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Abstra
t

The present work has relevan
e for the behaviour of a vessel equipped with a moonpool

in o
ean waves. A moonpool is an opening in the middle of the vessel used for various

marine operations. Resonant wave os
illations in the moonpool with the water moving

as a verti
al piston o

ur and 
ause operational limits. It is again 
on�rmed by both

numeri
al 
al
ulations and experiments in idealized two-dimensional �ow 
onditions that

�ow separation from the lower entran
e to the moonpool has a 
lear limiting e�e
t on

the resonant moonpool os
illations. Furthermore, the in�uen
e of low forward velo
ity on

the piston-mode amplitude has been investigated and found insigni�
ant. By 
onsidering

in
oming waves on a freely-�oating vessel, it is found that the water behavior in the

moonpool has a signi�
ant e�e
t on the body motions in 2D-�ow.

The present work is divided in two parts, �rst for
ed heave motion with and without

low forward velo
ity of a two-dimensional body with moonpool has been 
onsidered. The

se
ond part is regular wave-indu
ed behaviour of a �oating stationary two-dimensional

body with a moonpool, with fo
us on resonant piston-mode motion in the moonpool and

rigid-body motions. Two separate dedi
ated two-dimensional experimental programmes

have been performed. The out
ome has been used to validate the two developed numeri
al

hybrid methods that are used in the present work. The two hybrid methods are here

named the "semi-nonlinear hybrid method" and the "nonlinear hybrid method", and both


ouple potential and vis
ous �ow. The semi-nonlinear hybrid method uses linear free-

surfa
e and body-boundary 
onditions. The nonlinear hybrid method uses fully nonlinear

free-surfa
e and exa
t body-boundary 
onditions. The harmoni
 polynomial 
ell (HPC)

method is used to solve the Lapla
e equation in the potential �ow domain, while the �nite

volume method (FVM) is used to solve the Navier�Stokes equations in the vis
ous �ow

domain near the 
orners of the body. Results from the two hybrid methods are 
ompared

with the experimental data. The nonlinear hybrid method 
ompares well with the data,

while 
ertain dis
repan
ies are observed for the semi-nonlinear method. In parti
ular,

the roll motion is over-predi
ted by the semi-nonlinear hybrid method. Error sour
es in

the semi-nonlinear hybrid method are dis
ussed and investigated in detail in a separate

se
tion.

The �rst part of the work involved both experimental and numeri
al study of sele
ted

parameters and their e�e
t on the piston-mode amplitude during for
ed heave os
illations.

More pre
isely we investigated the e�e
t of di�erent drafts, moonpool edge pro�les, heave

os
illation amplitudes and low forward velo
ities.

In the se
ond part regular wave-indu
ed behaviour of a �oating two-dimensional body

with a moonpool was also studied by experimental and numeri
al methods. Here we

have investigated the e�e
t of di�erent wave steepnesses, vessel drafts and moonpool edge

pro�les on a stationary �oating body. The rigid-body and moonpool wave amplitude
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response in head and following seas are also studied numeri
ally. We see from the re-

sults that the moonpool strongly a�e
ts heave motions in a frequen
y range around the

piston-mode resonan
e frequen
y of the moonpool. No resonant water motions o

ur in

the moonpool at the piston-mode resonan
e frequen
y. Instead large moonpool motions

o

ur at a heave natural frequen
y asso
iated with small damping near the piston-mode

resonan
e frequen
y.
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Nomen
lature

α Phase angle between heave a

eleration and moonpool motion

β Phase angle between heave and roll a

eleration

δy Cell length.

δz Cell height.

δbl Os
illating boundary layer thi
kness

ηMax
4 Largest roll angle expe
ted during a numeri
al nonlinear hybrid method sim-

ulation

Γ Cir
ulation around a 
losed 
urve in the liquid domain

u Absolute liquid parti
le velo
ity

u∗
Temporary arti�
ial liquid velo
ity after the adve
tion step

u∗∗
Temporary arti�
ial liquid velo
ity after the adve
tion and di�usion steps

ur Relative liquid parti
le velo
ity in the body-�xed 
oordinate system

µ Dynami
 vis
osity of the liquid

∇ Nabla operator

ν Kinemati
 vis
osity of the liquid

νw Damping 
oe�
ient of numeri
al bea
h

ω Angular frequen
y

ωe Angular frequen
y of en
ounter

Ωpot Potential �ow domain part of the liquid domain

Ω
CFD

Vis
ous domain part of the liquid domain

ψ Linear a

eleration potential

ρ Liquid density

τ Vis
ous fri
tional stress, note there are many stress 
omponents

v
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τw Dimensionless parameter for wave 
hara
teristi
s, τw = ωeU/g

p̃ p

ρ
+ gz

ϕ Velo
ity potential

ξ Damping ratio

B Breadth of one side hull

B′
Total breadth of moonpool hull in
luding s
rews in longitudinal dire
tion

Bs Length of the s
rew 
onne
ting the hull to the mooring line

B
T

Total breadth of the body, 2B + b.

d Hull draft

Fpre Pre-tension in mooring lines

g A

eleration of gravity

h Water depth

I Roll moment of inertia about the 
enter of gravity

k Wave number

ks Total spring sti�ness 
onstant

m Body mass

rxx Radius of gyration in roll

Re Reynolds number

SBP Potential �ow part of hull surfa
e

SBV Vis
ous �ow part of hull surfa
e

U Forward velo
ity

zb Verti
al position of 
enter of buoyan
y from the 
alm free surfa
e, positive

upwards

zs Verti
al distan
e from the s
rew to the 
enter of gravity

z
G

Verti
al position of 
enter of gravity from the 
alm free surfa
e, positive

upwards

(y, z) The body-�xed 
oordinate system, the origio is atta
hed to the 
enter of

gravity and it followes and rotates with the motion of the body

(ye, ze) The Earth-�xed 
oordinate system, remains �xed in time and spa
e to the

free surfa
e at the 
enterline of the initial position of the body
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App. Appendage at moonpool inlet

b Moonpool gap width

BBC Body-boundary 
onditions

BEM Boundary Element Method

BICGSTAB Bi
onjugate Gradient Stabilized method

CA Control area

CFD Computational Fluid Dynami
s

CFL Courant-Friedri
hs-Lewy number

COG Center of gravity

FDM Finite Di�eren
e Method

FEM Finite Element Method

FFT Fast Fourier Transform

Fn Froude number

FVM Finite Volume Method

GM Meta
entri
 height

GMRES Generalized Minimal Residual method

HPC Harmoni
 Polynomial Cell

ILU In
omplete Lower Upper

NL Nonlinear

NS Navier-Stokes

S-NL Semi-nonlinear

TVD Total Variation Diminishing s
heme

VOF Volume Of Fluid

WAMIT Potential �ow 
al
ulation software in the frequen
y domain
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Chapter 1

Introdu
tion

A moonpool is de�ned as an opening in the bottom of a ship hull. The opening allows

for better a

ess to the water below, and provides shelter and prote
tion for most of the

environmental 
onditions. Marine operations from ships often involve moonpools to lower

or lift devi
es su
h as subsea modules and ROVs. A moonpool allows, for instan
e, divers a

more prote
ted environment to enter or leave the water. Resonant piston-mode resonan
e


an be ex
ited by the relative verti
al ship motions in the neighborhood of the moonpool

and 
ause strong ampli�
ation of the dynami
 wave elevation in the moonpool. Here the

piston-mode resonan
e is de�ned as the resonant liquid motion in the moonpool 
ausing

a net liquid �ux through the lower entran
e of the moonpool. The resonant �ow is nearly

verti
al and one-dimensional in most of the moonpool. The word piston is asso
iated with

that the liquid motion appears like the motion of a piston. The stronger the shed vorti
ity

due to �ow separation at the moonpool entran
e and inside the moonpool is, the larger

the damping is, and the smaller the maximum resonant piston-mode wave amplitude is

for a given ship in a given sea 
ondition. It is of pra
ti
al interest to know the free-surfa
e

elevation in the moonpool and the ambient �ow velo
ities and a

elerations in the vi
inity

of the moonpool in order to assess the loads on devi
es being lifted or lowered through

the moonpool.

The use of moonpools to perform marine operations is expe
ted to in
rease signi�-


antly. One reason is the rapid in
rease in development of subsea fa
tories. Operators

have de�ned goals su
h as near all-year availability for maintenan
e and repair, requiring

operability in e.g. signi�
ant wave height H

s

= 4.5m in the Aasgaard �eld in the North

Sea. Spe
ialized o�shore vessels with moonpool are regarded as one of the key elements

of a
hieving this. However, this requires 
areful design of the moonpool in order to avoid

ex
essive resonant piston-mode motion

Moonpools are frequently designed to be used on �shing vessels. The purpose is then

that the moonpool will work as a hauling well lo
ated in the 
entre of the hull where the

longline will be hauled in. This feature, whi
h helps redu
e �sh losses and improves 
rew

safety, will also allow 
ontinuation of �shing even in bad weather. An example of this is

the longliner �shing vessel M/S "Geir".

Another area of appli
ation for moonpools is for underwater diving bells or underwater

habitats. Here, the moonpool is the only entry or exit point. It is the pressure inside the

diving bell that balan
es the hydrostati
 pressure at the surfa
e of the moonpool. The

pressure will therefor in
rease with in
reasing depth. In the 
urrent work, this appli
ation

is out of s
ope.

3



4 Introdu
tion

1.1 Moonpool piston-mode resonan
e

One of the �rst arti
les dis
ussing moonpool behaviour is Aalbers (1984). He related the

moonpool motion to a mass spring system, and found empiri
al values through an experi-

mental 
ampaign. There has been studies like in Faltinsen (1990) based on negle
ting the

e�e
t from outside the moonpool and assuming one-dimensional verti
al potential �ow in

the moonpool.

Molin (2001) predi
ted the natural periods in moonpools by a quasi-analyti
al potential-

�ow approa
h. The work was for both the two- and three-dimensional 
ase on in�nite

water depth by approximating the �ow outside the moonpool. The out
ome was a pra
-

ti
al engineering friendly formula for the piston-mode natural period of the moonpool.

By using 2D potential and vis
ous �ow methods, Lu et al. (2010) studied the wave

amplitude inside narrow gaps between three adja
ent boxes subje
ted to in
oming waves.

Model tests and numeri
al 
al
ulations in 3D of the gap resonan
e between two rigidly

linked side by side barges were performed by Molin et al. (2009). The rigid-body motions

of two freely �oating adja
ent barges in 3D were 
onsidered in Sun, Taylor, and Taylor

(2010) by using a �rst- and se
ond-order potential �ow analysis.

Faltinsen et al. (2007) investigated for
ed heave os
illations of a two-dimensional

moonpool se
tion using a domain-de
omposition (DD) s
heme within the framework of

linear potential �ow theory. The hull parts were re
tangular shaped and �nite water

e�e
ts were 
onsidered. Their DD s
heme led to a system of integral equations on the

transmission interfa
es that solved for the piston-mode natural frequen
y and the steady-

state piston-mode amplitude. To improve the potential �ow models some authors have

tried to �t an arti�
ial, empiri
ally based damping to the free-surfa
e 
ondition inside

the moonpool. This is known as a numeri
al damping lid. Two ships side-by-side was

investigated by Huijsmans et al. (2001), who used a lid approa
h to damp the moonpool

motion to get realisti
 ship motions of a FPSO moored together with LNG 
arrier. Several

other authors have also 
hosen the same strategy, i.e. to damp the potential �ow solution

by an arti�
ial, empiri
ally based numeri
al lid on the free-surfa
e inside the moonpool

gap (see for instan
e Bu
hner et al. (2001)). Lee et al. (2002) studied the "Navis

Explorer I", whi
h is a drillship equipped with 3 large moonpools. By using a numeri
al

lid on the free-surfa
e inside the moonpools, good agreement with experimental results

was a
hieved. Pauw et al. (2007) analysed the e�e
t the numeri
al lid had on the linear

versus se
ond order wave drift quantities. Lu et al. (2011) investigated the possibility of

�nding the lid damping 
oe�
ient based on experimental and CFD results. The damping


oe�
ient was in their work observed not to be sensitive to the variation of moonpool gap

width, body draft, breadth-to-draft ratio and number of bodies. Their fo
us was on wave

for
es, where Lu et al. (2011) used the same setup with fo
us on the wave elevation in the

moonpool. It is not known when using a numeri
al damping lid how well the �ow in the

vi
inity of the moonpool is predi
ted. Lu and Chen (2012) investigated what 
ontributed

to the dissipation of the piston-mode amplitude generated from in
oming waves. Both the

dissipation from the boundary layers inside the moonpool gap, and in whi
h �uid areas

around the moonpool gap the vorti
ity dissipation was largest were studied.

Wang and Wu (2008) studied both verti
al and horizontal for
ing motions of two box

shaped stru
tures with a distan
e of 7b between the two boxes, where b is the breadth

of one box. They used a Finite Volume Method (FVM) based on potential �ow with a

se
ond order perturbation s
heme to solve the free-surfa
e 
ondition. Their fo
us was
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on sloshing modes inside the moonpool. Later Wang et al. (2011) studied the problem

further using nonlinear free-surfa
e 
onditions, and found that the se
ond order solution

in Wang and Wu (2008) was bounded by nonlinear e�e
ts. Meaning that there will be

an energy transfer to higher modes as in the normal sloshing problem, see Faltinsen and

Timokha (2009).

Re
ently Kristiansen et al. (2013) validated a hybrid method based on 
oupling po-

tential and vis
ous �ow against a 3D moonpool set-up with sharp 
orners at the lower

moonpool entran
e. Their results showed that the resonant free-surfa
e amplitude in the

moonpool de
reases from around 70 times the for
ed heave motion, to between 10-20

times the for
ed heave motion when �ow separation is in
luded.

Sphaier et al. (2007) have studied a mono
olumn platform equipped with a moonpool

named the MONOBR, where the obje
tive was to use the moonpool as a heave minimiza-

tion devi
e for the response in the wave period domain. Torres et al. (2008) 
ontinued

this analysis, and 
reated a simpli�ed mass-spring-damped model to analyse the system,

where the moonpool is represented as a separate body with mass, damping, sti�ness and


oupling terms with the mono
olumn. Unfortunately some 
oe�
ients still need to be

experimentally found.

A preliminary CFD study in
luding turbulen
e modelling of the vorti
ity generated

in a moonpool between two in�nite barges subje
ted to an in
oming steady 
urrent were

performed by Heiden et al. (2013). Results for the water motion in the moonpool due to

the steady 
urrent are also given.

A 
losely related problem featuring piston-mode resonan
e is the mooring of a tanker

to a terminal, this was studied by Kristiansen (2009) using a BEM with a vortex tra
king

method. His thesis in
ludes the works Kristiansen and Faltinsen (2008), Kristiansen and

Faltinsen (2009) and Kristiansen and Faltinsen (2010).

Molin et al. (2002) designed an experimental programme to quantify the energy dissi-

pation due to �ow separation at the lower edges of re
tangular moonpools. By 
onsidering

the dissipation of a propagating wave between two i
e sheets the drag 
oe�
ient suggested

to be used for design was found to be 0.5. In addition it was estimated that the fri
tional


ontribution to the energy dissipation was about 15% in model s
ale 
onditions.

In addition to the 
hallenges with piston-mode resonan
e in a moonpool, the presen
e

of a moonpool in a ship hull has also been found to in
rease the resistan
e in transit,

van `t Veer and Tholen (2008) has experimentally studied various solutions on how to

for instan
e minimize the added resistan
e due to a moonpool. Gaillarde and Cotteleer

(2005) present a summary of various moonpool motions studies and give many pra
ti
ally

useful solutions on how to damp out moonpool motions. Among the results presented are

studies on how to redu
e the added resistan
e due to an open moonpool at transit.

Yeung and Seah (2007) studied the piston-mode and higher-order resonan
e modes

for a moonpool between two heaving re
tangular �oating 
ylinders using an eigenfun
tion

mat
hing method.

Two-dimensional moonpool resonan
e in a two-layer liquid is studied in Zhang and

Bandyk (2013) and Zhang and Bandyk (2014) by potential �ow theory. In the �rst study

the interfa
e between the two liquids with di�erent density is lo
ated below the stru
ture,

here the resonan
es are found to be similar to the one-liquid 
ase. It is also found that

the resonan
es are 
losely asso
iated with the free-surfa
e elevation inside the moonpool

gap, not the wave elevation at the interfa
ial surfa
e. In the follow up study Zhang and

Bandyk (2014), the moonpool stru
ture is both free surfa
e and interfa
e pier
ing. The
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piston-mode resonan
e is slightly 
hanged and more resonan
e frequen
ies are found due

to sloshing modes at the interfa
e.

The rigid-body wave indu
ed motions of a full s
ale drillship with and without a moon-

pool lo
ated midships by linear potential �ow theory using a BEM have been 
ondu
ted

by Yang et al. (2013). The in�uen
e of the moonpool on the response amplitude operators

for all 6 degree of freedoms is 
ompared. Their results show some 
hange in the heave

motion for wave periods below the natural heave period.

An extensive experimental programme of a the rigid-body and moonpool motions of

barge equiped with a large moonpool 
overing approximately 45% of the overall length

and one third of the width is des
ribed in Maisondieu and Boullue
 (2001) and Maisondieu

and Ferrant (2003).

A related problem is the linear potential-�ow study of trapped modes in the frequen
y

domain. The trapped mode was �rst "dis
overed" by M
Iver (1996) in two-dimensions. A

trapped mode is de�ned as a free-surfa
e os
illation between bodies at a 
ertain frequen
y

that does not radiate waves to the far-�eld. An inverse pro
edure 
an be used to 
al
ulate

the form of bodies with trapped modes. The inverse pro
edure works like the following,

�rst two sour
es are pla
ed at the free surfa
e with a distan
e of half a wave length between

them. Then the frequen
y where the far-�eld waves from one of the sour
es 
an
el with

waves from the other sour
e is found, su
h that there are not generated any waves in

the far-�eld. The last step is to 
reate the stream-fun
tion and look at the streamlines

around the sour
es, as the streamlines guarantees that there is no �ow perpendi
ular to

the streamline. The streamlines 
an be taken to be shape of the body. Further studies

have revealed many interesting properties of these trapped modes. One of these is that

the trapped mode 
annot be ex
ited by in
oming waves. At the trapped mode frequen
y

the added mass goes to in�nity, while it 
hanges between large positive and large negative

values in the vi
inity of the trapped mode frequen
y.

Later M
Iver and M
Iver (1997) used a ring sour
e to 
reate similar results in 3

dimensions. Newman (1999) studied the added mass, damping and ex
iting for
es of the

shape found in M
Iver and M
Iver (1997) using WAMIT. More three-dimensional shapes

where found in M
Iver and Newman (2003), in
luding shapes that are non-axisymmetri
.

M
Iver and M
Iver (2006) 
reated a trapping stru
ture that exists also for a freely

�oating problem. This means that the motion of a de
ay test will not de
ay in time.

However, in the 
ase from M
Iver (1996) a de
ay tests will not ex
ite the trapped mode,

and therefore de
ay in time. The �oating trapped mode is a 
onsequen
e of that the heave

natural period 
oin
ides with the piston-mode natural period. Again it is important to

stress that this is done using linear potential �ow theory.

1.2 Appli
able numeri
al methods

In order to develop a suitable and appli
able numeri
al method to study the moonpool

problem, we must 
arefully 
onsider whi
h physi
al e�e
ts that are important to model.

There are three obvious 
on
lusions for our problem; �rst we assume that a large part of

the water domain away from the the 
orners of the body 
an be des
ribed using potential

�ow, se
ondly that �ow separation from the hull must be a

ounted for and last that the

air �ow around the stru
ture 
an be negle
ted. The last assumption is based on that the

moonpool is open to the to the atmospheri
 pressure. Based on these assumptions we have
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here 
hosen to 
ouple a potential �ow solver with a vis
ous �ow solver. In addition, it is a

question if turbulen
e matters in our problem. However, it is believed to be se
ondary in

our appli
ation when �ow separation from sharp 
orners o

urs. Hen
e we do not 
onsider

it.

Another good reason for not applying the assumptions of vis
ous �ow in the entire �uid

domain, whi
h may imply solving the Navier-Stokes equation with a free-surfa
e tra
king

method, is the major disadvantages in CPU time. Although the proposed hybrid methods

in this work are expe
ted to speed up performan
e, we have not done any 
omparison

study towards a 
ommer
ially available CFD solver with regards to a

ura
y or e�
ien
y.

Meaning that we will not report the a
hieved CPU time in our simulations.

There exist several strategies for 
oupling vis
ous �ow and potential �ow models. It


an simply be done by using a potential-�ow model to generate initial 
onditions to a

vis
ous �ow model. An example of this is by using a potential-�ow model to simulate a

wave breaking up to when the free surfa
e interse
ts itself, then use the potential �ow

results to generate initial 
onditions to a vis
ous �ow simulation, see Grilli et al. (2004). A

stronger 
oupling strategy whi
h is similar to ours is summarized in Grilli (2008). Basi
ally

a potential-�ow problem is solved on a large domain using the boundary element method

(BEM). On a smaller vis
ous domain, the Navier-Stokes (NS) equations are split in an

invis
id (with supers
ript I) and a vis
ous part (with supers
ript V ), u = uI + uV
and

p = pI + pV . Sin
e the invis
id part is known from the potential �ow BEM 
al
ulation,

the NS-equations 
an be used to solve for uV
and pV . They use this strategy to solve a

sediment transport model, where the vis
ous domain is lo
ated 
lose to the sea bottom.

Kim et al. (2010) proposed to use a transmission zone between a BEM solving for

the potential �ow and the (NS)-equations with a volume of �uid (VOF) te
hnique for

free-surfa
e 
apturing to generate a two-way 
oupling between the potential and vis
ous

�ow domains.

The green water on de
k problem has been investigated in a series of publi
ations by

Coli

hio et al. (2006), Gre
o et al. (2007), Gre
o et al. (2013) and other related arti
les

by the same authors using a one-way domain de
omposition te
hnique where a BEM is

used to solve for in
oming waves, and a Navier-Stokes solver with a level-set te
hnique to


apture the evolution of the air-water interfa
e is used to generate the breaking wave on the

stru
ture. When one uses a BEM 
ombined with a one-�uid (air-water) solver, then one

must also solve partly the air problem by the BEM. Furthermore, one has to 
onsider the

in
onsisten
y that a BEM provides a sharp air-water interfa
e while a surfa
e 
apturing

method like level-set and VOF does not. A fully nonlinear domain de
omposition solver

for e�
ient 
omputations of wave loads on surfa
e pier
ing stru
tures is proposed by

Paulsen et al. (2014). They 
ombine a Navier-Stokes/VOF solver in the inner domain

around a 
ylindri
al surfa
e pier
ing stru
ture, with a fully potential �ow solver in the

outer domain. Their approa
h is a one-way 
oupling, meaning that they have to damp

out the di�ra
tion waves due to the stru
ture before it rea
hes the potential �ow domain.

Campana et al. (1995) applied a domain de
omposition method to analyse the �ow

past a ship hull. Here an overlapping region was used, and the solution between the

two domains was mat
hed through iteration between the potential �ow and vis
ous �ow

solver.

Re
ently Zhang et al. (2014) and Zhang (2013) 
oupled a potential-�ow BEM with a

vis
ous-�ow Finite Element Method (FEM) with no overlapping domain, and performed

various validation studies in
luding dam break, solitary wave over an obsta
le and solitary
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wave breaking on an irregular 3D bathymetry.

In this work the hybrid method from Kristiansen and Faltinsen (2012) is used as basis

and developed further. Kristiansen and Faltinsen (2012) solved for linear potential �ow

theory using the linear a

eleration potential and 
oupled it to the pressure in the Navier-

Stokes equation. The governing equations were solved by the FVM in both domains.

Another option for modelling �ow separation in potential �ow methods su
h as BEM

is to apply an invis
id vortex tra
king method. This approa
h was applied by among

others Kristiansen (2009), Braathen (1987) and Faltinsen and Pettersen (1987).

Also when it 
omes to numeri
al methods for potential �ow there exist a vast sele
tion

of available methods. The most popular one is perhaps the BEM originally from Hess

and Smith (1962), whi
h only involves dis
retizing of the boundaries of the water domain.

The number of unknowns 
an further be redu
ed by applying suitable Green fun
tions

that satisfy some of the boundary 
onditions.

Among the many methods available we will in this work mostly employ the Harmoni


Polynomial Cell (HPC) method for dis
retizing and solution of the potential �ow domain.

The HPC method is a �eld method where the entire water domain has to be dis
retized

by 
ells. The HPC method was �rst introdu
ed by Shao and Faltinsen (2012a) to solve

the Lapla
e equation for potential �ow. The inspiration was taken from the 
onventional

FDM, however, in the HPC method harmoni
 polynomials that satisfy the Lapla
e equa-

tion are used as basis. Later publi
ations Shao and Faltinsen (2012b) and Shao and

Faltinsen (2013) have shown improvements of the method into 3D and various validation

studies have been performed. The most re
ent arti
le about the HPC method 
an be

found in Shao and Faltinsen (2014), where a detailed 
omparison of the e�
ien
y and

a

ura
y against various other methods are presented. The 
omparison shows improve-

ments over both other �eld methods (FVM, FEM and FDM), boundary element methods

(BEM) and Fast Multipole A

elerated BEM.

More review and details about the HPC method in 2D will be given later in the thesis,

sin
e they are important for the understanding of the 
oupling between the potential and

vis
ous �ow.



Chapter 2

Mathemati
al formulations

In the present 
hapter the mathemati
al ba
kground of a two-dimensional numeri
al wave

tank (NWT) will be presented and des
ribed. One part of the NWT will be des
ribed by

potential �ow theory, whi
h assumes that the �ow is irrotational and the liquid invis
id

and in
ompressible. The other part of the NWT will be des
ribed by the Navier-Stokes

equations for a vis
ous and in
ompressible liquid assuming laminar �ow. The main 
on-

tribution from this numeri
al work is the 
oupling between the two liquid domains based

on di�erent numeri
al methods.

The main reason for not 
hoosing only a potential �ow method to solve our problem is

that vorti
ity separated from the sharp 
orners at the inlet of the moonpool is previously

found to 
ontribute signi�
antly to the damping of the moonpool piston-mode motion.

Furthermore, it is experien
ed by others that the propagation of waves 
an be most

a

urately done by using a potential �ow method. In addition, it is 
omputationally

expensive to solve the entire liquid domain using only a vis
ous solver.

Meaning that for all parts of the liquid domain that potential �ow theory 
an be

used instead of vis
ous �ow theory, more simpli�
ations in the theory behind the physi
al

problem 
an be done, and the 
orresponding numeri
al solution will be
ome faster. This

will be
ome 
learer to the reader after the next two 
hapters.

2.1 Governing equations for the liquid

The liquid domain is de
omposed into two separate, but strongly 
onne
ted and 
oupled

domains. In a domain near the body we seek the solution of the pressure and velo
ities

in the liquid from the Navier-Stokes equations. The derivation and detailed explanation

of the Navier-Stokes equations 
an be found in many textbooks, i.e. White (2006) and

Faltinsen and Timokha (2009). The Navier-Stokes equations in an Earth-�xed 
oordinate

system for an in
ompressible liquid is

∂u

∂t
+ u · ∇u = −1

ρ
∇p− gk+ ν∇2u in Ω

CFD

, (2.1)

where Ω
CFD

is the vis
ous domain part of the total liquid domain. To be pre
ise: We

have assumed that the Earth-�xed 
oordinate system is an inertial 
oordinate system.

The latter assumption is appropriate for our appli
ations. Here u = (v, w) is the absolute
liquid parti
le velo
ity, ρ is the density of the liquid, g is the a

eleration of gravity, k is

9
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the unit ve
tor in verti
al ze-dire
tion in the Earth-�xed 
oordinate system with positive

dire
tion upwards, ν is the kinemati
 vis
osity of the liquid, ∇ is the nabla operator

and p is the total pressure in the liquid. Note that equation (2.1) does not in
lude any

turbulen
e model and is based on a laminar �ow assumption. It 
an be used for turbulent

�ow of a Newtonian �uid. However, it is 
omputational time that prohibits it. So instead

some empiri
al turbulen
e models are 
ommonly used. Further, the 
ontinuity equation

for liquid mass reads,

∇ · u = 0 in Ω
CFD

. (2.2)

The transformation of equations (2.1) and (2.2) into a body-�xed noninertial 
oordinate

system will be given later, where the noninertial 
oordinate system will be �xed to an

obje
t that is a

elerating in translation and rotation in time.

For the problems 
onsidered in this work the Navier-Stokes equations will be solved in

a domain near the body, that in
ludes the edges, where vorti
ity is expe
ted to be shed.

Further away from the hull, the Lapla
e equation for the velo
ity potential ϕ or linear

a

eleration potential ψ will be solved. In addition, the entire free surfa
e is within the

potential-�ow domain.

The basi
 assumptions behind the Lapla
e equation for ϕ or ψ are the following: The

liquid �ow is irrotational, the liquid is invis
id and in
ompressible in the potential �ow

domain. This implies that there exists a velo
ity potential ϕ that satisfy,

∇2ϕ = 0 in Ωpot. (2.3)

Here Ωpot is the potential �ow part of the liquid domain, and the absolute liquid velo
ity

is de�ned as u = ∇ϕ.
It will later be used that also the linear a

eleration potential ψ satis�es the Lapla
e

equation. Within linear potential �ow theory the a

eleration potential is de�ned as

ψ = ∂ϕ/∂t. Here the a

eleration of the liquid at a �xed point 
an be found from the

linear a

eleration potential as a = ∇ψ, whi
h further needs to be time integrated to �nd

the velo
ity, based on the 
hosen time-integration method.

It should be noted that the Lapla
e equation is invariant, meaning that it does not


hange from an inertial 
oordinate system to a noninertial 
oordinate system. In our 
ase,

the Earth-�xed 
oordinate system is an inertial 
oordinate system, and the 
onsidered

body-�xed 
oordinate system is a noninertial 
oordinate system.

2.1.1 Body-�xed 
oordinate system

To begin explaining the governing equations for the liquid �ow in a body-�xed 
oordinate

system the di�eren
e between two 
oordinate systems, an Earth-�xed 
oordinate system

and a body-�xed 
oordinate system will be explained. (See Figure 2.1.) The Earth-�xed

(ye, ze)-
oordinate system will remain �xed in time and spa
e to the free surfa
e at the

initial position of the ship, while the body-�xed (y, z)-
oordinate system will follow the


enter of gravity of the body and rotate with the roll motion of the body.

In order to rotate a ve
tor b0e in the Earth-�xed 
oordinate system to the body-�xed


oordinate system at rest, the standard two-dimensional rotation matrix is applied

[

by0
bz0

]

=

[

cos η
4

− sin η
4

sin η
4

cos η
4

] [

by0e
bz0e

]

, (2.4)
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Figure 2.1: De�nition of the two 
oordinate systems. The body-�xed (y, z)-
oordinate system is

�xed to the 
enter of gravity of the body, and it will follow and rotate with the motions of the

body. The Earth-�xed (ye, ze)-
oordinate system is �xed to the initial position of the body at

the 
alm free surfa
e.

where η
4

is the angle between the two 
oordinate systems, here exempli�ed with the roll

angle, as will be the 
ase for all rotations in this work.

The relation between the relative liquid velo
ity as seen in the body-�xed 
oordinate

system and the absolute liquid velo
ity as seen in the Earth-�xed 
oordinate system is

given as,

ur = u− u0 − ω0 × r (2.5)

Here ur is the relative liquid parti
le velo
ity seen from the body-�xed 
oordinate system.

u is the absolute liquid parti
le velo
ity seen in the Earth-�xed 
oordinate system, but

rotated with the same angle as the body-�xed 
oordinate system. ω0 is the angular velo
-

ity of the body (whi
h 
ontains only the roll-angular velo
ity η̇
4

in this two-dimensional


ase), u0 is the translatory velo
ity of the origin of the body-�xed 
oordinate system and

r is the radius ve
tor from the origin of the 
oordinate system to the liquid parti
le. Here

the origin of the body-�xed 
oordinate system is assumed to 
oin
ide with the 
enter of

gravity of the body.

The Navier-Stokes equations (2.1) and (2.2) are 
hanged to re�e
t that the governing

equations are solved in a body-�xed rotating 
oordinate system. The detailed derivation

on how to transform the Navier-Stokes equations from an inertial to a noninertial 
o-

ordinate system 
an be found in Faltinsen and Timokha (2009) and parts of it is given

in Appendix A. A similar derivation is also applied when the equations of motion are

transformed from the Earth-�xed 
oordinate system to the body-�xed 
oordinate system.

The Navier-Stokes equations in a body-�xed 
oordinate system are given as,

∂bur

∂t
+ ur · ∇ur = −1

ρ
∇p+ g + ν∇2ur − a0

− (ω0 × u0)− ω̇0 × r in Ω
CFD

,

− 2 (ω0 × ur)− ω0 × (ω0 × r) (2.6)

∇ · ur = 0 in Ω
CFD

. (2.7)

where the term 2 (ω0 × ur) is the Coriolis a

eleration and the term ω0 × (ω0 × r) is the

entripetal a

eleration. Furthermore, ∇ is now the di�erential operator in body-�xed
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(y, z)-
oordinates. ∂b
ur

∂t
is de�ned as the time-derivative of ur for a �xed point in the

body-�xed 
oordinate system, and that the unit ve
tors are not time-di�erentiated.

In two dimensions with a yz-
oordinate system, we have only two nonzero 
omponents

in ur = [0, vr, wr] and a single 
omponent in ω0 = [η̇4, 0, 0]. Note that the gravitational

onstant g = −g [0, sin(η4), cos(η4)] 
hanges with time and depends on the roll-angular

position.

The Lapla
e equation is invariant, meaning that

∇2ϕ =
∂2ϕ

∂y2
+
∂2ϕ

∂z2
=
∂2ϕ

∂y2e
+
∂2ϕ

∂z2e
= 0 (2.8)

In addition to the governing equations, the boundary 
onditions must be 
hanged to

re�e
t that the problem is solved in a body-�xed 
oordinate system. The initial 
onditions

remain the same, as everything is assumed to start at rest within both the body-�xed


oordinate system and Earth-�xed 
oordinate system, the only di�eren
e is an o�set by

the distan
e from the 
enter of gravity to the free surfa
e.

2.2 Coupling between potential and vis
ous �ow

On the interse
tion between the potential and vis
ous �ow, the solutions for both pressure

and liquid velo
ity must be 
ontinuous. To a
hieve 
ontinuous pressure a
ross the inter-

se
tion the Bernoulli equation is applied. The equation is true for unsteady, irrotational

and invis
id liquid motion, here given in an Earth-�xed 
oordinate system as,

p

ρ
+
∂ϕ

∂t
+

1

2
|∇ϕ|2 + gze = C(t) (2.9)

where C(t) is an arbitrary fun
tion. If now the time dependen
y is in
luded in the velo
ity

potential, C(t) be
omes a 
onstant. Next we evaluate the equation at z = 0 without water
motion where p = pa, then C(t) = pa 
an be determined. On the vis
ous �ow side the

pressure p is solved for and on the potential �ow side the absolute velo
ity potential ϕ or

its time-derivative, i.e. the linear a

eleration potential ψ = ∂ϕ

∂t
is solved for.

In addition to the requirement of a 
ontinuous pressure �eld a
ross the interse
tion, the

velo
ities should be 
ontinuous in both tangential and normal dire
tion to the interse
tion.

One requirement here is that the vorti
ity generated in the vis
ous �ow domain 
annot

rea
h the interse
tion. Meaning that either the interse
tion should be as far away as

possible, or a numeri
al s
heme to damp out vorti
ity 
lose to the interse
tion should be

implemented. It is here fo
used on the �rst option. These requirements and limitations

are dis
ussed further in the se
tion on numeri
al methods. Sensitivity studies have been

performed to 
he
k the importan
e of the lo
ation of the interse
tion on the numeri
al

solution.

2.3 Free-surfa
e boundary 
onditions in potential �ow

In this se
tion free-surfa
e 
onditions to be applied in the potential �ow domain using a

body-�xed 
oordinate system are sought. The starting point is the well-established non-

linear kinemati
 and dynami
 free-surfa
e boundary 
onditions in an (non-a

elerating)
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inertial Earth-�xed 
oordinate system. Our obje
tive is to �nd the 
orresponding semi-

Lagrangian nonlinear free-surfa
e 
onditions in a noninertial rotating body-�xed 
oordi-

nate system. By semi-Lagrangian it is here meant that the free-surfa
e pro�le is followed

in z-dire
tion. Furthermore, surfa
e tension is negle
ted.

The kinemati
 free-surfa
e 
ondition is found by assuming that a liquid parti
le on

the free surfa
e remains on the free surfa
e. Then the kinemati
 free-surfa
e 
ondition is

mathemati
ally given in an Earth-�xed 
oordinate system as the material derivative of a

fun
tion Z = z − ζ(y, t) = 0, see Faltinsen and Timokha (2009)

D (ζ − z)

Dt
=
∂ζ

∂t
+
∂ϕ

∂y

∂ζ

∂y
− ∂ϕ

∂z
= 0 (2.10)

where ζ(y, t) is the free-surfa
e elevation. Note that ζ is assumed to be a single-valued

fun
tion for ea
h y-node, i.e. the simulation will break down for overturning waves.

Change of time-derivative from an inertial 
oordinate system to a body-�xed (nonin-

ertial) 
oordinate system is represented by (here exempli�ed with use of ϕ)

∂bϕ

∂t
=
∂ϕ

∂t
+ (u0 + ω0 × r) · ∇ϕ (2.11)

Here the time-derivative

∂b

dt
represents 
hange of a value in time seen from a point �xed in

the body-�xed rotating 
oordinate system, as earlier de�ned and used in equation (2.6).

The kinemati
 free-surfa
e 
ondition in a body-�xed 
oordinate system when 
ombining

equations (2.10) and (2.11), and noting that we should ex
hange ϕ with the fun
tion Z
in equation (2.11) then be
omes

∂bζ

∂t
=
∂ϕ

∂z
− ∂ϕ

∂y

∂ζ

∂y
+ (η̇2 − η̇4z)

∂ζ

∂y
− η̇3 − η̇4y on z = ζ (2.12)

On the free surfa
e 
ontinuity in pressure a
ross the interfa
e is required, su
h that

the pressure in the liquid at the free surfa
e is equal to the pressure pa in the air. This

is a 
onsequen
e of negle
ting surfa
e tension. The 
ontinuity in pressure is des
ribed

by using the Bernoulli equation (2.9) and 
ombining it with equation (2.11) to transform

Bernoulli's equation to the dynami
 free-surfa
e 
ondition in a body-�xed 
oordinate

system,

∂bϕ

∂t
= −gζef −

1

2
|∇ϕ|2 + (η̇2 − η̇4z)

∂ϕ

∂y
+ (η̇3 + η̇4y)

∂ϕ

∂z
on z = ζ. (2.13)

where ζef is the verti
al ze-position of the free-surfa
e node in the Earth-�xed 
oordinate

system. We rea
h the �nal expression for the dynami
 free-surfa
e boundary 
ondition by

rewriting Bernoulli's equation to express the time rate of 
hange of ϕ on the free surfa
e,

as one travels with the free surfa
e in z-dire
tion of the body-�xed rotating 
oordinate

system. Similarly as equation (2.11) we 
an set up a relationship between the time

derivative when following a liquid parti
le in z-dire
tion in a semi-Lagrangian manner

and the time derivative of a point �xed in a body-�xed 
oordinate system.

d∗ϕ

dt
=
∂bϕ

∂t
+
∂z

∂t

∂ϕ

∂z
=
∂bϕ

∂t
+
dbζ

dt

∂ϕ

∂z
(2.14)
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Inserting for equation (2.13) and (2.12) into equation (2.14) gives

d∗ϕ

dt
= −gζef−

1

2

(

∂ϕ

∂y

)2

+
1

2

(

∂ϕ

∂z

)2

−∂ϕ
∂z

∂ϕ

∂y

∂ζ

∂y
+(η̇2 − η̇4z)

(

∂ϕ

∂y
+
∂ϕ

∂z

∂ζ

∂y

)

on z = ζ.

(2.15)

Here the derivative

d∗

dt
express the time-derivative when following a parti
le in a semi-

Lagrangian manner in z-dire
tion of the body-�xed 
oordinate system. Here we have

used that

∂bz
∂t

= dbζ

dt
, meaning that the node atta
hed to the free surfa
e will follow the

wave elevation ζ in z-dire
tion of the body-�xed 
oordinate system.



