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Abstract: Over the last decade, the evolution of autonomous automobiles based on artificial
intelligence has increased rapidly with significant success. Naturally, this has caught the
interest of the maritime industry and the development of autonomous vessels. However,
unlike the highway, the ocean is considered a complex environment carrying unpredictable
environmental forces, such as current, waves and wind-condition. For autonomous path-following
and path-planning, particularly within the machine learning-field, Deep Reinforcement Learning
(DRL) have generally been the favored approach. This follows from the fact that resulting
models have demonstrated staggering performance. However, for practical implementations,
Deep learning-based models are generally considered black box-solutions, and hence often
introduce uncertainties in the operating domain. Therefore, in this paper an autonomous path-
planner based on Supervised learning is proposed. Different Supervised learning models were
investigated, and Gradient Boosting Regressor was found to be the most adequate model
based on hyperparameter-tuning. The model was developed on constraints proposed by the
class society DNV GL combined with International Regulations for Preventing Collision at Sea
(COLREGs) rule 14 for collision-avoidance. Following this, the model was trained to design a
suitable path based on parametrization of a cubic Bézier curve. To follow the parametrized path,
a maneuvering-controller derived from the Maneuvering problem presented in Skjetne (2005)
was applied. However, a drawback of Supervised learning is the necessity for large-scale training
data. Hence, a digital twin of the own vessel was developed and utilized to generate sufficient
training data. To demonstrate the performance of the autonomous path-planner, a number of
simulation scenarios were introduced.
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1. INTRODUCTION

Following the recent advancement of computational power
combined with the rise of machine learning, the popu-
larity of the latter has increased tremendously. This has
naturally led to an extensive research on new potential
domains of application. In this article we will consider
one such domain, namely autonomous vessels. In general,
we define an autonomous system as a system capable
of decision-making without human interference (Sørensen,
2018). A well-known example is the self-driving car, which
has demonstrated the ability to autonomously maneuver
in traffic. This has unsurprisingly stimulated the research
within the maritime industry as well. One such out-
come is the upcoming zero-emission autonomous container
ship Yara Birkeland, currently under development by the
Kongsberg Group (Kongsberg Group, 2020). Similar to
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self-driving cars, autonomous vessels aim to possess the
ability to navigate the sea without human interference.
However, compared to the highway, the ocean can be
classified as a significantly more complex environment.
Especially when considering environmental variables such
as current, wind, waves and surrounding vessels. In fact,
the potentially fatal consequence of such a difficult task
was recently demonstrated by the accident of the Royal
Norwegian Navy vessel, Helge Ingstad (Stangvik et al.,
2019). Hence, it is certain that an autonomous vessel also
demands high level of intelligence and re-planning abilities
when unforeseen scenarios occur.

Traditionally, Model Predictive Control (MPC) have been
the preferred approach for automatic vessel maneuver-
ing, especially in terms of practical application. Hence, a
substantial amount of research naturally revolves around
further development of existing solutions. For instance,
Blindheim et al. (2020) showcased a MPC strategy for
autonomous ship in terms of emergency management.
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autonomous ship in terms of emergency management.
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However, including collision avoidance (COLAV) naturally
introduce uncertainty to an already complex calculation,
as discussed in Luman et al. (2019). Especially since the
optimal path has to be calculated online. Despite that,
promising early-stage solutions utilizing MPC have been
presented such as in Eriksen and Breivik (2017) and Zheng
et al. (2014). Additionally, there have also been exten-
sive research on adaption of motion planning-algorithms
that have been successfully implemented for unmanned
ground vehicles. For instance, in Singh et al. (2017) a
study applying the well-established Djikstra algorithm for
path-planning during static environment was successfully
made. Similarly, a noticeable approach based on Rapidly-
exploring Random Tree* (RRT*) was presented in Zaccone
(2021) with satisfying results for medium-range and short-
range collision avoidance system.

However, within the machine learning-field, Deep learning-
based solutions have mainly been the favored approach
during development of autonomous vessels, more specifi-
cally Deep Reinforcement learning (DRL). This is not un-
expected considering the noteworthy performance demon-
strated in Bell and Lekkas (2018) using Deep Deterministic
Gradient Policy (DDPG). In this paper, a DRL-controller
was implemented to learn to follow curved paths dur-
ing unknown environment. However, to accomplish higher
level of autonomy, obstacle-avoidance is essential and con-
sidered a critical task. In Vallestad (2019) an extension
of the previous solution was proposed incorporating the
rules for maneuvering beside a head-on vessel, but with
limited success. Although the proposed solution made the
vessel capable of avoiding collision, the vessel incorrectly
maneuvered on the port-side of the head-on vessel instead
of the starboard-side. Additionally, the resulting control
outputs were considerable noisy, similar to Bang-Bang
control-behavior. A corresponding study applying DDPG-
controller to command the rudder angle was proposed in
Aronsen (2019). Despite the controller initially guiding
the vessel towards the endpoint, it eventually drifted off
without any reasonable explanation. Consequently, these
examples demonstrate some of the limitations related to
Deep learning-based solutions, namely the level of ex-
plainability and uncertainty related to the Deep learning
models. As discussed in Buhrmester et al. (2019) and
Dulac-Arnold et al. (2019), Deep learning models are often
regarded as a black box. Thus, understanding the decision
process behind an action is generally considered difficult
as demonstrated by for example AlphaGo. AlphaGo is
a computer program trained with Deep Reinforcement
learning to play the board-game Go (Li and Du, 2018).
In 2016, it was capable of beating the best human player
at the time, Lee Sedol, in a five-game match. By making
unexpected moves, unthinkable even for the experts, the
computer became victorious. However, in terms of apply-
ing new technologies in the public society, it is expected
that the solution holds the ability to safeguard both the
environment and human lives while operating. Hence, de-
spite demonstrating astonishing results, with respect to
safety, the possibility of an intelligent program making un-
expected actions may not be favorable, even if the actions
are convenient at the moment. Especially considering the
resulting uncertainties that the model introduces in the
operating environment. Similar issues have been discussed

