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Abstrat

The present work has relevane for the behaviour of a vessel equipped with a moonpool

in oean waves. A moonpool is an opening in the middle of the vessel used for various

marine operations. Resonant wave osillations in the moonpool with the water moving

as a vertial piston our and ause operational limits. It is again on�rmed by both

numerial alulations and experiments in idealized two-dimensional �ow onditions that

�ow separation from the lower entrane to the moonpool has a lear limiting e�et on

the resonant moonpool osillations. Furthermore, the in�uene of low forward veloity on

the piston-mode amplitude has been investigated and found insigni�ant. By onsidering

inoming waves on a freely-�oating vessel, it is found that the water behavior in the

moonpool has a signi�ant e�et on the body motions in 2D-�ow.

The present work is divided in two parts, �rst fored heave motion with and without

low forward veloity of a two-dimensional body with moonpool has been onsidered. The

seond part is regular wave-indued behaviour of a �oating stationary two-dimensional

body with a moonpool, with fous on resonant piston-mode motion in the moonpool and

rigid-body motions. Two separate dediated two-dimensional experimental programmes

have been performed. The outome has been used to validate the two developed numerial

hybrid methods that are used in the present work. The two hybrid methods are here

named the "semi-nonlinear hybrid method" and the "nonlinear hybrid method", and both

ouple potential and visous �ow. The semi-nonlinear hybrid method uses linear free-

surfae and body-boundary onditions. The nonlinear hybrid method uses fully nonlinear

free-surfae and exat body-boundary onditions. The harmoni polynomial ell (HPC)

method is used to solve the Laplae equation in the potential �ow domain, while the �nite

volume method (FVM) is used to solve the Navier�Stokes equations in the visous �ow

domain near the orners of the body. Results from the two hybrid methods are ompared

with the experimental data. The nonlinear hybrid method ompares well with the data,

while ertain disrepanies are observed for the semi-nonlinear method. In partiular,

the roll motion is over-predited by the semi-nonlinear hybrid method. Error soures in

the semi-nonlinear hybrid method are disussed and investigated in detail in a separate

setion.

The �rst part of the work involved both experimental and numerial study of seleted

parameters and their e�et on the piston-mode amplitude during fored heave osillations.

More preisely we investigated the e�et of di�erent drafts, moonpool edge pro�les, heave

osillation amplitudes and low forward veloities.

In the seond part regular wave-indued behaviour of a �oating two-dimensional body

with a moonpool was also studied by experimental and numerial methods. Here we

have investigated the e�et of di�erent wave steepnesses, vessel drafts and moonpool edge

pro�les on a stationary �oating body. The rigid-body and moonpool wave amplitude
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response in head and following seas are also studied numerially. We see from the re-

sults that the moonpool strongly a�ets heave motions in a frequeny range around the

piston-mode resonane frequeny of the moonpool. No resonant water motions our in

the moonpool at the piston-mode resonane frequeny. Instead large moonpool motions

our at a heave natural frequeny assoiated with small damping near the piston-mode

resonane frequeny.
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Nomenlature

α Phase angle between heave aeleration and moonpool motion

β Phase angle between heave and roll aeleration

δy Cell length.

δz Cell height.

δbl Osillating boundary layer thikness

ηMax
4 Largest roll angle expeted during a numerial nonlinear hybrid method sim-

ulation

Γ Cirulation around a losed urve in the liquid domain

u Absolute liquid partile veloity

u∗
Temporary arti�ial liquid veloity after the advetion step

u∗∗
Temporary arti�ial liquid veloity after the advetion and di�usion steps

ur Relative liquid partile veloity in the body-�xed oordinate system

µ Dynami visosity of the liquid

∇ Nabla operator

ν Kinemati visosity of the liquid

νw Damping oe�ient of numerial beah

ω Angular frequeny

ωe Angular frequeny of enounter

Ωpot Potential �ow domain part of the liquid domain

Ω
CFD

Visous domain part of the liquid domain

ψ Linear aeleration potential

ρ Liquid density

τ Visous fritional stress, note there are many stress omponents
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τw Dimensionless parameter for wave harateristis, τw = ωeU/g

p̃ p

ρ
+ gz

ϕ Veloity potential

ξ Damping ratio

B Breadth of one side hull

B′
Total breadth of moonpool hull inluding srews in longitudinal diretion

Bs Length of the srew onneting the hull to the mooring line

B
T

Total breadth of the body, 2B + b.

d Hull draft

Fpre Pre-tension in mooring lines

g Aeleration of gravity

h Water depth

I Roll moment of inertia about the enter of gravity

k Wave number

ks Total spring sti�ness onstant

m Body mass

rxx Radius of gyration in roll

Re Reynolds number

SBP Potential �ow part of hull surfae

SBV Visous �ow part of hull surfae

U Forward veloity

zb Vertial position of enter of buoyany from the alm free surfae, positive

upwards

zs Vertial distane from the srew to the enter of gravity

z
G

Vertial position of enter of gravity from the alm free surfae, positive

upwards

(y, z) The body-�xed oordinate system, the origio is attahed to the enter of

gravity and it followes and rotates with the motion of the body

(ye, ze) The Earth-�xed oordinate system, remains �xed in time and spae to the

free surfae at the enterline of the initial position of the body
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App. Appendage at moonpool inlet

b Moonpool gap width

BBC Body-boundary onditions

BEM Boundary Element Method

BICGSTAB Bionjugate Gradient Stabilized method

CA Control area

CFD Computational Fluid Dynamis

CFL Courant-Friedrihs-Lewy number

COG Center of gravity

FDM Finite Di�erene Method

FEM Finite Element Method

FFT Fast Fourier Transform

Fn Froude number

FVM Finite Volume Method

GM Metaentri height

GMRES Generalized Minimal Residual method

HPC Harmoni Polynomial Cell

ILU Inomplete Lower Upper

NL Nonlinear

NS Navier-Stokes

S-NL Semi-nonlinear

TVD Total Variation Diminishing sheme

VOF Volume Of Fluid

WAMIT Potential �ow alulation software in the frequeny domain
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Chapter 1

Introdution

A moonpool is de�ned as an opening in the bottom of a ship hull. The opening allows

for better aess to the water below, and provides shelter and protetion for most of the

environmental onditions. Marine operations from ships often involve moonpools to lower

or lift devies suh as subsea modules and ROVs. A moonpool allows, for instane, divers a

more proteted environment to enter or leave the water. Resonant piston-mode resonane

an be exited by the relative vertial ship motions in the neighborhood of the moonpool

and ause strong ampli�ation of the dynami wave elevation in the moonpool. Here the

piston-mode resonane is de�ned as the resonant liquid motion in the moonpool ausing

a net liquid �ux through the lower entrane of the moonpool. The resonant �ow is nearly

vertial and one-dimensional in most of the moonpool. The word piston is assoiated with

that the liquid motion appears like the motion of a piston. The stronger the shed vortiity

due to �ow separation at the moonpool entrane and inside the moonpool is, the larger

the damping is, and the smaller the maximum resonant piston-mode wave amplitude is

for a given ship in a given sea ondition. It is of pratial interest to know the free-surfae

elevation in the moonpool and the ambient �ow veloities and aelerations in the viinity

of the moonpool in order to assess the loads on devies being lifted or lowered through

the moonpool.

The use of moonpools to perform marine operations is expeted to inrease signi�-

antly. One reason is the rapid inrease in development of subsea fatories. Operators

have de�ned goals suh as near all-year availability for maintenane and repair, requiring

operability in e.g. signi�ant wave height H

s

= 4.5m in the Aasgaard �eld in the North

Sea. Speialized o�shore vessels with moonpool are regarded as one of the key elements

of ahieving this. However, this requires areful design of the moonpool in order to avoid

exessive resonant piston-mode motion

Moonpools are frequently designed to be used on �shing vessels. The purpose is then

that the moonpool will work as a hauling well loated in the entre of the hull where the

longline will be hauled in. This feature, whih helps redue �sh losses and improves rew

safety, will also allow ontinuation of �shing even in bad weather. An example of this is

the longliner �shing vessel M/S "Geir".

Another area of appliation for moonpools is for underwater diving bells or underwater

habitats. Here, the moonpool is the only entry or exit point. It is the pressure inside the

diving bell that balanes the hydrostati pressure at the surfae of the moonpool. The

pressure will therefor inrease with inreasing depth. In the urrent work, this appliation

is out of sope.
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4 Introdution

1.1 Moonpool piston-mode resonane

One of the �rst artiles disussing moonpool behaviour is Aalbers (1984). He related the

moonpool motion to a mass spring system, and found empirial values through an experi-

mental ampaign. There has been studies like in Faltinsen (1990) based on negleting the

e�et from outside the moonpool and assuming one-dimensional vertial potential �ow in

the moonpool.

Molin (2001) predited the natural periods in moonpools by a quasi-analytial potential-

�ow approah. The work was for both the two- and three-dimensional ase on in�nite

water depth by approximating the �ow outside the moonpool. The outome was a pra-

tial engineering friendly formula for the piston-mode natural period of the moonpool.

By using 2D potential and visous �ow methods, Lu et al. (2010) studied the wave

amplitude inside narrow gaps between three adjaent boxes subjeted to inoming waves.

Model tests and numerial alulations in 3D of the gap resonane between two rigidly

linked side by side barges were performed by Molin et al. (2009). The rigid-body motions

of two freely �oating adjaent barges in 3D were onsidered in Sun, Taylor, and Taylor

(2010) by using a �rst- and seond-order potential �ow analysis.

Faltinsen et al. (2007) investigated fored heave osillations of a two-dimensional

moonpool setion using a domain-deomposition (DD) sheme within the framework of

linear potential �ow theory. The hull parts were retangular shaped and �nite water

e�ets were onsidered. Their DD sheme led to a system of integral equations on the

transmission interfaes that solved for the piston-mode natural frequeny and the steady-

state piston-mode amplitude. To improve the potential �ow models some authors have

tried to �t an arti�ial, empirially based damping to the free-surfae ondition inside

the moonpool. This is known as a numerial damping lid. Two ships side-by-side was

investigated by Huijsmans et al. (2001), who used a lid approah to damp the moonpool

motion to get realisti ship motions of a FPSO moored together with LNG arrier. Several

other authors have also hosen the same strategy, i.e. to damp the potential �ow solution

by an arti�ial, empirially based numerial lid on the free-surfae inside the moonpool

gap (see for instane Buhner et al. (2001)). Lee et al. (2002) studied the "Navis

Explorer I", whih is a drillship equipped with 3 large moonpools. By using a numerial

lid on the free-surfae inside the moonpools, good agreement with experimental results

was ahieved. Pauw et al. (2007) analysed the e�et the numerial lid had on the linear

versus seond order wave drift quantities. Lu et al. (2011) investigated the possibility of

�nding the lid damping oe�ient based on experimental and CFD results. The damping

oe�ient was in their work observed not to be sensitive to the variation of moonpool gap

width, body draft, breadth-to-draft ratio and number of bodies. Their fous was on wave

fores, where Lu et al. (2011) used the same setup with fous on the wave elevation in the

moonpool. It is not known when using a numerial damping lid how well the �ow in the

viinity of the moonpool is predited. Lu and Chen (2012) investigated what ontributed

to the dissipation of the piston-mode amplitude generated from inoming waves. Both the

dissipation from the boundary layers inside the moonpool gap, and in whih �uid areas

around the moonpool gap the vortiity dissipation was largest were studied.

Wang and Wu (2008) studied both vertial and horizontal foring motions of two box

shaped strutures with a distane of 7b between the two boxes, where b is the breadth

of one box. They used a Finite Volume Method (FVM) based on potential �ow with a

seond order perturbation sheme to solve the free-surfae ondition. Their fous was
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on sloshing modes inside the moonpool. Later Wang et al. (2011) studied the problem

further using nonlinear free-surfae onditions, and found that the seond order solution

in Wang and Wu (2008) was bounded by nonlinear e�ets. Meaning that there will be

an energy transfer to higher modes as in the normal sloshing problem, see Faltinsen and

Timokha (2009).

Reently Kristiansen et al. (2013) validated a hybrid method based on oupling po-

tential and visous �ow against a 3D moonpool set-up with sharp orners at the lower

moonpool entrane. Their results showed that the resonant free-surfae amplitude in the

moonpool dereases from around 70 times the fored heave motion, to between 10-20

times the fored heave motion when �ow separation is inluded.

Sphaier et al. (2007) have studied a monoolumn platform equipped with a moonpool

named the MONOBR, where the objetive was to use the moonpool as a heave minimiza-

tion devie for the response in the wave period domain. Torres et al. (2008) ontinued

this analysis, and reated a simpli�ed mass-spring-damped model to analyse the system,

where the moonpool is represented as a separate body with mass, damping, sti�ness and

oupling terms with the monoolumn. Unfortunately some oe�ients still need to be

experimentally found.

A preliminary CFD study inluding turbulene modelling of the vortiity generated

in a moonpool between two in�nite barges subjeted to an inoming steady urrent were

performed by Heiden et al. (2013). Results for the water motion in the moonpool due to

the steady urrent are also given.

A losely related problem featuring piston-mode resonane is the mooring of a tanker

to a terminal, this was studied by Kristiansen (2009) using a BEM with a vortex traking

method. His thesis inludes the works Kristiansen and Faltinsen (2008), Kristiansen and

Faltinsen (2009) and Kristiansen and Faltinsen (2010).

Molin et al. (2002) designed an experimental programme to quantify the energy dissi-

pation due to �ow separation at the lower edges of retangular moonpools. By onsidering

the dissipation of a propagating wave between two ie sheets the drag oe�ient suggested

to be used for design was found to be 0.5. In addition it was estimated that the fritional

ontribution to the energy dissipation was about 15% in model sale onditions.

In addition to the hallenges with piston-mode resonane in a moonpool, the presene

of a moonpool in a ship hull has also been found to inrease the resistane in transit,

van `t Veer and Tholen (2008) has experimentally studied various solutions on how to

for instane minimize the added resistane due to a moonpool. Gaillarde and Cotteleer

(2005) present a summary of various moonpool motions studies and give many pratially

useful solutions on how to damp out moonpool motions. Among the results presented are

studies on how to redue the added resistane due to an open moonpool at transit.

Yeung and Seah (2007) studied the piston-mode and higher-order resonane modes

for a moonpool between two heaving retangular �oating ylinders using an eigenfuntion

mathing method.

Two-dimensional moonpool resonane in a two-layer liquid is studied in Zhang and

Bandyk (2013) and Zhang and Bandyk (2014) by potential �ow theory. In the �rst study

the interfae between the two liquids with di�erent density is loated below the struture,

here the resonanes are found to be similar to the one-liquid ase. It is also found that

the resonanes are losely assoiated with the free-surfae elevation inside the moonpool

gap, not the wave elevation at the interfaial surfae. In the follow up study Zhang and

Bandyk (2014), the moonpool struture is both free surfae and interfae piering. The
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piston-mode resonane is slightly hanged and more resonane frequenies are found due

to sloshing modes at the interfae.

The rigid-body wave indued motions of a full sale drillship with and without a moon-

pool loated midships by linear potential �ow theory using a BEM have been onduted

by Yang et al. (2013). The in�uene of the moonpool on the response amplitude operators

for all 6 degree of freedoms is ompared. Their results show some hange in the heave

motion for wave periods below the natural heave period.

An extensive experimental programme of a the rigid-body and moonpool motions of

barge equiped with a large moonpool overing approximately 45% of the overall length

and one third of the width is desribed in Maisondieu and Boullue (2001) and Maisondieu

and Ferrant (2003).

A related problem is the linear potential-�ow study of trapped modes in the frequeny

domain. The trapped mode was �rst "disovered" by MIver (1996) in two-dimensions. A

trapped mode is de�ned as a free-surfae osillation between bodies at a ertain frequeny

that does not radiate waves to the far-�eld. An inverse proedure an be used to alulate

the form of bodies with trapped modes. The inverse proedure works like the following,

�rst two soures are plaed at the free surfae with a distane of half a wave length between

them. Then the frequeny where the far-�eld waves from one of the soures anel with

waves from the other soure is found, suh that there are not generated any waves in

the far-�eld. The last step is to reate the stream-funtion and look at the streamlines

around the soures, as the streamlines guarantees that there is no �ow perpendiular to

the streamline. The streamlines an be taken to be shape of the body. Further studies

have revealed many interesting properties of these trapped modes. One of these is that

the trapped mode annot be exited by inoming waves. At the trapped mode frequeny

the added mass goes to in�nity, while it hanges between large positive and large negative

values in the viinity of the trapped mode frequeny.

Later MIver and MIver (1997) used a ring soure to reate similar results in 3

dimensions. Newman (1999) studied the added mass, damping and exiting fores of the

shape found in MIver and MIver (1997) using WAMIT. More three-dimensional shapes

where found in MIver and Newman (2003), inluding shapes that are non-axisymmetri.

MIver and MIver (2006) reated a trapping struture that exists also for a freely

�oating problem. This means that the motion of a deay test will not deay in time.

However, in the ase from MIver (1996) a deay tests will not exite the trapped mode,

and therefore deay in time. The �oating trapped mode is a onsequene of that the heave

natural period oinides with the piston-mode natural period. Again it is important to

stress that this is done using linear potential �ow theory.

1.2 Appliable numerial methods

In order to develop a suitable and appliable numerial method to study the moonpool

problem, we must arefully onsider whih physial e�ets that are important to model.

There are three obvious onlusions for our problem; �rst we assume that a large part of

the water domain away from the the orners of the body an be desribed using potential

�ow, seondly that �ow separation from the hull must be aounted for and last that the

air �ow around the struture an be negleted. The last assumption is based on that the

moonpool is open to the to the atmospheri pressure. Based on these assumptions we have
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here hosen to ouple a potential �ow solver with a visous �ow solver. In addition, it is a

question if turbulene matters in our problem. However, it is believed to be seondary in

our appliation when �ow separation from sharp orners ours. Hene we do not onsider

it.

Another good reason for not applying the assumptions of visous �ow in the entire �uid

domain, whih may imply solving the Navier-Stokes equation with a free-surfae traking

method, is the major disadvantages in CPU time. Although the proposed hybrid methods

in this work are expeted to speed up performane, we have not done any omparison

study towards a ommerially available CFD solver with regards to auray or e�ieny.

Meaning that we will not report the ahieved CPU time in our simulations.

There exist several strategies for oupling visous �ow and potential �ow models. It

an simply be done by using a potential-�ow model to generate initial onditions to a

visous �ow model. An example of this is by using a potential-�ow model to simulate a

wave breaking up to when the free surfae intersets itself, then use the potential �ow

results to generate initial onditions to a visous �ow simulation, see Grilli et al. (2004). A

stronger oupling strategy whih is similar to ours is summarized in Grilli (2008). Basially

a potential-�ow problem is solved on a large domain using the boundary element method

(BEM). On a smaller visous domain, the Navier-Stokes (NS) equations are split in an

invisid (with supersript I) and a visous part (with supersript V ), u = uI + uV
and

p = pI + pV . Sine the invisid part is known from the potential �ow BEM alulation,

the NS-equations an be used to solve for uV
and pV . They use this strategy to solve a

sediment transport model, where the visous domain is loated lose to the sea bottom.

Kim et al. (2010) proposed to use a transmission zone between a BEM solving for

the potential �ow and the (NS)-equations with a volume of �uid (VOF) tehnique for

free-surfae apturing to generate a two-way oupling between the potential and visous

�ow domains.

The green water on dek problem has been investigated in a series of publiations by

Colihio et al. (2006), Greo et al. (2007), Greo et al. (2013) and other related artiles

by the same authors using a one-way domain deomposition tehnique where a BEM is

used to solve for inoming waves, and a Navier-Stokes solver with a level-set tehnique to

apture the evolution of the air-water interfae is used to generate the breaking wave on the

struture. When one uses a BEM ombined with a one-�uid (air-water) solver, then one

must also solve partly the air problem by the BEM. Furthermore, one has to onsider the

inonsisteny that a BEM provides a sharp air-water interfae while a surfae apturing

method like level-set and VOF does not. A fully nonlinear domain deomposition solver

for e�ient omputations of wave loads on surfae piering strutures is proposed by

Paulsen et al. (2014). They ombine a Navier-Stokes/VOF solver in the inner domain

around a ylindrial surfae piering struture, with a fully potential �ow solver in the

outer domain. Their approah is a one-way oupling, meaning that they have to damp

out the di�ration waves due to the struture before it reahes the potential �ow domain.

Campana et al. (1995) applied a domain deomposition method to analyse the �ow

past a ship hull. Here an overlapping region was used, and the solution between the

two domains was mathed through iteration between the potential �ow and visous �ow

solver.

Reently Zhang et al. (2014) and Zhang (2013) oupled a potential-�ow BEM with a

visous-�ow Finite Element Method (FEM) with no overlapping domain, and performed

various validation studies inluding dam break, solitary wave over an obstale and solitary
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wave breaking on an irregular 3D bathymetry.

In this work the hybrid method from Kristiansen and Faltinsen (2012) is used as basis

and developed further. Kristiansen and Faltinsen (2012) solved for linear potential �ow

theory using the linear aeleration potential and oupled it to the pressure in the Navier-

Stokes equation. The governing equations were solved by the FVM in both domains.

Another option for modelling �ow separation in potential �ow methods suh as BEM

is to apply an invisid vortex traking method. This approah was applied by among

others Kristiansen (2009), Braathen (1987) and Faltinsen and Pettersen (1987).

Also when it omes to numerial methods for potential �ow there exist a vast seletion

of available methods. The most popular one is perhaps the BEM originally from Hess

and Smith (1962), whih only involves disretizing of the boundaries of the water domain.

The number of unknowns an further be redued by applying suitable Green funtions

that satisfy some of the boundary onditions.

Among the many methods available we will in this work mostly employ the Harmoni

Polynomial Cell (HPC) method for disretizing and solution of the potential �ow domain.

The HPC method is a �eld method where the entire water domain has to be disretized

by ells. The HPC method was �rst introdued by Shao and Faltinsen (2012a) to solve

the Laplae equation for potential �ow. The inspiration was taken from the onventional

FDM, however, in the HPC method harmoni polynomials that satisfy the Laplae equa-

tion are used as basis. Later publiations Shao and Faltinsen (2012b) and Shao and

Faltinsen (2013) have shown improvements of the method into 3D and various validation

studies have been performed. The most reent artile about the HPC method an be

found in Shao and Faltinsen (2014), where a detailed omparison of the e�ieny and

auray against various other methods are presented. The omparison shows improve-

ments over both other �eld methods (FVM, FEM and FDM), boundary element methods

(BEM) and Fast Multipole Aelerated BEM.

More review and details about the HPC method in 2D will be given later in the thesis,

sine they are important for the understanding of the oupling between the potential and

visous �ow.



Chapter 2

Mathematial formulations

In the present hapter the mathematial bakground of a two-dimensional numerial wave

tank (NWT) will be presented and desribed. One part of the NWT will be desribed by

potential �ow theory, whih assumes that the �ow is irrotational and the liquid invisid

and inompressible. The other part of the NWT will be desribed by the Navier-Stokes

equations for a visous and inompressible liquid assuming laminar �ow. The main on-

tribution from this numerial work is the oupling between the two liquid domains based

on di�erent numerial methods.

The main reason for not hoosing only a potential �ow method to solve our problem is

that vortiity separated from the sharp orners at the inlet of the moonpool is previously

found to ontribute signi�antly to the damping of the moonpool piston-mode motion.

Furthermore, it is experiened by others that the propagation of waves an be most

aurately done by using a potential �ow method. In addition, it is omputationally

expensive to solve the entire liquid domain using only a visous solver.

Meaning that for all parts of the liquid domain that potential �ow theory an be

used instead of visous �ow theory, more simpli�ations in the theory behind the physial

problem an be done, and the orresponding numerial solution will beome faster. This

will beome learer to the reader after the next two hapters.

2.1 Governing equations for the liquid

The liquid domain is deomposed into two separate, but strongly onneted and oupled

domains. In a domain near the body we seek the solution of the pressure and veloities

in the liquid from the Navier-Stokes equations. The derivation and detailed explanation

of the Navier-Stokes equations an be found in many textbooks, i.e. White (2006) and

Faltinsen and Timokha (2009). The Navier-Stokes equations in an Earth-�xed oordinate

system for an inompressible liquid is

∂u

∂t
+ u · ∇u = −1

ρ
∇p− gk+ ν∇2u in Ω

CFD

, (2.1)

where Ω
CFD

is the visous domain part of the total liquid domain. To be preise: We

have assumed that the Earth-�xed oordinate system is an inertial oordinate system.

The latter assumption is appropriate for our appliations. Here u = (v, w) is the absolute
liquid partile veloity, ρ is the density of the liquid, g is the aeleration of gravity, k is

9
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the unit vetor in vertial ze-diretion in the Earth-�xed oordinate system with positive

diretion upwards, ν is the kinemati visosity of the liquid, ∇ is the nabla operator

and p is the total pressure in the liquid. Note that equation (2.1) does not inlude any

turbulene model and is based on a laminar �ow assumption. It an be used for turbulent

�ow of a Newtonian �uid. However, it is omputational time that prohibits it. So instead

some empirial turbulene models are ommonly used. Further, the ontinuity equation

for liquid mass reads,

∇ · u = 0 in Ω
CFD

. (2.2)

The transformation of equations (2.1) and (2.2) into a body-�xed noninertial oordinate

system will be given later, where the noninertial oordinate system will be �xed to an

objet that is aelerating in translation and rotation in time.

For the problems onsidered in this work the Navier-Stokes equations will be solved in

a domain near the body, that inludes the edges, where vortiity is expeted to be shed.

Further away from the hull, the Laplae equation for the veloity potential ϕ or linear

aeleration potential ψ will be solved. In addition, the entire free surfae is within the

potential-�ow domain.

The basi assumptions behind the Laplae equation for ϕ or ψ are the following: The

liquid �ow is irrotational, the liquid is invisid and inompressible in the potential �ow

domain. This implies that there exists a veloity potential ϕ that satisfy,

∇2ϕ = 0 in Ωpot. (2.3)

Here Ωpot is the potential �ow part of the liquid domain, and the absolute liquid veloity

is de�ned as u = ∇ϕ.
It will later be used that also the linear aeleration potential ψ satis�es the Laplae

equation. Within linear potential �ow theory the aeleration potential is de�ned as

ψ = ∂ϕ/∂t. Here the aeleration of the liquid at a �xed point an be found from the

linear aeleration potential as a = ∇ψ, whih further needs to be time integrated to �nd

the veloity, based on the hosen time-integration method.

It should be noted that the Laplae equation is invariant, meaning that it does not

hange from an inertial oordinate system to a noninertial oordinate system. In our ase,

the Earth-�xed oordinate system is an inertial oordinate system, and the onsidered

body-�xed oordinate system is a noninertial oordinate system.

2.1.1 Body-�xed oordinate system

To begin explaining the governing equations for the liquid �ow in a body-�xed oordinate

system the di�erene between two oordinate systems, an Earth-�xed oordinate system

and a body-�xed oordinate system will be explained. (See Figure 2.1.) The Earth-�xed

(ye, ze)-oordinate system will remain �xed in time and spae to the free surfae at the

initial position of the ship, while the body-�xed (y, z)-oordinate system will follow the

enter of gravity of the body and rotate with the roll motion of the body.

In order to rotate a vetor b0e in the Earth-�xed oordinate system to the body-�xed

oordinate system at rest, the standard two-dimensional rotation matrix is applied

[

by0
bz0

]

=

[

cos η
4

− sin η
4

sin η
4

cos η
4

] [

by0e
bz0e

]

, (2.4)
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Figure 2.1: De�nition of the two oordinate systems. The body-�xed (y, z)-oordinate system is

�xed to the enter of gravity of the body, and it will follow and rotate with the motions of the

body. The Earth-�xed (ye, ze)-oordinate system is �xed to the initial position of the body at

the alm free surfae.

where η
4

is the angle between the two oordinate systems, here exempli�ed with the roll

angle, as will be the ase for all rotations in this work.

The relation between the relative liquid veloity as seen in the body-�xed oordinate

system and the absolute liquid veloity as seen in the Earth-�xed oordinate system is

given as,

ur = u− u0 − ω0 × r (2.5)

Here ur is the relative liquid partile veloity seen from the body-�xed oordinate system.

u is the absolute liquid partile veloity seen in the Earth-�xed oordinate system, but

rotated with the same angle as the body-�xed oordinate system. ω0 is the angular velo-

ity of the body (whih ontains only the roll-angular veloity η̇
4

in this two-dimensional

ase), u0 is the translatory veloity of the origin of the body-�xed oordinate system and

r is the radius vetor from the origin of the oordinate system to the liquid partile. Here

the origin of the body-�xed oordinate system is assumed to oinide with the enter of

gravity of the body.

The Navier-Stokes equations (2.1) and (2.2) are hanged to re�et that the governing

equations are solved in a body-�xed rotating oordinate system. The detailed derivation

on how to transform the Navier-Stokes equations from an inertial to a noninertial o-

ordinate system an be found in Faltinsen and Timokha (2009) and parts of it is given

in Appendix A. A similar derivation is also applied when the equations of motion are

transformed from the Earth-�xed oordinate system to the body-�xed oordinate system.

The Navier-Stokes equations in a body-�xed oordinate system are given as,

∂bur

∂t
+ ur · ∇ur = −1

ρ
∇p+ g + ν∇2ur − a0

− (ω0 × u0)− ω̇0 × r in Ω
CFD

,

− 2 (ω0 × ur)− ω0 × (ω0 × r) (2.6)

∇ · ur = 0 in Ω
CFD

. (2.7)

where the term 2 (ω0 × ur) is the Coriolis aeleration and the term ω0 × (ω0 × r) is the
entripetal aeleration. Furthermore, ∇ is now the di�erential operator in body-�xed
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(y, z)-oordinates. ∂b
ur

∂t
is de�ned as the time-derivative of ur for a �xed point in the

body-�xed oordinate system, and that the unit vetors are not time-di�erentiated.

In two dimensions with a yz-oordinate system, we have only two nonzero omponents

in ur = [0, vr, wr] and a single omponent in ω0 = [η̇4, 0, 0]. Note that the gravitational
onstant g = −g [0, sin(η4), cos(η4)] hanges with time and depends on the roll-angular

position.

The Laplae equation is invariant, meaning that

∇2ϕ =
∂2ϕ

∂y2
+
∂2ϕ

∂z2
=
∂2ϕ

∂y2e
+
∂2ϕ

∂z2e
= 0 (2.8)

In addition to the governing equations, the boundary onditions must be hanged to

re�et that the problem is solved in a body-�xed oordinate system. The initial onditions

remain the same, as everything is assumed to start at rest within both the body-�xed

oordinate system and Earth-�xed oordinate system, the only di�erene is an o�set by

the distane from the enter of gravity to the free surfae.

2.2 Coupling between potential and visous �ow

On the intersetion between the potential and visous �ow, the solutions for both pressure

and liquid veloity must be ontinuous. To ahieve ontinuous pressure aross the inter-

setion the Bernoulli equation is applied. The equation is true for unsteady, irrotational

and invisid liquid motion, here given in an Earth-�xed oordinate system as,

p

ρ
+
∂ϕ

∂t
+

1

2
|∇ϕ|2 + gze = C(t) (2.9)

where C(t) is an arbitrary funtion. If now the time dependeny is inluded in the veloity

potential, C(t) beomes a onstant. Next we evaluate the equation at z = 0 without water
motion where p = pa, then C(t) = pa an be determined. On the visous �ow side the

pressure p is solved for and on the potential �ow side the absolute veloity potential ϕ or

its time-derivative, i.e. the linear aeleration potential ψ = ∂ϕ

∂t
is solved for.

In addition to the requirement of a ontinuous pressure �eld aross the intersetion, the

veloities should be ontinuous in both tangential and normal diretion to the intersetion.

One requirement here is that the vortiity generated in the visous �ow domain annot

reah the intersetion. Meaning that either the intersetion should be as far away as

possible, or a numerial sheme to damp out vortiity lose to the intersetion should be

implemented. It is here foused on the �rst option. These requirements and limitations

are disussed further in the setion on numerial methods. Sensitivity studies have been

performed to hek the importane of the loation of the intersetion on the numerial

solution.

2.3 Free-surfae boundary onditions in potential �ow

In this setion free-surfae onditions to be applied in the potential �ow domain using a

body-�xed oordinate system are sought. The starting point is the well-established non-

linear kinemati and dynami free-surfae boundary onditions in an (non-aelerating)
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inertial Earth-�xed oordinate system. Our objetive is to �nd the orresponding semi-

Lagrangian nonlinear free-surfae onditions in a noninertial rotating body-�xed oordi-

nate system. By semi-Lagrangian it is here meant that the free-surfae pro�le is followed

in z-diretion. Furthermore, surfae tension is negleted.

The kinemati free-surfae ondition is found by assuming that a liquid partile on

the free surfae remains on the free surfae. Then the kinemati free-surfae ondition is

mathematially given in an Earth-�xed oordinate system as the material derivative of a

funtion Z = z − ζ(y, t) = 0, see Faltinsen and Timokha (2009)

D (ζ − z)

Dt
=
∂ζ

∂t
+
∂ϕ

∂y

∂ζ

∂y
− ∂ϕ

∂z
= 0 (2.10)

where ζ(y, t) is the free-surfae elevation. Note that ζ is assumed to be a single-valued

funtion for eah y-node, i.e. the simulation will break down for overturning waves.

Change of time-derivative from an inertial oordinate system to a body-�xed (nonin-

ertial) oordinate system is represented by (here exempli�ed with use of ϕ)

∂bϕ

∂t
=
∂ϕ

∂t
+ (u0 + ω0 × r) · ∇ϕ (2.11)

Here the time-derivative

∂b

dt
represents hange of a value in time seen from a point �xed in

the body-�xed rotating oordinate system, as earlier de�ned and used in equation (2.6).

The kinemati free-surfae ondition in a body-�xed oordinate system when ombining

equations (2.10) and (2.11), and noting that we should exhange ϕ with the funtion Z
in equation (2.11) then beomes

∂bζ

∂t
=
∂ϕ

∂z
− ∂ϕ

∂y

∂ζ

∂y
+ (η̇2 − η̇4z)

∂ζ

∂y
− η̇3 − η̇4y on z = ζ (2.12)

On the free surfae ontinuity in pressure aross the interfae is required, suh that

the pressure in the liquid at the free surfae is equal to the pressure pa in the air. This

is a onsequene of negleting surfae tension. The ontinuity in pressure is desribed

by using the Bernoulli equation (2.9) and ombining it with equation (2.11) to transform

Bernoulli's equation to the dynami free-surfae ondition in a body-�xed oordinate

system,

∂bϕ

∂t
= −gζef −

1

2
|∇ϕ|2 + (η̇2 − η̇4z)

∂ϕ

∂y
+ (η̇3 + η̇4y)

∂ϕ

∂z
on z = ζ. (2.13)

where ζef is the vertial ze-position of the free-surfae node in the Earth-�xed oordinate

system. We reah the �nal expression for the dynami free-surfae boundary ondition by

rewriting Bernoulli's equation to express the time rate of hange of ϕ on the free surfae,

as one travels with the free surfae in z-diretion of the body-�xed rotating oordinate

system. Similarly as equation (2.11) we an set up a relationship between the time

derivative when following a liquid partile in z-diretion in a semi-Lagrangian manner

and the time derivative of a point �xed in a body-�xed oordinate system.

d∗ϕ

dt
=
∂bϕ

∂t
+
∂z

∂t

∂ϕ

∂z
=
∂bϕ

∂t
+
dbζ

dt

∂ϕ

∂z
(2.14)
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Inserting for equation (2.13) and (2.12) into equation (2.14) gives

d∗ϕ

dt
= −gζef−

1

2

(

∂ϕ

∂y

)2

+
1

2

(

∂ϕ

∂z

)2

−∂ϕ
∂z

∂ϕ

∂y

∂ζ

∂y
+(η̇2 − η̇4z)

(

∂ϕ

∂y
+
∂ϕ

∂z

∂ζ

∂y

)

on z = ζ.

(2.15)

Here the derivative

d∗

dt
express the time-derivative when following a partile in a semi-

Lagrangian manner in z-diretion of the body-�xed oordinate system. Here we have

used that

∂bz
∂t

= dbζ

dt
, meaning that the node attahed to the free surfae will follow the

wave elevation ζ in z-diretion of the body-�xed oordinate system.



Chapter 3

Numerial methods

The following setions will present the numerial methods and our approahes used in

the present work. Two new numerial hybrid methods ombining the Finite Volume

Method (FVM) for the numerial solution of the visous �ow domain and the Harmoni

Polynomial Cell (HPC) method for the numerial solution of the potential �ow domain

are used throughout the present study.

The FVM implemented in the present work is seond-order aurate for the solution of

the pressure. The basis an be found in many textbooks (i.e. Ferziger and Peri¢ (2002)).