Chapter 3

Numeri
al methods

The following se
tions will present the numeri
al methods and our approa
hes used in

the present work. Two new numeri
al hybrid methods 
ombining the Finite Volume

Method (FVM) for the numeri
al solution of the vis
ous �ow domain and the Harmoni


Polynomial Cell (HPC) method for the numeri
al solution of the potential �ow domain

are used throughout the present study.

The FVM implemented in the present work is se
ond-order a

urate for the solution of

the pressure. The basis 
an be found in many textbooks (i.e. Ferziger and Peri¢ (2002)).

However, it is felt ne
essary to present most of the details su
h that the 
oupling part 
an

be understood.

3.1 Finite Volume Method

The Finite Volume Method is a 
ommon and well established numeri
al method that uses

the volume integral of the governing equations as its starting point, or in two dimensions

the area integral. The numeri
al formulation here will be for two dimensions, but sim-

ilar derivation 
an be performed in three-dimensional spa
e. The �rst formulation here

is inspired by Faltinsen and Timokha (2009). It is here presented in detail to further

understand the 
oupling approa
h between the FVM and the HPC method.

Assume that the liquid domain is divided into a �nite number of 
ontiguous 
ontrol

areas (CAs). Then the area integral of the Lapla
e equation over ea
h CA for the velo
ity

potential will look like,

∫

CA

∇2ϕ dΩ = 0 (3.1)

The divergen
e theorem 
an now be applied to equation (3.1), and the equation 
an

be rewritten from an area integral into a line integral. First the divergen
e theorem is

given as:

∫

CA

(∇ · F) dΩ =

∫

S

(F · n) dS, (3.2)

where F is a 
ontinuously di�erentiable ve
tor �eld and n is the normal ve
tor to the line

S pointing outwards. Furthermore, S is the 
losed line around the CA, i.e. the line that


onsist of the four edges of the CA.

15
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The area-integrated Lapla
e equation (3.1) 
an then be redu
ed to a line integral, by

noting that ∇2ϕ = ∇ · ∇ϕ, i.e.
∫

S

∂ϕ

∂n
dS = 0. (3.3)

Now assume that ϕ varies linearly over ea
h 
ell. Then the normal derivatives a
ross the

edges are also 
onstant along ea
h edge. The integral is then a sum of four 
onstant line

integrals

4
∑

i=1

(

∂ϕ

∂n

)

i

dSi = 0, (3.4)

where the values of ϕ are expressed at the geometri
al 
enter of ea
h 
ell. Further,

δz

(

∂ϕ

∂y

)

e

− δz

(

∂ϕ

∂y

)

w

+ δy

(

∂ϕ

∂z

)

n

− δy

(

∂ϕ

∂z

)

s

= 0, (3.5)

where the subs
ripts e, w, n and s indi
ates whether it is the east, west, north and south

edge of the CA that are evaluated. Assume that the CA is a re
tangle, su
h that the

north and south edge has the same length, and that the east and west edge has the

same length. Further, δy is the width of the 
ell and δz is the height of the 
ell. To

keep the notation here as simple as possible both δy and δz are assumed 
onstant for all


ells. However, note that the 
ode implementation allows for di�erent 
ell sizes, as long

as the 
ell remains re
tangular. The gradients 
an be found as �rst order �nite di�eren
e

approximations between the ϕ values at the 
onsidered 
ell and its 
ell neighbours. The

horizontal �rst-order �nite di�eren
e gradient approximations are then,

∂ϕ

∂y

∣

∣

∣

∣

e

=
ϕ
E

− ϕ
P

δy
,

∂ϕ

∂y

∣

∣

∣

∣

w

=
ϕ
P

− ϕ
W

δy
, (3.6)

where ϕ
E

and ϕ
W

are the 
orresponding velo
ity potential values at the geometri
al 
enter

of the east and west neighbouring 
ells. Similar �rst-order �nite di�eren
e approximations

for the derivatives in z-dire
tion.

∂ϕ

∂z

∣

∣

∣

∣

n

=
ϕ
N

− ϕ
P

δz
,

∂ϕ

∂z

∣

∣

∣

∣

s

=
ϕ
P

− ϕ
S

δz
, (3.7)

where ϕ
N

and ϕ
S

are the 
orresponding velo
ity potential values of the geometri
al 
enter

of the north and south 
ells. The equation (3.5) 
an then �nally be rewritten to look like,

δz

δy
ϕ
E

+
δz

δy
ϕ
W

+
δy

δz
ϕ
N

+
δy

δz
ϕ
S

− 2

(

δz

δy
+
δy

δz

)

ϕ
P

= 0. (3.8)

For an implementation with di�erent 
ell sizes, the distan
e between the two 
ell nodes

are di�erent from the width or height of the 
ells, and equation 3.8 will 
hange.

Equation (3.8) is only valid for 
ells that are not adja
ent to any boundaries of the

liquid domain, these 
ells are 
ategorized into 
ell-type 1 (see Figure 3.1). Boundary


onditions are easily implemented by 
hanging the gradient terms in equation (3.5), and

then updating equation (3.8). A typi
al example of this 
an be for 
ell-type 15, where

the north edge of the 
ell is on the body boundary. The resulting equation for 
ell-type

15 is then

δz

δy
ϕ
E

+
δz

δy
ϕ
W

+
δy

δz
ϕ
S

−
(

2
δz

δy
+
δy

δz

)

ϕ
P

= −δy ∂ϕ
∂z

∣

∣

∣

∣

n

, (3.9)
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Figure 3.1: Overview of the mesh 
ategorization into di�erent 
ell-types. In addition there are

other 
ell-type 
onne
ted to the appendages and the interse
tion between potential and vis
ous

�ow domains. Cell-type 0 represents the position of the hull. The FVM node values are lo
ated

in the middle of ea
h 
ell.

where

∂ϕ

∂z

∣

∣

n
will be known from the body boundary 
ondition.

We now explain what is done when the velo
ity potential is known at an edge. The


ell-type 5 next to the free surfa
e is used as an example. The north node is moved to

the north edge of the 
ell, and the north gradient is between the known velo
ity potential

value of the north edge and the velo
ity potential value at the 
enter of the 
ell.

The 
ategorization of the di�erent 
ell-types in the FVM s
heme are given in Figure

3.1. Other 
ell-types will be introdu
ed when the 
oupling between the HPC and FVM is

presented. Also other 
ell-types will be introdu
ed when the 
oupling between potential

and vis
ous �ow is presented. Cell-types 12, 13, 15, 16 and 17 are on the body boundary.

Further, 5, 6, 7, 16, and 17 are on the free surfa
e, and last, 2, 3, 4, 6, 7, 8 and 9 are on

the outer walls of the wave tank. The resulting matrix system is sparse, with values on

the diagonal and on four o�-diagonal lines.

A staggered mesh arrangement is applied in the present work. This means that the

liquid velo
ities will be evaluated on the edges of the 
ells and the pressure in the middle of

the 
ells. Here the horizontal v-velo
ities are valid on the east and west edges of the 
ells

(see Figure 3.2), and the verti
al w-velo
ities are evaluated on the north and south edges

of the 
ells (see Figure 3.3). The velo
ities are 
learly de�ned between two 
ells. On the

boundary of the liquid, the velo
ities are either spe
i�ed or 
al
ulated by extrapolation.

This applies to v-
ell-types 2, 3, 12 and 13, and to w-
ell-types 4, 5 and 15.

3.1.1 Time integration method

It was early in the development phase de
ided to use the expli
it fourth-order Runge-

Kutta method for time integration. The main motivation behind this was the experien
e

of others and its known 
apability to evolve the free-surfa
e 
onditions in time.

For solution of the Navier-Stokes equations Chorin's fra
tional step method is used

to solve ea
h sub-step in the expli
it fourth-order Runge-Kutta method. There are other

and well established time integration methods for solving the Navier-Stokes equations

than the 
ombination of the Chorin's fra
tional step method and the expli
it fourth-
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order Runge-Kutta method. However, the 
ombination has been proven to be stable and


apable of evolving all the di�erent steps in the present hybrid method forward in time.

For more details about the numeri
al implementation of the 
ombination of the expli
it

fourth-order Runge-Kutta method and the Chorin's fra
tional step method the reader is

referred to the pseudo
ode in Appendix C.1. In addition Ferziger and Peri¢ (2002) or

other text books on numeri
al methods for �uid dynami
s 
an be used as a sour
e for

�nding suitable time integration methods.

The following sub-se
tions will illustrate how the FVM and the Chorin's fra
tional

step method Chorin (1968) are implemented for solving the Navier-Stokes equations in

an Earth-�xed 
oordinate system (2.1). To simplify the notation Chorin's fra
tional step

method will be given for the expli
it forward Euler method, and not for the implemented

expli
it fourth-order Runge-Kutta. Extensions of the method by in
luding the additional

terms in the body-�xed Navier-Stokes equation (2.7) are straightforward. However, they

lead to some problems when solving the equations of rigid-body motion.

3.1.2 Adve
tion sub-step

The �rst step in the Chorin's fra
tional step method Chorin (1968) is the adve
tion term,

i.e. a sub-step in the time integration method is performed with only the adve
tion step

from the equation (2.1). The result is a temporary arti�
ial velo
ity �eld u∗
that is not

divergen
e free (∇ · u∗ 6= 0),

u∗ = um −∆t (um · ∇um) (3.10)

where m refers to values at the present time-step. Further, equation (3.10) is integrated

over the CA and simpli�ed using the divergen
e theorem (from equation (3.2)).

∫

CA

∂u

∂t
dΩ = −

∫

S

(u · n)u dS (3.11)

This 
an �rst be split into one equation for ea
h of the two velo
ity 
omponents,

v∗ = vm − ∆t

δyδz

(

v2e δz − v2w δz + vnwn δy − vsws δy
)

(3.12)

w∗ = wm − ∆t

δyδz

(

ve we δz − vw ww δz + w2
n δy − w2

s δy
)

(3.13)

note that the CAs are di�erent for the two velo
ity 
omponents than for the pressure

nodes, see Figures (3.2) and (3.3). Furthermore, they are evaluated on di�erent lo
ations.

These equations are valid for velo
ity 
ell-types 1, whi
h is in the middle of the liquid

domain and away from all boundaries.

There exists a great deal of literature on how to dis
retize the adve
tion step and

various total variation diminishing (TVD) s
hemes have been proposed. To ensure a

qui
k implementation and stable solution the �rst-order upwind method is 
hosen here.

This basi
ally means that for ea
h 
ell the dire
tion of the �ow is 
he
k, and values from

the nearest 
ell in the upstream dire
tion are used in equations (3.12) and (3.13). To

what degree our results are sensitive to the 
hoi
e of numeri
al solution to the adve
tion

step is unknown for the 
ase studied here. However, by 
hoosing the �rst-order upwind

method for the adve
tion step, a large numeri
al di�usion should be expe
ted Ferziger

and Peri¢ (2002).
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3.1.3 Di�usion sub-step

The se
ond step in Chorin's fra
tional step method is to do a sub-step from u∗
by in
lud-

ing the di�usion term in the Navier-Stokes equation (2.1), the results is then a se
ond

temporary arti�
ial velo
ity �eld u∗∗
that is not divergen
e free,

u∗∗ = u∗ +∆t ν∇2um. (3.14)

Again integrating over the 
ontrol areas 
entered around the velo
ity nodes and using the

divergen
e theorem, the equation be
omes,

∫

CA

∂u

∂t
dΩ = ν

∫

S

∂u

∂n
dS (3.15)

Splitting into the horizontal and verti
al velo
ity 
omponents,

v∗∗ = v∗ +
∆t

δyδz
ν

4
∑

i=1

(

∂v

∂n
dS

)

i

(3.16)

w∗∗ = w∗ +
∆t

δyδz
ν

4
∑

i=1

(

∂w

∂n
dS

)

i

(3.17)

Further, the resulting expli
it equation for the di�usion step of the Chorins method for

velo
ity nodes with 
ell-type 1

v∗∗ = v∗ +
∆t

δyδz
ν

[(

∂v

∂y

)

e

δz −
(

∂v

∂y

)

w

δz +

(

∂v

∂z

)

n

δy −
(

∂v

∂z

)

s

δy

]

(3.18)

w∗∗ = w∗ +
∆t

δyδz
ν

[(

∂w

∂y

)

e

δz −
(

∂w

∂y

)

w

δz +

(

∂w

∂z

)

n

δy −
(

∂w

∂z

)

s

δy

]

. (3.19)

Again a �rst order �nite di�eren
e in spa
e is used to approximate the derivatives. The

no-slip boundary 
ondition 
an be satis�ed through the equations above.

3.1.4 Pressure sub-step

After the temporary arti�
ial non-divergen
e free velo
ity �eld u∗∗
is found, the last step

in the Chorin's fra
tional step method is to update the velo
ity �eld with the pressure

gradient whi
h is still an unknown.

um+1 − u∗∗

∆t
= −1

ρ
∇

(

pm+1 + ρgz
)

(3.20)

Due to the 
ontinuity equation (2.2), the velo
ity �eld at the next time-step must be

divergen
e free, i.e. ∇ · um+1 = 0. The resulting equation for the pressure in the liquid

then be
omes the Poisson equation,

∇2p̃m+1 = − 1

∆t
∇ · u∗∗

(3.21)
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where we de�ne p̃ = p

ρ
+ gz. Again integrating over the 
ontrol areas with the pressure

node in the 
enter and rewriting using the divergen
e theorem, the Poisson equation 
an

be rewritten to look like,

∫

S

∂p̃

∂n
dS = − 1

∆t

∫

S

u∗∗ · n dS (3.22)

The left hand side is dis
retized in a similar way as the Lapla
e equation (3.3), and the

right hand side is equal to

∫

S

u∗∗ · n dS =

4
∑

i=1

(u∗∗ · n)i = (v∗∗e δz − v∗∗w δz + w∗∗

n δy − w∗∗

s δy) (3.23)

The total dis
retized Poisson equation for the pressure then be
omes,

p̃
E

− p̃
P

δy
δz − p̃

P

− p̃
W

δy
δz +

p̃
N

− p̃
P

δz
δy − p̃

P

− p̃
S

δz
δy

=
1

∆t
(v∗∗e δz − v∗∗w δz + w∗∗

n δy − w∗∗

s δy) (3.24)

whi
h is valid for all 
ells inside the liquid, 
ell-type 1 from Figure 3.1. The present

implementation of the Navier-Stokes solver is based on the Chorin's fra
tional step method

presented in this and the previous sub-
hapters. The following limitation applies: The

mesh must remain 
onstant in time, i.e. it does not allow re-meshing 
lose to the body

boundary. The 
onsequen
e is that body motions 
annot be simulated without linearizing

the body-boundary 
onditions around its mean position. This limitation is one of the

reasons for 
hoosing to solve the governing equations in a body-�xed 
oordinate system.

To do this, the governing equations are 
hanged, and additional steps need to be in
luded

in the sub-steps of the Chorins method.

3.1.5 Time-step size

The Courant-Friedri
hs-Lewy number (CFL) (see among others Ferziger and Peri¢ (2002))

sets an upper bound on the time-step size in order to a
hieve a stable numeri
al solution.

For a one-dimensional 
ase with 
onstant mesh size ∆x the CFL number is de�ned as,

CFL =
u∆t

∆x
(3.25)

where u is the liquid velo
ity.

This 
orresponds to the ratio of the time-step ∆t to the 
hara
teristi
 adve
tion time,

u/∆x, the time required for a disturban
e to be adve
ted a distan
e ∆x. In pra
ti
e we

use CFL= 0.5. There is also an upper limitation on the time-step due to the dis
retization

of the di�usion term. This is, however, due to the low kinemati
 vis
osity of the liquid a

less stri
t requirement on the time-step size than the CFL 
riterion.

To solve the free-surfa
e boundary 
ondition another stability 
riteria 
an be used.

Dommermuth and Yue (1987) performed a von Neumann stability analysis for the fourth-

order Runge Kutta s
heme with linearized free-surfa
e 
onditions and obtained the Courant


ondition

∆t2 ≤ 8

π

∆x

g
. (3.26)
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It is not known by the author of any similar stability analysis for the nonlinear free-surfa
e


ondition as used here in the nonlinear hybrid method.

The 
hoi
e of the time-step and mesh size also a�e
t numeri
ally the dispersion and

damping properties of free-surfa
e waves. A detailed stability analysis was performed

by Ommani (2013). The latter is based on potential �ow, and numeri
al dispersion and

damping errors were dis
ussed.

How these were implemented and time-step limits will be given when ea
h of the two

hybrid methods are presented.

3.2 Harmoni
 Polynomial Cell method

Details in this se
tion are mostly from Shao and Faltinsen (2012b), but given here to

make the details in the 
oupling at the interse
tion between potential and vis
ous �ow

domains 
learer. The fo
us here is on a two-dimensional implementation. Re
ently Shao

and Faltinsen (2014) extended the HPC method into three dimensions.

It is 
ompli
ated and demands a lot of programming work with the FVM to imple-

ment a s
heme with higher than se
ond-order spatial a

ura
y. The main motivation for

introdu
ing the HPC method is the higher order spatial a

ura
y gained with similar

implementation e�ort 
ompared to using the se
ond order FVM. By using a higher-order

spatial a

urate method, it also implies that larger 
ells 
an be used to gain the same

a

ura
y as with a lower order method.

It was found that the wave dispersion properties with a low-order FVM was sensitive

to the dis
retization of the ∂ϕ/∂z-term in the kinemati
 free-surfa
e 
ondition. The

numeri
al damping of the waves was also too large to be able to use the FVM with

in
oming waves on a �oating stru
ture. By using the HPC method the free-surfa
e waves

will be propagated with higher a

ura
y, and the waves 
an be propagated from the

wavemaker to the stru
ture without losing to mu
h energy due to numeri
al damping. In

parti
ular, the wave 
elerity is 
aptured more a

urately than with a 
onventional FVM.

The se
ond order a

urate FVM is similar to a se
ond order a

urate FDM. Bingham

and Zhang (2007) investigated the a

ura
y of nonlinear water waves by using the FDM

with di�erent orders of a

ura
ies. They showed how many 
ells were needed for a given

a

ura
y with di�erent order of the FDM. For instan
e, the se
ond-order a

urate method

requires around 25 times more 
ells than the fourth-order a

urate method to gain the

same a

ura
y.

Another feature that makes the HPC method attra
tive is that the harmoni
 polyno-

mials automati
ally satisfy the Lapla
e equation everywhere. Then we only have to make

sure that the multiplying fa
tors of ea
h polynomial are 
onsistent with the boundary


onditions both globally and lo
ally. Sin
e the harmoni
 polynomials satisfy the Lapla
e

equation, the numeri
al s
heme will 
onserve liquid mass.

When des
ribing the two-dimensional HPC method, we will operate with a lo
al Carte-

sian 
oordinate system for ea
h 
ell. The harmoni
 polynomials are in two dimensions

given by the real and imaginary parts of the 
omplex polynomial

zn = (x+ iy)n , (3.27)

where n is the order of the polynomial and i =
√
−1 is the imaginary unit. If the 
onsidered

domain is star-shaped relative to the origin, the representation of equation (3.27) in terms
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of a sum of all harmoni
 polynomials is a 
omplete set of polynomials whi
h satisfy Lapla
e

equation, see e.g. Vekua (1953). In this method we in
lude all harmoni
 polynomials up

to third-order, and the fourth-order harmoni
 polynomial 
orresponding to real part of

equation (3.27). Then we 
an write ϕ as a linear 
ombination of 8 di�erent harmoni


polynomials fj(y, z), where ea
h individual polynomial satisfy the Lapla
e equation, i.e.

ϕ (y, z) =
8

∑

j=1

bjfj (y, z)

= b1 + b2y + b3z + b4
(

y2 − z2
)

+ b5yz

+ b6
(

y3 − 3yz2
)

+ b7
(

3y2z − z3
)

+ b8
(

y4 − 6y2z2 + z4
)

. (3.28)

Note that z is no longer a 
omplex number, but a 
oordinate in the z-dire
tion. The y-axis
is the horizontal axis and the z-axis is the verti
al axis, positive upwards. It is stri
tly

speaking not ne
essary to 
hoose 8 di�erent polynomials. It is mostly due to 
onvenien
e,

as the a
hieved a

ura
y is high enough and the required in�uen
e area in
ludes the 8
neighbouring nodes. I.e. for higher a

ura
y, more polynomials and a larger in�uen
e

area is needed (more neighbouring nodes).

Equation (3.28) leads to a linear system of equations, where we �nd ϕ at 8 di�erent

lo
ations ϕ = ϕi, on a re
tangular mesh at y = yi and z = zi where i = 1..8. (See Figure
3.4 for a de�nition on the lo
al HPC numbering.) This gives a linear relationship between

the 
oe�
ients bj and the values ϕi,

ϕi =
8

∑

j=1

di,jbj (3.29)

where the element in di,j = fj (yi, zi) from (3.28) de�nes the matrix [D]. Assuming 8
points where the value of ϕ are known, the 
oe�
ients bi are found as,

bi =

8
∑

j=1

ci,jϕj . (3.30)

Here the matrix [C] is de�ned by the elements ci,j and is the inverse of the matrix [D].
Further, given a ninth point in the middle of the 8 points (see Figure 3.4), we have a basis
for 
onstru
ting a polynomial valid at the middle point. This means

ϕ (y, z) =
8

∑

i=1

[

8
∑

j=1

cj,ifj (y, z)

]

ϕi. (3.31)

Choosing the middle ninth point to be y9 = 0 and z9 = 0 the above equation simpli�es to

only 
onsist of the �rst 
onstant polynomial. The reason is that f1 = 1 and fj = 0 where

j = 2..8, su
h that

ϕ9 (y9, z9) =
8

∑

i=1

c1,iϕi. (3.32)

This implies that ϕ9 
an be written as a linear 
ombination of the 8 neighbouring node-

values of ϕ.
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Figure 3.4: An overview of the lo
al HPC numbering. Note that this lo
al mesh will overlap

with neighbouring meshes. I.e. node 9 in the above mesh 
an be any of the other 8 nodes in the

neighbouring 
ells. This is the standard HPC 
on�guration used for all HPC 
ell-types 1, see

Figure 3.5.

Sin
e analyti
al expressions for the derivatives

∂
∂y

and

∂
∂z

of polynomials easily 
an be

found, then also expressions for

∂ϕ

∂y
and

∂ϕ

∂z

an be found,

∂ϕ9

∂y
(y9 = 0, z9 = 0) =

8
∑

i=1

c2,iϕi (3.33)

∂ϕ9

∂z
(y9 = 0, z9 = 0) =

8
∑

i=1

c3,iϕi . (3.34)

Determining the 
oe�
ients in the matrix [C] 
an be solved as a sub Diri
hlet problem

for ea
h node. The 8 neighbouring points will span the boundary edge on the lo
al

polynomial for the ninth point, and these points will de�ne the elements di,j of matrix

[D]. The wanted row in the matrix [C] 
an now be found by inverting the matrix [D].
Doing this for all nodes throughout the liquid will lead to a sparse matrix system with at

most 9 non-zeros on ea
h row. For global boundary nodes (all HPC 
ell-types above 1,

see Figure 3.5) we 
an 
hoose a di�erent lo
al numbering than in Figure 3.4 and use any

of the boundary nodes to be point 9 with lo
al 
oordinates y = 0 and z = 0.

3.2.1 Limitations and bene�ts

The present implementation of the HPC method has some limitations in how the boundary


onditions are satis�ed. We 
an only satisfy the boundary 
onditions point-wise on HPC

nodes, and not in an integral way as in FVM. The integrated alternative of equations (3.33)

and (3.34) a
ross the 
ell edge was tried and found unstable. The reason is asso
iated

with the fa
t that we have overlapping 
ells in the HPC method, whi
h means that the

velo
ity potential is not uniquely de�ned outside of the HPC nodes.

There is a se
ond problem 
onne
ted to the way boundary 
onditions are satis�ed

in the 
urrent implementation of the HPC method. On sharp 
orner nodes where the
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Figure 3.5: De�nition of the di�erent HPC 
ell-types, note that all HPC values are at the 
orners

of FVM 
ells (see Figure 3.1). Here 
ell-type node 35 and 
ell-type node are at the 
orners of

the body.

normal dire
tion is not uniquely de�ned, two separate boundary 
onditions should be

satis�ed. For instan
e, 
orner nodes in the liquid where both zero relative velo
ity in

y- and z-dire
tion should be satis�ed. On the interse
tion between the free surfa
e and

the verti
al hull side this is solved by for
ing ϕ to be the value time-stepped by the free-

surfa
e 
ondition. Further, the body-boundary 
ondition is used when the free-surfa
e

values at the body interse
tion are time-stepped forward in time. This does not guarantee

that the body-boundary 
ondition is satis�ed on the next time-step, but only for
ing the

previous time-step to be 
orre
t. This 
orre
tion 
an only be performed for the nonlinear

free-surfa
e 
onditions, and not the linear free-surfa
e 
onditions.

On an inner sharp 
orner node, we need to take pre
autions, see HPC 
ell-types 25 and

35 in Figure 3.5. It is not 
lear how to best pi
k the 8 other points to 
onstru
t a harmoni


polynomial valid at the 
orner node. In addition, we need to pi
k one of the boundary


onditions to be satis�ed. The other boundary 
ondition 
ould be satis�ed by adding an

extra equation to the equation system, and solving the matrix system through a least

square te
hnique. However, this was not found satisfa
tory, and did not guarantee a good

solution. In addition, it in
reased the 
omputational time signi�
antly. The reason for an

in
rease in 
omputational time is that a matrix system based on the least square method

will have a mu
h higher 
ondition number, and then a lower 
onvergen
e rate when using

an iterative matrix solver. A similar 
orner problem exists in the Boundary Element

method (BEM), but there it is in pra
ti
e solvable by using more elements 
lose to the


orner. Similarly 
an the problem be solved in a HPC method, then on an unstru
tured

mesh or with a meshing method with lo
al re�nement. Note that it does not have to

do with a BEM in general, but with how the methods are dis
retized and whi
h basis

fun
tions that are applied.

With the present hybrid methods for solving potential �ow the problem is avoided

by not using HPC 
ells around the sharp 
orners, i.e. the bilges of the ship. Here FVM


ells are used instead, whi
h has the node values in the 
enter of the 
ell. Note that in

addition to the above problems with inner sharp 
orner nodes we should remember that

velo
ities are in fa
t singular in a potential �ow solution, su
h that a singularity should
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be added lo
ally to handle the solution around the 
orner. This does not apply to the

present hybrid methods when vis
ous �ow is 
onsidered, then all our sharp 
orners are


overed by the vis
ous domain, where all values remain �nite. However, when for instan
e

added mass and potential damping 
oe�
ients are 
al
ulated, the liquid domain must be


overed with FVM 
ells around the sharp 
orners.

Re
ently, to over
ome the problems mentioned above Liang et al. (2015) mat
hed

a lo
al singular solution in an inner domain around the sharp 
orners with an outer

solution using the HPC method. The improved HPC method was applied to a double-

wedge os
illating in in�nite liquid and free-surfa
e problems with non-verti
al walls.

The HPC method does not set any limitations on how the mesh should be 
reated

or how it should be 
hanged between time-steps. Therefore, re-meshing the top layer in

the wave zone does not redu
e the a

ura
y of the solution. No interpolations s
hemes

between time-steps are used, but we still need to update the matrix system and possibly


hange the pre
onditioner matrix. This simpli�es the re-meshing pro
ess 
ompared to

using FVM, where the �ux normal to the edge is needed.

3.3 Coupling between FVM and HPC
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Figure 3.6: Overview of where the di�erent nodes are lo
ated. The thi
k line represents the

interse
tion whi
h divides the liquid domain into a HPC domain and a FVM domain. Here the

supers
ript

∗
symbolize that interpolation is needed to obtain the value. ϕ 
ould here be any

fun
tion, not only the velo
ity potential.

In the previous se
tions both the FVM and the HPC method were presented in detail.

Here it will be shown how to 
ouple these two methods when solving a potential �ow

problem.
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As seen from Figures 3.1 and 3.5 the FVM 
enter nodes and HPC 
orner nodes are

not evaluated at the same lo
ation. This is solved by interpolating to a value of ϕ on the

FVM 
enter node in the HPC domain. The problem is that ϕ is not uniquely de�ned

for any given point outside the HPC nodes, i.e. ϕ 
an be evaluted from four di�erent

harmoni
 polynomials. The reason is that four HPC 
ells (see Figure 3.6) overlap ea
h

FVM node. Instead of evaluating the average of four di�erent harmoni
 polynomials,

whi
h would involve in total 16 values of ϕ, a linear weight fun
tion is applied, su
h that

the HPC node 
losest to the FVM node gets the most in�uen
e.

ϕ∗

FVM

=Wnwϕ
nw
HPC

+Wneϕ
ne
HPC

+Wseϕ
se
HPC

+Wswϕ
sw
HPC

(3.35)

where Wnw and ϕnw
HPC

refer to the weight applied to the 
losest ϕ
HPC

node to the north

west, and similar for the north east (ne) node, the south east (se) node and the south

west (sw) node. The weight fun
tions are found as the following here exempli�ed with

Wnw:

Wnw =
A− Anw

A
(3.36)

where A is the area of the FVM 
ell, and Anw is the area of the re
tangular sub-
ell with

two of its 
orners at the ϕ∗

FVM

node and the ϕnw
HPC

node. By applying the same s
heme to

the other weight fun
tions it follows that Wnw +Wne +Wse +Wsw = 1. Note that lo
ally
the higher order a

ura
y of the HPC method is lost, and the a

ura
y is in the same

order as in the FVM. We have not performed studies using other weight fun
tions. It is

believed that the linear weight fun
tion is su�
ient.

It is unknown if in
reasing the lo
al a

ura
y here gives any improvements on the

overall a

ura
y of the method. An in
reased HPC area would be needed to evaluate

the average of four di�erent harmoni
 polynomials. When predi
ting the piston-mode

damping due to vorti
ity separation from the edge, it is important to get as large vis
ous

�ow area as possible, and therefore the low-order approa
h in equation 3.35 is 
hosen.

When interpolating the ϕ∗

HPC

value at a HPC 
orner node inside the FVM domain a

similar approa
h as in equation 3.35 is used.

Additional HPC 
ell-types are 
reated 
ompared to Figure 3.5 to deal with the HPC-

FVM 
oupling.

3.4 Coupling between potential and vis
ous �ow

The numeri
al implementation of the requirements from se
tion 2.2 will be dis
ussed here.

The expli
it time-dis
retized equivalent of the Bernoulli equation (2.9) in an Earth-�xed


oordinate system be
omes,

ϕm+1 − ϕm

∆t
+

1

2
|∇ϕm|2 + gz = −p

m+1

ρ
. (3.37)

Noti
e that the �rst term in the equation is a �rst order �nite di�eren
e approximation

in time of ∂ϕ/∂t, and is best approximated between two time-steps (m+1/2). Therefore,
there will be a short time-lag of half a time-step between the �rst term and the pressure

term on the right hand side. A requirement for mat
hing the pressure using equation

(3.37) is that the vorti
ity generated in the vis
ous domain does not rea
h the interse
tion

between the vis
ous and potential �ow domains.



28 Numeri
al methods

��

�
�
�
�

�
�
�
�

�
�
�
�

������

����

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

����

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

����

�
�
�
�

��

p

p

p

pp p p

p

p p p

p

PSfrag repla
ements

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

ϕ
HPC

FVM

FVM

HPC

a)

b)


)

d)

wg

wg

wg

wg

wg

wg

wg

m

m

m

m

m

m

m

m

m

m

m

a

a

a

a)

b)

COG

Figure 3.7: Overview of where the velo
ity potential nodes in the potential-�ow domain and the

pressure nodes in the vis
ous-�ow domain are lo
ated. The thi
k line represents the interse
tion

whi
h divides the liquid domain. The red N triangles represents the liquid velo
ity nodes where

the arti�
ial velo
ity u
∗∗

are repla
ed with equation (3.41).

To a
hieve that both the normal and tangential velo
ities at the interse
tion are 
on-

tinuous, the following is valid in an Earth-�xed 
oordinate system.

um+1 = ∇ϕm+1
in Ωpot (3.38)

um+1 = u∗∗ −∆t∇p̃m+1
in Ω

CFD

(3.39)

The velo
ity at next time-step on the interse
tion should be independent on whi
h liquid

domain it is 
al
ulated from. This leads to a 
ondition on the temporary arti�
ial velo
ity

�eld u∗∗
on the interse
tion, and will enter the right hand side of the Poisson equation

for the pressure (equation 3.21).

u∗∗ = ∇ϕm+1 +∆t∇p̃m+1
(3.40)

This 
an be 
ombined with the time-dis
retized Bernoulli equation (3.37)

u∗∗ = ∇
(

ϕm −∆t

(

1

2
|∇ϕm|2 + 1

ρ
pm+1 + gz

))

+∆tp̃m

= ∇ϕm −∆t∇1

2
|∇ϕm|2 − ∆t

ρ
∇pm+1 −∆tg∇z +∆t∇p̃m+1

= ∇ϕm −∆t∇1

2
|∇ϕm|2 (3.41)

This equation repla
es the temporary arti�
ial velo
ity �eld values v∗∗ from equation 3.18

and w∗∗
from equation 3.19 on the interse
tion between the potential and vis
ous �ow
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domain, the lo
ations are illustrated in Figure 3.7. Noti
e that the right hand side only


ontains values based on the present time-step and is therefore fully expli
it. It does

require the evaluation of the gradient of ϕ on the interse
tion, su
h that ϕ is required

to exist inside the vis
ous domain. Meaning that the requirement for the presen
e of

vorti
ity is somewhat stronger, and that it should not rea
h the 
ells that neighbours to

the interse
tion. The higher order term ∇ |∇ϕ|2 
an be evaluated using the HPC method.

Su
h that on the velo
ity nodes we need to evaluate the following,

∇ |∇ϕ|2 = 2

[

0,
∂ϕ

∂y

∂2ϕ

∂y2
+
∂ϕ

∂z

∂2ϕ

∂y∂z
,
∂ϕ

∂y

∂2ϕ

∂y∂z
+
∂ϕ

∂z

∂2ϕ

∂z2

]

(3.42)

Sin
e we are aiming at solving a resonan
e problem, the phases between the terms be
omes

important and the terms on the interse
tion should be 
onsistent within an expli
it fourth-

order Runge-Kutta s
heme. (See the pseudo
ode in Appendix C.1.)

The next se
tions present details on how this works in both a body-�xed rotating


oordinate system with nonlinear boundary 
onditions, and in an Earth-�xed 
oordinate

system with linear boundary 
onditions.

3.4.1 Vis
ous - potential 
oupling in FVM

The �rst approa
h on 
oupling vis
ous and potential �ow that was su

esfully imple-

mented was using FVM in both liquid domains. The 
oupling proved to be stable and

reliable, however, as des
ribed earlier the wave dispersion and damping properties were

not satisfa
tory when using the lower-order FVM in the potential �ow domain.

Evaluation of the higher-order term in equation 3.42 is not possible in the 
oupling

between the potential and vis
ous �ow when the FVM is applied in both �ow domains.

Then equation (3.40) is again the starting point, but now the right hand side is approx-

imated with a �rst order �nite di�eren
e in spa
e for the gradient terms. Therefore, let

us say that we want to �nd u∗∗w , then the 
urrent 
ell is a vis
ous �ow 
ell and the west


ell is a potential �ow 
ell and uw is the velo
ity node between these 
ells. The following

will ensure a 
ontinuous normal velo
ity between a potential and a vis
ous �ow 
ell, here

dis
retized with a �rst order �nite di�eren
e approximation.

u∗∗w =
ϕm+1
P

− ϕm+1
W

δy
+∆t

(

p̃m+1
P

− p̃m+1
W

δy

)

(3.43)

Here ϕm+1
P

is not an unknown in the vis
ous domain, and similarly pm+1
W

is not an unknown

in the potential domain. To 
hange variables the time-dis
retized Bernoulli equation (3.37)

is used, and equation 3.43 be
omes

u∗∗w =
ϕm
P

− ϕm
W

δy
− ∆t

2

(∇ϕm
P

)2 − (∇ϕm
W

)2

δy
, (3.44)

whi
h is equivalent to the result from equation (3.41). Note here that ϕm
P

is a potential

�ow value on the previous time-step inside the vis
ous domain.

To ensure a 
ontinuous tangential velo
ity between potential and vis
ous 
ells, it is

again required that equation (3.40) is valid. Now it is assumed that both the 
urrent

and west 
ell is within the vis
ous �ow domain, however, both the two neighbouring 
ells

above is within the potential domain. Here both ϕm+1
P

and ϕm+1
W

are not unknowns within
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the vis
ous domain. The derivation is similar as for the 
ontinuous normal velo
ity, the

following expression then ensure 
ontinuous tangential velo
ity

u∗∗w =
ϕm+1
P

− ϕm+1
W

δy
+

∆t

ρ

(

pm+1
P

− pm+1
W

δy

)

=
ϕm
P

− ϕm
W

δy
− ∆t

2

(∇ϕm
P

)2 − (∇ϕm
W

)2

δy
. (3.45)

Again all equations in this se
tion are expressed in the Earth-�xed 
oordinate system.

Additional 
ell-types than those illustrated in Figures 3.1, 3.2, 3.3 are 
reated to

handle the 
ells on the interse
tion, and to determine if the 
ells belongs to the potential

or vis
ous �ow domains. The vis
ous 
ells get an addition 1000 added to the 
ell-type,

su
h that a FVM vis
ous 
ell in the middle of the liquid will have a 
ell-type of 1001.

In order to deal with the remeshing of the potential �ow domain near the free surfa
e, a

method to deal with a non-re
tangular mesh in a FVM was implemented. The �rst-order

�nite di�eren
e approximation of the derivative between the values at the 
ell 
enters are

no longer the �ux normal to the 
ell edges.

The following se
tions will des
ribe the two numeri
al hybrid methods that are based

on a 
oupling between HPC and FVM. First the semi-nonlinear hybrid method is pre-

sented and then the nonlinear hybrid method will be given.

3.5 Semi-nonlinear hybrid method

Given the numeri
al foundation for the hybrid method in the previous se
tions, an Earth-

�xed approa
h with linear free-surfa
e and body-boundary 
onditions is presented. The

method is �semi-nonlinear� as the Navier-Stokes equations are nonlinear. To 
larify the

di�eren
e to the nonlinear hybrid method, here the governing equations are solved in an

Earth-�xed 
oordinate system in both �ow domains.

The basi
s of the semi-nonlinear hybrid numeri
al method is based on the work by

Kristiansen and Faltinsen (2012), ex
ept that the FVM used in their method is repla
ed

by the HPC method in the potential �ow domain and that the equations of motion are

solved for the rigid-body motions.

In the potential-�ow domain that 
overs the top liquid layer 
lose to the free surfa
e

and the outer regions away from the �oating body, the linear a

eleration potential

ψ = −ϕt (3.46)

is solved for. Note the negative sign, this is for 
onvenien
e in order to have the same

sign as the pressure in the vis
ous domain. The linear a

eleration potential ψ is 
oupled

to the pressure p in the vis
ous �ow domain through the linearized Bernoulli equation,

ψ =
p

ρ
+ gz = p̃ (3.47)

It is bene�
ial to solve for ψ and not ϕ when solving for body motions, see summary on

a

eleration potential �ow solutions in 
oupled liquid-body motion problems from Bandyk

and Be
k (2011). In our 
ase the potential �ow 
ontribution to the for
e on the body is

limited to the top layer 
lose to the free surfa
e. As a minimum we need 3 HPC nodes in
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the verti
al dire
tion 
lose to the free-surfa
e layer. The rest of the hull is then adja
ent

to vis
ous �ow FVM 
ells. Entire water 
olumns further away from the hull are 
overed

with potential-�ow HPC 
ells, see the prin
ipal sket
h in Figure 3.8.

Both the linear velo
ity potential ϕ and its time-derivative, i.e. the linear a

eleration

potential ψ satisfy Lapla
e equation (2.3) in the potential �ow domain.