extensively in the medical care where human lives are at
stake, such as in Kelly et al. (2019) and Ghassemi et al.
(2020). As a result, the application of Deep learning in the
medical field has mainly been focused on image processing,
where the consequences of the uncertainties related to
Deep learning solutions are considered small.

The objective of this paper is to propose a solution based
on Supervised learning for autonomous path-planning. In
contrast to DRL, Supervised models provide high level of
transparency and explainability. Hence, understanding the
process behind the prediction or decision-making is achiev-
able. However, a major drawback of Supervised learning is
the necessity for a large amount of data to train the model.
Especially generating and collecting data from a real vessel
is normally considered a difficult task. Therefore, by devel-
oping an adequate simulator of a real vessel, we implement
the concept of digital twin to be able to generate sufficient
data for the training process (Mendi et al., 2021). Note
that in the previously mentioned studies, DRL was mainly
implemented as a controller trained to maneuver the vessel
from A to B, which often resulted in noisy control output
on the thrusters. However, these days the performance
of traditional controllers for path-following are considered
more than satisfactory. Hence, a traditional controller is
used in combination with a Supervised model. In particu-
lar, the Supervised model is trained to generate paths, such
that the controller can calculate appropriate control com-
mands to maneuver the vessel along the path. To model
the paths, we utilize the mathematical parametrization
of cubic Bézier curves. Further, to assure stability during
path-following, we implement a maneuvering model based
on the Maneuvering problem proposed in Skjetne (2005).
An important aspect during any successful technological
development is considering the viewpoints of the authority
and experts within the industry. Hence, additional con-
strains are introduced based on the criteria presented by
the class society for an autonomous path-planner. Finally,
to demonstrate the capability of the proposed solution,
we try to solve the head-on vessel situation based on
International Regulations for Preventing Collision at Sea
(COLREGs) rule 14.

The paper is composed of five sections. Section 2 presents
background on the legal expectations of an autonomous
vessel path-planner, definition of COLREGs rule 14, vessel
modelling, path-following, Bézier curves and Supervised
learning. Section 3 outlines the implementation stages of
the solution, followed by a presentation and discussion of
the simulation results in section 4. Finally, in section 5 a
conclusion of the paper is made.

2. PRELIMINARIES

2.1 Autonomous path-planning: A class society perspective

For the maritime industry the rules and regulations are
mainly governed by the International Maritime Organiza-
tion (IMO), an organization part of the United Nations. To
maintain the safety and security of the industry, IMO out-
lines conventions and legal instruments, such as the Inter-
national Convention for the Safety of Life at Sea (SOLAS)
and International Regulations for Preventing Collision at

Sea (COLREGs). The class societies on other hand, in
particular Den Norske Veritas Germanischer-Lloyd (DNV
GL) and Lloyds Register aim to legally verify that the
design, construction and maintenance of the vessels satisfy
the necessary standards. Each class society maintains their
own set of class rules that cover the technical requirement
related to each component of a vessel. At present time,
IMO has not yet outlined any specific regulation for novel
technologies like autonomous vessels. However, as stated
in DNV GL (2018), national- and regulatory associations
can support the implementation of such solutions within
their local territorial waters. As a consequence, DNV GL
has outlined a guidance for development of autonomous
solutions in DNV GL (2018). Note that a similar, but less
detailed guidance has been provided by Lloyds Register in
Lloyd’s Register (2017).

Generally, the navigation task can be divided into four
sub-tasks: condition detection, condition analysis, action
planning and action control. Each task can be performed
by a human, a system or both. However, it is expected
that any system introduced need to be as good as, or
better than the conventional solution in order to maintain
equivalent level of safety. An example is provided in fig.
1. Here it can be noted that condition detection, action
planning and action control are made by the system,
while condition analysis is partly performed by the human
operator. The objective of this paper is to introduce a self-
controlling (SC) system for action planning, also known as
an autonomous path-planner. To solve the action planning

Fig. 1. Self-controlling path-planning system (DNV GL,
2018).

task, the following requirements have to be considered as
stated in the guideline (DNV GL, 2018): ”Based on the
object classification information, the system has capabil-
ities to calculate an updated passage plan in accordance
with COLREGs that are equivalent or better than that
of a navigator on board the vessel”. In other words, the
path-planning system must be capable of adapting to
the environment, and hence generating a suitable path
in compliance with COLREGs. Additionally, the remote
operator needs to be provided with sufficient information
to be able to derive independent conclusion on the optimal
action. For instance, the collision avoidance system should
clearly indicate the updated plan before a control action,
giving the remote operator enough time to make his/her
own analysis and intervene if necessary. If the navigation
task becomes excessively complex for the system to handle,
the vessel or the operator should have the option to bring
the vessel to a Minimum Risk Condition (MRC). MRC is
defined as a state that causes least risk to life, environment
and property, and a state the vessel should enter when an
abnormal situation occurs. The system requirement for an

autonomous path-planning can therefore be summarized
to the following two conditions:

(1) The system is expected to comply with COLREGs.
(2) The system is expected to offer transparency of the

planned maneuvering.

