the camera 

was kept perpendicular to the specimen with approximately 25 cm from the front of the 

lens to the specimen. GenICam software was used for image acquisition. The framerate was 

2 frames per second, except for one test run at 120 frames per second. Viz-2D DIC software 

was used for image analysis. Lighting was provided by three movable LED sources. No 

calibration image was used for the DIC. Correlation was conducted on all captured images 

for each specimen, except for the series taken at 120 frames/sec. In some of the series there 

was significant rigid body motion of the specimen, leading to unreliable measurements from 

the DIC. Attempts to use the software to remove rigid body motion failed for unknown 

reasons. 

During processing of the captured images in the DIC software, a region of interest (ROI) was 

selected. This region of interest corresponded to the surface of the geometry. Any openings 

in the surface were removed from the ROI. Before running the DIC analysis, the ROI was 

checked for positional uncertainty using the software. The subset size was adjusted for 

some samples, to strike a balance between the lowest mean uncertainty and relatively even 

values across the surface. In most cases the subset size was set to 125. Incremental 

correlation was not used, and the software was set to analyze the entire ROI. The default 

processing parameters were used in the software. Pixel resolution was approximately 50 

pixels/mm. 

2.2.1.1. Brief description of digital image correlation 

Digital image correlation (DIC) is an optical method for measuring deformations of objects 

or structures under the influence of loads. DIC can be 2D, using one camera, or 3D, using 
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two or possibly more cameras. A pattern is applied to the surface of the object being 

analyzed. This pattern is usually stochastic with a random distribution and size of pattern 

components, within an interval. During testing, the camera(s) capture images of the pattern 

on the object. These images are analyzed with software that uses machine vision algorithms 

to recognize points on the pattern surface and track their absolute and relative movement. 

This data can then be used to create different fields, for example strain or displacement 

fields, that can be mapped onto the surface image or used in calculations. (Sutton 2008). 

2.2.2. Test setup 

The bottom supports of the three-point bending fixture had a span separation of 70 mm 

during testing. Crosshead movement was set to 1mm/min. Samples were centered on and 

perpendicular to the bottom supports with the crosshead directly over the sample mid-

point and perpendicular to it. Before testing commenced, the crosshead was brought into 

contact with the sample until the load cell registered contact. No other preloading was 

applied to the samples. The load cell and crosshead displacement were zeroed before 

beginning the test. Testing and DIC acquisition were initiated manually and, to the best of 

the operator’s ability, simultaneously. Testing was carried out until failure of the sample or 

until the registered force dropped by 40%. 

2.2.3. Measurements 

The force-displacement data from the universal testing machine is used to calculate the 

stiffness of the samples through the relationship: 

𝑘 =
𝐹

δ
 

Where k is the stiffness, F is the force and δ is the displacement. This stiffness measure is 

equivalent to the slope of the force-displacement graph. Assessment of the optimized 

geometries performance will be based on this stiffness measure, instead of the Young’s 

modulus. Relative strain data is available from the DIC. A comparison with strain data from 

simulations will be covered in the following analysis. Since the simulation corresponds fairly 

well with the experimental data, at least in the linear elastic region, some general remarks 

about the mechanical response of the optimized geometries can be made. 
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2.3. Simulation 

2.3.1. Finite element simulation of geometries 

The topology optimized and reference samples were simulated using finite element analysis 

in Abaqus. Attempts were made to simulate the lattice geometry, but due to time 

constraints a valid method for simulation was not found. Topology optimization results were 

exported from Abaqus as INP files, representing the optimized geometry with 

postprocessing (smoothing and filtering). Simulation models were created from these 

geometries. 

2.3.2. Simulation setup and execution 

Before importing the mesh representing the optimized geometry, the element type was 

manually edited in the INP file. Abaqus automatically saved the elements as S3, 2D shell 

elements, when the geometry was exported. Elements were manually changed to CPE3, 

plain strain solid 2D elements. The INP file was then imported as a model into Abaqus. 

Geometry representing the supports and crosshead of the three-point bending fixture on 

the Instron 5966 was copied from the original model used for optimization. 

A solid isotropic material, based on the data available from Add:North’s material datasheet 

for E-PLA, was applied to the section. Add:North specifies a flexural modulus of 3155 MPa 

and a tensile modulus of 2870 MPa (Add:North 2019). Initially the tensile modulus in the 

material model was set to 2800 MPa. This produced simulation results with higher stiffness 

than found in the experiments. Several values were tested, and a tensile modulus of 2400 

MPa gave simulation results close to, but lower than, the experimentally measured values. A 

more precise value could be found in the interval between 2400-2500 MPa, but the value 

used in the simulations was kept at 2400 MPa. 

While the elements were 2D solid, their section was given an out of plane thickness of 10 

mm in the simulations, equal to the out of plane thickness of the 3D printed structures. 