∇2ψ = 0 in Ωpot. (3.48)

The Lapla
e equation for ψ in the potential �ow domain will be 
oupled with the momen-

tum 
onservation equation for an in
ompressible Newtonian liquid in an inertial Earth-

�xed 
oordinate system in the vis
ous �ow domain equation (2.1),

The last step in Chorin's proje
tion method is to solve a Poisson equation for the

pressure in the vis
ous �ow domain (see se
tion 3.1.4),

∇2p̃ =
1

∆t
∇ · u∗∗

in Ω
CFD

(3.49)

Equations (3.48) and (3.49) share the same operator ∇2
and 
an then be 
oupled dire
tly

in one matrix system, and solved together within one matrix operation. The divergen
e-

free liquid velo
ity �eld 
an after p̃ and ψ are found be updated as um+1 = um−∆t∇ψN+1

in the potential �ow domain (Ωpot) and as um+1 = u∗∗ − ∆t∇p̃m+1
in the vis
ous �ow

domain (Ω
CFD

). Again m is the time-step number. This gives a 
ondition for u∗∗
on the

interse
tion u∗∗ = um
that is mu
h simpler to evaluate than the 
orresponding term in the

nonlinear hybrid method. Sin
e the semi-nonlinear method only mat
hes pressure and

normal velo
ity at the interse
tion, the method 
annot guarantee 
ontinuous tangential

velo
ity a
ross the interse
tion. The stair
ase pattern as shown in Figure 3.6 and indi
ated

in Figure 3.8 is introdu
ed as an attempt to also for
e 
ontinuous tangential velo
ity,

as des
ribed by Kristiansen and Faltinsen (2012). This is not a perfe
t approa
h, but

it in
reases the stability of the solution. The thought is that the alternating normal

dire
tion will for
e both the normal and tangential velo
ity to be 
ontinuous. The e�e
ts

of the stair
ase pattern are examined in more detailed when for
ed motions are studied

in se
tion 5.4.
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lose to the body.
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3.5.1 Boundary and initial 
onditions

The boundary 
onditions for the semi-nonlinear hybrid method are given in the following

text. To a
hieve high 
omputational performan
e the matrix system must not 
hange

with time, i.e. the dis
retization of the equation system remains �xed in time. This

is a
hieved by using a 
onstant mesh, whi
h again requires us to satisfy the boundary


onditions on the same interfa
e every time-step. This 
an be done by using a linear

perturbation of the free-surfa
e 
onditions, i.e. we do a perturbation of the free-surfa
e


onditions around z = 0 using the wave elevation ζ as a small perturbation parameter,

see for instan
e Faltinsen (1990).

The dynami
 linear free-surfa
e 
ondition is an equation for the time evolution of the

velo
ity potential ϕ on the mean free surfa
e,

∂ϕ

∂t
= −gζ on z = 0. (3.50)

The kinemati
 linear free-surfa
e 
ondition will give an equation for the time evolution of

the wave elevation ζ ,
∂ζ

∂t
=
∂ϕ

∂z
on z = 0. (3.51)

The relation between ψ and ϕ from equation (3.46) results in a value for ψ that will be

used as a boundary 
ondition on the free surfa
e when solving the matrix system,

ψ = −∂ϕ
∂t

= gζ on z = 0. (3.52)

Noti
e from equation (3.51) that the z-derivative of ϕ is needed on the free surfa
e, whi
h

means that after ψ is found in the potential �ow domain we need to update ϕ in the

upper potential �ow domain 
lose to the free surfa
e (ϕm+1 = ϕm − ∆t ψm+1
). This

applies to at least the 3 upper rows of HPC nodes, su
h that

∂ϕ

∂z

an be found using

harmoni
 polynomials. Both free-surfa
e 
onditions in equations (3.50) and (3.51) are

evolved forward in time by using the 
ommon expli
it fourth-order Runge-Kutta method.

Note that a 
onsequen
e of the 
urrent �rst-order �nite di�eren
e relation between ϕ and

ψ, is that there will phase lag between ψ and ϕ of half a time-step.

An equivalent approa
h inside the moonpool gap domain, is to stret
h the vis
ous

domain up to the free-surfa
e and apply a similar linear free-surfa
e 
ondition here. From

Faltinsen (2005), the linear kinemati
 and dynami
 free-surfa
e 
onditions are given as,

∂ζ

∂t
= w on z = 0 (3.53)

−p+ 2µ
∂w

∂z
= pa on z = ζ (3.54)

µ

(

∂u

∂z
+
∂w

∂x

)

= 0 on z = 0 (3.55)

where µ is the dynami
 vis
osity of the liquid. If now the vis
ous shear stress on the

free surfa
e is assumed negligible, the equations 
an be further simpli�ed. It is shown in

Faltinsen (2005) that in
luding the vis
ous terms in the free-surfa
e boundary 
onditions
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have a very small e�e
t in linear free-surfa
e problems for the relevant 
ondition. This

implies

∂ζ

∂t
= w on z = 0 (3.56)

p = −gζ on z = 0. (3.57)

Furthermore, it is believed that a small potential �ow domain with only 3 potential-�ow

HPC 
ells in the verti
al dire
tion inside the gap is su�
ient. In addition, we get a higher

spa
ial a

ura
y with the HPC method in the potential �ow domain, although it is not

expe
ted to be important inside the moonpool gap.

For the body-boundary 
ondition we need to separate between the potential �ow part

and the vis
ous �ow part at the body boundary. Similarly as the free-surfa
e 
onditions,

the body-boundary 
ondition is applied on a surfa
e that is 
onstant in time. In the

tangential dire
tion of the wall a no-slip 
ondition is imposed in the vis
ous �ow domain,

while in the potential �ow domain a slip 
ondition is used. Sin
e we are not aiming at


apturing the liquid �ow inside the boundary layer, the di�eren
e between the no-slip

and slip 
ondition does not introdu
e a problem on the interse
tion between the two

domains. However, it is not expe
t that this in general will be true, and espe
ially not if

the mesh density is in
reased to 
apture the detailed behaviour of the liquid �ow inside

the boundary layers.

Further, in the normal dire
tion to the wall in both domains no liquid �ux through

the exa
t body boundary is required. In the potential �ow domain the body-boundary


ondition 
an be found from the Euler's equations. These 
orresponds to the Navier-

Stokes equations (2.1) with zero vis
osity and the assumption of irrotational �ow. These

are linearized around the initial position of the hull by assuming that the rigid-body

motions are small. The result is the following Neumann type body-boundary 
ondition

that is applied on the linear a

eleration potential in the potential �ow domain of the

liquid,

∂ψ

∂n
= − (a0 + ω̇0 × r) · n on SBP , (3.58)

where n is the unit normal ve
tor of the hull pointing into the liquid, a0 is the 2D a

el-

eration of the COG in sway and heave, ω̇0 is in 2D only nonzero for the roll a

eleration

η̈4 and r is the position ve
tor of a point on the body relative to the COG.

A similar Neumann type body-boundary 
ondition is applied for the pressure p̃ in

the vis
ous �ow domain, whi
h 
an be derived from the Navier-Stokes equations (2.1)

following the same assumptions as for the potential �ow part, i.e.

∂p̃

∂n
= − (a0 + ω̇0 × r) · n on SBV . (3.59)

Both equation (3.58) and equation (3.59) represent an in-out �ow through the initial

position of the ship. We emphasize that SBP or SBV do not 
hange with time and remain

�xed at the initial position of the ship, see Figure 3.9.

In linear potential �ow theory, it is usual to require that the body-boundary 
onditions

are valid at the mean position of the ship. This may not be the 
ase with the present

semi-nonlinear hybrid method, due to nonzero drift for
e whi
h together with the mooring

system 
auses a mean o�set of the body. Therefore we spe
ify that the body-boundary


onditions are valid at the initial position of the ship.
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The outer wall and bottom boundary 
onditions are zero �ux and a zero pressure

gradient. (See later for 
onditions on the wavemaker and the numeri
al bea
h.)
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Figure 3.9: Numeri
al setup of the semi-nonlinear hybrid method. xG is the 
enter of gravity, B
is the total width of the hull, b is the width of the moonpool gap, Bs is the length of the s
rew


onne
ting the hull to the mooring line, zs is the verti
al distan
e from the s
rew to the 
enter of

gravity, SBP is the potential �ow part of the hull surfa
e and SBV is the vis
ous �ow part of the

hull surfa
e. The dotted line indi
ate where the interse
tion between the potential and vis
ous

�ow is.

The initial 
onditions are simply still water with the body at rest.

3.5.2 Equations of motion

In two dimensions it is su�
ient to 
onsider rigid-body motion in three degrees of freedom;

sway η
2

, heave η
3

and roll η
4

. The equations of motion due to Newton's se
ond law in an

inertial 
oordinate system are:

mη̈
2

= Fy,

mη̈
3

= Fz, (3.60)

Iη̈
4

= M.

Here m is the body mass, I is the moment of inertia about the 
enter of gravity of the

body x
G

= (y
G

, z
G

), Fy and Fz are the external horizontal and verti
al for
es andM is the

external roll moment about the COG (positive 
ounter 
lo
kwise). The external for
es

and moment 
an further be de
omposed to:

Fy = ρ

∫

SBP

ψ n
2

dS + ρ

∫

SBV

p̃ n
2

dS−K
22

η2 −K
24

η
4

Fz = ρ

∫

SBP

ψ n
3

dS + ρ

∫

SBV

p̃ n
3

dS− C
33

η
3

(3.61)

M = ρ

∫

SBP

ψ n
4

dS + ρ

∫

SBV

p̃ n
4

dS−K
42

η
2

− (K
44

+ C
44

) η
4

where n
2

and n
3

are 
omponents of the normal ve
tor n and n
4

is the �rst 
omponent of

the ve
tor r×n. The restoring for
es 
oe�
ients due to the spring mooring system 
an be
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found as; for sway K
22

= ks, for the 
oupling between sway and roll K
24

= K
42

= −ks zs
and for roll K

44

= B′ Fpre. The restoring spring 
oe�
ient in roll K
44

is found from

geometri
al 
onsiderations and by assuming that the total pre-tension is mu
h larger

than the 
hange in the total tension due to a small rotation η
4

, see Fredriksen (2008).

Here ks is the total spring sti�ness 
onstant in N/m and zs is the verti
al distan
e from
the 
enter of gravity to where the mooring lines are 
onne
ted to the hull. Note that we

use B′ = 2B + 2Bs + b, where B is the breadth of one side hull, Bs = 0.03m is the s
rew


onne
tion between the body and the mooring line and b is the width of the moonpool

gap.

The hydrostati
 linear restoring 
oe�
ients that are asso
iated with the 
hange in

the buoyan
y for
e are: for sway C
22

= 0, for heave C
33

= ρ g (2B) and for roll C
44

=

ρ g V
2D

(zb−zG)+ 2
3
ρ g

(

(

B + b
2

)3 −
(

b
2

)3
)

. Here V
2D

is the displa
ed volume of the two side

hulls per meter in x-dire
tion of the wave �ume, and zb is the verti
al 
enter of buoyan
y.
Note that both the potential �ow part SBP and the vis
ous �ow part SBV of the hull

surfa
e are 
onstant in time.

In the vis
ous �ow domain the pressure p̃ nodes are not on the 
ell edge where the

pressure on the body should be evaluated, but in the middle of the FVM 
ell. We use the

gradient as de�ned in equation (3.59) to extrapolate the solution of p̃ from the 
ell 
enter

to the 
ell edge where the hull surfa
e is.

Note that sin
e we are not solving for the vis
ous shear stresses in the boundary layer,

we will also negle
ted vis
ous shear for
es on the hull, i.e. we negle
t vis
ous shear stresses

on the form τ = µ ∂u
∂n

|
hull

. Also other vis
ous shear stresses are negle
ted. To in
lude

vis
ous shear stresses on the hull it would have been ne
essary to resolve the velo
ity

gradient in the boundary layer, this 
ould have been a
hieved by de
reasing the mesh size


lose to the hull. An in-out �ow analysis of the boundary layer in Kristiansen (2009), gave

negligible di�eren
e in the total body for
es and resulting rigid-body motion. However,

this only a

ounts for the e�e
t the boundary layer has on the pressure, in addition 
omes

the vis
ous shear for
es. The experimental setup 
onsidered there had similar dimensions

as the experimental setup under 
onsideration here. Also a simple implementation of τ
in our 
ode had the same negligible result. Note that both the e�e
t the boundary layer

has on the pressure and the vis
ous shear for
e are expe
ted to be equally small Faltinsen

and Timokha (2009).

To solve the equations in (3.60), the equations of motion are �rst 
onverted from a

set of se
ond order di�erential equations, to a set of twi
e as many �rst order di�erential

equations by introdu
ing the velo
ities in the three degrees of freedom as a se
ond set of

unknowns. To gain a stable solution in time, it is on both sides of the equations for ea
h

degree of freedom added a term proportional to the a

eleration in that degree of freedom.

These a

eleration terms will be multiplied by the in�nite-frequen
y added mass (A∗

jj(∞)).
On the right hand side of the equations the a

elerations are approximated with values

from the present time-step. This pro
edure is similar to what was done by Kristiansen

(2009) and Shao (2010). Su
h that the updated equations of motion will look like, here
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still given as a set of se
ond order di�erential equations

η̈m+1
2

=
Fy + A∗

22

(∞)η̈m
2

m+ A∗

22

(∞)
,

η̈m+1
3

=
Fz + A∗

33

(∞)η̈m
3

m+ A∗

33

(∞)
, (3.62)

η̈m+1
4

=
M + A∗

44

(∞)η̈m
4

I + A∗

44

(∞)
.

The equations of motion are time-stepped forward in time using the expli
it �rst order

Euler method, but solutions of the free-surfa
e 
onditions and the 
ombined Lapla
e/Pois-

son equation are still solved using the fourth-order expli
it Runge-Kutta method. The

overall a

ura
y of the method thus remains �rst order in time.

3.5.3 Wave generation and absorption

There are a few options on how to generate in
oming waves in a numeri
al wave tank.

One 
hoi
e is to model the physi
al hinged-type wavemaker from the wave �ume to fully

re
reate the waves a
hieved in the wave �ume. Another option is to spe
ify a known

analyti
al velo
ity potential ϕin on the free surfa
e and on the wavemaker wall. Here it

is 
hosen to input a known linear a

eleration potential ψin for �rst order waves on the

left wall and the equivalent value for ϕin for the dynami
 free-surfa
e 
ondition and ζin
for the kinemati
 free-surfa
e 
ondition. The method 
an easily be extended to a known

velo
ity potential of any order.

Within the left damping zone 
lose to the wavemaker we add damping terms νw (ϕ− ϕin)
and νw (ζ − ζin) to the respe
tive dynami
 and kinemati
 free-surfa
e boundary 
ondi-

tions, where νw is the user de�ned damping 
oe�
ient with dimension 1/s. By applying

this approa
h the re�e
ted waves from the stru
ture are damped out, but the in
oming

waves are kept un
hanged. In the other damping zone, on the right side of the numeri
al

wave tank, the added damping terms to the free-surfa
e 
onditions are simply νwϕ and

νwζ . This is equivalent to the numeri
al bea
h known as the Orlanski's 
ondition (Orlan-

ski (1976)), and used by Clement (1996) among others. The damping zone is divided in

two parts, 
losest to the hull there is a smooth ramp-up zone from νw = 0 to νw = 1.6, in
the other part 
losest to the walls the damping 
oe�
ient value is kept 
onstant νw = 1.6.
Here 1.6 is the value 
hosen for νw in all simulations in this work instead of making the

damping 
oe�
ient depending on the wave period. We have here 
hosen to make the

length of the smooth ramp-up zone from νw = 0 to νw = 1.6 dependent on the wave

length. The length of this ramp-up zone has been made long enough su
h that most of

the wave amplitude have de
ayed before rea
hing the 
onstant zone.

The main reason for not 
hoosing to implement the physi
al hinged-type wavemaker

is to save simulation time. A reason is that a �ner mesh will be needed 
lose to the

wavemaker if the physi
al wavemaker was implemented. Also the physi
al length of the

numeri
al wave tank must equal the physi
al wave �ume. The drawba
k by 
hoosing to

input a �rst order velo
ity potential on the free-surfa
e is that time-series results from the

experimental programme 
annot be 
ompared against numeri
al 
al
ulation. It is only the

steady-state values that 
an be 
ompared, as the transient response of the stru
ture will

be di�erent. However, we are able to 
ompare time-series values with the nonlinear hybrid
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method presented in the next se
tion, where an implementation of a physi
al wavemaker

would not be possible/bene�
ial. This is due to that the equation system is solved in a

body-�xed 
oordinate system, and a physi
al wavemaker far away from the body would

require a 
ompli
ated re-meshing s
heme.

3.6 Nonlinear hybrid method

With the nonlinear hybrid method we aim at satisfying all boundary 
onditions as exa
tly

as possible, both on the free-surfa
e and on the surfa
e of the freely �oating body. How-

ever, note that there is an ex
eption. We do not aim at 
apturing the liquid behaviour

inside the boundary-layer or turbulen
e �ow at any s
ale. It was early in the development

phase 
hosen to solve the nonlinear hybrid method using a body-�xed 
oordinate system

with origin in the 
enter of gravity and following the rigid-body motions of the body. The

main bene�t is that we avoid re-meshing 
lose to the body due to the rigid-body mo-

tions. Instead, we have to re-mesh 
lose to the free surfa
e due to the rigid-body motions.

However, it has not 
ompli
ated the algorithm too mu
h, as a re-meshing s
heme is ne
-

essary in an Earth-�xed 
oordinate system due to that the free-surfa
e waves are tra
ed

up to exa
t free-surfa
e pro�le. We will 
ome ba
k to the bene�ts of using a body-�xed


oordinate system later.

The di�eren
e in the governing equations between the Earth-�xed and body-�xed


oordinate system have been des
ribed in the previous 
hapter. We will in the present


hapter des
ribe how they are numeri
ally solved.

As for the semi-nonlinear method, the Chorin's fra
tional step method is used to solve

the Navier-Stokes equation in the body-�xed 
oordinate system (2.6). The additional

terms on the right hand side related to the body-�xed 
oordinate system are solved during

a sub-step along with the adve
tion and di�usion steps. The last step is to solve a Poisson

equation for the pressure ∇2p = ρ

∆t
∇ · u∗∗

r . The pressure p in the vis
ous �ow domain in

equation (2.6) is 
oupled to the absolute velo
ity potential ϕ, where the absolute velo
ity
is seen in the Earth-�xed 
oordinate system and de�ned as u = ∇ϕ, see equation (2.5).

The Lapla
e equation (2.3) is used to solve for ϕ.
The initial 
onditions are also here simply still water with the body at rest.

3.6.1 Body-boundary 
onditions

Similar as in the semi-nonlinear hybrid method it is needed to separate between body-

boundary 
onditions in the potential �ow domain, and body-boundary 
onditions in the

vis
ous �ow domain.

The body-boundary 
ondition on the pressure in the vis
ous �ow domain for solving

the Poisson equation is found by evaluating equation (2.6) on the vis
ous part of the hull

surfa
e SBV , and noting that ∂bur/∂t = 0 and ur = 0 on SBV . The result is

∂p

∂n
= ρ [g− a0 − (ω0 × u0)− (ω̇0 × r)− ω0 × (ω0 × r)] · n on SBV . (3.63)

Here the normal ve
tor n now 
hange dire
tion with the motion of the body, and remains

�xed in the body-�xed 
oordinate system. Similarly the 
ondition for the temporary

arti�
ial velo
ity �eld on the body,

u∗∗

r = [g− a0 − (ω0 × u0)− (ω̇0 × r)− ω0 × (ω0 × r)]∆t on SBV . (3.64)
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The body boundary 
ondition for the absolute velo
ity potential ϕ in the potential �ow

domain,

∂ϕ

∂n
= [u0 + ω0 × r] · n on SBP . (3.65)

Here the potential-�ow part of the hull surfa
e SBP will 
hange with time, as the body-

boundary 
ondition is applied up to the exa
t free surfa
e. Note that this is the equivalent

of requiring the relative normal velo
ity to be zero on the body surfa
e ur ·n = 0. Similarly

as in the semi-nonlinear hybrid method, we have not seen any problems on the interse
tion

by requiring a no-slip 
ondition in the vis
ous �ow domain, and a slip 
ondition in the

potential �ow domain. However, this 
annot expe
ted to be true if the mesh density is

in
reased 
lose to the hull surfa
e.

3.6.2 Re-meshing

At every time-step the free-surfa
e nodes are moved in z-dire
tion to the new position

based on time-integration of the free-surfa
e 
onditions. Due to the body-�xed 
oordinate

system, it will also look like the bottom of the wave �ume is moving with time. However,

to simplify the re-meshing algorithm we keep the bottom of the numeri
al wave tank �xed

in the body-�xed 
oordinate system. This simpli�
ation will for large roll angles result in

that the free surfa
e in the far-�eld will 
ollide with the �arti�
ial� numeri
al bottom. The

free-surfa
e will far away behave as the distan
e from the 
enter of gravity times the roll

angle. The bottom boundary 
ondition is 
hanged from requiring zero liquid �ux through

the bottom, to requiring that the absolute liquid velo
ity is zero at the instantaneous

position of the arti�
ial bottom. This is somewhat in 
ontradi
tion to the free-surfa
e


ondition, when the �arti�
al� numeri
al bottom approa
hes the free-surfa
e.

An input to the nonlinear hybrid method is an estimate on the largest roll angle ηMax
4

expe
ted during a simulation needed. From this estimate it is pre-de�ned within the


ode whi
h HPC nodes to be moved and 
orresponding 
ells that needs to be re-meshed

between time-steps. The parameter ηMax
4 then gives us a limit on the maximum roll angle

that 
an be tolerated within the 
urrent simulation. For roll angles 
lose to ηMax
4 the

distan
e between HPC nodes will be
ome small. When the roll angle is in
reased above

ηMax
4 , then some HPC nodes will enter the vis
ous �ow FVM domain, and some HPC

nodes will overlap with other HPC nodes that are �xed in time with respe
t to the body-

�xed 
oordinate system. The 
onsequen
e is that the simulation will break down. Here

the 
oordinates of the FVM 
ells in the vis
ous �ow FVM domain are �xed in time with

respe
t to the body-�xed 
oordinate system.

The simpli�
ation in how the bottom boundary is handled also limits ηMax
4 . The

numeri
al implementation does not handle the 
ase when the free surfa
e interse
ts the

arti�
ial bottom. However, ηMax
4 
an be in
reased by either de
reasing the length or

in
reasing the water depth of the numeri
al wave tank. Sin
e the 
hange of water depth

would 
hange the dispersion properties of the free-surfa
e waves the preferred option is

to 
hange the length of the numeri
al wave tank. Figure 3.10 shows details on how ηMax
4

is de�ned, and its relation to the interse
tion between the potential �ow and vis
ous �ow

domains.

The re-meshing algorithm for the nonlinear hybrid method then works as follows:

• In the initialization of the simulation, �nd for ea
h free-surfa
e node how many HPC

nodes in the verti
al 
olumn that shall be re-meshed ea
h time-step, NRZ .
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• At every sub time-step, move the free-surfa
e node in z-dire
tion to the new wave

elevation, based on equation (2.12).

• Move in z-dire
tion the below neighbouring node a fra
tion

NRZ−1
NRZ

of the free-surfa
e

node wave elevation.

• Move in z-dire
tion the se
ond below neighbouring node a fra
tion

NRZ−2

NRZ
of the

free-surfa
e node wave elevation.

• Continue until node NRZ below the free surfa
e.

• Use the new 
oordinates to update the matrix system for the solution of the Lapla
e

equation part of the matrix system.
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Figure 3.10: Illustration that shows the limitations in how to 
onstru
t a mesh for the nonlinear

hybrid method. The 
ir
le in the middle of the stru
ture represent the position of the 
enter of

gravity. The dotted line represents ηMax
4 line in the potential �ow domain. The patterned area

represents the vis
ous �ow domain (Ω
CFD

).

3.6.3 Interse
tion between vis
ous and potential �ow domain

Details on the mat
hing requirements in an Earth-�xed 
oordinate system 
an be found in

se
tion 3.4. It is here updated to re�e
t that it is used in a body-�xed rotating 
oordinate

system.

The time-dis
retized Bernoulli's equation for the pressure in an invis
id liquid �ow in

a body-�xed rotating 
oordinate system is given as,

pm+1

ρ
= −ϕ

m+1 − ϕm

∆t
− 1

2
|∇ϕm|2 + [u0 + ω0 × r] · ∇ϕm − g · ref . (3.66)

Note it is 
hanged due to that the time derivative ∂ϕ/∂t 
hanges between the two 
o-

ordinate systems. Here ref is the shortest distan
e from the evaluation point to the

undisturbed free surfa
e, equivalent to the verti
al distan
e between a point and the

undisturbed free surfa
e in the Earth-�xed 
oordinate system. The total term ρg · ref is

then the hydrostati
 pressure in the liquid. Here the gravitational term g 
hanges in time

with the angular roll motion, g = g [0, sin(η4), cos(η4)]. Equation 3.66 is used to ex
hange

variables from ϕ to p on the interse
tion.
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The se
ond requirement is that the liquid parti
le velo
ity on the interse
tion should be

independent of whi
h �ow domain it is 
al
ulated from, i.e. from the velo
ity potential in

the potential �ow domain or from the pressure in the vis
ous �ow domain. In the potential

�ow domain the relative liquid velo
ity is found as ur = ∇ϕm+1 − (u0 + ω0 × r) and in

the vis
ous �ow domain as ur = u∗∗ − ∆t
ρ
∇pm+1

. By requiring the liquid parti
le velo
ity

to be 
ontinuous a
ross the interse
tion we 
an �nd the temporary arti�
ial velo
ity �eld

on the interse
tion as

u∗∗ = ∇ϕm −∆t∇
(

1

2
|∇ϕm|2 − [u0 + ω0 × r] · ∇ϕm + g · ref

)

− (u0 + ω0 × r) . (3.67)

Noti
e that all terms are valid for the present time-step. Equation (3.67) is applied

for u∗∗
on the interse
tion in the vis
ous �ow domain for both the tangential and the

normal velo
ities to the interse
tion line. Due to the higher-order spatial a

ura
y of the

HPC method the nonlinear terms in equation (3.67) 
an be 
al
ulated. Sin
e equation

3.67 
ontains a term multiplied with the time-step size ∆t, the implementation should

be 
onsistent with the expli
it fourth-order Runge-Kutta method along with the other

equations that are integrated in time.

To fully understand the 
oupling between the potential and vis
ous �ow domains, we

will illustrate it by writing out the equations that are input to the matrix system. Two

examples will be 
onsidered. The �rst is how to set up the FVM equation as used in

the vis
ous �ow domain. The se
ond is how to set up the HPC equation as seen in the

potential �ow domain.

The �rst example is seen from the FVM side. The starting point is the dis
retized

Poisson equation (3.24)

p
E

− p
P

δy
δz − p

P

− p
W

δy
δz +

p
N

− p
P

δz
δy − p

P

− p
S

δz
δy

=
1

∆t
(v∗∗e δz − v∗∗w δz + w∗∗

n δy − w∗∗

s δy) , (3.68)

where the potential domain is on the west (left) side, and the vis
ous domain is on the

east (right) side, meaning that we need to repla
e p
P

and v∗∗w in equation (3.68). This

approa
h will guarantee a 
ontinuous normal liquid velo
ity between the two domains.

p
E

− p
P

δy
δz − p

P

+ ϕ
W

∆t

δy
δz +

p
N

− p
P

δz
δy − p

P

− p
S

δz
δy

=
1

∆t
(v∗∗e δz + w∗∗

n δy − w∗∗

s δy)

− δz

∆t

[

∂ϕ
W

∂y
−∆t

((

∂ϕ
W

∂y
− η̇2

)

∂2ϕ
W

∂y2
+

(

∂ϕ
W

∂z
− η̇3

)

∂2ϕ
W

∂y∂z
− v0

)]

+
δz

δy

(

−ϕW

∆t
+

1

2
|∇ϕ

W

|2 − [u0 + ω0 × r] · ∇ϕ
W

)

(3.69)

Here, ϕ
W

is not at a valid node inside the potential HPC domain. Meaning that the

value of ϕ
W

is interpolated based on the nearest four neighbouring HPC ϕ values. A

similar approa
h is implemented to guarantee a 
ontinuous tangential liquid velo
ity at

the interse
tion. If, for instan
e, also the north and south neighbouring 
ells are within the

vis
ous �ow domain, then the velo
ity nodes ws and wn are tangential to the interse
tion.
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If now ws and wn satisfy equation (3.67), we require that also the tangential liquid velo
ity

at the interse
tion is 
ontinuous. We do not need to repla
e p
S

or p
N

, sin
e they are values

within the vis
ous pressure domain.

After the solution of the matrix system for p in the vis
ous domain and ϕ in the

potential �ow domain are found, the velo
ities are time-stepped either based on the vis
ous

�ow solution or the potential �ow solution. However, noti
e on the interse
tion in the

vis
ous �ow domain it is here assumed that vorti
ity has not rea
hed the interse
tion.

From the potential �ow side on the interse
tion, the starting point is the dis
retized

equivalent of equation (3.32)

c
1,1

ϕ
1

+ c
1,2

ϕ
2

+ c
1,3

ϕ
3

+ c
1,4

ϕ
4

+ c
1,5

ϕ
5

+ c
1,6

ϕ
6

+ c
1,7

ϕ
7

+ c
1,8

ϕ
8

− ϕ
9

= 0. (3.70)

(See how the lo
al numbering of the HPC 
ell is de�ned in Figure 3.4). If now the 8th
HPC node (lower right 
orner) is within the vis
ous domain, equation (3.66) is used to

ex
hange the variable ϕ
8

to a pressure node value p
8

.

c
1,1

ϕ
1

+ c
1,2

ϕ
2

+ c
1,3

ϕ
3

+ c
1,4

ϕ
4

+ c
1,5

ϕ
5

+ c
1,6

ϕ
6

+ c
1,7

ϕ
7

− c
1,8

∆tp
8

− ϕ
9

= c
1,8

(

−ϕ
8

−∆t

[

1

2
|∇ϕ

8

|2 − [u0 ·+ω0 × r] · ∇ϕ
8

+ g · ref
])

(3.71)

Here all values on the right hand side is from the present time-step. However, p
8

is not

at a valid node in the vis
ous domain. The value of p
8

needs to be interpolated based on

the neighbouring values at the 
enter of the FVM 
ells.

3.6.4 Smoothing

The spatial derivative terms in the free-surfa
e 
onditions (2.12) and (2.15) are for ϕ
found using the HPC method, while for ζ the derivatives are found from a fourth-order

polynomial �tted from the neighbouring ζ values.

For simulations with low forward velo
ity, an instability on the free surfa
e with saw-

tooth behaviour was experien
ed. This happened both upstream and downstream of the

body. To a
hieve a more stable numeri
al solution, a 5-point Cheby
hev smoothing orig-

inally from Longuet-Higgins and Cokelet (1976) was applied on the free-surfa
e elevation

ζ . The variable mesh size s
heme from Koo et al. (2004) is here implemented. The

smoothing algorithm is performed every Nth time step, where N is given in the input-�le

to the simulation. A sensitivity study of the smoothing algorithm has been performed and

will be presented later. It was found su�
ient to apply the smoothing algorithm only in

the near-�eld of the body, one hull length to ea
h side. The reason is that the smoothing

algorithm has a damping e�e
t on the free-surfa
e waves, whi
h is undesired when solving

for body-motions due to in
oming waves.

The smoothing algorithm is applied on the free surfa
e in the outgoing wave domains,

and not on the free surfa
e inside the moonpool gap. The reason for not applying the

5-point Cheby
hev smoothing algorithm to the free surfa
e inside the gap, was that it


aused a 
ontinuous growth of the �rst sloshing mode. Instead inside the gap an arti�
ial

damping around the average free-surfa
e value of the nodes inside the gap at the previous

time-step is applied to remove any sloshing modes from the solution.

It is believed that the main reason for the saw-tooth instability is from the adve
tive

terms in the free-surfa
e boundary 
onditions. It is, however, for the downstream side



42 Numeri
al methods

also observed a small instability when vorti
ity rea
hes the interse
tion. Espe
ially for

higher wave steepness, vorti
ity rea
hes the interse
tion, and the smoothing algorithm is

used on the free surfa
e to stabilize the solution.

Two other approa
hes were tried and not found su�
ient. The �rst was to dis
retize

the adve
tion terms in the free-surfa
e 
ondition with upwind values, whi
h provided some

numeri
al damping to the in
oming waves. The se
ond approa
h was to try a three-point

low-pass �lter used by Shao (2010) among others, ζj = c ζ̃j−1 + (1− 2c) ζ̃j + c ζ̃j+1, where

ζ̃ is the free-surfa
e value before smoothing and j is the numbering of the free-surfa
e

nodes, with in
reasing values in positive y-dire
tion. Furthermore, c is the strength of the

�lter.

3.6.5 Equations of motion

Newton's se
ond law is applied to 
al
ulate the rigid-body motion in three degrees of

freedom, equivalent to pro
edure des
ribed for the semi-nonlinear hybrid method (equa-

tion (3.60)). However, the pro
edure is 
hanged 
ompared to the semi-nonlinear method

to re�e
t that the equations are solved in a body-�xed 
oordinate system, see details in

se
tion 2.1.1 on how to 
hange the time-derivatives in the equations of motion to a body-

�xed 
oordinate system. The equations of motion in a body-�xed 
oordinate system are

given as,

m (η̈∗
2

− η̇
4

η̇∗
3

) = Fy,

m (η̈∗
4

+ η̇
4

η̇∗
2

) = Fz, (3.72)

Iη̈
4

= M.

Here Fy and Fz are the for
es in y- and z-dire
tions in the body-�xed 
oordinate system

respe
tively. Furthermore, η̈∗
2

and η̈∗
3

are the a

elerations of the 
enter of gravity in y- and
z-dire
tions of the body-�xed 
oordinate system respe
tively. M is the moment around

the 
enter of gravity, positive anti-
lo
kwise.

The resulting for
es in y- and z-dire
tions and the moment around the 
enter of gravity


an then be found as,

Fy =

∫

SBP

p n
2

dS +

∫

SBV

p n
2

dS−mg sin(η
4

) + F s
y ,

Fz =

∫

SBP

p n
3

dS +

∫

SBV

p n
3

dS−mg cos(η
4

) + F s
z , (3.73)

M =

∫

SBP

p n
4

dS +

∫

SBV

p n
4

dS+Ms.

Here, the integration surfa
e SBP will 
hange with time, while SBV remains 
onstant in

time. The spring 
ontributions F s
y , F

s
z and Ms

are based on the exa
t elongation of the

springs and angle of ea
h mooring line, where both ends of the mooring lines are allowed

to 
hange, su
h that we 
an simulate towing of a freely �oating obje
t by the mooring

system. Similar as in the semi-nonlinear hybrid method, the pressure p in the vis
ous

domain is extrapolated from the 
ell 
enters to SBV . This is a
hieved by the use of the

body boundary 
ondition in equation (3.63).
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As before, the pressure in the potential �ow domain is found from Bernoulli's equation.

It is here 
hanged to re�e
t that the HPC nodes atta
hed to the body is moving in z-
dire
tion in the body-�xed 
oordinate system. The pressure from the Bernoulli equation

then be
omes,

p

ρ
= −d

gϕ

dt
+ wn

∂ϕ

∂z
− 1

2
|∇ϕ|2 + (u0 + ω0 × r) · ∇ϕ− gze. (3.74)

Here

dg

dt
is the time-derivative when following a z-moving HPC mesh node with velo
ity

wn in the body-�xed 
oordinate system, that is solved numeri
ally by a �rst order �nite

di�eren
e approximation. Equation (3.74) is integrated along SBP by lo
ally �tting a

fourth-order polynomial through the HPC nodes.

The method of adding the in�nite frequen
y added mass term to solve the equations of

motion as in the semi-nonlinear hybrid method has been tried and found not su�
ient for

solving the equations of motion in the nonlinear hybrid method. The solution has been

to solve the equations of motion by an iteration s
heme ea
h time-step. It is however,


oupled to the iterative solver of the matrix system, su
h that the 
omputational 
ost is

kept down.

For the a

eleration terms in equation (2.6), a

elerations from the present time-

step are used as an initial guess for building the right hand side of the matrix system.

Then one single iteration on the solution of matrix system by the iterative matrix solver

BICGSTAB is performed, and an updated pressure �eld is found and used to solve the

equations of motion. If then the di�eren
e between the new a

elerations and the old

a

elerations of the rigid-body are less than a pre-set toleran
e we 
ontinue to next time-

step. If not we �nd a new guess on the a

elerations and redo the above steps. The new

guess is an average of the previously iterations. Note that the 
onvergen
e toleran
e is

by this approa
h moved from the matrix system to the rigid-body a

elerations. There

is implemented a safety feature if the di�eren
e between the new a

eleration and the

previous a

eleration in
reases 
ompared to the previous iteration. The matrix system

is then iterated until 
onvergen
e for a given guess of the a

elerations, and the new

a

elerations are found.

It was tried to set up a boundary value problem for the a

eleration potential ψ for the

potential �ow domain, but it was found that it did not in
rease the 
onvergen
e rate. Due

to that the boundary 
onditions had to be generated from the solution of the boundary

value problem for ϕ, it required the solution of two matrix system for ea
h iteration step.

This might be be
ause a major part of the hull surfa
e is within the vis
ous �ow domain.

3.6.6 Time-step size

The requirements for the time-step ∆t size from se
tion 3.1.5 are still valid for the non-

linear hybrid method in a body-�xed 
oordinate system. However, here it is taken as a

requirement on the relative liquid velo
ity ur. In the body-�xed 
oordinate system the

largest relative velo
ity ur 
an due to the roll motion be expe
ted to o

ur far away from

the body, either in the lower left or lower right 
orner of the wave tank. The mesh size

is larger far away, but anyway the CFL 
riteria (equation 3.25) may be rea
hed in the

far-�eld. The value used for the CFL 
riteria have been 0.5 for all simulations.
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3.6.7 Advantages and disadvantages of a body-�xed 
oordinate

system

Conventionally numeri
al wave tanks have been posed in an Earth-�xed 
oordinate sys-

tem.

To numeri
ally simulate for
ed os
illations of a semi-submerged body with low forward

velo
ity, an alternative was to solve all equations in the Earth-�xed 
oordinate system

and generate a in
oming 
urrent in the numeri
al wave tank. It requires quite long

simulation time to generate a steady 
urrent. Furthermore, the initial 
onditions start

a standing wave (sei
hing) in the wave �ume. In order to satisfy the body-boundary


ondition exa
tly, a 
ompli
ated re-meshing s
heme is required. In prin
iple a new mesh

must be generated ea
h time step 
lose to the body surfa
e. With a 
hanging mesh 
lose

to the body, a numeri
al s
heme that is able to handle a 
hanging mesh inside the vis
ous

domain must be implemented. Various methods on how to handle this are available in

the literature. Usually this in
ludes various interpolation te
hniques, and higher-order

methods are 
ompli
ated to implement. It is also thought to be out of the s
ope of this

work to investigate a broad variety of vis
ous methods to use on moving meshes. Another

even more 
ompli
ated approa
h would have been to simulate low forward velo
ity in the

Earth-�xed 
oordinate system.

The alternative experimental approa
h was also to generate a 
urrent in the wave

�ume. The main reason for not following this path was that the 
ir
ulation system

was untested and that 
on
erns about the design of the 
ir
ulation system were raised.

Meaning that there were un
ertainties in the verti
al 
urrent pro�le and the turbulen
e

intensity of the in
oming �ow on the model.

Some limitations of the body-�xed approa
h should also be mentioned. What if we

want to simulation the behaviour of two ships moored together side by side? On whi
h of

the two ships do we atta
h the body-�xed 
oordinate system? What do we do with the

other ship?

Even though the body-�xed solution is suitable for the rigid-body motion of one ship,

the method is not easy to extend to other physi
ally related problems. The method

is therefore not suitable to study the rigid-body motions of a ship moored 
lose to a

terminal, as done by Kristiansen (2009). This is true even though an extension of the


urrent nonlinear hybrid method to this problem only requires that we implement a wall


lose to the body. In a body-�xed 
oordinate system this will behave like a moving wall


lose to the body, in order to a
hieve this a re-meshing s
heme has to be applied. Then a

�xed vis
ous mesh approa
h is no longer su�
ient. The wall will be so 
lose to the hull

edges su
h that a potential �ow approximation 
lose to the wall may not be su�
ient.

For the motion of a se
ond body in the proposed nonlinear hybrid method, an option

is to implement a re-meshing s
heme 
lose to the se
ond body. However, by doing this

the bene�ts with the proposed nonlinear hybrid method is somehow lost, and a moving

mesh in the vis
ous domain will be needed. Then the entire problem is perhaps best

solvable in an Earth-�xed 
oordinate system. Another option that 
ould be investigated

is to split it into two separate body-�xed domains, and mat
h the pressure and velo
ities

at an interse
tion between the two domains. Preferably this mat
hing should be done in

a potential �ow domain.
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3.7 Matrix solution methods

Some preliminary studies were early performed to investigate whi
h matrix solver that

would be most e�
ient to solve the proposed numeri
al problem. The sear
h were limited

to a few sele
ted iterative solvers from SPARSEKIT and Saad (2003), and a dire
t band-

solver from LAPACK. It was without the use of advan
ed 
ode pro�ling te
hniques found

that the bottlene
k of our numeri
al method was related to solving the matrix system.