2.2 COLREGs

To prevent collision in ocean traffic, IMO established
the convention International Regulations for Preventing
Collision at Sea, which defines a set of navigation rules
to be followed by the vessels and crews sailing the sea
(Lloyd’s Register, 2005). Therefore, in order to achieve
an adequate path-planning system, the legal rules have to
be incorporated in the model. In total COLREGs covers
40 rules and regulations related to different scenarios at
the sea, as well as requirements on equipment to prevent
collision. In this paper we reduce the problem to only
consider Rule 14 related to head-on situations. Rule 14a)
states that the vessel shall alter the course starboard to
avoid collision during head-on situation (see fig. 2 for
illustration). Additionally, if there is any doubt whether
such a situation exist, the vessel shall assume that it does
exist and act accordingly, as emphasized by rule 14c).

Starboard
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Fig. 2. Head-on situation as defined by COLREGs rule 14.

2.3 Vessel model

To describe the vessel motion in 6 degree-of-freedom a
mathematical process model as defined in Fossen (2011)
can be applied. The model incorporates both the vessel
dynamics and kinematics of a real vessel and is given as:

Mν̇ + C(ν)ν +D(νr)νr +Gη = τ (1)

η̇ = R(ψ)ν (2)

where η = [x, y, z, φ, θ, ψ]T represents the position and
heading in the Earth fixed coordinates, and ν = [u, v, w, p,
q, r]T is the generalized velocity in the body-fixed frame.
Since the environmental forces are neglected τ only con-
siders the control forces, and hence simplifies to τ = [fu,
fv, fr]

T representing the surge- and sway-forces and the
yaw-moment produced by the controller. Further, matrix
M represents the inertia and added-mass. The C matrix
denotes the Coriolis and centripetal matrices for rigid-
body and added-mass. In general, the damping matrix D
of a vessel can be divided into a non-linear component
DNL and a linear component DL. For increasing speed
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Sea (COLREGs). The class societies on other hand, in
particular Den Norske Veritas Germanischer-Lloyd (DNV
GL) and Lloyds Register aim to legally verify that the
design, construction and maintenance of the vessels satisfy
the necessary standards. Each class society maintains their
own set of class rules that cover the technical requirement
related to each component of a vessel. At present time,
IMO has not yet outlined any specific regulation for novel
technologies like autonomous vessels. However, as stated
in DNV GL (2018), national- and regulatory associations
can support the implementation of such solutions within
their local territorial waters. As a consequence, DNV GL
has outlined a guidance for development of autonomous
solutions in DNV GL (2018). Note that a similar, but less
detailed guidance has been provided by Lloyds Register in
Lloyd’s Register (2017).

Generally, the navigation task can be divided into four
sub-tasks: condition detection, condition analysis, action
planning and action control. Each task can be performed
by a human, a system or both. However, it is expected
that any system introduced need to be as good as, or
better than the conventional solution in order to maintain
equivalent level of safety. An example is provided in fig.
1. Here it can be noted that condition detection, action
planning and action control are made by the system,
while condition analysis is partly performed by the human
operator. The objective of this paper is to introduce a self-
controlling (SC) system for action planning, also known as
an autonomous path-planner. To solve the action planning

Fig. 1. Self-controlling path-planning system (DNV GL,
2018).

task, the following requirements have to be considered as
stated in the guideline (DNV GL, 2018): ”Based on the
object classification information, the system has capabil-
ities to calculate an updated passage plan in accordance
with COLREGs that are equivalent or better than that
of a navigator on board the vessel”. In other words, the
path-planning system must be capable of adapting to
the environment, and hence generating a suitable path
in compliance with COLREGs. Additionally, the remote
operator needs to be provided with sufficient information
to be able to derive independent conclusion on the optimal
action. For instance, the collision avoidance system should
clearly indicate the updated plan before a control action,
giving the remote operator enough time to make his/her
own analysis and intervene if necessary. If the navigation
task becomes excessively complex for the system to handle,
the vessel or the operator should have the option to bring
the vessel to a Minimum Risk Condition (MRC). MRC is
defined as a state that causes least risk to life, environment
and property, and a state the vessel should enter when an
abnormal situation occurs. The system requirement for an

autonomous path-planning can therefore be summarized
to the following two conditions:

(1) The system is expected to comply with COLREGs.
(2) The system is expected to offer transparency of the

planned maneuvering.

2.2 COLREGs

To prevent collision in ocean traffic, IMO established
the convention International Regulations for Preventing
Collision at Sea, which defines a set of navigation rules
to be followed by the vessels and crews sailing the sea
(Lloyd’s Register, 2005). Therefore, in order to achieve
an adequate path-planning system, the legal rules have to
be incorporated in the model. In total COLREGs covers
40 rules and regulations related to different scenarios at
the sea, as well as requirements on equipment to prevent
collision. In this paper we reduce the problem to only
consider Rule 14 related to head-on situations. Rule 14a)
states that the vessel shall alter the course starboard to
avoid collision during head-on situation (see fig. 2 for
illustration). Additionally, if there is any doubt whether
such a situation exist, the vessel shall assume that it does
exist and act accordingly, as emphasized by rule 14c).
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Fig. 2. Head-on situation as defined by COLREGs rule 14.