Adding thickness to the simulated geometry allowed for the correct calculation of forces, so 

the simulations could be compared with the experimental results. 

The interaction between the mesh and the analytical surfaces, representing the supports 

and crosshead of the testing apparatus, were defined using surface to surface contact. 

Surfaces were created on the mesh for this purpose. Friction was added to the interactions, 

with a coefficient of 0.2. On the left, bottom support a set of nodes on the mesh surface was 
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defined. Bonding between the mesh and analytical surface was limited to this set of nodes. 

The other contact surfaces had no such limitation applied. All the analytical surfaces were 

used as master surfaces, while the mesh surfaces were slave surfaces. 

Boundary conditions were used to constrain the meshes downward movement. The two 

analytical surfaces representing the bottom supports were restricted from translation in 

both axes, and from rotation about the out of plane axis. Loading of the structure was done 

by displacing the top analytical surface, representing the crosshead. This displacement was 

done in two steps, an initial displacement of 0.05 mm in the negative y direction to close 

any gaps between the bodies, and a secondary step of 2.5 mm of displacement in the 

negative y direction. After trials with only one load application step, it became apparent that 

two steps were necessary to avoid analysis failure, or unexpected rigid body movements of 

the mesh. While the initial optimization process was based on a displacement of 1 mm, 

failure of the samples during testing happened after 2mm of displacement. To have a larger 

set of points to compare with testing, the simulations were conducted to 2.5 mm of 

displacement. 

A non-linear geometry solver was used for the analysis. Displacement was introduced 

incrementally through time steps. For the first displacement step, the initial, minimum, and 

maximum increments were 0.1, 1E-5, and 0.5, respectively. In the second displacement 

step, these values were 0.01, 1E-5, and 0.05. 

None of the mesh geometries were remeshed, except for one convergence test on the SIMP 

0.30 volume fraction geometry. While all the meshes did have a few elements of poor 

quality (≈1-1.5%), the convergence analysis showed that this had little effect on the result of 

the analysis. 

After running the finite element analysis, force and displacement data was exported for 

comparison with the experimental data. Plots of strains and displacements were also 

exported, for certain displacement values of the crosshead, but will not be presented in this 

thesis. A qualitative comparison of the DIC strain results with simulation results will be made 

for one case in the ‘Results’ chapter.  
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2.4. Other tools 
The software nTopology was used for assessing the volume of topology optimized geometry 

represented by the STL files used in 3D printing. nTopology was also used for conducting 

homogenization of the unit cell for the lattice geometry. This homogenization has only been 

used to generate the image for figure 6. This was for comparison with, and corroboration of, 

the measurements done in the PrusaSlicer software. nTopology is a software package for 3D 

design, modelling, and production of advanced 3D geometries, such as lattices and field-

driven geometry. 
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3. Results 
In this chapter results from the experiments and simulations will be presented. Mass 

analysis will be conducted on the 3D printed samples. The results of the three-point bending 

test will be presented and analyzed. Results from the three-point bending, digital image 

correlation (DIC), and simulation will be compared and analyzed. Some observations of 

lattice failure modes will also be presented and discussed. 

3.1. Experimental results 

3.1.1. Sample mass analysis 

All samples were weighed before testing. The mass fraction ratio mf is expressed as: 

𝑚𝑓 =
𝑚𝑖

𝑚𝑟
 

Where mi is the average mass of optimized sample group i, and mr is the average mass of 

the reference sample group. 

From table 6 we can see that the mass fractions of the optimized geometries are all higher 

than the value given for the final volume fraction in the optimization parameters in Abaqus. 

The STL file for the SIMP 70% geometry has been studied using the PrusaSlicr and nTopology 

software. Volume was measured at 11877.85 mm3 and 11876.27 mm3, respectively, 

corresponding to a 0.742 volume fraction. This is close to the measured mass fraction for 

the SIMP 70% group, at 0.75, indicating that the excess mass, or volume, is likely due more 

to filtering and post-processing in Abaqus than from the manufacturing process. 

Table 6: Mass analysis results 

Sample group Average mass (g) Mass fraction (-) Volume fraction parameter (-) 

SIMP70 14.79 0.75 0.70 

SIMP60 12.84 0.65 0.60 

SIMP50 11.01 0.56 0.50 

SIMP40 8.79 0.45 0.40 

SIMP30 6.86 0.35 0.30 

RAMP70 14.54 0.74 0.70 

RAMP60 12.61 0.64 0.60 

RAMP50 10.70 0.54 0.50 

RAMP40 8.73 0.44 0.40 
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RAMP30 6.65 0.34 0.30 

Lattice 1 7.74 0.39 - 

Lattice 2 7.97 0.40 - 

Lattice 3 9.85 0.50 - 

Reference 19.69 1.0 - 

 

3.1.2. Results three-point bending: Stiffness 

Figure 14 shows the force-displacement plots for all samples tested. There is a general trend 

in the data for the stiffness to be proportional to the volume fraction of material. In general, 

the initial data indicates that the SIMP specimens are stiffer for the 0.30, 0.50, 0.60, and 

0.70 volume fractions, while the RAMP geometry is stiffer than SIMP for the 0.40 volume 

fraction. The peak bending load also seems to be higher for the 0.50, 0.40, and 0.30 volume 

fractions for the RAMP specimens.  