No parallel solvers were tried.

It was found from Kristiansen and Faltinsen (2012) that for small and linear problems,

the band-solver from LAPACK was the fastest. The band-solver is a dire
t matrix solver

that take advantage of the low bandwidth of the sparse matrix system. For the semi-

nonlinear method it only needs to be inverted on
e at the beginning of the simulation.

Furthermore, at every time-step the inverse matrix M−1

an be multiplied with the right

hand side. Note that it is due to 
omputational memory requirements not desirable to

use this method for problems with many unknowns.

For the nonlinear hybrid method the bi
onjugate gradient stabilized method (BICGSTAB)

from SPARSEKIT and Saad (2003) is used. In order to speed-up the 
omputations an

in
omplete LU (ILU) fa
torization of the initial matrix is used as pre
onditioner. A new

ILU pre
onditioner matrix is 
reated if the number of iterations in
reases above N
max

,

where N
max

is given in the input-�le to the simulations. Often large mesh deformations

due to large roll angles will 
reate the need for a new pre
onditioner matrix. Sin
e the

matrix is depending on the time step size, two pre
onditioner matri
es are held in the


omputational memory, where the �rst is valid for half the time step size, i.e. the two �rst

sub-steps in the fourth-order expli
it Runge-Kutta method. The se
ond pre
onditioner

matrix is valid for the two last time-steps. Meaning also that the pre
onditioner matri
es

must be 
hanged if the time step size 
hanges in the simulation.

Note that the aim of the present study has not been to investigate all available dire
t

and iterative solvers for the numeri
al method presented here. The generalized minimal

residual method (GMRES) from SPARSEKIT was also tried and found to be equivalent

to the 
hosen BICGSTAB routine.

For fast 
onvergen
e of an iterative s
heme, it is important to have a good �rst guess

of the solution. Therefore, the previous solution is 
orre
ted by the �rst order �nite

di�eren
e gradient and used as an initial guess on the solution at the next time step to

the iterative solver.

3.8 Code development environment

In order to set up an e�
ient and user friendly 
ode development environment the fol-

lowing tools have been 
hosen.

All the pre- and post-pro
essing of the results are done with s
ripts in Matlab. The

pre-pro
essing have been generation of input �les for the numeri
al 
odes. The post-

pro
essing have been more 
omplex, i.e. a set of s
ripts have been generated to read

various output values from the numeri
al simulations:

• S
ript to read and visualize liquid properties su
h as velo
ity, divergen
e and vor-

ti
ity.
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• Visualizations of the mesh and how it is re-meshed in time.

• Visualizations of the free surfa
e and the rigid-body motion in time.

• S
ripts to �nd steady-state values of time series.

• S
ripts to loop over a large amount of simulations and generate response amplitude

operator values for di�erent parameter variations, and 
ompare them with experi-

mental values.

The programming language have been Fortran, and the 
ompiler has been the Intel

Fortran Compiler for Linux. The main part of the Fortran 
ode development has been

performed in E
lipse with the Photran add-on. The Subversion revison 
ontrol system

has been used daily on the entire 
ode base.



Chapter 4

Experimental programmes

In order to get validation data for the hybrid methods developed here, two experimental

programmes have been performed. They are two-dimensional experiments of a moonpool

se
tion in a wave �ume. The �rst experimental set-up was with for
ed os
illation with

low forward velo
ity, the se
ond experimental set-up was with a spring-moored �oating

moonpool se
tion subje
ted to in
oming regular waves. In the following se
tions both the

experimental programmes will be des
ribed in detail.

4.1 For
ed heave os
illation with low forward velo
ity

Our motivation was to 
ontinue the experimental programme started by Kristiansen and

Faltinsen (2012), and perform parameter variations using an automati
 
ontrol system

for the job. Most e�ort was in Kristiansen and Faltinsen (2012) put on performing for
ed

heave os
illation without forward velo
ity.

The experiments were performed in a wave �ume at the Marine Te
hnology Centre

at NTNU in Trondheim. The wave �ume is 12m long, 0.6m wide and with a 1.0m water

depth. In both ends there where paraboli
 bea
hes with their upper position lo
ated just

below (1mm) the free surfa
e. Sin
e the bea
hes o

upied lengths of approximately 2.5m
ea
h, the usable rail length for the 
arriage was 5.6m. This fa
t together with that we

needed our experiments to rea
h a steady-state piston-mode os
illation amplitude limited

the 
arriage velo
ity (U) that 
ould be used. We de�ne a Froude number based on the

total length of the model in
luding the moonpool gap as,

Fn =
U

√

g (2B + b)
(4.1)

where B is the breadth of one hull, and b = 0.18m is the moonpool gap width. We

have found that using a model of total length 0.9m, limits the forward 
arriage velo
ity

to Fn= 0.08. The dimensions of ea
h se
tion were breadth B = 0.36m, 0.585m wide

in the transverse tank dire
tion and with variable draft. It implies that there is a gap

of 0.0075m between ea
h end of the model and the tank wall. (See Figure 4.1 for a

sket
h of the experimental set-up and Figure 4.2 for a pi
ture from the experiment). The

only di�eren
e to the experimental set-up in Kristiansen and Faltinsen (2012) is that the

verti
al a
tuator was repla
ed with a a
tuator more suitable for the job. The previous

a
tuator was over-dimensioned. This was done to redu
e the top weight on the 
arriage

47
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and allowed for easier movement of the 
arriage in the length dire
tion of the wave �ume.
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Figure 4.1: Prin
iple sket
h of for
ed os
illation experimental test set-up, with a 
arriage on top

of a glass 
overed wave �ume with a paraboli
 bea
h at ea
h end. Note that the drawing is not

in s
ale.

The following �ve parameters were possible to vary during the test programme: os
il-

lation frequen
y, os
illation amplitude, draft, 
arriage velo
ity and moonpool inlet edge

pro�les. In total between 6000 and 7000 tests were planned. To be able to perform

this extensive test programme an automated set-up was designed in Labview by Fredrik

Dukan. The automated set-up allowed that experiments 
ould be performed without any-

one present. The only thing not automated was the wave gauge 
alibration pro
ess, su
h

that we were at the experimental lo
ation at least on
e a day to 
he
k the 
alibration fa
-

tor of the wave gauges. The automati
 
ontrol system was 
on�gured to start the 
arriage

from one side of the tank, and smoothly a

elerate the 
arriage up to the wanted velo
ity

while the heave os
illations also smoothly started. When the 
arriage rea
hed the other

end, it smoothly slowed down and waited until the waves had died out. After waiting for

200 se
onds it returned to the starting position with the same heave os
illation amplitude,

frequen
y and 
arriage velo
ity. In this manner, the same experiment was repeated twi
e,

before a new heave os
illation amplitude, frequen
y or 
arriage velo
ity were tested. The

waiting period of 200 se
onds was 
hosen by observation of the measured wave elevation,

of the time needed for the waves to dissipate. However, the 
ir
ulation in the tank whi
h

was set up by the forward moving model might not have stopped. This means that when

the model started moving in the opposite dire
tion it might be in�uen
ed by the residual

global �ow. We should also 
onsider that the presen
e of the sei
hing mode of the tank

will result in a horizontal 
urrent at the middle of the tank, whi
h also will in�uen
e the

relative velo
ity between the model and the water. A sei
hing amplitude of 1mm will give

a horizontal 
urrent at the middle of tank of 2.7% of the forward velo
ity at Froude num-

ber Fn = 0.04. The sei
hing amplitude for 
arriage velo
ities of Froude number Fn = 0.08
was found from the wave gauges to at most be 0.5mm. The wave gauges were then around

2m away from the end of the tank.

The model was equipped with four 
apa
itan
e wave gauges, two in the moonpool

gap and one on ea
h side. The wave gauges in the moonpool gap were lo
ated 6.0
m
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from the hull on ea
h side. The wave gauge on the left was 26.5
m from the model side,

and the wave gauge on the right was 21.0
m from the other model side. All four wave

gauges were mounted on the rig and was then for
ed to move with the forward velo
ity

and heave os
illation. All wave amplitudes presented in this work are therefore given from

a body-�xed point of view.
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Figure 4.2: Pi
ture of the experimental set-up without appendages. Here the model is lo
ated


lose to left bea
h. To 
hange the hull to in
lude appendages, only the gray pro�les of the

moonpool edges are ex
hanged with 
orresponding appendage pro�les.

4.1.1 Experimental error sour
es in for
ed experiments

The rails and the glass walls were not perfe
tly aligned, su
h that the model had to be

smaller than ne
essary. From trial and error we found that the model had to be 1.5cm
smaller than the width of the tank to minimize the 
onta
t between the model and the

glass wall. Due to this gap we have a 3D e�e
t in the experiments that are di�
ult to

estimate. Visually we 
ould at higher velo
ities observe vorti
ity being shed from the

small gap between the glass and hull, into the moonpool gap, and behind the se
ond hull.

Sin
e we still had some 
onta
t between the glass and the hull, the forward motion was

in�uen
ed due to a varying fri
tion in the length dire
tion of the tank. The 
onne
tion

between the two glass windows was at some lo
ations uneven, and the 
ause of the varying

fri
tion. The 
ontrol system managed to 
ountera
t and minimize this, but it 
annot be

negle
ted as an error sour
e.

Another error sour
e is the 
ontrol system for the 
arriage and heave a
tuator. It was

not able to rea
h the desired heave os
illation amplitude, but on average around 90% of

the desired heave amplitude. For a test series with a desired heave amplitude of 10.0mm,

the a
tual heave amplitude be
ame 9.1mm. It may not be 
hara
terized as an error sour
e

sin
e we know the amplitude after the test, but sin
e the 
ontrol system did not perform
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as expe
ted we mention it as an potential error sour
e. The results will be presented

using the dimensionless equivalent to the for
ed heave amplitudes η3a of 2.3mm, 4.5mm

and 9.1mm, while it in reality was a small variation of the heave amplitude during ea
h

tests series with �xed heave amplitude. The values in the �gures are 
orre
ted for this,

but the title/legend of ea
h �gure uses the average value. Note, it was still found that

the for
ed heave amplitude was steady for ea
h experimental test.

A third error sour
e in the experiments is re�e
tions from the bea
hes. The velo
ity

of the 
arriage is mu
h lower than the group velo
ity of the outgoing waves. Note that for

both higher 
arriage velo
ity and longer periods the steady-state piston-mode amplitude

is found 
lose to the bea
h at the end of the wave �ume. Su
h that waves generate

upstream of the stru
ture and if not fully dissipated by the bea
h and re�e
ted ba
k

to the stru
ture, they might in�uen
e the piston-mode amplitude when the steady-state


ondition is evaluated. When the possible re�e
ted wave rea
hes the stru
ture is then

dependent on the period of os
illation and forward velo
ity.

When a

elerating the stru
ture in any dire
tion, a transient e�e
t will be generated.

The transient e�e
t will generate outgoing waves, but it will also ex
ite the natural piston-

mode and the sloshing modes inside the moonpool gap. For the forward velo
ity 
ase it

means that the odd sloshing modes inside the moonpool may be ex
ited, whi
h mainly

means that the �rst sloshing mode will be ex
ited at its resonan
e frequen
y. For the

for
ed heave os
illation 
ase without forward velo
ity, the transient start-up results in

an ex
itation of the piston-mode at the piston-mode resonan
e frequen
y. The piston-

mode motion at the resonan
e frequen
y will de
ay due to wave radiation and vis
ous

dissipation. The sloshing mode 
ommuni
ation with the water outside the moonpool will

be low, and not a�e
ted by �ow separation at the moonpool edges. Sin
e also boundary

layer dissipation is small, the sloshing mode de
ays slowly. The �rst sloshing mode natural

period is Ts = 0.48s for the 18
m wide moonpool.

The raw signal from the wave gauges was band-pass �ltered to remove frequen
ies

above 1.9Hz and below 0.5Hz. This will remove all higher harmoni
s, in
luding the �rst

natural sloshing mode. An inspe
tion of the frequen
y spe
trums 
omputed by FFT of

the raw wave gauge signals, shows negligible tra
es of nonlinearities. We 
hose to take

the amplitudes from the experiments as half of the distan
e from the wave 
rests to the

wave troughs over a steady or near-steady interval in time.

It was after the �rst week of 
ontinuous experiments dis
overed that the 
onne
tion

between the model and the a
tuator had some loose s
rews. To avoid any un
ertainties

related to this, all experiments that had been performed was redone and results from the

�rst experiments have not been used further in the post pro
essing analysis. Throughout

the rest of the experiments, 
he
ks were regularly done to make sure that all s
rews were

tightly �xed.

The ele
tri
al engine 
ontrolling the forward velo
ity of the 
arriage was mounted to

a rubber band that was �xed to both ends of the wave �ume. Due to the elasti
ity in

the rubber band there is a small un
ertainty in the position of the 
arriage, be
ause the

position of the 
arriage was measured by the engine itself, and the number of revolutions

the wheel performed on the rubber band. The error is believed to be largest during the

a

eleration phases, and not when the 
arriage is at 
onstant velo
ity. This is also the

main reason for not 
onsidering studies with for
ed sway motion, be
ause the total inertia

of the set-up on the 
arriage gives a large for
e during a

eleration on the rubber band

that 
auses some un
ertainties in the position.
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4.1.2 Examples of time-series

Figures 4.3 and 4.4 show examples of time-series history based on the same period and

amplitude of os
illation and forward velo
ity. The only di�eren
e is that the 
arriage

velo
ity is in the opposite dire
tion. In Figure 4.3 it is moving from left to right. In the

upper right of both Figures is a plot showing the syn
hronization signal. This is a signal

sent from the Labview 
ontrol system to the Catman logging system. Here the voltage

value represents di�erent stages throughout the tests. 0 represents the waiting period

before the test starts, 1 represents the a

eleration phase, 2 is the 
onstant velo
ity and


onstant amplitude phase, 3 is the de-a

eleration phase and 4 represents the end of the

test. Between the tests the signal will return ba
k to 0. This was implemented sin
e the

for
ed heave motion, 
arriage velo
ity and wave gauges were not logged with the same

data a
quisition system. In the a

eleration and de-a

eleration phases the heave motion

is smoothed with a cos2 fun
tion, to minimize the transient e�e
t.

The wave gauges presented as ζ2 and ζ5 are measuring outgoing waves and ζ4 and ζ6
are measuring the water elevation inside the moonpool gap. Note that they are all �xed

to the model, i.e. all wave gauge measurements are relative to the verti
al heave motion

of the model. A 
onversion ba
k to the Earth-�xed frame was attempted, but a small

phase di�eren
e between the two signals was still present, even with the syn
hronization

system in pla
e.

The steady-state results will be given in se
tion 5.1.

4.2 Floating moonpool body in in
ident waves

A se
ond series of two-dimensional experiments were performed during the fall of 2012,

with the fo
us on freely-�oating rigid-body motions. The lo
ation for �oating experi-

mental programme was the same as for the for
ed heave os
illation experiments with low

forward velo
ity. However, the set-up was somewhat 
hanged. The left bea
h on Figure

4.1 was removed to allow use of the wavemaker that is mounted behind it. It is a �ap

type wavemaker hinged 5
m above the bottom of the wave �ume.

The hull model di�ers from the model used in the for
ed heave os
illation experiments.

However, the draft-to-breadth and moonpool gap-to-breadth ratios were kept. The pre-

vious rig was too high and heavy to be used for �oating motions. Among other things

it had an unrealisti
 GM (meta
entri
 height). Therefore, a new rig was 
onstru
ted

to better �t the dimensions of the wave �ume, and with better 
ontrol of the 
enter of

gravity and moment of inertia. The 
hosen dimensions for the new model was two hollow

hulls of 20× 20× 59
m, 
onne
ted with a 10
m moonpool gap between the two side hulls

using two aluminum L-pro�les. The model was ballasted with weights strapped tight to

the inside of the model, su
h that the model �oated with a 10
m draft. It is referred to

Table 4.1 for a

urate values of the model test set-up and Figure 4.6 for a pi
ture from

the experiments. To gain as high as possible natural period in roll, the weights were

pla
ed as far away as possible from the 
enter of gravity inside the hulls. We did this

to avoid that the natural period in roll was in the same range as the heave or moonpool

piston-mode natural periods. Lines were 
onne
ted on ea
h side of the hull to restrain

the model from drifting. At the end of these lines, springs were 
onne
ted, su
h that the

model was free to move in sway, heave and roll. Between the hull and the springs ea
h

line went through a pulley, su
h that the springs were 
onne
ted verti
ally to the roof,
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Figure 4.3: Example of re
orded experimental time-series data. The red line in a) represents the


arriage velo
ity, with s
ales given on the right axis in (m/s), the blue line in a) shows the heave

position. The two lines in b) represents the syn
hronization signal between the two re
ording

systems. In 
) is the outgoing wave measurements on both sides. In d) is the two measured wave

elevations inside the moonpool. Further, the red dotted lines represents the amplitude values

extra
ted from the time-series in green.
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see Figure 4.5. The natural period in sway was 3.2s. The springs were not horizontally


onne
ted to the model, but had an angle of around 5 degrees, su
h that some sti�ness

in heave due to the springs was introdu
ed. This angle also gave a small, but negligible


oupling between heave and the other degrees of freedom.

The �oating experimental programme was performed for 35 di�erent wave periods

and 3 di�erent wave height-to-wave length ratios (wave steepnesses) (1/60, 1/45 and

1/30). The experiments with the highest wave steepness were repeated on
e. Prior to the

experiments a wave 
alibration series was performed without the model in the wave �ume.

After the four experimental test-series with a 0.10m moonpool gap were performed, the

model was modi�ed to have a 0.08m gap. A new test-series with wave steepness 1/60
were then performed. Neither the radius of gyration rxx nor the 
enter of gravity were

experimentally 
he
ked for this 
on�guration. It is, however, a reasonable approximation

that the radius of gyration is de
reased with 0.01m. Sin
e both boxes are moved 0.01
m
towards to 
enter, the only thing that does not 
hange lo
ation is the aluminum L-pro�le

on top. The mass of the aluminum L-pro�les was in total 1282g, that is 5.6% of the total

mass of the model. The 
enter of gravity is assumed un
hanged.

Sin
e the automati
 
ontrol system developed for the for
ed heave os
illation study was

not 
ontrolling the behaviour of the wavemaker, the period and amplitude of os
illation

were manually 
hanged between ea
h individual test. The experimental routines were the

following. Ea
h test-series was performed with 
onstant wave steepness and gradually

in
reasing wave period. First the 
alibration of the wave gauges and 
opper tapes was

done. Then we started the Catman logging system and logged 
ontinuously throughout

the entire test-series with all the 35 wave periods in one data �le. After entering the

�rst wave period and amplitude into the wavemaker 
ontrol system we 
ould start the

wavemaker. The wavemaker was stopped after generating waves for 30 − 35se
onds.
While waiting for the waves to die out we entered the new wave period and amplitude

into the wavemaker 
ontrol system. After about 4 minutes the waves had died out and

the wavemaker 
ould be started again with a new period and amplitude. The time it took

for the waves to de
ay was longer for shorter period waves, due to that they were almost

fully re�e
ted by the model. By following the previous steps, the experiments with all 35
wave periods were performed. At the end, we stored the data �le from the Catman data

logging system with the proper �le-name. The repeated test-series with wave steepness

1/30 were also do
umented with a video 
amera.

We did separate tests to ensure that the fri
tional 
oe�
ient in ea
h individual pulley

was low enough su
h that it did not matter for the motion of the model, i.e. su
h that

any hysteresis e�e
t in the mooring system 
ould be 
onsidered negligible.

Three a

eleration sensors were used to measure position in 3 degrees of freedom.

Two of them measured a

eleration in body-�xed heave dire
tion. They were pla
ed on

opposite sides of the hull. The third measured a

eleration in body-�xed sway dire
tion.

To �nd roll a

eleration the a

eleration from the heave a

elerometers were subtra
ted

from ea
h other and divided by the distan
e between them. The heave a

eleration at

COG was found by taking the average values from the two heave a

elerometers. The

body motions were found by �rst band-pass �ltering away frequen
ies below 0.5 and

above 4 times the in
oming wave frequen
y. The band-pass �ltered signal was then

integrated twi
e to obtain position. Finally, the sway a

eleration at COG was found by


orre
ting the measured sway a

eleration with the 
ontribution from roll a

eleration

and the 
hanging dire
tion of gravity based on the roll position.
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Figure 4.5: Sket
h of the �oating experimental set-up. a) Side view of the wave �ume, b) top-

view of the wave �ume. Note that the �gure is not in s
ale. Here wg1-6 are the lo
ations of the

wave gauges, where wg5 and wg6 are glued to the hull. Furthermore, a1-a3 are the lo
ations of

the a

elerometers.

Model draft d (m) 0.097
Breadth of ea
h side hull B (m) 0.201
Moonpool gap width b (m) 0.10(0.08)
Width in transverse dire
tion (m) 0.586
Mass (kg) 22.885
Radius of gyration rxx(m) 0.18
Center of gravity from the bottom (m) 0.091
Spring 
onstants

(N/m)

#1 #2 #3
43.7 42.5 88.2

Pre-tensions (N)

#1 #2 #3
7.5 7.5 15

Line 
onne
tion height above WL on

hull (m)

0.05

Line angle (deg) ∼ 3
Length between hull and left pulley (m) 2.1
Length between hull and right pulley

(m)

2.0

Table 4.1: Dimensions and properties of the model test set-up used in the �oating experimental

programme.
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Four 
apa
itan
e wave gauges were used to measure the wave �eld outside the model.

Three wave gauges were pla
ed between the wavemaker and the model. The distan
e

between the �rst wave gauge and the wavemaker was 3.05m. The se
ond and third wave

gauge were pla
ed in parallel 5.95m away from the wavemaker. The midpoint of the model

was pla
ed 7.55m away from the wavemaker. The fourth and last wave gauge was pla
ed

between the model and the paraboli
 bea
h, 1.42m away from the midpoint of the model,

see Figure 4.5.

To measure the wave elevation inside the moonpool, 
opper tape was glued on the

inside of ea
h side hull. This allowed us to measure the wave elevation on two lo
ations

inside the moonpool gap, one lo
ation on ea
h side hull. It was found that using 
on-

ventional 
apa
itan
e wave gauges inside the moonpool gap would in�uen
e the inertia

properties of the model too mu
h, su
h that 
opper tape was found to be the best avail-

able method to measure the wave elevation inside the moonpool gap. However, there

was mu
h more drift in the re
orded wave elevation from the 
opper tape than from the

other 
onventional wave gauges. It is also possible that the menis
us e�e
t is di�erent on


onventional wave gauges and the 
opper tape. There may o

ur a very thin "run-up" on

the hull whi
h is dete
ted by the 
opper tape. This type of run-up is not des
ribed by

our theory and is of 
on
ern in e.g. sloshing.

The position of the 
enter of gravity and the moment of inertia of the model were

determined by Marintek personnel by following standard pro
edures in 
ommer
ial test-

ing. They performed free de
ay tests in air where the model was hinged at two di�erent

positions. The os
illation frequen
y was measured by laser, su
h that the natural period

at the two hinge lo
ations was determined within an a

ura
y of millise
onds. This was

only performed for the model with 10
m moonpool gap.
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4.2.1 Error sour
es in the �oating experiments

In addition to the usual error sour
es, su
h as error in 
alibration fa
tor and the measure-

ment equipment a few additional error sour
es are identi�ed. Although the waves were


alibrated before the model test started, we did not obtain the required wave steepness.

On average the waves were 10% higher than what was expe
ted from the inputs. However,

sin
e the in
oming wave amplitude is known the results presented herein a

ounts for this.

The degree of non-linearity is then somewhat di�erent from that used in the numeri
al

simulations be
ause of di�erent wave height-to-wave length ratios.

The properties of the waves generated by a hinged type wavemaker are not fully

re�e
ted in the numeri
al simulations. Se
ond and other higher-order e�e
ts in the gen-

erated waves are not 
aptured in the numeri
al simulations, whi
h also applies in the

nonlinear hybrid method. In both hybrid methods the in
oming wave pro�le is spe
i�ed

by a known linear velo
ity potential on the free surfa
e and the in
oming wall boundary.

The di�eren
e this represents are thought to be negligible, sin
e only �rst order motions

and how they are a�e
ted by the wave steepness are of interest herein.

Fri
tion from the pullies should preferably be modelled as a Coulomb fri
tion, i.e. the

fri
tion for
e is approximated as a fri
tion 
oe�
ient times the normal for
e. This has

not been implemented as the fri
tion was found to be negligible from individual tests of

ea
h pulley.

The model 
overs 98% of the width of the wave �ume, in total there is a possible

∼ 1.5
m gap between the model and the glass. The reality is therefore 3D �ow e�e
ts at

the ends whi
h in�uen
e the pressure at the ends. In addition there are vis
ous shear-

for
es at the gap between the glass and the model to be a

ounted for. In a

ordan
e with

Faltinsen (1990) and Jonsson (1980) laminar �ow 
an be assumed on a smooth surfa
e

with os
illating �ow if the Reynolds number de�ned as Re = U2
lm

/ων is less than 105.
Here U

lm

is the maximum tangential velo
ity just outside the boundary layer, ν and ω are

the kinemati
 vis
osity 
oe�
ient and 
ir
ular frequen
y of os
illation, respe
tively. It is

found that laminar �ow 
an be assumed for all variations of wave period and amplitude

that are experimentally tested. The known solution of the Stokes se
ond order problem

for laminar �ow 
an be used to approximate the in�uen
e of the vis
ous stress between the

model and the water inside the narrow gap between the model and the glass. Solutions to

this problem 
an be found in White (2006) and other textbooks. The os
illating boundary

layer thi
kness is estimated to be at most δbl = 6.5
√

ν
ω
≤ 3mm, whi
h is less than the

narrow gap in the model tests. The wet surfa
e area Ag towards the glass is 0.08m2
,

and the vis
ous stress for
e is at most Fτ/UM =
√
ρωµAg ≤ 0.20Ns/m. Here UM is the

maximum absolute velo
ity of the model and µ is the dynami
 vis
osity of the liquid.

This is negligible when 
omparing this to the for
es measured by the for
e rings in the

end of the mooring lines.

The paraboli
 bea
h was adjusted before the start of the experimental programme

su
h that the top of the bea
h was 2-3mm below the free surfa
e. However, the wave

�ume had a small leakage, and some re�e
tion in the repetition tests was found during

data pro
essing. The reason 
ould be that these tests were performed some days after

the other tests, and that the water level had de
reased 1-2mm. This resulted in more

re�e
tions of the longest waves for periods above 1.0s. It is referred to results from the

repetition test in se
tion 5.3.7.

The time-derivative of the a

eleration signal is a quantity 
alled "jerk", and that
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makes it easier to identify spikes in a time-series, see Boore and Bommer (2005). The jerk

has the dimensional property m/s3, and it is 
onvenient to use when trying to identify


onta
t between the walls and the model. It has previously been used by Kristiansen

(2010) when analyzing a similar experiment with a �oating 
ir
ular 
ylinder in the same

wave �ume. By going through all time-series for the jerk derived from all three a

elerom-

eters, it was for some of the periods above 1.2s found that 
onta
t between the model and

the wall might have happened. Another reason for the high jerk in these time-series 
ould

be that the 
ables going from the model to the measuring system limited the motion.

Asymmetry in the wavemaker and small gaps on ea
h side of the wavemaker in trans-

verse dire
tion generated some transverse waves in the wave �ume. Visually the se
ond

transverse mode was observed for some of the lower wave periods. The wave period of the

se
ond transverse mode is 0.62s. Even though the �rst transverse mode was not visually

observed we should be 
areful when analyzing the results around this period, whi
h is

0.87s.



Chapter 5

Results

In this 
hapter the fo
us is on results from the two experimental programmes presented

in 
hapter 4, and the two numeri
al hybrid methods presented in 
hapter 3. Dis
ussions

about the physi
al results and the 
omparison between the experimental and numeri
al

work will be given. Emphasis is on topi
s that 
ontribute to the in
reased physi
al un-

derstanding of the moonpool resonan
e phenomena for both �xed and �oating stru
tures.

The only results that were obtained with the �rst hybrid methods using FVM in both

the vis
ous and potential �ow domain were presented in Fredriksen et al. (2012) and

will not be given or dis
ussed any further here. A detailed des
ription on why the HPC

method was preferred over the FVM to solve the Lapla
e equation in the potential �ow

domain was given in the numeri
al theory 
hapter 3.

First results from the two-dimensional experimental programme with for
ed heave

os
illation of a moonpool se
tion with and without forward velo
ity are presented and


ompared against the semi-nonlinear and nonlinear numeri
al hybrid methods. The fo
us

is here put on the wave �eld in
luding the piston-mode amplitude behaviour due to

for
ed os
illations, and not on the hydrodynami
 for
es on the moonpool se
tion. The

experimental programme setup was des
ribed in 4.1.

Se
ondly, results from an experimental and numeri
al study of a two-dimensional

freely �oating moonpool se
tion in in
oming regular waves are presented and results are

dis
ussed. The experimental programme setup was des
ribed in 
hapter 4.2. Based on the

validity gained by 
omparing the experimental and numeri
al results, additional numeri
al

results with appendages and with low forward velo
ity are presented.

At the end we will 
ome ba
k to for
ed os
illations, but with a fo
us on lo
al pressure

and water �ow details from the two hybrid methods. This is to help in the understanding

and explanation of the di�eren
e in results obtained by the semi-nonlinear and the non-

linear hybrid method as well as to understand whi
h physi
al e�e
ts that are needed to

model numeri
ally to fully des
ribe the problem 
onsidered.

The results will as long as appropriate be presented in a dimensionless manner, based

on Froude s
aling and geometri
 similarity. This is done for 
onvenien
e sin
e the physi
al

dimensions in the two experimental setups were di�erent, and it is then easier to do


omparison between the results from the experimental programmes. The moonpool width

b is 
hosen as the main length parameter in s
aling the results. This means that the

dimensionless os
illation period will be
ome T ∗ = T
√

g/b, the dimensionless water depth

h∗ = h/b, the dimensionless draft d∗ = d/b and the dimensionless for
ing heave amplitude

η∗
3a

= η
3a

/b. The dimensionless os
illation period T ∗
will be used for both the dimensionless

59
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wave period and the dimensionaless for
ed os
illation period. An ex
eption is the Froude

number whi
h is dimensionless using the total width of the stru
ture, and the in
oming

wave height is dimensionless by the wave length to obtain the wave steepness. One should

note that the only dimensionless parameter that is di�erent between the two experimental

programmes and possibly important for the results was the dimensionless water depth.

The di�eren
es this 
auses are investigated in se
tion 5.3.10, where the added mass and

potential-�ow damping in heave and roll for the two experimental setups are numeri
ally

simulated and 
ompared. The dimensionless wave �ume lengths are also di�erent, but the

in�uen
e is thought to be negligible, as long as the wave �ume is long enough to obtain

steady-state 
onditions. This matters in the �oating experimental set-up due the fa
t that

re�e
tions from the wavemaker 
annot be damped out. The reason is that the 
ontrol

system for the wavemaker does not in
lude software to absorb re�e
ted waves. Another

se
ondary in�uen
e from the di�eren
e in dimensionless wave �ume length is the possible

in�uen
e of the sei
hing mode of the tank, whi
h will o

ur at di�erent dimensionless

periods between the two setups. The latter fa
tor will also apply to any in�uen
e from

the transverse sloshing modes of the wave �ume.

5.1 For
ed heave os
illation with low forward velo
ity

During the development phase of the numeri
al 
ode, the �rst milestone was to do for
ed

heave os
illations without forward velo
ity with the semi-nonlinear and nonlinear hybrid

methods, and validate it against experiments performed by Kristiansen and Faltinsen

(2012) and the experiments des
ribed in se
tion 4.1. Before this, separate parts of the


ode were validated against sele
ted 
ases from the literature. The vis
ous FVM part was


he
ked against lid-driven 
avity �ow problem presented by Ghia et al. (1982). Further-

more, similar validation studies as in Berthelsen and Faltinsen (2008) were performed for

a square with sharp edges in os
illating �ow in in�nite �uid, where both the added mass

and drag 
oe�
ients were 
he
ked.

The 
omplete numeri
al hybrid methods were not validated against anything prior to

the studies presented here. However, good results based on a similar 
ode by Kristiansen

and Faltinsen (2012) have previously been a
hieved.

As an introdu
tion to the rest of the 
hapter, some idealized 
onsiderations of the

vortex shedding in the moonpool of the for
ed os
illation set-up will be dis
ussed. For

the for
ed heave os
illation 
ase without forward velo
ity the problem 
an be 
onsidered

as symmetri
 about the mid-line of the moonpool gap, as long as the ex
itation amplitude

is su�
iently small to avoid asymmetry in the shed vorti
ity pattern due to instabilities in

the �ow. However, the problem is asymmetri
 with a low forward velo
ity of the hull. A

few questions and assumptions then arise, with the strength of the shed vorti
ity being a

fun
tion of the lo
al �uid velo
ity at any sharp edge. Let us for the moment assume that

the shed vorti
ity is 
on
entrated in thin free shear layers without di�usion. Furthermore,

we dis
uss the free-shear layer separating from one 
orner and de�ne the time rate of


hange of 
ir
ulation ∂Γ/∂t = ±0.5U2
s , see Faltinsen (2005). Γ is the 
ir
ulation around

a 
losed 
urve C in the liquid domain that en
loses the shed vorti
ity and is equal to

the integrated vorti
ity inside C. Furthermore, Us is the separation velo
ity just outside

of the boundary layer, at the 
orner. The latter 
onsideration assumes a thin boundary

layer. The low forward velo
ity of the body will in�uen
e the lo
al velo
ity at the edges of
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Figure 5.1: Symmetri
 vorti
ity shedding for zero forward velo
ity 
ase in a) and b). Asymmetri


vorti
ity shedding for the low forward velo
ity 
ase in 
ase 
) and d).

the moonpool. At the beginning of the os
illation 
y
le, when the wave amplitude inside

the moonpool is in
reasing, the velo
ity introdu
ed by the piston-mode os
illation will on

the leading edge have the same dire
tion as the undisturbed in
oming velo
ity. Due to

the higher lo
al velo
ity we will expe
t that more vorti
ity is being shed from this edge.

The opposite will happen on the trailing edge of the moonpool entran
e. Here the lo
al

indu
ed �ow from the in
reasing piston-mode amplitude will have opposite �ow dire
tion

as the undisturbed in
oming velo
ity, and weaker vorti
ity is generated from this edge, see

Figure 5.1 
). Half a period later in the os
illation 
y
le the situation is turned around.

The piston-mode amplitude is now de
reasing and the vorti
ity shed from the leading

edge is now lower than that shed from the trailing edge, see Figure 5.1 d). Due to the

mentioned e�e
ts, how will the vis
ous damping of the piston-mode amplitude 
hange due

to low forward velo
ity or in
oming 
urrent? The above dis
ussion will be dependent on

the ratio between the forward velo
ity and the lo
al liquid velo
ity due to the moonpool

behaviour. In the above dis
ussion we have negle
ted the e�e
t of vorti
ity shed from the

leading edge of the hull. This vorti
ity will in�uen
e the lo
al �ow around the entran
e of

the moonpool gap. The assumptions about the magnitude of vorti
ity above might not

be 
orre
t, with a sharp leading 
orner.

Some of the results in this se
tion have previously been published in Fredriksen et al.

(2014).

5.1.1 Parameter variation

In order to put the results from the extensive experimental programme into system,

the following tables present the �rst se
tion of the parameter study performed in the

experimental program. Here the 
ombination of three di�erent drafts, 3 di�erent forward

velo
ities, 3 di�erent heave for
ing amplitudes, 3 di�erent appendage pro�les (see Figure
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5.2) and a suitable number of os
illation periods for ea
h 
ase (see Table 5.1 for a overview

on the di�erent parameters tested in Figures 5.3-5.11). Table 5.2 gives an overview on

how ea
h of the Figures 5.3-5.11 are subdivided into 9 di�erent sub-�gures.

❳❳❳❳❳❳❳❳❳❳❳❳
d∗

Edge pro�le

Sharp 
orner Appendage #1 Appendage #2

0.833 Fig. 5.3 Fig. 5.6 Fig. 5.9

1.0 Fig. 5.4 Fig. 5.7 Fig. 5.10

1.167 Fig. 5.5 Fig. 5.8 Fig. 5.11

Table 5.1: Overview of �gure numbers where results from the given 
ombination of edge pro�le

and draft are given. Appendage #1 has dimensions 18mm width by 9mm height and appendage

#2 has dimensions 27mm width by 18mm height. The appendage #1 
over 20% of the moonpool

gap, while appendage #2 
over 30% of the moonpool gap, see Figure 5.2. The moonpool gap

width b are for all 
ases 0.18m.

❍
❍
❍
❍
❍
❍

η∗
3a

Fn

0.00 0.04 0.08

0.0128 a b 


0.0250 d e f

0.0506 g h i

Table 5.2: Overview of how the velo
ity and heave amplitude variation in Figures 5.3-5.11 are

organized. The letters a-i refer to di�erent parts in the �gures.

PSfrag repla
ements

HPC

FVM

FVM

HPC

a) b) 
)

d)

wg

wg

wg

wg

wg

wg

wg

m

m

m

m

m

m

m

m

m

m

m

a

a

a

a)

b)

COG

Figure 5.2: Overview of appendage edge geometries that were tested. a) sharp edge pro�le, b)

appendage pro�le #1 where ea
h appendage dimensions were 18mm width by 9mm height and


) appendage pro�le #2 where ea
h appendage dimensions were 27mm width by 18mm height.

The moonpool gap width b are for all 
ases 0.18m.

5.1.2 Numeri
al setup

The meshes for the numeri
al hybrid method for the for
ed os
illation simulations are


onstru
ted as follows: Note that the dis
ussion here are based on values with real dimen-

sions and are valid only for the for
ed heave os
illation with and without forward velo
ity

study. For all simulations the horizontal 
ell size around the hull was 0.01m, whi
h means

that there were 36 
ells in the horizontal dire
tion over ea
h hull and 18 
ells a
ross the

moonpool. This mesh size extends 1.2 hull lengths or 0.3 wave lengths away from the

hull depending on what is shortest in upstream dire
tion. In the downstream dire
tion
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of the hull, the mesh size is 
onstant for 1.5 hull lengths or 0.42 wave lengths away from

the hull also depending on what is shortest. Outside this area the mesh size gradually

in
reases to 30 
ells for ea
h wave length. In the damping zone the mesh size in
reases

even further. Note that the horizontal mesh size is then 
onstant in the verti
al 
olumn,

as we are limited to re
tangular 
ells. The wave length 
onsidered here is without 
urrent

e�e
ts, but with the e�e
t of water depth.

In the verti
al dire
tion the mesh used depends on the draft and the expe
ted piston-

mode amplitude to o

ur during the simulation. Generally the verti
al mesh size is 30%
smaller than the horizontal mesh size around the hull. The mesh is kept 
onstant until 0.5
times the draft below the bottom of the hull, then gradually in
reasing until the bottom

of the tank, with a total number of 60 
ells in verti
al dire
tion. Also here the verti
al

mesh size is kept 
onstant for ea
h horizontal row. A problem in using an easy mesh

generation method as this, is that the aspe
t ratio of the 
ells far away from the body

(verti
ally or horizontally) be
omes high (or low). In addition it should be noted that

the mesh resolution does not aim at 
apturing the behaviour of the water �ow inside the

boundary layers atta
hed to the hull.

The numeri
al bea
h zone starts, at both sides, four wave lengths (without 
urrent)

away from the body and in
reases smoothly over one wave length to its maximum value

(0.8), and is kept at this value for another three wave lengths before the end of the tank.

The total length of the numeri
al domain is 16 wave lengths in addition to the length of

both hulls in
luding the moonpool.

The time-step size∆t is 
hosen to be the lowest of 0.5 times the Courant�Friedri
hs�Lewy

(CFL) number (∆t = 0.5δy/v or ∆t = 0.5δz/w) or 120 time-steps per os
illation period

∆t = T/120.
The height of the potential �ow domain in the nonlinear hybrid method inside the

moonpool is for all drafts and appendages set to be 0.03m for 2.3mm heave amplitude,

0.06m for 4.5mm heave amplitude and 0.075m for 9.1mm heave amplitude. These values

are based on what is observed from the experiments presented in 
hapter 4.1, and in
luded

a safety margin to allow over-predi
tion of the moonpool amplitude in the numeri
al

simulation.