2.3 Vessel model

To describe the vessel motion in 6 degree-of-freedom a
mathematical process model as defined in Fossen (2011)
can be applied. The model incorporates both the vessel
dynamics and kinematics of a real vessel and is given as:

Mν̇ + C(ν)ν +D(νr)νr +Gη = τ (1)

η̇ = R(ψ)ν (2)

where η = [x, y, z, φ, θ, ψ]T represents the position and
heading in the Earth fixed coordinates, and ν = [u, v, w, p,
q, r]T is the generalized velocity in the body-fixed frame.
Since the environmental forces are neglected τ only con-
siders the control forces, and hence simplifies to τ = [fu,
fv, fr]

T representing the surge- and sway-forces and the
yaw-moment produced by the controller. Further, matrix
M represents the inertia and added-mass. The C matrix
denotes the Coriolis and centripetal matrices for rigid-
body and added-mass. In general, the damping matrix D
of a vessel can be divided into a non-linear component
DNL and a linear component DL. For increasing speed
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and turbulent flow, the linear damping can be considered
distinguishable compared to the contribution from the
non-linear damping. Correspondingly, for velocities close
to zero, the linear damping becomes more dominant than
the non-linear component. The generalized restoring ma-
trix G consist of the linear gravitation and buoyancy force
coefficients. Finally, the R(ψ) denotes the rotation matrix.
Alternately, the vessel model can be further simplified to
apply in 3 degrees-of-freedom resulting in a control plant
model. Unlike the process plant model which can become
fairly complex, the control plant distinguishes the non-
linear components, and hence often used during develop-
ment of controllers. Note that despite being a simplifica-
tion, the control plant model still incorporates the essential
behavior of a vessel.

2.4 Path-following

In general, the main goal of any arbitrary vessel is to get
from an initial location to a desired location. This is often
accomplished based on one of two maneuvering strategies:

• Tracking: In tracking the vessel traces a target or
moving point through a trajectory to get to the de-
sired destination. The trajectory describes the motion
of the vessel derived mathematically as a geometric
path or the position as a function of time.

• Path-following: In path-following the vessel aims to
converge to and follow a predefined path, which is
independent of time.

However, in Skjetne (2005) an alternative method named
the Maneuvering problem was proposed. In the Maneu-
vering problem the path-following-task is divided into two
sub-tasks defined as the geometric task and the dynamic
task. In the geometric task a desired path yd is defined
for the vessel to follow. The dynamic task on other hand,
introduces constraints on the dynamic behavior of the
vessel while following the path, in particular on the cruis-
ing speed or acceleration. Hence, the aim of the latter is
to avoid any undesirable dynamic behavior of the vessel
during path-following. Note that the tracking problem
utilize the characteristics of both geometric- and dynamic
constraints. But unlike the tracking problem, the sub-tasks
are not equally weighed in the Maneuvering problem. Con-
sequently, when the vessel faces difficulties while following
the path, the dynamic task is sacrificed to improve the
path-following. In general, for a system with output y ∈
Rm, we can define the points in the desired path as the
set:

P : {y ∈ Rm : ∃s ∈ R s.t. y = yd(s)} (3)

where yd(s) represents the desired path parametrized by
the continuous path variable s. We can now mathemati-
cally formulate the two sub-tasks as following:

(1) Geometric task: For any continuous function s(t),
force the output y to converge to the desired path
yd(s):

lim
t→∞

|y(t)− yd(s(t))| = 0 (4)

(2) Dynamic task: Satisfy one or more of the following
assignments:
(a) Time assignment: Force the path variable s to

converge to a desired time signal vt(t):

lim
t→∞

|s(t)− vt(t)| = 0 (5)

(b) Speed assignment: Force the path speed ṡ to
converge to a desired speed vs(s(t), t)

lim
t→∞

|ṡ(t)− vs(s(t), t)| = 0 (6)

(c) Acceleration assignment: Force the path ac-
celeration s̈(t) to converge to a desired accelera-
tion va(ṡ(t), s(t), t)

lim
x→∞

|s̈(t)− va(ṡ(t), s(t), t)| = 0 (7)

2.5 Path parametrization

For the geometric task, the desired path yd is often
represented either as a straight-line path or a curved path.
The former, also known as way-point tracking, is usually
preferred due to its simplicity. However, in situations
where changes in the heading are considerably large,
discontinuity may be introduced, as discussed in Fossen
(2011). This can be avoided by applying interpolated
paths, such as curved paths. For curved path-following
the entire desired path is defined by a geometric curve
parametrized by a continuous path variable s. There
are numerous ways to design such a curve, but in this
paper, we consider the Bézier curve. A Bézier curve is
a parametric curve based on the Bernstein polynomials
and mainly used in Computer Aided Geometric Design
(Sederberg, 2012). It was originally introduced by Dr.
Pierre Bézier during the 1960s for sketching the design of
Renault cars. In general, a Bézier curve of n degree consist
of n+ 1 control points P0, P1,..., Pn as observed in fig. 3.
The Bézier curve is designed such that it always passes

Fig. 3. Examples of Bézier curves and the respective
control polygons (Sederberg, 2012).

through the first- and last points. It has the additional
property of being tangential to the control polygon at
the endpoint. The control polygon is the shaded polygon
created by connecting the control points in ascending
order. Furthermore, the curve can never be outside the
control polygon. The points between the endpoints help to
shape the curvature of the path, and does not necessarily
lay on the actual curve.