Judging from the graphs of the initial testing data, the 0.70 SIMP and RAMP samples seem 

to be as stiff as the reference sample, at least in the linear elastic region. This observation is 

contradictive to a reasonable assumption that the unmodified reference should be the 

stiffest geometry. Statistical analysis will be used to test whether this observation is 

significant.  

Linear regressions have been conducted on all the sample groups for the region that seems 

to be linearly elastic, between 0.3-1.3 mm of displacement. There may be some plasticity 

effects in this region, but they seem to be relatively small and are therefore disregarded. 

Ordinary least squares linear regression has been conducted using the stats.models.api OLS 

module in Python. All the data points from the tests conducted on each sample group have 

been used as the input, with displacement data as the independent variable and the force 

data as the dependent variable. The OLS module provides the best fit slope coefficient, as 

well as a 95% confidence interval for this coefficient. Since the slope of the graph is 

equivalent to the stiffness of the specimen, the slope coefficient from the linear regression 

can be used as a measure of specimen stiffness in the linear elastic region. 
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Figure 14: Results from three-point bending experiments on all geometries. 
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Table 7 lists the mean slope coefficient values, and the 95% upper and lower bounds, from 

the linear regression analysis. A relative stiffness measure kr can be found by: 

𝑘𝑟 =
𝑘𝑖̅

𝑘𝑟𝑒𝑓
̅̅ ̅̅ ̅̅

 

Where 𝑘𝑖̅ is the mean slope coefficient for sample group i, and 𝑘𝑟𝑒𝑓
̅̅ ̅̅ ̅̅  is the mean slope 

coefficient for the reference sample group. Calculating kr shows that its value is higher than 

the sample groups’ respective volume fraction. 

Reviewing the raw experimental data gave the impression that the SIMP 0.70 volume 

fraction samples were equally as stiff as the reference. The results from the regression 

analysis show that the SIMP 0.70 slope coeficient 95% confidence interval is entirely within 

the 95% confidence interval for the reference samples. Additionally, the SIMP 0.70 mean is 

located close to the mean of the reference sample interval. Given the null hypothesis that β0 

= β1, i.e. that the slope of the reference linear regression graph is equal to the slope of the 

SIMP 0.70 graph, we are compelled to accept this hypothesis. In other words, given the 

collected data, the SIMP 0.70 samples are equally as stiff as the reference samples. This is 

likely due to there being a relatively small decrease in material compared to the reference, 

and that the removed material was carrying only a small fraction of the load. Reducing the 

volume fraction below 70% does result in a decrease in stiffness. Yet, since the algorithm 

only removes the material that is contributing the least to the stiffness of the structure the 

relative stiffness kr is greater than the corresponding volume fraction vf for any given sample 

group in this experiment.  

The stiffness of the RAMP 70% volume fraction samples was also very close to the 

reference, yet their 95% confidence interval lies completely outside the 95% confidence 

interval for the reference sample. It seems safe to conclude that the RAMP 70% samples are 

less stiff than either the SIMP 70% or reference samples. 

Table 7: Results linear regression analysis 

Sample group Lower 95% bound Mean Upper 95% bound kr 

SIMP70 1989.9 1991.64 1993.39 ~1 

SIMP60 1778.46 1791.28 1804.09 0.906 
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Figure 15: Plot of sample stiffness with error bars. Most of the sample groups displayed low variance in measured stiffness, 
except for Lattice 3 and the reference.  

Other observations from the statistical analysis confirm the initial impression that the SIMP 

geometries are stiffer than RAMP for all volume fractions except 0.40. This conclusion is 

based on the observation that the 95% confidence intervals for the SIMP 0.30, 0.50, 0.60, 

SIMP50 1578.217 1581.6563 1585.095 0.800 

SIMP40 1268.619 1271.5744 1274.53 0.643 

SIMP30 1017.848 1038.5387 1059.229 0.526 

RAMP70 1922.648 1925.2811 1927.914 0.974 

RAMP60 1680.668 1706.6444 1732.621 0.864 

RAMP50 1499.229 1512.2596 1525.29 0.765 

RAMP40 1283.172 1292.1283 1301.085 0.634 

RAMP30 941.127 944.8297 948.533 0.478 

LE1 724.112 727.054 729.996 0.368 

LE2 944.252 948.8398 953.427 0.480 

LE3 1127.858 1188.885 1249.912 0.602 

Reference 1933.334 1976.2119 2019.09 - 
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and 0.70 volume fractions are completely outside, and have higher values than, the intervals 

for the RAMP samples at corresponding volume fractions. 