The wave pro�le in the moonpool gap should be almost horizontal when the sloshing

modes are not present. The sloshing modes will be ex
ited by transient e�e
ts in the

start-up. These transient sloshing modes are damped out by a numeri
ally added arti�
ial

damping around the spa
e average value of the wave pro�le inside the moonpool gap ea
h

time-step. This is done in a similarly way as for the damping applied in the numeri
al

bea
h. Physi
ally the only damping sour
e of the sloshing modes is through the boundary

layers on the glass walls and on the side hulls. The damping ratio ξ on the �rst sloshing

mode for the for
ed os
illation experimental setup for the boundary layer �ow is found

from Faltinsen and Timokha (2009) to be ξ = 0.0014. It is believed that the arti�
ial

damping added in the numeri
al method inside the moonpool gap is larger than what will

be in reality due to boundary layer damping.

The mesh is 
hanged inside the moonpool gap when the appendages are 
onsidered.

There are 2 
ells over both the length and height of the appendage for the small appendage

pro�le (#1). For the large appendage pro�le (#2) there is 3 
ells in horizontal dire
tion

and 4 
ells in the verti
al dire
tion a
ross the appendage. The remaining part of the mesh

is equal to the sharp-edge 
ase.

In the 
ases with zero forward velo
ity, the interse
tion between the potential and
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vis
ous �ow domains are ordered in a stair
ase pattern on both sides of the hull. However,

with forward speed we need to allow for vorti
ity transport away from the hull in the

down-stream dire
tion. Therefore the stair
ase pattern on the down-stream side of the

hull is repla
ed with a horizontal interse
tion stret
hing all the way down to the end of

the numeri
al wave tank.

5.1.3 Numeri
al limitations in the nonlinear hybrid method

For higher heave amplitudes η∗
3a

, the ratio between the piston-mode amplitude and the

draft in
reases. This requires a larger potential �ow domain due to re-meshing strat-

egy of the potential �ow domain 
lose to the free surfa
e. This means that, while the

amount of vorti
ity in
reases, we have to de
rease the vis
ous domain inside the gap. The


onsequen
e is in
reased probability that vorti
ity will rea
h the numeri
al interse
tion

between the vis
ous and the potential �ow domain. Therefore, our numeri
al method is

limited to free shear layers that stay below the level of the wave trough in the body-�xed


oordinate system. (See results from the sensitivity tests of the height of the potential

domain inside the moonpool in Figure 6.3.)

The following dis
ussion is used to justify that vorti
ity is likely to be transported to

the interse
tion. The vorti
ity separated from the trailing edge on the downstream side

will grow with in
reasing 
urrent velo
ities, up to a point where the �ow separation will


ause a �dry transom stern�. By �dry transom stern� the analogy is made to what happens

for high-speed semi-displa
ement and planing vessels. However, the dry �ow separation


ase is not relevant here, as it will happen for mu
h higher Froude numbers than what

we 
onsider (Fn > 0.3 − 0.4 Faltinsen (2005)). However, for velo
ities lower than for

dry separation the vorti
ity will rea
h the numeri
al interse
tion between the potential

�ow and vis
ous �ow domains, and later the vorti
ity will in the experiments rea
h the

free surfa
e. This is the reason for not being able to simulate with mu
h larger forward

velo
ity than Fn= 0.08 in the nonlinear hybrid method.

5.1.4 Results from for
ed os
illations

First a 
omprehensive 
omparisons between the two numeri
al hybrid methods and the

experimental results for the parameter variations presented in Tables 5.1 and 5.2 will

be given. Note that there is not experimental results for all variations given in Tables

5.1 and 5.2, however, the numeri
al hybrid method results are given for all parameter


ombinations. There are only semi-nonlinear hybrid method results for the 
ases without

forward velo
ity.

A �rst 
he
k of the quality of the experimental and numeri
al results is to 
ompare

the natural period of the piston-mode resonan
e with results given in the literature.

Faltinsen et al. (2007) provided a

urate 
al
ulations of the natural periods for the

piston-mode resonan
e, based on non-separated potential �ow without 
urrent for 
ase

a) without appendages. Based on their results the natural period for the 3 di�erent

drafts are T15 = 1.125s, T18 = 1.179s and T21 = 1.233s. The observed natural periods

from experiments for for
ed heave motion without forward velo
ity were T15 = 1.13s,
T18 = 1.18s and T21 = 1.23s, and thus 
orresponds well to the results from Faltinsen

et al. (2007), see 
orresponding dimensionless values in Table 5.3. The natural periosd

are from the experimental programme taken where the maximum moonpool response
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o

ur. Other approximate formulas for estimating the piston-mode natural period exist,

a pra
ti
al and useful theory for approximating the natural frequen
y of the piston-mode

for zero 
urrent is given by Molin (2001),

ω
0

=

√

g

d

1

1 + b
πd

(

3
2
+ ln B

T

2b

)
(5.1)

where B
T

is the total breadth of the body. It has many times been observed that the

a
tual length of B
T

should be taken somewhat larger that the total breath of the body

Maisondieu et al. (2001).

P
P
P
P
P
P
P
PP

d∗
Sour
e

Faltinsen et al. (2007) Molin (2001) Experiments

0.833 8.31 7.95 8.34

1.0 8.70 8.36 8.71

1.167 9.10 8.74 9.08

Table 5.3: Comparison of dimensionless natural periods T ∗
between literature results and exper-

imental results.

The natural periods were found not to 
hange mu
h when introdu
ing low forward

velo
ity to the problem; it might have de
reased a few per
ent when 
omparing the zero

Froude number 
ases with the 0.08 Froude number 
ases.

The asymptoti
 value when T → 0s for the outgoing wave amplitude should approa
h

0, that 
orresponds to 1 in the body-�xed results in Figures 5.3-5.11. This is due that

the high-frequen
y free-surfa
e 
ondition 
an be approximated as ϕ = 0, whi
h does not

allow for wave solutions. The 
onvergen
e of the results towards the asymptoti
 values

are not 
lear from Figures 5.3-5.11, sin
e the dimensionless periods given are far from

the asymptoti
 values. Inside the moonpool the asymptoti
 value when T → 0s 
an be

di�erent from zero, due to that ϕ = 0 allows verti
al motion of the free surfa
e.

As a �rst estimate on the in�uen
e of turbulent di�usion in our problem, we simulated

with our nonlinear hybrid method 
ases where we in
reased the dynami
 vis
osity ν from

10−6
kg/(ms) to 10−4

kg/(ms) in the �uid. We in
reased ν to simulate that there exists

turbulent di�usion due to eddy vis
osity at s
ales smaller than what we 
apture with our

mesh density. An in
rease in ν will result in an in
rease in the boundary layer thi
kness,

that will in
rease the damping of the piston-mode motion. For ν = 10−6
kg/(ms) we

have seen that the damping 
ontribution from the boundary layer is small, this may not

be the 
ase with ν = 10−4
kg/(ms). For the lowest heave amplitude (η∗

3a

= 0.0128) we
see a de
rease in the piston-mode motion, around 10% at resonan
e. However, for the

highest heave amplitude (η∗
3a

= 0.0506) the piston-mode response is not mu
h a�e
ted

by in
reasing the dynami
 vis
osity. This 
ould be a result of that we for some areas in

the water have a turbulent mixing of vorti
ity, and thus a higher di�usion/
an
ellation of

vorti
ity whi
h would lead to a smaller damping of the moonpool piston-mode resonan
e.

One should remember that free vorti
ity is turbulent at very low Reynolds number (see


hapter 6 in Faltinsen and Timokha (2009)).
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5.1.5 E�e
t of 
hanging draft on moonpool amplitude

The verti
al position of the body was easily 
hangeable in the experimental setup. This

allowed for easy testing of three di�erent draft 
on�gurations as des
ribed in Table 5.1.

The e�e
t of 
hanging the draft is in pra
ti
e negligible for the maximum value of

the piston-mode amplitude, as seen by 
omparing Figures 5.3-5.5 for the 
ase a) with

sharp edge pro�le, Figures 5.6-5.8 for 
ase b) with small appendages and Figures 5.9-5.11

for 
ase 
) with large appendages. A simplisti
 view on this is that the heave motion

displa
es a 
ertain amount of water whi
h is proportional to the beam of the se
tion.

During resonan
e a large part of that water goes into the moonpool. How large the

piston-mode amplitude be
omes is then dependent on the ratio between the width of the

moonpool and the length of the two side hulls, and not mu
h a�e
ted by the draft. I.e.

the ratio between the volume of the moonpool and the displa
ement of the hull remains


onstant and is independent of the draft. The situation may be di�erent if the hull sides

are no longer verti
al, and the ratio between the moonpool volume and the displa
ement

of the hull 
hanges for di�erent draft 
on�gurations.

The draft 
hanges the piston-mode natural period, su
h that for a given period the

moonpool response is 
hanged. For deeper drafts the natural period of the piston-mode

motion in
reases. Meaning that the piston-mode motion 
ould be either higher or lower

when 
hanging the draft for a given os
illation period.

For the numeri
al simulation using the semi-nonlinear and nonlinear hybrid methods,

it is numeri
al bene�
ial with larger drafts. As the interse
tion between the potential and

vis
ous �ow domains will be further away from the edges of the hull, and there is lower

probability that the vorti
ity will rea
h the interse
tion. For the setups simulated in this

se
tion, it is not experien
ed any vorti
ity at the interse
tion for the 
ases without forward

speed. However, for the 
ases with low forward speed, the sensitivity study showed that

the moonpool amplitude is sensitive to the lo
ation of the interse
tion between vis
ous

and potential �ow. (See the 
onvergen
e and sensitivity study in se
tion 6.2.)

5.1.6 E�e
t of appendages at the moonpool inlet

Only simple appendage geometries that are possible to simulate with the hybrid methods

were experimentally tested. This allowed only re
tangular shapes as illustrated in Figure

5.2 to be tested. It was not the ambition of this study to �nd the optimal solution of

the moonpool edge geometry to damp out the moonpool motion, or any other moonpool

damping devi
es.

There is a major in
rease in the damping of the moonpool motion when 
omparing

sharp edges to appendages, this is a

ordan
e with Graham (1980) who found that the

strength of shed vorti
ity de
reases with in
reasing interior apex angle. However, there is

not mu
h di�eren
e between the two di�erent appendages 
on�gurations that were tested.

The appendages have two e�e
ts, it is from the experiments seen that they in
rease the

natural period. From the 
ase without appendages to the 
ase with large appendages (#2)
the natural period is in
reased by 3%. The se
ond e�e
t is the in
rease in the strength of

shed vorti
ity, as more water is being pushed through a more narrow entran
e, and the

�uid velo
ity at the edge is larger.

The numeri
al results for appendage 
on�guration #1 
ompare better with experi-

ments than the numeri
al results for appendage 
on�guration #2 (see Figures 5.6-5.11).
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η
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η
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tangular side hulls (without appendage) with
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Here the two numeri
al hybrid methods results and experimental results di�er in both

amplitude and the predi
ted period of maximum response. The mesh is almost identi
al

for the two 
ases and the interse
tion is at the same lo
ation, so there must be some

physi
al e�e
t our numeri
al method does not 
apture. The same physi
al e�e
t should

be almost negligible in the setups with sharp edges and appendages #1, and have a small

e�e
t on the �ow �eld with appendages #2. The following explanation is proposed, with-

out further studies. For appendage 
on�guration #2 the edges are 
loser to ea
h other

than they are for appendage #1, su
h that the vorti
ity 
reated at one edge is more likely

to in�uen
e the vorti
ity 
reated at the other edge. Meaning that there 
ould be turbulent

mixing of vorti
ity in the experiments for the largest appendage that is not well 
aptured

by our numeri
al vis
ous method. Further studies by using a vis
ous model that in
lude

the e�e
t of turbulen
e is needed to fully answer this question.

The appendages also have a de
reasing e�e
t in linear potential-�ow theory on the

piston-mode moonpool amplitude. There is a 13% de
rease in the maximum piston-mode

moonpool amplitude when going from the sharp edge 
ase to appendage #1 in linear

potential �ow theory results, see Figure 5.17. In the experimental programme the same

redu
tion was around 40%. Also the potential �ow theory results show large di�eren
es

between the two appendages pro�les.

The dimensionless natural periods of the piston-mode os
illation from the experimental

programme are given in Table 5.4 and from the nonlinear hybrid method in Table 5.5.

The natural periods are taken when the piston-mode response has a maximum from the

experimental test-series without forward velo
ity and for
ed heave amplitude η∗
3a

= 0.025.

❳❳❳❳❳❳❳❳❳❳❳❳
d∗

Edge pro�le

Sharp 
orner Appendage #1 Appendage #2

0.833 8.34 8.4 8.6

1.0 8.71 8.8 8.9

1.167 9.08 9.1 9.3

Table 5.4: Measured dimensionless natural periods for the di�erent moonpool se
tions from

experimental results.

❳❳❳❳❳❳❳❳❳❳❳❳
d∗

Edge pro�le

Sharp 
orner Appendage #1 Appendage #2

0.833 8.26 8.49 8.70

1.0 8.68 8.88 9.08

1.167 9.08 9.26 9.45

Table 5.5: Dimensionless natural periods for the di�erent moonpool se
tions from the nonlinear

hybrid method results.

In "Re
ommended Pra
ti
e DNV-RP-H103 Modelling and Analysis of Marine Opera-

tions" a formula for engineering use that estimates the natural period T0 of the moonpool
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piston-mode resonan
e with 
hanging moonpool gap 
ross-se
tion is given as follows

T0 =
2π√
g

√

∫ 0

−D

A(0)

A(z)
dz +

A(0)

A(−D)
· κ

√

A(−D), (5.2)

where κ is a 
oe�
ient to a

ount for the added mass of the verti
al os
illation of the water


olumn inside the moonpool, and is found to be between 0.45 and 0.47 for re
tangular

se
tions. Further, A(z) is the 
ross-se
tional area of the moonpool for a given depth z.
The estimated dimensionless natural periods based on equation 5.2 are given in Table 5.6.

Here the value of κ is 
hosen to be 0.46. These values are above what are given in Table

5.4, but equation (5.2) still serves as a good �rst estimate on the piston-mode natural

period due to appendages. The relative di�eren
e for the di�eren
e in the natural periods

between the sharp edge 
ase and the 
ases with appendages are similar to what is seen in

Table 5.4.

❳❳❳❳❳❳❳❳❳❳❳❳
d∗

Edge pro�le

Sharp 
orner Appendage #1 Appendage #2

0.833 8.70 9.01 9.26

1.0 9.07 9.37 9.61

1.167 9.53 9.72 9.95

Table 5.6: Predi
ted dimensionless natural periods for the di�erent moonpool se
tions based on

equation (5.2).

5.1.7 E�e
t of low forward velo
ity on the moonpool amplitude

In this se
tion a review of the results with regards to the di�eren
e in the moonpool

motion due to low forward velo
ity will be given. By taking Figure 5.4 as an example the

low forward 
arriage velo
ity has a minor damping e�e
t on the piston-mode amplitude.

A de
rease in the piston-mode amplitude of 5−7% from Fn= 0.0 to Fn= 0.08 is observed,
while for other appendage/draft 
on�gurations no 
hange/de
rease is observed.

We 
an in Figure 5.12 see how the moonpool amplitude is 
hanging with respe
t to

the 
arriage velo
ity for two di�erent for
ing heave amplitudes. Note the un
ertainty

in
reases for higher Froude numbers, due to the short physi
al length of the wave �ume,

meaning that a steady-state 
ondition may not have been rea
hed. Unfortunately the

desired os
illation period of 1.18s (T ∗ = 8.711) was not rea
hed by the 
ontrol system,

but on average the os
illation period was 1.19s (T ∗ = 8.785), with a small variation of the

os
illation period between the tests. A linear �t of the results are performed and shown

in Figure 5.12. It results in the following the two equations for the maximum moonpool

amplitude as fun
tion of Froude number,

ζgap
η
3a

= 7.5814− 4.7372Fn (5.3)

for η∗3a = 0.0250 and,

ζgap
η
3a

= 6.1950− 1.5210Fn (5.4)
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Figure 5.6: Moonpool gap and outgoing wave amplitude operators for di�erent for
ing amplitudes

η
3a

and Froude numbers for the set-up with appendage #1 (18x9mm) with d∗ = 0.833. See


aption in �gure 5.4 for des
ription of symbols.
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Figure 5.7: Moonpool gap and outgoing wave amplitude operators for di�erent for
ing amplitudes

η
3a

and Froude numbers for the set-up with appendage #1 (18x9mm) with d∗ = 1.0. See 
aption
in �gure 5.4 for des
ription of symbols.
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Figure 5.8: Moonpool gap and outgoing wave amplitude operators for di�erent for
ing amplitudes

η
3a

and Froude numbers for the set-up with appendage #1 (18x9mm) with d∗ = 1.167. See


aption in �gure 5.4 for des
ription of symbols.
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Figure 5.9: Moonpool gap and outgoing wave amplitude operators for di�erent for
ing amplitudes

η
3a

and Froude numbers for the set-up with appendage #2 (27x18mm) with d∗ = 0.833. See


aption in Figure 5.4 for des
ription of symbols.
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Figure 5.10: Moonpool gap and outgoing wave amplitude operators for di�erent for
ing ampli-

tudes η
3a

and Froude numbers for the set-up with appendage #2 (27x18mm) with d∗ = 1.0. See

aption in Figure 5.4 for des
ription of symbols.
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Figure 5.11: Moonpool gap and outgoing wave amplitude operators for di�erent for
ing ampli-

tudes η
3a

and Froude numbers for the set-up with appendage #2 (27x18mm) with d∗ = 1.167.
See 
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Figure 5.12: Dimensionless moonpool amplitudes in a body-�xed view as a fun
tion of Froude

number for 
onstant dimensionless heave amplitudes η∗
3a

of 0.0250 and 0.0506. The dimensionless

os
illation period T ∗ = 8.785. The experimental set-up is without appendages and d∗ = 1.0.

for η∗
3a

= 0.0506. Both equations are valid for Froude numbers between 0.00 and 0.08 and

for the dimensionless heave os
illation period T ∗ = 8.785.
By studying velo
ity plots from our numeri
al simulations using the nonlinear hybrid

method with low forward velo
ity (see examples in Figure 5.13), we see that the leading

edge on the upstream side hull 
reates a wake whi
h make the relative liquid velo
ity at

the moonpool gap entran
e almost zero. In e�e
t, the water in the moonpool is free to

os
illate nearly without the in�uen
e of forward velo
ity. This may explain the negligible

in�uen
e of low forward velo
ity on the moonpool behaviour. In addition also the free-

vorti
ity �ow that develops at the leading edge will easily be
ome turbulent, whi
h again

in�uen
es the di�usion of vorti
ity that will not be 
aptured by our laminar vis
ous model.

Numeri
al simulations with Froude number 0.12 were tried, but were unsu

essful due

to vorti
ity rea
hing the interfa
e between potential and vis
ous �ow, su
h that reliable

results were not obtained.

An experimental test-series with 
arriage velo
ity of Fn= 0.1 is given in Figure 5.14

for the 
ase without appendages and a draft of d∗ = 1.0. Due to the limited length of the


arriage rails, the total duration of the experiments is only around 20se
, in
luding the

a

eleration and de-a

eleration phases. This might not be enough time to rea
h steady

state for longer periods, and for periods around the natural piston-mode period. The

results are quite surprising, i.e. the moonpool response has in
reased 
ompared to the

results presented in Figure 5.4 for lower Froude numbers.

The group velo
ity of the outgoing waves are for all periods larger than the forward

velo
ities tested here, meaning that there will be outgoing waves on both sides. A

ording

to pp. 239-240 in Faltinsen (2005) upstream waves will exist when the dimensionless

number τw = ωeU/g < 0.25, where ωe is the angular frequen
y of en
ounter. The situation

is expe
ted to 
hange when there is only outgoing waves on one side, meaning that the

piston-mode motion might 
hange.



5.1. For
ed heave os
illation with low forward velo
ity 79

a)

b)

c)

d)

PSfrag repla
ements

HPC

FVM

FVM

HPC

a)

b)


)

d)

wg

wg

wg

wg

wg

wg

wg

m

m

m

m

m

m

m

m

m

m

m

a

a

a

a)

b)

COG

Figure 5.13: Examples on how the leading edge wake in�uen
e the �ow �eld at the moonpool

entran
e. The 
ase here is from Figure 5.4 with Fn = 0.04, η∗
3a

= 0.0250 and T∗ = 8.6743. a) is
at the start of an os
illation when the boxes are moving upwards, b) is at the top position, 
) is

at middle position moving downwards, d) is at the bottom position. Velo
ity arrows are given in

the body-�xed 
oordinate system. The simulation results are from the nonlinear hybrid method.
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The upstream outgoing wave is for all 
ases found to be larger than the downstream

wave. The numeri
al predi
tion of the outgoing waves is in good agreement with the

experimental results.
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Figure 5.14: Experimental results for the measured moonpool gap amplitude divided by the

for
ed heave motion amplitude for Fn= 0.1, without appendages and d∗ = 1.0 (18
m) draft.

5.1.8 E�e
t of heave amplitude on the moonpool amplitude

In this se
tion a review of the results with regards to the di�eren
e in the moonpool motion

due to 
hanging for
ed heave os
illation amplitude are given. Figures 5.15 and 5.16 show

how the piston-mode moonpool amplitude is depending on the for
ed heave os
illation

amplitude. Figure 5.15 is for d∗ = 0.833, Fn= 0.04 and without appendages, while Figure

5.16 is for d∗ = 1.0, Fn= 0.04 and all appendages options. In both �gures ea
h heave

amplitude is tested for 5 di�erent os
illation periods around the resonan
e piston-mode

period. The similarities between the two �gures show again how independent the piston-

mode moonpool amplitude is of the draft of the hull. For all experimental tested heave

amplitudes the wave elevation inside the moonpool gap never rea
hed the lower entran
e

of the hull. A nonlinear e�e
t is expe
ted to o

ur when the piston-mode motion rea
hes

the lower entran
e of the hull for higher heave for
ing amplitudes than experimentally

tested. This e�e
t has not been investigated in the present experimental and numeri
al

work.

As expe
ted, the ratio between the piston-mode amplitude and the heave amplitude at

resonan
e de
reases as the heave amplitude in
reases. This is due to a quadrati
 in
rease

in the strength of the shed vorti
ity. However, stri
tly speaking quadrati
 dependen
y on

heave velo
ity 
annot be assumed, but on lo
al relative �uid velo
ity on hull edges.

The sub-�gure in the upper right 
orner of Figure 5.15 illustrates how the heave

os
illation period is varying during the experiment. This period variation is also valid
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for the results showed in Figure 5.16. There is therefore some s
attering in the results

be
ause of the variation of the heave os
illation period.
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Figure 5.15: Dimensionless moonpool wave amplitudes in the body-�xed view as fun
tion of

for
ed heave os
illation amplitudes. For the 
ase without appendages and d∗ = 0.833
m draft.

Ea
h heave amplitude is tested for 5 di�erent os
illation periods.

5.1.9 Linear potential-�ow theory results

Sin
e linear potential-�ow theory is often used for engineering appli
ations, it is of pra
-

ti
al interest to 
ompare results against linear potential-�ow theory. The results here has

been obtained by using the present 
oupling between the HPC and the FVM method, but

with the use of linear potential-�ow theory in both domains. A more 
omprehensive dis-


ussion regarding the physi
al di�eren
es between linear potential-�ow theory and what

is observed in experiments will be given later, where the dis
ussion will 
ontain interpre-

tation of the results from both the semi-nonlinear and the nonlinear hybrid methods.

It has been the topi
 of many publi
ations before the di�eren
e between potential �ow

theory and the physi
al reality. In Figure 5.17 the large di�eren
e for the moonpool prob-

lem is again 
on�rmed. The piston-mode motion is over-estimated due to the negle
tion

of vorti
ity separation from the lower moonpool entran
e.

An important physi
al result to noti
e from the potential-�ow results in Figure 5.17

is the signi�
ant de
rease in the moonpool amplitude due to the presen
e of appendages.

Meaning that it is not only that the presen
e of appendages in
rease the vorti
ity sepa-

ration and therefor de
rease the moonpool amplitude, there is also a potential-�ow e�e
t

redu
ing the moonpool amplitude.

5.1.10 Phase angle

Typi
al behaviour of the phase angle (α) between the heave a

eleration and the moonpool

motion is given in Figure 5.18. The example that is illustrated is without appendages, d∗ =
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Figure 5.16: Dimensionless moonpool amplitudes in a body-�xed view as a fun
tion of for
ed

heave amplitude. For all 
ases with and without appendages, with forward velo
ity Fn= 0.04.
Ea
h heave amplitude is tested for 5 di�erent os
illation periods.

1.0 (18
m) draft, η∗
3a

= 0.025 (4.5mm) os
illation amplitude and zero forward velo
ity.

This 
orresponds to the phase angle of the results in sub-�gure d) of Figure 5.4. The phase

angle goes through 90◦ around the piston-mode resonan
e. Furthermore, for periods below

the piston-mode resonan
e period, the heave and moonpool motions are out of phase. For

periods above the piston-mode resonan
e period they are in phase.

Figure 5.18 also illustrates the main reason for showing all results from the for
ed heave

os
illations experimental programme in a body-�xed view. There is an o�set between the

numeri
ally predi
ted phase angle, and the measure phase angle from the experimental

programme. It is 
lear that the measurements from the experimental programme 
ontain

an error. When analysing the experimental data it was found that there is a time lag

between the heave signal and the wave gauge signal, su
h that the wave gauge measure-

ments 
ould not be 
onverted ba
k to the Earth �xed 
oordinate system. Sin
e the wave

gauges are mounted to the model and follow the motion of the body in both sway and

heave, the measured wave gauge signal would need to be 
orre
ted with the measured

heave position.

5.1.11 Overall agreement for for
ed os
illation study

The validity and limitations of the numeri
al method in predi
ting the moonpool response

due to for
ed heave os
illations have been presented. With the limitations given in the

numeri
al hybrid method, the results 
ompare quite well with experiments (see Figures

5.3-5.11). The nonlinear hybrid method simulations for higher heave amplitudes some-

what over-predi
t the damping of the piston-mode amplitude, while it for lower amplitudes

are in good agreement with the experimental results. As an example in Figure 5.4 the

di�eren
e in the predi
ted piston-mode amplitude for the lowest heave for
ing amplitude

η∗
3a

= 0.0128 is less than 2%, and for the highest heave for
ing amplitude η∗
3a

= 0.0506 the
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Figure 5.17: Dimensionless moonpool amplitudes in a body-�xed view 
omparison of linear

potential �ow theory (POT) with the semi-nonlinear (S-NL) simulations for all appendages and

draft 
on�gurations versus dimensionless os
illation period. The semi-nonlinear results are the

same as presented in Figures 5.3-5.11.
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Figure 5.18: Phase angle α between heave a

eleration and moonpool motionversus the dimen-

sionless os
illation period T ∗
.

relative di�eren
e is around 7% at the piston-mode resonan
e period.

Piston-mode amplitude results from the semi-nonlinear hybrid method are higher than

the nonlinear hybrid results for all zero 
urrent 
ases. Furthermore, it over-predi
ts the

piston-mode response for higher heave amplitudes. It is believed that the reason for this

is that the potential �ow domain in the semi-nonlinear results 
an be minimized to only


ontain the top layer 
lose to the free surfa
e, while the potential �ow domain in the

nonlinear hybrid method needs to be larger due the re-meshing algorithm of the free-

surfa
e. The reason is that the implementation does not allow the vis
ous �ow domain

to 
hange size in time. Noti
e that also the semi-nonlinear results are di�erent from the

experiments for appendage #2.

More 
omments regarding the appli
ability of the semi-nonlinear and the nonlinear

hybrid methods will be given when the lo
al pressure and �ow details are studied due to

for
ed os
illations in se
tion 5.4. It is then with emphasis on the di�erent results produ
ed

by the two hybrid methods, espe
ially for the roll motion.

5.2 Linear potential-�ow frequen
y-dependent hydro-

dynami
 
oe�
ients

The linear potential-�ow frequen
y-dependent 
oe�
ients Aii(ω) and Bii(ω) are 
omputed

by the time-domain 
ode, where the time-domain simulations are performed until steady-

state 
onditions. However, steady-state 
onditions o

ur mu
h later in the potential �ow


ase due to low damping, su
h that the numeri
al bea
h needs to be 
arefully tuned to

avoid the in�uen
e of re�e
ting waves from the ends of the numeri
al wave tank.

Four di�erent 
ases are simulated for ea
h frequen
y. The �rst three are for
ed motion

in ea
h of the three degrees of freedom, and a fourth with in
oming waves on a �xed ship.

The �rst three determines the hydrodynami
 added mass and potential-�ow damping


oe�
ients, while the fourth gives the wave ex
itation for
es F ex
. The dimensionless

water depth is here 
hanged to h∗ = 10, while all results presented until now has been

for h∗ = 5.56. For ea
h 
ase the resulting steady-state hydrodynami
 for
es are obtained.

The e�e
t of the two di�erent water depths on the added mass and potential-�ow will be
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given later in se
tion 5.3.10.

Hydrodynami
 
oe�
ients for the setup without appendages and forward velo
ity, for

the dimensionless draft d∗ = 1.0 will be given in the following se
tions.

5.2.1 Added mass and potential-�ow damping

It has been shown by many authors before that the added mass and potential-�ow damping


oe�
ients in heave for the moonpool problem are highly frequen
y dependent, parti
ular

around the piston-mode resonan
e frequen
y. See Faltinsen et al. (2007) for added mass

and potential damping 
oe�
ients for two-dimensional moonpool se
tions, where their


ase 1 
orresponds to the 
ase 
onsidered in this work with d∗ = 1.0, h∗ = 10 and without

appendages. Their result will be 
ompared against what has been a
hieved in our work

in se
tion 5.3.10.

For
ed sway os
illations give the 
oe�
ients A
22

(ω), B
22

(ω) and the moment in roll

due to motion in sway results in the 
oe�
ients A
42

(ω) and B
42

(ω). Here the added mass

Aij(ω) are for
e 
oe�
ients 180◦ out of phase with a

eleration of the body and Bij(ω)
are for
e 
oe�
ients 180◦ out of phase with velo
ity of the body.

I.e. it is assumed that the hydrodynami
 for
es from for
ed os
illations have the

following form,

Fkj(t) = −Akj(ω) η̈j(t)−Bkj(ω) η̇j(t). (5.5)

Here Fkj(t) is the hydrodynami
 for
e in k-dire
tion due to os
illatory motion in j-
dire
tion. Unsteady for
es and moments due to hydrostati
 pressure and the instanta-

neous wetted surfa
e are not in
luded. The hydrodynami
 added mass and potential-�ow

damping 
oe�
ients are found by evaluating the following integrals,

Akj(ω) = −
∫ nT

0
Fkj(t) η̈j(t) dt

∫ nT

0
η̈j(t)2 dt

, (5.6)

Bkj(ω) = −
∫ nT

0
Fkj(t) η̇j(t) dt

∫ nT

0
η̇j(t)2 dt

. (5.7)

Here nT indi
ates that it should be integrated over whole periods. Note that these


oe�
ients are very sensitive to the phase of the a

eleration and velo
ity. Even though

the for
ed motion is pres
ribed, it is not 
lear due to the time-integration method whi
h

time-step for velo
ity and a

eleration to apply for the integration in equations (5.6) and

(5.7). It is found that the velo
ity in the middle of two time-steps is the best approximation

of the for
e in phase with velo
ity. The roll moments are 
al
ulated around the point in

the middle of the hull at the mean free-surfa
e (z=0).

The resulting dimensionless added mass and potential-�ow damping 
oe�
ients are

given in Figure 5.19. A �rst observation is that the results 
on�rm that the sway motion

is 
oupled to the roll motion, while the heave motion is un
oupled to both sway and roll

motion. The situation will be di�erent with forward velo
ity.
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Figure 5.19: Dimensionless added mass and potential-�ow damping 
oe�
ients versus the di-

mensionless os
illation period T ∗
for the monpool se
tion without appendages and dimensionless

draft d∗ = 1.0 based on linear potential �ow. The dimensionless water depth is h∗ = 10.
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The dimensionless parameters in Figure 5.19 are de�ned as:

A∗

22

=
A

22

m
, A∗

33

=
A

33

m
, A∗

24

=
A

24

dm
, A∗

42

=
A

42

dm
, A∗

44

=
A

44

I
(5.8)

B∗

22

=
B

22

m
√

g/(2B + b)
, B∗

33

=
B

33

m
√

g/(2B + b)
, B∗

24

=
B

24

dm
√

g/(2B + b)
,

B∗

42

=
B

42

dm
√

g/(2B + b)
, B∗

44

=
B

44

I
√

g/(2B + b)
(5.9)

When the hydrodynami
 added mass, potential damping, linear hydrostati
 restoring

for
e 
oe�
ients and wave ex
itation for
es are known, the equations of motion in the

frequen
y domain 
an be approximated as a 
omplex 3 by 3 matrix, by assuming ηj =
ηja exp (iωt) and F

ex′

j = F ex
j exp (iωt).

(

−ω2 [M+A(ω)] + iω [B(ω)] + [C]
)





η̃
2a

η̃
3a

η̃
4a



 =





F̃ ex
2a

(ω)

F̃ ex
3a

(ω)

F̃ ex
4a

(ω)





(5.10)

where

[M+A(ω)] =





(M + A
22

(ω)) 0 k (−Mz
G

+ A
24

(ω))
0 (M + A

33

(ω)) 0
(−Mz

G

+ A
42

(ω)) /k 0 (I + A
44

(ω))





(5.11)

[B(ω)] =





B
22

(ω) 0 kB
24

(ω)
0 B

33

(ω) 0
B

42

(ω)/k 0 B
44

(ω)





(5.12)

[C] =





K
22

0 kK
24

0 C
33

0
K

42

/k 0 C
44

+K
44





(5.13)

and η̃
2a

= η
2a

/ζa, η̃3a = η
3a

/ζa, η̃4a = η
4a

/(k ζa). And F̃ ex
2

= F ex
2

/ζa, F̃
ex
3

= F ex
3

/ζa,
F̃ ex
4

= F ex
4

/(k ζa).
The undamped equation of motion with no for
ing 
an be rewritten to look like

[C][M+A(ω)]−1 − λi(ω)[I] = 0 (5.14)

where λi(ω) = ωi(ω)
2
and [I] is the 3 by 3 identity matrix. Equation (5.14) represents

a frequen
y dependent eigenvalue problem. By setting the determinant of this matrix to

zero we �nd the natural periods of the system. Due to that the 
oe�
ients are frequen
y

dependent, we will �nd 3 arti�
ial natural frequen
ies ωi for ea
h frequen
y dependent

hydrodynami
 added mass 
oe�
ients. The real natural frequen
ies are found when the

arti�
ial natural frequen
ies are equal to the frequen
y used for the frequen
y dependent

added mass and damping 
oe�
ient ωn = ωi(ωn), see Figure 5.20. Based on the frequen
y

dependent added mass 
oe�
ients, inertia and hydrostati
s of the moonpool se
tion, three

undamped natural dimensionless periods in heave are found [7.4, 8.7 and 9.9℄. Where the

middle one is the piston-mode natural period, as seen in the previous se
tion with for
ed

heave os
illations and given in Table 5.4. The 
orresponding potential damping-to-
riti
al
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damping ratios for the three natural heave periods are [0.02, above 1.0 and 0.3℄. We will


ome ba
k to the dis
ussion about natural periods when analysing the results from the

�oating experimental and numeri
al work.

To �nd these undamped natural periods we have made the assumption that the hy-

drodynami
 for
e 
an be split in two as in equation (5.5), and that the term proportional

to the velo
ity 
an be negle
ted. This is a somewhat 
ontroversial assumption, it is an

assumption about something that 
annot be a
hieved in reality. However, an analogy to

a simple mass-spring system 
an then be made. The presen
e of damping terms less than

5% of the 
riti
al damping is not signi�
ant in the predi
tion of the natural period of

the spring mass system. The pra
ti
al point must be that one of the undamped natural

periods 
orresponds to a pronoun
ed peak in the response 
urve.
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Figure 5.20: Illustration of 
al
ulation of the undamped natural period. What is refered to as

Sway, Heave and Roll are the solutions of λi(ω) in equation (5.14). The natural periods are

found where the bla
k line interse
ts the other lines.

5.2.2 Wave ex
iting for
es and moment by linear potential �ow

To help in the dis
ussion and understanding of the �oating experimental results, the

linear potential-�ow wave ex
iting for
es and moment are given in Figure 5.21, where the

moment is 
al
ulated around the 
enter-line at z = 0. The linear potential-�ow wave

ex
iting for
es and moment amplitudes 
an a

ording to Newman (1962) be related to

the linear potential-�ow wave radiation damping for 
orresponding modes, for instan
e

the heave wave ex
itation for
e amplitude is related to heave damping. The latter fa
t


an be used as a test to 
he
k that our 
al
ulations are performing as expe
ted.

To foresee some of the 
oming results from the �oating experimental programme, we

noti
e that the linear potential-�ow wave ex
itation for
e amplitude in heave has a mini-

mum around T ∗ = 7.9. We will 
ome ba
k to the heave 
an
ellation later when studying

time-series results from the �oating experimental programme. (See the dis
ussion related

to Figure 5.30.)



5.3. Freely-�oating body in in
oming regular waves 89

0

0.5

1

F
*e

x
2

0

1

2

F
*e

x
3

5 6 7 8 9 10 11
0

0.02

0.04

F
*e

x
4

T*

PSfrag repla
ements

HPC

FVM

FVM

HPC

a)

b)


)

d)

wg

wg

wg

wg

wg

wg

wg

m

m

m

m

m

m

m

m

m

m

m

a

a

a

a)

b)

COG

Figure 5.21: The dimensionless linear potential-�ow wave ex
iting for
es and moments ampli-

tudes in sway (F ∗ex
2

), heave (F ∗ex
3

) and roll (F ∗ex
4

) versus the dimensionless wave period T ∗
for

the two-dimensional monpool se
tion without appendages. The dimensionless water depth is

h∗ = 10.

Here the dimensionless wave ex
iting for
es and moment amplitudes are de�ned as:

F ∗ex
2

=
F ex
2

ρgζa(2B + b)2
, F ∗ex

3

=
F ex
3

ρgζa(2B + b)2
and F ∗ex

4

=
F ex
4

ρgζa(2B + b)3
. (5.15)

5.3 Freely-�oating body in in
oming regular waves

All studies presented until now has been with for
ed os
illations or with in
oming waves on

a �xed 2D moonpool se
tion. Here a spring-moored freely �oating 2D moonpool se
tion

subje
ted to in
oming regular waves will be studied, 
orresponding to the experimental

programme des
ribed in se
tion 4.2.

Sin
e numeri
al results here will be 
ompared against the �oating experimental pro-

gramme des
ribed in se
tion 4.2, the dimensions here are di�erent than in the study with

for
ed heave os
illations. However, the ratios between the moonpool gap width, the hull

draft (d∗ = 1.0) and the hull width are kept. The water depth in the wave �ume was kept


onstant at 1.0m for both 
ases. Meaning that the �nite-water e�e
t will be di�erent, and

the dimensionless water depth to draft ratio has in
reased from h∗ = 1.0/0.18 = 5.556 to
h∗ = 1.0/0.1 = 10. The 
orresponding di�eren
e in added mass and potential damping

will be 
he
ked.

The additional 
apability added to the hybrid methods used to study the freely-�oating

problem 
ompared to the for
ed heave os
illation studies is the 
oupling with the equations

of motion for the rigid-body motion of the moonpool se
tion. One validation test has been

performed to 
he
k that the equations of motion are solved 
orre
tly. This was free heave

de
ay tests against data from Yeung (1982) for the linear potential �ow version of the


ode. No other veri�
ation tests have been performed to 
he
k that the equations of

motion are solved 
orre
tly in the two hybrid methods, other than the studies presented

in the following se
tions.
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Further, an experimental repetition test of the highest wave steepness 1/30 is per-

formed, and an experimental test-series with a smaller moonpool gap of 8
m is given.