2.6 Supervised learning

Despite the fact that Supervised learning have gained huge
popularity the last decade, the approach is not consider-
able new. The most elementary Supervised learning model
is the Linear Regression well-known from fundamental
math courses. In general, a Linear Regression model aims
to describe the relation between a set of explanatory vari-
ables, also known as features, and an observation or target
variable. For instance, assume we want to find or predict an
observation Y , and the only available information is the p

number of features xi. Then Linear Regression states that
the following mathematical relationship exist:

Y = β0 + β1x1 + β2x2 + ... + βpxp + ε (8)

where ε represents a random error term independent of x
with zero mean. The solution of the problem reduces to
estimating the coefficients β0, β1, ..., βp. This step is often
termed as fitting or training of the model, and usually
accomplished by applying an optimization algorithm such
as least squares. Today there exists a large group of Su-
pervised models, in particular Support Vector Machine, K-
mean, Decision Trees, Lasso Regression and so on (James
et al., 2013). Although they share the same principle, they
are considerably more accurate and efficient algorithms
compared to Linear Regression. The general model devel-
opment of Supervised learning can be summarized into the
following steps:

(1) Data collection and -preparation: As a conse-
quence of computer- and information technology ad-
vancement, massive quantities of data is available
today. However, in most cases the data is stored in
a useless state, and only a small amount of the data
is usually considered valuable. Thus, data preparation
is an essential step involving cleansing, manipulation
and assembling of the collected data into an applica-
ble state. This step is also termed as feature engineer-
ing, and often considered the most important part of
the process, as selecting the correct data decides the
final performance of the model.

(2) Model selection: In 1997 David Wolpert and
William Macready stated the No free lunch-theorem
(Ciuffo and Punzo, 2014). The theorem states that
there does not exist a particular model or algorithm
that is applicable for all problems. In other words,
a model that performs well in one problem, may be
unsuitable in a different domain. Hence, in model
selection one usually has to evaluate and compare
different models to uncover the most suitable model.
In general, one selects a set of models that are trained
using the data extracted from the previous step. Each
model has its own set of hyperparameters that are
optimized during training. Typically, a common cri-
terion is defined across the models such as minimiz-
ing the mean-squared error (MSE). Model selection
often involves several iterations of model tuning and
-evaluation before one is finally selected.

3. IMPLEMENTATION

The simulation of a vessel is carried out using a Simulink-
model based on the process plant model of the physical
research vessel R/V Gunnerus, developed at Norwegian
University of Science and Technology (NTNU) by the
Department of Marine Technology. The vessel model is
used to simulate both the own vessel and target vessel. The
digital twin on other hand, is implemented based on the
control plant model of R/V Gunnerus. Since the advanced
machine learning libraries are mainly developed in Python,
the simulation models of the vessels are converted to a
Functional Mock-up Unit-format using the open-source
library FMI Kit (Catia-systems, 2019a). Consequently, the
Simulink-models can be integrated with the path-planner
in the Python environment using FMPY (Catia-systems,

2019b). In similar fashion, to steer the vessel from A
to B, a controller based on the Maneuvering problem is
implemented in Simulink. Notice that the controller can
be shown to be UGES using backstepping as demonstrated
in Vasanthan (2020). Hence, the vessel is guaranteed to
converge to the desired path. The speed assignment is
selected as the most suitable dynamic task, where the
reference speed is set to 5 m/s. Further, to solve the
geometric task a parametrization based on cubic Bézier
curve is implemented. The explicit form of the cubic curve
can be written mathematically as:

B(s) = (1− s)3P0 + 3(1− s)2tP1

+3(1− s)t2P2 + s3P3,

0 ≤ s ≤ 1.

(9)

Since the initial position and the end-destination of a
vessel is normally known, it is assumed that the endpoints
of the curves are pre-defined. Therefore, the remaining
task is to determine the two control points between the
endpoints. As discussed previously, the aim is to choose
a path that satisfies the criteria defined by DNV GL and
COLREGs rule 14. Hence, the control points have to be
picked such that the following constraints are fulfilled:

• Take the shortest possible path.
• Avoid collision at any cost.
• Comply with seafaring rules, more specifically rule 14
in COLREGs.

• If the resulting course would result in collision, initi-
ate re-planning.

To accomplish this, a score paradigm is introduced with
respect to the constraints. The idea is to give each selection
of control points a score based on how well the generated
path complies with the constraints. The resulting rela-
tionship is used to select a suitable path based on the
information of the vessel and any present target vessel. To
achieve this, we specify the control points along with the
vessel states as the features, while the score is chosen as
the target variable. Note that the own vessel states are
defined relative to the goal position and the target vessel,
respectively. In general, features with larger magnitude
have stronger impact on the resulting prediction. Hence,
each feature has to be normalized individually.