3.1.3. Results three-point bending: Stiffness 

The efficiency of optimization methods can be based on a comparison of the specific 

stiffness of the specimens, i.e. the stiffness over the density. In figure 16 the absolute 

stiffness k of the samples has been plotted, together with the specific stiffness. Absolute 

stiffness is the ratio: 

𝑘 =
𝐹

δ
 

Where F is the force, and δ is the displacement, with units [N/mm]. Specific stiffness ks is 

commonly the ratio: 

𝑘𝑠 =
𝑘

ρ
 

Where ρ is the material density. For this analysis, a modified measure of specific stiffness is 

used: 

𝑘𝑠 =
𝑘

ρ ⋅ 𝑚𝑓
 𝑜𝑟 𝑘𝑠 =

𝑘 ⋅ 𝑉

𝑚
 

 

Where mf is the mass fraction of a sample group compared to the reference sample, V is the 

volume of the reference geometry, and m is the average mass of a sample group. The units 

can be  

N∙mm2 kg-1 or more generally l3 t-2 (length cubed, one over time squared).  

The measured material density of the E-PLA used to print the samples was calculated to 

1.231 g/cm3, based on the reference sample with a volume of 16 cm3 and average mass of 

19.69 grams. 
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Figure 16: Plot of absolute and specific stiffness 

From the graph we can see that the absolute stiffness is proportional to the volume fraction 

of material in the optimized structure. When looking at the specific stiffness, it is apparent 

that the optimized structures outperform the reference geometry. This tendency increases 

with decreasing volume fractions. There seems to be a peak in the specific stiffness of the 

RAMP samples at the 40% volume fraction, while the SIMP samples display a continuous 

increase in specific stiffness with decreasing volume fraction. All the lattice geometries were 

significantly less stiff than the topology optimized geometries when compared on a mass 

fraction basis. Yet, they have higher specific stiffness than the reference.  

 

3.1.4. Results three-point bending: Load capacity 

The load capacity is the maximum measured force value that the specimens withstood in 

the three-point bending test. This value was found in the region of combined elastic and 

plastic deformation and is found in the flat region of the force-displacement curve and near 

the onset of failure.  

The absolute load capacity reported here is the average maximum force from the two 

samples in each sample group. The specific load capacity lcs has been calculated by: 
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𝑙𝑐𝑠 =
𝐹𝑚𝑎𝑥

ρ ⋅ 𝑚𝑓
 

Where Fmax is the maximum force registered. 

The absolute load capacity of the geometries decreases with decreasing volume fractions. 

Data for the specific load capacity indicates that all topology optimized geometries 

outperform the reference on this measure. RAMP geometries have consistently higher 

specific load capacities than SIMP. There seems to be a peak in the specific load capacity at 

the 40% volume fraction for both SIMP and RAMP specimens. The lattice geometries have 

consistently lower absolute and specific load capacities than either of the topology 

optimized groups, but lattices 2 and 3 outperform the reference when comparing specific 

load capacity. 

 

Figure 17: Absolute and specific load capacity lc 

 

3.1.5. Results three-point bending: Work of fracture 

Here work of fracture (U) is defined as the area under the force-displacement curve, or the 

amount of work the structure can withstand before final failure. Resistance has been 

calculated using the trapezoid method for numerical integration. Each data point from the 

three-point bending test consists of a displacement (x) value and a force (y) value. The 
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spacing of the x values are slightly irregular, so the integral has been computed without a 

single value for Δx. The following formula was used: 

𝑈 = ∫𝐹
𝐴

𝑑δ ≈
1

2
∑(𝑦𝑛 + 𝑦𝑛−1)(𝑥𝑛 − 𝑥𝑛−1)

𝑛

𝑖=1

 

The specific resistance Us was calculated by: 

𝑈𝑠 =
𝑈

ρ ⋅ 𝑚𝑓
 

Comparing the absolute work necessary for failure of the structures, the reference sample 

outperformed all optimized geometries. Looking at the specific work, another pattern 

emerges. RAMP samples significantly outperformed the SIMP samples when comparing 

volume fractions. Additionally, all volume fractions of the RAMP samples outperformed the 

reference sample when comparing specific work. The SIMP 70% volume fraction had lower 

specific resistance than the reference, the 60% fraction was on par with the reference, while 

the remaining had higher specific resistance. There seems to be a peak in the specific 

resistance of the SIMP samples at the 40% volume fraction. For the RAMP samples, the 

resistance increased with decreasing volume fractions, albeit the incrementation varies. See 

figure 19. 