As the numeri
al hybrid method does not in
lude any turbulen
e modelling, there is an

un
ertainty 
onne
ted to the la
k of turbulen
e modelling in the present work. Although

the mesh 
ould be made �ne enough to 
apture details at the lowest turbulen
e s
ale, it

will still be an open question about the 3D behaviour of turbulen
e and other 3D e�e
ts

in the experimental setup. In the for
ed heave os
illation study, the e�e
t of turbulent


an
ellation of vorti
ity was thought to be the main reason for the dis
repan
ies between

the numeri
al hybrid method results and the experimental results for the setup with the

largest appendages. Another dis
ussed issue was at forward velo
ity when the leading

edge vorti
ity in�uen
es the vorti
ity generated at the moonpool entran
e edges. With a

freely-�oating body in in
ident waves, 
an we expe
t that our numeri
al method without

any turbulen
e model to a

urately agree with experimental results?

Some of the results in this se
tion have previously been published in Fredriksen et al.

(2015).

5.3.1 Numeri
al setup

The numeri
al setup and the properties of the mesh used in the study in this se
tion are

somewhat di�erent from before, and will be des
ribed here.

In between the wavemaker and the model the horizontal mesh resolution is set to 30

ells over a wave length. The mesh size gradually 
hanges and be
omes equal to the mesh

size a
ross the hull. This applies from either half a wave length or two times the length

of one side hull, depending on what is longest. In the horizontal dire
tion the number of

FVM 
ells a
ross one side hull is set to be 30 (mesh size = 0.0067m). The mesh size is

kept 
onstant a
ross the moonpool gap, i.e. 15 
ells a
ross the gap.

The mesh is symmetri
 relative to the 
enter-plane of the hull, ex
ept that in the

numeri
al bea
h the mesh size is in
reasing. The numeri
al bea
h starts three wave

lengths after the hull, and is 4 wave lengths long. The total length of the numeri
al wave

tank in addition to the length of the hull is 14 wave lengths, and therefore di�erent for

ea
h wave period.

In the z-dire
tion the mesh resolution is 
onstant from z = 0 until half the hull draft

below the bottom, using 20 
ells a
ross the draft of the body (mesh size 0.005m), then

gradually in
reasing until the bottom of the tank. A total number of 60 
ells in the

z-dire
tion are used.

Be
ause of limitations in the implemented numeri
al hybrid method, only re
tangular


ells 
an be used in the vis
ous �ow domain. The HPC potential �ow domain has no

su
h limitations. However, to simplify the re-meshing s
heme the HPC nodes in the same

liquid 
olumn will all have the same y-
oordinate. Figure 5.22 shows an example of a

mesh used in the semi-nonlinear hybrid simulation and Figure 5.23 shows an example

from the nonlinear hybrid simulation.

The following dis
ussion applies to the nonlinear hybrid method. To avoid having a


hanging mesh in time in the vis
ous �ow domain, the interse
tion between the potential

and vis
ous �ow domains needs to be below what is the expe
ted minimum z-
oordinate
value of the free-surfa
e elevation in the simulation. At every time-step the free-surfa
e

nodes are moved in the z-dire
tion to the new position of the free surfa
e. Parts of the

HPC mesh are then either stret
hed or 
ompressed, as exempli�ed in Figure 5.23. There
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are three 
hallenges related to this re-meshing strategy. One is related to large roll angles,

the se
ond is related to large moonpool piston-mode motions and the third is related to

the vis
ous �ow domain around the hull edges where �ow separation o

urs. To satisfy

these 
hallenges we are required to 
reate a mesh with as large as possible vis
ous �ow

domain around the body, while still allowing the potential �ow domain enough area to

follow the free surfa
e in time in the body-�xed 
oordinate system.

For the mesh inside the moonpool gap, an estimate of the expe
ted moonpool piston-

mode amplitude should be given and used to 
reate the interse
tion between the potential

�ow and vis
ous �ow domains. For the mesh outside the vessel the limiting fa
tor is the

expe
ted roll amplitude ηMax

4

in the simulation. This is illustrated in Figure 5.23, where

ηMax

4


an be interpreted from the top �gure. The expe
ted moonpool wave amplitude and

roll amplitude are inputs to the simulation with a safety margin. The simulation will

break down if the a
hieved roll motion in the simulation is higher than the input value

ηMax

4

.

The meshes in the semi-nonlinear hybrid simulations are equal for all three wave

steepness 
ases, but di�erent for ea
h wave period as des
ribed above. The interse
tion

between potential and vis
ous �ow is 
reated as 
lose as possible to the free surfa
e, in

order to minimize the potential �ow domain. The HPC solution of the potential �ow

domain should 
ontain at least 3 rows of nodes, to a

urately propagate the free-surfa
e

waves.

The three di�erent meshes used to obtain results for three di�erent wave steepnesses

1/60, 1/45 and 1/30 with wave period T=0.95s are presented in Figures 5.23-5.25. Di�er-

ent meshes are 
reated for other wave periods and wave steepnesses, based on the 
riteria

des
ribed above. Noti
e that due to higher ηMax

4

for the three 
ases in Figures 5.23-5.25,

the water depth 
hanges. Therefore, the �nite-water e�e
t on the waves 
hanges. It is,

however, for the longest waves at 1.2s a ratio between the water depth and the wave

length around 0.45. A usual rule of thumb is that the waves start feeling the bottom

when the water depth is half the wave length, su
h that we are for the longest waves just

within this limit. However, the waves around the natural periods remains more or less

un
hanged due to �nite-water depth e�e
ts. The added mass and potential-�ow damping

properties will also 
hange due to di�erent water depths. This 
hange is again small,

see results in se
tion 5.3.10, where the di�eren
es in the dimensionless added mass and

potential damping between the two experimental setups are 
he
ked.

The waves will be propagated from the left end of the numeri
al wave tank to the

middle where the stru
ture is lo
ated. We will therefore refer to the left hand and the

right hand sides of the moonpool gap when dis
ussing the measurements of the moonpool

wave elevation.

5.3.2 Results with free-�oating stru
ture

The main results from the �oating experimental programme are given in Figure 5.26

and Figure 5.27 and 
ompared with the two numeri
al hybrid methods. In general, the

agreement is good, in parti
ular for the nonlinear hybrid method. The moonpool wave

amplitude 
omparisons are reasonable, with some over-predi
tion on the right hand side of

the gap, while some under-predi
tion on the left side. One of the reasons 
an be the quality

of the measurements, keeping in mind that they are based on the 
opper tape glued onto

the model. The semi-nonlinear hybrid method results su�er some notable dis
repan
ies
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Figure 5.22: Example of mesh use in the semi-nonlinear hybrid method simulation, the wave

period is T = 0.73s. Gray 
ells belong to the potential �ow domain, and bla
k 
ells to the

vis
ous �ow domain. The mesh on the top illustrates the entire numeri
al wave tank. One

should observe the di�eren
e in s
ales on the y- and z-axis. The bottom mesh is a 
lose-up of the

mesh 
lose to the hull, here the s
ale ratio is 
orre
t. The free surfa
e is shown in both meshes.
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Figure 5.23: Example of body-�xed mesh at a spe
i�
 time-step used in the nonlinear simulation

in the body-�xed 
oordinate system. The wave period is T = 0.95s and wave steepness 1/60.
ηMax

4

is set to 5.5◦. Gray 
ells belong to the potential �ow domain, and bla
k 
ells to the vis
ous

�ow domain (ΩCFD). The mesh on the top illustrates the entire numeri
al wave tank. One

should observe the di�eren
e in s
ales on the y- and z-axis. The bottom mesh is a 
lose-up of

the mesh 
lose to the hull, here the s
ale ratio is 
orre
t.
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Figure 5.24: Example of body-�xed mesh at a spe
i�
 time-step used in the nonlinear simulation

in the body-�xed 
oordinate system. The wave period is T = 0.95s and wave steepness 1/45.
ηMax

4

is set to 7.5◦. See Figure 5.23 for further des
ription.
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Figure 5.25: Example of body-�xed mesh at a spe
i�
 time-step used in the nonlinear simulation

in the body-�xed 
oordinate system. The wave period is T = 0.95s and wave steepness 1/30.
ηMax

4

is set to 9.0◦. See Figure 5.23 for further des
ription.
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al and experimental results of rigid-body motion amplitudes
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Figure 5.27: Comparison of numeri
al and experimental results of the measured wave �eld for 3

di�erent wave steepnesses. The 
ombination of the in
oming and re�e
ted wave ζ
ir

is measured

by wave gauges 2 and 3 (wg2 and wg3) that are mounted in parallel between the wavemaker and

the hull. The transmitted wave ζ
t

is measured by wave gauge 4 (wg4) that is mounted between

the hull and the bea
h.
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ompared to the experiments. The roll amplitude is at resonan
e over-predi
ted by up to a

fa
tor 2 depending on the wave steepness. This also has a 
lear e�e
t on the sway motion.

Away from the frequen
y range around the roll resonan
e, the sway motion 
ompares

quite well. The heave motion is well predi
ted. A minor dis
repan
y is that the period

of lo
al maximum is over-predi
ted by about 2− 3%.

A 
omparison of the measured wave �eld in the wave �ume is given in Figure 5.27. The

agreement is good for the nonlinear hybrid method, while the semi-nonlinear results di�er

around the roll resonan
e. A 
ombination of the in
oming waves from the wavemaker

and the re�e
ted waves from the stru
ture will be measured by wave gauges 2 and 3,

see results in Figure 5.27(vi). Wave gauges 2 and 3 are lo
ated in parallel between

the wavemaker and the hull, see Figure 4.5 for detailed overview of the experimental

set-up. The wave gauges 2 and 3 are pla
ed away from any zero nodes of the lowest

transverse sloshing modes, and positioned to ensure that any sloshing mode will in�uen
e

the two wave gauges di�erently. For wave gauge 4 it is only the transmitted wave that is

measured, assuming the re�e
tion from the bea
h is negligible. The wave measurements

from the nonlinear hybrid method are taken for a �xed point in the body-�xed 
oordinate

system, while the wave gauges in the experiments were �xed to the tank. Meaning that

evaluation point of the wave gauges in the nonlinear hybrid method will 
hange with time

in the Earth-�xed 
oordinate system. It 
an from the two parallel wave gauges (2 and 3)

be seen some di�eren
es between the measured wave �eld for small periods around the

se
ond transverse natural sloshing period of the wave �ume, see Figure 5.27 row (vi). The

transverse wave is also seen to in�uen
e the wave elevation inside the moonpool gap for

small wave periods (T ∗ ∼ 6), see Figure 5.26 rows (iv) and (v).

The nonlinear hybrid method results for wave steepness 1/60 are di�erent from the two

other wave steepnesses with respe
t to how they were obtained. For the simulations with

the two highest wave steepnesses the initial simulations broke down before steady-state


onditions were obtained. To avoid this break-down the 5-point Cheby
hev smoothing

algorithm was applied on the entire free surfa
e. The simulations were then stable, but

the smoothing algorithm had a large damping e�e
t on the in
oming free-surfa
e waves.

To avoid this the smoothing algorithm is only applied on the free surfa
e 
lose to the

hull, one hull length in ea
h dire
tion, see results in Figure 5.26 for the two highest

wave steepnesses (a) and (b). The damping e�e
ts on the in
oming waves are therefore

minimized, see further sensitivity studies in se
tion 6.3.

A 
urious e�e
t to noti
e is that there is no resonan
e behaviour at the piston-mode

natural period at T ∗ = 8.7 in any of the results in Figure 5.26. From the 
orresponding


ase with for
ed os
illation in Figure 5.4 the piston-mode resonan
e was T ∗ = 8.7.

Also when 
onsidering in
oming waves on a �xed moonpool stru
ture (the di�ra
tion

problem) the piston-mode resonant period is found to be T ∗ = 8.7, see Figure 5.28.

However, for the �oating problem there is no sign of a resonant piston-mode motion around

T ∗ = 8.7. This is similar as the results from M
Iver (2005), who found that within linear

potential-�ow theory at steady state the main 
ontributions from the di�ra
tion and the

radiation potentials on the piston-mode are 180◦ out of phase around the piston-mode

natural period for a freely �oating body.

The following brief explanation will illustrate what is found by M
Iver (2005). In linear
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Figure 5.28: Comparison of the piston-mode amplitude in the Earth-�xed 
oordinate system

ζEF due to in
oming waves with di�erent steepnesses on a �xed and a �oating moonpool se
tion

versus dimensionless wave period. The results are from the semi-nonlinear hybrid method. Not

supported with experimental results.

potential �ow theory the velo
ity potential 
an be split into the following 
omponents.

ϕ = ϕi + ϕd +
∑

j=2,3,4

ϕj (5.16)

where ϕj are the radiation potentials found from for
ed os
illations of the stru
ture in

dire
tion j, and from where the added mass and potential damping is 
al
ulated. Further

ϕi is the velo
ity potential asso
iated with the in
oming wave. ϕd is the di�ra
tion

potential asso
iated with the wave �eld generated by the presen
e of the stru
ture in

in
oming waves, i.e. the di�ra
tion problem is solved using the body-boundary 
ondition

∂ϕd/∂n = −(∂ϕi/∂n). In the moonpool problem, the main 
ontributions from ϕd and ϕ3

will 
an
el around the piston-mode natural period.

To ensure that the piston-mode resonan
e in general is 
an
eled, a few additional

numeri
al studies with di�erent moonpool widths and drafts were simulated. It was

found that the results were 
onsistent with results in Figure 5.26.

After the �rst peak in heave at T ∗ = 7.4, the moonpool wave motion be
omes in phase

with the heave response (see the phase angle α in Figure 5.29a), where α is de�ned as the

phase angle between the heave a

eleration of COG and the moonpool wave motion. This


auses a de
rease in the heave response; the moonpool wave response de
reases the heave

motion. This is illustrated in Figure 5.30. The heave motion builds up faster than the

moonpool wave response. After the initial build-up phase the moonpool wave response

is still in
reasing while the heave response starts de
reasing. The initial heave response

is thus larger than the steady-state response. This is not only related to the vis
ous

simulations, but also the potential �ow 
al
ulations 
apture this e�e
t. It means that the

moonpool works as a heave minimization devi
e. The steady-state linear potential wave

ex
itation for
e were given in Figure 5.21 and 
on�rm the minimum heave motion around

T ∗ = 7.9.
The phase angle β between heave and roll motion is given in Figure 5.29b. For low

periods, heave and roll are 180◦ out of phase, 
ausing high lo
al heave motion on the

side hull fa
ing the in
oming waves. Similarly the 
ombined heave and roll motion has

a 
an
ellation e�e
t on lo
al heave on the aft side hull. For higher periods (sti�ness
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dominated) the heave and roll motion are 90◦ out of phase, meaning that the hull motion

is in phase with the in
ident wave motion. The snapshots from Figure 5.31 show how the

phase angle between the heave and roll motion a�e
ts the hull motion. For instan
e, there

is a 
an
ellation e�e
t on the trailing hull around T ∗ = 7.4. Basi
ally it is a visualisation of
the results from Figure 5.29, the snapshots are given for 10 equally spa
ed time instan
es

throughout one period at steady-state.
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Figure 5.29: a): phase angle α between heave a

eleration and moonpool wave motion (from


opper tape on right side of the moonpool gap). b): phase angle β between heave and roll

a

eleration. Wave steepness 1/60.

There has not been identi�ed any signi�
ant intera
tion e�e
ts between either the sway

or roll motions and the moonpool motion. However, the sway and roll motion should be

expe
ted to ex
ite sloshing modes within the moonpool gap, but for the present set-up

the �rst sloshing mode natural period is 0.36s (T ∗ = 3.6).
For the nonlinear hybrid method results, the 
on
lusions are di�erent from the semi-

nonlinear hybrid method results. The roll motion is in good agreement with the exper-

imental results. In the semi-nonlinear simulation, the maximum roll amplitude is 7.6◦

for wave steepness 1/60, while the 
orresponding result is 4.8◦ in the nonlinear simula-

tion. One 
on
lusion that 
an be drawn is that mu
h less vorti
ity is being shed in the

semi-nonlinear hybrid method 
ompared to the nonlinear hybrid method. Figure 5.32

illustrates that there is a di�eren
e between the semi-nonlinear and the nonlinear hybrid

method, here the liquid velo
ity ve
tors around the outer edges are shown from both the

semi-nonlinear and the nonlinear hybrid method simulations. The �gure shows a 
lose-up

of the two outer hull edges and illustrates that the shed vorti
ity stru
tures generated

in the nonlinear hybrid method are signi�
antly larger than in the semi-nonlinear hybrid

method. We will 
ome ba
k to a detailed investigation of the di�eren
es between the

semi-nonlinear and the nonlinear hybrid method, by investigating the damping 
aused by

for
ed os
illations.

The semi-nonlinear hybrid method approa
h has been proven to work well for predi
t-

ing the piston-mode motion in for
ed heave os
illation tests (see the previous 
hapters

and Kristiansen and Faltinsen (2012)). There the relative liquid motion is dominated by

the water (piston-mode) motion. A detailed investigation of the shed vorti
ity stru
tures

during for
ed heave os
illations will be given and dis
ussed later.

A 2D freely �oating vessel 
lose to a terminal was investigated by Kristiansen and
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Figure 5.30: Time-series example illustrating how the heave motion ex
ites the piston-mode

motion, and later how the heave motion is redu
ed as a 
onsequen
e of the piston-mode motion

inside the moonpool gap by means of a semi-nonlinear simulation, with wave period T ∗ = 7.9
(T = 0.8s) and 1/60 wave steepness. ζ

EF

spa
e-averaged wave elevation inside the moonpool in

the Earth-�xed 
oordinate system.
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Figure 5.31: Snapshots taken from the steady state response for 4 di�erent wave periods from

the semi-nonlinear hybrid method 
al
ulation for wave steepness 1/60. T ∗
/10 between ea
h

snapshot.
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Figure 5.32: Liquid velo
ity ve
tors in the Earth-�xed 
oordinate system from the semi-nonlinear

hybrid method in a) and b), and from the nonlinear hybrid method in 
) and d). Left: 
lose-ups

of the left bilge of the left box. Right: 
lose-ups of the right bilge of the right box. The wave

period in both simulations is T = 0.96s, and steepness of in
oming wave is 1/60.

Faltinsen (2010) using both numeri
al and experimental methods. Their numeri
al work

was motivated by the question: what is the main 
ause to the dis
repan
ies between

linear potential-�ow theory and what was measured? (1) Flow separation or (2) nonlinear

boundary 
onditions. Our �ndings are 
onsistent with the results from Kristiansen and

Faltinsen (2010) for pure heave and piston-mode motion, i.e. that �ow separation is

the main reason for the di�eren
e between linear potential-�ow theory and experimental

measurements. It is in predi
tion of the roll motion more 
ompli
ated, due to the poor

results from the semi-nonlinear hybrid method in predi
ting the roll motion. A few

additional physi
al related explanations are investigated to explain the di�eren
e. It is

still thought that the �ow separation from the edges is the most in�uen
ing reason, and

the 
hange in the pressure �eld due to that. The �rst e�e
t to investigate is the 
hange

from a linear body-boundary 
ondition to an exa
t body-boundary 
ondition in a body-

�xed 
oordinate system. The separation point will in both 
ases always be on the sharp

edges of the body. For the linear 
ase it will be �xed in spa
e, and an in-out �ow through

the nearby non-moving body-boundaries is disturbing the pressure around the edges. For

the body-exa
t 
ase the separation point will be the physi
ally 
orre
t point. The se
ond

e�e
t to investigate is the importan
e of the nonlinear non-vis
ous terms. Meaning, what

happens at the interse
tion in the semi-nonlinear hybrid method where the nonlinear

non-vis
ous terms are not 
ommuni
ated between the two domains. Any ina

ura
ies

at the interse
tion in the semi-nonlinear hybrid method means that nonlinear e�e
ts are

important in the potential �ow domain. Then it is a question if this 
an be tra
ed ba
k to

free-surfa
e or body-boundary nonlinearities. Further studies with for
ed sway, heave and

roll motion will be presented later, with a 
loser look at lo
al pressure and �ow details

around the edges around the hull.
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5.3.3 Comparison with potential-�ow theory

As pure linear potential �ow theory is used in many engineering appli
ations, results are

presented in Figure 5.33a together with results from the semi-nonlinear hybrid method

and experiments with wave steepness 1/60. These results are obtained by solving for

linear potential �ow in the whole water domain using the present semi-nonlinear 
ode.

All motions are over-predi
ted around resonan
e by the potential-�ow theory. The sway

resonan
e at 3.2s is not shown. The large over-predi
tion of the resonant heave and piston-
mode motions by linear potential-�ow theory shows the importan
e of �ow separation at

the lower moonpool entran
e in the �oating 2D moonpool problem. The roll motion is

further over-predi
ted by a fa
tor 2 in this 
ase. The damping from �ow separation is


onsidered to be the main reason for this di�eren
e. The damped natural roll period is

predi
ted to be 4% lower in the pure potential �ow 
ase than what is predi
ted by the

semi-nonlinear hybrid method.

The 
omparison of the outgoing waves is given earlier in Figure 5.27
vi. It is seen a big


hange in the transmitted wave before and after the �rst natural heave period and that

the linear potential-�ow solution over-predi
ts the transmitted wave from the stru
ture.

Meaning that the presen
e of shed vorti
ity in�uen
es the generation of free-surfa
e waves.

It is for this 
ase 
onne
ted to the amplitude of the piston-mode inside the moonpool gap

and the piston-mode ability to generate outgoing waves. The 
ombination of the in
oming

and re�e
ted wave is on the other hand in good 
omplian
e with the experimental results.

5.3.4 Low forward velo
ity

Due to the bene�ts gained by employing a body-�xed 
oordinate system, the nonlinear

hybrid method is suitable of simulating a towing of a free-�oating body in in
ident regular

waves. The nonlinear hybrid method is applied to the same physi
al set-up as in the

�oating experiments, while adding towing of the hull in both head and following seas

using Froude number 0.04, where the Froude number is de�ned based on the total length

of the hull, in
luding the moonpool gap, as de�ned in equation (4.1). We numeri
ally

move the ends of the springs on both sides of the hull to enfor
e forward motion of the

hull. The hull will therefore experien
e a frequen
y of en
ounter, whi
h is di�erent from

the wave frequen
y seen in the Earth-�xed 
oordinate system.

The wave steepness is kept 
onstant at 1/60 where the wave lengths are 
al
ulated

based on the stationary 
ase. This means that for the same period of en
ounter, the

waves in head seas will be higher than the waves for zero Froude number. In Figure 5.33b

results with low forward velo
ity are 
ompared against the nonlinear simulations without

forward velo
ity. The Froude number dependen
y is relevant for 
onsidering the e�e
t of


ombined waves and 
urrent.

Potential �ow results for a semi-submerged 
ir
ular 
ylinder with low forward velo
ity

were presented by Zhao and Faltinsen (1998). They noti
ed that the predi
ted maximum

response in heave o

urred at a frequen
y slightly di�erent from the zero velo
ity 
ase,

due to 
oupling with sway at non-zero forward velo
ity. This is also true for the lowest

heave natural period in Figure 5.33b. The maximum response o

urs for a slightly higher

period in following seas, and for a slightly lower period in following seas. The trend in the

numeri
al simulations with low forward velo
ity is that the rigid-body motion is ampli�ed

with low forward velo
ity in head seas, and smaller in following seas. This is similar to
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the results from Zhao and Faltinsen (1998), although it 
an be noted that their results

show that for higher periods than used in Figure 5.33b the sway motion will be higher for

following seas and lower in head seas.

The roll motion is 
learly a�e
ted although not dramati
ally: it is in
reased in head

seas, and de
reased in following seas. The moonpool wave amplitude is only de
reased

by 2 − 3% due to forward velo
ity, whi
h is 
onsistent with �ndings from for
ed heave

os
illations with low forward velo
ity.

For the for
ed heave os
illation 
ase with low forward velo
ity the interse
tion between

potential and vis
ous �ow 
ould be stret
hed horizontally to the end of the numeri
al

wave tank. This only leaves the top �uid layer to be re-meshed due to the outgoing

wave and allows the vorti
ity to be transported down the numeri
al wave tank. For the

�oating 
ase this is no longer possible due the roll motion (as des
ribed earlier), and the

interse
tion between the potential and vis
ous �ow have to be equal for the stationary


ase and the forward velo
ity 
ase. This means similar meshes as in Figure 5.23 are used

for the simulations with low forward velo
ity. Meaning that vorti
ity transported away

from the hull will easily rea
h the interse
tion between potential and vis
ous �ow on

the downstream side. However, the dissipation of vorti
ity is quite high with use of the

linear upwind method for solving the adve
tion step, whi
h limits the amount of vorti
ity

rea
hing the interse
tion.

Noti
e, that the simulations with low forward velo
ity did not 
onverge with the same

a

ura
y as the numeri
al results with a stationary hull due to vorti
ity rea
hing the

interfa
e between potential and vis
ous �ow, see the 
onvergen
e study in se
tion 6.3.

5.3.5 Comparison with single hull

To put the rigid-body motions of the moonpool hull in some perspe
tive, a 
omparison to

the rigid-body motions of a single mono-hull is given here. The dimensions used for the

single hull are equal to the moonpool hull, but with a 
losed moonpool gap. The mass

is in
reased 
orrespondingly, and the inertia is 
hanged by keeping the radius of gyration


onstant (r
xx

= 0.18m). The 
omparison of all three rigid-body motions and the wave

�eld is given in Figure 5.34.

Three di�eren
es 
an be observed for the rigid-body motions of the hull, �rst the

additional heave resonan
e introdu
ed by the moonpool, se
ond the in
reased roll natural

period without moonpool, and last, the 
an
ellation e�e
t in heave in the moonpool 
ase.

The in
reased roll natural period is mostly an e�e
t of in
reased inertia and 
hange of

the meta
entri
 height. It is further 
lear that the moonpool has a signi�
ant e�e
t on

the rigid-body motions.

The presen
e of the moonpool also in�uen
es the re�e
ted and transmitted wave, see

the two bottom sub-�gures in Figure 5.34.

Sin
e the semi-nonlinear hybrid method over-predi
ts the roll motion around resonan
e

(see Figure 5.26), it is also expe
ted that the single hull results in Figure 5.34 are a�e
ted

and over-predi
ted. However, the qualitative di�eren
es explained above are still thought

to be valid.
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5.3.6 Appendages in the moonpool inlet

The in�uen
e of appendages at the moonpool inlet on the rigid-body motion and piston-

mode behaviour in waves is studied by use of the semi-nonlinear hybrid method for three

wave steepnesses (1/30, 1/45 and 1/60), see Figure 5.35. There are no experimental tests

to validate the result.

The numeri
al setup with appendages has the following dimensional properties. The

appendages are horizontal and re
tangular with dimensions 1.0
m wide by 0.5
m high,

and are pla
ed on ea
h side of the moonpool gap entran
e. The appendages then 
over

20% of the width of the moonpool gap, and extend 5% of the draft in the verti
al dire
tion.

This is equivalent to appendage 
on�guration #1 from the for
ed heave os
illation study.

The sway and roll motions were not in�uen
ed by the appendages and therefore not

given in Figure 5.35. The �rst heave natural period is in
reased 
ompared to the square

opening 
ase, and the resonan
e top is wider. For the moonpool wave amplitude, the

appendages has a signi�
ant damping e�e
t; the piston-mode amplitude is redu
ed by

20− 30% at resonan
e. This 
an partly be explained by a redu
ed inlet opening 
ausing

larger �ow velo
ities at the lower moonpool entran
es. Further, the strength of the shed

vorti
ity is in
reased due to a lower e�e
tive interior angle relative to the re
tangular

se
tion. This is in a

ordan
e with results from the for
ed heave os
illation study and

Kristiansen and Faltinsen (2012). Note that for the for
ed heave os
illation study it was

found a de
rease in the piston-mode amplitude using appendages in the linear potential

�ow solution.

The appendages also 
hange the 
an
ellation frequen
y in heave, and the minimum

heave response at the 
an
ellation frequen
y is in
reased. The 
orresponding piston-

mode resonan
e period from the for
ed heave os
illation set-up are given in Table 5.4 as

T ∗ = 8.8, the results in Figure 5.35 are 
onsistent with the 
on
lusion from before. There

are no signs of resonan
e behaviour in the freely-�oating problem at the piston-mode

resonan
e period.

The 
omparison between the for
ed heave os
illation experiments and the hybrid meth-

ods showed that the numeri
al methods were unable to a

urately 
apture the moonpool

motion for the largest appendage (#2), see se
tion 5.1.6. The reason for the di�eren
e

is thought to be that our numeri
al vis
ous method does not deal with turbulent mixing

of vorti
ity. It is un
lear how this will a�e
t the results seen in Figure 5.35 and a
tually

all results with the �oating body. However, sin
e there is good agreement between the

nonlinear hybrid method and experimental data, it is thought to be a se
ondary e�e
t.

This 
on
lusion may not be a
tual for a �oating body with appendages, sin
e we have no

experimental validation data to support the 
on
lusion either way.

5.3.7 Experimental repetition test

A few days after the three experimental test-series with 1/30, 1/45 and 1/60 wave steep-
ness were performed, a test-series with 1/30 wave steepness was repeated. Prior to this

the lo
ation of the model in the wave �ume was 
hanged; the model was moved 
loser to

the wavemaker. This was done to improve the video-re
ording 
apabilities of the experi-

ments. The reason was that the previous position of the model was behind a large steel

beam, whi
h blo
ked the video 
amera view. Also the an
hors to the roof and the pullies

had to be moved the same distan
e. The 
onsequen
e of this was that the pre-tension
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might have 
hanged. The pre-tension has a restoring e�e
t in roll, su
h that the roll

motion might have been in�uen
ed. Everything else about the repetition test is the same

as the original test.

As the model was moved 
loser to the wavemaker, re�e
tions from the wavemaker

returned sooner, and the steady-state 
ondition be
ame shorter. It was also found that

the wave �ume had a small leakage resulting in a di�erent position of the bea
h relative

to the free surfa
e. The latter fa
t gave some re�e
tions from the bea
h. In total there is

some re�e
tions for the higher wave periods, (see results in Figure 5.36a).

There is also a di�eren
e seen in the right moonpool wave gauge. Here it is believed

that the repetition test is more 
orre
t, as it would �t better with the trend from the

1/45 and 1/60 tests, see Figure 5.26. The original results do not show mu
h de
rease in

the ratio ζright/ζa, between the 1/45 and the 1/30 tests. Meaning that there 
ould be an

error in the 
alibration fa
tor for the �rst original test of wave steepness 1/30.
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5.3.8 Smaller moonpool gap

In the end of the experimental programme it was de
ided to do an additional test with

smaller width of the moonpool gap. The aim was to investigate the in�uen
e of the

moonpool width on the behaviour of the stru
ture and the moonpool. The moonpool

width of the model was relatively easy to 
hange. However, sin
e the total length of the

stru
ture be
ame 2
m shorter, the pretension in the mooring lines had to be adjusted.

Meaning that there might be a small di�eren
e in the pre-tension between the two tests.

Note that the wave period in Figure 5.36b) for the 8
m gap 
ase is dimensionless by the

same fa
tor as the 10
m gap 
ase, i.e. by 10
m.

There is a small di�eren
e in the right moonpool wave amplitude between the two

tests, only the period of maximum wave response have 
hanged. While the di�eren
e is

larger for the left moonpool wave amplitude, here both the maximum response period and

amplitude has 
hanged. The moonpool wave amplitude is smaller for the 8
m moonpool

gap 
ase.

The main di�eren
e between the two set-ups is the de
rease in the heave motion at the

�rst heave natural period. This is in-line with the obvious 
on
lusion that the rigid-body

motion will approa
h the single body behaviour when the gap width is de
reased.

5.3.9 E�e
t of 
hanging draft

The results from for
ed heave os
illations showed that the piston-mode amplitude were

independent on the draft of the hull. Sin
e there is no resonant e�e
t at the piston-mode

natural period, this may not be the 
ase for the �oating body. Therefore the e�e
t of


hanging the draft is here 
he
ked by the use of the nonlinear hybrid method for two

additional dimensionless drafts with wave steepness 1/60. See results in Figure 5.37. In

the numeri
al 
al
ulations the radius of gyration is kept 
onstant, and the position of the


entre of gravity is �xed with regards to the mean free-surfa
e. Basi
ally every parameter

ex
ept for the mass, the draft and the moment of inertia is un
hanged. The 
onsequen
e

is that all natural periods will 
hange. We are however, only interested in 
omparing the

maximum value of the wave elevation inside the moonpool gap.

The results in Figure 5.37 are 
onsistent with the for
ed heave os
illation study with

di�erent drafts, the maximum moonpool gap amplitude is quite independent of the draft.

However, there is a small in
rease on the left side of the moonpool for the lowest draft

d∗ = 0.833 in Figure 5.37 
ompared to the two other numeri
al 
ases. The results in

Figure 5.37 shows on
e again that there is no sign of a resonant response ot the piston-

mode resonan
e period as given in Table 5.4.

5.3.10 Di�eren
e in added mass and damping for the �oating and

for
ed os
illation 
ases

Due to di�erent dimensionless water depths in the experimental setups, the �nite-water

depth e�e
ts 
an possibly in�uen
e the added mass and potential-�ow damping di�erently

for the two setups. The added mass and potential-�ow damping 
oe�
ients for heave are

presented in Figure 5.38, and roll in Figure 5.39. It is as expe
ted seen some di�eren
e for

the higher periods, however, the di�eren
e is small around the natural periods in heave

and roll. Two dimensionless water depths h∗ are presented, where h∗ = 10 
orresponds to
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hanging draft on the rigid-body and moonpool motions, simulations are
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110 Results

the �oating experimental setup and h∗ = 5.56 
orresponds to the for
ed heave os
illation

with low forward velo
ity experimental setup. The larger water depth 
orresponds to

the 
ase from Faltinsen et al. (2007) whi
h are given in Figure 5.38 and the 
omparison

towards our results are good.

Sin
e the di�erent water depths have a small in�uen
e on the added mass and potential-

�ow damping 
oe�
ients in Figures 5.38 and 5.39, it was de
ided not to 
he
k the in�uen
e

of the water depth 
hanges in the nonlinear hybrid method. There the water depth had

to be 
hanged due to limitations in ηMax

4

, and therefore the numeri
al water depth was

larger from what was tested experimentally, and the dimensionless water depth ex
eeded

h∗ = 10.
The added mass and potential-�ow damping 
oe�
ients in Figure 5.38 and Figure

5.39 are obtained by the same approa
h as the added mass and potential-�ow damping


oe�
ients in se
tion 5.2.1.
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Figure 5.38: Dimensionless added mass and potential damping in heave for two di�erent water

depths 
orresponding to the dimensionless water depths in the two experimental programmes.

Numeri
al results from Faltinsen et al. (2007) (FRT) are also given.
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orresponding to the dimensionless water depths in the two experimental

programmes.
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5.4 Damping from for
ed os
illations

The previous se
tions about for
ed heave os
illations studies were fo
used on the piston-

mode amplitude and the 
omparison with experiments. In this se
tion fo
us will be

on the lo
al and global pressure details between the two hybrid methods in order to

study the di�eren
es seen in Figure 5.26. That means we want to further investigate the

short
omings of the semi-nonlinear hybrid method to 
apture roll motions, as shown in

Figure 5.26. A detailed 
omparison of the damping moment about COG (180◦ out of

phase with the roll angular velo
ity) due to for
ed roll about COG has been performed

using both hybrid methods, see Figure 5.40a.
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Figure 5.40: Linearized damping 
oe�
ients for di�erent for
ing amplitudes from the semi-

nonlinear and nonlinear hybrid methods for for
ed roll os
illation in a), and for
ed heave os
il-

lation in b). The period is T ∗ = 9.51 (T = 0.96s) for all simulations.

In Figure 5.40a the nonlinear hybrid method results are obtained from three di�erent

meshes, these 
orresponds to the meshes used for the 1/30, 1/45 and 1/60 wave steep-

ness 
ases in Figure 5.26. Note, it is not the meshes that are di�erent. It is where the

interse
tion between the potential and vis
ous �ow domain is lo
ated. The meshes are


reated su
h that the 1/60 mesh may at maximum simulate roll angles up to 5.0◦. Fur-
ther the 1/45 mesh may at maximum simulate 7.0◦ and the 1/30 mesh may at maximum

simulate 8.5◦. This is 
orresponding to the maximum roll angles found from the exper-

imental programme in
luding a safety fa
tor to allow over-predi
tion in the numeri
al

method. See illustrations on how the di�erent meshes are 
reated in Figures 5.23-5.25.

For the semi-nonlinear hybrid method results in Figure 5.40a the same mesh is used for

all simulations.

From the for
ed roll os
illations the 
orresponding linear roll damping 
oe�
ient B
44

has been 
al
ulated. The simulations are performed for for
ed roll os
illation with di�erent

roll amplitudes (see Figure 5.40a) for a period around the natural roll period T ∗ = 9.5
(T = 0.96s). The results for for
ed roll os
illation are somewhat surprising; the trend is
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di�erent for the semi-nonlinear and the nonlinear 
ase. Results for the zero degree limit

are similar and equal to the wave radiation damping due to outgoing waves. The wave

radiation damping is 
al
ulated from energy of outgoing waves. The nonlinear hybrid

method has a 
lear linear dependen
e of B
44

on the roll amplitude, whi
h is not present

in the semi-nonlinear hybrid method. Even for small roll angles there is a signi�
ant

di�eren
e between the semi-nonlinear and the nonlinear hybrid method.

The �ndings in Figure 5.40a) agree with the results from Braathen (1987) or Braathen

and Faltinsen (1988), who found that vortex shedding had a se
ondary e�e
t on the wave

radiation damping in roll. The latter e�e
t is asso
iated with small far-�eld �ow due to

lo
al vorti
ity at the body edges. Furthermore, it was found by Braathen (1987) or Braa-

then and Faltinsen (1988) that the presen
e of free-surfa
e waves had an important e�e
t

on the shed vorti
ity generation and eddy-making damping. Note here that Braathen

(1987) 
ompared results using a rigid free-surfa
e 
ondition and a nonlinear free-surfa
e


ondition. It will later be presented simulations with a rigid free-surfa
e 
ondition in a

body-�xed 
oordinate system, and the resulting damping 
oe�
ient.

The roll damping 
oe�
ients up to for
ed os
illations with 4 degrees roll are almost

equal between the three di�erent meshes used in the nonlinear hybrid method. Above

4 degrees there is seen a small di�eren
e between the predi
ted B
44

, even though there

is a higher possibility of vorti
ity rea
hing the interse
tion between the potential and

vis
ous �ow domain for the meshes generated to simulate higher roll angles the damping


oe�
ients remains linear with the roll amplitude. Su
h that the pressure on the hull

is not very sensitive to the ina

ura
ies on the interse
tion between the potential and

vis
ous �ow domain. However, this is not true for simulations with roll angles above 7

degrees. After some time the ina

ura
ies grow as vorti
ity is rea
hing the interse
tion

between the potential and vis
ous �ow, up to a point when the simulation breaks down.

The di�eren
e between the total damping and the wave radiation damping in the

nonlinear hybrid method is mainly due to vortex shedding, i.e. eddy making damping. It

is a well-known fa
t that vis
ous shear stresses have a small in�uen
e on roll damping. The

eddy-making damping depends on the instantaneous positions, velo
ities and strengths

of shed vorti
ity. The latter fa
t 
an be qualitatively indi
ated by using a thin free-shear

layer and boundary layer method as presented by Faltinsen and Pettersen (1987). The

derivation using a thin free-shear layer 
an be found in Appendix B. It follows then that

the motion of the separation points as it is a

ounted for in the nonlinear method 
ause

a di�erent expression for the amount of shed vorti
ity.

In the semi-nonlinear simulation with wave steepness 1/60, the roll amplitude is 7.6◦ at
roll resonan
e and the heave amplitude is 4.5mm at the �rst heave resonan
e. However,

in the nonlinear simulation the roll amplitude is 4.9◦ at roll resonan
e and the heave

amplitude is 3.9mm at the �rst heave resonan
e, see Figure 5.26. If we further assume

a one degree of freedom system ηja (−ω2 [Ajj(ω) +mjj] + iωBjj(ηja) + Cjj) = Fj , and

that the inertia and hydrostati
 restoring for
e terms 
an
el ea
h other at resonan
e, the

relation between the response and the damping 
oe�
ient from Figure 5.40 should be


onstant, i.e. Cj = ηjaBjj(ηja) should be independent if it is 
al
ulated in the semi-

nonlinear or nonlinear hybrid method. For the heave 
ase there is a 2.5% di�eren
e in

C
3

, and for the roll 
ase there is a 11.4% di�eren
e in C
4

between the semi-nonlinear

and nonlinear hybrid method. The latter dis
ussion only proves that there is 
onsisten
y

between damping and the time-domain rigid-body response.