However, it is felt neessary to present most of the details suh that the oupling part an

be understood.

3.1 Finite Volume Method

The Finite Volume Method is a ommon and well established numerial method that uses

the volume integral of the governing equations as its starting point, or in two dimensions

the area integral. The numerial formulation here will be for two dimensions, but sim-

ilar derivation an be performed in three-dimensional spae. The �rst formulation here

is inspired by Faltinsen and Timokha (2009). It is here presented in detail to further

understand the oupling approah between the FVM and the HPC method.

Assume that the liquid domain is divided into a �nite number of ontiguous ontrol

areas (CAs). Then the area integral of the Laplae equation over eah CA for the veloity

potential will look like,

∫

CA

∇2ϕ dΩ = 0 (3.1)

The divergene theorem an now be applied to equation (3.1), and the equation an

be rewritten from an area integral into a line integral. First the divergene theorem is

given as:

∫

CA

(∇ · F) dΩ =

∫

S

(F · n) dS, (3.2)

where F is a ontinuously di�erentiable vetor �eld and n is the normal vetor to the line

S pointing outwards. Furthermore, S is the losed line around the CA, i.e. the line that

onsist of the four edges of the CA.

15
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The area-integrated Laplae equation (3.1) an then be redued to a line integral, by

noting that ∇2ϕ = ∇ · ∇ϕ, i.e.
∫

S

∂ϕ

∂n
dS = 0. (3.3)

Now assume that ϕ varies linearly over eah ell. Then the normal derivatives aross the

edges are also onstant along eah edge. The integral is then a sum of four onstant line

integrals

4
∑

i=1

(

∂ϕ

∂n

)

i

dSi = 0, (3.4)

where the values of ϕ are expressed at the geometrial enter of eah ell. Further,

δz

(

∂ϕ

∂y

)

e

− δz

(

∂ϕ

∂y

)

w

+ δy

(

∂ϕ

∂z

)

n

− δy

(

∂ϕ

∂z

)

s

= 0, (3.5)

where the subsripts e, w, n and s indiates whether it is the east, west, north and south

edge of the CA that are evaluated. Assume that the CA is a retangle, suh that the

north and south edge has the same length, and that the east and west edge has the

same length. Further, δy is the width of the ell and δz is the height of the ell. To

keep the notation here as simple as possible both δy and δz are assumed onstant for all

ells. However, note that the ode implementation allows for di�erent ell sizes, as long

as the ell remains retangular. The gradients an be found as �rst order �nite di�erene

approximations between the ϕ values at the onsidered ell and its ell neighbours. The

horizontal �rst-order �nite di�erene gradient approximations are then,

∂ϕ

∂y

∣

∣

∣

∣

e

=
ϕ
E

− ϕ
P

δy
,

∂ϕ

∂y

∣

∣

∣

∣

w

=
ϕ
P

− ϕ
W

δy
, (3.6)

where ϕ
E

and ϕ
W

are the orresponding veloity potential values at the geometrial enter

of the east and west neighbouring ells. Similar �rst-order �nite di�erene approximations

for the derivatives in z-diretion.

∂ϕ

∂z

∣

∣

∣

∣

n

=
ϕ
N

− ϕ
P

δz
,

∂ϕ

∂z

∣

∣

∣

∣

s

=
ϕ
P

− ϕ
S

δz
, (3.7)

where ϕ
N

and ϕ
S

are the orresponding veloity potential values of the geometrial enter

of the north and south ells. The equation (3.5) an then �nally be rewritten to look like,

δz

δy
ϕ
E

+
δz

δy
ϕ
W

+
δy

δz
ϕ
N

+
δy

δz
ϕ
S

− 2

(

δz

δy
+
δy

δz

)

ϕ
P

= 0. (3.8)

For an implementation with di�erent ell sizes, the distane between the two ell nodes

are di�erent from the width or height of the ells, and equation 3.8 will hange.

Equation (3.8) is only valid for ells that are not adjaent to any boundaries of the

liquid domain, these ells are ategorized into ell-type 1 (see Figure 3.1). Boundary

onditions are easily implemented by hanging the gradient terms in equation (3.5), and

then updating equation (3.8). A typial example of this an be for ell-type 15, where

the north edge of the ell is on the body boundary. The resulting equation for ell-type

15 is then

δz

δy
ϕ
E

+
δz

δy
ϕ
W

+
δy

δz
ϕ
S

−
(

2
δz

δy
+
δy

δz

)

ϕ
P

= −δy ∂ϕ
∂z

∣

∣

∣

∣

n

, (3.9)
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Figure 3.1: Overview of the mesh ategorization into di�erent ell-types. In addition there are

other ell-type onneted to the appendages and the intersetion between potential and visous

�ow domains. Cell-type 0 represents the position of the hull. The FVM node values are loated

in the middle of eah ell.

where

∂ϕ

∂z

∣

∣

n
will be known from the body boundary ondition.

We now explain what is done when the veloity potential is known at an edge. The

ell-type 5 next to the free surfae is used as an example. The north node is moved to

the north edge of the ell, and the north gradient is between the known veloity potential

value of the north edge and the veloity potential value at the enter of the ell.

The ategorization of the di�erent ell-types in the FVM sheme are given in Figure

3.1. Other ell-types will be introdued when the oupling between the HPC and FVM is

presented. Also other ell-types will be introdued when the oupling between potential

and visous �ow is presented. Cell-types 12, 13, 15, 16 and 17 are on the body boundary.

Further, 5, 6, 7, 16, and 17 are on the free surfae, and last, 2, 3, 4, 6, 7, 8 and 9 are on

the outer walls of the wave tank. The resulting matrix system is sparse, with values on

the diagonal and on four o�-diagonal lines.

A staggered mesh arrangement is applied in the present work. This means that the

liquid veloities will be evaluated on the edges of the ells and the pressure in the middle of

the ells. Here the horizontal v-veloities are valid on the east and west edges of the ells

(see Figure 3.2), and the vertial w-veloities are evaluated on the north and south edges

of the ells (see Figure 3.3). The veloities are learly de�ned between two ells. On the

boundary of the liquid, the veloities are either spei�ed or alulated by extrapolation.

This applies to v-ell-types 2, 3, 12 and 13, and to w-ell-types 4, 5 and 15.

3.1.1 Time integration method

It was early in the development phase deided to use the expliit fourth-order Runge-

Kutta method for time integration. The main motivation behind this was the experiene

of others and its known apability to evolve the free-surfae onditions in time.

For solution of the Navier-Stokes equations Chorin's frational step method is used

to solve eah sub-step in the expliit fourth-order Runge-Kutta method. There are other

and well established time integration methods for solving the Navier-Stokes equations

than the ombination of the Chorin's frational step method and the expliit fourth-
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Figure 3.2: v-ell-types for horizontal v-veloity nodes in a staggered mesh arrangement. The

striped area illustrates how the ontrol area for eah v-veloity ell is de�ned.
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order Runge-Kutta method. However, the ombination has been proven to be stable and

apable of evolving all the di�erent steps in the present hybrid method forward in time.

For more details about the numerial implementation of the ombination of the expliit

fourth-order Runge-Kutta method and the Chorin's frational step method the reader is

referred to the pseudoode in Appendix C.1. In addition Ferziger and Peri¢ (2002) or

other text books on numerial methods for �uid dynamis an be used as a soure for

�nding suitable time integration methods.

The following sub-setions will illustrate how the FVM and the Chorin's frational

step method Chorin (1968) are implemented for solving the Navier-Stokes equations in

an Earth-�xed oordinate system (2.1). To simplify the notation Chorin's frational step

method will be given for the expliit forward Euler method, and not for the implemented

expliit fourth-order Runge-Kutta. Extensions of the method by inluding the additional

terms in the body-�xed Navier-Stokes equation (2.7) are straightforward. However, they

lead to some problems when solving the equations of rigid-body motion.

3.1.2 Advetion sub-step

The �rst step in the Chorin's frational step method Chorin (1968) is the advetion term,

i.e. a sub-step in the time integration method is performed with only the advetion step

from the equation (2.1). The result is a temporary arti�ial veloity �eld u∗
that is not

divergene free (∇ · u∗ 6= 0),

u∗ = um −∆t (um · ∇um) (3.10)

where m refers to values at the present time-step. Further, equation (3.10) is integrated

over the CA and simpli�ed using the divergene theorem (from equation (3.2)).

∫

CA

∂u

∂t
dΩ = −

∫

S

(u · n)u dS (3.11)

This an �rst be split into one equation for eah of the two veloity omponents,

v∗ = vm − ∆t

δyδz

(

v2e δz − v2w δz + vnwn δy − vsws δy
)

(3.12)

w∗ = wm − ∆t

δyδz

(

ve we δz − vw ww δz + w2
n δy − w2

s δy
)

(3.13)

note that the CAs are di�erent for the two veloity omponents than for the pressure

nodes, see Figures (3.2) and (3.3). Furthermore, they are evaluated on di�erent loations.

These equations are valid for veloity ell-types 1, whih is in the middle of the liquid

domain and away from all boundaries.

There exists a great deal of literature on how to disretize the advetion step and

various total variation diminishing (TVD) shemes have been proposed. To ensure a

quik implementation and stable solution the �rst-order upwind method is hosen here.

This basially means that for eah ell the diretion of the �ow is hek, and values from

the nearest ell in the upstream diretion are used in equations (3.12) and (3.13). To

what degree our results are sensitive to the hoie of numerial solution to the advetion

step is unknown for the ase studied here. However, by hoosing the �rst-order upwind

method for the advetion step, a large numerial di�usion should be expeted Ferziger

and Peri¢ (2002).
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3.1.3 Di�usion sub-step

The seond step in Chorin's frational step method is to do a sub-step from u∗
by inlud-

ing the di�usion term in the Navier-Stokes equation (2.1), the results is then a seond

temporary arti�ial veloity �eld u∗∗
that is not divergene free,

u∗∗ = u∗ +∆t ν∇2um. (3.14)

Again integrating over the ontrol areas entered around the veloity nodes and using the

divergene theorem, the equation beomes,

∫

CA

∂u

∂t
dΩ = ν

∫

S

∂u

∂n
dS (3.15)

Splitting into the horizontal and vertial veloity omponents,

v∗∗ = v∗ +
∆t

δyδz
ν

4
∑

i=1

(

∂v

∂n
dS

)

i

(3.16)

w∗∗ = w∗ +
∆t

δyδz
ν

4
∑

i=1

(

∂w

∂n
dS

)

i

(3.17)

Further, the resulting expliit equation for the di�usion step of the Chorins method for

veloity nodes with ell-type 1

v∗∗ = v∗ +
∆t

δyδz
ν

[(

∂v

∂y

)

e

δz −
(

∂v

∂y

)

w

δz +

(

∂v

∂z

)

n

δy −
(

∂v

∂z

)

s

δy

]

(3.18)

w∗∗ = w∗ +
∆t

δyδz
ν

[(

∂w

∂y

)

e

δz −
(

∂w

∂y

)

w

δz +

(

∂w

∂z

)

n

δy −
(

∂w

∂z

)

s

δy

]

. (3.19)

Again a �rst order �nite di�erene in spae is used to approximate the derivatives. The

no-slip boundary ondition an be satis�ed through the equations above.

3.1.4 Pressure sub-step

After the temporary arti�ial non-divergene free veloity �eld u∗∗
is found, the last step

in the Chorin's frational step method is to update the veloity �eld with the pressure

gradient whih is still an unknown.

um+1 − u∗∗

∆t
= −1

ρ
∇

(

pm+1 + ρgz
)

(3.20)

Due to the ontinuity equation (2.2), the veloity �eld at the next time-step must be

divergene free, i.e. ∇ · um+1 = 0. The resulting equation for the pressure in the liquid

then beomes the Poisson equation,

∇2p̃m+1 = − 1

∆t
∇ · u∗∗

(3.21)
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where we de�ne p̃ = p

ρ
+ gz. Again integrating over the ontrol areas with the pressure

node in the enter and rewriting using the divergene theorem, the Poisson equation an

be rewritten to look like,

∫

S

∂p̃

∂n
dS = − 1

∆t

∫

S

u∗∗ · n dS (3.22)

The left hand side is disretized in a similar way as the Laplae equation (3.3), and the

right hand side is equal to

∫

S

u∗∗ · n dS =

4
∑

i=1

(u∗∗ · n)i = (v∗∗e δz − v∗∗w δz + w∗∗

n δy − w∗∗

s δy) (3.23)

The total disretized Poisson equation for the pressure then beomes,

p̃
E

− p̃
P

δy
δz − p̃

P

− p̃
W

δy
δz +

p̃
N

− p̃
P

δz
δy − p̃

P

− p̃
S

δz
δy

=
1

∆t
(v∗∗e δz − v∗∗w δz + w∗∗

n δy − w∗∗

s δy) (3.24)

whih is valid for all ells inside the liquid, ell-type 1 from Figure 3.1. The present

implementation of the Navier-Stokes solver is based on the Chorin's frational step method

presented in this and the previous sub-hapters. The following limitation applies: The

mesh must remain onstant in time, i.e. it does not allow re-meshing lose to the body

boundary. The onsequene is that body motions annot be simulated without linearizing

the body-boundary onditions around its mean position. This limitation is one of the

reasons for hoosing to solve the governing equations in a body-�xed oordinate system.

To do this, the governing equations are hanged, and additional steps need to be inluded

in the sub-steps of the Chorins method.

3.1.5 Time-step size

The Courant-Friedrihs-Lewy number (CFL) (see among others Ferziger and Peri¢ (2002))

sets an upper bound on the time-step size in order to ahieve a stable numerial solution.

For a one-dimensional ase with onstant mesh size ∆x the CFL number is de�ned as,

CFL =
u∆t

∆x
(3.25)

where u is the liquid veloity.

This orresponds to the ratio of the time-step ∆t to the harateristi advetion time,

u/∆x, the time required for a disturbane to be adveted a distane ∆x. In pratie we

use CFL= 0.5. There is also an upper limitation on the time-step due to the disretization

of the di�usion term. This is, however, due to the low kinemati visosity of the liquid a

less strit requirement on the time-step size than the CFL riterion.

To solve the free-surfae boundary ondition another stability riteria an be used.

Dommermuth and Yue (1987) performed a von Neumann stability analysis for the fourth-

order Runge Kutta sheme with linearized free-surfae onditions and obtained the Courant

ondition

∆t2 ≤ 8

π

∆x

g
. (3.26)
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It is not known by the author of any similar stability analysis for the nonlinear free-surfae

ondition as used here in the nonlinear hybrid method.

The hoie of the time-step and mesh size also a�et numerially the dispersion and

damping properties of free-surfae waves. A detailed stability analysis was performed

by Ommani (2013). The latter is based on potential �ow, and numerial dispersion and

damping errors were disussed.

How these were implemented and time-step limits will be given when eah of the two

hybrid methods are presented.

3.2 Harmoni Polynomial Cell method

Details in this setion are mostly from Shao and Faltinsen (2012b), but given here to

make the details in the oupling at the intersetion between potential and visous �ow

domains learer. The fous here is on a two-dimensional implementation. Reently Shao

and Faltinsen (2014) extended the HPC method into three dimensions.

It is ompliated and demands a lot of programming work with the FVM to imple-

ment a sheme with higher than seond-order spatial auray. The main motivation for

introduing the HPC method is the higher order spatial auray gained with similar

implementation e�ort ompared to using the seond order FVM. By using a higher-order

spatial aurate method, it also implies that larger ells an be used to gain the same

auray as with a lower order method.

It was found that the wave dispersion properties with a low-order FVM was sensitive

to the disretization of the ∂ϕ/∂z-term in the kinemati free-surfae ondition. The

numerial damping of the waves was also too large to be able to use the FVM with

inoming waves on a �oating struture. By using the HPC method the free-surfae waves

will be propagated with higher auray, and the waves an be propagated from the

wavemaker to the struture without losing to muh energy due to numerial damping. In

partiular, the wave elerity is aptured more aurately than with a onventional FVM.

The seond order aurate FVM is similar to a seond order aurate FDM. Bingham

and Zhang (2007) investigated the auray of nonlinear water waves by using the FDM

with di�erent orders of auraies. They showed how many ells were needed for a given

auray with di�erent order of the FDM. For instane, the seond-order aurate method

requires around 25 times more ells than the fourth-order aurate method to gain the

same auray.

Another feature that makes the HPC method attrative is that the harmoni polyno-

mials automatially satisfy the Laplae equation everywhere. Then we only have to make

sure that the multiplying fators of eah polynomial are onsistent with the boundary

onditions both globally and loally. Sine the harmoni polynomials satisfy the Laplae

equation, the numerial sheme will onserve liquid mass.

When desribing the two-dimensional HPC method, we will operate with a loal Carte-

sian oordinate system for eah ell. The harmoni polynomials are in two dimensions

given by the real and imaginary parts of the omplex polynomial

zn = (x+ iy)n , (3.27)

where n is the order of the polynomial and i =
√
−1 is the imaginary unit. If the onsidered

domain is star-shaped relative to the origin, the representation of equation (3.27) in terms
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of a sum of all harmoni polynomials is a omplete set of polynomials whih satisfy Laplae

equation, see e.g. Vekua (1953). In this method we inlude all harmoni polynomials up

to third-order, and the fourth-order harmoni polynomial orresponding to real part of

equation (3.27). Then we an write ϕ as a linear ombination of 8 di�erent harmoni

polynomials fj(y, z), where eah individual polynomial satisfy the Laplae equation, i.e.

ϕ (y, z) =
8

∑

j=1

bjfj (y, z)

= b1 + b2y + b3z + b4
(

y2 − z2
)

+ b5yz

+ b6
(

y3 − 3yz2
)

+ b7
(

3y2z − z3
)

+ b8
(

y4 − 6y2z2 + z4
)

. (3.28)

Note that z is no longer a omplex number, but a oordinate in the z-diretion. The y-axis
is the horizontal axis and the z-axis is the vertial axis, positive upwards. It is stritly

speaking not neessary to hoose 8 di�erent polynomials. It is mostly due to onveniene,

as the ahieved auray is high enough and the required in�uene area inludes the 8
neighbouring nodes. I.e. for higher auray, more polynomials and a larger in�uene

area is needed (more neighbouring nodes).

Equation (3.28) leads to a linear system of equations, where we �nd ϕ at 8 di�erent

loations ϕ = ϕi, on a retangular mesh at y = yi and z = zi where i = 1..8. (See Figure
3.4 for a de�nition on the loal HPC numbering.) This gives a linear relationship between

the oe�ients bj and the values ϕi,

ϕi =
8

∑

j=1

di,jbj (3.29)

where the element in di,j = fj (yi, zi) from (3.28) de�nes the matrix [D]. Assuming 8
points where the value of ϕ are known, the oe�ients bi are found as,

bi =

8
∑

j=1

ci,jϕj . (3.30)

Here the matrix [C] is de�ned by the elements ci,j and is the inverse of the matrix [D].
Further, given a ninth point in the middle of the 8 points (see Figure 3.4), we have a basis
for onstruting a polynomial valid at the middle point. This means

ϕ (y, z) =
8

∑

i=1

[

8
∑

j=1

cj,ifj (y, z)

]

ϕi. (3.31)

Choosing the middle ninth point to be y9 = 0 and z9 = 0 the above equation simpli�es to

only onsist of the �rst onstant polynomial. The reason is that f1 = 1 and fj = 0 where

j = 2..8, suh that

ϕ9 (y9, z9) =
8

∑

i=1

c1,iϕi. (3.32)

This implies that ϕ9 an be written as a linear ombination of the 8 neighbouring node-

values of ϕ.
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Figure 3.4: An overview of the loal HPC numbering. Note that this loal mesh will overlap

with neighbouring meshes. I.e. node 9 in the above mesh an be any of the other 8 nodes in the

neighbouring ells. This is the standard HPC on�guration used for all HPC ell-types 1, see

Figure 3.5.

Sine analytial expressions for the derivatives

∂
∂y

and

∂
∂z

of polynomials easily an be

found, then also expressions for

∂ϕ

∂y
and

∂ϕ

∂z
an be found,

∂ϕ9

∂y
(y9 = 0, z9 = 0) =

8
∑

i=1

c2,iϕi (3.33)

∂ϕ9

∂z
(y9 = 0, z9 = 0) =

8
∑

i=1

c3,iϕi . (3.34)

Determining the oe�ients in the matrix [C] an be solved as a sub Dirihlet problem

for eah node. The 8 neighbouring points will span the boundary edge on the loal

polynomial for the ninth point, and these points will de�ne the elements di,j of matrix

[D]. The wanted row in the matrix [C] an now be found by inverting the matrix [D].
Doing this for all nodes throughout the liquid will lead to a sparse matrix system with at

most 9 non-zeros on eah row. For global boundary nodes (all HPC ell-types above 1,

see Figure 3.5) we an hoose a di�erent loal numbering than in Figure 3.4 and use any

of the boundary nodes to be point 9 with loal oordinates y = 0 and z = 0.

3.2.1 Limitations and bene�ts

The present implementation of the HPC method has some limitations in how the boundary

onditions are satis�ed. We an only satisfy the boundary onditions point-wise on HPC

nodes, and not in an integral way as in FVM. The integrated alternative of equations (3.33)

and (3.34) aross the ell edge was tried and found unstable. The reason is assoiated

with the fat that we have overlapping ells in the HPC method, whih means that the

veloity potential is not uniquely de�ned outside of the HPC nodes.

There is a seond problem onneted to the way boundary onditions are satis�ed

in the urrent implementation of the HPC method. On sharp orner nodes where the
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Figure 3.5: De�nition of the di�erent HPC ell-types, note that all HPC values are at the orners

of FVM ells (see Figure 3.1). Here ell-type node 35 and ell-type node are at the orners of

the body.

normal diretion is not uniquely de�ned, two separate boundary onditions should be

satis�ed. For instane, orner nodes in the liquid where both zero relative veloity in

y- and z-diretion should be satis�ed. On the intersetion between the free surfae and

the vertial hull side this is solved by foring ϕ to be the value time-stepped by the free-

surfae ondition. Further, the body-boundary ondition is used when the free-surfae

values at the body intersetion are time-stepped forward in time. This does not guarantee

that the body-boundary ondition is satis�ed on the next time-step, but only foring the

previous time-step to be orret. This orretion an only be performed for the nonlinear

free-surfae onditions, and not the linear free-surfae onditions.

On an inner sharp orner node, we need to take preautions, see HPC ell-types 25 and

35 in Figure 3.5. It is not lear how to best pik the 8 other points to onstrut a harmoni

polynomial valid at the orner node. In addition, we need to pik one of the boundary

onditions to be satis�ed. The other boundary ondition ould be satis�ed by adding an

extra equation to the equation system, and solving the matrix system through a least

square tehnique. However, this was not found satisfatory, and did not guarantee a good

solution. In addition, it inreased the omputational time signi�antly. The reason for an

inrease in omputational time is that a matrix system based on the least square method

will have a muh higher ondition number, and then a lower onvergene rate when using

an iterative matrix solver. A similar orner problem exists in the Boundary Element

method (BEM), but there it is in pratie solvable by using more elements lose to the

orner. Similarly an the problem be solved in a HPC method, then on an unstrutured

mesh or with a meshing method with loal re�nement. Note that it does not have to

do with a BEM in general, but with how the methods are disretized and whih basis

funtions that are applied.

With the present hybrid methods for solving potential �ow the problem is avoided

by not using HPC ells around the sharp orners, i.e. the bilges of the ship. Here FVM

ells are used instead, whih has the node values in the enter of the ell. Note that in

addition to the above problems with inner sharp orner nodes we should remember that

veloities are in fat singular in a potential �ow solution, suh that a singularity should
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be added loally to handle the solution around the orner. This does not apply to the

present hybrid methods when visous �ow is onsidered, then all our sharp orners are

overed by the visous domain, where all values remain �nite. However, when for instane

added mass and potential damping oe�ients are alulated, the liquid domain must be

overed with FVM ells around the sharp orners.

Reently, to overome the problems mentioned above Liang et al. (2015) mathed

a loal singular solution in an inner domain around the sharp orners with an outer

solution using the HPC method. The improved HPC method was applied to a double-

wedge osillating in in�nite liquid and free-surfae problems with non-vertial walls.

The HPC method does not set any limitations on how the mesh should be reated

or how it should be hanged between time-steps. Therefore, re-meshing the top layer in

the wave zone does not redue the auray of the solution. No interpolations shemes

between time-steps are used, but we still need to update the matrix system and possibly

hange the preonditioner matrix. This simpli�es the re-meshing proess ompared to

using FVM, where the �ux normal to the edge is needed.

3.3 Coupling between FVM and HPC
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Figure 3.6: Overview of where the di�erent nodes are loated. The thik line represents the

intersetion whih divides the liquid domain into a HPC domain and a FVM domain. Here the

supersript

∗
symbolize that interpolation is needed to obtain the value. ϕ ould here be any

funtion, not only the veloity potential.

In the previous setions both the FVM and the HPC method were presented in detail.

Here it will be shown how to ouple these two methods when solving a potential �ow

problem.
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As seen from Figures 3.1 and 3.5 the FVM enter nodes and HPC orner nodes are

not evaluated at the same loation. This is solved by interpolating to a value of ϕ on the

FVM enter node in the HPC domain. The problem is that ϕ is not uniquely de�ned

for any given point outside the HPC nodes, i.e. ϕ an be evaluted from four di�erent

harmoni polynomials. The reason is that four HPC ells (see Figure 3.6) overlap eah

FVM node. Instead of evaluating the average of four di�erent harmoni polynomials,

whih would involve in total 16 values of ϕ, a linear weight funtion is applied, suh that

the HPC node losest to the FVM node gets the most in�uene.

ϕ∗

FVM

=Wnwϕ
nw
HPC

+Wneϕ
ne
HPC

+Wseϕ
se
HPC

+Wswϕ
sw
HPC

(3.35)

where Wnw and ϕnw
HPC

refer to the weight applied to the losest ϕ
HPC

node to the north

west, and similar for the north east (ne) node, the south east (se) node and the south

west (sw) node. The weight funtions are found as the following here exempli�ed with

Wnw:

Wnw =
A− Anw

A
(3.36)

where A is the area of the FVM ell, and Anw is the area of the retangular sub-ell with

two of its orners at the ϕ∗

FVM

node and the ϕnw
HPC

node. By applying the same sheme to

the other weight funtions it follows that Wnw +Wne +Wse +Wsw = 1. Note that loally
the higher order auray of the HPC method is lost, and the auray is in the same

order as in the FVM. We have not performed studies using other weight funtions. It is

believed that the linear weight funtion is su�ient.

It is unknown if inreasing the loal auray here gives any improvements on the

overall auray of the method. An inreased HPC area would be needed to evaluate

the average of four di�erent harmoni polynomials. When prediting the piston-mode

damping due to vortiity separation from the edge, it is important to get as large visous

�ow area as possible, and therefore the low-order approah in equation 3.35 is hosen.

When interpolating the ϕ∗

HPC

value at a HPC orner node inside the FVM domain a

similar approah as in equation 3.35 is used.

Additional HPC ell-types are reated ompared to Figure 3.5 to deal with the HPC-

FVM oupling.

3.4 Coupling between potential and visous �ow

The numerial implementation of the requirements from setion 2.2 will be disussed here.

The expliit time-disretized equivalent of the Bernoulli equation (2.9) in an Earth-�xed

oordinate system beomes,

ϕm+1 − ϕm

∆t
+

1

2
|∇ϕm|2 + gz = −p

m+1

ρ
. (3.37)

Notie that the �rst term in the equation is a �rst order �nite di�erene approximation

in time of ∂ϕ/∂t, and is best approximated between two time-steps (m+1/2). Therefore,
there will be a short time-lag of half a time-step between the �rst term and the pressure

term on the right hand side. A requirement for mathing the pressure using equation

(3.37) is that the vortiity generated in the visous domain does not reah the intersetion

between the visous and potential �ow domains.
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Figure 3.7: Overview of where the veloity potential nodes in the potential-�ow domain and the

pressure nodes in the visous-�ow domain are loated. The thik line represents the intersetion

whih divides the liquid domain. The red N triangles represents the liquid veloity nodes where

the arti�ial veloity u
∗∗

are replaed with equation (3.41).

To ahieve that both the normal and tangential veloities at the intersetion are on-

tinuous, the following is valid in an Earth-�xed oordinate system.

um+1 = ∇ϕm+1
in Ωpot (3.38)

um+1 = u∗∗ −∆t∇p̃m+1
in Ω

CFD

(3.39)

The veloity at next time-step on the intersetion should be independent on whih liquid

domain it is alulated from. This leads to a ondition on the temporary arti�ial veloity

�eld u∗∗
on the intersetion, and will enter the right hand side of the Poisson equation

for the pressure (equation 3.21).

u∗∗ = ∇ϕm+1 +∆t∇p̃m+1
(3.40)

This an be ombined with the time-disretized Bernoulli equation (3.37)

u∗∗ = ∇
(

ϕm −∆t

(

1

2
|∇ϕm|2 + 1

ρ
pm+1 + gz

))

+∆tp̃m

= ∇ϕm −∆t∇1

2
|∇ϕm|2 − ∆t

ρ
∇pm+1 −∆tg∇z +∆t∇p̃m+1

= ∇ϕm −∆t∇1

2
|∇ϕm|2 (3.41)

This equation replaes the temporary arti�ial veloity �eld values v∗∗ from equation 3.18

and w∗∗
from equation 3.19 on the intersetion between the potential and visous �ow
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domain, the loations are illustrated in Figure 3.7. Notie that the right hand side only

ontains values based on the present time-step and is therefore fully expliit. It does

require the evaluation of the gradient of ϕ on the intersetion, suh that ϕ is required

to exist inside the visous domain. Meaning that the requirement for the presene of

vortiity is somewhat stronger, and that it should not reah the ells that neighbours to

the intersetion. The higher order term ∇ |∇ϕ|2 an be evaluated using the HPC method.

Suh that on the veloity nodes we need to evaluate the following,

∇ |∇ϕ|2 = 2

[

0,
∂ϕ

∂y

∂2ϕ

∂y2
+
∂ϕ

∂z

∂2ϕ

∂y∂z
,
∂ϕ

∂y

∂2ϕ

∂y∂z
+
∂ϕ

∂z

∂2ϕ

∂z2

]

(3.42)

Sine we are aiming at solving a resonane problem, the phases between the terms beomes

important and the terms on the intersetion should be onsistent within an expliit fourth-

order Runge-Kutta sheme. (See the pseudoode in Appendix C.1.)

The next setions present details on how this works in both a body-�xed rotating

oordinate system with nonlinear boundary onditions, and in an Earth-�xed oordinate

system with linear boundary onditions.

3.4.1 Visous - potential oupling in FVM

The �rst approah on oupling visous and potential �ow that was suesfully imple-

mented was using FVM in both liquid domains. The oupling proved to be stable and

reliable, however, as desribed earlier the wave dispersion and damping properties were

not satisfatory when using the lower-order FVM in the potential �ow domain.

Evaluation of the higher-order term in equation 3.42 is not possible in the oupling

between the potential and visous �ow when the FVM is applied in both �ow domains.

Then equation (3.40) is again the starting point, but now the right hand side is approx-

imated with a �rst order �nite di�erene in spae for the gradient terms. Therefore, let

us say that we want to �nd u∗∗w , then the urrent ell is a visous �ow ell and the west

ell is a potential �ow ell and uw is the veloity node between these ells. The following

will ensure a ontinuous normal veloity between a potential and a visous �ow ell, here

disretized with a �rst order �nite di�erene approximation.

u∗∗w =
ϕm+1
P

− ϕm+1
W

δy
+∆t

(

p̃m+1
P

− p̃m+1
W

δy

)

(3.43)

Here ϕm+1
P

is not an unknown in the visous domain, and similarly pm+1
W

is not an unknown

in the potential domain. To hange variables the time-disretized Bernoulli equation (3.37)

is used, and equation 3.43 beomes

u∗∗w =
ϕm
P

− ϕm
W

δy
− ∆t

2

(∇ϕm
P

)2 − (∇ϕm
W

)2

δy
, (3.44)

whih is equivalent to the result from equation (3.41). Note here that ϕm
P

is a potential

�ow value on the previous time-step inside the visous domain.

To ensure a ontinuous tangential veloity between potential and visous ells, it is

again required that equation (3.40) is valid. Now it is assumed that both the urrent

and west ell is within the visous �ow domain, however, both the two neighbouring ells

above is within the potential domain. Here both ϕm+1
P

and ϕm+1
W

are not unknowns within
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the visous domain. The derivation is similar as for the ontinuous normal veloity, the

following expression then ensure ontinuous tangential veloity

u∗∗w =
ϕm+1
P

− ϕm+1
W

δy
+

∆t

ρ

(

pm+1
P

− pm+1
W

δy

)

=
ϕm
P

− ϕm
W

δy
− ∆t

2

(∇ϕm
P

)2 − (∇ϕm
W

)2

δy
. (3.45)

Again all equations in this setion are expressed in the Earth-�xed oordinate system.

Additional ell-types than those illustrated in Figures 3.1, 3.2, 3.3 are reated to

handle the ells on the intersetion, and to determine if the ells belongs to the potential

or visous �ow domains. The visous ells get an addition 1000 added to the ell-type,

suh that a FVM visous ell in the middle of the liquid will have a ell-type of 1001.

In order to deal with the remeshing of the potential �ow domain near the free surfae, a

method to deal with a non-retangular mesh in a FVM was implemented. The �rst-order

�nite di�erene approximation of the derivative between the values at the ell enters are

no longer the �ux normal to the ell edges.

The following setions will desribe the two numerial hybrid methods that are based

on a oupling between HPC and FVM. First the semi-nonlinear hybrid method is pre-

sented and then the nonlinear hybrid method will be given.

3.5 Semi-nonlinear hybrid method

Given the numerial foundation for the hybrid method in the previous setions, an Earth-

�xed approah with linear free-surfae and body-boundary onditions is presented. The

method is �semi-nonlinear� as the Navier-Stokes equations are nonlinear. To larify the

di�erene to the nonlinear hybrid method, here the governing equations are solved in an

Earth-�xed oordinate system in both �ow domains.

The basis of the semi-nonlinear hybrid numerial method is based on the work by

Kristiansen and Faltinsen (2012), exept that the FVM used in their method is replaed

by the HPC method in the potential �ow domain and that the equations of motion are

solved for the rigid-body motions.

In the potential-�ow domain that overs the top liquid layer lose to the free surfae

and the outer regions away from the �oating body, the linear aeleration potential

ψ = −ϕt (3.46)

is solved for. Note the negative sign, this is for onveniene in order to have the same

sign as the pressure in the visous domain. The linear aeleration potential ψ is oupled

to the pressure p in the visous �ow domain through the linearized Bernoulli equation,

ψ =
p

ρ
+ gz = p̃ (3.47)

It is bene�ial to solve for ψ and not ϕ when solving for body motions, see summary on

aeleration potential �ow solutions in oupled liquid-body motion problems from Bandyk

and Bek (2011). In our ase the potential �ow ontribution to the fore on the body is

limited to the top layer lose to the free surfae. As a minimum we need 3 HPC nodes in
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the vertial diretion lose to the free-surfae layer. The rest of the hull is then adjaent

to visous �ow FVM ells. Entire water olumns further away from the hull are overed

with potential-�ow HPC ells, see the prinipal sketh in Figure 3.8.

Both the linear veloity potential ϕ and its time-derivative, i.e. the linear aeleration

potential ψ satisfy Laplae equation (2.3) in the potential �ow domain.

∇2ψ = 0 in Ωpot. (3.48)

The Laplae equation for ψ in the potential �ow domain will be oupled with the momen-

tum onservation equation for an inompressible Newtonian liquid in an inertial Earth-

�xed oordinate system in the visous �ow domain equation (2.1),

The last step in Chorin's projetion method is to solve a Poisson equation for the

pressure in the visous �ow domain (see setion 3.1.4),

∇2p̃ =
1

∆t
∇ · u∗∗

in Ω
CFD

(3.49)

Equations (3.48) and (3.49) share the same operator ∇2
and an then be oupled diretly

in one matrix system, and solved together within one matrix operation. The divergene-

free liquid veloity �eld an after p̃ and ψ are found be updated as um+1 = um−∆t∇ψN+1

in the potential �ow domain (Ωpot) and as um+1 = u∗∗ − ∆t∇p̃m+1
in the visous �ow

domain (Ω
CFD

). Again m is the time-step number. This gives a ondition for u∗∗
on the

intersetion u∗∗ = um
that is muh simpler to evaluate than the orresponding term in the

nonlinear hybrid method. Sine the semi-nonlinear method only mathes pressure and

normal veloity at the intersetion, the method annot guarantee ontinuous tangential

veloity aross the intersetion. The stairase pattern as shown in Figure 3.6 and indiated

in Figure 3.8 is introdued as an attempt to also fore ontinuous tangential veloity,

as desribed by Kristiansen and Faltinsen (2012). This is not a perfet approah, but

it inreases the stability of the solution. The thought is that the alternating normal

diretion will fore both the normal and tangential veloity to be ontinuous. The e�ets

of the stairase pattern are examined in more detailed when fored motions are studied

in setion 5.4.
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Figure 3.8: Overview on how to separate into a potential �ow domain (Ω
CFD

) (patterned area)

and a visous �ow domain (Ωpot) for the semi-nonlinear hybrid method with linear boundary

onditions. Notie that there is only a thin potential �ow domain near the mean free surfae

lose to the body.
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3.5.1 Boundary and initial onditions

The boundary onditions for the semi-nonlinear hybrid method are given in the following

text. To ahieve high omputational performane the matrix system must not hange

with time, i.e. the disretization of the equation system remains �xed in time. This

is ahieved by using a onstant mesh, whih again requires us to satisfy the boundary

onditions on the same interfae every time-step. This an be done by using a linear

perturbation of the free-surfae onditions, i.e. we do a perturbation of the free-surfae

onditions around z = 0 using the wave elevation ζ as a small perturbation parameter,

see for instane Faltinsen (1990).