To address the first constraint a circular safe-zone is es-
tablished enclosing the target vessel with a predefined
radius. The radius is chosen such that the own vessel can
avoid any doubtful situation as defined in COLREGs rule
14c), devoting time to take early actions. If the own vessel
crosses the safe-zone, a strict negative penalty RCollision

is given. To satisfy the second condition, a reward-zone
is generated in compliance with COLREGs 14a). That
is, to force the own vessel to maneuver starboard during
a head-on situation. Hence, the reward-zone is always
established on the starboard-side relative to the velocity
vector-direction of the target vessel as illustrated by the
enclosed red rectangle in fig. 4. When the own vessel enters
the reward-zone, it begins to accumulate a small reward
RCOLREGs. Note that since the endpoints of the curves
are pre-defined and the reference speed is constant, the
autonomous path-planner cannot generate a path that
remains inside the zone. To meet the third constraint, we
note that the shortest path from A to B is a straight-
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number of features xi. Then Linear Regression states that
the following mathematical relationship exist:

Y = β0 + β1x1 + β2x2 + ... + βpxp + ε (8)

where ε represents a random error term independent of x
with zero mean. The solution of the problem reduces to
estimating the coefficients β0, β1, ..., βp. This step is often
termed as fitting or training of the model, and usually
accomplished by applying an optimization algorithm such
as least squares. Today there exists a large group of Su-
pervised models, in particular Support Vector Machine, K-
mean, Decision Trees, Lasso Regression and so on (James
et al., 2013). Although they share the same principle, they
are considerably more accurate and efficient algorithms
compared to Linear Regression. The general model devel-
opment of Supervised learning can be summarized into the
following steps:

(1) Data collection and -preparation: As a conse-
quence of computer- and information technology ad-
vancement, massive quantities of data is available
today. However, in most cases the data is stored in
a useless state, and only a small amount of the data
is usually considered valuable. Thus, data preparation
is an essential step involving cleansing, manipulation
and assembling of the collected data into an applica-
ble state. This step is also termed as feature engineer-
ing, and often considered the most important part of
the process, as selecting the correct data decides the
final performance of the model.

(2) Model selection: In 1997 David Wolpert and
William Macready stated the No free lunch-theorem
(Ciuffo and Punzo, 2014). The theorem states that
there does not exist a particular model or algorithm
that is applicable for all problems. In other words,
a model that performs well in one problem, may be
unsuitable in a different domain. Hence, in model
selection one usually has to evaluate and compare
different models to uncover the most suitable model.
In general, one selects a set of models that are trained
using the data extracted from the previous step. Each
model has its own set of hyperparameters that are
optimized during training. Typically, a common cri-
terion is defined across the models such as minimiz-
ing the mean-squared error (MSE). Model selection
often involves several iterations of model tuning and
-evaluation before one is finally selected.

3. IMPLEMENTATION

The simulation of a vessel is carried out using a Simulink-
model based on the process plant model of the physical
research vessel R/V Gunnerus, developed at Norwegian
University of Science and Technology (NTNU) by the
Department of Marine Technology. The vessel model is
used to simulate both the own vessel and target vessel. The
digital twin on other hand, is implemented based on the
control plant model of R/V Gunnerus. Since the advanced
machine learning libraries are mainly developed in Python,
the simulation models of the vessels are converted to a
Functional Mock-up Unit-format using the open-source
library FMI Kit (Catia-systems, 2019a). Consequently, the
Simulink-models can be integrated with the path-planner
in the Python environment using FMPY (Catia-systems,

2019b). In similar fashion, to steer the vessel from A
to B, a controller based on the Maneuvering problem is
implemented in Simulink. Notice that the controller can
be shown to be UGES using backstepping as demonstrated
in Vasanthan (2020). Hence, the vessel is guaranteed to
converge to the desired path. The speed assignment is
selected as the most suitable dynamic task, where the
reference speed is set to 5 m/s. Further, to solve the
geometric task a parametrization based on cubic Bézier
curve is implemented. The explicit form of the cubic curve
can be written mathematically as:

B(s) = (1− s)3P0 + 3(1− s)2tP1

+3(1− s)t2P2 + s3P3,

0 ≤ s ≤ 1.

(9)

Since the initial position and the end-destination of a
vessel is normally known, it is assumed that the endpoints
of the curves are pre-defined. Therefore, the remaining
task is to determine the two control points between the
endpoints. As discussed previously, the aim is to choose
a path that satisfies the criteria defined by DNV GL and
COLREGs rule 14. Hence, the control points have to be
picked such that the following constraints are fulfilled:

• Take the shortest possible path.
• Avoid collision at any cost.
• Comply with seafaring rules, more specifically rule 14
in COLREGs.

• If the resulting course would result in collision, initi-
ate re-planning.

To accomplish this, a score paradigm is introduced with
respect to the constraints. The idea is to give each selection
of control points a score based on how well the generated
path complies with the constraints. The resulting rela-
tionship is used to select a suitable path based on the
information of the vessel and any present target vessel. To
achieve this, we specify the control points along with the
vessel states as the features, while the score is chosen as
the target variable. Note that the own vessel states are
defined relative to the goal position and the target vessel,
respectively. In general, features with larger magnitude
have stronger impact on the resulting prediction. Hence,
each feature has to be normalized individually.

To address the first constraint a circular safe-zone is es-
tablished enclosing the target vessel with a predefined
radius. The radius is chosen such that the own vessel can
avoid any doubtful situation as defined in COLREGs rule
14c), devoting time to take early actions. If the own vessel
crosses the safe-zone, a strict negative penalty RCollision

is given. To satisfy the second condition, a reward-zone
is generated in compliance with COLREGs 14a). That
is, to force the own vessel to maneuver starboard during
a head-on situation. Hence, the reward-zone is always
established on the starboard-side relative to the velocity
vector-direction of the target vessel as illustrated by the
enclosed red rectangle in fig. 4. When the own vessel enters
the reward-zone, it begins to accumulate a small reward
RCOLREGs. Note that since the endpoints of the curves
are pre-defined and the reference speed is constant, the
autonomous path-planner cannot generate a path that
remains inside the zone. To meet the third constraint, we
note that the shortest path from A to B is a straight-
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Fig. 4. The blue and black rectangles represent the own-
and target vessel, respectively. The enclosed red rect-
angle illustrates the reward zone in terms of COL-
REGs 14a), and hence placed on the starboard-side
relative to the own vessel.