An interesting observation is the specific resistance of the Lattice 2 geometry. It had the 

second highest specific resistance of all the samples. This group did display high variance in 

the measured resistance, but it seems likely that this lattice structure can absorb substantial 

mechanical work before failure. Reasons for this will be addressed more closely in the 

section on lattice failure modes, but in short it seems that local failure of the lattice is less 

detrimental to the global structural performance than for the topology optimized samples. 

Figure 18 shows an example of local buckling failure that does not lead to global failure in 

Lattice 2. Energy is absorbed through this buckling mechanism. The stiffness of the structure 

is lowered, but it can still withstand load. 
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The other lattice geometries had lower absolute and specific resistance than the topology 

optimized geometry when comparing volume fractions. They also had lower performance 

than the reference, both in absolute and specific terms. 

 

Figure 19: Absolute and specific work of fracture U. 

3.2. Results from finite element simulation 
In this section, the results of finite element simulation will be presented. There are three 

main objectives in this section. One is to compare the simulation results with the Instron 

data to judge if there is reasonable agreement between them. Second, the simulations will 

Figure 18: Lattice 2 local buckling failure, without global failure. 
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be compared with the digital image correlation (DIC) results for strain. Finally, if there is 

reasonable agreement between the simulations and these two experimental data sets, then 

comparison of the strain results from the simulations can be made. 

3.2.1. Simulation results: Force-displacement graphs 

From figures 20 and 21 we can see that there is a reasonable agreement between the 

experiments and the simulations when comparing force and displacement data, at least in 

the linear elastic region. All the simulations underestimate the stiffness of the geometries, 

but more so for SIMP than RAMP. This is mainly due to the material properties used in the 

simulation, where the Young’s modulus is lower than it ideally should be. As mentioned 

previously, a more precise value for the Young’s modulus could be found, but it would 

unlikely effect the results significantly. 

Final failure of the samples has not been modelled, as this would require a plastic material 

and failure model. The finite element model seems to be accurate for the linear elastic 

region.  

 

Figure 20: Simulation results for RAMP samples, plotted with experimental data and regression results. 
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Figure 21: Simulation results for SIMP samples, plotted with experimental data and regression results.   

  

 

3.2.2. Simulation results: Stiffness of SIMP 70, RAMP 70, and reference 

In the experiments, the SIMP 70%, RAMP 70%, and reference samples all had very close 

stiffness values. Comparing the simulation results we can see the same tendency. The 

element shape could explain the observed simulation results to some extent, as the 

Figure 22: Simulation results for reference samples, plotted with experimental data and 
regression results. 
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meshing of the SIMP and RAMP models was more triangular, while the reference model had 

only quadrangular elements. 

 

 

Figure 23: Comparison of simulation results for SIMP and RAMP 70% volume fractions, and the reference geometry  

3.2.3. Convergence analysis simulation results 

A convergence analysis was conducted on the simulation of the SIMP 30% volume fraction 

sample to uncover if the mesh used in the simulations of all the geometries could have 

influenced the result. The SIMP 30% geometry was chosen as it has the thinnest sections, 

where mesh effects would have the greatest impact. Three different meshes were tested on 

the geometry, the original mesh, a modified mesh with 0.50 mm edge length, and a final 

mesh of 0.25 mm edge length. The elements of the remeshed geometry were 

predominantly triangular, with some hybridization with quadrangular mesh. All other 

simulation parameters were the same for the three meshes. Remeshing the geometry had 

no significant effect on the results of the simulation. Figure 24 shows the force-

displacement graph for all three meshes and the SIMP 30% volume fraction regression line. 

As we can see, the largest error in the simulation is from the stiffness of the material model, 

not the mesh. The greatest difference between the simulation results of the meshes is in the 
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region of plastic deformation in the experiments, and the entire model is inaccurate in this 

region anyway. 

Figure 24: Results of convergence analysis on the SIMP 30% volume fraction geometry.  

 

3.3. Simulation results and DIC 
Both the simulations and the DIC provide a large amount of data and images. It is beyond 

the scope of this thesis to present and review this material in its entirety. For the sake of 

brevity, only one case will be included. Given the quality of the DIC results from the SIMP 

60% volume fraction tests, this has been chosen as the case. In the experiments, the 

samples failed due to cracks forming on the bottom of the specimen, near the midpoint, and 

propagating towards the crosshead of the fixture. Principal tensile strain can reveal the 

failure mechanisms at work in the sample. The DIC and simulation results for the principal 

strain εmax (in simulation) or ε1 (in DIC) have been chosen for this case, as they illustrate the 

tensile strains clearly. DIC strain field images provide an indication of plastic deformation, 

and crack formation and propagation prior to cracks becoming visible macroscopically.  