The dynami linear free-surfae ondition is an equation for the time evolution of the

veloity potential ϕ on the mean free surfae,

∂ϕ

∂t
= −gζ on z = 0. (3.50)

The kinemati linear free-surfae ondition will give an equation for the time evolution of

the wave elevation ζ ,
∂ζ

∂t
=
∂ϕ

∂z
on z = 0. (3.51)

The relation between ψ and ϕ from equation (3.46) results in a value for ψ that will be

used as a boundary ondition on the free surfae when solving the matrix system,

ψ = −∂ϕ
∂t

= gζ on z = 0. (3.52)

Notie from equation (3.51) that the z-derivative of ϕ is needed on the free surfae, whih

means that after ψ is found in the potential �ow domain we need to update ϕ in the

upper potential �ow domain lose to the free surfae (ϕm+1 = ϕm − ∆t ψm+1
). This

applies to at least the 3 upper rows of HPC nodes, suh that

∂ϕ

∂z
an be found using

harmoni polynomials. Both free-surfae onditions in equations (3.50) and (3.51) are

evolved forward in time by using the ommon expliit fourth-order Runge-Kutta method.

Note that a onsequene of the urrent �rst-order �nite di�erene relation between ϕ and

ψ, is that there will phase lag between ψ and ϕ of half a time-step.

An equivalent approah inside the moonpool gap domain, is to streth the visous

domain up to the free-surfae and apply a similar linear free-surfae ondition here. From

Faltinsen (2005), the linear kinemati and dynami free-surfae onditions are given as,

∂ζ

∂t
= w on z = 0 (3.53)

−p+ 2µ
∂w

∂z
= pa on z = ζ (3.54)

µ

(

∂u

∂z
+
∂w

∂x

)

= 0 on z = 0 (3.55)

where µ is the dynami visosity of the liquid. If now the visous shear stress on the

free surfae is assumed negligible, the equations an be further simpli�ed. It is shown in

Faltinsen (2005) that inluding the visous terms in the free-surfae boundary onditions
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have a very small e�et in linear free-surfae problems for the relevant ondition. This

implies

∂ζ

∂t
= w on z = 0 (3.56)

p = −gζ on z = 0. (3.57)

Furthermore, it is believed that a small potential �ow domain with only 3 potential-�ow

HPC ells in the vertial diretion inside the gap is su�ient. In addition, we get a higher

spaial auray with the HPC method in the potential �ow domain, although it is not

expeted to be important inside the moonpool gap.

For the body-boundary ondition we need to separate between the potential �ow part

and the visous �ow part at the body boundary. Similarly as the free-surfae onditions,

the body-boundary ondition is applied on a surfae that is onstant in time. In the

tangential diretion of the wall a no-slip ondition is imposed in the visous �ow domain,

while in the potential �ow domain a slip ondition is used. Sine we are not aiming at

apturing the liquid �ow inside the boundary layer, the di�erene between the no-slip

and slip ondition does not introdue a problem on the intersetion between the two

domains. However, it is not expet that this in general will be true, and espeially not if

the mesh density is inreased to apture the detailed behaviour of the liquid �ow inside

the boundary layers.

Further, in the normal diretion to the wall in both domains no liquid �ux through

the exat body boundary is required. In the potential �ow domain the body-boundary

ondition an be found from the Euler's equations. These orresponds to the Navier-

Stokes equations (2.1) with zero visosity and the assumption of irrotational �ow. These

are linearized around the initial position of the hull by assuming that the rigid-body

motions are small. The result is the following Neumann type body-boundary ondition

that is applied on the linear aeleration potential in the potential �ow domain of the

liquid,

∂ψ

∂n
= − (a0 + ω̇0 × r) · n on SBP , (3.58)

where n is the unit normal vetor of the hull pointing into the liquid, a0 is the 2D ael-

eration of the COG in sway and heave, ω̇0 is in 2D only nonzero for the roll aeleration

η̈4 and r is the position vetor of a point on the body relative to the COG.

A similar Neumann type body-boundary ondition is applied for the pressure p̃ in

the visous �ow domain, whih an be derived from the Navier-Stokes equations (2.1)

following the same assumptions as for the potential �ow part, i.e.

∂p̃

∂n
= − (a0 + ω̇0 × r) · n on SBV . (3.59)

Both equation (3.58) and equation (3.59) represent an in-out �ow through the initial

position of the ship. We emphasize that SBP or SBV do not hange with time and remain

�xed at the initial position of the ship, see Figure 3.9.

In linear potential �ow theory, it is usual to require that the body-boundary onditions

are valid at the mean position of the ship. This may not be the ase with the present

semi-nonlinear hybrid method, due to nonzero drift fore whih together with the mooring

system auses a mean o�set of the body. Therefore we speify that the body-boundary

onditions are valid at the initial position of the ship.
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The outer wall and bottom boundary onditions are zero �ux and a zero pressure

gradient. (See later for onditions on the wavemaker and the numerial beah.)
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Figure 3.9: Numerial setup of the semi-nonlinear hybrid method. xG is the enter of gravity, B
is the total width of the hull, b is the width of the moonpool gap, Bs is the length of the srew

onneting the hull to the mooring line, zs is the vertial distane from the srew to the enter of

gravity, SBP is the potential �ow part of the hull surfae and SBV is the visous �ow part of the

hull surfae. The dotted line indiate where the intersetion between the potential and visous

�ow is.

The initial onditions are simply still water with the body at rest.

3.5.2 Equations of motion

In two dimensions it is su�ient to onsider rigid-body motion in three degrees of freedom;

sway η
2

, heave η
3

and roll η
4

. The equations of motion due to Newton's seond law in an

inertial oordinate system are:

mη̈
2

= Fy,

mη̈
3

= Fz, (3.60)

Iη̈
4

= M.

Here m is the body mass, I is the moment of inertia about the enter of gravity of the

body x
G

= (y
G

, z
G

), Fy and Fz are the external horizontal and vertial fores andM is the

external roll moment about the COG (positive ounter lokwise). The external fores

and moment an further be deomposed to:

Fy = ρ

∫

SBP

ψ n
2

dS + ρ

∫

SBV

p̃ n
2

dS−K
22

η2 −K
24

η
4

Fz = ρ

∫

SBP

ψ n
3

dS + ρ

∫

SBV

p̃ n
3

dS− C
33

η
3

(3.61)

M = ρ

∫

SBP

ψ n
4

dS + ρ

∫

SBV

p̃ n
4

dS−K
42

η
2

− (K
44

+ C
44

) η
4

where n
2

and n
3

are omponents of the normal vetor n and n
4

is the �rst omponent of

the vetor r×n. The restoring fores oe�ients due to the spring mooring system an be
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found as; for sway K
22

= ks, for the oupling between sway and roll K
24

= K
42

= −ks zs
and for roll K

44

= B′ Fpre. The restoring spring oe�ient in roll K
44

is found from

geometrial onsiderations and by assuming that the total pre-tension is muh larger

than the hange in the total tension due to a small rotation η
4

, see Fredriksen (2008).

Here ks is the total spring sti�ness onstant in N/m and zs is the vertial distane from
the enter of gravity to where the mooring lines are onneted to the hull. Note that we

use B′ = 2B + 2Bs + b, where B is the breadth of one side hull, Bs = 0.03m is the srew

onnetion between the body and the mooring line and b is the width of the moonpool

gap.

The hydrostati linear restoring oe�ients that are assoiated with the hange in

the buoyany fore are: for sway C
22

= 0, for heave C
33

= ρ g (2B) and for roll C
44

=

ρ g V
2D

(zb−zG)+ 2
3
ρ g

(

(

B + b
2

)3 −
(

b
2

)3
)

. Here V
2D

is the displaed volume of the two side

hulls per meter in x-diretion of the wave �ume, and zb is the vertial enter of buoyany.
Note that both the potential �ow part SBP and the visous �ow part SBV of the hull

surfae are onstant in time.

In the visous �ow domain the pressure p̃ nodes are not on the ell edge where the

pressure on the body should be evaluated, but in the middle of the FVM ell. We use the

gradient as de�ned in equation (3.59) to extrapolate the solution of p̃ from the ell enter

to the ell edge where the hull surfae is.

Note that sine we are not solving for the visous shear stresses in the boundary layer,

we will also negleted visous shear fores on the hull, i.e. we neglet visous shear stresses

on the form τ = µ ∂u
∂n

|
hull

. Also other visous shear stresses are negleted. To inlude

visous shear stresses on the hull it would have been neessary to resolve the veloity

gradient in the boundary layer, this ould have been ahieved by dereasing the mesh size

lose to the hull. An in-out �ow analysis of the boundary layer in Kristiansen (2009), gave

negligible di�erene in the total body fores and resulting rigid-body motion. However,

this only aounts for the e�et the boundary layer has on the pressure, in addition omes

the visous shear fores. The experimental setup onsidered there had similar dimensions

as the experimental setup under onsideration here. Also a simple implementation of τ
in our ode had the same negligible result. Note that both the e�et the boundary layer

has on the pressure and the visous shear fore are expeted to be equally small Faltinsen

and Timokha (2009).

To solve the equations in (3.60), the equations of motion are �rst onverted from a

set of seond order di�erential equations, to a set of twie as many �rst order di�erential

equations by introduing the veloities in the three degrees of freedom as a seond set of

unknowns. To gain a stable solution in time, it is on both sides of the equations for eah

degree of freedom added a term proportional to the aeleration in that degree of freedom.

These aeleration terms will be multiplied by the in�nite-frequeny added mass (A∗

jj(∞)).
On the right hand side of the equations the aelerations are approximated with values

from the present time-step. This proedure is similar to what was done by Kristiansen

(2009) and Shao (2010). Suh that the updated equations of motion will look like, here
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still given as a set of seond order di�erential equations

η̈m+1
2

=
Fy + A∗

22

(∞)η̈m
2

m+ A∗

22

(∞)
,

η̈m+1
3

=
Fz + A∗

33

(∞)η̈m
3

m+ A∗

33

(∞)
, (3.62)

η̈m+1
4

=
M + A∗

44

(∞)η̈m
4

I + A∗

44

(∞)
.

The equations of motion are time-stepped forward in time using the expliit �rst order

Euler method, but solutions of the free-surfae onditions and the ombined Laplae/Pois-

son equation are still solved using the fourth-order expliit Runge-Kutta method. The

overall auray of the method thus remains �rst order in time.

3.5.3 Wave generation and absorption

There are a few options on how to generate inoming waves in a numerial wave tank.

One hoie is to model the physial hinged-type wavemaker from the wave �ume to fully

rereate the waves ahieved in the wave �ume. Another option is to speify a known

analytial veloity potential ϕin on the free surfae and on the wavemaker wall. Here it

is hosen to input a known linear aeleration potential ψin for �rst order waves on the

left wall and the equivalent value for ϕin for the dynami free-surfae ondition and ζin
for the kinemati free-surfae ondition. The method an easily be extended to a known

veloity potential of any order.

Within the left damping zone lose to the wavemaker we add damping terms νw (ϕ− ϕin)
and νw (ζ − ζin) to the respetive dynami and kinemati free-surfae boundary ondi-

tions, where νw is the user de�ned damping oe�ient with dimension 1/s. By applying

this approah the re�eted waves from the struture are damped out, but the inoming

waves are kept unhanged. In the other damping zone, on the right side of the numerial

wave tank, the added damping terms to the free-surfae onditions are simply νwϕ and

νwζ . This is equivalent to the numerial beah known as the Orlanski's ondition (Orlan-

ski (1976)), and used by Clement (1996) among others. The damping zone is divided in

two parts, losest to the hull there is a smooth ramp-up zone from νw = 0 to νw = 1.6, in
the other part losest to the walls the damping oe�ient value is kept onstant νw = 1.6.
Here 1.6 is the value hosen for νw in all simulations in this work instead of making the

damping oe�ient depending on the wave period. We have here hosen to make the

length of the smooth ramp-up zone from νw = 0 to νw = 1.6 dependent on the wave

length. The length of this ramp-up zone has been made long enough suh that most of

the wave amplitude have deayed before reahing the onstant zone.

The main reason for not hoosing to implement the physial hinged-type wavemaker

is to save simulation time. A reason is that a �ner mesh will be needed lose to the

wavemaker if the physial wavemaker was implemented. Also the physial length of the

numerial wave tank must equal the physial wave �ume. The drawbak by hoosing to

input a �rst order veloity potential on the free-surfae is that time-series results from the

experimental programme annot be ompared against numerial alulation. It is only the

steady-state values that an be ompared, as the transient response of the struture will

be di�erent. However, we are able to ompare time-series values with the nonlinear hybrid
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method presented in the next setion, where an implementation of a physial wavemaker

would not be possible/bene�ial. This is due to that the equation system is solved in a

body-�xed oordinate system, and a physial wavemaker far away from the body would

require a ompliated re-meshing sheme.

3.6 Nonlinear hybrid method

With the nonlinear hybrid method we aim at satisfying all boundary onditions as exatly

as possible, both on the free-surfae and on the surfae of the freely �oating body. How-

ever, note that there is an exeption. We do not aim at apturing the liquid behaviour

inside the boundary-layer or turbulene �ow at any sale. It was early in the development

phase hosen to solve the nonlinear hybrid method using a body-�xed oordinate system

with origin in the enter of gravity and following the rigid-body motions of the body. The

main bene�t is that we avoid re-meshing lose to the body due to the rigid-body mo-

tions. Instead, we have to re-mesh lose to the free surfae due to the rigid-body motions.

However, it has not ompliated the algorithm too muh, as a re-meshing sheme is ne-

essary in an Earth-�xed oordinate system due to that the free-surfae waves are traed

up to exat free-surfae pro�le. We will ome bak to the bene�ts of using a body-�xed

oordinate system later.

The di�erene in the governing equations between the Earth-�xed and body-�xed

oordinate system have been desribed in the previous hapter. We will in the present

hapter desribe how they are numerially solved.

As for the semi-nonlinear method, the Chorin's frational step method is used to solve

the Navier-Stokes equation in the body-�xed oordinate system (2.6). The additional

terms on the right hand side related to the body-�xed oordinate system are solved during

a sub-step along with the advetion and di�usion steps. The last step is to solve a Poisson

equation for the pressure ∇2p = ρ

∆t
∇ · u∗∗

r . The pressure p in the visous �ow domain in

equation (2.6) is oupled to the absolute veloity potential ϕ, where the absolute veloity
is seen in the Earth-�xed oordinate system and de�ned as u = ∇ϕ, see equation (2.5).

The Laplae equation (2.3) is used to solve for ϕ.
The initial onditions are also here simply still water with the body at rest.

3.6.1 Body-boundary onditions

Similar as in the semi-nonlinear hybrid method it is needed to separate between body-

boundary onditions in the potential �ow domain, and body-boundary onditions in the

visous �ow domain.

The body-boundary ondition on the pressure in the visous �ow domain for solving

the Poisson equation is found by evaluating equation (2.6) on the visous part of the hull

surfae SBV , and noting that ∂bur/∂t = 0 and ur = 0 on SBV . The result is

∂p

∂n
= ρ [g− a0 − (ω0 × u0)− (ω̇0 × r)− ω0 × (ω0 × r)] · n on SBV . (3.63)

Here the normal vetor n now hange diretion with the motion of the body, and remains

�xed in the body-�xed oordinate system. Similarly the ondition for the temporary

arti�ial veloity �eld on the body,

u∗∗

r = [g− a0 − (ω0 × u0)− (ω̇0 × r)− ω0 × (ω0 × r)]∆t on SBV . (3.64)
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The body boundary ondition for the absolute veloity potential ϕ in the potential �ow

domain,

∂ϕ

∂n
= [u0 + ω0 × r] · n on SBP . (3.65)

Here the potential-�ow part of the hull surfae SBP will hange with time, as the body-

boundary ondition is applied up to the exat free surfae. Note that this is the equivalent

of requiring the relative normal veloity to be zero on the body surfae ur ·n = 0. Similarly

as in the semi-nonlinear hybrid method, we have not seen any problems on the intersetion

by requiring a no-slip ondition in the visous �ow domain, and a slip ondition in the

potential �ow domain. However, this annot expeted to be true if the mesh density is

inreased lose to the hull surfae.

3.6.2 Re-meshing

At every time-step the free-surfae nodes are moved in z-diretion to the new position

based on time-integration of the free-surfae onditions. Due to the body-�xed oordinate

system, it will also look like the bottom of the wave �ume is moving with time. However,

to simplify the re-meshing algorithm we keep the bottom of the numerial wave tank �xed

in the body-�xed oordinate system. This simpli�ation will for large roll angles result in

that the free surfae in the far-�eld will ollide with the �arti�ial� numerial bottom. The

free-surfae will far away behave as the distane from the enter of gravity times the roll

angle. The bottom boundary ondition is hanged from requiring zero liquid �ux through

the bottom, to requiring that the absolute liquid veloity is zero at the instantaneous

position of the arti�ial bottom. This is somewhat in ontradition to the free-surfae

ondition, when the �arti�al� numerial bottom approahes the free-surfae.

An input to the nonlinear hybrid method is an estimate on the largest roll angle ηMax
4

expeted during a simulation needed. From this estimate it is pre-de�ned within the

ode whih HPC nodes to be moved and orresponding ells that needs to be re-meshed

between time-steps. The parameter ηMax
4 then gives us a limit on the maximum roll angle

that an be tolerated within the urrent simulation. For roll angles lose to ηMax
4 the

distane between HPC nodes will beome small. When the roll angle is inreased above

ηMax
4 , then some HPC nodes will enter the visous �ow FVM domain, and some HPC

nodes will overlap with other HPC nodes that are �xed in time with respet to the body-

�xed oordinate system. The onsequene is that the simulation will break down. Here

the oordinates of the FVM ells in the visous �ow FVM domain are �xed in time with

respet to the body-�xed oordinate system.

The simpli�ation in how the bottom boundary is handled also limits ηMax
4 . The

numerial implementation does not handle the ase when the free surfae intersets the

arti�ial bottom. However, ηMax
4 an be inreased by either dereasing the length or

inreasing the water depth of the numerial wave tank. Sine the hange of water depth

would hange the dispersion properties of the free-surfae waves the preferred option is

to hange the length of the numerial wave tank. Figure 3.10 shows details on how ηMax
4

is de�ned, and its relation to the intersetion between the potential �ow and visous �ow

domains.

The re-meshing algorithm for the nonlinear hybrid method then works as follows:

• In the initialization of the simulation, �nd for eah free-surfae node how many HPC

nodes in the vertial olumn that shall be re-meshed eah time-step, NRZ .



3.6. Nonlinear hybrid method 39

• At every sub time-step, move the free-surfae node in z-diretion to the new wave

elevation, based on equation (2.12).

• Move in z-diretion the below neighbouring node a fration

NRZ−1
NRZ

of the free-surfae

node wave elevation.

• Move in z-diretion the seond below neighbouring node a fration

NRZ−2

NRZ
of the

free-surfae node wave elevation.

• Continue until node NRZ below the free surfae.

• Use the new oordinates to update the matrix system for the solution of the Laplae

equation part of the matrix system.
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Figure 3.10: Illustration that shows the limitations in how to onstrut a mesh for the nonlinear

hybrid method. The irle in the middle of the struture represent the position of the enter of

gravity. The dotted line represents ηMax
4 line in the potential �ow domain. The patterned area

represents the visous �ow domain (Ω
CFD

).

3.6.3 Intersetion between visous and potential �ow domain

Details on the mathing requirements in an Earth-�xed oordinate system an be found in

setion 3.4. It is here updated to re�et that it is used in a body-�xed rotating oordinate

system.

The time-disretized Bernoulli's equation for the pressure in an invisid liquid �ow in

a body-�xed rotating oordinate system is given as,

pm+1

ρ
= −ϕ

m+1 − ϕm

∆t
− 1

2
|∇ϕm|2 + [u0 + ω0 × r] · ∇ϕm − g · ref . (3.66)

Note it is hanged due to that the time derivative ∂ϕ/∂t hanges between the two o-

ordinate systems. Here ref is the shortest distane from the evaluation point to the

undisturbed free surfae, equivalent to the vertial distane between a point and the

undisturbed free surfae in the Earth-�xed oordinate system. The total term ρg · ref is

then the hydrostati pressure in the liquid. Here the gravitational term g hanges in time

with the angular roll motion, g = g [0, sin(η4), cos(η4)]. Equation 3.66 is used to exhange

variables from ϕ to p on the intersetion.
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The seond requirement is that the liquid partile veloity on the intersetion should be

independent of whih �ow domain it is alulated from, i.e. from the veloity potential in

the potential �ow domain or from the pressure in the visous �ow domain. In the potential

�ow domain the relative liquid veloity is found as ur = ∇ϕm+1 − (u0 + ω0 × r) and in

the visous �ow domain as ur = u∗∗ − ∆t
ρ
∇pm+1

. By requiring the liquid partile veloity

to be ontinuous aross the intersetion we an �nd the temporary arti�ial veloity �eld

on the intersetion as

u∗∗ = ∇ϕm −∆t∇
(

1

2
|∇ϕm|2 − [u0 + ω0 × r] · ∇ϕm + g · ref

)

− (u0 + ω0 × r) . (3.67)

Notie that all terms are valid for the present time-step. Equation (3.67) is applied

for u∗∗
on the intersetion in the visous �ow domain for both the tangential and the

normal veloities to the intersetion line. Due to the higher-order spatial auray of the

HPC method the nonlinear terms in equation (3.67) an be alulated. Sine equation

3.67 ontains a term multiplied with the time-step size ∆t, the implementation should

be onsistent with the expliit fourth-order Runge-Kutta method along with the other

equations that are integrated in time.

To fully understand the oupling between the potential and visous �ow domains, we

will illustrate it by writing out the equations that are input to the matrix system. Two

examples will be onsidered. The �rst is how to set up the FVM equation as used in

the visous �ow domain. The seond is how to set up the HPC equation as seen in the

potential �ow domain.

The �rst example is seen from the FVM side. The starting point is the disretized

Poisson equation (3.24)
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where the potential domain is on the west (left) side, and the visous domain is on the

east (right) side, meaning that we need to replae p
P

and v∗∗w in equation (3.68). This

approah will guarantee a ontinuous normal liquid veloity between the two domains.
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(3.69)

Here, ϕ
W

is not at a valid node inside the potential HPC domain. Meaning that the

value of ϕ
W

is interpolated based on the nearest four neighbouring HPC ϕ values. A

similar approah is implemented to guarantee a ontinuous tangential liquid veloity at

the intersetion. If, for instane, also the north and south neighbouring ells are within the

visous �ow domain, then the veloity nodes ws and wn are tangential to the intersetion.
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If now ws and wn satisfy equation (3.67), we require that also the tangential liquid veloity

at the intersetion is ontinuous. We do not need to replae p
S

or p
N

, sine they are values

within the visous pressure domain.

After the solution of the matrix system for p in the visous domain and ϕ in the

potential �ow domain are found, the veloities are time-stepped either based on the visous

�ow solution or the potential �ow solution. However, notie on the intersetion in the

visous �ow domain it is here assumed that vortiity has not reahed the intersetion.

From the potential �ow side on the intersetion, the starting point is the disretized

equivalent of equation (3.32)
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(See how the loal numbering of the HPC ell is de�ned in Figure 3.4). If now the 8th
HPC node (lower right orner) is within the visous domain, equation (3.66) is used to

exhange the variable ϕ
8

to a pressure node value p
8

.
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Here all values on the right hand side is from the present time-step. However, p
8

is not

at a valid node in the visous domain. The value of p
8

needs to be interpolated based on

the neighbouring values at the enter of the FVM ells.

3.6.4 Smoothing

The spatial derivative terms in the free-surfae onditions (2.12) and (2.15) are for ϕ
found using the HPC method, while for ζ the derivatives are found from a fourth-order

polynomial �tted from the neighbouring ζ values.

For simulations with low forward veloity, an instability on the free surfae with saw-

tooth behaviour was experiened. This happened both upstream and downstream of the

body. To ahieve a more stable numerial solution, a 5-point Chebyhev smoothing orig-

inally from Longuet-Higgins and Cokelet (1976) was applied on the free-surfae elevation

ζ . The variable mesh size sheme from Koo et al. (2004) is here implemented. The

smoothing algorithm is performed every Nth time step, where N is given in the input-�le

to the simulation. A sensitivity study of the smoothing algorithm has been performed and

will be presented later. It was found su�ient to apply the smoothing algorithm only in

the near-�eld of the body, one hull length to eah side. The reason is that the smoothing

algorithm has a damping e�et on the free-surfae waves, whih is undesired when solving

for body-motions due to inoming waves.

The smoothing algorithm is applied on the free surfae in the outgoing wave domains,

and not on the free surfae inside the moonpool gap. The reason for not applying the

5-point Chebyhev smoothing algorithm to the free surfae inside the gap, was that it

aused a ontinuous growth of the �rst sloshing mode. Instead inside the gap an arti�ial

damping around the average free-surfae value of the nodes inside the gap at the previous

time-step is applied to remove any sloshing modes from the solution.

It is believed that the main reason for the saw-tooth instability is from the advetive

terms in the free-surfae boundary onditions. It is, however, for the downstream side
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also observed a small instability when vortiity reahes the intersetion. Espeially for

higher wave steepness, vortiity reahes the intersetion, and the smoothing algorithm is

used on the free surfae to stabilize the solution.

Two other approahes were tried and not found su�ient. The �rst was to disretize

the advetion terms in the free-surfae ondition with upwind values, whih provided some

numerial damping to the inoming waves. The seond approah was to try a three-point

low-pass �lter used by Shao (2010) among others, ζj = c ζ̃j−1 + (1− 2c) ζ̃j + c ζ̃j+1, where

ζ̃ is the free-surfae value before smoothing and j is the numbering of the free-surfae

nodes, with inreasing values in positive y-diretion. Furthermore, c is the strength of the

�lter.

3.6.5 Equations of motion

Newton's seond law is applied to alulate the rigid-body motion in three degrees of

freedom, equivalent to proedure desribed for the semi-nonlinear hybrid method (equa-

tion (3.60)). However, the proedure is hanged ompared to the semi-nonlinear method

to re�et that the equations are solved in a body-�xed oordinate system, see details in

setion 2.1.1 on how to hange the time-derivatives in the equations of motion to a body-

�xed oordinate system. The equations of motion in a body-�xed oordinate system are

given as,

m (η̈∗
2

− η̇
4

η̇∗
3

) = Fy,

m (η̈∗
4

+ η̇
4

η̇∗
2

) = Fz, (3.72)

Iη̈
4

= M.

Here Fy and Fz are the fores in y- and z-diretions in the body-�xed oordinate system

respetively. Furthermore, η̈∗
2

and η̈∗
3

are the aelerations of the enter of gravity in y- and
z-diretions of the body-�xed oordinate system respetively. M is the moment around

the enter of gravity, positive anti-lokwise.

The resulting fores in y- and z-diretions and the moment around the enter of gravity

an then be found as,
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M =

∫

SBP

p n
4

dS +

∫

SBV

p n
4

dS+Ms.

Here, the integration surfae SBP will hange with time, while SBV remains onstant in

time. The spring ontributions F s
y , F

s
z and Ms

are based on the exat elongation of the

springs and angle of eah mooring line, where both ends of the mooring lines are allowed

to hange, suh that we an simulate towing of a freely �oating objet by the mooring

system. Similar as in the semi-nonlinear hybrid method, the pressure p in the visous

domain is extrapolated from the ell enters to SBV . This is ahieved by the use of the

body boundary ondition in equation (3.63).
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As before, the pressure in the potential �ow domain is found from Bernoulli's equation.

It is here hanged to re�et that the HPC nodes attahed to the body is moving in z-
diretion in the body-�xed oordinate system. The pressure from the Bernoulli equation

then beomes,

p

ρ
= −d

gϕ

dt
+ wn

∂ϕ

∂z
− 1

2
|∇ϕ|2 + (u0 + ω0 × r) · ∇ϕ− gze. (3.74)

Here

dg

dt
is the time-derivative when following a z-moving HPC mesh node with veloity

wn in the body-�xed oordinate system, that is solved numerially by a �rst order �nite

di�erene approximation. Equation (3.74) is integrated along SBP by loally �tting a

fourth-order polynomial through the HPC nodes.

The method of adding the in�nite frequeny added mass term to solve the equations of

motion as in the semi-nonlinear hybrid method has been tried and found not su�ient for

solving the equations of motion in the nonlinear hybrid method. The solution has been

to solve the equations of motion by an iteration sheme eah time-step. It is however,

oupled to the iterative solver of the matrix system, suh that the omputational ost is

kept down.

For the aeleration terms in equation (2.6), aelerations from the present time-

step are used as an initial guess for building the right hand side of the matrix system.

Then one single iteration on the solution of matrix system by the iterative matrix solver

BICGSTAB is performed, and an updated pressure �eld is found and used to solve the

equations of motion. If then the di�erene between the new aelerations and the old

aelerations of the rigid-body are less than a pre-set tolerane we ontinue to next time-

step. If not we �nd a new guess on the aelerations and redo the above steps. The new

guess is an average of the previously iterations. Note that the onvergene tolerane is

by this approah moved from the matrix system to the rigid-body aelerations. There

is implemented a safety feature if the di�erene between the new aeleration and the

previous aeleration inreases ompared to the previous iteration. The matrix system

is then iterated until onvergene for a given guess of the aelerations, and the new

aelerations are found.

It was tried to set up a boundary value problem for the aeleration potential ψ for the

potential �ow domain, but it was found that it did not inrease the onvergene rate. Due

to that the boundary onditions had to be generated from the solution of the boundary

value problem for ϕ, it required the solution of two matrix system for eah iteration step.

This might be beause a major part of the hull surfae is within the visous �ow domain.

3.6.6 Time-step size

The requirements for the time-step ∆t size from setion 3.1.5 are still valid for the non-

linear hybrid method in a body-�xed oordinate system. However, here it is taken as a

requirement on the relative liquid veloity ur. In the body-�xed oordinate system the

largest relative veloity ur an due to the roll motion be expeted to our far away from

the body, either in the lower left or lower right orner of the wave tank. The mesh size

is larger far away, but anyway the CFL riteria (equation 3.25) may be reahed in the

far-�eld. The value used for the CFL riteria have been 0.5 for all simulations.
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3.6.7 Advantages and disadvantages of a body-�xed oordinate

system

Conventionally numerial wave tanks have been posed in an Earth-�xed oordinate sys-

tem.

To numerially simulate fored osillations of a semi-submerged body with low forward

veloity, an alternative was to solve all equations in the Earth-�xed oordinate system

and generate a inoming urrent in the numerial wave tank. It requires quite long

simulation time to generate a steady urrent. Furthermore, the initial onditions start

a standing wave (seihing) in the wave �ume. In order to satisfy the body-boundary

ondition exatly, a ompliated re-meshing sheme is required. In priniple a new mesh

must be generated eah time step lose to the body surfae. With a hanging mesh lose

to the body, a numerial sheme that is able to handle a hanging mesh inside the visous

domain must be implemented. Various methods on how to handle this are available in

the literature. Usually this inludes various interpolation tehniques, and higher-order

methods are ompliated to implement. It is also thought to be out of the sope of this

work to investigate a broad variety of visous methods to use on moving meshes. Another

even more ompliated approah would have been to simulate low forward veloity in the

Earth-�xed oordinate system.

The alternative experimental approah was also to generate a urrent in the wave

�ume. The main reason for not following this path was that the irulation system

was untested and that onerns about the design of the irulation system were raised.

Meaning that there were unertainties in the vertial urrent pro�le and the turbulene

intensity of the inoming �ow on the model.

Some limitations of the body-�xed approah should also be mentioned. What if we

want to simulation the behaviour of two ships moored together side by side? On whih of

the two ships do we attah the body-�xed oordinate system? What do we do with the

other ship?

Even though the body-�xed solution is suitable for the rigid-body motion of one ship,

the method is not easy to extend to other physially related problems. The method

is therefore not suitable to study the rigid-body motions of a ship moored lose to a

terminal, as done by Kristiansen (2009). This is true even though an extension of the

urrent nonlinear hybrid method to this problem only requires that we implement a wall

lose to the body. In a body-�xed oordinate system this will behave like a moving wall

lose to the body, in order to ahieve this a re-meshing sheme has to be applied. Then a

�xed visous mesh approah is no longer su�ient. The wall will be so lose to the hull

edges suh that a potential �ow approximation lose to the wall may not be su�ient.

For the motion of a seond body in the proposed nonlinear hybrid method, an option

is to implement a re-meshing sheme lose to the seond body. However, by doing this

the bene�ts with the proposed nonlinear hybrid method is somehow lost, and a moving

mesh in the visous domain will be needed. Then the entire problem is perhaps best

solvable in an Earth-�xed oordinate system. Another option that ould be investigated

is to split it into two separate body-�xed domains, and math the pressure and veloities

at an intersetion between the two domains. Preferably this mathing should be done in

a potential �ow domain.
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3.7 Matrix solution methods

Some preliminary studies were early performed to investigate whih matrix solver that

would be most e�ient to solve the proposed numerial problem. The searh were limited

to a few seleted iterative solvers from SPARSEKIT and Saad (2003), and a diret band-

solver from LAPACK. It was without the use of advaned ode pro�ling tehniques found

that the bottlenek of our numerial method was related to solving the matrix system.

No parallel solvers were tried.

It was found from Kristiansen and Faltinsen (2012) that for small and linear problems,

the band-solver from LAPACK was the fastest. The band-solver is a diret matrix solver

that take advantage of the low bandwidth of the sparse matrix system. For the semi-

nonlinear method it only needs to be inverted one at the beginning of the simulation.

Furthermore, at every time-step the inverse matrix M−1
an be multiplied with the right

hand side. Note that it is due to omputational memory requirements not desirable to

use this method for problems with many unknowns.

For the nonlinear hybrid method the bionjugate gradient stabilized method (BICGSTAB)

from SPARSEKIT and Saad (2003) is used. In order to speed-up the omputations an

inomplete LU (ILU) fatorization of the initial matrix is used as preonditioner. A new

ILU preonditioner matrix is reated if the number of iterations inreases above N
max

,

where N
max

is given in the input-�le to the simulations. Often large mesh deformations

due to large roll angles will reate the need for a new preonditioner matrix. Sine the

matrix is depending on the time step size, two preonditioner matries are held in the

omputational memory, where the �rst is valid for half the time step size, i.e. the two �rst

sub-steps in the fourth-order expliit Runge-Kutta method. The seond preonditioner

matrix is valid for the two last time-steps. Meaning also that the preonditioner matries

must be hanged if the time step size hanges in the simulation.

Note that the aim of the present study has not been to investigate all available diret

and iterative solvers for the numerial method presented here. The generalized minimal

residual method (GMRES) from SPARSEKIT was also tried and found to be equivalent

to the hosen BICGSTAB routine.

For fast onvergene of an iterative sheme, it is important to have a good �rst guess

of the solution. Therefore, the previous solution is orreted by the �rst order �nite

di�erene gradient and used as an initial guess on the solution at the next time step to

the iterative solver.

3.8 Code development environment

In order to set up an e�ient and user friendly ode development environment the fol-

lowing tools have been hosen.

All the pre- and post-proessing of the results are done with sripts in Matlab. The

pre-proessing have been generation of input �les for the numerial odes. The post-

proessing have been more omplex, i.e. a set of sripts have been generated to read

various output values from the numerial simulations:

• Sript to read and visualize liquid properties suh as veloity, divergene and vor-

tiity.
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• Visualizations of the mesh and how it is re-meshed in time.

• Visualizations of the free surfae and the rigid-body motion in time.

• Sripts to �nd steady-state values of time series.

• Sripts to loop over a large amount of simulations and generate response amplitude

operator values for di�erent parameter variations, and ompare them with experi-

mental values.