When studying the damping in heave B
33

(see Figure 5.40b) due to for
ed heave
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os
illations with the same os
illation period as in Figure 5.40a), we �nd that the agreement

between the two hybrid methods are signi�
antly better. However, here damping due to

shed vorti
ity is of se
ondary importan
e, and the total damping is dominated by wave

radiation damping. The predi
ted heave motion response in Figure 5.26 are also almost

equal between the two hybrid methods for the given period.

The relation between the importan
e of vis
ous damping 
ompared to wave radiation

damping is depending on the os
illation period. It is seen a higher in�uen
e of vis
ous

damping when studying for
ed os
illations in heave around the �rst natural heave period.

The heave damping 
oe�
ient B
33

is then also di�erent for the two hybrid methods, see

Figure 5.41. The di�eren
e between the two hybrid methods is similar as to that seen in

Figure 5.40a). The damping 
oe�
ient B
33

has a 
lear linear dependen
e on the heave

amplitude in the nonlinear method.
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Figure 5.41: Linear damping 
oe�
ients for di�erent for
ing amplitudes from the semi-nonlinear

and nonlinear hybrid methods for for
ed heave os
illations for period T ∗ = 7.43 T = 0.75s.

In order to better understand the short
omings of the semi-nonlinear hybrid method,

the lo
al pressure distribution on the hull is 
ompared with the nonlinear hybrid method.

Figure 5.43 
ompares the pressure at the outer edges of the hull due to for
ed roll os
il-

lation of 3 degrees, Figure 5.42 show the lo
ation of the pressure points. Furthermore,

Figure 5.44 
ompares of the pressure at the moonpool edge and the outer edge of the

hull due to for
ed heave os
illation of 0.008m. It is the dynami
 pressure value from the


ell 
losest to the edge that is given. By dynami
 pressure it is meant the total pressure

without the e�e
t of hydrostati
s and atmospheri
 pressure.

For the for
ed roll os
illation 
ase of 3◦ with os
illation period of T ∗ = 9.51 (T = 0.96s)
in Figure 5.43 a di�eren
e between the two hybrid methods is seen for point 1 on the

verti
al side of the edge. However, the dynami
 pressure is for point 2 on the horizontal

side of the edge quite equal for the two hybrid methods. By inspe
ting the vorti
ity

plots from the simulation in Figure 5.45, a mu
h stronger vortex is generated on the left

side of the hull in the nonlinear hybrid method. The situation is quite equal to what

is illustrated in the right part of Figure 5.32. The larger vortex 
reates a drop in the

pressure. A similar behaviour is not seen when vorti
ity is 
reated beneath the hull. For
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this situation the amount of vorti
ity 
reated in the two hybrid methods are similar, and

then also the pressure.

The pressures in Figures 5.43 and 5.44 should be viewed together with the vorti
ity

plots given in Figures 5.45 and 5.46. There it is given 6 di�erent 
omparisons between

the semi-nonlinear and the nonlinear hybrid method equally distributed over a period at

steady-state.
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Figure 5.42: Lo
ation of the dynami
 pressure points given in Figures 5.43 and 5.44. It is the

dynami
 pressure in the FVM 
ell 
losest to the edge that is used.

−4

−2

0

2

4

η 4 (
de

g)

 

 

−0.04

−0.02

0

0.02 Point #1

p(
N

/m
)

 

 

0 2 4 6 8 10 12 14 16 18 20
−0.05

0

0.05 Point #2

p(
N

/m
)

t(s)

η
4

Semi−nonlinear
Nonlinear

PSfrag repla
ements

HPC

FVM

FVM

HPC

a)

b)


)

d)

wg

wg

wg

wg

wg

wg

wg

m

m

m

m

m

m

m

m

m

m

m

a

a

a

a)

b)

COG

Figure 5.43: Dynami
 pressure during for
ed roll os
illation, with os
illation period of 0.96s, and

roll os
illation amplitude of η
4a

= 3◦, for points 1 and 2 given in Figure 5.42. The roll position

is given in the top sub-�gure.

In Figure 5.45 an important di�eren
e between the semi-nonlinear and the nonlinear

hybrid methods 
an be dis
overed. In all vorti
ity illustrations from the semi-nonlinear

method, an arti�
ial vorti
ity 
an be seen at the interse
tion between potential and vis-


ous �ow 
lose to the hull. The 
orresponding vorti
ity illustrations from the nonlinear

hybrid method show no sign of the same arti�
ial vorti
ity. The origin of the arti�
ial

vorti
ity 
an be one of the following two reasons. (1) That the nonlinear non-vis
ous
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Figure 5.44: Dynami
 pressure during for
ed heave os
illation, with os
illation period of 0.75s,

and heave os
illation amplitude of η
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position is given in the top sub-�gure.
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terms in the governing equations are not 
ommuni
ated between the two domains, due

to that the potential �ow domain is linearized. (2) That the body-boundary 
onditions

in the semi-nonlinear hybrid methods generate vorti
ity at the hull surfa
e. Due to this

observation it 
annot in general be 
on
luded that nonlinearities in the potential �ow do-

main are unimportant. If this means that free-surfa
e nonlinearities are important is still

an unanswered question. Further studies with the two di�erent body-boundary 
onditions

in vis
ous liquid only will be given in next se
tion.

The 
onsequen
e of not mat
hing the 
ontribution from the nonlinear adve
tion terms

on the interse
tion is that the normal velo
ity and pressure are 
ontinuous a
ross the

interfa
e, while the tangential velo
ity at the interfa
e is dis
ontinuous. The result is

arti�
ial lo
al vorti
ity on the vis
ous �ow side of the interse
tion. The latter fa
t was

also observed by Gre
o et al. (2013) in their studies with a domain de
omposition method

involving linear potential �ow and the Navier-Stokes equations.

For the for
ed heave os
illation 
ase η
3a

= 0.008m with os
illation period of T ∗ = 7.43
(T = 0.75s) in Figure 5.44. The 
orresponding vorti
ity illustrations are given in Figure

5.46. Although the vorti
ity distribution looks similar between the two hybrid methods

in Figure 5.46 the 
orresponding pressure are still somewhat di�erent, as in Figure 5.44.

More notably, there is no sign of the arti�
ially generated vorti
ity in the semi-nonlinear

hybrid method. Instead it appears from the vorti
ity illustrations that the semi-nonlinear

hybrid method is better than the nonlinear hybrid method, due that vorti
ity rea
hes the

interse
tion between potential and vis
ous �ow in the nonlinear hybrid method (see time-

instan
es (iv)-(vi) in Figure 5.46). The vorti
ity is a

umulated below the interse
tion

while the piston-mode is rising, but it disappears when the piston-mode is de
aying.

Furthermore, in time-instan
es (i)-(iii), there are no signs of vorti
ity at the interse
tion

in the nonlinear hybrid method. Meaning that the vorti
ity is not generated at the

interse
tion in the nonlinear hybrid method. It is only limited in verti
al dire
tion inside

the moonpool. Based on observations in se
tion 5.1 the limitation on vorti
ity in verti
al

dire
tion inside the moonpool has low in�uen
e on the piston-mode and its damping due

to vorti
ity separation from the moonpool edges.

The reason for that arti�
ial vorti
ity is not generated in the semi-nonlinear hybrid

method with for
ed heave os
illation is thought to be that the liquid velo
ity is mainly

normal to the interse
tion.

We should note the di�eren
e between absolute vorti
ity and relative vorti
ity: The

vorti
ity in the semi-nonlinear hybrid method is 
al
ulated from the absolute velo
ity u

as seen in the Earth-�xed 
oordinate system, while the vorti
ity in the nonlinear hybrid

method is 
al
ulated from the relative velo
ity ur as seen in the body-�xed 
oordinate

system. The relative vorti
ity (∇× ur) in the nonlinear hybrid method, is di�erent from

the absolute vorti
ity (∇ × u). This 
an be found by the following 
onsideration: By

starting with equation (2.5), the di�eren
e between the absolute vorti
ity and the relative

vorti
ity is found as,

∇× ur = ∇× (u− u0 − ω0 × r)

= ∇× u− 2η̇
4

. (5.17)

This means that the di�eren
e between the absolute and the relative vorti
ity is depending

on the angular roll velo
ity. It is the absolute vorti
ity that will be presented in Figure

5.45.
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Figure 5.45: Absolute vorti
ity in the �ow from both the semi-nonlinear (S-NL) and the nonlinear

(NL) hybrid method. Roll os
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are equally spa
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Figure 5.46: Absolute vorti
ity in the �ow from both the semi-nonlinear (S-NL) and the nonlinear

(NL) hybrid method. Heave os
illation period is T ∗ = 7.4 (T= 0.75s) and heave amplitude is

0.008m. The 6 
ases are equally spa
ed over a period at steady state.
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It is from vorti
ity illustrations of for
ed sway os
illation in Figure 5.47 quite 
lear that

the nonlinear non-vis
ous terms on the interse
tion 
reates arti�
ial vorti
ity. It is not

seen any 
lear di�eren
e between arti�
ial vorti
ity 
reated at the horizontal interse
tion


lose to the hull or at the interse
tion with the stair
ase pattern.

Two attempts on improving the semi-nonlinear method were made. The �rst attempt

was to add the higher-order terms from the Bernoulli's equation to the 
ondition on the

interse
tion between potential and vis
ous �ow, while still solving for the linear a

eler-

ation potential ψ in the potential �ow domain. This approa
h required that the solution

of ϕ was found on the interse
tion to a

urately evaluate the higher order terms. The

se
ond attempt was therefore to in
lude the higher order term from the Bernoulli's equa-

tion, while solving for the linear velo
ity potential ϕ in the potential �ow domain. These

simulations based on these two attempts be
ame more unstable than the original semi-

nonlinear hybrid method, and no steady-state solution 
ould be obtained. Sin
e both

the body-boundary and free-surfa
e boundary 
onditions in the potential �ow domain are

linearized, there is still an in
onsisten
y in the solution. It is therefore found that the

usage of the semi-nonlinear method should be done with 
are, although good results have

been obtained with the semi-nonlinear method for the for
ed heave 
ase.

5.4.1 Damping from vis
ous �ow

Sin
e the results from the for
ed os
illation study with a surfa
e pier
ing stru
ture are

in
on
lusive with regards to the importan
e of the body-boundary 
onditions (BBC) for

the semi-nonlinear hybrid method due to in
onsisten
y between non-vis
ous terms on the

interse
tion between potential and vis
ous �ow further investigations are performed. To

remove the un
ertainty it is here performed a similar study with the body submerged in

vis
ous �uid without a free surfa
e. The body dimensions used here are 0.5m wide by

0.2m high. That means the body is mirrored around the free surfa
e and the moonpool

is removed. It means that for
ed angular os
illation of a re
tangle with a width divided

by height ratio of 2.5 is studied. The height of the liquid domain is 2m, to resemble that

the free surfa
e is mirrored. The width of the domain is set to 5m, i.e. ten times larger

than the width of the stru
ture. The body is pla
ed in the middle.

The results in Figure 5.48 show how the two di�erent body-boundary 
onditions are

in�uen
ing the for
e in phase with the roll angular velo
ity. The main di�eren
es between

the two 
ases here are that the Navier-Stokes equations are solved in an inertial 
oordinate

system with linear body-boundary 
onditions, and that the Navier-Stokes equations are

solved in a non-inertial 
oordinate system with exa
t body-boundary 
onditions. Only

for small roll angles η
4a

< 0.5◦ the predi
ted vis
ous damping are in the same magnitude.

The meshes used in the two numeri
al 
ases are equal, whi
h was not the 
ase of the

previous study with for
ed roll os
illations in the two hybrid methods. There the inter-

se
tion between the two domains where at di�erent lo
ations in the two hybrid methods.

It should also be 
onsidered that the outer wall 
onditions are di�erent. In both

the Earth-�xed and body-�xed 
oordinate system the outer walls remains �xed with the


oordinate system. The 
orre
t approa
h would have been to re-mesh 
lose to the outer

walls in the body-�xed 
oordinate system. As dis
ussed earlier, the reason for this is to

avoid re-meshing in the vis
ous domain. It means that some of the di�eren
e between the

results in Figure 5.48 
an be due to the di�eren
e in the outer wall boundary 
onditions.

However, this is thought to be small 
ompared to the di�eren
e due to the body-boundary
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Figure 5.47: Absolute vorti
ity in the �ow from both the semi-nonlinear (S-NL) and the nonlinear

(NL) hybrid method. Sway os
illation period is T ∗ = 7.4 (T= 0.75s) and sway amplitude is

0.008m. The 6 
ases are equally spa
ed over a period at steady state.
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Figure 5.48: Roll damping from for
ed angular os
illation of a re
tangular 
ross-se
tion in in�nite

vis
ous �uid by using linear body-boundary 
onditions in an Earth-�xed 
oordinate system and

by using exa
t body-boundary 
onditions in a body-�xed 
oordinate system.


onditions. The reason is that the outer wall is far away from the body.

Results from the for
ed roll os
illation study in vis
ous �uid are given in Figure 5.48.

The trend in the results are similar as those in 5.40, whi
h proves that the di�eren
e

between the linear and the exa
t body-boundary 
onditions 
an explain most of the

di�eren
e between the semi-nonlinear hybrid method results and the experimental results

in Figure 5.26. However, we 
annot answer if it is due to the position of the edges where

vorti
ity is shed or if is it due to the vorti
ity 
reated along the hull surfa
es, that is the

main reason for the low damping 
reated in the semi-nonlinear hybrid method.

From Figure 5.49 the largest arti�
ial vorti
ity is 
reated along the 
entre line of the

hull. This 
an be related to that the in-out �ow body-boundary 
ondition 
hanges sign

here, see equation (3.59). Meaning that the liquid �ow through the hull surfa
e on two

neighbouring 
ells will have opposite dire
tion 
ausing lo
al vorti
ity.

Note here that it is the pressure in the FVM 
ell 
losest to the hull edge that is used

to generate the results in Figure 5.48. This is not valid for all the other results presented

in this thesis, where the pressure gradient is used to extrapolate to values at the hull

surfa
e.

Based on the results in Figure 5.48 a �rst estimate on the importan
e of free-surfa
e

nonlinearities in the �oating experimental setup 
an be made. The damping from the out-

going waves in the semi-nonlinear hybrid method is extra
ted from Figure 5.40, and half

the damping predi
ted in in�nite vis
ous �uid by using linear body-boundary 
onditions

(Figure 5.48) is added and the result is presented in Figure 5.50. Note that the roll damp-

ing 
ontribution from the moonpool edges are not in
luded in the studies with in�nite

vis
ous �uid. Meaning that a small di�eren
e 
an be expe
ted due to that. Sin
e the two

results in Figure 5.50 are quite 
lose, it means that it is mostly the linear body-boundary


onditions in the semi-nonlinear method that explain the large di�eren
e between the
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Figure 5.49: Absolute vorti
ity for for
ed roll os
illation in vis
ous �uid, with roll amplitude

of 3◦ by using linear body-boundary 
onditions in an Earth-�xed 
oordinate system and exa
t

body-boundary 
onditions in a body-�xed 
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Figure 5.50: Comparison of the total damping in roll predi
ted by the semi-nonlinear hybrid

method, with an approximate result where damping from outgoing waves is added to half the

damping from for
ed os
illation in vis
ous �ow. For os
illation period T ∗ = 9.51.

semi-nonlinear and nonlinear hybrid method in Figure 5.26. Further, the same study

is done for the nonlinear hybrid method results from Figure 5.40, and the exa
t body-

boundary 
onditions results from Figure 5.48. The result is presented in Figure 5.51.

Here the approximate approa
h is almost equal to the nonlinear hybrid method results.

However, there are some di�eren
es for higher roll angles.

To 
on�rm that the results seen in Figures 5.50 and 5.51 are general and not only valid

at the natural roll period simulations with two additional periods T ∗ = 7.43 and T ∗ = 8.22
are performed. The results are presented in Figure 5.52. The results for all three tested

os
illation periods are 
onsistent, and it is therefore assumed that the di�eren
e between

the two body-boundary 
onditions is somewhat general.

5.4.2 Rigid free surfa
e

Simulations with a rigid free surfa
e have been performed in order to 
ompare the results

to those given by Braathen (1987), who 
ompared result using a rigid free surfa
e with

results using a nonlinear free-surfa
e 
ondition. In general it 
an be expe
ted that the

result will di�er between the rigid free-surfa
e and the double body �ow in in�nite �uid.

The simulations with rigid-free surfa
e are performed with an open gap, and a rigid free-

surfa
e 
ondition inside the moonpool.

Note that it is not totally a

urate to 
all it here a rigid free-surfa
e 
ondition. The

proper rigid free-surfa
e boundary 
ondition is to satisfy no �uid �ux verti
ally in the

Earth-�xed 
oordinate system on the mean free surfa
e. It is here instead used that there

should be no �uid �ux in z-dire
tion of the body-�xed 
oordinate system, whi
h is a good

approximation for small roll angles, but has an error in
reasing with larger roll angles.

The result when using a rigid free-surfa
e 
ondition from Figure 5.53 is 
omparable to
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Figure 5.51: Comparison of the total damping in roll predi
ted by the nonlinear hybrid method,

with an approximate result where damping from outgoing waves is added to half the damping

from for
ed os
illation in vis
ous �ow. For os
illation period T ∗ = 9.51.

the results with in�nite �uid from Figure 5.51. The results 
on�rm that for the present

setup with the given dimensions the free-surfa
e waves has a small in�uen
e on vortex

shedding and asso
iated eddy-making damping from the 
orners of the hull. There is a

8% di�eren
e between the results for for
ed roll os
illation of 6.0◦ in Figure 5.53, whi
h

may be related to the free surfa
e in�uen
e on vortex shedding.



5.4. Damping from for
ed os
illations 125

0

0.5

1

1.5

2

x 10
−3

B
44

/ρ
 (

m
5 /s

)

a) Semi−nonlinear, T*=7.43

 

 
b) Nonlinear mesh 1/30, T*=7.43

 

 

0 2 4 6 8 10
0

0.5

1

1.5

2

x 10
−3 c) Semi−nonlinear, T*=8.22

B
44

/ρ
 (

m
5 /s

)

η
4a

 (deg)
0 1 2 3 4 5

d) Nonlinear mesh, T*=8.22

η
4a

 (deg)

S−NL
S−NL wave
0.5*Inf Fluid Linear BC
S−NL waves + 0.5*Inf Fluid Linear BBC

NL
NL wave
0.5*Inf Fluid Exact BC
NL wave + 0.5*Inf Fluid Exact BBC

PSfrag repla
ements

HPC

FVM

FVM

HPC

a)

b)


)

d)

SB

wg

wg

wg

wg

wg

wg

wg

m

m

m

m

m

m

m

m

m

m

m

a

a

a

a)

b)

COG

Figure 5.52: Comparison of the total damping in roll predi
ted by the semi-nonlinear hybrid

method (in a)) and 
)) and nonlinear hybrid method (in b) and d)), with an approximate result

where damping from outgoing waves is added to half the damping from for
ed os
illation in

vis
ous �ow.



126 Results

0 1 2 3 4 5 6 7 8 9
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

η
4a

 (deg)

B
44

/ρ
 (

m
5 /s

)

Rigid free−surface T*=9.51

 

 
NL
NL wave
Rigid FS, exact BBC
NL wave + Rigid FS exact BBC

PSfrag repla
ements

HPC

FVM

FVM

HPC

a)

b)


)

d)

wg

wg

wg

wg

wg

wg

wg

m

m

m

m

m

m

m

m

m

m

m

a

a

a

a)

b)

COG

Figure 5.53: Comparison of the total damping in roll predi
ted by the semi-nonlinear hybrid

method, with an approximate result where damping from outgoing waves is added to the damping

from for
ed roll os
illation with a rigid free surfa
e. For os
illation period T ∗ = 9.51.



Chapter 6

Convergen
e and sensitivity studies

To gain additional 
on�den
e in the two numeri
al hybrid methods, a 
omprehensive 
on-

vergen
e and sensitivity study of some sele
ted parameters have been performed. Ideally

the numeri
al hybrid methods results should be independent of parameters related to the

interse
tion between the potential and vis
ous �ow domains. However, sin
e they repre-

sent two di�erent physi
al representations of the liquid �uid �ow, it is expe
ted that the

lo
ation of the interse
tion 
an possibly in�uen
e the overall 
al
ulated liquid motion and

pressure.

Three separate 
onvergen
e studies have been performed. The �rst is dedi
ated to

propagation of waves and the se
ond is dedi
ated to for
ed heave os
illations with and

without forward speed using the nonlinear hybrid method. Furthermore, the third is

dedi
ated to the study with a spring-moored �oating body in in
oming regular waves.

6.1 Wave propagation

It has throughout this thesis been stated that the HPC method propagates waves with

high a

ura
y. See Figure 6.1 for two examples on how the steady state wave amplitude

develops throughout the numeri
al wave tank. The results in Figure 6.1a) are found by

using linear free-surfa
e 
onditions, and the results in Figure 6.1b) are found by using

nonlinear free-surfa
e 
onditions. In both 
ases the horizontal dis
retization of the free

surfa
e is 30 HPC 
ells for ea
h wave length. Both results show that the 
hange in wave

amplitude after 11 wave length is less than 0.5%.

6.2 For
ed heave os
illations with the nonlinear hybrid

method

During the development phase it was identi�ed four parameters that were possible 
an-

didates to in�uen
e the results, and identi�ed as important to evaluate the sensitivity of.

These four parameters are mesh size, size of the potential �ow domain inside the moon-

pool gap, time-step size and smoothing size on the free surfa
e. Convergen
e is studied

for all appendage 
on�gurations with draft d∗ = 1.0 (18
m), η3a = 0.025 (4.5mm) heave

amplitude and two Froude numbers (Fn = 0.00 and Fn = 0.08). We have 
hosen �ve

di�erent for
ing periods around the piston-mode natural period for ea
h 
ase. The pa-
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rameters are varied around the inputs used for the 
al
ulations in Figures 5.3-5.11, from

here on 
alled the "standard 
ase" throughout this 
hapter. Figures 6.2-6.5 all have six

sub-�gures, in two rows and three 
olumns. In the �rst row is 
onvergen
e results for Fn

= 0.00, and se
ond row is results for Fn = 0.08. The �rst 
olumn 
ontains results for the

re
tangular side hull pro�le (no appendage), se
ond 
olumn for appendage #1 and third


olumn for appendage #2, see Table 6.1.

P
P
P
P
P
P
P
PP

Fn

App.

- #1 #2

0.00 a b 


0.08 d e f

Table 6.1: Overview of appendages and forward velo
ities that are used in the 
onvergen
e study

in Figures 6.2-6.5. The letters a-f refer to di�erent parts in the �gures. See Figure 5.2 for

des
ription of the appendages.

The 
onvergen
e and sensitivity results with low forward velo
ity should all be viewed

keeping in mind that vorti
ity has rea
hed the interse
tion between the potential and

vis
ous �ow domains. This means that the 
onvergen
e results 
ould show how the lo
al

ina

ura
y at the interse
tion is a�e
ted by a 
hange in mesh and/or time-step size and

how this ina

ura
y in�uen
es the piston-mode os
illation, and not how the 
hanges in

mesh and time-step size 
hange the global �ow �eld, and then the piston-mode os
illation.

6.2.1 Mesh density

The standard 
ase used in results from Figures 5.3-5.11 is the one 
alled 36 in Figure

6.2. By 36 it is meant that the length of one hull is divided into 36 equal 
ells in the

horizontal dire
tion. The 
orresponding number of 
ells in the verti
al dire
tion for the

standard 
ase are 25. The number of 
ells in the verti
al dire
tion are in
reased su
h that

the aspe
t ratio is kept 
onstant.

One observation from Figure 6.2 is that for smaller 
ells the piston-mode amplitude


onverges towards a higher value without appendages, but for the two 
ases with ap-

pendages the piston-mode amplitude 
onverges towards a smaller value. However, the

experimental results are higher than the numeri
al results. The behaviour of the water

�ow inside the boundary layer is with the de
reased mesh size still not 
aptured. It does

neither 
apture the behaviour of the water �ow at any turbulen
e s
ale.

6.2.2 Height of potential domain inside the mooonpool

Another parameter that the simulations are somewhat sensitive to is the height of the

potential �ow domain inside the moonpool gap from the free surfa
e to the interse
tion

between the potential domain and the vis
ous domain, see results in Figure 6.3. Similarly

to the 
onvergen
e study above we have varied the height of the potential �ow domain

inside the moonpool gap around the standard 
ase, where the number of 
ells a
ross

one hull is 36, and the number of 
ells in the verti
al dire
tion of the hull is 25. The

standard 
ase had the interse
tion line at 0.06m below the free surfa
e. The results

should in prin
iple not be sensitive to this parameter, ex
ept when vorti
ity rea
hes the



130 Convergen
e and sensitivity studies

6.4

6.6

6.8

7

7.2

7.4

7.6

a) No App, Fn=0.00

ζ ga
p/η

3a

4.8

5

5.2

5.4

5.6

b) App #1, Fn=0.00

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9
c) App #2, Fn=0.00

 

 

8.65 8.7 8.75 8.8 8.85

6.4

6.6

6.8

7

7.2

7.4

7.6

T*

d) No App, Fn=0.08

ζ ga
p/η

3a

8.8 8.9 9

4.8

5

5.2

5.4

5.6

T*

e) App #1, Fn=0.08

9.1 9.2 9.3
4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

T*

f) App #2, Fn=0.08

24
30
36
42
48
52

PSfrag repla
ements

HPC

FVM

FVM

HPC

a)

b)


)

d)

wg

wg

wg

wg

wg

wg

wg

m

m

m

m

m

m

m

m

m

m

m

a

a

a

a)

b)

COG

Figure 6.2: Convergen
e of the piston-mode amplitude with respe
t to the number of mesh-
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a
ross one side hull, the number is indi
ated in the �gure. Here 36 is the 
ase 
orresponding to

the �standard 
ase� results in Figures 5.3-5.11. The number of 
ells in the verti
al dire
tion is

varied respe
tively, to keep the aspe
t ratio δz/δy 
onstant. The upper row shows results with

zero forward velo
ity, and the lower row shows results with forward velo
ity 
orresponding to

Fn= 0.08.
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interse
tion. For the 
ases with forward velo
ity (see Figure 6.3d-f), the 3−4% di�eren
e

in piston-mode amplitude is an indi
ation on that vorti
ity has rea
hed the interse
tion.

For the 
ases without forward velo
ity the results are insensitive.
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Figure 6.3: Sensitivity of the piston-mode amplitude with respe
t to the height of potential

domain inside the moonpool gap, the height is indi
ated in the �gure. Here 0.06m is the 
ase


orresponding to the �standard 
ase� results in Figures 5.3-5.11. The upper row shows results

with zero forward velo
ity, and the lower row shows results with forward velo
ity 
orresponding

to Fn= 0.08.

6.2.3 Time-step size

If the CFL number is smaller than 0.5 the time-step will be set to ∆t = T/120 in all

simulations presented in Figures 5.3-5.11. To justify this 
hoi
e of time-step size a sensi-

tivity analysis of the number of time-steps per os
illation period has been performed. We

varied the number of time-steps per os
illation period from NT = 80 to NT = 280 with

an in
rement of 40. Note that still the simulations will be limited by the CFL number


riterion. Figure 6.4 shows good 
onvergen
e for the zero Froude number 
ase, but almost

a 10% de
rease in piston-mode amplitude for 
ases with forward velo
ity from NT = 120
to NT = 240. The latter means 
onvergen
e away from the experimental results.

The 
onvergen
e results are good for the 
ases without forward velo
ity.
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Note here that the dependen
e on the time-step size is expe
ted to be somewhat

di�erent here 
ompared to the studies with a �oating moonpool se
tion. As the rigid-

body motion here is pres
ribed, i.e. the equations of motion are not solved. Thus the

dependen
y on the time-step size is expe
ted to be di�erent in the two 
ases.
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Figure 6.4: Convergen
e of the piston-mode amplitude with respe
t to the number of time-

steps per period, the number is indi
ated in the �gure. Here 120 is the 
ase 
orresponding to

the �standard 
ase� results in Figures 5.3-5.11. The upper row shows results with zero forward

velo
ity, and the lower row shows results with forward velo
ity 
orresponding to Fn= 0.08.

6.2.4 Smoothing of the free-surfa
e des
ription

In the standard simulations without forward velo
ity, we applied the smoothing operation

20 times per period, while for forward velo
ity 
ases 120 smoothing operations per period

were used. Figure 6.5 shows that the moonpool amplitude results are insensitive to the

smoothing algorithm, ex
ept for 
ases with forward velo
ity where the simulation breaks

down at the downstream side for low number of smoothing operations per period.

The e�e
t on smoothing will be di�erent when studying rigid-body motions due to

in
oming waves with pres
ribed wave amplitude. The smoothing algorithm has a damping

e�e
t on wave propagation. The smoothing algorithm e�e
t on the dispersion properties

of the waves has not been studied, but it is thought to be negligible.
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Figure 6.5: Sensitivity of the piston-mode amplitude with respe
t to the number smoothing

operations per period. The upper row shows results with zero forward velo
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orresponding to Fn= 0.08.
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6.3 Convergen
e for a freely �oating body

Both the semi-nonlinear and the nonlinear hybrid methods with freely �oating rigid-

body motions are 
he
ked with regards to time-step size and mesh size. In addition, the

nonlinear hybrid method is 
he
ked with regards to parameters related to the lo
ation of

the interse
tion between the potential �ow and vis
ous �ow domains.

Even though the smoothing parameter was found to not in�uen
e the results for the

for
ed heave os
illation study, it was 
on
luded that the smoothing parameter in�uen
ed

the propagation of gravity surfa
e waves. A similar study of the smoothing parameter is

therefore given here.

6.3.1 Convergen
e semi-nonlinear hybrid method

It is 
hosen to 
he
k 
onvergen
e on the results for the largest wave steepness 1/30 from

Figure 5.26, the results are thought to be valid for the two other wave steepnesses 1/45
and 1/60. Note that the wave period resolution is not the same as in Figure 5.26, i.e.


onvergen
e has only been 
he
ked for a 
hosen set of wave periods (10 in total). For


onvergen
e study results with regards to the time-step size see the right 
olumn of Figure

6.6, and the left 
olumn of Figure 6.6 for 
onvergen
e study results with regards to the

mesh size.

The numeri
al results are with regards to the time-step size 
onverged for the base


ase with 200 time-steps per wave period. For the mesh size we see that around the roll

natural period the response is de
reasing for in
reasing mesh density, and they 
onverge

towards the experimental result.

Simulations are again limited by that the CFL-number should be smaller than 0.5.

Che
ks have been made to 
he
k that the solution of the equations of motion is inde-

pendent of the 
hoi
e of the arti�
ial added mass term. This is true as long as it is in the

order of the in�nite frequen
y added mass.

6.3.2 Convergen
e nonlinear hybrid method

Two wave periods have been sele
ted where 
onvergen
e and sensitivity are 
he
ked. The

�rst period is 
lose to the �rst natural heave period T ∗ = 7.5, and the se
ond period

is 
lose to the natural roll period T ∗ = 9.6. For both wave periods 
onvergen
e and

sensitivity are 
he
ked for both the stationary 
ase with wave steepness 1/60, but also for
towing in head seas with Fn= 0.04. In the latter 
ase, the wave period refers to the wave

period of en
ounter.

Four parameters are identi�ed as relevant to 
he
k for 
onvergen
e. In addition to the

two parameters from the semi-nonlinear 
onvergen
e study (mesh density and time-step

size), ηMax
4 (see Figure 5.23) and the height from the mean free surfa
e to the interse
tion

between the potential �ow and the vis
ous �ow domains are varied.

In Figure 6.7 the sensitivity/
onvergen
e study for the zero Froude number 
ase with

period T ∗ = 7.5 (T = 0.76s) is given. Similar sensitivity/
onvergen
e study for the

forward velo
ity 
ase with Froude number 0.04 in head sea with �xed period of en
ounter

T ∗

e = 7.5 (T e = 0.76s) is given in Figure 6.8. The 
onvergen
e study results around the

roll natural period are given in Figure 6.9 for the zero Froude number 
ase and Figure

6.10 for the head sea 
ase. The 
onvergen
e study la
ks some data-points due to that
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Figure 6.6: Convergen
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t to number of time-steps per wave period. 200 
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ase in Figure 5.26.
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numeri
al simulation for higher mesh density and smaller time-step 
rashed. See explanations

in Figure 6.7.
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the simulations 
rashed. Results from Figure 5.33b) should be 
onsidered together with

results from Figure 6.8 and 6.10.

The sensitivity/
onvergen
e study for the stationary 
ase in Figure 6.7 and 6.9 are

relatively independent on the parameters tested. Meaning that results in 5.26 are rela-

tively 
lose to 
onvergen
e with regards to time-step and mesh size, and independent on

the lo
ation of the interse
tion between potential and vis
ous �ow.

For the towed 
ase in head seas the results are more unreliable (see Figures 6.8 and

6.10), the same was found in the 
onvergen
e study for for
ed heave os
illations with

forward velo
ity.

For the dependen
y on the smoothing algorithm 2000 smoothing steps per wave period

has been used as input value. Sin
e the number of time-step per wave period is depending

on the CFL-number, and unknown prior to the simulation, the use of 2000 will guarantee

that the algorithm is performed on
e ea
h time-step.

Separate 
he
ks have been performed to 
he
k the dependen
e on the interse
tion.

The mesh 
reated for simulations with wave steepness 1/30 has been used to 
al
ulate

the results for waves with steepness 1/45 and 1/60. Similarly the mesh for wave steepness

1/45 has been used for simulating wave steepness 1/60. The di�eren
es between these

meshes have been illustrated before, and it is a 
ombination of the parameters ηMax
4 and

Pot H.
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Chapter 7

Summary and further work

In the present work we have investigated properties of a two-dimensional ship se
tion with

moonpool in both verti
ally for
ed os
illations and freely-�oating 
onditions. Spe
ial fo
us

has been put on the resonant properties of the piston mode. By piston mode we mean

the nearly verti
ally os
illating �ow of the water inside the moonpool.

Two dedi
ated experimental programmes have been performed, where the �rst experi-

mental programme involved an automized setup for studying for
ed heave os
illation with

and without small forward velo
ity. Here two geometri
al parameters, i.e. the draft and

the edge pro�le at the moonpool's inlet were varied. In addition the forward 
arriage

velo
ity and heave amplitude were varied. The se
ond experimental setup was with a

spring-moored two-dimensional moonpool se
tion subje
ted to in
oming regular waves,

where three di�erent wave steepness ratios were tested.

The experimental programmes have served as validation data for two numeri
al hybrid

methods 
oupling potential and vis
ous �ow. The water domain is divided in two strongly


oupled domains, where the Navier-Stokes equations are solved in the vis
ous �ow domain


lose to the hull edges where vorti
ity is expe
ted to be generated. Furthermore, the HPC

method is employed to solve the Lapla
e equation for the velo
ity potential in the outer

potential �ow domain en
losing the entire free surfa
e. The two numeri
al hybrid methods

are di�erent in the way boundary 
onditions are treated. In the semi-nonlinear hybrid

method linear free-surfa
e 
onditions are applied in the potential �ow domain. Linear

body-boundary 
onditions are used in both the potential �ow and vis
ous �ow domains.

On the interse
tion between the potential �ow and the vis
ous �ow domains both pressure

and normal velo
ities are mat
hed. However, tangential velo
ities are not guaranteed to

be 
ontinuous a
ross the interse
tion. In the nonlinear hybrid method the free-surfa
e


onditions are satis�ed in a nonlinear manner and the body-boundary 
onditions are

satis�ed exa
tly. The latter is a
hieved by solving the governing equations in a body-

�xed 
oordinate system. In addition, the tangential velo
ities are 
ontinuous a
ross the

interse
tion.

Three main studies have been presented, �rst a 
omprehensive study with both exper-

imental and numeri
al studies of for
ed heave motions with and without forward velo
ity,

se
ondly an experimental and numeri
al study of a spring-moored freely �oating ship

se
tion. By the 
on�den
e gained by the good 
omparison both the numeri
al studies in-


lude some data without experimental validation. At last a detailed study of the �ow and

pressure details has been performed to determine the short
omings of the semi-nonlinear

hybrid method in predi
tion of the rigid-body roll motion.
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7.1 For
ed heave os
illation with low forward velo
ity

The main motivation behind this study was to investigate how a low 
urrent/low forward

velo
ity in�uen
es the resonant piston-mode motion of a moonpool inside a 2D ship

se
tion. This was done by both numeri
al and experimental methods, and for 
urrent

velo
ities up to Fn = 0.08. We found that within this range, the low 
urrent/low forward

velo
ity had a slightly de
reasing e�e
t on the moonpool piston-mode behaviour. To what

extent this fa
t depends on the moonpool gap width remains unknown.

In addition to the low forward velo
ity in�uen
e, we varied the moonpool edge pro�le,

the draft and the heave amplitude. We tested 3 di�erent edge pro�les inside the moonpool

gap. First we studied re
tangular side hulls. Then we in
luded two appendages in the

moonpool inlet 
overing 20% and 30% of the moonpool gap area. The damping of the

piston-mode is in
reased by using appendages 
ompared to the re
tangular side hull. For

ea
h of the 3 edge pro�les we tested 3 di�erent drafts, where the ratio between the draft

and the total hull width was 1/6, 1/5 and 7/30. However, the 
hange of draft had little

in�uen
e on the maximum piston-mode response. It did 
hange the period of maximum

response of the system, su
h that for a given period the response was 
hanged.

7.2 Freely-�oating in in
oming regular waves

In general, the two numeri
al hybrid methods predi
t the rigid-body and moonpool re-

sponses quite well. An ex
eption is that the resonant roll motion is 
learly over-predi
ted

by the semi-nonlinear hybrid method, while the nonlinear hybrid method 
aptures the

roll motion well. The reason for this is eddy-making damping.

The moonpool behaviour has a 
lear e�e
t on the rigid-body motions. The moonpool

wave ampli�
ation fa
tor is found to be around 2�2.5 times the in
oming wave amplitude

around resonan
e, depending on the wave amplitude. In 
omparison, pure linear potential

�ow theory predi
ts a fa
tor of up to 10.

An important observation is that we 
annot use the natural piston-mode period to


al
ulate whi
h period 
auses maximum piston-mode response of a free-�oating body in

in
ident waves. The linear potential �ow response from the radiation and di�ra
tion

potentials is 180

◦
out of phase at the natural piston-mode period, with the 
onsequen
e

that the piston-mode motion at the piston-mode natural period does not have any resonant

behaviour. The maximum piston-mode response is found at the �rst resonant heave

motion period in the vi
inity of the piston-mode resonan
e.

7.3 Di�eren
e between the two hybrid methods

The short
omings of the semi-nonlinear hybrid method in predi
ting the roll motion are

investigated by a detailed study of the damping from for
ed roll os
illations with di�erent

for
ing amplitudes. It is suggested that the main reason for the di�eren
es is that the

body-boundary 
ondition is linearized in the semi-nonlinear hybrid method.

In addition 
omes the ina

ura
ies at the interse
tion between the potential and vis
ous

domain in the semi-nonlinear hybrid method, where the tangential velo
ity a
ross the

interse
tion is not 
ontinuous, with the 
onsequen
e of lo
al 
reation of arti�
ial vorti
ity.
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7.4 Re
ommendations for further work

To improve the 
on�den
e in the present hybrid method, additional 
ase studies that are

suitable to be numeri
ally simulated using the present hybrid methods would be wel
omed.

It was throughout the work attempts on developing a parti
ular solution for the Pois-

son equation that 
ould be 
ombined with the harmoni
 solution of the Poisson equation

by the HPC method. The parti
ular solution was based on an integral for ea
h vis
ous

node over the entire vis
ous domain, and thus the solution be
ame quite CPU expensive.

Re
ently, Andrea et al. (2015) has generalized the HPC method to in
lude the solution

of the Poisson equation, this is a
hieved by in
luding other polynomials than the original

harmoni
 polynomials in the HPC method that gives a parti
ular solution of the Poisson

equation.

Improvement of the semi-nonlinear hybrid method by satisfying the body-boundary


ondition in a more exa
t manner, two main alternatives are then thought of:

• By still solving the governing equations in the Earth-�xed 
oordinate system and

re-meshing the vis
ous domain 
lose to the body.

• By solving the governing equations in the body-�xed 
oordinate system and lin-

earizing the free-surfa
e 
onditions in body-�xed 
oordinate system.

The motivation is that the body-boundary 
onditions were the main reason for the dif-

feren
e between the semi-nonlinear and experimental results for roll motion. Other im-

provements of the hybrid methods 
ould in
lude turbulen
e modelling and extension of

the method to handle more general mesh types. Extension of the method into 3D would

obviously be interesting.