Figures 25 and 26 are graphical representations of the strain fields from DIC and simulation. 

The images on the left are from DIC, on the right from simulation. From the top, the images 

correspond to 0.5, 1.0, 1.5, 2.0, and 2.31 (failure) mm of displacement. The graph at the 

bottom shows where the images are taken from on the stress strain curve for both the 
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experiment and the simulation. In the images we can see a reasonable agreement between 

the DIC and simulation images in the linear elastic region. While the color coding is not 

consistent between the DIC and the simulation, the strain values are relatively close, and 

the contours are rather alike in the linear elastic region.  

There are small asymmetries in both the DIC images and the simulation results. The DIC 

images have larger asymmetries than the simulations results. This is mostly due to minute 

errors in placement of the sample on the fixture, unequal lighting, and image noise. Some of 

the asymmetry also stems from the samples themselves not being perfectly symmetric. This 

is the main reason for the asymmetries in the simulation results. The asymmetries in the 

geometry are very small. Using nTopology, the left and right sides of the SIMP 50% volume 

fraction geometry was split in the middle and mirrored. Using a Boolean subtract, where the 

right-side geometry was subtracted from the left-side geometry, a volumetric difference of 

0.53% was found between the two sides. 

The last two DIC images are from the plastic region of the force-displacement graph. On the 

bottom of the specimen, we can see concentrations in the strain fields that are not present 

in the simulation. These concentrations in the strain field are indicative of increased 

localized strain, due to crack formation and propagation, and plastic deformation.  

In the final DIC image we can see a clear indication of a crack extending from the bottom 

surface to the hole directly above it. Closer inspection of the last image captured before 

sample failure reveals one limitation of DIC. Comparing the highlighted region from DIC, 

which can be indicative of a crack, with the failed sample in figure 27 shows that the crack is 

probably just superficial, as it located to the left of the fracture line. The close-up image in 

the same figure shows the crack highlighted by DIC surrounded by a blue-green line. To the 

right of this crack is another crack, designated by the red arrow and encircled by the red 

dashed line, that is barely visible. This crack corresponds well with the observed fracture in 

the specimen. Large surface strains can mask significant features in DIC. 
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Figure 25: DIC (left) and simulation results (right) for principal strain εmax for the SIMP 60% volume fraction. From top: 0.5, 
1.0, 1.5, and 2.0 mm of displacement. 
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Figure 26: DIC (left) and simulation results (right) for principal strain εmax for the SIMP 60% volume fraction at failure. Graph 
illustrates where the images have been captured on the force-displacement curve from the experiments (blue, solid line) 
and the simulations (yellow, dashed line). 
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Figure 27: Comparison of DIC result with sample failure. DIC (top, right) indicates a crack (area of high concentration of 
contour curves), which is only superficial. The fracture happens along a crack not indicated by the DIC. The top, left image 
shows the surface crack marked by the blue-green line. The red arrow and dashed line indicate a faint crack that 
corresponds to the final fracture surface. Bottom: Fractured sample. 

3.4. Failure of topology optimized and lattice structures 
Comparing the force-displacement graphs for lattice geometries 1 and 2 with those for the 

topology optimized geometry shows that the plateau region, after the linear elastic region 

and before failure, is substantially larger for these lattices. This is not the case for lattice 3. 

Failure in the topology optimized geometries was seemingly abrupt and happened globally, 

i.e. the entire structure failed. The DIC does reveal that plastic deformation, and crack 

initiation and propagation take place in the plateau region of the topology optimized 

geometries. Failure in these structures occurs when the crack growth becomes unstable, 

that is when the change in the energy release rate becomes greater than the change in 

resistance of the material (
𝑑𝐺

𝑑𝑎
>

𝑑𝑅

𝑑𝑎
), assuming that the fracture resistance increases with 

crack length, which seems likely. 

In lattices 1 and 2, failure was more complex. As mentioned briefly in the section on work of 

fracture, the failure of these two lattices was initially dominated by localized buckling of the 

lattice members. During this phase of localized failure, the structure maintains a certain 

fraction of its original carrying capacity and stiffness. After the phase of localized buckling, 
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lattice 1 and 2 behaved differently. In one of the experiments, lattice 1 never reach global 

failure. The experiment stopped because the one condition for ending the test was reached, 

namely that the load dropped by 40%. In the other experiment with lattice 1, final failure 

was by a through crack near the bottom support. Lattice 2 samples, on the other hand, 

failed globally, initially by crack propagation from the bottom surface. The crack initiation 

point seems to be located near where one of the compressive members meets the bottom 

tensile member. This could be an indication of shear induced failure, as intersection 

between compressive and tensile members would experience bending, especially when the 

structure has become deformed from its initial state. 