The programming language have been Fortran, and the ompiler has been the Intel

Fortran Compiler for Linux. The main part of the Fortran ode development has been

performed in Elipse with the Photran add-on. The Subversion revison ontrol system

has been used daily on the entire ode base.



Chapter 4

Experimental programmes

In order to get validation data for the hybrid methods developed here, two experimental

programmes have been performed. They are two-dimensional experiments of a moonpool

setion in a wave �ume. The �rst experimental set-up was with fored osillation with

low forward veloity, the seond experimental set-up was with a spring-moored �oating

moonpool setion subjeted to inoming regular waves. In the following setions both the

experimental programmes will be desribed in detail.

4.1 Fored heave osillation with low forward veloity

Our motivation was to ontinue the experimental programme started by Kristiansen and

Faltinsen (2012), and perform parameter variations using an automati ontrol system

for the job. Most e�ort was in Kristiansen and Faltinsen (2012) put on performing fored

heave osillation without forward veloity.

The experiments were performed in a wave �ume at the Marine Tehnology Centre

at NTNU in Trondheim. The wave �ume is 12m long, 0.6m wide and with a 1.0m water

depth. In both ends there where paraboli beahes with their upper position loated just

below (1mm) the free surfae. Sine the beahes oupied lengths of approximately 2.5m
eah, the usable rail length for the arriage was 5.6m. This fat together with that we

needed our experiments to reah a steady-state piston-mode osillation amplitude limited

the arriage veloity (U) that ould be used. We de�ne a Froude number based on the

total length of the model inluding the moonpool gap as,

Fn =
U

√

g (2B + b)
(4.1)

where B is the breadth of one hull, and b = 0.18m is the moonpool gap width. We

have found that using a model of total length 0.9m, limits the forward arriage veloity

to Fn= 0.08. The dimensions of eah setion were breadth B = 0.36m, 0.585m wide

in the transverse tank diretion and with variable draft. It implies that there is a gap

of 0.0075m between eah end of the model and the tank wall. (See Figure 4.1 for a

sketh of the experimental set-up and Figure 4.2 for a piture from the experiment). The

only di�erene to the experimental set-up in Kristiansen and Faltinsen (2012) is that the

vertial atuator was replaed with a atuator more suitable for the job. The previous

atuator was over-dimensioned. This was done to redue the top weight on the arriage

47
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and allowed for easier movement of the arriage in the length diretion of the wave �ume.
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Figure 4.1: Priniple sketh of fored osillation experimental test set-up, with a arriage on top

of a glass overed wave �ume with a paraboli beah at eah end. Note that the drawing is not

in sale.

The following �ve parameters were possible to vary during the test programme: osil-

lation frequeny, osillation amplitude, draft, arriage veloity and moonpool inlet edge

pro�les. In total between 6000 and 7000 tests were planned. To be able to perform

this extensive test programme an automated set-up was designed in Labview by Fredrik

Dukan. The automated set-up allowed that experiments ould be performed without any-

one present. The only thing not automated was the wave gauge alibration proess, suh

that we were at the experimental loation at least one a day to hek the alibration fa-

tor of the wave gauges. The automati ontrol system was on�gured to start the arriage

from one side of the tank, and smoothly aelerate the arriage up to the wanted veloity

while the heave osillations also smoothly started. When the arriage reahed the other

end, it smoothly slowed down and waited until the waves had died out. After waiting for

200 seonds it returned to the starting position with the same heave osillation amplitude,

frequeny and arriage veloity. In this manner, the same experiment was repeated twie,

before a new heave osillation amplitude, frequeny or arriage veloity were tested. The

waiting period of 200 seonds was hosen by observation of the measured wave elevation,

of the time needed for the waves to dissipate. However, the irulation in the tank whih

was set up by the forward moving model might not have stopped. This means that when

the model started moving in the opposite diretion it might be in�uened by the residual

global �ow. We should also onsider that the presene of the seihing mode of the tank

will result in a horizontal urrent at the middle of the tank, whih also will in�uene the

relative veloity between the model and the water. A seihing amplitude of 1mm will give

a horizontal urrent at the middle of tank of 2.7% of the forward veloity at Froude num-

ber Fn = 0.04. The seihing amplitude for arriage veloities of Froude number Fn = 0.08
was found from the wave gauges to at most be 0.5mm. The wave gauges were then around

2m away from the end of the tank.

The model was equipped with four apaitane wave gauges, two in the moonpool

gap and one on eah side. The wave gauges in the moonpool gap were loated 6.0m
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from the hull on eah side. The wave gauge on the left was 26.5m from the model side,

and the wave gauge on the right was 21.0m from the other model side. All four wave

gauges were mounted on the rig and was then fored to move with the forward veloity

and heave osillation. All wave amplitudes presented in this work are therefore given from

a body-�xed point of view.
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Figure 4.2: Piture of the experimental set-up without appendages. Here the model is loated

lose to left beah. To hange the hull to inlude appendages, only the gray pro�les of the

moonpool edges are exhanged with orresponding appendage pro�les.

4.1.1 Experimental error soures in fored experiments

The rails and the glass walls were not perfetly aligned, suh that the model had to be

smaller than neessary. From trial and error we found that the model had to be 1.5cm
smaller than the width of the tank to minimize the ontat between the model and the

glass wall. Due to this gap we have a 3D e�et in the experiments that are di�ult to

estimate. Visually we ould at higher veloities observe vortiity being shed from the

small gap between the glass and hull, into the moonpool gap, and behind the seond hull.

Sine we still had some ontat between the glass and the hull, the forward motion was

in�uened due to a varying frition in the length diretion of the tank. The onnetion

between the two glass windows was at some loations uneven, and the ause of the varying

frition. The ontrol system managed to ounterat and minimize this, but it annot be

negleted as an error soure.

Another error soure is the ontrol system for the arriage and heave atuator. It was

not able to reah the desired heave osillation amplitude, but on average around 90% of

the desired heave amplitude. For a test series with a desired heave amplitude of 10.0mm,

the atual heave amplitude beame 9.1mm. It may not be haraterized as an error soure

sine we know the amplitude after the test, but sine the ontrol system did not perform
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as expeted we mention it as an potential error soure. The results will be presented

using the dimensionless equivalent to the fored heave amplitudes η3a of 2.3mm, 4.5mm

and 9.1mm, while it in reality was a small variation of the heave amplitude during eah

tests series with �xed heave amplitude. The values in the �gures are orreted for this,

but the title/legend of eah �gure uses the average value. Note, it was still found that

the fored heave amplitude was steady for eah experimental test.

A third error soure in the experiments is re�etions from the beahes. The veloity

of the arriage is muh lower than the group veloity of the outgoing waves. Note that for

both higher arriage veloity and longer periods the steady-state piston-mode amplitude

is found lose to the beah at the end of the wave �ume. Suh that waves generate

upstream of the struture and if not fully dissipated by the beah and re�eted bak

to the struture, they might in�uene the piston-mode amplitude when the steady-state

ondition is evaluated. When the possible re�eted wave reahes the struture is then

dependent on the period of osillation and forward veloity.

When aelerating the struture in any diretion, a transient e�et will be generated.

The transient e�et will generate outgoing waves, but it will also exite the natural piston-

mode and the sloshing modes inside the moonpool gap. For the forward veloity ase it

means that the odd sloshing modes inside the moonpool may be exited, whih mainly

means that the �rst sloshing mode will be exited at its resonane frequeny. For the

fored heave osillation ase without forward veloity, the transient start-up results in

an exitation of the piston-mode at the piston-mode resonane frequeny. The piston-

mode motion at the resonane frequeny will deay due to wave radiation and visous

dissipation. The sloshing mode ommuniation with the water outside the moonpool will

be low, and not a�eted by �ow separation at the moonpool edges. Sine also boundary

layer dissipation is small, the sloshing mode deays slowly. The �rst sloshing mode natural

period is Ts = 0.48s for the 18m wide moonpool.

The raw signal from the wave gauges was band-pass �ltered to remove frequenies

above 1.9Hz and below 0.5Hz. This will remove all higher harmonis, inluding the �rst

natural sloshing mode. An inspetion of the frequeny spetrums omputed by FFT of

the raw wave gauge signals, shows negligible traes of nonlinearities. We hose to take

the amplitudes from the experiments as half of the distane from the wave rests to the

wave troughs over a steady or near-steady interval in time.

It was after the �rst week of ontinuous experiments disovered that the onnetion

between the model and the atuator had some loose srews. To avoid any unertainties

related to this, all experiments that had been performed was redone and results from the

�rst experiments have not been used further in the post proessing analysis. Throughout

the rest of the experiments, heks were regularly done to make sure that all srews were

tightly �xed.

The eletrial engine ontrolling the forward veloity of the arriage was mounted to

a rubber band that was �xed to both ends of the wave �ume. Due to the elastiity in

the rubber band there is a small unertainty in the position of the arriage, beause the

position of the arriage was measured by the engine itself, and the number of revolutions

the wheel performed on the rubber band. The error is believed to be largest during the

aeleration phases, and not when the arriage is at onstant veloity. This is also the

main reason for not onsidering studies with fored sway motion, beause the total inertia

of the set-up on the arriage gives a large fore during aeleration on the rubber band

that auses some unertainties in the position.
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4.1.2 Examples of time-series

Figures 4.3 and 4.4 show examples of time-series history based on the same period and

amplitude of osillation and forward veloity. The only di�erene is that the arriage

veloity is in the opposite diretion. In Figure 4.3 it is moving from left to right. In the

upper right of both Figures is a plot showing the synhronization signal. This is a signal

sent from the Labview ontrol system to the Catman logging system. Here the voltage

value represents di�erent stages throughout the tests. 0 represents the waiting period

before the test starts, 1 represents the aeleration phase, 2 is the onstant veloity and

onstant amplitude phase, 3 is the de-aeleration phase and 4 represents the end of the

test. Between the tests the signal will return bak to 0. This was implemented sine the

fored heave motion, arriage veloity and wave gauges were not logged with the same

data aquisition system. In the aeleration and de-aeleration phases the heave motion

is smoothed with a cos2 funtion, to minimize the transient e�et.

The wave gauges presented as ζ2 and ζ5 are measuring outgoing waves and ζ4 and ζ6
are measuring the water elevation inside the moonpool gap. Note that they are all �xed

to the model, i.e. all wave gauge measurements are relative to the vertial heave motion

of the model. A onversion bak to the Earth-�xed frame was attempted, but a small

phase di�erene between the two signals was still present, even with the synhronization

system in plae.

The steady-state results will be given in setion 5.1.

4.2 Floating moonpool body in inident waves

A seond series of two-dimensional experiments were performed during the fall of 2012,

with the fous on freely-�oating rigid-body motions. The loation for �oating experi-

mental programme was the same as for the fored heave osillation experiments with low

forward veloity. However, the set-up was somewhat hanged. The left beah on Figure

4.1 was removed to allow use of the wavemaker that is mounted behind it. It is a �ap

type wavemaker hinged 5m above the bottom of the wave �ume.

The hull model di�ers from the model used in the fored heave osillation experiments.

However, the draft-to-breadth and moonpool gap-to-breadth ratios were kept. The pre-

vious rig was too high and heavy to be used for �oating motions. Among other things

it had an unrealisti GM (metaentri height). Therefore, a new rig was onstruted

to better �t the dimensions of the wave �ume, and with better ontrol of the enter of

gravity and moment of inertia. The hosen dimensions for the new model was two hollow

hulls of 20× 20× 59m, onneted with a 10m moonpool gap between the two side hulls

using two aluminum L-pro�les. The model was ballasted with weights strapped tight to

the inside of the model, suh that the model �oated with a 10m draft. It is referred to

Table 4.1 for aurate values of the model test set-up and Figure 4.6 for a piture from

the experiments. To gain as high as possible natural period in roll, the weights were

plaed as far away as possible from the enter of gravity inside the hulls. We did this

to avoid that the natural period in roll was in the same range as the heave or moonpool

piston-mode natural periods. Lines were onneted on eah side of the hull to restrain

the model from drifting. At the end of these lines, springs were onneted, suh that the

model was free to move in sway, heave and roll. Between the hull and the springs eah

line went through a pulley, suh that the springs were onneted vertially to the roof,
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Figure 4.3: Example of reorded experimental time-series data. The red line in a) represents the

arriage veloity, with sales given on the right axis in (m/s), the blue line in a) shows the heave

position. The two lines in b) represents the synhronization signal between the two reording

systems. In ) is the outgoing wave measurements on both sides. In d) is the two measured wave

elevations inside the moonpool. Further, the red dotted lines represents the amplitude values

extrated from the time-series in green.
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Figure 4.4: Example of reorded experimental time-series data, see Figure 4.3 for desription.
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see Figure 4.5. The natural period in sway was 3.2s. The springs were not horizontally

onneted to the model, but had an angle of around 5 degrees, suh that some sti�ness

in heave due to the springs was introdued. This angle also gave a small, but negligible

oupling between heave and the other degrees of freedom.

The �oating experimental programme was performed for 35 di�erent wave periods

and 3 di�erent wave height-to-wave length ratios (wave steepnesses) (1/60, 1/45 and

1/30). The experiments with the highest wave steepness were repeated one. Prior to the

experiments a wave alibration series was performed without the model in the wave �ume.

After the four experimental test-series with a 0.10m moonpool gap were performed, the

model was modi�ed to have a 0.08m gap. A new test-series with wave steepness 1/60
were then performed. Neither the radius of gyration rxx nor the enter of gravity were

experimentally heked for this on�guration. It is, however, a reasonable approximation

that the radius of gyration is dereased with 0.01m. Sine both boxes are moved 0.01m
towards to enter, the only thing that does not hange loation is the aluminum L-pro�le

on top. The mass of the aluminum L-pro�les was in total 1282g, that is 5.6% of the total

mass of the model. The enter of gravity is assumed unhanged.

Sine the automati ontrol system developed for the fored heave osillation study was

not ontrolling the behaviour of the wavemaker, the period and amplitude of osillation

were manually hanged between eah individual test. The experimental routines were the

following. Eah test-series was performed with onstant wave steepness and gradually

inreasing wave period. First the alibration of the wave gauges and opper tapes was

done. Then we started the Catman logging system and logged ontinuously throughout

the entire test-series with all the 35 wave periods in one data �le. After entering the

�rst wave period and amplitude into the wavemaker ontrol system we ould start the

wavemaker. The wavemaker was stopped after generating waves for 30 − 35seonds.
While waiting for the waves to die out we entered the new wave period and amplitude

into the wavemaker ontrol system. After about 4 minutes the waves had died out and

the wavemaker ould be started again with a new period and amplitude. The time it took

for the waves to deay was longer for shorter period waves, due to that they were almost

fully re�eted by the model. By following the previous steps, the experiments with all 35
wave periods were performed. At the end, we stored the data �le from the Catman data

logging system with the proper �le-name. The repeated test-series with wave steepness

1/30 were also doumented with a video amera.

We did separate tests to ensure that the fritional oe�ient in eah individual pulley

was low enough suh that it did not matter for the motion of the model, i.e. suh that

any hysteresis e�et in the mooring system ould be onsidered negligible.

Three aeleration sensors were used to measure position in 3 degrees of freedom.

Two of them measured aeleration in body-�xed heave diretion. They were plaed on

opposite sides of the hull. The third measured aeleration in body-�xed sway diretion.

To �nd roll aeleration the aeleration from the heave aelerometers were subtrated

from eah other and divided by the distane between them. The heave aeleration at

COG was found by taking the average values from the two heave aelerometers. The

body motions were found by �rst band-pass �ltering away frequenies below 0.5 and

above 4 times the inoming wave frequeny. The band-pass �ltered signal was then

integrated twie to obtain position. Finally, the sway aeleration at COG was found by

orreting the measured sway aeleration with the ontribution from roll aeleration

and the hanging diretion of gravity based on the roll position.
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Figure 4.5: Sketh of the �oating experimental set-up. a) Side view of the wave �ume, b) top-

view of the wave �ume. Note that the �gure is not in sale. Here wg1-6 are the loations of the

wave gauges, where wg5 and wg6 are glued to the hull. Furthermore, a1-a3 are the loations of

the aelerometers.

Model draft d (m) 0.097
Breadth of eah side hull B (m) 0.201
Moonpool gap width b (m) 0.10(0.08)
Width in transverse diretion (m) 0.586
Mass (kg) 22.885
Radius of gyration rxx(m) 0.18
Center of gravity from the bottom (m) 0.091
Spring onstants

(N/m)

#1 #2 #3
43.7 42.5 88.2

Pre-tensions (N)

#1 #2 #3
7.5 7.5 15

Line onnetion height above WL on

hull (m)

0.05

Line angle (deg) ∼ 3
Length between hull and left pulley (m) 2.1
Length between hull and right pulley

(m)

2.0

Table 4.1: Dimensions and properties of the model test set-up used in the �oating experimental

programme.
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Four apaitane wave gauges were used to measure the wave �eld outside the model.

Three wave gauges were plaed between the wavemaker and the model. The distane

between the �rst wave gauge and the wavemaker was 3.05m. The seond and third wave

gauge were plaed in parallel 5.95m away from the wavemaker. The midpoint of the model

was plaed 7.55m away from the wavemaker. The fourth and last wave gauge was plaed

between the model and the paraboli beah, 1.42m away from the midpoint of the model,

see Figure 4.5.

To measure the wave elevation inside the moonpool, opper tape was glued on the

inside of eah side hull. This allowed us to measure the wave elevation on two loations

inside the moonpool gap, one loation on eah side hull. It was found that using on-

ventional apaitane wave gauges inside the moonpool gap would in�uene the inertia

properties of the model too muh, suh that opper tape was found to be the best avail-

able method to measure the wave elevation inside the moonpool gap. However, there

was muh more drift in the reorded wave elevation from the opper tape than from the

other onventional wave gauges. It is also possible that the menisus e�et is di�erent on

onventional wave gauges and the opper tape. There may our a very thin "run-up" on

the hull whih is deteted by the opper tape. This type of run-up is not desribed by

our theory and is of onern in e.g. sloshing.

The position of the enter of gravity and the moment of inertia of the model were

determined by Marintek personnel by following standard proedures in ommerial test-

ing. They performed free deay tests in air where the model was hinged at two di�erent

positions. The osillation frequeny was measured by laser, suh that the natural period

at the two hinge loations was determined within an auray of milliseonds. This was

only performed for the model with 10m moonpool gap.
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4.2.1 Error soures in the �oating experiments

In addition to the usual error soures, suh as error in alibration fator and the measure-

ment equipment a few additional error soures are identi�ed. Although the waves were

alibrated before the model test started, we did not obtain the required wave steepness.

On average the waves were 10% higher than what was expeted from the inputs. However,

sine the inoming wave amplitude is known the results presented herein aounts for this.

The degree of non-linearity is then somewhat di�erent from that used in the numerial

simulations beause of di�erent wave height-to-wave length ratios.

The properties of the waves generated by a hinged type wavemaker are not fully

re�eted in the numerial simulations. Seond and other higher-order e�ets in the gen-

erated waves are not aptured in the numerial simulations, whih also applies in the

nonlinear hybrid method. In both hybrid methods the inoming wave pro�le is spei�ed

by a known linear veloity potential on the free surfae and the inoming wall boundary.

The di�erene this represents are thought to be negligible, sine only �rst order motions

and how they are a�eted by the wave steepness are of interest herein.

Frition from the pullies should preferably be modelled as a Coulomb frition, i.e. the

frition fore is approximated as a frition oe�ient times the normal fore. This has

not been implemented as the frition was found to be negligible from individual tests of

eah pulley.

The model overs 98% of the width of the wave �ume, in total there is a possible

∼ 1.5m gap between the model and the glass. The reality is therefore 3D �ow e�ets at

the ends whih in�uene the pressure at the ends. In addition there are visous shear-

fores at the gap between the glass and the model to be aounted for. In aordane with

Faltinsen (1990) and Jonsson (1980) laminar �ow an be assumed on a smooth surfae

with osillating �ow if the Reynolds number de�ned as Re = U2
lm

/ων is less than 105.
Here U

lm

is the maximum tangential veloity just outside the boundary layer, ν and ω are

the kinemati visosity oe�ient and irular frequeny of osillation, respetively. It is

found that laminar �ow an be assumed for all variations of wave period and amplitude

that are experimentally tested. The known solution of the Stokes seond order problem

for laminar �ow an be used to approximate the in�uene of the visous stress between the

model and the water inside the narrow gap between the model and the glass. Solutions to

this problem an be found in White (2006) and other textbooks. The osillating boundary

layer thikness is estimated to be at most δbl = 6.5
√

ν
ω
≤ 3mm, whih is less than the

narrow gap in the model tests. The wet surfae area Ag towards the glass is 0.08m2
,

and the visous stress fore is at most Fτ/UM =
√
ρωµAg ≤ 0.20Ns/m. Here UM is the

maximum absolute veloity of the model and µ is the dynami visosity of the liquid.

This is negligible when omparing this to the fores measured by the fore rings in the

end of the mooring lines.

The paraboli beah was adjusted before the start of the experimental programme

suh that the top of the beah was 2-3mm below the free surfae. However, the wave

�ume had a small leakage, and some re�etion in the repetition tests was found during

data proessing. The reason ould be that these tests were performed some days after

the other tests, and that the water level had dereased 1-2mm. This resulted in more

re�etions of the longest waves for periods above 1.0s. It is referred to results from the

repetition test in setion 5.3.7.

The time-derivative of the aeleration signal is a quantity alled "jerk", and that
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makes it easier to identify spikes in a time-series, see Boore and Bommer (2005). The jerk

has the dimensional property m/s3, and it is onvenient to use when trying to identify

ontat between the walls and the model. It has previously been used by Kristiansen

(2010) when analyzing a similar experiment with a �oating irular ylinder in the same

wave �ume. By going through all time-series for the jerk derived from all three aelerom-

eters, it was for some of the periods above 1.2s found that ontat between the model and

the wall might have happened. Another reason for the high jerk in these time-series ould

be that the ables going from the model to the measuring system limited the motion.

Asymmetry in the wavemaker and small gaps on eah side of the wavemaker in trans-

verse diretion generated some transverse waves in the wave �ume. Visually the seond

transverse mode was observed for some of the lower wave periods. The wave period of the

seond transverse mode is 0.62s. Even though the �rst transverse mode was not visually

observed we should be areful when analyzing the results around this period, whih is

0.87s.



Chapter 5

Results

In this hapter the fous is on results from the two experimental programmes presented

in hapter 4, and the two numerial hybrid methods presented in hapter 3. Disussions

about the physial results and the omparison between the experimental and numerial

work will be given. Emphasis is on topis that ontribute to the inreased physial un-

derstanding of the moonpool resonane phenomena for both �xed and �oating strutures.

The only results that were obtained with the �rst hybrid methods using FVM in both

the visous and potential �ow domain were presented in Fredriksen et al. (2012) and

will not be given or disussed any further here. A detailed desription on why the HPC

method was preferred over the FVM to solve the Laplae equation in the potential �ow

domain was given in the numerial theory hapter 3.

First results from the two-dimensional experimental programme with fored heave

osillation of a moonpool setion with and without forward veloity are presented and

ompared against the semi-nonlinear and nonlinear numerial hybrid methods. The fous

is here put on the wave �eld inluding the piston-mode amplitude behaviour due to

fored osillations, and not on the hydrodynami fores on the moonpool setion. The

experimental programme setup was desribed in 4.1.

Seondly, results from an experimental and numerial study of a two-dimensional

freely �oating moonpool setion in inoming regular waves are presented and results are

disussed. The experimental programme setup was desribed in hapter 4.2. Based on the

validity gained by omparing the experimental and numerial results, additional numerial

results with appendages and with low forward veloity are presented.

At the end we will ome bak to fored osillations, but with a fous on loal pressure

and water �ow details from the two hybrid methods. This is to help in the understanding

and explanation of the di�erene in results obtained by the semi-nonlinear and the non-

linear hybrid method as well as to understand whih physial e�ets that are needed to

model numerially to fully desribe the problem onsidered.

The results will as long as appropriate be presented in a dimensionless manner, based

on Froude saling and geometri similarity. This is done for onveniene sine the physial

dimensions in the two experimental setups were di�erent, and it is then easier to do

omparison between the results from the experimental programmes. The moonpool width

b is hosen as the main length parameter in saling the results. This means that the

dimensionless osillation period will beome T ∗ = T
√

g/b, the dimensionless water depth

h∗ = h/b, the dimensionless draft d∗ = d/b and the dimensionless foring heave amplitude

η∗
3a

= η
3a

/b. The dimensionless osillation period T ∗
will be used for both the dimensionless

59



60 Results

wave period and the dimensionaless fored osillation period. An exeption is the Froude

number whih is dimensionless using the total width of the struture, and the inoming

wave height is dimensionless by the wave length to obtain the wave steepness. One should

note that the only dimensionless parameter that is di�erent between the two experimental

programmes and possibly important for the results was the dimensionless water depth.

The di�erenes this auses are investigated in setion 5.3.10, where the added mass and

potential-�ow damping in heave and roll for the two experimental setups are numerially

simulated and ompared. The dimensionless wave �ume lengths are also di�erent, but the

in�uene is thought to be negligible, as long as the wave �ume is long enough to obtain

steady-state onditions. This matters in the �oating experimental set-up due the fat that

re�etions from the wavemaker annot be damped out. The reason is that the ontrol

system for the wavemaker does not inlude software to absorb re�eted waves. Another

seondary in�uene from the di�erene in dimensionless wave �ume length is the possible

in�uene of the seihing mode of the tank, whih will our at di�erent dimensionless

periods between the two setups. The latter fator will also apply to any in�uene from

the transverse sloshing modes of the wave �ume.

5.1 Fored heave osillation with low forward veloity

During the development phase of the numerial ode, the �rst milestone was to do fored

heave osillations without forward veloity with the semi-nonlinear and nonlinear hybrid

methods, and validate it against experiments performed by Kristiansen and Faltinsen

(2012) and the experiments desribed in setion 4.1. Before this, separate parts of the

ode were validated against seleted ases from the literature. The visous FVM part was

heked against lid-driven avity �ow problem presented by Ghia et al. (1982). Further-

more, similar validation studies as in Berthelsen and Faltinsen (2008) were performed for

a square with sharp edges in osillating �ow in in�nite �uid, where both the added mass

and drag oe�ients were heked.

The omplete numerial hybrid methods were not validated against anything prior to

the studies presented here. However, good results based on a similar ode by Kristiansen

and Faltinsen (2012) have previously been ahieved.

As an introdution to the rest of the hapter, some idealized onsiderations of the

vortex shedding in the moonpool of the fored osillation set-up will be disussed. For

the fored heave osillation ase without forward veloity the problem an be onsidered

as symmetri about the mid-line of the moonpool gap, as long as the exitation amplitude

is su�iently small to avoid asymmetry in the shed vortiity pattern due to instabilities in

the �ow. However, the problem is asymmetri with a low forward veloity of the hull. A

few questions and assumptions then arise, with the strength of the shed vortiity being a

funtion of the loal �uid veloity at any sharp edge. Let us for the moment assume that

the shed vortiity is onentrated in thin free shear layers without di�usion. Furthermore,

we disuss the free-shear layer separating from one orner and de�ne the time rate of

hange of irulation ∂Γ/∂t = ±0.5U2
s , see Faltinsen (2005). Γ is the irulation around

a losed urve C in the liquid domain that enloses the shed vortiity and is equal to

the integrated vortiity inside C. Furthermore, Us is the separation veloity just outside

of the boundary layer, at the orner. The latter onsideration assumes a thin boundary

layer. The low forward veloity of the body will in�uene the loal veloity at the edges of
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Figure 5.1: Symmetri vortiity shedding for zero forward veloity ase in a) and b). Asymmetri

vortiity shedding for the low forward veloity ase in ase ) and d).

the moonpool. At the beginning of the osillation yle, when the wave amplitude inside

the moonpool is inreasing, the veloity introdued by the piston-mode osillation will on

the leading edge have the same diretion as the undisturbed inoming veloity. Due to

the higher loal veloity we will expet that more vortiity is being shed from this edge.

The opposite will happen on the trailing edge of the moonpool entrane. Here the loal

indued �ow from the inreasing piston-mode amplitude will have opposite �ow diretion

as the undisturbed inoming veloity, and weaker vortiity is generated from this edge, see

Figure 5.1 ). Half a period later in the osillation yle the situation is turned around.

The piston-mode amplitude is now dereasing and the vortiity shed from the leading

edge is now lower than that shed from the trailing edge, see Figure 5.1 d). Due to the

mentioned e�ets, how will the visous damping of the piston-mode amplitude hange due

to low forward veloity or inoming urrent? The above disussion will be dependent on

the ratio between the forward veloity and the loal liquid veloity due to the moonpool

behaviour. In the above disussion we have negleted the e�et of vortiity shed from the

leading edge of the hull. This vortiity will in�uene the loal �ow around the entrane of

the moonpool gap. The assumptions about the magnitude of vortiity above might not

be orret, with a sharp leading orner.

Some of the results in this setion have previously been published in Fredriksen et al.

(2014).

5.1.1 Parameter variation

In order to put the results from the extensive experimental programme into system,

the following tables present the �rst setion of the parameter study performed in the

experimental program. Here the ombination of three di�erent drafts, 3 di�erent forward

veloities, 3 di�erent heave foring amplitudes, 3 di�erent appendage pro�les (see Figure
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5.2) and a suitable number of osillation periods for eah ase (see Table 5.1 for a overview

on the di�erent parameters tested in Figures 5.3-5.11). Table 5.2 gives an overview on

how eah of the Figures 5.3-5.11 are subdivided into 9 di�erent sub-�gures.

❳❳❳❳❳❳❳❳❳❳❳❳
d∗

Edge pro�le

Sharp orner Appendage #1 Appendage #2

0.833 Fig. 5.3 Fig. 5.6 Fig. 5.9

1.0 Fig. 5.4 Fig. 5.7 Fig. 5.10

1.167 Fig. 5.5 Fig. 5.8 Fig. 5.11

Table 5.1: Overview of �gure numbers where results from the given ombination of edge pro�le

and draft are given. Appendage #1 has dimensions 18mm width by 9mm height and appendage

#2 has dimensions 27mm width by 18mm height. The appendage #1 over 20% of the moonpool

gap, while appendage #2 over 30% of the moonpool gap, see Figure 5.2. The moonpool gap

width b are for all ases 0.18m.

❍
❍
❍
❍
❍
❍

η∗
3a

Fn

0.00 0.04 0.08

0.0128 a b 

0.0250 d e f

0.0506 g h i

Table 5.2: Overview of how the veloity and heave amplitude variation in Figures 5.3-5.11 are

organized. The letters a-i refer to di�erent parts in the �gures.
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Figure 5.2: Overview of appendage edge geometries that were tested. a) sharp edge pro�le, b)

appendage pro�le #1 where eah appendage dimensions were 18mm width by 9mm height and

) appendage pro�le #2 where eah appendage dimensions were 27mm width by 18mm height.

The moonpool gap width b are for all ases 0.18m.

5.1.2 Numerial setup

The meshes for the numerial hybrid method for the fored osillation simulations are

onstruted as follows: Note that the disussion here are based on values with real dimen-

sions and are valid only for the fored heave osillation with and without forward veloity

study. For all simulations the horizontal ell size around the hull was 0.01m, whih means

that there were 36 ells in the horizontal diretion over eah hull and 18 ells aross the

moonpool. This mesh size extends 1.2 hull lengths or 0.3 wave lengths away from the

hull depending on what is shortest in upstream diretion. In the downstream diretion
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of the hull, the mesh size is onstant for 1.5 hull lengths or 0.42 wave lengths away from

the hull also depending on what is shortest. Outside this area the mesh size gradually

inreases to 30 ells for eah wave length. In the damping zone the mesh size inreases

even further. Note that the horizontal mesh size is then onstant in the vertial olumn,

as we are limited to retangular ells. The wave length onsidered here is without urrent

e�ets, but with the e�et of water depth.

In the vertial diretion the mesh used depends on the draft and the expeted piston-

mode amplitude to our during the simulation. Generally the vertial mesh size is 30%
smaller than the horizontal mesh size around the hull. The mesh is kept onstant until 0.5
times the draft below the bottom of the hull, then gradually inreasing until the bottom

of the tank, with a total number of 60 ells in vertial diretion. Also here the vertial

mesh size is kept onstant for eah horizontal row. A problem in using an easy mesh

generation method as this, is that the aspet ratio of the ells far away from the body

(vertially or horizontally) beomes high (or low). In addition it should be noted that

the mesh resolution does not aim at apturing the behaviour of the water �ow inside the

boundary layers attahed to the hull.

The numerial beah zone starts, at both sides, four wave lengths (without urrent)

away from the body and inreases smoothly over one wave length to its maximum value

(0.8), and is kept at this value for another three wave lengths before the end of the tank.

The total length of the numerial domain is 16 wave lengths in addition to the length of

both hulls inluding the moonpool.

The time-step size∆t is hosen to be the lowest of 0.5 times the Courant�Friedrihs�Lewy

(CFL) number (∆t = 0.5δy/v or ∆t = 0.5δz/w) or 120 time-steps per osillation period

∆t = T/120.
The height of the potential �ow domain in the nonlinear hybrid method inside the

moonpool is for all drafts and appendages set to be 0.03m for 2.3mm heave amplitude,

0.06m for 4.5mm heave amplitude and 0.075m for 9.1mm heave amplitude. These values

are based on what is observed from the experiments presented in hapter 4.1, and inluded

a safety margin to allow over-predition of the moonpool amplitude in the numerial

simulation.

The wave pro�le in the moonpool gap should be almost horizontal when the sloshing

modes are not present. The sloshing modes will be exited by transient e�ets in the

start-up. These transient sloshing modes are damped out by a numerially added arti�ial

damping around the spae average value of the wave pro�le inside the moonpool gap eah

time-step. This is done in a similarly way as for the damping applied in the numerial

beah. Physially the only damping soure of the sloshing modes is through the boundary

layers on the glass walls and on the side hulls. The damping ratio ξ on the �rst sloshing

mode for the fored osillation experimental setup for the boundary layer �ow is found

from Faltinsen and Timokha (2009) to be ξ = 0.0014. It is believed that the arti�ial

damping added in the numerial method inside the moonpool gap is larger than what will

be in reality due to boundary layer damping.

The mesh is hanged inside the moonpool gap when the appendages are onsidered.

There are 2 ells over both the length and height of the appendage for the small appendage

pro�le (#1). For the large appendage pro�le (#2) there is 3 ells in horizontal diretion

and 4 ells in the vertial diretion aross the appendage. The remaining part of the mesh

is equal to the sharp-edge ase.

In the ases with zero forward veloity, the intersetion between the potential and
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visous �ow domains are ordered in a stairase pattern on both sides of the hull. However,

with forward speed we need to allow for vortiity transport away from the hull in the

down-stream diretion. Therefore the stairase pattern on the down-stream side of the

hull is replaed with a horizontal intersetion strething all the way down to the end of

the numerial wave tank.

5.1.3 Numerial limitations in the nonlinear hybrid method

For higher heave amplitudes η∗
3a

, the ratio between the piston-mode amplitude and the

draft inreases. This requires a larger potential �ow domain due to re-meshing strat-

egy of the potential �ow domain lose to the free surfae. This means that, while the

amount of vortiity inreases, we have to derease the visous domain inside the gap. The

onsequene is inreased probability that vortiity will reah the numerial intersetion

between the visous and the potential �ow domain. Therefore, our numerial method is

limited to free shear layers that stay below the level of the wave trough in the body-�xed

oordinate system. (See results from the sensitivity tests of the height of the potential

domain inside the moonpool in Figure 6.3.)

The following disussion is used to justify that vortiity is likely to be transported to

the intersetion. The vortiity separated from the trailing edge on the downstream side

will grow with inreasing urrent veloities, up to a point where the �ow separation will

ause a �dry transom stern�. By �dry transom stern� the analogy is made to what happens

for high-speed semi-displaement and planing vessels. However, the dry �ow separation

ase is not relevant here, as it will happen for muh higher Froude numbers than what

we onsider (Fn > 0.3 − 0.4 Faltinsen (2005)). However, for veloities lower than for

dry separation the vortiity will reah the numerial intersetion between the potential

�ow and visous �ow domains, and later the vortiity will in the experiments reah the

free surfae. This is the reason for not being able to simulate with muh larger forward

veloity than Fn= 0.08 in the nonlinear hybrid method.

5.1.4 Results from fored osillations

First a omprehensive omparisons between the two numerial hybrid methods and the

experimental results for the parameter variations presented in Tables 5.1 and 5.2 will

be given. Note that there is not experimental results for all variations given in Tables

5.1 and 5.2, however, the numerial hybrid method results are given for all parameter

ombinations. There are only semi-nonlinear hybrid method results for the ases without

forward veloity.

A �rst hek of the quality of the experimental and numerial results is to ompare

the natural period of the piston-mode resonane with results given in the literature.