line. Hence, whenever a target vessel is not nearby, the
ideal selection of control points should result in a straight-
line. However, when a target vessel is present, it is still
desired that the own vessel maneuvers as close to the
straight-line path as possible to minimize the distance
travelled. Therefore, a Gaussian reward-function RPath

is introduced, as defined in Bell and Lekkas (2018). In
general, the cross-track represents the error between the
own vessel and the desired straight-line path, and is given
by the equation:

ye = −sin(ψd)(x(t)− x0) + cos(ψd)(y(t)− y0) (10)

ψd = atan2(y1,x1) (11)

where ψd is the heading of the path, (x(t), y(t)) is the
position of the vessel, (x0, y0) and (y1, x1) are the
initial and final points of the desired straight-line path,
respectively. Hence, minimizing ye is equivalent to the ship
converging to the shortest path. The resulting Gaussian
reward function then becomes:

RPath = ae−
y2
e

2σ (12)

ye is the computed cross-track error, σ is the standard
deviation of the cross-track error and a is the maximum
attainable reward, where latter has to be manually chosen.
The aim is to choose the reward such that the own vessel
stays close to the straight path. The Gaussian reward
function represents a Gaussian curve with amplitude a,
and a standard deviation σ as seen in fig. 5. Studying

Fig. 5. Distribution of RPath over ye for σ=5 and a=1.

the figure, it is evident that the model only gains a
considerable reward when the cross-track error is below
5 [m]. Bear in mind that each respective reward function
has to be tuned relative to the others. For example, picking
a large reward RCOLREGs will stimulate the path-planner
to generate a path that maneuvers next to the obstacle,
such that the accumulated reward is increased, even if the
approaching vessel maintains a safe distance. Similarly,
choosing a small penalty RCollision relative to RPath,

may encourage the path-planner to generate a straight
path that results in collision. This leads to the following
relationship:

RCollision =

{−100 if inside safe-zone,

0 otherwise.
(13)

(14)

RCOLREGs =

{
20 if inside reward-zone,

0 otherwise.
(15)

(16)

RTotal = RCollision +RCOLREGs +RPath (17)

To generate training data for the training process, the
digital twin is utilized. Initially, an indiscriminate set of
control points are chosen. After each simulation, the se-
lected control points, and the states of the vessel along
with the resulting score are retained as training data. For
model selection 400 000 training samples were generated.
A wide selection of models was compared using cross-
validation and standard hyperparameters. Fig. 6 shows
how the MSE on the test set decreases as the training
sample increases. Eventually, the Gradient Boosting Re-
gressor was chosen as the most adequate algorithm based
on hyperparameter-tuning. The resulting model is then

Fig. 6. Benchmarking a set of regression models in terms
of MSE.

applied on the own vessel. In general, to generate a path
from A to B, an indiscriminate selection of control points
C1 and C2 are proposed to the model, scaled to the
environment. Based on the vessel- and obstacle states, the
model predicts a score on how well the resulting path will
satisfy the constraints. This process is repeated iteratively
until the model returns an acceptable score. Hence, an
optimal number of iterations K has to be found, such
that the constraints are always satisfied. In general, larger
number of iterations will result in more optimal control
points, but in exchange for run-time. To find the optimal
number, K is initially set to a large number. Then a
path-planning problem is presented to the model, and the
iteration number returning the largest score is noted. This
process was repeated 10 000 times and is presented in fig
7. It can be observed that at most 8 000 iterations were
required to find the best selection of control points for the
corresponding problem. The mean and standard deviation
was found to be 1 565.12 and 1 249.10, respectively. Hence,
K is set to minimum 3 000 to cover the significant areas,
and if not, until a positive score is returned. Despite being
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Fig. 7. Number of iterations before optimal control points
were found for 10 000 simulation cases.

a large number, in practice the process equals to less than
ten seconds on an average computer.

Finally, to accomplish the ability to re-plan, the digital
twin is implemented inside the path-planner. For a given
time-frequency, the digital twin will simulate the resulting
motion based on the current states of the own- and target
vessel combined with the generated path. The model is
then capable of forecasting a potential collision. If that is
the case, the digital twin will prompt the model to find a
new set of control points and generate a new path for the
current environment variables.

4. SIMULATION RESULTS AND DISCUSSION

First scenario In general, the initial condition of the own
vessel was set to (x0, y0, ψ0) = (0, 0, 0). To verify that
the vessel was capable of choosing the shortest path, the
starting point and endpoint of the path were set to (x0,
y0) = (0, 0) and (x1, y1) = (3200, -200), respectively. The
generated path and resulting vessel maneuvering can be
studied in fig. 8 and 9.

Second scenario In the second scenario a target vessel
with real vessel dynamics was introduced. The heading of
the target vessel was set specifically to interfere with the
own vessel. The initial point of the path was defined as
(x0, y0) = (0, 0) with endpoint (x1, y1) = (2000, 300).
As studied in fig. 10 and 11, the generated path makes the
own vessel correctly maneuver on the starboard-side of the
target vessel.