Lattice 3 samples failed in two different ways. One of the samples had a print defect on the 

one side near the bottom support. The lattice had detached from the print bed during 

printing, leading to this area have lower thickness and out-of-plane curvature. This sample 

failed in this area by a crack initiating on the bottom surface. The other sample failed by a 

crack originating between the extruded polymer bead and parallel to it. This same failure 

mode was seen in lattice 3 geometry printed in another PLA material but was not included 

in this thesis. It seems likely that this failure mode is the dominant one for the lattice 3 

geometry when manufactured using FDM/FFF 3D printing technology with PLA. 
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4. Discussion 
 

4.1. Potential applications and further avenues of study for lattice structures 
The failure behavior seen in lattices 1 and 2 points to some potential applications of lattice 

optimized structures. Using lattices for impact absorption has been documented (e.g. 

Ozdemir et al. 2016), as have stiffness optimized lattices (eg. Wu et al. 2021). Lattice 

structures could be optimized for a combination of stiffness and damage tolerance or 

impact absorption. For example, lattice structures that maintain a certain level of structural 

performance even after impacts or extreme loading conditions could be produced. It is 

beyond the scope of this thesis to study potential applications of lattices that combine these 

qualities any further, yet a few remarks on further investigations and implementations will 

be made. Optimization of lattice structures, using a homogenization approach like Wu et al. 

(ibid.), and combining stretch and bending dominated architectures (Deshpande et al. 

2001), could realize lattice structures that can combine excellent structural performance 

with impact resistance and/or damage tolerance. In stretch dominated lattices, the unit cells 

experience axial forces predominantly, such as is the case in this thesis, while in bending 

dominated architectures the unit cells experience mostly bending forces (ibid.). Stretch 

dominated lattices are more mass-efficient in structural applications, i.e. they achieve 

higher stiffness per mass unit, while bending dominated lattices are better at absorbing 

energy (Alkhader et al. 2019). Both cell type and orientation influence the stretch-bending 

behavior of lattice structures. Optimization for combined stiffness and damage tolerance 

could utilize an approach with only one unit cell type, where manipulation of cell orientation 

alters lattice characteristics, or could combine two or more cell types to achieve the same 

goal. 

4.2. Challenges 
While topology and lattice optimization show promise for creating lightweight and strong 

structures, there are certain challenges that must be addressed before implementing such 

structures in practical applications, especially ones that are critical. Four such challenges will 

be discussed shortly here.  

4.2.1. Fatigue life of topology and lattice optimized structures 

Firstly, studying and quantifying the fatigue life of topology and lattice optimized structures 

is more complex than with traditional geometries and materials, especially for lattices. 
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Given that 50% - 90% of all mechanical failures are due to fatigue (Oest 2017, p. 5), the 

response to cyclic loading should be a significant factor when optimizing structures. 

Holmberg et al. (2014, p.207) point out that topology optimization, where stiffness is 

maximized for a given volume constraint, can lead to large stress concentrations that must 

be mitigated to achieve satisfactory fatigue life. Additionally, the fatigue analysis and 

structural modification must be carried out after the initial optimization process. Zhu et al. 

(2021) also point to challenges with fatigue life of optimized parts that are additively 

manufactured. Material anisotropy, surface quality, and geometry all contribute to 

compounding the problem of fatigue analysis of topology and lattice optimized parts. 

 Using fatigue as a criterion for optimization itself is challenging. Several sources report 

methods for including fatigue life as a design response in topology optimization. Lee et al. 

(2015) develop a topology optimization method that can minimize the volume fraction 

under a fatigue life constraint using a frequency domain approach. Liu et al. (2020) present 

a method for optimizing a regular cellular lattice for fatigue life. Oest & Lund (2017) present 

an optimization method that allows the use a fatigue life measure for cyclic problems that 

can be quantified with the rainfall method.  Optimization with fatigue life constraints is an 

active area of research, with many more contributions than can be presented here. Many 

finite element software include stress-based optimization (e.g. Abaqus, SolidWorks, Fusion 

360), but no sources could be found that indicate the existence of a fatigue life criterion for 

optimization in any commercially available package. 

4.2.2. Qualification and quality assurance 

A second challenge facing topology and lattice optimization for practical applications is 

qualification or quality assessment of manufactured geometry. Due to their geometric 

complexity, assessing additively manufactured, optimized parts can be difficult. Measuring 

and defining the acceptable deviations from the initial design may not be able to rely on 

standardized approaches in industry. Zhu et al. (2021, p.105) point to the need for 

additional research to enable the systematic and accurate characterization of optimized 

structures in general, and lattices in particular. 