Faltinsen et al. (2007) provided aurate alulations of the natural periods for the

piston-mode resonane, based on non-separated potential �ow without urrent for ase

a) without appendages. Based on their results the natural period for the 3 di�erent

drafts are T15 = 1.125s, T18 = 1.179s and T21 = 1.233s. The observed natural periods

from experiments for fored heave motion without forward veloity were T15 = 1.13s,
T18 = 1.18s and T21 = 1.23s, and thus orresponds well to the results from Faltinsen

et al. (2007), see orresponding dimensionless values in Table 5.3. The natural periosd

are from the experimental programme taken where the maximum moonpool response
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our. Other approximate formulas for estimating the piston-mode natural period exist,

a pratial and useful theory for approximating the natural frequeny of the piston-mode

for zero urrent is given by Molin (2001),

ω
0

=

√

g

d

1

1 + b
πd

(

3
2
+ ln B

T

2b

)
(5.1)

where B
T

is the total breadth of the body. It has many times been observed that the

atual length of B
T

should be taken somewhat larger that the total breath of the body

Maisondieu et al. (2001).

P
P
P
P
P
P
P
PP

d∗
Soure

Faltinsen et al. (2007) Molin (2001) Experiments

0.833 8.31 7.95 8.34

1.0 8.70 8.36 8.71

1.167 9.10 8.74 9.08

Table 5.3: Comparison of dimensionless natural periods T ∗
between literature results and exper-

imental results.

The natural periods were found not to hange muh when introduing low forward

veloity to the problem; it might have dereased a few perent when omparing the zero

Froude number ases with the 0.08 Froude number ases.

The asymptoti value when T → 0s for the outgoing wave amplitude should approah

0, that orresponds to 1 in the body-�xed results in Figures 5.3-5.11. This is due that

the high-frequeny free-surfae ondition an be approximated as ϕ = 0, whih does not

allow for wave solutions. The onvergene of the results towards the asymptoti values

are not lear from Figures 5.3-5.11, sine the dimensionless periods given are far from

the asymptoti values. Inside the moonpool the asymptoti value when T → 0s an be

di�erent from zero, due to that ϕ = 0 allows vertial motion of the free surfae.

As a �rst estimate on the in�uene of turbulent di�usion in our problem, we simulated

with our nonlinear hybrid method ases where we inreased the dynami visosity ν from

10−6
kg/(ms) to 10−4

kg/(ms) in the �uid. We inreased ν to simulate that there exists

turbulent di�usion due to eddy visosity at sales smaller than what we apture with our

mesh density. An inrease in ν will result in an inrease in the boundary layer thikness,

that will inrease the damping of the piston-mode motion. For ν = 10−6
kg/(ms) we

have seen that the damping ontribution from the boundary layer is small, this may not

be the ase with ν = 10−4
kg/(ms). For the lowest heave amplitude (η∗

3a

= 0.0128) we
see a derease in the piston-mode motion, around 10% at resonane. However, for the

highest heave amplitude (η∗
3a

= 0.0506) the piston-mode response is not muh a�eted

by inreasing the dynami visosity. This ould be a result of that we for some areas in

the water have a turbulent mixing of vortiity, and thus a higher di�usion/anellation of

vortiity whih would lead to a smaller damping of the moonpool piston-mode resonane.

One should remember that free vortiity is turbulent at very low Reynolds number (see

hapter 6 in Faltinsen and Timokha (2009)).
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5.1.5 E�et of hanging draft on moonpool amplitude

The vertial position of the body was easily hangeable in the experimental setup. This

allowed for easy testing of three di�erent draft on�gurations as desribed in Table 5.1.

The e�et of hanging the draft is in pratie negligible for the maximum value of

the piston-mode amplitude, as seen by omparing Figures 5.3-5.5 for the ase a) with

sharp edge pro�le, Figures 5.6-5.8 for ase b) with small appendages and Figures 5.9-5.11

for ase ) with large appendages. A simplisti view on this is that the heave motion

displaes a ertain amount of water whih is proportional to the beam of the setion.

During resonane a large part of that water goes into the moonpool. How large the

piston-mode amplitude beomes is then dependent on the ratio between the width of the

moonpool and the length of the two side hulls, and not muh a�eted by the draft. I.e.

the ratio between the volume of the moonpool and the displaement of the hull remains

onstant and is independent of the draft. The situation may be di�erent if the hull sides

are no longer vertial, and the ratio between the moonpool volume and the displaement

of the hull hanges for di�erent draft on�gurations.

The draft hanges the piston-mode natural period, suh that for a given period the

moonpool response is hanged. For deeper drafts the natural period of the piston-mode

motion inreases. Meaning that the piston-mode motion ould be either higher or lower

when hanging the draft for a given osillation period.

For the numerial simulation using the semi-nonlinear and nonlinear hybrid methods,

it is numerial bene�ial with larger drafts. As the intersetion between the potential and

visous �ow domains will be further away from the edges of the hull, and there is lower

probability that the vortiity will reah the intersetion. For the setups simulated in this

setion, it is not experiened any vortiity at the intersetion for the ases without forward

speed. However, for the ases with low forward speed, the sensitivity study showed that

the moonpool amplitude is sensitive to the loation of the intersetion between visous

and potential �ow. (See the onvergene and sensitivity study in setion 6.2.)

5.1.6 E�et of appendages at the moonpool inlet

Only simple appendage geometries that are possible to simulate with the hybrid methods

were experimentally tested. This allowed only retangular shapes as illustrated in Figure

5.2 to be tested. It was not the ambition of this study to �nd the optimal solution of

the moonpool edge geometry to damp out the moonpool motion, or any other moonpool

damping devies.

There is a major inrease in the damping of the moonpool motion when omparing

sharp edges to appendages, this is aordane with Graham (1980) who found that the

strength of shed vortiity dereases with inreasing interior apex angle. However, there is

not muh di�erene between the two di�erent appendages on�gurations that were tested.

The appendages have two e�ets, it is from the experiments seen that they inrease the

natural period. From the ase without appendages to the ase with large appendages (#2)
the natural period is inreased by 3%. The seond e�et is the inrease in the strength of

shed vortiity, as more water is being pushed through a more narrow entrane, and the

�uid veloity at the edge is larger.

The numerial results for appendage on�guration #1 ompare better with experi-

ments than the numerial results for appendage on�guration #2 (see Figures 5.6-5.11).
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Figure 5.3: Moonpool gap and outgoing wave amplitude operators for di�erent foring amplitudes

η
3a

and Froude numbers for the set-up with retangular side hulls (without appendage) with

d∗ = 0.833. See aption in �gure 5.4 for desription of symbols.
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Figure 5.4: Moonpool gap and outgoing wave amplitude operators for di�erent foring amplitudes

η
3a

and Froude numbers for the set-up with retangular side hulls (without appendage) with

d∗ = 1.0. Experimental (Exp) results for dimensionless moonpool gap amplitudes (Mp) in x

and x, dimensionless outgoing waves in o and o. Nonlinear numerial results for moonpool gap

amplitude in dotted(.) line, upstream waves (Out up) in dashed dotted(.) line , downstream

waves (Out down) in dashed dotted(.) line. Semi-nonlinear numerial results for moonpool gap

amplitude in dashed line with △ and outgoing waves in dashed dotted(.) line. Results are given

in the body-�xed oordinate system.
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Figure 5.5: Moonpool gap and outgoing wave amplitude operators for di�erent foring amplitudes

η
3a

and Froude numbers for the set-up with retangular side hulls (without appendage) with

d∗ = 1.167. See aption in �gure 5.4 for desription of symbols.
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Here the two numerial hybrid methods results and experimental results di�er in both

amplitude and the predited period of maximum response. The mesh is almost idential

for the two ases and the intersetion is at the same loation, so there must be some

physial e�et our numerial method does not apture. The same physial e�et should

be almost negligible in the setups with sharp edges and appendages #1, and have a small

e�et on the �ow �eld with appendages #2. The following explanation is proposed, with-

out further studies. For appendage on�guration #2 the edges are loser to eah other

than they are for appendage #1, suh that the vortiity reated at one edge is more likely

to in�uene the vortiity reated at the other edge. Meaning that there ould be turbulent

mixing of vortiity in the experiments for the largest appendage that is not well aptured

by our numerial visous method. Further studies by using a visous model that inlude

the e�et of turbulene is needed to fully answer this question.

The appendages also have a dereasing e�et in linear potential-�ow theory on the

piston-mode moonpool amplitude. There is a 13% derease in the maximum piston-mode

moonpool amplitude when going from the sharp edge ase to appendage #1 in linear

potential �ow theory results, see Figure 5.17. In the experimental programme the same

redution was around 40%. Also the potential �ow theory results show large di�erenes

between the two appendages pro�les.

The dimensionless natural periods of the piston-mode osillation from the experimental

programme are given in Table 5.4 and from the nonlinear hybrid method in Table 5.5.

The natural periods are taken when the piston-mode response has a maximum from the

experimental test-series without forward veloity and fored heave amplitude η∗
3a

= 0.025.

❳❳❳❳❳❳❳❳❳❳❳❳
d∗

Edge pro�le

Sharp orner Appendage #1 Appendage #2

0.833 8.34 8.4 8.6

1.0 8.71 8.8 8.9

1.167 9.08 9.1 9.3

Table 5.4: Measured dimensionless natural periods for the di�erent moonpool setions from

experimental results.

❳❳❳❳❳❳❳❳❳❳❳❳
d∗

Edge pro�le

Sharp orner Appendage #1 Appendage #2

0.833 8.26 8.49 8.70

1.0 8.68 8.88 9.08

1.167 9.08 9.26 9.45

Table 5.5: Dimensionless natural periods for the di�erent moonpool setions from the nonlinear

hybrid method results.

In "Reommended Pratie DNV-RP-H103 Modelling and Analysis of Marine Opera-

tions" a formula for engineering use that estimates the natural period T0 of the moonpool
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piston-mode resonane with hanging moonpool gap ross-setion is given as follows

T0 =
2π√
g

√

∫ 0

−D

A(0)

A(z)
dz +

A(0)

A(−D)
· κ

√

A(−D), (5.2)

where κ is a oe�ient to aount for the added mass of the vertial osillation of the water

olumn inside the moonpool, and is found to be between 0.45 and 0.47 for retangular

setions. Further, A(z) is the ross-setional area of the moonpool for a given depth z.
The estimated dimensionless natural periods based on equation 5.2 are given in Table 5.6.

Here the value of κ is hosen to be 0.46. These values are above what are given in Table

5.4, but equation (5.2) still serves as a good �rst estimate on the piston-mode natural

period due to appendages. The relative di�erene for the di�erene in the natural periods

between the sharp edge ase and the ases with appendages are similar to what is seen in

Table 5.4.

❳❳❳❳❳❳❳❳❳❳❳❳
d∗

Edge pro�le

Sharp orner Appendage #1 Appendage #2

0.833 8.70 9.01 9.26

1.0 9.07 9.37 9.61

1.167 9.53 9.72 9.95

Table 5.6: Predited dimensionless natural periods for the di�erent moonpool setions based on

equation (5.2).

5.1.7 E�et of low forward veloity on the moonpool amplitude

In this setion a review of the results with regards to the di�erene in the moonpool

motion due to low forward veloity will be given. By taking Figure 5.4 as an example the

low forward arriage veloity has a minor damping e�et on the piston-mode amplitude.

A derease in the piston-mode amplitude of 5−7% from Fn= 0.0 to Fn= 0.08 is observed,
while for other appendage/draft on�gurations no hange/derease is observed.

We an in Figure 5.12 see how the moonpool amplitude is hanging with respet to

the arriage veloity for two di�erent foring heave amplitudes. Note the unertainty

inreases for higher Froude numbers, due to the short physial length of the wave �ume,

meaning that a steady-state ondition may not have been reahed. Unfortunately the

desired osillation period of 1.18s (T ∗ = 8.711) was not reahed by the ontrol system,

but on average the osillation period was 1.19s (T ∗ = 8.785), with a small variation of the

osillation period between the tests. A linear �t of the results are performed and shown

in Figure 5.12. It results in the following the two equations for the maximum moonpool

amplitude as funtion of Froude number,

ζgap
η
3a

= 7.5814− 4.7372Fn (5.3)

for η∗3a = 0.0250 and,

ζgap
η
3a

= 6.1950− 1.5210Fn (5.4)
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Figure 5.6: Moonpool gap and outgoing wave amplitude operators for di�erent foring amplitudes

η
3a

and Froude numbers for the set-up with appendage #1 (18x9mm) with d∗ = 0.833. See

aption in �gure 5.4 for desription of symbols.
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Figure 5.7: Moonpool gap and outgoing wave amplitude operators for di�erent foring amplitudes

η
3a

and Froude numbers for the set-up with appendage #1 (18x9mm) with d∗ = 1.0. See aption
in �gure 5.4 for desription of symbols.
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Figure 5.8: Moonpool gap and outgoing wave amplitude operators for di�erent foring amplitudes

η
3a

and Froude numbers for the set-up with appendage #1 (18x9mm) with d∗ = 1.167. See

aption in �gure 5.4 for desription of symbols.
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Figure 5.9: Moonpool gap and outgoing wave amplitude operators for di�erent foring amplitudes

η
3a

and Froude numbers for the set-up with appendage #2 (27x18mm) with d∗ = 0.833. See

aption in Figure 5.4 for desription of symbols.
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Figure 5.10: Moonpool gap and outgoing wave amplitude operators for di�erent foring ampli-

tudes η
3a

and Froude numbers for the set-up with appendage #2 (27x18mm) with d∗ = 1.0. See
aption in Figure 5.4 for desription of symbols.
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Figure 5.11: Moonpool gap and outgoing wave amplitude operators for di�erent foring ampli-

tudes η
3a

and Froude numbers for the set-up with appendage #2 (27x18mm) with d∗ = 1.167.
See aption in Figure 5.4 for desription of symbols.
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Figure 5.12: Dimensionless moonpool amplitudes in a body-�xed view as a funtion of Froude

number for onstant dimensionless heave amplitudes η∗
3a

of 0.0250 and 0.0506. The dimensionless

osillation period T ∗ = 8.785. The experimental set-up is without appendages and d∗ = 1.0.

for η∗
3a

= 0.0506. Both equations are valid for Froude numbers between 0.00 and 0.08 and

for the dimensionless heave osillation period T ∗ = 8.785.
By studying veloity plots from our numerial simulations using the nonlinear hybrid

method with low forward veloity (see examples in Figure 5.13), we see that the leading

edge on the upstream side hull reates a wake whih make the relative liquid veloity at

the moonpool gap entrane almost zero. In e�et, the water in the moonpool is free to

osillate nearly without the in�uene of forward veloity. This may explain the negligible

in�uene of low forward veloity on the moonpool behaviour. In addition also the free-

vortiity �ow that develops at the leading edge will easily beome turbulent, whih again

in�uenes the di�usion of vortiity that will not be aptured by our laminar visous model.

Numerial simulations with Froude number 0.12 were tried, but were unsuessful due

to vortiity reahing the interfae between potential and visous �ow, suh that reliable

results were not obtained.

An experimental test-series with arriage veloity of Fn= 0.1 is given in Figure 5.14

for the ase without appendages and a draft of d∗ = 1.0. Due to the limited length of the

arriage rails, the total duration of the experiments is only around 20se, inluding the

aeleration and de-aeleration phases. This might not be enough time to reah steady

state for longer periods, and for periods around the natural piston-mode period. The

results are quite surprising, i.e. the moonpool response has inreased ompared to the

results presented in Figure 5.4 for lower Froude numbers.

The group veloity of the outgoing waves are for all periods larger than the forward

veloities tested here, meaning that there will be outgoing waves on both sides. Aording

to pp. 239-240 in Faltinsen (2005) upstream waves will exist when the dimensionless

number τw = ωeU/g < 0.25, where ωe is the angular frequeny of enounter. The situation

is expeted to hange when there is only outgoing waves on one side, meaning that the

piston-mode motion might hange.
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Figure 5.13: Examples on how the leading edge wake in�uene the �ow �eld at the moonpool

entrane. The ase here is from Figure 5.4 with Fn = 0.04, η∗
3a

= 0.0250 and T∗ = 8.6743. a) is
at the start of an osillation when the boxes are moving upwards, b) is at the top position, ) is

at middle position moving downwards, d) is at the bottom position. Veloity arrows are given in

the body-�xed oordinate system. The simulation results are from the nonlinear hybrid method.
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The upstream outgoing wave is for all ases found to be larger than the downstream

wave. The numerial predition of the outgoing waves is in good agreement with the

experimental results.

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5
1

2

3

4

5

6

7

8

9

T*

ζ ga
p/η

3a

 

 
η

3a
*=0.0128

η
3a

*=0.0250

η
3a

*=0.0506

PSfrag replaements

HPC

FVM

FVM

HPC

a)

b)

)

d)

wg

wg

wg

wg

wg

wg

wg

m

m

m

m

m

m

m

m

m

m

m

a

a

a

a)

b)

COG

Figure 5.14: Experimental results for the measured moonpool gap amplitude divided by the

fored heave motion amplitude for Fn= 0.1, without appendages and d∗ = 1.0 (18m) draft.

5.1.8 E�et of heave amplitude on the moonpool amplitude

In this setion a review of the results with regards to the di�erene in the moonpool motion

due to hanging fored heave osillation amplitude are given. Figures 5.15 and 5.16 show

how the piston-mode moonpool amplitude is depending on the fored heave osillation

amplitude. Figure 5.15 is for d∗ = 0.833, Fn= 0.04 and without appendages, while Figure

5.16 is for d∗ = 1.0, Fn= 0.04 and all appendages options. In both �gures eah heave

amplitude is tested for 5 di�erent osillation periods around the resonane piston-mode

period. The similarities between the two �gures show again how independent the piston-

mode moonpool amplitude is of the draft of the hull. For all experimental tested heave

amplitudes the wave elevation inside the moonpool gap never reahed the lower entrane

of the hull. A nonlinear e�et is expeted to our when the piston-mode motion reahes

the lower entrane of the hull for higher heave foring amplitudes than experimentally

tested. This e�et has not been investigated in the present experimental and numerial

work.

As expeted, the ratio between the piston-mode amplitude and the heave amplitude at

resonane dereases as the heave amplitude inreases. This is due to a quadrati inrease

in the strength of the shed vortiity. However, stritly speaking quadrati dependeny on

heave veloity annot be assumed, but on loal relative �uid veloity on hull edges.

The sub-�gure in the upper right orner of Figure 5.15 illustrates how the heave

osillation period is varying during the experiment. This period variation is also valid
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for the results showed in Figure 5.16. There is therefore some sattering in the results

beause of the variation of the heave osillation period.
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Figure 5.15: Dimensionless moonpool wave amplitudes in the body-�xed view as funtion of

fored heave osillation amplitudes. For the ase without appendages and d∗ = 0.833m draft.

Eah heave amplitude is tested for 5 di�erent osillation periods.

5.1.9 Linear potential-�ow theory results

Sine linear potential-�ow theory is often used for engineering appliations, it is of pra-

tial interest to ompare results against linear potential-�ow theory. The results here has

been obtained by using the present oupling between the HPC and the FVM method, but

with the use of linear potential-�ow theory in both domains. A more omprehensive dis-

ussion regarding the physial di�erenes between linear potential-�ow theory and what

is observed in experiments will be given later, where the disussion will ontain interpre-

tation of the results from both the semi-nonlinear and the nonlinear hybrid methods.

It has been the topi of many publiations before the di�erene between potential �ow

theory and the physial reality. In Figure 5.17 the large di�erene for the moonpool prob-

lem is again on�rmed. The piston-mode motion is over-estimated due to the negletion

of vortiity separation from the lower moonpool entrane.

An important physial result to notie from the potential-�ow results in Figure 5.17

is the signi�ant derease in the moonpool amplitude due to the presene of appendages.

Meaning that it is not only that the presene of appendages inrease the vortiity sepa-

ration and therefor derease the moonpool amplitude, there is also a potential-�ow e�et

reduing the moonpool amplitude.

5.1.10 Phase angle

Typial behaviour of the phase angle (α) between the heave aeleration and the moonpool

motion is given in Figure 5.18. The example that is illustrated is without appendages, d∗ =
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Figure 5.16: Dimensionless moonpool amplitudes in a body-�xed view as a funtion of fored

heave amplitude. For all ases with and without appendages, with forward veloity Fn= 0.04.
Eah heave amplitude is tested for 5 di�erent osillation periods.

1.0 (18m) draft, η∗
3a

= 0.025 (4.5mm) osillation amplitude and zero forward veloity.

This orresponds to the phase angle of the results in sub-�gure d) of Figure 5.4. The phase

angle goes through 90◦ around the piston-mode resonane. Furthermore, for periods below

the piston-mode resonane period, the heave and moonpool motions are out of phase. For

periods above the piston-mode resonane period they are in phase.

Figure 5.18 also illustrates the main reason for showing all results from the fored heave

osillations experimental programme in a body-�xed view. There is an o�set between the

numerially predited phase angle, and the measure phase angle from the experimental

programme. It is lear that the measurements from the experimental programme ontain

an error. When analysing the experimental data it was found that there is a time lag

between the heave signal and the wave gauge signal, suh that the wave gauge measure-

ments ould not be onverted bak to the Earth �xed oordinate system. Sine the wave

gauges are mounted to the model and follow the motion of the body in both sway and

heave, the measured wave gauge signal would need to be orreted with the measured

heave position.

5.1.11 Overall agreement for fored osillation study

The validity and limitations of the numerial method in prediting the moonpool response

due to fored heave osillations have been presented. With the limitations given in the

numerial hybrid method, the results ompare quite well with experiments (see Figures

5.3-5.11). The nonlinear hybrid method simulations for higher heave amplitudes some-

what over-predit the damping of the piston-mode amplitude, while it for lower amplitudes

are in good agreement with the experimental results. As an example in Figure 5.4 the

di�erene in the predited piston-mode amplitude for the lowest heave foring amplitude

η∗
3a

= 0.0128 is less than 2%, and for the highest heave foring amplitude η∗
3a

= 0.0506 the
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Figure 5.17: Dimensionless moonpool amplitudes in a body-�xed view omparison of linear

potential �ow theory (POT) with the semi-nonlinear (S-NL) simulations for all appendages and

draft on�gurations versus dimensionless osillation period. The semi-nonlinear results are the

same as presented in Figures 5.3-5.11.
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Figure 5.18: Phase angle α between heave aeleration and moonpool motionversus the dimen-

sionless osillation period T ∗
.

relative di�erene is around 7% at the piston-mode resonane period.

Piston-mode amplitude results from the semi-nonlinear hybrid method are higher than

the nonlinear hybrid results for all zero urrent ases. Furthermore, it over-predits the

piston-mode response for higher heave amplitudes. It is believed that the reason for this

is that the potential �ow domain in the semi-nonlinear results an be minimized to only

ontain the top layer lose to the free surfae, while the potential �ow domain in the

nonlinear hybrid method needs to be larger due the re-meshing algorithm of the free-

surfae. The reason is that the implementation does not allow the visous �ow domain

to hange size in time. Notie that also the semi-nonlinear results are di�erent from the

experiments for appendage #2.

More omments regarding the appliability of the semi-nonlinear and the nonlinear

hybrid methods will be given when the loal pressure and �ow details are studied due to

fored osillations in setion 5.4. It is then with emphasis on the di�erent results produed

by the two hybrid methods, espeially for the roll motion.

5.2 Linear potential-�ow frequeny-dependent hydro-

dynami oe�ients

The linear potential-�ow frequeny-dependent oe�ients Aii(ω) and Bii(ω) are omputed

by the time-domain ode, where the time-domain simulations are performed until steady-

state onditions. However, steady-state onditions our muh later in the potential �ow

ase due to low damping, suh that the numerial beah needs to be arefully tuned to

avoid the in�uene of re�eting waves from the ends of the numerial wave tank.

Four di�erent ases are simulated for eah frequeny. The �rst three are fored motion

in eah of the three degrees of freedom, and a fourth with inoming waves on a �xed ship.

The �rst three determines the hydrodynami added mass and potential-�ow damping

oe�ients, while the fourth gives the wave exitation fores F ex
. The dimensionless

water depth is here hanged to h∗ = 10, while all results presented until now has been

for h∗ = 5.56. For eah ase the resulting steady-state hydrodynami fores are obtained.

The e�et of the two di�erent water depths on the added mass and potential-�ow will be
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given later in setion 5.3.10.

Hydrodynami oe�ients for the setup without appendages and forward veloity, for

the dimensionless draft d∗ = 1.0 will be given in the following setions.

5.2.1 Added mass and potential-�ow damping

It has been shown by many authors before that the added mass and potential-�ow damping

oe�ients in heave for the moonpool problem are highly frequeny dependent, partiular

around the piston-mode resonane frequeny. See Faltinsen et al. (2007) for added mass

and potential damping oe�ients for two-dimensional moonpool setions, where their

ase 1 orresponds to the ase onsidered in this work with d∗ = 1.0, h∗ = 10 and without

appendages. Their result will be ompared against what has been ahieved in our work

in setion 5.3.10.

Fored sway osillations give the oe�ients A
22

(ω), B
22

(ω) and the moment in roll

due to motion in sway results in the oe�ients A
42

(ω) and B
42

(ω). Here the added mass

Aij(ω) are fore oe�ients 180◦ out of phase with aeleration of the body and Bij(ω)
are fore oe�ients 180◦ out of phase with veloity of the body.

I.e. it is assumed that the hydrodynami fores from fored osillations have the

following form,

Fkj(t) = −Akj(ω) η̈j(t)−Bkj(ω) η̇j(t). (5.5)

Here Fkj(t) is the hydrodynami fore in k-diretion due to osillatory motion in j-
diretion. Unsteady fores and moments due to hydrostati pressure and the instanta-

neous wetted surfae are not inluded. The hydrodynami added mass and potential-�ow

damping oe�ients are found by evaluating the following integrals,

Akj(ω) = −
∫ nT

0
Fkj(t) η̈j(t) dt

∫ nT

0
η̈j(t)2 dt

, (5.6)

Bkj(ω) = −
∫ nT

0
Fkj(t) η̇j(t) dt

∫ nT

0
η̇j(t)2 dt

. (5.7)

Here nT indiates that it should be integrated over whole periods. Note that these

oe�ients are very sensitive to the phase of the aeleration and veloity. Even though

the fored motion is presribed, it is not lear due to the time-integration method whih

time-step for veloity and aeleration to apply for the integration in equations (5.6) and

(5.7). It is found that the veloity in the middle of two time-steps is the best approximation

of the fore in phase with veloity. The roll moments are alulated around the point in

the middle of the hull at the mean free-surfae (z=0).

The resulting dimensionless added mass and potential-�ow damping oe�ients are

given in Figure 5.19. A �rst observation is that the results on�rm that the sway motion

is oupled to the roll motion, while the heave motion is unoupled to both sway and roll

motion. The situation will be di�erent with forward veloity.
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Figure 5.19: Dimensionless added mass and potential-�ow damping oe�ients versus the di-

mensionless osillation period T ∗
for the monpool setion without appendages and dimensionless

draft d∗ = 1.0 based on linear potential �ow. The dimensionless water depth is h∗ = 10.
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The dimensionless parameters in Figure 5.19 are de�ned as:

A∗

22

=
A

22

m
, A∗

33

=
A

33

m
, A∗

24

=
A

24

dm
, A∗

42

=
A

42

dm
, A∗

44

=
A

44

I
(5.8)

B∗

22

=
B

22

m
√

g/(2B + b)
, B∗

33

=
B

33

m
√

g/(2B + b)
, B∗

24

=
B

24

dm
√

g/(2B + b)
,

B∗

42

=
B

42

dm
√

g/(2B + b)
, B∗

44

=
B

44

I
√

g/(2B + b)
(5.9)

When the hydrodynami added mass, potential damping, linear hydrostati restoring

fore oe�ients and wave exitation fores are known, the equations of motion in the

frequeny domain an be approximated as a omplex 3 by 3 matrix, by assuming ηj =
ηja exp (iωt) and F

ex′

j = F ex
j exp (iωt).

(

−ω2 [M+A(ω)] + iω [B(ω)] + [C]
)





η̃
2a

η̃
3a

η̃
4a



 =





F̃ ex
2a

(ω)

F̃ ex
3a

(ω)

F̃ ex
4a

(ω)





(5.10)

where

[M+A(ω)] =





(M + A
22

(ω)) 0 k (−Mz
G

+ A
24

(ω))
0 (M + A

33

(ω)) 0
(−Mz

G

+ A
42

(ω)) /k 0 (I + A
44

(ω))





(5.11)

[B(ω)] =





B
22

(ω) 0 kB
24

(ω)
0 B

33

(ω) 0
B

42

(ω)/k 0 B
44

(ω)





(5.12)

[C] =





K
22

0 kK
24

0 C
33

0
K

42

/k 0 C
44

+K
44





(5.13)

and η̃
2a

= η
2a

/ζa, η̃3a = η
3a

/ζa, η̃4a = η
4a

/(k ζa). And F̃ ex
2

= F ex
2

/ζa, F̃
ex
3

= F ex
3

/ζa,
F̃ ex
4

= F ex
4

/(k ζa).
The undamped equation of motion with no foring an be rewritten to look like

[C][M+A(ω)]−1 − λi(ω)[I] = 0 (5.14)

where λi(ω) = ωi(ω)
2
and [I] is the 3 by 3 identity matrix. Equation (5.14) represents

a frequeny dependent eigenvalue problem. By setting the determinant of this matrix to

zero we �nd the natural periods of the system. Due to that the oe�ients are frequeny

dependent, we will �nd 3 arti�ial natural frequenies ωi for eah frequeny dependent

hydrodynami added mass oe�ients. The real natural frequenies are found when the

arti�ial natural frequenies are equal to the frequeny used for the frequeny dependent

added mass and damping oe�ient ωn = ωi(ωn), see Figure 5.20. Based on the frequeny

dependent added mass oe�ients, inertia and hydrostatis of the moonpool setion, three

undamped natural dimensionless periods in heave are found [7.4, 8.7 and 9.9℄. Where the

middle one is the piston-mode natural period, as seen in the previous setion with fored

heave osillations and given in Table 5.4. The orresponding potential damping-to-ritial
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damping ratios for the three natural heave periods are [0.02, above 1.0 and 0.3℄. We will

ome bak to the disussion about natural periods when analysing the results from the

�oating experimental and numerial work.

To �nd these undamped natural periods we have made the assumption that the hy-

drodynami fore an be split in two as in equation (5.5), and that the term proportional

to the veloity an be negleted. This is a somewhat ontroversial assumption, it is an

assumption about something that annot be ahieved in reality. However, an analogy to

a simple mass-spring system an then be made. The presene of damping terms less than

5% of the ritial damping is not signi�ant in the predition of the natural period of

the spring mass system. The pratial point must be that one of the undamped natural

periods orresponds to a pronouned peak in the response urve.
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Figure 5.20: Illustration of alulation of the undamped natural period. What is refered to as

Sway, Heave and Roll are the solutions of λi(ω) in equation (5.14). The natural periods are

found where the blak line intersets the other lines.

5.2.2 Wave exiting fores and moment by linear potential �ow

To help in the disussion and understanding of the �oating experimental results, the

linear potential-�ow wave exiting fores and moment are given in Figure 5.21, where the

moment is alulated around the enter-line at z = 0. The linear potential-�ow wave

exiting fores and moment amplitudes an aording to Newman (1962) be related to

the linear potential-�ow wave radiation damping for orresponding modes, for instane

the heave wave exitation fore amplitude is related to heave damping. The latter fat

an be used as a test to hek that our alulations are performing as expeted.

To foresee some of the oming results from the �oating experimental programme, we

notie that the linear potential-�ow wave exitation fore amplitude in heave has a mini-

mum around T ∗ = 7.9. We will ome bak to the heave anellation later when studying

time-series results from the �oating experimental programme. (See the disussion related

to Figure 5.30.)
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Figure 5.21: The dimensionless linear potential-�ow wave exiting fores and moments ampli-

tudes in sway (F ∗ex
2

), heave (F ∗ex
3

) and roll (F ∗ex
4

) versus the dimensionless wave period T ∗
for

the two-dimensional monpool setion without appendages. The dimensionless water depth is

h∗ = 10.

Here the dimensionless wave exiting fores and moment amplitudes are de�ned as:

F ∗ex
2

=
F ex
2

ρgζa(2B + b)2
, F ∗ex

3

=
F ex
3

ρgζa(2B + b)2
and F ∗ex

4

=
F ex
4

ρgζa(2B + b)3
. (5.15)

5.3 Freely-�oating body in inoming regular waves

All studies presented until now has been with fored osillations or with inoming waves on

a �xed 2D moonpool setion. Here a spring-moored freely �oating 2D moonpool setion

subjeted to inoming regular waves will be studied, orresponding to the experimental

programme desribed in setion 4.2.

Sine numerial results here will be ompared against the �oating experimental pro-

gramme desribed in setion 4.2, the dimensions here are di�erent than in the study with

fored heave osillations. However, the ratios between the moonpool gap width, the hull

draft (d∗ = 1.0) and the hull width are kept. The water depth in the wave �ume was kept

onstant at 1.0m for both ases. Meaning that the �nite-water e�et will be di�erent, and

the dimensionless water depth to draft ratio has inreased from h∗ = 1.0/0.18 = 5.556 to
h∗ = 1.0/0.1 = 10. The orresponding di�erene in added mass and potential damping

will be heked.

The additional apability added to the hybrid methods used to study the freely-�oating

problem ompared to the fored heave osillation studies is the oupling with the equations

of motion for the rigid-body motion of the moonpool setion. One validation test has been

performed to hek that the equations of motion are solved orretly. This was free heave

deay tests against data from Yeung (1982) for the linear potential �ow version of the

ode. No other veri�ation tests have been performed to hek that the equations of

motion are solved orretly in the two hybrid methods, other than the studies presented

in the following setions.
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Further, an experimental repetition test of the highest wave steepness 1/30 is per-

formed, and an experimental test-series with a smaller moonpool gap of 8m is given.

As the numerial hybrid method does not inlude any turbulene modelling, there is an

unertainty onneted to the lak of turbulene modelling in the present work. Although

the mesh ould be made �ne enough to apture details at the lowest turbulene sale, it

will still be an open question about the 3D behaviour of turbulene and other 3D e�ets

in the experimental setup. In the fored heave osillation study, the e�et of turbulent

anellation of vortiity was thought to be the main reason for the disrepanies between

the numerial hybrid method results and the experimental results for the setup with the

largest appendages. Another disussed issue was at forward veloity when the leading

edge vortiity in�uenes the vortiity generated at the moonpool entrane edges. With a

freely-�oating body in inident waves, an we expet that our numerial method without

any turbulene model to aurately agree with experimental results?

Some of the results in this setion have previously been published in Fredriksen et al.

(2015).

5.3.1 Numerial setup

The numerial setup and the properties of the mesh used in the study in this setion are

somewhat di�erent from before, and will be desribed here.

In between the wavemaker and the model the horizontal mesh resolution is set to 30
ells over a wave length. The mesh size gradually hanges and beomes equal to the mesh

size aross the hull. This applies from either half a wave length or two times the length

of one side hull, depending on what is longest. In the horizontal diretion the number of

FVM ells aross one side hull is set to be 30 (mesh size = 0.0067m). The mesh size is

kept onstant aross the moonpool gap, i.e. 15 ells aross the gap.

The mesh is symmetri relative to the enter-plane of the hull, exept that in the

numerial beah the mesh size is inreasing. The numerial beah starts three wave

lengths after the hull, and is 4 wave lengths long. The total length of the numerial wave

tank in addition to the length of the hull is 14 wave lengths, and therefore di�erent for

eah wave period.

In the z-diretion the mesh resolution is onstant from z = 0 until half the hull draft

below the bottom, using 20 ells aross the draft of the body (mesh size 0.005m), then

gradually inreasing until the bottom of the tank. A total number of 60 ells in the

z-diretion are used.

Beause of limitations in the implemented numerial hybrid method, only retangular

ells an be used in the visous �ow domain. The HPC potential �ow domain has no

suh limitations. However, to simplify the re-meshing sheme the HPC nodes in the same

liquid olumn will all have the same y-oordinate. Figure 5.22 shows an example of a

mesh used in the semi-nonlinear hybrid simulation and Figure 5.23 shows an example

from the nonlinear hybrid simulation.

The following disussion applies to the nonlinear hybrid method. To avoid having a

hanging mesh in time in the visous �ow domain, the intersetion between the potential

and visous �ow domains needs to be below what is the expeted minimum z-oordinate
value of the free-surfae elevation in the simulation. At every time-step the free-surfae

nodes are moved in the z-diretion to the new position of the free surfae. Parts of the

HPC mesh are then either strethed or ompressed, as exempli�ed in Figure 5.23. There
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are three hallenges related to this re-meshing strategy. One is related to large roll angles,

the seond is related to large moonpool piston-mode motions and the third is related to

the visous �ow domain around the hull edges where �ow separation ours. To satisfy

these hallenges we are required to reate a mesh with as large as possible visous �ow

domain around the body, while still allowing the potential �ow domain enough area to

follow the free surfae in time in the body-�xed oordinate system.