Third scenario The third scenario was similar to previ-
ous scenario, but the target vessel was defined such that it
was unlikely to collide with the own vessel. Hence, the
expected behavior was a close to straight-line path as
successfully showcased in fig. 12 and 13. The initial point
of the path was set as (x0, y0) = (0, 0) and endpoint (x1,
y1) = (3400, 300).

Fourth scenario To evaluate the performance of re-
planning, an unexpected change in the heading of the
target vessel was introduced midway into the simulation.
The initial point and endpoint of the path was set as (x0,
y0) = (0, 0) and (x1, y1) = (2800, 0), respectively. The
blue marks in fig. 14 represents the spatial instants when
the digital twin recognized probability of a collision, and
hence initiated the re-planning of a modified path. Notice
the discontinuity in the trajectory of the own vessel, which

is naturally introduced due to the sudden change in the
heading of the target vessel.

5. CONCLUSION

In this paper a novel solution for the autonomous path-
planning problem was proposed. The aim of the solu-

Desired trajectory of own vessel
Actual position of own vessel

Fig. 8. First scenario: Straight-line
path-planning.

Fig. 9. First scenario: Plot of
North-, East- and ψ-position.

Desired trajectory of own vessel
Actual position of own vessel
Actual position of target vessel

Fig. 10. Second scenario: Obstacle-
avoidance.

Fig. 11. Second scenario: Plot of
North-, East- and ψ-position.
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a large number, in practice the process equals to less than
ten seconds on an average computer.

Finally, to accomplish the ability to re-plan, the digital
twin is implemented inside the path-planner. For a given
time-frequency, the digital twin will simulate the resulting
motion based on the current states of the own- and target
vessel combined with the generated path. The model is
then capable of forecasting a potential collision. If that is
the case, the digital twin will prompt the model to find a
new set of control points and generate a new path for the
current environment variables.

4. SIMULATION RESULTS AND DISCUSSION

First scenario In general, the initial condition of the own
vessel was set to (x0, y0, ψ0) = (0, 0, 0). To verify that
the vessel was capable of choosing the shortest path, the
starting point and endpoint of the path were set to (x0,
y0) = (0, 0) and (x1, y1) = (3200, -200), respectively. The
generated path and resulting vessel maneuvering can be
studied in fig. 8 and 9.

Second scenario In the second scenario a target vessel
with real vessel dynamics was introduced. The heading of
the target vessel was set specifically to interfere with the
own vessel. The initial point of the path was defined as
(x0, y0) = (0, 0) with endpoint (x1, y1) = (2000, 300).
As studied in fig. 10 and 11, the generated path makes the
own vessel correctly maneuver on the starboard-side of the
target vessel.

Third scenario The third scenario was similar to previ-
ous scenario, but the target vessel was defined such that it
was unlikely to collide with the own vessel. Hence, the
expected behavior was a close to straight-line path as
successfully showcased in fig. 12 and 13. The initial point
of the path was set as (x0, y0) = (0, 0) and endpoint (x1,
y1) = (3400, 300).

Fourth scenario To evaluate the performance of re-
planning, an unexpected change in the heading of the
target vessel was introduced midway into the simulation.
The initial point and endpoint of the path was set as (x0,
y0) = (0, 0) and (x1, y1) = (2800, 0), respectively. The
blue marks in fig. 14 represents the spatial instants when
the digital twin recognized probability of a collision, and
hence initiated the re-planning of a modified path. Notice
the discontinuity in the trajectory of the own vessel, which

is naturally introduced due to the sudden change in the
heading of the target vessel.

5. CONCLUSION

In this paper a novel solution for the autonomous path-
planning problem was proposed. The aim of the solu-

Desired trajectory of own vessel
Actual position of own vessel

Fig. 8. First scenario: Straight-line
path-planning.

Fig. 9. First scenario: Plot of
North-, East- and ψ-position.

Desired trajectory of own vessel
Actual position of own vessel
Actual position of target vessel

Fig. 10. Second scenario: Obstacle-
avoidance.

Fig. 11. Second scenario: Plot of
North-, East- and ψ-position.
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Desired trajectory of own vessel
Actual position of own vessel
Actual position of target vessel

Fig. 12. Third scenario: Obstacle-
avoidance. Note that the target
vessel is outside the environ-
ment by the time the own vessel
reaches destination.

Fig. 13. Third scenario: Plot of
North-, East- and ψ-position.

Desired trajectory of own vessel
Actual position of own vessel
Actual position of target vessel

Fig. 14. Fourth scenario: Obstacle-
avoidance with re-planning.

Fig. 15. Fourth scenario: Plot of
North-, East- and ψ-position.

tion was to demonstrate the ability to generate satisfying
paths considering collision-avoidance while removing any
uncertainty, in particular introduced by a Deep learning-

based approach. As a consequence, an autonomous path-
planner based on Supervised learning was developed. The
constraints of the model were established based on the
criteria proposed by DNV GL for an autonomous path-
planner in combination with COLREGs rule 14. However,
a noteworthy drawback of Supervised learning is the neces-
sity for exceedingly large amount of training data. Hence,
a digital twin of the own vessel was developed based on
a control plant model. In addition, to detect a potential
collision, and thereby initiating the re-planning step, the
digital twin was implemented in the path-planner. The
simulation was carried out using a Simulink-model of a
real physical vessel, R/V Gunnerus. The selected simula-
tion cases demonstrated promising results in satisfying the
constraints. In terms of further work implementation of en-
vironment forces and application of additional COLREGs
rules have to be considered.
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