Looking at the samples studied in this thesis shows some of the issues relating to quality 

control. Creating a useful 2D technical drawing with dimensions of the geometries would be 

very difficult, if not impossible. Verification of the fabricated geometries could therefore not 
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rely on comparisons of parts with technical drawings. One possibility is to use digital imaging 

and 3D scanning technology (e.g. CT or laser) with machine vision algorithms to assess the 

external, and possibly also internal, geometry of fabricated parts. Such methods may also be 

able to uncover potential manufacturing defects. (Kim et al. 2018). 

While checking for conformity between 3D manufactured parts and models is possible, this 

is not enough to ensure that additively manufactured topology and lattice optimized parts 

will perform according to models or experimental results. Defects and artefacts from the 

manufacturing processes affect the performance of parts. Predicting the behavior of 

additively manufactured structures, and especially small-scale objects such as lattices, is 

complex. Uncovering the relationships between observed defects, mechanical properties, 

and processing parameters may be even more so. Kim et al. (ibid.) point to the need for 

more research and development in these areas. Zhu et al. (2021) report the need for more 

research concerning process induced defects, such as residual stresses and thermally 

induced deformations. 

4.2.3. Simulation of lattice structures 

A third problem area that concerns lattice structures particularly is with conducting precise 

simulations. Since lattices can consist of many thin features, accurate simulation is 

computationally intensive if using finite element method. One common approach is to use 

homogenization, where the unit cell’s elastic properties are measured for a limited set of 

loading conditions and intermediate values are interpolated from these measurements. 

These elastic properties are then applied to the entire lattice structure in simulation. 

Homogenization has limitations when applied to finite lattice structures, as well as when 

local deformations become large. (Zhu et al. 2021).  

Tancogne-Dejean et al. (2019) report successful modelling, when compared to experimental 

results, of lattice structures undergoing large deformations and high strain rates. The 

geometry tested consisted of one unit cell with relatively large dimensions (10s of mm). 

They conclude that more experimentation is required to scale their results to larger 

structures. Scaling to smaller structures must also address effects arising from the 

manufacturing process, including surface roughness and manufacturing defects. 
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4.2.4. Topology optimization with manufacturing constraints 

The final challenge facing topology and lattice optimized structures that will be discussed 

relates to manufacturing constraints. Zhu et al. (2021) point to unsupported overhangs, 

support structures, and enclosed voids among other things, that can affect the fabrication of 

lattice and topology optimized structures. In their paper, Zhu et al. (2021) present several 

sources that have developed methods for including manufacturing constraints in the 

topology optimization process itself, such as constraints on overhang angles or build 

orientation. Ideally 3D printed optimized structures should be self-supporting to avoid 

support structures that require excess material in manufacturing and labor during removal. 

Achieving this is an active area of research. Bartsch et al. (2019) introduce a method for 

combining topology optimization with process simulation to find optimal support structures 

that reduce material use in manufacturing as well as lowering the risk of thermally induced 

failure of prints. Some commercially available software can add manufacturing constraints 

in the optimization process. These constraints can be applied to overhangs, print direction, 

and minimum part thickness.  
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5. Conclusions 
The results from the experiments and simulations indicate that the optimization methods 

reviewed in this thesis produce geometries that can achieve significant improvements in the 

mass-specific mechanical responses of structural elements. While these methods can 

produce complex geometries that may be difficult to manufacture using traditional 

methods, additive manufacturing technology can allow fabricating such structures. Two-

dimensional optimized geometry, as has been studied in this thesis, could be produced with 

many conventional manufacturing technologies. 

Depending on the requirements of a given structure, the choice of optimization method can 

have a significant impact on performance. In these experiments, only three performance 

indicators have been studied, stiffness, load capacity, and work of fracture. For the specific 

problem studied here, the selection of an optimization method would vary depending on 

the significance of each performance parameter. If selecting for stiffness, it seems the SIMP 

method would be the best choice. On the other hand, if work of fracture were more 

important, either the RAMP or lattice methods would be better choices. In Abaqus it is 

possible to add multiple objective functions, even weighted, for topology optimization. This 

has not been explored in this thesis, but it seems reasonable to assume that combining 

multiple optimization criteria may achieve results that address the specific structural 

requirements for an application. There are many possible optimization criteria that could be 

used – e.g. eigenfrequencies or thermal properties – in addition to stiffness or compliance. 

This thesis makes no claims about the validity of the results for other optimization 

problems, geometries, or loading conditions. The findings suggest that, while topology and 

lattice optimization can give lighter parts with satisfactory performance, it would be prudent 

to test multiple optimization methods in simulation and experimentally to aid in the 

selection of an optimization scheme for a specific problem. Creating more complex 

simulation models, including plasticity and failure criteria, could aid in identifying the most 

promising optimization results for testing, thereby reducing the need for extensive 

experimentation. 
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