For the mesh inside the moonpool gap, an estimate of the expeted moonpool piston-

mode amplitude should be given and used to reate the intersetion between the potential

�ow and visous �ow domains. For the mesh outside the vessel the limiting fator is the

expeted roll amplitude ηMax

4

in the simulation. This is illustrated in Figure 5.23, where

ηMax

4

an be interpreted from the top �gure. The expeted moonpool wave amplitude and

roll amplitude are inputs to the simulation with a safety margin. The simulation will

break down if the ahieved roll motion in the simulation is higher than the input value

ηMax

4

.

The meshes in the semi-nonlinear hybrid simulations are equal for all three wave

steepness ases, but di�erent for eah wave period as desribed above. The intersetion

between potential and visous �ow is reated as lose as possible to the free surfae, in

order to minimize the potential �ow domain. The HPC solution of the potential �ow

domain should ontain at least 3 rows of nodes, to aurately propagate the free-surfae

waves.

The three di�erent meshes used to obtain results for three di�erent wave steepnesses

1/60, 1/45 and 1/30 with wave period T=0.95s are presented in Figures 5.23-5.25. Di�er-

ent meshes are reated for other wave periods and wave steepnesses, based on the riteria

desribed above. Notie that due to higher ηMax

4

for the three ases in Figures 5.23-5.25,

the water depth hanges. Therefore, the �nite-water e�et on the waves hanges. It is,

however, for the longest waves at 1.2s a ratio between the water depth and the wave

length around 0.45. A usual rule of thumb is that the waves start feeling the bottom

when the water depth is half the wave length, suh that we are for the longest waves just

within this limit. However, the waves around the natural periods remains more or less

unhanged due to �nite-water depth e�ets. The added mass and potential-�ow damping

properties will also hange due to di�erent water depths. This hange is again small,

see results in setion 5.3.10, where the di�erenes in the dimensionless added mass and

potential damping between the two experimental setups are heked.

The waves will be propagated from the left end of the numerial wave tank to the

middle where the struture is loated. We will therefore refer to the left hand and the

right hand sides of the moonpool gap when disussing the measurements of the moonpool

wave elevation.

5.3.2 Results with free-�oating struture

The main results from the �oating experimental programme are given in Figure 5.26

and Figure 5.27 and ompared with the two numerial hybrid methods. In general, the

agreement is good, in partiular for the nonlinear hybrid method. The moonpool wave

amplitude omparisons are reasonable, with some over-predition on the right hand side of

the gap, while some under-predition on the left side. One of the reasons an be the quality

of the measurements, keeping in mind that they are based on the opper tape glued onto

the model. The semi-nonlinear hybrid method results su�er some notable disrepanies
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Figure 5.22: Example of mesh use in the semi-nonlinear hybrid method simulation, the wave

period is T = 0.73s. Gray ells belong to the potential �ow domain, and blak ells to the

visous �ow domain. The mesh on the top illustrates the entire numerial wave tank. One

should observe the di�erene in sales on the y- and z-axis. The bottom mesh is a lose-up of the

mesh lose to the hull, here the sale ratio is orret. The free surfae is shown in both meshes.
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Figure 5.23: Example of body-�xed mesh at a spei� time-step used in the nonlinear simulation

in the body-�xed oordinate system. The wave period is T = 0.95s and wave steepness 1/60.
ηMax

4

is set to 5.5◦. Gray ells belong to the potential �ow domain, and blak ells to the visous

�ow domain (ΩCFD). The mesh on the top illustrates the entire numerial wave tank. One

should observe the di�erene in sales on the y- and z-axis. The bottom mesh is a lose-up of

the mesh lose to the hull, here the sale ratio is orret.
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Figure 5.24: Example of body-�xed mesh at a spei� time-step used in the nonlinear simulation

in the body-�xed oordinate system. The wave period is T = 0.95s and wave steepness 1/45.
ηMax

4

is set to 7.5◦. See Figure 5.23 for further desription.
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Figure 5.25: Example of body-�xed mesh at a spei� time-step used in the nonlinear simulation

in the body-�xed oordinate system. The wave period is T = 0.95s and wave steepness 1/30.
ηMax

4

is set to 9.0◦. See Figure 5.23 for further desription.
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Figure 5.27: Comparison of numerial and experimental results of the measured wave �eld for 3

di�erent wave steepnesses. The ombination of the inoming and re�eted wave ζ
ir

is measured

by wave gauges 2 and 3 (wg2 and wg3) that are mounted in parallel between the wavemaker and

the hull. The transmitted wave ζ
t

is measured by wave gauge 4 (wg4) that is mounted between

the hull and the beah.



96 Results

ompared to the experiments. The roll amplitude is at resonane over-predited by up to a

fator 2 depending on the wave steepness. This also has a lear e�et on the sway motion.

Away from the frequeny range around the roll resonane, the sway motion ompares

quite well. The heave motion is well predited. A minor disrepany is that the period

of loal maximum is over-predited by about 2− 3%.

A omparison of the measured wave �eld in the wave �ume is given in Figure 5.27. The

agreement is good for the nonlinear hybrid method, while the semi-nonlinear results di�er

around the roll resonane. A ombination of the inoming waves from the wavemaker

and the re�eted waves from the struture will be measured by wave gauges 2 and 3,

see results in Figure 5.27(vi). Wave gauges 2 and 3 are loated in parallel between

the wavemaker and the hull, see Figure 4.5 for detailed overview of the experimental

set-up. The wave gauges 2 and 3 are plaed away from any zero nodes of the lowest

transverse sloshing modes, and positioned to ensure that any sloshing mode will in�uene

the two wave gauges di�erently. For wave gauge 4 it is only the transmitted wave that is

measured, assuming the re�etion from the beah is negligible. The wave measurements

from the nonlinear hybrid method are taken for a �xed point in the body-�xed oordinate

system, while the wave gauges in the experiments were �xed to the tank. Meaning that

evaluation point of the wave gauges in the nonlinear hybrid method will hange with time

in the Earth-�xed oordinate system. It an from the two parallel wave gauges (2 and 3)

be seen some di�erenes between the measured wave �eld for small periods around the

seond transverse natural sloshing period of the wave �ume, see Figure 5.27 row (vi). The

transverse wave is also seen to in�uene the wave elevation inside the moonpool gap for

small wave periods (T ∗ ∼ 6), see Figure 5.26 rows (iv) and (v).

The nonlinear hybrid method results for wave steepness 1/60 are di�erent from the two

other wave steepnesses with respet to how they were obtained. For the simulations with

the two highest wave steepnesses the initial simulations broke down before steady-state

onditions were obtained. To avoid this break-down the 5-point Chebyhev smoothing

algorithm was applied on the entire free surfae. The simulations were then stable, but

the smoothing algorithm had a large damping e�et on the inoming free-surfae waves.

To avoid this the smoothing algorithm is only applied on the free surfae lose to the

hull, one hull length in eah diretion, see results in Figure 5.26 for the two highest

wave steepnesses (a) and (b). The damping e�ets on the inoming waves are therefore

minimized, see further sensitivity studies in setion 6.3.

A urious e�et to notie is that there is no resonane behaviour at the piston-mode

natural period at T ∗ = 8.7 in any of the results in Figure 5.26. From the orresponding

ase with fored osillation in Figure 5.4 the piston-mode resonane was T ∗ = 8.7.

Also when onsidering inoming waves on a �xed moonpool struture (the di�ration

problem) the piston-mode resonant period is found to be T ∗ = 8.7, see Figure 5.28.

However, for the �oating problem there is no sign of a resonant piston-mode motion around

T ∗ = 8.7. This is similar as the results from MIver (2005), who found that within linear

potential-�ow theory at steady state the main ontributions from the di�ration and the

radiation potentials on the piston-mode are 180◦ out of phase around the piston-mode

natural period for a freely �oating body.

The following brief explanation will illustrate what is found by MIver (2005). In linear
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Figure 5.28: Comparison of the piston-mode amplitude in the Earth-�xed oordinate system

ζEF due to inoming waves with di�erent steepnesses on a �xed and a �oating moonpool setion

versus dimensionless wave period. The results are from the semi-nonlinear hybrid method. Not

supported with experimental results.

potential �ow theory the veloity potential an be split into the following omponents.

ϕ = ϕi + ϕd +
∑

j=2,3,4

ϕj (5.16)

where ϕj are the radiation potentials found from fored osillations of the struture in

diretion j, and from where the added mass and potential damping is alulated. Further

ϕi is the veloity potential assoiated with the inoming wave. ϕd is the di�ration

potential assoiated with the wave �eld generated by the presene of the struture in

inoming waves, i.e. the di�ration problem is solved using the body-boundary ondition

∂ϕd/∂n = −(∂ϕi/∂n). In the moonpool problem, the main ontributions from ϕd and ϕ3

will anel around the piston-mode natural period.

To ensure that the piston-mode resonane in general is aneled, a few additional

numerial studies with di�erent moonpool widths and drafts were simulated. It was

found that the results were onsistent with results in Figure 5.26.

After the �rst peak in heave at T ∗ = 7.4, the moonpool wave motion beomes in phase

with the heave response (see the phase angle α in Figure 5.29a), where α is de�ned as the

phase angle between the heave aeleration of COG and the moonpool wave motion. This

auses a derease in the heave response; the moonpool wave response dereases the heave

motion. This is illustrated in Figure 5.30. The heave motion builds up faster than the

moonpool wave response. After the initial build-up phase the moonpool wave response

is still inreasing while the heave response starts dereasing. The initial heave response

is thus larger than the steady-state response. This is not only related to the visous

simulations, but also the potential �ow alulations apture this e�et. It means that the

moonpool works as a heave minimization devie. The steady-state linear potential wave

exitation fore were given in Figure 5.21 and on�rm the minimum heave motion around

T ∗ = 7.9.
The phase angle β between heave and roll motion is given in Figure 5.29b. For low

periods, heave and roll are 180◦ out of phase, ausing high loal heave motion on the

side hull faing the inoming waves. Similarly the ombined heave and roll motion has

a anellation e�et on loal heave on the aft side hull. For higher periods (sti�ness
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dominated) the heave and roll motion are 90◦ out of phase, meaning that the hull motion

is in phase with the inident wave motion. The snapshots from Figure 5.31 show how the

phase angle between the heave and roll motion a�ets the hull motion. For instane, there

is a anellation e�et on the trailing hull around T ∗ = 7.4. Basially it is a visualisation of
the results from Figure 5.29, the snapshots are given for 10 equally spaed time instanes

throughout one period at steady-state.
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Figure 5.29: a): phase angle α between heave aeleration and moonpool wave motion (from

opper tape on right side of the moonpool gap). b): phase angle β between heave and roll

aeleration. Wave steepness 1/60.

There has not been identi�ed any signi�ant interation e�ets between either the sway

or roll motions and the moonpool motion. However, the sway and roll motion should be

expeted to exite sloshing modes within the moonpool gap, but for the present set-up

the �rst sloshing mode natural period is 0.36s (T ∗ = 3.6).
For the nonlinear hybrid method results, the onlusions are di�erent from the semi-

nonlinear hybrid method results. The roll motion is in good agreement with the exper-

imental results. In the semi-nonlinear simulation, the maximum roll amplitude is 7.6◦

for wave steepness 1/60, while the orresponding result is 4.8◦ in the nonlinear simula-

tion. One onlusion that an be drawn is that muh less vortiity is being shed in the

semi-nonlinear hybrid method ompared to the nonlinear hybrid method. Figure 5.32

illustrates that there is a di�erene between the semi-nonlinear and the nonlinear hybrid

method, here the liquid veloity vetors around the outer edges are shown from both the

semi-nonlinear and the nonlinear hybrid method simulations. The �gure shows a lose-up

of the two outer hull edges and illustrates that the shed vortiity strutures generated

in the nonlinear hybrid method are signi�antly larger than in the semi-nonlinear hybrid

method. We will ome bak to a detailed investigation of the di�erenes between the

semi-nonlinear and the nonlinear hybrid method, by investigating the damping aused by

fored osillations.

The semi-nonlinear hybrid method approah has been proven to work well for predit-

ing the piston-mode motion in fored heave osillation tests (see the previous hapters

and Kristiansen and Faltinsen (2012)). There the relative liquid motion is dominated by

the water (piston-mode) motion. A detailed investigation of the shed vortiity strutures

during fored heave osillations will be given and disussed later.

A 2D freely �oating vessel lose to a terminal was investigated by Kristiansen and
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Figure 5.30: Time-series example illustrating how the heave motion exites the piston-mode

motion, and later how the heave motion is redued as a onsequene of the piston-mode motion

inside the moonpool gap by means of a semi-nonlinear simulation, with wave period T ∗ = 7.9
(T = 0.8s) and 1/60 wave steepness. ζ

EF

spae-averaged wave elevation inside the moonpool in

the Earth-�xed oordinate system.
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Figure 5.31: Snapshots taken from the steady state response for 4 di�erent wave periods from

the semi-nonlinear hybrid method alulation for wave steepness 1/60. T ∗
/10 between eah

snapshot.
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Figure 5.32: Liquid veloity vetors in the Earth-�xed oordinate system from the semi-nonlinear

hybrid method in a) and b), and from the nonlinear hybrid method in ) and d). Left: lose-ups

of the left bilge of the left box. Right: lose-ups of the right bilge of the right box. The wave

period in both simulations is T = 0.96s, and steepness of inoming wave is 1/60.

Faltinsen (2010) using both numerial and experimental methods. Their numerial work

was motivated by the question: what is the main ause to the disrepanies between

linear potential-�ow theory and what was measured? (1) Flow separation or (2) nonlinear

boundary onditions. Our �ndings are onsistent with the results from Kristiansen and

Faltinsen (2010) for pure heave and piston-mode motion, i.e. that �ow separation is

the main reason for the di�erene between linear potential-�ow theory and experimental

measurements. It is in predition of the roll motion more ompliated, due to the poor

results from the semi-nonlinear hybrid method in prediting the roll motion. A few

additional physial related explanations are investigated to explain the di�erene. It is

still thought that the �ow separation from the edges is the most in�uening reason, and

the hange in the pressure �eld due to that. The �rst e�et to investigate is the hange

from a linear body-boundary ondition to an exat body-boundary ondition in a body-

�xed oordinate system. The separation point will in both ases always be on the sharp

edges of the body. For the linear ase it will be �xed in spae, and an in-out �ow through

the nearby non-moving body-boundaries is disturbing the pressure around the edges. For

the body-exat ase the separation point will be the physially orret point. The seond

e�et to investigate is the importane of the nonlinear non-visous terms. Meaning, what

happens at the intersetion in the semi-nonlinear hybrid method where the nonlinear

non-visous terms are not ommuniated between the two domains. Any inauraies

at the intersetion in the semi-nonlinear hybrid method means that nonlinear e�ets are

important in the potential �ow domain. Then it is a question if this an be traed bak to

free-surfae or body-boundary nonlinearities. Further studies with fored sway, heave and

roll motion will be presented later, with a loser look at loal pressure and �ow details

around the edges around the hull.
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5.3.3 Comparison with potential-�ow theory

As pure linear potential �ow theory is used in many engineering appliations, results are

presented in Figure 5.33a together with results from the semi-nonlinear hybrid method

and experiments with wave steepness 1/60. These results are obtained by solving for

linear potential �ow in the whole water domain using the present semi-nonlinear ode.

All motions are over-predited around resonane by the potential-�ow theory. The sway

resonane at 3.2s is not shown. The large over-predition of the resonant heave and piston-
mode motions by linear potential-�ow theory shows the importane of �ow separation at

the lower moonpool entrane in the �oating 2D moonpool problem. The roll motion is

further over-predited by a fator 2 in this ase. The damping from �ow separation is

onsidered to be the main reason for this di�erene. The damped natural roll period is

predited to be 4% lower in the pure potential �ow ase than what is predited by the

semi-nonlinear hybrid method.

The omparison of the outgoing waves is given earlier in Figure 5.27vi. It is seen a big

hange in the transmitted wave before and after the �rst natural heave period and that

the linear potential-�ow solution over-predits the transmitted wave from the struture.

Meaning that the presene of shed vortiity in�uenes the generation of free-surfae waves.

It is for this ase onneted to the amplitude of the piston-mode inside the moonpool gap

and the piston-mode ability to generate outgoing waves. The ombination of the inoming

and re�eted wave is on the other hand in good ompliane with the experimental results.

5.3.4 Low forward veloity

Due to the bene�ts gained by employing a body-�xed oordinate system, the nonlinear

hybrid method is suitable of simulating a towing of a free-�oating body in inident regular

waves. The nonlinear hybrid method is applied to the same physial set-up as in the

�oating experiments, while adding towing of the hull in both head and following seas

using Froude number 0.04, where the Froude number is de�ned based on the total length

of the hull, inluding the moonpool gap, as de�ned in equation (4.1). We numerially

move the ends of the springs on both sides of the hull to enfore forward motion of the

hull. The hull will therefore experiene a frequeny of enounter, whih is di�erent from

the wave frequeny seen in the Earth-�xed oordinate system.

The wave steepness is kept onstant at 1/60 where the wave lengths are alulated

based on the stationary ase. This means that for the same period of enounter, the

waves in head seas will be higher than the waves for zero Froude number. In Figure 5.33b

results with low forward veloity are ompared against the nonlinear simulations without

forward veloity. The Froude number dependeny is relevant for onsidering the e�et of

ombined waves and urrent.

Potential �ow results for a semi-submerged irular ylinder with low forward veloity

were presented by Zhao and Faltinsen (1998). They notied that the predited maximum

response in heave ourred at a frequeny slightly di�erent from the zero veloity ase,

due to oupling with sway at non-zero forward veloity. This is also true for the lowest

heave natural period in Figure 5.33b. The maximum response ours for a slightly higher

period in following seas, and for a slightly lower period in following seas. The trend in the

numerial simulations with low forward veloity is that the rigid-body motion is ampli�ed

with low forward veloity in head seas, and smaller in following seas. This is similar to
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the results from Zhao and Faltinsen (1998), although it an be noted that their results

show that for higher periods than used in Figure 5.33b the sway motion will be higher for

following seas and lower in head seas.

The roll motion is learly a�eted although not dramatially: it is inreased in head

seas, and dereased in following seas. The moonpool wave amplitude is only dereased

by 2 − 3% due to forward veloity, whih is onsistent with �ndings from fored heave

osillations with low forward veloity.

For the fored heave osillation ase with low forward veloity the intersetion between

potential and visous �ow ould be strethed horizontally to the end of the numerial

wave tank. This only leaves the top �uid layer to be re-meshed due to the outgoing

wave and allows the vortiity to be transported down the numerial wave tank. For the

�oating ase this is no longer possible due the roll motion (as desribed earlier), and the

intersetion between the potential and visous �ow have to be equal for the stationary

ase and the forward veloity ase. This means similar meshes as in Figure 5.23 are used

for the simulations with low forward veloity. Meaning that vortiity transported away

from the hull will easily reah the intersetion between potential and visous �ow on

the downstream side. However, the dissipation of vortiity is quite high with use of the

linear upwind method for solving the advetion step, whih limits the amount of vortiity

reahing the intersetion.

Notie, that the simulations with low forward veloity did not onverge with the same

auray as the numerial results with a stationary hull due to vortiity reahing the

interfae between potential and visous �ow, see the onvergene study in setion 6.3.

5.3.5 Comparison with single hull

To put the rigid-body motions of the moonpool hull in some perspetive, a omparison to

the rigid-body motions of a single mono-hull is given here. The dimensions used for the

single hull are equal to the moonpool hull, but with a losed moonpool gap. The mass

is inreased orrespondingly, and the inertia is hanged by keeping the radius of gyration

onstant (r
xx

= 0.18m). The omparison of all three rigid-body motions and the wave

�eld is given in Figure 5.34.

Three di�erenes an be observed for the rigid-body motions of the hull, �rst the

additional heave resonane introdued by the moonpool, seond the inreased roll natural

period without moonpool, and last, the anellation e�et in heave in the moonpool ase.

The inreased roll natural period is mostly an e�et of inreased inertia and hange of

the metaentri height. It is further lear that the moonpool has a signi�ant e�et on

the rigid-body motions.

The presene of the moonpool also in�uenes the re�eted and transmitted wave, see

the two bottom sub-�gures in Figure 5.34.

Sine the semi-nonlinear hybrid method over-predits the roll motion around resonane

(see Figure 5.26), it is also expeted that the single hull results in Figure 5.34 are a�eted

and over-predited. However, the qualitative di�erenes explained above are still thought

to be valid.
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5.3.6 Appendages in the moonpool inlet

The in�uene of appendages at the moonpool inlet on the rigid-body motion and piston-

mode behaviour in waves is studied by use of the semi-nonlinear hybrid method for three

wave steepnesses (1/30, 1/45 and 1/60), see Figure 5.35. There are no experimental tests

to validate the result.

The numerial setup with appendages has the following dimensional properties. The

appendages are horizontal and retangular with dimensions 1.0m wide by 0.5m high,

and are plaed on eah side of the moonpool gap entrane. The appendages then over

20% of the width of the moonpool gap, and extend 5% of the draft in the vertial diretion.

This is equivalent to appendage on�guration #1 from the fored heave osillation study.

The sway and roll motions were not in�uened by the appendages and therefore not

given in Figure 5.35. The �rst heave natural period is inreased ompared to the square

opening ase, and the resonane top is wider. For the moonpool wave amplitude, the

appendages has a signi�ant damping e�et; the piston-mode amplitude is redued by

20− 30% at resonane. This an partly be explained by a redued inlet opening ausing

larger �ow veloities at the lower moonpool entranes. Further, the strength of the shed

vortiity is inreased due to a lower e�etive interior angle relative to the retangular

setion. This is in aordane with results from the fored heave osillation study and

Kristiansen and Faltinsen (2012). Note that for the fored heave osillation study it was

found a derease in the piston-mode amplitude using appendages in the linear potential

�ow solution.

The appendages also hange the anellation frequeny in heave, and the minimum

heave response at the anellation frequeny is inreased. The orresponding piston-

mode resonane period from the fored heave osillation set-up are given in Table 5.4 as

T ∗ = 8.8, the results in Figure 5.35 are onsistent with the onlusion from before. There

are no signs of resonane behaviour in the freely-�oating problem at the piston-mode

resonane period.

The omparison between the fored heave osillation experiments and the hybrid meth-

ods showed that the numerial methods were unable to aurately apture the moonpool

motion for the largest appendage (#2), see setion 5.1.6. The reason for the di�erene

is thought to be that our numerial visous method does not deal with turbulent mixing

of vortiity. It is unlear how this will a�et the results seen in Figure 5.35 and atually

all results with the �oating body. However, sine there is good agreement between the

nonlinear hybrid method and experimental data, it is thought to be a seondary e�et.

This onlusion may not be atual for a �oating body with appendages, sine we have no

experimental validation data to support the onlusion either way.

5.3.7 Experimental repetition test

A few days after the three experimental test-series with 1/30, 1/45 and 1/60 wave steep-
ness were performed, a test-series with 1/30 wave steepness was repeated. Prior to this

the loation of the model in the wave �ume was hanged; the model was moved loser to

the wavemaker. This was done to improve the video-reording apabilities of the experi-

ments. The reason was that the previous position of the model was behind a large steel

beam, whih bloked the video amera view. Also the anhors to the roof and the pullies

had to be moved the same distane. The onsequene of this was that the pre-tension
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Figure 5.35: Comparison of the heave η
3a

and moonpool piston-mode response at left-side ζleft
and right-side ζright of the moonpool with and without appendages for 3 di�erent wave steep-

nesses using the semi-nonlinear hybrid method.
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might have hanged. The pre-tension has a restoring e�et in roll, suh that the roll

motion might have been in�uened. Everything else about the repetition test is the same

as the original test.

As the model was moved loser to the wavemaker, re�etions from the wavemaker

returned sooner, and the steady-state ondition beame shorter. It was also found that

the wave �ume had a small leakage resulting in a di�erent position of the beah relative

to the free surfae. The latter fat gave some re�etions from the beah. In total there is

some re�etions for the higher wave periods, (see results in Figure 5.36a).

There is also a di�erene seen in the right moonpool wave gauge. Here it is believed

that the repetition test is more orret, as it would �t better with the trend from the

1/45 and 1/60 tests, see Figure 5.26. The original results do not show muh derease in

the ratio ζright/ζa, between the 1/45 and the 1/30 tests. Meaning that there ould be an

error in the alibration fator for the �rst original test of wave steepness 1/30.
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Figure 5.36: In a): Experimental results for wave steepness 1/30, with repetition test. In b):

Experimental results for omparison between 8m gap and 10m gap with 1/60 wave steepness.
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5.3.8 Smaller moonpool gap

In the end of the experimental programme it was deided to do an additional test with

smaller width of the moonpool gap. The aim was to investigate the in�uene of the

moonpool width on the behaviour of the struture and the moonpool. The moonpool

width of the model was relatively easy to hange. However, sine the total length of the

struture beame 2m shorter, the pretension in the mooring lines had to be adjusted.

Meaning that there might be a small di�erene in the pre-tension between the two tests.

Note that the wave period in Figure 5.36b) for the 8m gap ase is dimensionless by the

same fator as the 10m gap ase, i.e. by 10m.

There is a small di�erene in the right moonpool wave amplitude between the two

tests, only the period of maximum wave response have hanged. While the di�erene is

larger for the left moonpool wave amplitude, here both the maximum response period and

amplitude has hanged. The moonpool wave amplitude is smaller for the 8m moonpool

gap ase.

The main di�erene between the two set-ups is the derease in the heave motion at the

�rst heave natural period. This is in-line with the obvious onlusion that the rigid-body

motion will approah the single body behaviour when the gap width is dereased.

5.3.9 E�et of hanging draft

The results from fored heave osillations showed that the piston-mode amplitude were

independent on the draft of the hull. Sine there is no resonant e�et at the piston-mode

natural period, this may not be the ase for the �oating body. Therefore the e�et of

hanging the draft is here heked by the use of the nonlinear hybrid method for two

additional dimensionless drafts with wave steepness 1/60. See results in Figure 5.37. In

the numerial alulations the radius of gyration is kept onstant, and the position of the

entre of gravity is �xed with regards to the mean free-surfae. Basially every parameter

exept for the mass, the draft and the moment of inertia is unhanged. The onsequene

is that all natural periods will hange. We are however, only interested in omparing the

maximum value of the wave elevation inside the moonpool gap.

The results in Figure 5.37 are onsistent with the fored heave osillation study with

di�erent drafts, the maximum moonpool gap amplitude is quite independent of the draft.

However, there is a small inrease on the left side of the moonpool for the lowest draft

d∗ = 0.833 in Figure 5.37 ompared to the two other numerial ases. The results in

Figure 5.37 shows one again that there is no sign of a resonant response ot the piston-

mode resonane period as given in Table 5.4.

5.3.10 Di�erene in added mass and damping for the �oating and

fored osillation ases

Due to di�erent dimensionless water depths in the experimental setups, the �nite-water

depth e�ets an possibly in�uene the added mass and potential-�ow damping di�erently

for the two setups. The added mass and potential-�ow damping oe�ients for heave are

presented in Figure 5.38, and roll in Figure 5.39. It is as expeted seen some di�erene for

the higher periods, however, the di�erene is small around the natural periods in heave

and roll. Two dimensionless water depths h∗ are presented, where h∗ = 10 orresponds to
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the �oating experimental setup and h∗ = 5.56 orresponds to the fored heave osillation

with low forward veloity experimental setup. The larger water depth orresponds to

the ase from Faltinsen et al. (2007) whih are given in Figure 5.38 and the omparison

towards our results are good.

Sine the di�erent water depths have a small in�uene on the added mass and potential-

�ow damping oe�ients in Figures 5.38 and 5.39, it was deided not to hek the in�uene

of the water depth hanges in the nonlinear hybrid method. There the water depth had

to be hanged due to limitations in ηMax

4

, and therefore the numerial water depth was

larger from what was tested experimentally, and the dimensionless water depth exeeded

h∗ = 10.
The added mass and potential-�ow damping oe�ients in Figure 5.38 and Figure

5.39 are obtained by the same approah as the added mass and potential-�ow damping

oe�ients in setion 5.2.1.
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Figure 5.38: Dimensionless added mass and potential damping in heave for two di�erent water

depths orresponding to the dimensionless water depths in the two experimental programmes.

Numerial results from Faltinsen et al. (2007) (FRT) are also given.

5 6 7 8 9 10 11
0.68

0.7

0.72

0.74

0.76

T*

A
44*

 

 
h*=10

h*=5.56

5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

T*

B
44*

PSfrag replaements

HPC

FVM

FVM

HPC

a)

b)

)

d)

wg

wg

wg

wg

wg

wg

wg

m

m

m

m

m

m

m

m

m

m

m

a

a

a

a)

b)

COG

Figure 5.39: Dimensionless added moment of inertia and potential damping in roll for two

di�erent water depths orresponding to the dimensionless water depths in the two experimental

programmes.
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5.4 Damping from fored osillations

The previous setions about fored heave osillations studies were foused on the piston-

mode amplitude and the omparison with experiments. In this setion fous will be

on the loal and global pressure details between the two hybrid methods in order to

study the di�erenes seen in Figure 5.26. That means we want to further investigate the

shortomings of the semi-nonlinear hybrid method to apture roll motions, as shown in

Figure 5.26. A detailed omparison of the damping moment about COG (180◦ out of

phase with the roll angular veloity) due to fored roll about COG has been performed

using both hybrid methods, see Figure 5.40a.
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Figure 5.40: Linearized damping oe�ients for di�erent foring amplitudes from the semi-

nonlinear and nonlinear hybrid methods for fored roll osillation in a), and fored heave osil-

lation in b). The period is T ∗ = 9.51 (T = 0.96s) for all simulations.

In Figure 5.40a the nonlinear hybrid method results are obtained from three di�erent

meshes, these orresponds to the meshes used for the 1/30, 1/45 and 1/60 wave steep-

ness ases in Figure 5.26. Note, it is not the meshes that are di�erent. It is where the

intersetion between the potential and visous �ow domain is loated. The meshes are

reated suh that the 1/60 mesh may at maximum simulate roll angles up to 5.0◦. Fur-
ther the 1/45 mesh may at maximum simulate 7.0◦ and the 1/30 mesh may at maximum

simulate 8.5◦. This is orresponding to the maximum roll angles found from the exper-

imental programme inluding a safety fator to allow over-predition in the numerial

method. See illustrations on how the di�erent meshes are reated in Figures 5.23-5.25.

For the semi-nonlinear hybrid method results in Figure 5.40a the same mesh is used for

all simulations.

From the fored roll osillations the orresponding linear roll damping oe�ient B
44

has been alulated. The simulations are performed for fored roll osillation with di�erent

roll amplitudes (see Figure 5.40a) for a period around the natural roll period T ∗ = 9.5
(T = 0.96s). The results for fored roll osillation are somewhat surprising; the trend is
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di�erent for the semi-nonlinear and the nonlinear ase. Results for the zero degree limit

are similar and equal to the wave radiation damping due to outgoing waves. The wave

radiation damping is alulated from energy of outgoing waves. The nonlinear hybrid

method has a lear linear dependene of B
44

on the roll amplitude, whih is not present

in the semi-nonlinear hybrid method. Even for small roll angles there is a signi�ant

di�erene between the semi-nonlinear and the nonlinear hybrid method.

The �ndings in Figure 5.40a) agree with the results from Braathen (1987) or Braathen

and Faltinsen (1988), who found that vortex shedding had a seondary e�et on the wave

radiation damping in roll. The latter e�et is assoiated with small far-�eld �ow due to

loal vortiity at the body edges. Furthermore, it was found by Braathen (1987) or Braa-

then and Faltinsen (1988) that the presene of free-surfae waves had an important e�et

on the shed vortiity generation and eddy-making damping. Note here that Braathen

(1987) ompared results using a rigid free-surfae ondition and a nonlinear free-surfae

ondition. It will later be presented simulations with a rigid free-surfae ondition in a

body-�xed oordinate system, and the resulting damping oe�ient.

The roll damping oe�ients up to fored osillations with 4 degrees roll are almost

equal between the three di�erent meshes used in the nonlinear hybrid method. Above

4 degrees there is seen a small di�erene between the predited B
44

, even though there

is a higher possibility of vortiity reahing the intersetion between the potential and

visous �ow domain for the meshes generated to simulate higher roll angles the damping

oe�ients remains linear with the roll amplitude. Suh that the pressure on the hull

is not very sensitive to the inauraies on the intersetion between the potential and

visous �ow domain. However, this is not true for simulations with roll angles above 7

degrees. After some time the inauraies grow as vortiity is reahing the intersetion

between the potential and visous �ow, up to a point when the simulation breaks down.

The di�erene between the total damping and the wave radiation damping in the

nonlinear hybrid method is mainly due to vortex shedding, i.e. eddy making damping. It

is a well-known fat that visous shear stresses have a small in�uene on roll damping. The

eddy-making damping depends on the instantaneous positions, veloities and strengths

of shed vortiity. The latter fat an be qualitatively indiated by using a thin free-shear

layer and boundary layer method as presented by Faltinsen and Pettersen (1987). The

derivation using a thin free-shear layer an be found in Appendix B. It follows then that

the motion of the separation points as it is aounted for in the nonlinear method ause

a di�erent expression for the amount of shed vortiity.

In the semi-nonlinear simulation with wave steepness 1/60, the roll amplitude is 7.6◦ at
roll resonane and the heave amplitude is 4.5mm at the �rst heave resonane. However,

in the nonlinear simulation the roll amplitude is 4.9◦ at roll resonane and the heave

amplitude is 3.9mm at the �rst heave resonane, see Figure 5.26. If we further assume

a one degree of freedom system ηja (−ω2 [Ajj(ω) +mjj] + iωBjj(ηja) + Cjj) = Fj , and

that the inertia and hydrostati restoring fore terms anel eah other at resonane, the

relation between the response and the damping oe�ient from Figure 5.40 should be

onstant, i.e. Cj = ηjaBjj(ηja) should be independent if it is alulated in the semi-

nonlinear or nonlinear hybrid method. For the heave ase there is a 2.5% di�erene in

C
3

, and for the roll ase there is a 11.4% di�erene in C
4

between the semi-nonlinear

and nonlinear hybrid method. The latter disussion only proves that there is onsisteny

between damping and the time-domain rigid-body response.

When studying the damping in heave B
33

(see Figure 5.40b) due to fored heave



5.4. Damping from fored osillations 113

osillations with the same osillation period as in Figure 5.40a), we �nd that the agreement

between the two hybrid methods are signi�antly better. However, here damping due to

shed vortiity is of seondary importane, and the total damping is dominated by wave

radiation damping. The predited heave motion response in Figure 5.26 are also almost

equal between the two hybrid methods for the given period.

The relation between the importane of visous damping ompared to wave radiation

damping is depending on the osillation period. It is seen a higher in�uene of visous

damping when studying fored osillations in heave around the �rst natural heave period.

The heave damping oe�ient B
33

is then also di�erent for the two hybrid methods, see

Figure 5.41. The di�erene between the two hybrid methods is similar as to that seen in

Figure 5.40a). The damping oe�ient B
33

has a lear linear dependene on the heave

amplitude in the nonlinear method.
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Figure 5.41: Linear damping oe�ients for di�erent foring amplitudes from the semi-nonlinear

and nonlinear hybrid methods for fored heave osillations for period T ∗ = 7.43 T = 0.75s.

In order to better understand the shortomings of the semi-nonlinear hybrid method,

the loal pressure distribution on the hull is ompared with the nonlinear hybrid method.

Figure 5.43 ompares the pressure at the outer edges of the hull due to fored roll osil-

lation of 3 degrees, Figure 5.42 show the loation of the pressure points. Furthermore,

Figure 5.44 ompares of the pressure at the moonpool edge and the outer edge of the

hull due to fored heave osillation of 0.008m. It is the dynami pressure value from the

ell losest to the edge that is given. By dynami pressure it is meant the total pressure

without the e�et of hydrostatis and atmospheri pressure.

For the fored roll osillation ase of 3◦ with osillation period of T ∗ = 9.51 (T = 0.96s)
in Figure 5.43 a di�erene between the two hybrid methods is seen for point 1 on the

vertial side of the edge. However, the dynami pressure is for point 2 on the horizontal

side of the edge quite equal for the two hybrid methods. By inspeting the vortiity

plots from the simulation in Figure 5.45, a muh stronger vortex is generated on the left

side of the hull in the nonlinear hybrid method. The situation is quite equal to what

is illustrated in the right part of Figure 5.32. The larger vortex reates a drop in the

pressure. A similar behaviour is not seen when vortiity is reated beneath the hull. For
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this situation the amount of vortiity reated in the two hybrid methods are similar, and

then also the pressure.

The pressures in Figures 5.43 and 5.44 should be viewed together with the vortiity

plots given in Figures 5.45 and 5.46. There it is given 6 di�erent omparisons between

the semi-nonlinear and the nonlinear hybrid method equally distributed over a period at

steady-state.
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Figure 5.42: Loation of the dynami pressure points given in Figures 5.43 and 5.44. It is the

dynami pressure in the FVM ell losest to the edge that is used.
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Figure 5.43: Dynami pressure during fored roll osillation, with osillation period of 0.96s, and

roll osillation amplitude of η
4a

= 3◦, for points 1 and 2 given in Figure 5.42. The roll position

is given in the top sub-�gure.

In Figure 5.45 an important di�erene between the semi-nonlinear and the nonlinear

hybrid methods an be disovered. In all vortiity illustrations from the semi-nonlinear

method, an arti�ial vortiity an be seen at the intersetion between potential and vis-

ous �ow lose to the hull. The orresponding vortiity illustrations from the nonlinear

hybrid method show no sign of the same arti�ial vortiity. The origin of the arti�ial

vortiity an be one of the following two reasons. (1) That the nonlinear non-visous
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Figure 5.44: Dynami pressure during fored heave osillation, with osillation period of 0.75s,

and heave osillation amplitude of η
3a

= 0.008m, for points 1-4 given in Figure 5.42. The heave

position is given in the top sub-�gure.
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terms in the governing equations are not ommuniated between the two domains, due

to that the potential �ow domain is linearized. (2) That the body-boundary onditions

in the semi-nonlinear hybrid methods generate vortiity at the hull surfae. Due to this

observation it annot in general be onluded that nonlinearities in the potential �ow do-

main are unimportant. If this means that free-surfae nonlinearities are important is still

an unanswered question. Further studies with the two di�erent body-boundary onditions

in visous liquid only will be given in next setion.

The onsequene of not mathing the ontribution from the nonlinear advetion terms

on the intersetion is that the normal veloity and pressure are ontinuous aross the

interfae, while the tangential veloity at the interfae is disontinuous. The result is

arti�ial loal vortiity on the visous �ow side of the intersetion. The latter fat was

also observed by Greo et al. (2013) in their studies with a domain deomposition method

involving linear potential �ow and the Navier-Stokes equations.

For the fored heave osillation ase η
3a

= 0.008m with osillation period of T ∗ = 7.43
(T = 0.75s) in Figure 5.44. The orresponding vortiity illustrations are given in Figure

5.46. Although the vortiity distribution looks similar between the two hybrid methods

in Figure 5.46 the orresponding pressure are still somewhat di�erent, as in Figure 5.44.

More notably, there is no sign of the arti�ially generated vortiity in the semi-nonlinear

hybrid method. Instead it appears from the vortiity illustrations that the semi-nonlinear

hybrid method is better than the nonlinear hybrid method, due that vortiity reahes the

intersetion between potential and visous �ow in the nonlinear hybrid method (see time-

instanes (iv)-(vi) in Figure 5.46). The vortiity is aumulated below the intersetion

while the piston-mode is rising, but it disappears when the piston-mode is deaying.

Furthermore, in time-instanes (i)-(iii), there are no signs of vortiity at the intersetion

in the nonlinear hybrid method. Meaning that the vortiity is not generated at the

intersetion in the nonlinear hybrid method. It is only limited in vertial diretion inside

the moonpool. Based on observations in setion 5.1 the limitation on vortiity in vertial

diretion inside the moonpool has low in�uene on the piston-mode and its damping due

to vortiity separation from the moonpool edges.

The reason for that arti�ial vortiity is not generated in the semi-nonlinear hybrid

method with fored heave osillation is thought to be that the liquid veloity is mainly

normal to the intersetion.

We should note the di�erene between absolute vortiity and relative vortiity: The

vortiity in the semi-nonlinear hybrid method is alulated from the absolute veloity u

as seen in the Earth-�xed oordinate system, while the vortiity in the nonlinear hybrid

method is alulated from the relative veloity ur as seen in the body-�xed oordinate

system. The relative vortiity (∇× ur) in the nonlinear hybrid method, is di�erent from

the absolute vortiity (∇ × u). This an be found by the following onsideration: By

starting with equation (2.5), the di�erene between the absolute vortiity and the relative

vortiity is found as,

∇× ur = ∇× (u− u0 − ω0 × r)

= ∇× u− 2η̇
4

. (5.17)

This means that the di�erene between the absolute and the relative vortiity is depending

on the angular roll veloity. It is the absolute vortiity that will be presented in Figure

5.45.
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Figure 5.45: Absolute vortiity in the �ow from both the semi-nonlinear (S-NL) and the nonlinear

(NL) hybrid method. Roll osillation period is T ∗ = 9.5s and roll amplitude is 3◦. The 6 ases

are equally spaed over a period at steady state. The olour sale ranges from negative vortiity

in blue to positive vortiity in red, and passes through yan, yellow and orange.
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Figure 5.46: Absolute vortiity in the �ow from both the semi-nonlinear (S-NL) and the nonlinear

(NL) hybrid method. Heave osillation period is T ∗ = 7.4 (T= 0.75s) and heave amplitude is

0.008m. The 6 ases are equally spaed over a period at steady state.
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It is from vortiity illustrations of fored sway osillation in Figure 5.47 quite lear that

the nonlinear non-visous terms on the intersetion reates arti�ial vortiity. It is not

seen any lear di�erene between arti�ial vortiity reated at the horizontal intersetion

lose to the hull or at the intersetion with the stairase pattern.

Two attempts on improving the semi-nonlinear method were made. The �rst attempt

was to add the higher-order terms from the Bernoulli's equation to the ondition on the

intersetion between potential and visous �ow, while still solving for the linear aeler-

ation potential ψ in the potential �ow domain. This approah required that the solution

of ϕ was found on the intersetion to aurately evaluate the higher order terms. The

seond attempt was therefore to inlude the higher order term from the Bernoulli's equa-

tion, while solving for the linear veloity potential ϕ in the potential �ow domain. These

simulations based on these two attempts beame more unstable than the original semi-

nonlinear hybrid method, and no steady-state solution ould be obtained. Sine both

the body-boundary and free-surfae boundary onditions in the potential �ow domain are

linearized, there is still an inonsisteny in the solution. It is therefore found that the

usage of the semi-nonlinear method should be done with are, although good results have

been obtained with the semi-nonlinear method for the fored heave ase.

5.4.1 Damping from visous �ow

Sine the results from the fored osillation study with a surfae piering struture are

inonlusive with regards to the importane of the body-boundary onditions (BBC) for

the semi-nonlinear hybrid method due to inonsisteny between non-visous terms on the

intersetion between potential and visous �ow further investigations are performed. To

remove the unertainty it is here performed a similar study with the body submerged in

visous �uid without a free surfae. The body dimensions used here are 0.5m wide by

0.2m high. That means the body is mirrored around the free surfae and the moonpool

is removed. It means that fored angular osillation of a retangle with a width divided

by height ratio of 2.5 is studied. The height of the liquid domain is 2m, to resemble that

the free surfae is mirrored. The width of the domain is set to 5m, i.e. ten times larger

than the width of the struture. The body is plaed in the middle.

The results in Figure 5.48 show how the two di�erent body-boundary onditions are

in�uening the fore in phase with the roll angular veloity. The main di�erenes between

the two ases here are that the Navier-Stokes equations are solved in an inertial oordinate

system with linear body-boundary onditions, and that the Navier-Stokes equations are

solved in a non-inertial oordinate system with exat body-boundary onditions. Only

for small roll angles η
4a

< 0.5◦ the predited visous damping are in the same magnitude.

The meshes used in the two numerial ases are equal, whih was not the ase of the

previous study with fored roll osillations in the two hybrid methods. There the inter-

setion between the two domains where at di�erent loations in the two hybrid methods.

It should also be onsidered that the outer wall onditions are di�erent. In both

the Earth-�xed and body-�xed oordinate system the outer walls remains �xed with the

oordinate system. The orret approah would have been to re-mesh lose to the outer

walls in the body-�xed oordinate system. As disussed earlier, the reason for this is to

avoid re-meshing in the visous domain. It means that some of the di�erene between the

results in Figure 5.48 an be due to the di�erene in the outer wall boundary onditions.

However, this is thought to be small ompared to the di�erene due to the body-boundary
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Figure 5.47: Absolute vortiity in the �ow from both the semi-nonlinear (S-NL) and the nonlinear

(NL) hybrid method. Sway osillation period is T ∗ = 7.4 (T= 0.75s) and sway amplitude is

0.008m. The 6 ases are equally spaed over a period at steady state.
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Figure 5.48: Roll damping from fored angular osillation of a retangular ross-setion in in�nite

visous �uid by using linear body-boundary onditions in an Earth-�xed oordinate system and

by using exat body-boundary onditions in a body-�xed oordinate system.

onditions. The reason is that the outer wall is far away from the body.

Results from the fored roll osillation study in visous �uid are given in Figure 5.48.

The trend in the results are similar as those in 5.40, whih proves that the di�erene

between the linear and the exat body-boundary onditions an explain most of the

di�erene between the semi-nonlinear hybrid method results and the experimental results

in Figure 5.26. However, we annot answer if it is due to the position of the edges where

vortiity is shed or if is it due to the vortiity reated along the hull surfaes, that is the

main reason for the low damping reated in the semi-nonlinear hybrid method.

From Figure 5.49 the largest arti�ial vortiity is reated along the entre line of the

hull. This an be related to that the in-out �ow body-boundary ondition hanges sign

here, see equation (3.59). Meaning that the liquid �ow through the hull surfae on two

neighbouring ells will have opposite diretion ausing loal vortiity.

Note here that it is the pressure in the FVM ell losest to the hull edge that is used

to generate the results in Figure 5.48. This is not valid for all the other results presented

in this thesis, where the pressure gradient is used to extrapolate to values at the hull

surfae.

Based on the results in Figure 5.48 a �rst estimate on the importane of free-surfae

nonlinearities in the �oating experimental setup an be made. The damping from the out-

going waves in the semi-nonlinear hybrid method is extrated from Figure 5.40, and half

the damping predited in in�nite visous �uid by using linear body-boundary onditions

(Figure 5.48) is added and the result is presented in Figure 5.50. Note that the roll damp-

ing ontribution from the moonpool edges are not inluded in the studies with in�nite

visous �uid. Meaning that a small di�erene an be expeted due to that. Sine the two

results in Figure 5.50 are quite lose, it means that it is mostly the linear body-boundary

onditions in the semi-nonlinear method that explain the large di�erene between the
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Figure 5.49: Absolute vortiity for fored roll osillation in visous �uid, with roll amplitude

of 3◦ by using linear body-boundary onditions in an Earth-�xed oordinate system and exat

body-boundary onditions in a body-�xed oordinate system.
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Figure 5.50: Comparison of the total damping in roll predited by the semi-nonlinear hybrid

method, with an approximate result where damping from outgoing waves is added to half the

damping from fored osillation in visous �ow. For osillation period T ∗ = 9.51.

semi-nonlinear and nonlinear hybrid method in Figure 5.26. Further, the same study

is done for the nonlinear hybrid method results from Figure 5.40, and the exat body-

boundary onditions results from Figure 5.48. The result is presented in Figure 5.51.

Here the approximate approah is almost equal to the nonlinear hybrid method results.

However, there are some di�erenes for higher roll angles.

To on�rm that the results seen in Figures 5.50 and 5.51 are general and not only valid

at the natural roll period simulations with two additional periods T ∗ = 7.43 and T ∗ = 8.22
are performed. The results are presented in Figure 5.52. The results for all three tested

osillation periods are onsistent, and it is therefore assumed that the di�erene between

the two body-boundary onditions is somewhat general.

5.4.2 Rigid free surfae

Simulations with a rigid free surfae have been performed in order to ompare the results

to those given by Braathen (1987), who ompared result using a rigid free surfae with

results using a nonlinear free-surfae ondition. In general it an be expeted that the

result will di�er between the rigid free-surfae and the double body �ow in in�nite �uid.

The simulations with rigid-free surfae are performed with an open gap, and a rigid free-

surfae ondition inside the moonpool.

Note that it is not totally aurate to all it here a rigid free-surfae ondition. The

proper rigid free-surfae boundary ondition is to satisfy no �uid �ux vertially in the

Earth-�xed oordinate system on the mean free surfae. It is here instead used that there

should be no �uid �ux in z-diretion of the body-�xed oordinate system, whih is a good

approximation for small roll angles, but has an error inreasing with larger roll angles.

The result when using a rigid free-surfae ondition from Figure 5.53 is omparable to



124 Results

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

x 10
−3 Mesh 1/30

η
4a

 (deg)

B
44

/ρ
 (

m
5 /s

)

 

 

0 2 4 6

Mesh 1/45

η
4a

 (deg)

 

 

0 1 2 3 4 5
η

4a
 (deg)

Mesh 1/60

 

 
NL
NL wave
NL wave + 0.5*Inf Fluid

NL
NL wave
NL wave + 0.5*Inf Fluid

NL
NL wave
0.5*Inf Fluid exact
NL wave + 0.5*Inf Fluid

PSfrag replaements

HPC

FVM

FVM

HPC

a)

b)

)

d)

wg

wg

wg

wg

wg

wg

wg

m

m

m

m

m

m

m

m

m

m

m

a

a

a

a)

b)

COG

Figure 5.51: Comparison of the total damping in roll predited by the nonlinear hybrid method,

with an approximate result where damping from outgoing waves is added to half the damping

from fored osillation in visous �ow. For osillation period T ∗ = 9.51.

the results with in�nite �uid from Figure 5.51. The results on�rm that for the present

setup with the given dimensions the free-surfae waves has a small in�uene on vortex

shedding and assoiated eddy-making damping from the orners of the hull. There is a

8% di�erene between the results for fored roll osillation of 6.0◦ in Figure 5.53, whih

may be related to the free surfae in�uene on vortex shedding.
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Figure 5.52: Comparison of the total damping in roll predited by the semi-nonlinear hybrid

method (in a)) and )) and nonlinear hybrid method (in b) and d)), with an approximate result

where damping from outgoing waves is added to half the damping from fored osillation in

visous �ow.
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Figure 5.53: Comparison of the total damping in roll predited by the semi-nonlinear hybrid

method, with an approximate result where damping from outgoing waves is added to the damping

from fored roll osillation with a rigid free surfae. For osillation period T ∗ = 9.51.



Chapter 6

Convergene and sensitivity studies

To gain additional on�dene in the two numerial hybrid methods, a omprehensive on-

vergene and sensitivity study of some seleted parameters have been performed. Ideally

the numerial hybrid methods results should be independent of parameters related to the

intersetion between the potential and visous �ow domains. However, sine they repre-

sent two di�erent physial representations of the liquid �uid �ow, it is expeted that the

loation of the intersetion an possibly in�uene the overall alulated liquid motion and

pressure.

Three separate onvergene studies have been performed. The �rst is dediated to

propagation of waves and the seond is dediated to fored heave osillations with and

without forward speed using the nonlinear hybrid method. Furthermore, the third is

dediated to the study with a spring-moored �oating body in inoming regular waves.

6.1 Wave propagation

It has throughout this thesis been stated that the HPC method propagates waves with

high auray. See Figure 6.1 for two examples on how the steady state wave amplitude

develops throughout the numerial wave tank. The results in Figure 6.1a) are found by

using linear free-surfae onditions, and the results in Figure 6.1b) are found by using

nonlinear free-surfae onditions. In both ases the horizontal disretization of the free

surfae is 30 HPC ells for eah wave length. Both results show that the hange in wave

amplitude after 11 wave length is less than 0.5%.

6.2 Fored heave osillations with the nonlinear hybrid

method

During the development phase it was identi�ed four parameters that were possible an-

didates to in�uene the results, and identi�ed as important to evaluate the sensitivity of.

These four parameters are mesh size, size of the potential �ow domain inside the moon-

pool gap, time-step size and smoothing size on the free surfae. Convergene is studied

for all appendage on�gurations with draft d∗ = 1.0 (18m), η3a = 0.025 (4.5mm) heave

amplitude and two Froude numbers (Fn = 0.00 and Fn = 0.08). We have hosen �ve

di�erent foring periods around the piston-mode natural period for eah ase. The pa-
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Figure 6.1: Wave propagation auray with 30 HPC ells for eah wave length λ, using: a)
linear free-surfae onditions, b) nonlinear free-surfae onditions. Here ζ is the steady-state

wave amplitude, and ζa is the inoming wave amplitude.
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rameters are varied around the inputs used for the alulations in Figures 5.3-5.11, from

here on alled the "standard ase" throughout this hapter. Figures 6.2-6.5 all have six

sub-�gures, in two rows and three olumns. In the �rst row is onvergene results for Fn

= 0.00, and seond row is results for Fn = 0.08. The �rst olumn ontains results for the

retangular side hull pro�le (no appendage), seond olumn for appendage #1 and third

olumn for appendage #2, see Table 6.1.

P
P
P
P
P
P
P
PP

Fn

App.

- #1 #2

0.00 a b 

0.08 d e f

Table 6.1: Overview of appendages and forward veloities that are used in the onvergene study

in Figures 6.2-6.5. The letters a-f refer to di�erent parts in the �gures. See Figure 5.2 for

desription of the appendages.

The onvergene and sensitivity results with low forward veloity should all be viewed

keeping in mind that vortiity has reahed the intersetion between the potential and

visous �ow domains. This means that the onvergene results ould show how the loal

inauray at the intersetion is a�eted by a hange in mesh and/or time-step size and

how this inauray in�uenes the piston-mode osillation, and not how the hanges in

mesh and time-step size hange the global �ow �eld, and then the piston-mode osillation.

6.2.1 Mesh density

The standard ase used in results from Figures 5.3-5.11 is the one alled 36 in Figure

6.2. By 36 it is meant that the length of one hull is divided into 36 equal ells in the

horizontal diretion. The orresponding number of ells in the vertial diretion for the

standard ase are 25. The number of ells in the vertial diretion are inreased suh that

the aspet ratio is kept onstant.

One observation from Figure 6.2 is that for smaller ells the piston-mode amplitude

onverges towards a higher value without appendages, but for the two ases with ap-

pendages the piston-mode amplitude onverges towards a smaller value. However, the

experimental results are higher than the numerial results. The behaviour of the water

�ow inside the boundary layer is with the dereased mesh size still not aptured. It does

neither apture the behaviour of the water �ow at any turbulene sale.

6.2.2 Height of potential domain inside the mooonpool

Another parameter that the simulations are somewhat sensitive to is the height of the

potential �ow domain inside the moonpool gap from the free surfae to the intersetion

between the potential domain and the visous domain, see results in Figure 6.3. Similarly

to the onvergene study above we have varied the height of the potential �ow domain

inside the moonpool gap around the standard ase, where the number of ells aross

one hull is 36, and the number of ells in the vertial diretion of the hull is 25. The

standard ase had the intersetion line at 0.06m below the free surfae. The results

should in priniple not be sensitive to this parameter, exept when vortiity reahes the
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Figure 6.2: Convergene of the piston-mode amplitude with respet to the number of mesh-ells

aross one side hull, the number is indiated in the �gure. Here 36 is the ase orresponding to

the �standard ase� results in Figures 5.3-5.11. The number of ells in the vertial diretion is

varied respetively, to keep the aspet ratio δz/δy onstant. The upper row shows results with

zero forward veloity, and the lower row shows results with forward veloity orresponding to

Fn= 0.08.
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intersetion. For the ases with forward veloity (see Figure 6.3d-f), the 3−4% di�erene

in piston-mode amplitude is an indiation on that vortiity has reahed the intersetion.

For the ases without forward veloity the results are insensitive.
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Figure 6.3: Sensitivity of the piston-mode amplitude with respet to the height of potential

domain inside the moonpool gap, the height is indiated in the �gure. Here 0.06m is the ase

orresponding to the �standard ase� results in Figures 5.3-5.11. The upper row shows results

with zero forward veloity, and the lower row shows results with forward veloity orresponding

to Fn= 0.08.

6.2.3 Time-step size

If the CFL number is smaller than 0.5 the time-step will be set to ∆t = T/120 in all

simulations presented in Figures 5.3-5.11. To justify this hoie of time-step size a sensi-

tivity analysis of the number of time-steps per osillation period has been performed. We

varied the number of time-steps per osillation period from NT = 80 to NT = 280 with

an inrement of 40. Note that still the simulations will be limited by the CFL number

riterion. Figure 6.4 shows good onvergene for the zero Froude number ase, but almost

a 10% derease in piston-mode amplitude for ases with forward veloity from NT = 120
to NT = 240. The latter means onvergene away from the experimental results.

The onvergene results are good for the ases without forward veloity.
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Note here that the dependene on the time-step size is expeted to be somewhat

di�erent here ompared to the studies with a �oating moonpool setion. As the rigid-

body motion here is presribed, i.e. the equations of motion are not solved. Thus the

dependeny on the time-step size is expeted to be di�erent in the two ases.
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Figure 6.4: Convergene of the piston-mode amplitude with respet to the number of time-

steps per period, the number is indiated in the �gure. Here 120 is the ase orresponding to

the �standard ase� results in Figures 5.3-5.11. The upper row shows results with zero forward

veloity, and the lower row shows results with forward veloity orresponding to Fn= 0.08.

6.2.4 Smoothing of the free-surfae desription

In the standard simulations without forward veloity, we applied the smoothing operation

20 times per period, while for forward veloity ases 120 smoothing operations per period

were used. Figure 6.5 shows that the moonpool amplitude results are insensitive to the

smoothing algorithm, exept for ases with forward veloity where the simulation breaks

down at the downstream side for low number of smoothing operations per period.

The e�et on smoothing will be di�erent when studying rigid-body motions due to

inoming waves with presribed wave amplitude. The smoothing algorithm has a damping

e�et on wave propagation. The smoothing algorithm e�et on the dispersion properties

of the waves has not been studied, but it is thought to be negligible.
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Figure 6.5: Sensitivity of the piston-mode amplitude with respet to the number smoothing

operations per period. The upper row shows results with zero forward veloity, and the lower

row shows results with forward veloity orresponding to Fn= 0.08.
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6.3 Convergene for a freely �oating body

Both the semi-nonlinear and the nonlinear hybrid methods with freely �oating rigid-

body motions are heked with regards to time-step size and mesh size. In addition, the

nonlinear hybrid method is heked with regards to parameters related to the loation of

the intersetion between the potential �ow and visous �ow domains.

Even though the smoothing parameter was found to not in�uene the results for the

fored heave osillation study, it was onluded that the smoothing parameter in�uened

the propagation of gravity surfae waves. A similar study of the smoothing parameter is

therefore given here.

6.3.1 Convergene semi-nonlinear hybrid method

It is hosen to hek onvergene on the results for the largest wave steepness 1/30 from

Figure 5.26, the results are thought to be valid for the two other wave steepnesses 1/45
and 1/60. Note that the wave period resolution is not the same as in Figure 5.26, i.e.

onvergene has only been heked for a hosen set of wave periods (10 in total). For

onvergene study results with regards to the time-step size see the right olumn of Figure

6.6, and the left olumn of Figure 6.6 for onvergene study results with regards to the

mesh size.

The numerial results are with regards to the time-step size onverged for the base

ase with 200 time-steps per wave period. For the mesh size we see that around the roll

natural period the response is dereasing for inreasing mesh density, and they onverge

towards the experimental result.

Simulations are again limited by that the CFL-number should be smaller than 0.5.

Cheks have been made to hek that the solution of the equations of motion is inde-

pendent of the hoie of the arti�ial added mass term. This is true as long as it is in the

order of the in�nite frequeny added mass.

6.3.2 Convergene nonlinear hybrid method

Two wave periods have been seleted where onvergene and sensitivity are heked. The

�rst period is lose to the �rst natural heave period T ∗ = 7.5, and the seond period

is lose to the natural roll period T ∗ = 9.6. For both wave periods onvergene and

sensitivity are heked for both the stationary ase with wave steepness 1/60, but also for
towing in head seas with Fn= 0.04. In the latter ase, the wave period refers to the wave

period of enounter.

Four parameters are identi�ed as relevant to hek for onvergene. In addition to the

two parameters from the semi-nonlinear onvergene study (mesh density and time-step

size), ηMax
4 (see Figure 5.23) and the height from the mean free surfae to the intersetion

between the potential �ow and the visous �ow domains are varied.

In Figure 6.7 the sensitivity/onvergene study for the zero Froude number ase with

period T ∗ = 7.5 (T = 0.76s) is given. Similar sensitivity/onvergene study for the

forward veloity ase with Froude number 0.04 in head sea with �xed period of enounter

T ∗

e = 7.5 (T e = 0.76s) is given in Figure 6.8. The onvergene study results around the

roll natural period are given in Figure 6.9 for the zero Froude number ase and Figure

6.10 for the head sea ase. The onvergene study laks some data-points due to that
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Figure 6.6: Convergene with respet to mesh resolution is given in the left olumn. Here the

number in the �gure orresponds to the number of ells aross one hull in the horizontal diretion

(y-diretion). The number of ells in z-diretion are varied to keep the aspet ratio of the ells

onstant. 30 orresponds to the base ase used in Figure 5.26. In the right olumn onvergene

is heked with respet to number of time-steps per wave period. 200 orresponds to the base

ase in Figure 5.26.
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Figure 6.7: Fn = 0, T∗ = 7.5 (T = 0.76s). red N: base ase used in Figure 5.26. By deglim we

mean ηMax
4 , nyBoat is the number of ells aross one side hull in length diretion. Pot H is the

height from the intersetion between the two �ow domains to the mean free surfae. NBdt is the

number of time-steps for eah wave period.
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Figure 6.8: Fn = 0.04, T∗

e = 7.5 (Te = 0.76s). red N: base ase used in Figure 5.33b. Some of the

numerial simulation for higher mesh density and smaller time-step rashed. See explanations

in Figure 6.7.
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Figure 6.9: Fn = 0, T∗ = 9.6 (T = 0.97s). red N: base ase used in Figure 5.26. See explanations

in Figure 6.7.
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Figure 6.10: Fn = 0.04, T∗

e = 9.6 (Te = 0.97s). red N: base ase used in Figure 5.33b. Some of

the numerial simulation for higher mesh density rashed. See explanations in Figure 6.7.
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the simulations rashed. Results from Figure 5.33b) should be onsidered together with

results from Figure 6.8 and 6.10.

The sensitivity/onvergene study for the stationary ase in Figure 6.7 and 6.9 are

relatively independent on the parameters tested. Meaning that results in 5.26 are rela-

tively lose to onvergene with regards to time-step and mesh size, and independent on

the loation of the intersetion between potential and visous �ow.

For the towed ase in head seas the results are more unreliable (see Figures 6.8 and

6.10), the same was found in the onvergene study for fored heave osillations with

forward veloity.

For the dependeny on the smoothing algorithm 2000 smoothing steps per wave period

has been used as input value. Sine the number of time-step per wave period is depending

on the CFL-number, and unknown prior to the simulation, the use of 2000 will guarantee

that the algorithm is performed one eah time-step.

Separate heks have been performed to hek the dependene on the intersetion.

The mesh reated for simulations with wave steepness 1/30 has been used to alulate

the results for waves with steepness 1/45 and 1/60. Similarly the mesh for wave steepness

1/45 has been used for simulating wave steepness 1/60. The di�erenes between these

meshes have been illustrated before, and it is a ombination of the parameters ηMax
4 and

Pot H.
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Figure 6.11: Meshes used for wave steepnesses 1/30 and 1/45 are used to generate results S60M30

and S60M45 for wave steepness 1/60. Results for wave steepness 1/60 from Figure 5.26 are also

given as S60M60.



Chapter 7

Summary and further work

In the present work we have investigated properties of a two-dimensional ship setion with

moonpool in both vertially fored osillations and freely-�oating onditions. Speial fous

has been put on the resonant properties of the piston mode. By piston mode we mean

the nearly vertially osillating �ow of the water inside the moonpool.

Two dediated experimental programmes have been performed, where the �rst experi-

mental programme involved an automized setup for studying fored heave osillation with

and without small forward veloity. Here two geometrial parameters, i.e. the draft and

the edge pro�le at the moonpool's inlet were varied. In addition the forward arriage

veloity and heave amplitude were varied. The seond experimental setup was with a

spring-moored two-dimensional moonpool setion subjeted to inoming regular waves,

where three di�erent wave steepness ratios were tested.

The experimental programmes have served as validation data for two numerial hybrid

methods oupling potential and visous �ow. The water domain is divided in two strongly

oupled domains, where the Navier-Stokes equations are solved in the visous �ow domain

lose to the hull edges where vortiity is expeted to be generated. Furthermore, the HPC

method is employed to solve the Laplae equation for the veloity potential in the outer

potential �ow domain enlosing the entire free surfae. The two numerial hybrid methods

are di�erent in the way boundary onditions are treated. In the semi-nonlinear hybrid

method linear free-surfae onditions are applied in the potential �ow domain. Linear

body-boundary onditions are used in both the potential �ow and visous �ow domains.

On the intersetion between the potential �ow and the visous �ow domains both pressure

and normal veloities are mathed. However, tangential veloities are not guaranteed to

be ontinuous aross the intersetion. In the nonlinear hybrid method the free-surfae

onditions are satis�ed in a nonlinear manner and the body-boundary onditions are

satis�ed exatly. The latter is ahieved by solving the governing equations in a body-

�xed oordinate system. In addition, the tangential veloities are ontinuous aross the

intersetion.

Three main studies have been presented, �rst a omprehensive study with both exper-

imental and numerial studies of fored heave motions with and without forward veloity,

seondly an experimental and numerial study of a spring-moored freely �oating ship

setion. By the on�dene gained by the good omparison both the numerial studies in-

lude some data without experimental validation. At last a detailed study of the �ow and

pressure details has been performed to determine the shortomings of the semi-nonlinear

hybrid method in predition of the rigid-body roll motion.
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7.1 Fored heave osillation with low forward veloity

The main motivation behind this study was to investigate how a low urrent/low forward

veloity in�uenes the resonant piston-mode motion of a moonpool inside a 2D ship

setion. This was done by both numerial and experimental methods, and for urrent

veloities up to Fn = 0.08. We found that within this range, the low urrent/low forward

veloity had a slightly dereasing e�et on the moonpool piston-mode behaviour. To what

extent this fat depends on the moonpool gap width remains unknown.

In addition to the low forward veloity in�uene, we varied the moonpool edge pro�le,

the draft and the heave amplitude. We tested 3 di�erent edge pro�les inside the moonpool

gap. First we studied retangular side hulls. Then we inluded two appendages in the

moonpool inlet overing 20% and 30% of the moonpool gap area. The damping of the

piston-mode is inreased by using appendages ompared to the retangular side hull. For

eah of the 3 edge pro�les we tested 3 di�erent drafts, where the ratio between the draft

and the total hull width was 1/6, 1/5 and 7/30. However, the hange of draft had little

in�uene on the maximum piston-mode response. It did hange the period of maximum

response of the system, suh that for a given period the response was hanged.

7.2 Freely-�oating in inoming regular waves

In general, the two numerial hybrid methods predit the rigid-body and moonpool re-

sponses quite well. An exeption is that the resonant roll motion is learly over-predited

by the semi-nonlinear hybrid method, while the nonlinear hybrid method aptures the

roll motion well. The reason for this is eddy-making damping.

The moonpool behaviour has a lear e�et on the rigid-body motions. The moonpool

wave ampli�ation fator is found to be around 2�2.5 times the inoming wave amplitude

around resonane, depending on the wave amplitude. In omparison, pure linear potential

�ow theory predits a fator of up to 10.

An important observation is that we annot use the natural piston-mode period to

alulate whih period auses maximum piston-mode response of a free-�oating body in

inident waves. The linear potential �ow response from the radiation and di�ration

potentials is 180

◦
out of phase at the natural piston-mode period, with the onsequene

that the piston-mode motion at the piston-mode natural period does not have any resonant

behaviour. The maximum piston-mode response is found at the �rst resonant heave

motion period in the viinity of the piston-mode resonane.

7.3 Di�erene between the two hybrid methods

The shortomings of the semi-nonlinear hybrid method in prediting the roll motion are

investigated by a detailed study of the damping from fored roll osillations with di�erent

foring amplitudes. It is suggested that the main reason for the di�erenes is that the

body-boundary ondition is linearized in the semi-nonlinear hybrid method.

In addition omes the inauraies at the intersetion between the potential and visous

domain in the semi-nonlinear hybrid method, where the tangential veloity aross the

intersetion is not ontinuous, with the onsequene of loal reation of arti�ial vortiity.
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7.4 Reommendations for further work

To improve the on�dene in the present hybrid method, additional ase studies that are

suitable to be numerially simulated using the present hybrid methods would be welomed.

It was throughout the work attempts on developing a partiular solution for the Pois-

son equation that ould be ombined with the harmoni solution of the Poisson equation

by the HPC method. The partiular solution was based on an integral for eah visous

node over the entire visous domain, and thus the solution beame quite CPU expensive.

Reently, Andrea et al. (2015) has generalized the HPC method to inlude the solution

of the Poisson equation, this is ahieved by inluding other polynomials than the original

harmoni polynomials in the HPC method that gives a partiular solution of the Poisson

equation.

Improvement of the semi-nonlinear hybrid method by satisfying the body-boundary

ondition in a more exat manner, two main alternatives are then thought of:

• By still solving the governing equations in the Earth-�xed oordinate system and

re-meshing the visous domain lose to the body.

• By solving the governing equations in the body-�xed oordinate system and lin-

earizing the free-surfae onditions in body-�xed oordinate system.

The motivation is that the body-boundary onditions were the main reason for the dif-

ferene between the semi-nonlinear and experimental results for roll motion. Other im-

provements of the hybrid methods ould inlude turbulene modelling and extension of

the method to handle more general mesh types. Extension of the method into 3D would

obviously be interesting.

With regards to the physial problem of moonpool resonane it is not fully lear how

the results from this work are appliable in three dimensions on a real ship. How large is

the di�erene between the piston-mode resonane period found from fored osillations,

to the period where maximum piston-mode response our at a natural heave period for

a freely �oating ship?

It was not the ambition of this work to �nd the optimal ship design for reduing the

moonpool motion. However, it is felt that this work would serve as a good basis for

ontinuing on suh a path.

Another appliation of the present nonlinear hybrid method is to study the total mean

drift fore, inluding both potential and visous �ow fore ontributions.
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Appendix A

Conversion from Earth-�xed to

body-�xed oordinate system

Details in this Appendix are given in (Faltinsen and Timokha 2009), and given here to

understand how the Navier-Stokes equations and the equations of motion are onverted

from an Earth-�xed oordinate system to a body-�xed oordinate system.

First notie that the left hand side of equation (2.1) is the material derivative D/Dt,
whih expresses the time rate of hange as a liquid partile is followed in spae and time,

i.e. a Lagrangian desription. The hallenge is now to onvert the time-derivative from

an inertial oordinate system (Earth-�xed oordinate system), to a noninertial oordi-

nate system (body-�xed oordinate system). The derivation is started by expressing the

position of the liquid partile relative to the inertial oordinate system by

r′(t) = r′0(t) + r(t). (A.1)

Here r′0(t) is the distane between the two oordinate systems expressed in the inertial

oordinate system and r(t) is the radius vetor of the position of the liquid partile

with respet to the noninertial oordinate system. I.e. r(t) = x1(t)ex(t) + y1(t)ey(t) +
z1(t)ez(t), where ei (i = x, y, z) are unit vetors of the noninertial oordinate system, and

rotated relative to the inertial oordinate system. Meaning that the time derivative of

r(t) beomes,

dr(t)

dt
= ẋ1(t)ex(t) + ẏ1(t)ey(t) + ż1(t)ez(t)

+ x1(t)ėx(t) + y1(t)ėy(t) + z1(t)ėz(t) (A.2)

that aording to (Faltinsen 2005) an be rewritten to

dr(t)

dt
=
dbr(t)

dt
+ ω0(t)× r(t) = ur(t) + ω0(t)× r(t), (A.3)

where db/dt means that the unit vetors should not be time-di�erentiated. The time-

derivative of the position of the �uid partile (equation A.1) an then be expressed as,

Dr′(t)

Dt
= u0(t) + ur(t) + ω0(t)× r(t), (A.4)
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where u0(t) = dr′(t)/dt. The Lagrangian desription of the Navier-Stokes equation (2.1)

implies that

Du(t)

Dt
=
D2r′(t)

Dt2
(A.5)

whih an by using the same proedure as above obtained to be

D2r′

Dt2
= a0 + ω0 × u0 + ω̇0 × r+ 2ω0 × ur

+ ω0 × (ω0 × r) + ar (A.6)

where a0 = dbu0/dt is the translatory aeleration of the body-�xed oordinate system

and ar = dbur/dt is the translatory relative aeleration. Notie that the notation has

been simpli�ed, meaning that a0(t) = a0 and similar for the other terms. In a numerial

alulation we want to alulate the rate of hange in time and spae at �xed points.

Then as a last step, an Eulerian desription for the time-derivative of the relative �uid

veloity is needed for �xed points in a body-�xed oordinate system

ar =
dbur

dt
=
∂bur

∂t
+ ur · ∇ur. (A.7)

Here

∂b
ur

∂t
= ∂ur

∂t
ex+

∂vr
∂t
ey+

∂wr

∂t
ez means the time-di�erentiation of a value for a �xed point

in the body-�xed oordinate system, i.e. we do not time di�erentiate the unit vetors, as

they do not vary with time relative to the body-�xed oordinate system. Furthermore,

the spatial derivatives are invariant.



Appendix B

Thin free-vortex sheet model

It is from the results from the two hybrid methods suspeted that the main explanation for

the di�erene between the two methods is due to the di�erent body-boundary onditions.

We will here employ a thin free-vortex sheet model to explain the di�erene due to the

di�erent body-boundary onditions. The basis of the thin free-vortex sheet model an

be found in (Faltinsen and Pettersen 1987). First di�usion of vortiity is negleted, and

the �ow outside the vortex sheets is desribed by potential �ow theory. The fore ating

on the body due to �ow separation an be related to the irulation Γ and the advetion

veloity of the vortiity. Where the irulation is de�ned as,

Γ =

∮

C

u · ds (B.1)

The integration is along a losed urve C and an be related to ϕ+ − ϕ−
. Here ϕ+

and

ϕ−
are the veloity potentials at eah side of the free-shear layer. By employing Stokes's

theorem to equation (B.1) we get that

Γ =

∫

C

∂ϕ

∂s
ds. (B.2)

If now the integration is around the omplete struture and free-shear layer, the total

irulation remains zero. For further desription see for instane hapter 6.4 in (Faltinsen

2005).

Further, if we limit the losed urve C1 to the vortiity separated from one orner

during one osillation yle. We get

Γ1 =

∫

C1

∂ϕ

∂s
ds. = ϕ+ − ϕ−, (B.3)

note that the integration diretion matter and here exempli�ed using the ounterlokwise

diretion.

We an �nd ∂Γ/∂t by using the ondition that the pressure is ontinuous aross the

vortex sheet, i.e. a zero pressure jump ondition. Due to the hange of the Bernoulli equa-

tion between the Earth-�xed and the body-�xed oordinate system, we get two di�erent

expressions for the zero pressure jump ondition.

We will indiate the di�erene between the two hybrid methods by onsidering two

examples with fored roll motion. See illustrations in Figure B.1 for example a) and
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Figure B.2 for example b). Remember, it is the di�erene between linear body-boundary

onditions in an Earth-�xed oordinate system and exat body-boundary onditions in a

body-�xed oordinate system we are studying here.

B.1 Semi-nonlinear hybrid method

The zero pressure jump ondition aross a free shear layer (vortex sheet) in an Earth

�xed oordinate system, is found by subtrating the pressure found from the Bernoulli

equation on eah side of the free shear layer

∂

∂t

(

ϕ+ − ϕ−
)

+
1

2

[

(

∂ϕ+

∂y

)2

−
(

∂ϕ−

∂y

)2

+

(

∂ϕ+

∂z

)2

−
(

∂ϕ−

∂z

)2
]

= 0. (B.4)

Example a)

Now let us study ase a) illustrated in Figure B.1. Here vortiity is shed from the left edge

(y1, z1) of the hull to the left and towards the free surfae. The following body-boundary

ondition for fored roll motion η4 on the vertial side of the body applies

∂ϕ+

∂y
= −η̇4 z1. (B.5)

Continuous normal veloity aross the free shear layer, implies

∂ϕ+

∂z
=
∂ϕ−

∂z
. (B.6)

Then the zero pressure jump ondition in the Earth-�xed oordinate system valid for

the semi-nonlinear hybrid method beomes,

∂

∂t

(

ϕ+ − ϕ−
)

= −1

2
(η̇4 z1)

2 +
1

2

(

∂ϕ−

∂y

)2

. (B.7)
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−
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Figure B.1: Overview illustration example a).
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Example b)

When vortiity is shed downwards from the left edge of the hull the following body-

boundary ondition applies, see illustration in Figure B.2

∂ϕ−

∂z
= η̇4 y1. (B.8)

Further, ontinuous normal veloity aross the free shear layer in example b), implies

∂ϕ+

∂y
=
∂ϕ−

∂y
. (B.9)

The result is then for example b),

∂

∂t

(

ϕ+ − ϕ−
)

= −1

2

(

∂ϕ+

∂z

)2

+
1

2
(η̇4 y1)

2 . (B.10)
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Figure B.2: Overview illustration example b).

B.2 Nonlinear hybrid method

The zero pressure jump ondition aross a free-shear layer in a body-�xed oordinate

system with fored roll motion η4 is given aording to equation (2.60) in (Faltinsen and

Timokha 2009),

∂∗

∂t

(

ϕ+ − ϕ−
)

+
1

2

[

(

∂ϕ+

∂y

)2

−
(

∂ϕ−

∂y

)2

+

(

∂ϕ+

∂z

)2

−
(

∂ϕ−

∂z

)2
]

−
[

(−η̇4 z1)
(

∂ϕ+

∂y
− ∂ϕ−

∂y

)

+ η̇4 y1

(

∂ϕ+

∂z
− ∂ϕ−

∂z

)]

= 0, (B.11)

where

∂∗

∂t
means that we follow and time-di�erentiate a value of a �xed point in the

body-�xed oordinate system. Note here that ϕ is the absolute veloity potential.
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Example a)

The exat body-boundary ondition in a body-�xed oordinate system for the fored roll

motion example illustrated in Figure B.1 is,

∂ϕ+

∂y
= −η̇4 z1. (B.12)

The expression is equal to equation (B.5) due to that we solve for the absolute veloity

potential.

Also the ondition for ontinuous normal veloity aross the free shear layer is equal

to that in the semi-nonlinear hybrid method, i.e.

∂ϕ+

∂z
=
∂ϕ−

∂z
. (B.13)

The zero pressure ondition for example a) using body-boundary ondition as in the

nonlinear hybrid method then beomes,

∂∗

∂t

(

ϕ+ − ϕ−
)

+
1

2

[

(−η̇4 z1)2 −
(

∂ϕ−

∂y

)2
]

−
[

(−η̇4 z1)
(

−η̇4 z1 −
∂ϕ−

∂y

)]

= 0. (B.14)

Further simpli�ation gives:

∂∗

∂t

(

ϕ+ − ϕ−
)

=
1

2
(η̇4 z1)

2 + η̇4 z1
∂ϕ−

∂y
+

1

2

(

∂ϕ−

∂y

)2

. (B.15)

Example b)

When vortiity is shed downwards the following body-boundary ondition for fored roll

motion in the nonlinear hybrid method we an write, see illustration in Figure B.2

∂ϕ−

∂z
= η̇4 y1. (B.16)

Again, ontinuous normal veloity aross the free-shear layer gives,

∂ϕ+

∂y
=
∂ϕ−

∂y
. (B.17)

The �nal expression for the hange of irulation due to an exat body-boundary

onditions in the body-�xed oordinate system in example b) is,

∂∗

∂t

(

ϕ+ − ϕ−
)

= −1

2

(

∂ϕ+

∂z

)2

+ η̇4 y1
∂ϕ+

∂z
− 1

2
(η̇4 y1)

2 . (B.18)

B.3 Qualitative results

There are a ouple of reasons why the di�erenes seen between equations (B.7) and (B.15)

for example a), and equations (B.10) and (B.18) annot be quanti�ed. First and most

important is that the derivatives of ϕ is not equal in the two hybrid methods. Seondly

the phases between the di�erent terms are unknown without further investigations.



Appendix C

Pseudoode

C.1 Pseudoode for the Runge-Kutta implementation

An overview with the main details of the steps in the expliit fourth-order Runge-Kutta

method is given here. Here ∆T is the main time-step size, based on the CFL-riteria or

the input value.

∆t(1) = ∆T/2
∆t(2) = ∆T/2
∆t(3) = ∆T
for ii = 1 → 4 do
for all CFD ells do

du(i)∗ = advet u(i)
du(i)∗∗ = di�use u(i) + body-�xed term

if ii < 4 then
u∗∗ = u(1) + ∆t(i) (du(i)∗ + du(i)∗∗);

end if

end for

for all HPC nodes on the FS do

dfζ(i) = RHS of eq (2.12) based on ζ(i) and ϕ(i)
dfϕ(i) = RHS of eq (2.15) based on ζ(i) and ϕ(i)
if ii < 4 then
ζ(i+ 1) = ζ(1) + ∆t(i) dfζ(i)
ϕ(i+ 1) = ϕ(1) + ∆t(i) dfϕ(i)

end if

end for

if i < 4 then
Re-grid to ζ(i+ 1)
Update matrix system based on new grid

Update u∗∗ = u0 +∆t(i) intS(i) on the intersetion

Calulate RHS of equation (3.21) and apply boundary onditions

Solve matrix system for p and ϕ
Update u(i+ 1) = u∗∗ −∆t(i)∇p in ΩCFD

Update intS(i+ 1) higher order terms in equation (3.67)

end if
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end for

for all CFD ells do

u∗ = u(1) + 1
6
∆T (du(1)∗ + 2 · du(2)∗ + 2 · du(3)∗ + du(4)∗)

u∗∗ = u∗ + 1
6
∆T (du(1)∗∗ + 2 · du(2)∗∗ + 2 · du(3)∗∗ + du(4)∗∗)

end for

for all HPC nodes on the FS do

ζ(1) = ζ(1) + 1
6
∆T (dfζ(1) + 2 · dfζ(2) + 2 · dfζ(3) + dfζ(4))

ϕ(1) = ϕ(1) + 1
6
∆T (dfϕ(1) + 2 · dfϕ(2) + 2 · dfϕ(3) + dfϕ(4))

end for

Re-grid to ζ(1)
Update matrix system based on new grid

Update u∗∗ = u0+
1
6
∆T (intS(1) + 2 · intS(2) + 2 · intS(3) + intS(4)) on the interse-

tion

Calulate RHS of equation (3.21) and apply boundary onditions

Solve matrix system for p and ϕ
Update u(1) = u∗∗ −∆T ∇p in ΩCFD

Update intS(1) higher order terms in equation (3.67)

C.2 Pseudoode for iterative proedure

The main steps in the iterative proedure are outlined here. The sheme is used at every

step in the expliit fourth-order Runge-Kutta method.

Find ζ and ϕ on the free surfae

Regrid and update matrix system

a0 = aN
0 and ω̇0 = ω̇

N
0

while tol > ε do
Calulate u∗∗

based on a0 and ω̇0

Calulate

ρ

∆t
∇ · u∗∗

r

Solve matrix system

Calulate fores on the body

Calulate aelerations a∗

0 and ω̇
∗

0

tol = |a∗

0 − a0| + |ω̇∗

0 − ω̇0|
if tol > ε then
New guess on a0 and ω̇0, based on average of a∗

0 and ω̇
∗

0 from 6 previous iterations

else

aN+1
0 = a0 and ω̇

N+1
0 = ω̇0

end if

end while
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Paulsen, Hallvard, MM A Study of Transient Jet and Spray using a 
Schlieren Method and Digital Image Processing. 
(Dr.Ing. Thesis) 

MTA-95-
104 

Hovde, Geir Olav, MK Fatigue and Overload Reliability of Offshore 
Structural Systems, Considering the Effect of 
Inspection and Repair. (Dr.Ing. Thesis) 

MTA-95-
105 

Wang, Xiaozhi, MK Reliability Analysis of Production Ships with 
Emphasis on Load Combination and Ultimate 
Strength. (Dr.Ing. Thesis) 

MTA-95-
106 

Ulstein, Tore, MH Nonlinear Effects of a Flexible Stern Seal Bag on 
Cobblestone Oscillations of an SES. (Dr.Ing. 
Thesis) 

MTA-95-
107 

Solaas, Frøydis, MH Analytical and Numerical Studies of Sloshing in 
Tanks. (Dr.Ing. Thesis) 

MTA-95-
108 

Hellan, Øyvind, MK Nonlinear Pushover and Cyclic Analyses in 
Ultimate Limit State Design and Reassessment of 
Tubular Steel Offshore Structures. (Dr.Ing. Thesis) 

MTA-95-
109 

Hermundstad, Ole A., MK Theoretical and Experimental Hydroelastic 
Analysis of High Speed Vessels. (Dr.Ing. Thesis) 

MTA-96-
110 

Bratland, Anne K., MH Wave-Current Interaction Effects on Large-Volume 
Bodies in Water of Finite Depth. (Dr.Ing. Thesis) 

MTA-96-
111 

Herfjord, Kjell, MH A Study of Two-dimensional Separated Flow by a 
Combination of the Finite Element Method and 
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Navier-Stokes Equations. (Dr.Ing. Thesis) 

MTA-96-
112 

Æsøy, Vilmar, MM Hot Surface Assisted Compression Ignition in a 
Direct Injection Natural Gas Engine. (Dr.Ing. 
Thesis) 

MTA-96-
113 

Eknes, Monika L., MK Escalation Scenarios Initiated by Gas Explosions on 
Offshore Installations. (Dr.Ing. Thesis) 

MTA-96-
114 

Erikstad, Stein O., MP A Decision Support Model for Preliminary Ship 
Design. (Dr.Ing. Thesis) 

MTA-96-
115 

Pedersen, Egil, MH A Nautical Study of Towed Marine Seismic 
Streamer Cable Configurations. (Dr.Ing. Thesis) 

MTA-97-
116 

Moksnes, Paul O., MM Modelling Two-Phase Thermo-Fluid Systems 
Using Bond Graphs. (Dr.Ing. Thesis) 

MTA-97-
117 

Halse, Karl H., MK On Vortex Shedding and Prediction of Vortex-
Induced Vibrations of Circular Cylinders. (Dr.Ing. 
Thesis) 

MTA-97-
118 

Igland, Ragnar T., MK Reliability Analysis of Pipelines during Laying, 
considering Ultimate Strength under Combined 
Loads. (Dr.Ing. Thesis) 

MTA-97-
119 

Pedersen, Hans-P., MP Levendefiskteknologi for fiskefartøy. (Dr.Ing. 
Thesis) 

MTA-98-
120 

Vikestad, Kyrre, MK Multi-Frequency Response of a Cylinder Subjected 
to Vortex Shedding and Support Motions. (Dr.Ing. 
Thesis) 

MTA-98-
121 

Azadi, Mohammad R. E., MK Analysis of Static and Dynamic Pile-Soil-Jacket 
Behaviour. (Dr.Ing. Thesis) 

MTA-98-
122 

Ulltang, Terje, MP A Communication Model for Product Information. 
(Dr.Ing. Thesis) 

MTA-98-
123 

Torbergsen, Erik, MM Impeller/Diffuser Interaction Forces in Centrifugal 
Pumps. (Dr.Ing. Thesis) 

MTA-98-
124 

Hansen, Edmond, MH A Discrete Element Model to Study Marginal Ice 
Zone Dynamics and the Behaviour of Vessels 
Moored in Broken Ice. (Dr.Ing. Thesis) 

MTA-98-
125 

Videiro, Paulo M., MK Reliability Based Design of Marine Structures. 
(Dr.Ing. Thesis) 

MTA-99-
126 

Mainçon, Philippe, MK Fatigue Reliability of Long Welds Application to 
Titanium Risers. (Dr.Ing. Thesis) 

MTA-99-
127 

Haugen, Elin M., MH Hydroelastic Analysis of Slamming on Stiffened 
Plates with Application to Catamaran Wetdecks. 
(Dr.Ing. Thesis) 

MTA-99-
128 

Langhelle, Nina K., MK Experimental Validation and Calibration of 
Nonlinear Finite Element Models for Use in Design 
of Aluminium Structures Exposed to Fire. (Dr.Ing. 
Thesis) 

MTA-99- Berstad, Are J., MK Calculation of Fatigue Damage in Ship Structures. 
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129 (Dr.Ing. Thesis) 

MTA-99-
130 

Andersen, Trond M., MM Short Term Maintenance Planning. (Dr.Ing. Thesis) 

MTA-99-
131 

Tveiten, Bård Wathne, MK Fatigue Assessment of Welded Aluminium Ship 
Details. (Dr.Ing. Thesis) 

MTA-99-
132 

Søreide, Fredrik, MP Applications of underwater technology in deep 
water archaeology. Principles and practice. (Dr.Ing. 
Thesis) 

MTA-99-
133 

Tønnessen, Rune, MH A Finite Element Method Applied to Unsteady 
Viscous Flow Around 2D Blunt Bodies With Sharp 
Corners. (Dr.Ing. Thesis) 

MTA-99-
134 

Elvekrok, Dag R., MP Engineering Integration in Field Development 
Projects in the Norwegian Oil and Gas Industry. 
The Supplier Management of Norne. (Dr.Ing. 
Thesis) 

MTA-99-
135 

Fagerholt, Kjetil, MP Optimeringsbaserte Metoder for Ruteplanlegging 
innen skipsfart. (Dr.Ing. Thesis) 

MTA-99-
136 

Bysveen, Marie, MM Visualization in Two Directions on a Dynamic 
Combustion Rig for Studies of Fuel Quality. 
(Dr.Ing. Thesis) 

MTA-
2000-137 

Storteig, Eskild, MM Dynamic characteristics and leakage performance 
of liquid annular seals in centrifugal pumps. 
(Dr.Ing. Thesis) 

MTA-
2000-138 

Sagli, Gro, MK Model uncertainty and simplified estimates of long 
term extremes of hull girder loads in ships. (Dr.Ing. 
Thesis) 

MTA-
2000-139 

Tronstad, Harald, MK Nonlinear analysis and design of cable net 
structures like fishing gear based on the finite 
element method. (Dr.Ing. Thesis) 

MTA-
2000-140 

Kroneberg, André, MP Innovation in shipping by using scenarios. (Dr.Ing. 
Thesis) 

MTA-
2000-141 

Haslum, Herbjørn Alf, MH Simplified methods applied to nonlinear motion of 
spar platforms. (Dr.Ing. Thesis) 

MTA-
2001-142 

Samdal, Ole Johan, MM Modelling of Degradation Mechanisms and 
Stressor Interaction on Static Mechanical 
Equipment Residual Lifetime. (Dr.Ing. Thesis) 

MTA-
2001-143 

Baarholm, Rolf Jarle, MH Theoretical and experimental studies of wave 
impact underneath decks of offshore platforms. 
(Dr.Ing. Thesis) 

MTA-
2001-144 

Wang, Lihua, MK Probabilistic Analysis of Nonlinear Wave-induced 
Loads on Ships. (Dr.Ing. Thesis) 

MTA-
2001-145 

Kristensen, Odd H. Holt, MK Ultimate Capacity of Aluminium Plates under 
Multiple Loads, Considering HAZ Properties. 
(Dr.Ing. Thesis) 

MTA-
2001-146 

Greco, Marilena, MH A Two-Dimensional Study of Green-Water 
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Loading. (Dr.Ing. Thesis) 

MTA-
2001-147 

Heggelund, Svein E., MK Calculation of Global Design Loads and Load 
Effects in Large High Speed Catamarans. (Dr.Ing. 
Thesis) 

MTA-
2001-148 

Babalola, Olusegun T., MK Fatigue Strength of Titanium Risers – Defect 
Sensitivity. (Dr.Ing. Thesis) 

MTA-
2001-149 

Mohammed, Abuu K., MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

MTA-
2002-150 

Holmedal, Lars E., MH Wave-current interactions in the vicinity of the sea 
bed. (Dr.Ing. Thesis) 

MTA-
2002-151 

Rognebakke, Olav F., MH Sloshing in rectangular tanks and interaction with 
ship motions. (Dr.Ing. Thesis) 

MTA-
2002-152 

Lader, Pål Furset, MH Geometry and Kinematics of Breaking Waves. 
(Dr.Ing. Thesis) 

MTA-
2002-153 

Yang, Qinzheng, MH Wash and wave resistance of ships in finite water 
depth. (Dr.Ing. Thesis) 

MTA-
2002-154 

Melhus, Øyvin, MM Utilization of VOC in Diesel Engines. Ignition and 
combustion of VOC released by crude oil tankers. 
(Dr.Ing. Thesis) 

MTA-
2002-155 

Ronæss, Marit, MH Wave Induced Motions of Two Ships Advancing 
on Parallel Course. (Dr.Ing. Thesis) 

MTA-
2002-156 

Økland, Ole D., MK Numerical and experimental investigation of 
whipping in twin hull vessels exposed to severe wet 
deck slamming. (Dr.Ing. Thesis) 

MTA-
2002-157 

Ge, Chunhua, MK Global Hydroelastic Response of Catamarans due 
to Wet Deck Slamming. (Dr.Ing. Thesis) 

MTA-
2002-158 

Byklum, Eirik, MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

IMT-
2003-1 

Chen, Haibo, MK Probabilistic Evaluation of FPSO-Tanker Collision 
in Tandem Offloading Operation. (Dr.Ing. Thesis) 

IMT-
2003-2 

Skaugset, Kjetil Bjørn, MK On the Suppression of Vortex Induced Vibrations 
of Circular Cylinders by Radial Water Jets. (Dr.Ing. 
Thesis) 

IMT-
2003-3 

Chezhian, Muthu Three-Dimensional Analysis of Slamming. (Dr.Ing. 
Thesis) 

IMT-
2003-4 

Buhaug, Øyvind Deposit Formation on Cylinder Liner Surfaces in 
Medium Speed Engines. (Dr.Ing. Thesis) 

IMT-
2003-5 

Tregde, Vidar Aspects of Ship Design: Optimization of Aft Hull 
with Inverse Geometry Design. (Dr.Ing. Thesis) 

 
 
IMT-

 
 
Wist, Hanne Therese 

 

Statistical Properties of Successive Ocean Wave 
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2003-6 Parameters. (Dr.Ing. Thesis) 

IMT-
2004-7 

Ransau, Samuel Numerical Methods for Flows with Evolving 
Interfaces. (Dr.Ing. Thesis) 

IMT-
2004-8 

Soma, Torkel Blue-Chip or Sub-Standard. A data interrogation 
approach of identity safety characteristics of 
shipping organization. (Dr.Ing. Thesis) 

IMT-
2004-9 

Ersdal, Svein An experimental study of hydrodynamic forces on 
cylinders and cables in near axial flow. (Dr.Ing. 
Thesis) 

IMT-
2005-10 

Brodtkorb, Per Andreas The Probability of Occurrence of Dangerous Wave 
Situations at Sea. (Dr.Ing. Thesis) 

IMT-
2005-11 

Yttervik, Rune Ocean current variability in relation to offshore 
engineering. (Dr.Ing. Thesis) 

IMT-
2005-12 

Fredheim, Arne Current Forces on Net-Structures. (Dr.Ing. Thesis) 

IMT-
2005-13 

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis 

IMT-
2005-14 

Fouques, Sebastien Lagrangian Modelling of Ocean Surface Waves and 
Synthetic Aperture Radar Wave Measurements. 
(Dr.Ing. Thesis) 

IMT-
2006-15 

Holm, Håvard Numerical calculation of viscous free surface flow 
around marine structures. (Dr.Ing. Thesis) 

IMT-
2006-16 

Bjørheim, Lars G. Failure Assessment of Long Through Thickness 
Fatigue Cracks in Ship Hulls. (Dr.Ing. Thesis) 

IMT-
2006-17 

Hansson, Lisbeth Safety Management for Prevention of Occupational 
Accidents. (Dr.Ing. Thesis) 

IMT-
2006-18 

Zhu, Xinying Application of the CIP Method to Strongly 
Nonlinear Wave-Body Interaction Problems. 
(Dr.Ing. Thesis) 

IMT-
2006-19 

Reite, Karl Johan Modelling and Control of Trawl Systems. (Dr.Ing. 
Thesis) 

IMT-
2006-20 

Smogeli, Øyvind Notland Control of Marine Propellers. From Normal to 
Extreme Conditions. (Dr.Ing. Thesis) 

IMT-
2007-21 

Storhaug, Gaute Experimental Investigation of Wave Induced 
Vibrations and Their Effect on the Fatigue Loading 
of Ships. (Dr.Ing. Thesis) 

IMT-
2007-22 

Sun, Hui A Boundary Element Method Applied to Strongly 
Nonlinear Wave-Body Interaction Problems. (PhD 
Thesis, CeSOS) 

IMT-
2007-23 

Rustad, Anne Marthine Modelling and Control of Top Tensioned Risers. 
(PhD Thesis, CeSOS) 

IMT-
2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 
simulations and control applications 

IMT-
2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. 
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(PhD Thesis, CeSOS) 

IMT-
2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 
combined inline and cross flow vortex induced 
vibrations. (Dr. avhandling, IMT) 

IMT-
2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 
with Emphasis on Frequency-domain Analysis of 
Fatigue due to Wide-band Response Processes 
(PhD Thesis, CeSOS) 

IMT-
2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 
Utilizing Information about Technical Condition. 
(Dr.ing. thesis, IMT) 

IMT-
2008-29 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 
(PhD-Thesis, IMT) 

IMT-
2008-30 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-
stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-
2008-31 

Radan, Damir Integrated Control of Marine Electrical Power 
Systems. (PhD-Thesis, IMT) 

IMT-
2008-32 

Thomassen, Paul Methods for Dynamic Response Analysis and 
Fatigue Life Estimation of Floating Fish Cages. 
(Dr.ing. thesis, IMT) 

IMT-
2008-33 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of 
Two-dimensional Nonlinear Sloshing in 
Rectangular Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-
2007-34 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 
Applications to Marine Hydrodynamics. 
(Dr.ing.thesis, IMT) 

IMT-
2008-35 

Drummen, Ingo Experimental and Numerical Investigation of 
Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 
thesis, CeSOS) 

IMT-
2008-36 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 
of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-
2008-37 

Harlem, Alf An Age-Based Replacement Model for Repairable 
Systems with Attention to High-Speed Marine 
Diesel Engines. (PhD-Thesis, IMT) 

IMT-
2008-38 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 
Bottom Damage and Hull Girder Response. (PhD-
thesis, IMT) 

IMT-
2008-39 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading 
and Load Effects in Membrane LNG Tanks 
Subjected to Random Excitation. (PhD-thesis, 
CeSOS) 

IMT-
2008-40 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-
thesis, CeSOS) 

IMT-
2008-41 

Ruth, Eivind Propulsion control and thrust allocation on marine 
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vessels. (PhD thesis, CeSOS) 

IMT-
2008-42 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 
Life of Aggregated Systems. PhD thesis, IMT 

IMT-
2008-43 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 
 Vibrations of Flexible Beams,  PhD 
thesis, CeSOS 

IMT-
2009-43 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 
Ship Hulls with Emphasis on Combined Global and 
Local Loads. PhD Thesis, IMT 

IMT-
2009-44 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 
PhD Thesis, IMT 

IMT-
2009-45 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 
CeSOS 

IMT-
2009-46 

Ong, Muk Chen Applications of a Standard High Reynolds Number   
Model and a Stochastic Scour Prediction Model for 
Marine Structures. PhD-thesis, IMT 

IMT-
2009-47 

Hong, Lin Simplified Analysis and Design of Ships subjected 
to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-48 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 
PhD thesis, IMT 

IMT-
2009-49 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and 
Scheduling. PhD-thesis, IMT 

IMT-
2009-50 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 
Longlines. Ph.d.-Thesis, IMT. 

IMT-
2009-51 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 
Two-Dimensional Constrained Interpolation Profile 
Method, Ph.d.thesis, CeSOS. 

IMT-
2009-52 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 
Power Plants. Ph.d.-thesis, IMT 

IMT 
2009-53 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 
Three-Dimensional Channel Flow, Ph.d.-thesis, 
IMT. 

IMT 
2009-54 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating 
Ship-shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 
2009-55 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam 
Sea Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 
2010-56 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 
Plants, Ph.d.-thesis, CeSOS. 

IMT 
2010-57 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 
Scientific Seabed Investigation. Ph.d.-thesis IMT. 
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IMT 
2010-58 

Hals, Jørgen Modelling and Phase Control of Wave-Energy 
Converters. Ph.d.thesis, CeSOS. 

 

IMT 
2010- 59 

Shu, Zhi Uncertainty Assessment of Wave Loads and 
Ultimate Strength of Tankers and Bulk Carriers in a 
Reliability Framework. Ph.d. Thesis, IMT/ CeSOS 

IMT 
2010-60 

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-
Nonlinear Wave-Body Interactions with/without 
Small Forward Speed, Ph.d.thesis,CeSOS.  

IMT 
2010-61 

Califano, Andrea Dynamic Loads on Marine Propellers due to 
Intermittent Ventilation. Ph.d.thesis, IMT. 

IMT 
2010-62 

El Khoury, George Numerical Simulations of Massively Separated 
Turbulent Flows, Ph.d.-thesis, IMT 

IMT 
2010-63 

Seim, Knut Sponheim Mixing Process in Dense Overflows with Emphasis 
on the Faroe Bank Channel Overflow. Ph.d.thesis, 
IMT 

IMT 
2010-64 

Jia, Huirong Structural Analysis of Intect and Damaged Ships in 
a Collission Risk Analysis Perspective. Ph.d.thesis 
CeSoS. 

IMT 
2010-65 

Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very 
Large Floating Structures (VLFS). Ph.D.-thesis, 
CeSOS. 

IMT 
2010-66 

Abrahamsen, Bjørn Christian Sloshing Induced Tank Roof with Entrapped Air 
Pocket. Ph.d.thesis, CeSOS. 

IMT 
2011-67 

Karimirad, Madjid Stochastic Dynamic Response Analysis of Spar-
Type Wind Turbines with Catenary or Taut 
Mooring Systems. Ph.d.-thesis, CeSOS. 

IMT -
2011-68 

Erlend Meland Condition Monitoring of Safety Critical Valves. 
Ph.d.-thesis, IMT. 

IMT – 
2011-69 

Yang, Limin Stochastic Dynamic System Analysis of Wave 
Energy Converter with Hydraulic Power Take-Off, 
with Particular Reference to Wear Damage 
Analysis, Ph.d. Thesis, CeSOS. 

IMT – 
2011-70 

Visscher, Jan Application of Particla Image Velocimetry on 
Turbulent Marine Flows, Ph.d.Thesis, IMT. 

IMT – 
2011-71 

Su, Biao Numerical Predictions of Global and Local Ice 
Loads on Ships. Ph.d.Thesis, CeSOS. 

IMT – 
2011-72 

Liu, Zhenhui Analytical and Numerical Analysis of Iceberg 
Collision with Ship Structures. Ph.d.Thesis, IMT. 

IMT – 
2011-73 

Aarsæther, Karl Gunnar Modeling and Analysis of Ship Traffic by 
Observation and Numerical Simulation. 
Ph.d.Thesis, IMT. 

Imt – 
2011-74 

Wu, Jie Hydrodynamic Force Identification from Stochastic 
Vortex Induced Vibration Experiments with 
Slender Beams. Ph.d.Thesis, IMT. 
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Imt – 
2011-75 

Amini, Hamid Azimuth Propulsors in Off-design Conditions. 
Ph.d.Thesis, IMT. 

 

 

IMT – 
2011-76 

Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and 
Monitoring of Bottom Damage Conditions During 
Ship Grounding. Ph.d.thesis, IMT. 

IMT- 
2011-77 

Tavakoli, Mohammad T. Assessment of Oil Spill in Ship Collision and 
Grounding, Ph.d.thesis, IMT. 

IMT- 
2011-78 

Guo, Bingjie Numerical and Experimental Investigation of 
Added Resistance in Waves. Ph.d.Thesis, IMT. 

IMT- 
2011-79 

Chen, Qiaofeng Ultimate Strength of Aluminium Panels, 
considering HAZ Effects, IMT 

IMT- 
2012-80 

Kota, Ravikiran S. Wave Loads on Decks of Offshore Structures in 
Random Seas, CeSOS. 

IMT- 
2012-81 

Sten, Ronny Dynamic Simulation of Deep Water Drilling Risers 
with Heave Compensating System, IMT. 

IMT- 
2012-82 

Berle, Øyvind Risk and resilience in global maritime supply 
chains, IMT. 

IMT- 
2012-83 

Fang, Shaoji Fault Tolerant Position Mooring Control Based on 
Structural Reliability, CeSOS. 

IMT- 
2012-84 

You, Jikun Numerical studies on wave forces and moored ship 
motions in intermediate and shallow water, CeSOS. 

IMT- 
2012-85 

Xiang ,Xu Maneuvering of two interacting ships in waves, 
CeSOS 

IMT- 
2012-86 

Dong, Wenbin Time-domain fatigue response and reliability 
analysis of offshore wind turbines with emphasis on 
welded tubular joints and gear components, CeSOS 

IMT- 
2012-87 

Zhu, Suji Investigation of Wave-Induced Nonlinear Load 
Effects in Open Ships considering Hull Girder 
Vibrations in Bending and Torsion, CeSOS 

IMT- 
2012-88 

Zhou, Li Numerical and Experimental Investigation of 
Station-keeping in Level Ice, CeSOS 

IMT- 
2012-90 

Ushakov, Sergey Particulate matter emission characteristics from 
diesel enignes operating on conventional and 
alternative marine fuels, IMT 

IMT- 
2013-1 

Yin, Decao Experimental and Numerical Analysis of Combined 
In-line and Cross-flow Vortex Induced Vibrations, 
CeSOS 

IMT- 
2013-2 

Kurniawan, Adi Modelling and geometry optimisation of wave 
energy converters, CeSOS 
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IMT- 
2013-3 

Al Ryati, Nabil Technical condition indexes doe auxiliary marine 
diesel engines, IMT 

IMT-
2013-4 

Firoozkoohi, Reza Experimental, numerical and analytical 
investigation of the effect of screens on sloshing, 
CeSOS 

IMT- 
2013-5 

Ommani, Babak Potential-Flow Predictions of a Semi-Displacement 
Vessel Including Applications to Calm Water 
Broaching, CeSOS 

IMT- 
2013-6 

Xing, Yihan Modelling and analysis of the gearbox in a floating 
spar-type wind turbine, CeSOS 

IMT-7-
2013 

Balland, Océane Optimization models for reducing air emissions 
from ships, IMT 

IMT-8-
2013 

Yang, Dan Transitional wake flow behind an inclined flat 
plate-----Computation and analysis,  IMT 

IMT-9-
2013 

Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Damage 
for a Ship Hull due to Ice Action, IMT 

IMT-10-
2013 

Ramìrez, Pedro Agustìn Pèrez Ageing management and life extension of technical 
systems- 
Concepts and methods applied to oil and gas 
facilities, IMT 

IMT-11-
2013 

Chuang, Zhenju Experimental and Numerical Investigation of Speed 
Loss due to Seakeeping and Maneuvering. IMT 

IMT-12-
2013 

Etemaddar, Mahmoud Load and Response Analysis of Wind Turbines 
under Atmospheric Icing and Controller System 
Faults with Emphasis on Spar Type Floating Wind 
Turbines, IMT 

IMT-13-
2013 

Lindstad, Haakon Strategies and measures for reducing maritime CO2 
emissons, IMT 

IMT-14-
2013 

Haris, Sabril Damage interaction analysis of ship collisions, IMT 

IMT-15-
2013 

Shainee, Mohamed Conceptual Design, Numerical and Experimental 
Investigation of a SPM Cage Concept for Offshore 
Mariculture, IMT 

IMT-16-
2013 

Gansel, Lars Flow past porous cylinders and effects of 
biofouling and fish behavior on the flow in and 
around Atlantic salmon net cages, IMT 

IMT-17-
2013 

Gaspar, Henrique Handling Aspects of Complexity in Conceptual 
Ship Design, IMT 

IMT-18-
2013 

Thys, Maxime Theoretical and Experimental Investigation of a 
Free Running Fishing Vessel at Small Frequency of 
Encounter, CeSOS 

IMT-19-
2013 

Aglen, Ida VIV in Free Spanning Pipelines, CeSOS 

IMT-1-
2014 

Song, An Theoretical and experimental studies of wave 
diffraction and radiation loads on a horizontally 
submerged perforated plate, CeSOS 
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IMT-2-
2014 

Rogne, Øyvind Ygre Numerical and Experimental Investigation of a 
Hinged 5-body Wave Energy Converter, CeSOS 

IMT-3-
2014 

Dai, Lijuan  Safe and efficient operation and maintenance of 
offshore wind farms ,IMT 

IMT-4-
2014 

Bachynski, Erin Elizabeth Design and Dynamic Analysis of Tension Leg 
Platform Wind Turbines, CeSOS 

IMT-5-
2014 

Wang, Jingbo Water Entry of Freefall Wedged – Wedge motions 
and Cavity Dynamics, CeSOS 

IMT-6-
2014 

Kim, Ekaterina Experimental and numerical studies related to the 
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