With regards to the physi
al problem of moonpool resonan
e it is not fully 
lear how

the results from this work are appli
able in three dimensions on a real ship. How large is

the di�eren
e between the piston-mode resonan
e period found from for
ed os
illations,

to the period where maximum piston-mode response o

ur at a natural heave period for

a freely �oating ship?

It was not the ambition of this work to �nd the optimal ship design for redu
ing the

moonpool motion. However, it is felt that this work would serve as a good basis for


ontinuing on su
h a path.

Another appli
ation of the present nonlinear hybrid method is to study the total mean

drift for
e, in
luding both potential and vis
ous �ow for
e 
ontributions.
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Appendix A

Conversion from Earth-�xed to

body-�xed 
oordinate system

Details in this Appendix are given in (Faltinsen and Timokha 2009), and given here to

understand how the Navier-Stokes equations and the equations of motion are 
onverted

from an Earth-�xed 
oordinate system to a body-�xed 
oordinate system.

First noti
e that the left hand side of equation (2.1) is the material derivative D/Dt,
whi
h expresses the time rate of 
hange as a liquid parti
le is followed in spa
e and time,

i.e. a Lagrangian des
ription. The 
hallenge is now to 
onvert the time-derivative from

an inertial 
oordinate system (Earth-�xed 
oordinate system), to a noninertial 
oordi-

nate system (body-�xed 
oordinate system). The derivation is started by expressing the

position of the liquid parti
le relative to the inertial 
oordinate system by

r′(t) = r′0(t) + r(t). (A.1)

Here r′0(t) is the distan
e between the two 
oordinate systems expressed in the inertial


oordinate system and r(t) is the radius ve
tor of the position of the liquid parti
le

with respe
t to the noninertial 
oordinate system. I.e. r(t) = x1(t)ex(t) + y1(t)ey(t) +
z1(t)ez(t), where ei (i = x, y, z) are unit ve
tors of the noninertial 
oordinate system, and

rotated relative to the inertial 
oordinate system. Meaning that the time derivative of

r(t) be
omes,

dr(t)

dt
= ẋ1(t)ex(t) + ẏ1(t)ey(t) + ż1(t)ez(t)

+ x1(t)ėx(t) + y1(t)ėy(t) + z1(t)ėz(t) (A.2)

that a

ording to (Faltinsen 2005) 
an be rewritten to

dr(t)

dt
=
dbr(t)

dt
+ ω0(t)× r(t) = ur(t) + ω0(t)× r(t), (A.3)

where db/dt means that the unit ve
tors should not be time-di�erentiated. The time-

derivative of the position of the �uid parti
le (equation A.1) 
an then be expressed as,

Dr′(t)

Dt
= u0(t) + ur(t) + ω0(t)× r(t), (A.4)
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where u0(t) = dr′(t)/dt. The Lagrangian des
ription of the Navier-Stokes equation (2.1)

implies that

Du(t)

Dt
=
D2r′(t)

Dt2
(A.5)

whi
h 
an by using the same pro
edure as above obtained to be

D2r′

Dt2
= a0 + ω0 × u0 + ω̇0 × r+ 2ω0 × ur

+ ω0 × (ω0 × r) + ar (A.6)

where a0 = dbu0/dt is the translatory a

eleration of the body-�xed 
oordinate system

and ar = dbur/dt is the translatory relative a

eleration. Noti
e that the notation has

been simpli�ed, meaning that a0(t) = a0 and similar for the other terms. In a numeri
al


al
ulation we want to 
al
ulate the rate of 
hange in time and spa
e at �xed points.

Then as a last step, an Eulerian des
ription for the time-derivative of the relative �uid

velo
ity is needed for �xed points in a body-�xed 
oordinate system

ar =
dbur

dt
=
∂bur

∂t
+ ur · ∇ur. (A.7)

Here

∂b
ur

∂t
= ∂ur

∂t
ex+

∂vr
∂t
ey+

∂wr

∂t
ez means the time-di�erentiation of a value for a �xed point

in the body-�xed 
oordinate system, i.e. we do not time di�erentiate the unit ve
tors, as

they do not vary with time relative to the body-�xed 
oordinate system. Furthermore,

the spatial derivatives are invariant.



Appendix B

Thin free-vortex sheet model

It is from the results from the two hybrid methods suspe
ted that the main explanation for

the di�eren
e between the two methods is due to the di�erent body-boundary 
onditions.

We will here employ a thin free-vortex sheet model to explain the di�eren
e due to the

di�erent body-boundary 
onditions. The basis of the thin free-vortex sheet model 
an

be found in (Faltinsen and Pettersen 1987). First di�usion of vorti
ity is negle
ted, and

the �ow outside the vortex sheets is des
ribed by potential �ow theory. The for
e a
ting

on the body due to �ow separation 
an be related to the 
ir
ulation Γ and the adve
tion

velo
ity of the vorti
ity. Where the 
ir
ulation is de�ned as,

Γ =

∮

C

u · ds (B.1)

The integration is along a 
losed 
urve C and 
an be related to ϕ+ − ϕ−
. Here ϕ+

and

ϕ−
are the velo
ity potentials at ea
h side of the free-shear layer. By employing Stokes's

theorem to equation (B.1) we get that

Γ =

∫

C

∂ϕ

∂s
ds. (B.2)

If now the integration is around the 
omplete stru
ture and free-shear layer, the total


ir
ulation remains zero. For further des
ription see for instan
e 
hapter 6.4 in (Faltinsen

2005).

Further, if we limit the 
losed 
urve C1 to the vorti
ity separated from one 
orner

during one os
illation 
y
le. We get

Γ1 =

∫

C1

∂ϕ

∂s
ds. = ϕ+ − ϕ−, (B.3)

note that the integration dire
tion matter and here exempli�ed using the 
ounter
lo
kwise

dire
tion.

We 
an �nd ∂Γ/∂t by using the 
ondition that the pressure is 
ontinuous a
ross the

vortex sheet, i.e. a zero pressure jump 
ondition. Due to the 
hange of the Bernoulli equa-

tion between the Earth-�xed and the body-�xed 
oordinate system, we get two di�erent

expressions for the zero pressure jump 
ondition.

We will indi
ate the di�eren
e between the two hybrid methods by 
onsidering two

examples with for
ed roll motion. See illustrations in Figure B.1 for example a) and
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Figure B.2 for example b). Remember, it is the di�eren
e between linear body-boundary


onditions in an Earth-�xed 
oordinate system and exa
t body-boundary 
onditions in a

body-�xed 
oordinate system we are studying here.

B.1 Semi-nonlinear hybrid method

The zero pressure jump 
ondition a
ross a free shear layer (vortex sheet) in an Earth

�xed 
oordinate system, is found by subtra
ting the pressure found from the Bernoulli

equation on ea
h side of the free shear layer

∂

∂t

(

ϕ+ − ϕ−
)

+
1

2

[

(

∂ϕ+

∂y

)2

−
(

∂ϕ−

∂y

)2

+

(

∂ϕ+

∂z

)2

−
(

∂ϕ−

∂z

)2
]

= 0. (B.4)

Example a)

Now let us study 
ase a) illustrated in Figure B.1. Here vorti
ity is shed from the left edge

(y1, z1) of the hull to the left and towards the free surfa
e. The following body-boundary


ondition for for
ed roll motion η4 on the verti
al side of the body applies

∂ϕ+

∂y
= −η̇4 z1. (B.5)

Continuous normal velo
ity a
ross the free shear layer, implies

∂ϕ+

∂z
=
∂ϕ−

∂z
. (B.6)

Then the zero pressure jump 
ondition in the Earth-�xed 
oordinate system valid for

the semi-nonlinear hybrid method be
omes,

∂

∂t

(

ϕ+ − ϕ−
)

= −1

2
(η̇4 z1)

2 +
1

2

(

∂ϕ−

∂y

)2

. (B.7)
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−
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Example b)

When vorti
ity is shed downwards from the left edge of the hull the following body-

boundary 
ondition applies, see illustration in Figure B.2

∂ϕ−

∂z
= η̇4 y1. (B.8)

Further, 
ontinuous normal velo
ity a
ross the free shear layer in example b), implies

∂ϕ+

∂y
=
∂ϕ−

∂y
. (B.9)

The result is then for example b),

∂

∂t

(

ϕ+ − ϕ−
)

= −1

2

(

∂ϕ+

∂z

)2

+
1

2
(η̇4 y1)

2 . (B.10)
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B.2 Nonlinear hybrid method

The zero pressure jump 
ondition a
ross a free-shear layer in a body-�xed 
oordinate

system with for
ed roll motion η4 is given a

ording to equation (2.60) in (Faltinsen and

Timokha 2009),

∂∗

∂t

(

ϕ+ − ϕ−
)

+
1

2

[

(

∂ϕ+

∂y

)2

−
(

∂ϕ−

∂y

)2

+

(

∂ϕ+

∂z

)2

−
(

∂ϕ−

∂z

)2
]

−
[

(−η̇4 z1)
(

∂ϕ+

∂y
− ∂ϕ−

∂y

)

+ η̇4 y1

(

∂ϕ+

∂z
− ∂ϕ−

∂z

)]

= 0, (B.11)

where

∂∗

∂t
means that we follow and time-di�erentiate a value of a �xed point in the

body-�xed 
oordinate system. Note here that ϕ is the absolute velo
ity potential.
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Example a)

The exa
t body-boundary 
ondition in a body-�xed 
oordinate system for the for
ed roll

motion example illustrated in Figure B.1 is,

∂ϕ+

∂y
= −η̇4 z1. (B.12)

The expression is equal to equation (B.5) due to that we solve for the absolute velo
ity

potential.

Also the 
ondition for 
ontinuous normal velo
ity a
ross the free shear layer is equal

to that in the semi-nonlinear hybrid method, i.e.

∂ϕ+

∂z
=
∂ϕ−

∂z
. (B.13)

The zero pressure 
ondition for example a) using body-boundary 
ondition as in the

nonlinear hybrid method then be
omes,

∂∗

∂t

(

ϕ+ − ϕ−
)

+
1

2

[

(−η̇4 z1)2 −
(

∂ϕ−

∂y

)2
]

−
[

(−η̇4 z1)
(

−η̇4 z1 −
∂ϕ−

∂y

)]

= 0. (B.14)

Further simpli�
ation gives:

∂∗

∂t

(

ϕ+ − ϕ−
)

=
1

2
(η̇4 z1)

2 + η̇4 z1
∂ϕ−

∂y
+

1

2

(

∂ϕ−

∂y

)2

. (B.15)

Example b)

When vorti
ity is shed downwards the following body-boundary 
ondition for for
ed roll

motion in the nonlinear hybrid method we 
an write, see illustration in Figure B.2

∂ϕ−

∂z
= η̇4 y1. (B.16)

Again, 
ontinuous normal velo
ity a
ross the free-shear layer gives,

∂ϕ+

∂y
=
∂ϕ−

∂y
. (B.17)

The �nal expression for the 
hange of 
ir
ulation due to an exa
t body-boundary


onditions in the body-�xed 
oordinate system in example b) is,

∂∗

∂t

(

ϕ+ − ϕ−
)

= −1

2

(

∂ϕ+

∂z

)2

+ η̇4 y1
∂ϕ+

∂z
− 1

2
(η̇4 y1)

2 . (B.18)

B.3 Qualitative results

There are a 
ouple of reasons why the di�eren
es seen between equations (B.7) and (B.15)

for example a), and equations (B.10) and (B.18) 
annot be quanti�ed. First and most

important is that the derivatives of ϕ is not equal in the two hybrid methods. Se
ondly

the phases between the di�erent terms are unknown without further investigations.



Appendix C

Pseudo
ode

C.1 Pseudo
ode for the Runge-Kutta implementation

An overview with the main details of the steps in the expli
it fourth-order Runge-Kutta

method is given here. Here ∆T is the main time-step size, based on the CFL-
riteria or

the input value.

∆t(1) = ∆T/2
∆t(2) = ∆T/2
∆t(3) = ∆T
for ii = 1 → 4 do
for all CFD 
ells do

du(i)∗ = adve
t u(i)
du(i)∗∗ = di�use u(i) + body-�xed term

if ii < 4 then
u∗∗ = u(1) + ∆t(i) (du(i)∗ + du(i)∗∗);

end if

end for

for all HPC nodes on the FS do

dfζ(i) = RHS of eq (2.12) based on ζ(i) and ϕ(i)
dfϕ(i) = RHS of eq (2.15) based on ζ(i) and ϕ(i)
if ii < 4 then
ζ(i+ 1) = ζ(1) + ∆t(i) dfζ(i)
ϕ(i+ 1) = ϕ(1) + ∆t(i) dfϕ(i)

end if

end for

if i < 4 then
Re-grid to ζ(i+ 1)
Update matrix system based on new grid

Update u∗∗ = u0 +∆t(i) intS(i) on the interse
tion

Cal
ulate RHS of equation (3.21) and apply boundary 
onditions

Solve matrix system for p and ϕ
Update u(i+ 1) = u∗∗ −∆t(i)∇p in ΩCFD

Update intS(i+ 1) higher order terms in equation (3.67)

end if

149
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ode

end for

for all CFD 
ells do

u∗ = u(1) + 1
6
∆T (du(1)∗ + 2 · du(2)∗ + 2 · du(3)∗ + du(4)∗)

u∗∗ = u∗ + 1
6
∆T (du(1)∗∗ + 2 · du(2)∗∗ + 2 · du(3)∗∗ + du(4)∗∗)

end for

for all HPC nodes on the FS do

ζ(1) = ζ(1) + 1
6
∆T (dfζ(1) + 2 · dfζ(2) + 2 · dfζ(3) + dfζ(4))

ϕ(1) = ϕ(1) + 1
6
∆T (dfϕ(1) + 2 · dfϕ(2) + 2 · dfϕ(3) + dfϕ(4))

end for

Re-grid to ζ(1)
Update matrix system based on new grid

Update u∗∗ = u0+
1
6
∆T (intS(1) + 2 · intS(2) + 2 · intS(3) + intS(4)) on the interse
-

tion

Cal
ulate RHS of equation (3.21) and apply boundary 
onditions

Solve matrix system for p and ϕ
Update u(1) = u∗∗ −∆T ∇p in ΩCFD

Update intS(1) higher order terms in equation (3.67)

C.2 Pseudo
ode for iterative pro
edure

The main steps in the iterative pro
edure are outlined here. The s
heme is used at every

step in the expli
it fourth-order Runge-Kutta method.

Find ζ and ϕ on the free surfa
e

Regrid and update matrix system

a0 = aN
0 and ω̇0 = ω̇

N
0

while tol > ε do
Cal
ulate u∗∗

based on a0 and ω̇0

Cal
ulate

ρ

∆t
∇ · u∗∗

r

Solve matrix system

Cal
ulate for
es on the body

Cal
ulate a

elerations a∗

0 and ω̇
∗

0

tol = |a∗

0 − a0| + |ω̇∗

0 − ω̇0|
if tol > ε then
New guess on a0 and ω̇0, based on average of a∗

0 and ω̇
∗

0 from 6 previous iterations

else

aN+1
0 = a0 and ω̇

N+1
0 = ω̇0

end if

end while
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theoretical analysis 

UR-84-38 Soares, C. Guedes Probabilistic models for load effects in ship 
structures 

UR-84-39 Aarsnes, Jan V. Current forces on ships 

UR-84-40 Czujko, Jerzy Collapse Analysis of Plates subjected to Biaxial 
Compression and Lateral Load 

UR-85-46 Alf G. Engseth, MK Finite element collapse analysis of tubular steel 
offshore structures. (Dr.Ing. Thesis) 

UR-86-47 Dengody Sheshappa, MP A Computer Design Model for Optimizing Fishing 
Vessel Designs Based on Techno-Economic 
Analysis. (Dr.Ing. Thesis) 

UR-86-48 Vidar Aanesland, MH A Theoretical and Numerical Study of Ship Wave 
Resistance. (Dr.Ing. Thesis) 

UR-86-49 Heinz-Joachim Wessel, MK Fracture Mechanics Analysis of Crack Growth in 
Plate Girders. (Dr.Ing. Thesis) 

UR-86-50 Jon Taby, MK Ultimate and Post-ultimate Strength of Dented 
Tubular Members. (Dr.Ing. Thesis) 

UR-86-51 Walter Lian, MH A Numerical Study of Two-Dimensional Separated 
Flow Past Bluff Bodies at Moderate KC-Numbers. 
(Dr.Ing. Thesis) 

UR-86-52 Bjørn Sortland, MH Force Measurements in Oscillating Flow on Ship 
Sections and Circular Cylinders in a U-Tube Water 
Tank. (Dr.Ing. Thesis) 

UR-86-53 Kurt Strand, MM A System Dynamic Approach to One-dimensional 
Fluid Flow. (Dr.Ing. Thesis) 

UR-86-54 Arne Edvin Løken, MH Three Dimensional Second Order Hydrodynamic 
Effects on Ocean Structures in Waves. (Dr.Ing. 
Thesis) 

UR-86-55 Sigurd Falch, MH A Numerical Study of Slamming of Two-
Dimensional Bodies. (Dr.Ing. Thesis) 

UR-87-56 Arne Braathen, MH Application of a Vortex Tracking Method to the 
Prediction of Roll Damping of a Two-Dimension 
Floating Body. (Dr.Ing. Thesis) 
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UR-87-57 Bernt Leira, MK Gaussian Vector Processes for Reliability Analysis 
involving Wave-Induced Load Effects. (Dr.Ing. 
Thesis) 

UR-87-58 Magnus Småvik, MM Thermal Load and Process Characteristics in a 
Two-Stroke Diesel Engine with Thermal Barriers 
(in Norwegian). (Dr.Ing. Thesis) 

MTA-88-
59 

Bernt Arild Bremdal, MP An Investigation of Marine Installation Processes – 
A Knowledge - Based Planning Approach. (Dr.Ing. 
Thesis) 

MTA-88-
60 

Xu Jun, MK Non-linear Dynamic Analysis of Space-framed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
61 

Gang Miao, MH Hydrodynamic Forces and Dynamic Responses of 
Circular Cylinders in Wave Zones. (Dr.Ing. Thesis) 

MTA-89-
62 

Martin Greenhow, MH Linear and Non-Linear Studies of Waves and 
Floating Bodies. Part I and Part II. (Dr.Techn. 
Thesis) 

MTA-89-
63 

Chang Li, MH Force Coefficients of Spheres and Cubes in 
Oscillatory Flow with and without Current. (Dr.Ing. 
Thesis 

MTA-89-
64 

Hu Ying, MP A Study of Marketing and Design in Development 
of Marine Transport Systems. (Dr.Ing. Thesis) 

MTA-89-
65 

Arild Jæger, MH Seakeeping, Dynamic Stability and Performance of 
a Wedge Shaped Planing Hull. (Dr.Ing. Thesis) 

MTA-89-
66 

Chan Siu Hung, MM The dynamic characteristics of tilting-pad bearings 

MTA-89-
67 

Kim Wikstrøm, MP Analysis av projekteringen for ett offshore projekt. 
(Licenciat-avhandling) 

MTA-89-
68 

Jiao Guoyang, MK Reliability Analysis of Crack Growth under 
Random Loading, considering Model Updating. 
(Dr.Ing. Thesis) 

MTA-89-
69 

Arnt Olufsen, MK Uncertainty and Reliability Analysis of Fixed 
Offshore Structures. (Dr.Ing. Thesis) 

MTA-89-
70 

Wu Yu-Lin, MR System Reliability Analyses of Offshore Structures 
using improved Truss and Beam Models. (Dr.Ing. 
Thesis) 

MTA-90-
71 

Jan Roger Hoff, MH Three-dimensional Green function of a vessel with 
forward speed in waves. (Dr.Ing. Thesis) 

MTA-90-
72 

Rong Zhao, MH Slow-Drift Motions of a Moored Two-Dimensional 
Body in Irregular Waves. (Dr.Ing. Thesis) 

MTA-90-
73 

Atle Minsaas, MP Economical Risk Analysis. (Dr.Ing. Thesis) 

MTA-90-
74 

Knut-Aril Farnes, MK Long-term Statistics of Response in Non-linear 
Marine Structures. (Dr.Ing. Thesis) 

MTA-90-
75 

Torbjørn Sotberg, MK Application of Reliability Methods for Safety 
Assessment of Submarine Pipelines. (Dr.Ing. 
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Thesis) 

MTA-90-
76 

Zeuthen, Steffen, MP SEAMAID. A computational model of the design 
process in a constraint-based logic programming 
environment. An example from the offshore 
domain. (Dr.Ing. Thesis) 

MTA-91-
77 

Haagensen, Sven, MM Fuel Dependant Cyclic Variability in a Spark 
Ignition Engine - An Optical Approach. (Dr.Ing. 
Thesis) 

MTA-91-
78 

Løland, Geir, MH Current forces on and flow through fish farms. 
(Dr.Ing. Thesis) 

MTA-91-
79 

Hoen, Christopher, MK System Identification of Structures Excited by 
Stochastic Load Processes. (Dr.Ing. Thesis) 

MTA-91-
80 

Haugen, Stein, MK Probabilistic Evaluation of Frequency of Collision 
between Ships and Offshore Platforms. (Dr.Ing. 
Thesis) 

MTA-91-
81 

Sødahl, Nils, MK Methods for Design and Analysis of Flexible 
Risers. (Dr.Ing. Thesis) 

MTA-91-
82 

Ormberg, Harald, MK Non-linear Response Analysis of Floating Fish 
Farm Systems. (Dr.Ing. Thesis) 

MTA-91-
83 

Marley, Mark J., MK Time Variant Reliability under Fatigue 
Degradation. (Dr.Ing. Thesis) 

MTA-91-
84 

Krokstad, Jørgen R., MH Second-order Loads in Multidirectional Seas. 
(Dr.Ing. Thesis) 

MTA-91-
85 

Molteberg, Gunnar A., MM The Application of System Identification 
Techniques to Performance Monitoring of Four 
Stroke Turbocharged Diesel Engines. (Dr.Ing. 
Thesis) 

MTA-92-
86 

Mørch, Hans Jørgen Bjelke, MH Aspects of Hydrofoil Design: with Emphasis on 
Hydrofoil Interaction in Calm Water. (Dr.Ing. 
Thesis) 

MTA-92-
87 

Chan Siu Hung, MM Nonlinear Analysis of Rotordynamic Instabilities in 
Highspeed Turbomachinery. (Dr.Ing. Thesis) 

MTA-92-
88 

Bessason, Bjarni, MK Assessment of Earthquake Loading and Response 
of Seismically Isolated Bridges. (Dr.Ing. Thesis) 

MTA-92-
89 

Langli, Geir, MP Improving Operational Safety through exploitation 
of Design Knowledge - an investigation of offshore 
platform safety. (Dr.Ing. Thesis) 

MTA-92-
90 

Sævik, Svein, MK On Stresses and Fatigue in Flexible Pipes. (Dr.Ing. 
Thesis) 

MTA-92-
91 

Ask, Tor Ø., MM Ignition and Flame Growth in Lean Gas-Air 
Mixtures. An Experimental Study with a Schlieren 
System. (Dr.Ing. Thesis) 

MTA-86-
92 

Hessen, Gunnar, MK Fracture Mechanics Analysis of Stiffened Tubular 
Members. (Dr.Ing. Thesis) 
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MTA-93-
93 

Steinebach, Christian, MM Knowledge Based Systems for Diagnosis of 
Rotating Machinery. (Dr.Ing. Thesis) 

MTA-93-
94 

Dalane, Jan Inge, MK System Reliability in Design and Maintenance of 
Fixed Offshore Structures. (Dr.Ing. Thesis) 

MTA-93-
95 

Steen, Sverre, MH Cobblestone Effect on SES. (Dr.Ing. Thesis) 

MTA-93-
96 

Karunakaran, Daniel, MK Nonlinear Dynamic Response and Reliability 
Analysis of Drag-dominated Offshore Platforms. 
(Dr.Ing. Thesis) 

MTA-93-
97 

Hagen, Arnulf, MP The Framework of a Design Process Language. 
(Dr.Ing. Thesis) 

MTA-93-
98 

Nordrik, Rune, MM Investigation of Spark Ignition and Autoignition in 
Methane and Air Using Computational Fluid 
Dynamics and Chemical Reaction Kinetics. A 
Numerical Study of Ignition Processes in Internal 
Combustion Engines. (Dr.Ing. Thesis) 

MTA-94-
99 

Passano, Elizabeth, MK Efficient Analysis of Nonlinear Slender Marine 
Structures. (Dr.Ing. Thesis) 

MTA-94-
100 

Kvålsvold, Jan, MH Hydroelastic Modelling of Wetdeck Slamming on 
Multihull Vessels. (Dr.Ing. Thesis) 

MTA-94-
102 

Bech, Sidsel M., MK Experimental and Numerical Determination of 
Stiffness and Strength of GRP/PVC Sandwich 
Structures. (Dr.Ing. Thesis) 

MTA-95-
103 

Paulsen, Hallvard, MM A Study of Transient Jet and Spray using a 
Schlieren Method and Digital Image Processing. 
(Dr.Ing. Thesis) 

MTA-95-
104 

Hovde, Geir Olav, MK Fatigue and Overload Reliability of Offshore 
Structural Systems, Considering the Effect of 
Inspection and Repair. (Dr.Ing. Thesis) 

MTA-95-
105 

Wang, Xiaozhi, MK Reliability Analysis of Production Ships with 
Emphasis on Load Combination and Ultimate 
Strength. (Dr.Ing. Thesis) 

MTA-95-
106 

Ulstein, Tore, MH Nonlinear Effects of a Flexible Stern Seal Bag on 
Cobblestone Oscillations of an SES. (Dr.Ing. 
Thesis) 

MTA-95-
107 

Solaas, Frøydis, MH Analytical and Numerical Studies of Sloshing in 
Tanks. (Dr.Ing. Thesis) 

MTA-95-
108 

Hellan, Øyvind, MK Nonlinear Pushover and Cyclic Analyses in 
Ultimate Limit State Design and Reassessment of 
Tubular Steel Offshore Structures. (Dr.Ing. Thesis) 

MTA-95-
109 

Hermundstad, Ole A., MK Theoretical and Experimental Hydroelastic 
Analysis of High Speed Vessels. (Dr.Ing. Thesis) 

MTA-96-
110 

Bratland, Anne K., MH Wave-Current Interaction Effects on Large-Volume 
Bodies in Water of Finite Depth. (Dr.Ing. Thesis) 

MTA-96-
111 

Herfjord, Kjell, MH A Study of Two-dimensional Separated Flow by a 
Combination of the Finite Element Method and 
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Navier-Stokes Equations. (Dr.Ing. Thesis) 

MTA-96-
112 

Æsøy, Vilmar, MM Hot Surface Assisted Compression Ignition in a 
Direct Injection Natural Gas Engine. (Dr.Ing. 
Thesis) 

MTA-96-
113 

Eknes, Monika L., MK Escalation Scenarios Initiated by Gas Explosions on 
Offshore Installations. (Dr.Ing. Thesis) 

MTA-96-
114 

Erikstad, Stein O., MP A Decision Support Model for Preliminary Ship 
Design. (Dr.Ing. Thesis) 

MTA-96-
115 

Pedersen, Egil, MH A Nautical Study of Towed Marine Seismic 
Streamer Cable Configurations. (Dr.Ing. Thesis) 

MTA-97-
116 

Moksnes, Paul O., MM Modelling Two-Phase Thermo-Fluid Systems 
Using Bond Graphs. (Dr.Ing. Thesis) 

MTA-97-
117 

Halse, Karl H., MK On Vortex Shedding and Prediction of Vortex-
Induced Vibrations of Circular Cylinders. (Dr.Ing. 
Thesis) 

MTA-97-
118 

Igland, Ragnar T., MK Reliability Analysis of Pipelines during Laying, 
considering Ultimate Strength under Combined 
Loads. (Dr.Ing. Thesis) 

MTA-97-
119 

Pedersen, Hans-P., MP Levendefiskteknologi for fiskefartøy. (Dr.Ing. 
Thesis) 

MTA-98-
120 

Vikestad, Kyrre, MK Multi-Frequency Response of a Cylinder Subjected 
to Vortex Shedding and Support Motions. (Dr.Ing. 
Thesis) 

MTA-98-
121 

Azadi, Mohammad R. E., MK Analysis of Static and Dynamic Pile-Soil-Jacket 
Behaviour. (Dr.Ing. Thesis) 

MTA-98-
122 

Ulltang, Terje, MP A Communication Model for Product Information. 
(Dr.Ing. Thesis) 

MTA-98-
123 

Torbergsen, Erik, MM Impeller/Diffuser Interaction Forces in Centrifugal 
Pumps. (Dr.Ing. Thesis) 

MTA-98-
124 

Hansen, Edmond, MH A Discrete Element Model to Study Marginal Ice 
Zone Dynamics and the Behaviour of Vessels 
Moored in Broken Ice. (Dr.Ing. Thesis) 

MTA-98-
125 

Videiro, Paulo M., MK Reliability Based Design of Marine Structures. 
(Dr.Ing. Thesis) 

MTA-99-
126 

Mainçon, Philippe, MK Fatigue Reliability of Long Welds Application to 
Titanium Risers. (Dr.Ing. Thesis) 

MTA-99-
127 

Haugen, Elin M., MH Hydroelastic Analysis of Slamming on Stiffened 
Plates with Application to Catamaran Wetdecks. 
(Dr.Ing. Thesis) 

MTA-99-
128 

Langhelle, Nina K., MK Experimental Validation and Calibration of 
Nonlinear Finite Element Models for Use in Design 
of Aluminium Structures Exposed to Fire. (Dr.Ing. 
Thesis) 

MTA-99- Berstad, Are J., MK Calculation of Fatigue Damage in Ship Structures. 
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129 (Dr.Ing. Thesis) 

MTA-99-
130 

Andersen, Trond M., MM Short Term Maintenance Planning. (Dr.Ing. Thesis) 

MTA-99-
131 

Tveiten, Bård Wathne, MK Fatigue Assessment of Welded Aluminium Ship 
Details. (Dr.Ing. Thesis) 

MTA-99-
132 

Søreide, Fredrik, MP Applications of underwater technology in deep 
water archaeology. Principles and practice. (Dr.Ing. 
Thesis) 

MTA-99-
133 

Tønnessen, Rune, MH A Finite Element Method Applied to Unsteady 
Viscous Flow Around 2D Blunt Bodies With Sharp 
Corners. (Dr.Ing. Thesis) 

MTA-99-
134 

Elvekrok, Dag R., MP Engineering Integration in Field Development 
Projects in the Norwegian Oil and Gas Industry. 
The Supplier Management of Norne. (Dr.Ing. 
Thesis) 

MTA-99-
135 

Fagerholt, Kjetil, MP Optimeringsbaserte Metoder for Ruteplanlegging 
innen skipsfart. (Dr.Ing. Thesis) 

MTA-99-
136 

Bysveen, Marie, MM Visualization in Two Directions on a Dynamic 
Combustion Rig for Studies of Fuel Quality. 
(Dr.Ing. Thesis) 

MTA-
2000-137 

Storteig, Eskild, MM Dynamic characteristics and leakage performance 
of liquid annular seals in centrifugal pumps. 
(Dr.Ing. Thesis) 

MTA-
2000-138 

Sagli, Gro, MK Model uncertainty and simplified estimates of long 
term extremes of hull girder loads in ships. (Dr.Ing. 
Thesis) 

MTA-
2000-139 

Tronstad, Harald, MK Nonlinear analysis and design of cable net 
structures like fishing gear based on the finite 
element method. (Dr.Ing. Thesis) 

MTA-
2000-140 

Kroneberg, André, MP Innovation in shipping by using scenarios. (Dr.Ing. 
Thesis) 

MTA-
2000-141 

Haslum, Herbjørn Alf, MH Simplified methods applied to nonlinear motion of 
spar platforms. (Dr.Ing. Thesis) 

MTA-
2001-142 

Samdal, Ole Johan, MM Modelling of Degradation Mechanisms and 
Stressor Interaction on Static Mechanical 
Equipment Residual Lifetime. (Dr.Ing. Thesis) 

MTA-
2001-143 

Baarholm, Rolf Jarle, MH Theoretical and experimental studies of wave 
impact underneath decks of offshore platforms. 
(Dr.Ing. Thesis) 

MTA-
2001-144 

Wang, Lihua, MK Probabilistic Analysis of Nonlinear Wave-induced 
Loads on Ships. (Dr.Ing. Thesis) 

MTA-
2001-145 

Kristensen, Odd H. Holt, MK Ultimate Capacity of Aluminium Plates under 
Multiple Loads, Considering HAZ Properties. 
(Dr.Ing. Thesis) 

MTA-
2001-146 

Greco, Marilena, MH A Two-Dimensional Study of Green-Water 
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Loading. (Dr.Ing. Thesis) 

MTA-
2001-147 

Heggelund, Svein E., MK Calculation of Global Design Loads and Load 
Effects in Large High Speed Catamarans. (Dr.Ing. 
Thesis) 

MTA-
2001-148 

Babalola, Olusegun T., MK Fatigue Strength of Titanium Risers – Defect 
Sensitivity. (Dr.Ing. Thesis) 

MTA-
2001-149 

Mohammed, Abuu K., MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

MTA-
2002-150 

Holmedal, Lars E., MH Wave-current interactions in the vicinity of the sea 
bed. (Dr.Ing. Thesis) 

MTA-
2002-151 

Rognebakke, Olav F., MH Sloshing in rectangular tanks and interaction with 
ship motions. (Dr.Ing. Thesis) 

MTA-
2002-152 

Lader, Pål Furset, MH Geometry and Kinematics of Breaking Waves. 
(Dr.Ing. Thesis) 

MTA-
2002-153 

Yang, Qinzheng, MH Wash and wave resistance of ships in finite water 
depth. (Dr.Ing. Thesis) 

MTA-
2002-154 

Melhus, Øyvin, MM Utilization of VOC in Diesel Engines. Ignition and 
combustion of VOC released by crude oil tankers. 
(Dr.Ing. Thesis) 

MTA-
2002-155 

Ronæss, Marit, MH Wave Induced Motions of Two Ships Advancing 
on Parallel Course. (Dr.Ing. Thesis) 

MTA-
2002-156 

Økland, Ole D., MK Numerical and experimental investigation of 
whipping in twin hull vessels exposed to severe wet 
deck slamming. (Dr.Ing. Thesis) 

MTA-
2002-157 

Ge, Chunhua, MK Global Hydroelastic Response of Catamarans due 
to Wet Deck Slamming. (Dr.Ing. Thesis) 

MTA-
2002-158 

Byklum, Eirik, MK Nonlinear Shell Finite Elements for Ultimate 
Strength and Collapse Analysis of Ship Structures. 
(Dr.Ing. Thesis) 

IMT-
2003-1 

Chen, Haibo, MK Probabilistic Evaluation of FPSO-Tanker Collision 
in Tandem Offloading Operation. (Dr.Ing. Thesis) 

IMT-
2003-2 

Skaugset, Kjetil Bjørn, MK On the Suppression of Vortex Induced Vibrations 
of Circular Cylinders by Radial Water Jets. (Dr.Ing. 
Thesis) 

IMT-
2003-3 

Chezhian, Muthu Three-Dimensional Analysis of Slamming. (Dr.Ing. 
Thesis) 

IMT-
2003-4 

Buhaug, Øyvind Deposit Formation on Cylinder Liner Surfaces in 
Medium Speed Engines. (Dr.Ing. Thesis) 

IMT-
2003-5 

Tregde, Vidar Aspects of Ship Design: Optimization of Aft Hull 
with Inverse Geometry Design. (Dr.Ing. Thesis) 

 
 
IMT-

 
 
Wist, Hanne Therese 

 

Statistical Properties of Successive Ocean Wave 
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2003-6 Parameters. (Dr.Ing. Thesis) 

IMT-
2004-7 

Ransau, Samuel Numerical Methods for Flows with Evolving 
Interfaces. (Dr.Ing. Thesis) 

IMT-
2004-8 

Soma, Torkel Blue-Chip or Sub-Standard. A data interrogation 
approach of identity safety characteristics of 
shipping organization. (Dr.Ing. Thesis) 

IMT-
2004-9 

Ersdal, Svein An experimental study of hydrodynamic forces on 
cylinders and cables in near axial flow. (Dr.Ing. 
Thesis) 

IMT-
2005-10 

Brodtkorb, Per Andreas The Probability of Occurrence of Dangerous Wave 
Situations at Sea. (Dr.Ing. Thesis) 

IMT-
2005-11 

Yttervik, Rune Ocean current variability in relation to offshore 
engineering. (Dr.Ing. Thesis) 

IMT-
2005-12 

Fredheim, Arne Current Forces on Net-Structures. (Dr.Ing. Thesis) 

IMT-
2005-13 

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis 

IMT-
2005-14 

Fouques, Sebastien Lagrangian Modelling of Ocean Surface Waves and 
Synthetic Aperture Radar Wave Measurements. 
(Dr.Ing. Thesis) 

IMT-
2006-15 

Holm, Håvard Numerical calculation of viscous free surface flow 
around marine structures. (Dr.Ing. Thesis) 

IMT-
2006-16 

Bjørheim, Lars G. Failure Assessment of Long Through Thickness 
Fatigue Cracks in Ship Hulls. (Dr.Ing. Thesis) 

IMT-
2006-17 

Hansson, Lisbeth Safety Management for Prevention of Occupational 
Accidents. (Dr.Ing. Thesis) 

IMT-
2006-18 

Zhu, Xinying Application of the CIP Method to Strongly 
Nonlinear Wave-Body Interaction Problems. 
(Dr.Ing. Thesis) 

IMT-
2006-19 

Reite, Karl Johan Modelling and Control of Trawl Systems. (Dr.Ing. 
Thesis) 

IMT-
2006-20 

Smogeli, Øyvind Notland Control of Marine Propellers. From Normal to 
Extreme Conditions. (Dr.Ing. Thesis) 

IMT-
2007-21 

Storhaug, Gaute Experimental Investigation of Wave Induced 
Vibrations and Their Effect on the Fatigue Loading 
of Ships. (Dr.Ing. Thesis) 

IMT-
2007-22 

Sun, Hui A Boundary Element Method Applied to Strongly 
Nonlinear Wave-Body Interaction Problems. (PhD 
Thesis, CeSOS) 

IMT-
2007-23 

Rustad, Anne Marthine Modelling and Control of Top Tensioned Risers. 
(PhD Thesis, CeSOS) 

IMT-
2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 
simulations and control applications 

IMT-
2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. 
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(PhD Thesis, CeSOS) 

IMT-
2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 
combined inline and cross flow vortex induced 
vibrations. (Dr. avhandling, IMT) 

IMT-
2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 
with Emphasis on Frequency-domain Analysis of 
Fatigue due to Wide-band Response Processes 
(PhD Thesis, CeSOS) 

IMT-
2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 
Utilizing Information about Technical Condition. 
(Dr.ing. thesis, IMT) 

IMT-
2008-29 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 
(PhD-Thesis, IMT) 

IMT-
2008-30 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-
stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-
2008-31 

Radan, Damir Integrated Control of Marine Electrical Power 
Systems. (PhD-Thesis, IMT) 

IMT-
2008-32 

Thomassen, Paul Methods for Dynamic Response Analysis and 
Fatigue Life Estimation of Floating Fish Cages. 
(Dr.ing. thesis, IMT) 

IMT-
2008-33 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of 
Two-dimensional Nonlinear Sloshing in 
Rectangular Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-
2007-34 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 
Applications to Marine Hydrodynamics. 
(Dr.ing.thesis, IMT) 

IMT-
2008-35 

Drummen, Ingo Experimental and Numerical Investigation of 
Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 
thesis, CeSOS) 

IMT-
2008-36 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 
of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-
2008-37 

Harlem, Alf An Age-Based Replacement Model for Repairable 
Systems with Attention to High-Speed Marine 
Diesel Engines. (PhD-Thesis, IMT) 

IMT-
2008-38 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 
Bottom Damage and Hull Girder Response. (PhD-
thesis, IMT) 

IMT-
2008-39 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading 
and Load Effects in Membrane LNG Tanks 
Subjected to Random Excitation. (PhD-thesis, 
CeSOS) 

IMT-
2008-40 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-
thesis, CeSOS) 

IMT-
2008-41 

Ruth, Eivind Propulsion control and thrust allocation on marine 
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vessels. (PhD thesis, CeSOS) 

IMT-
2008-42 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 
Life of Aggregated Systems. PhD thesis, IMT 

IMT-
2008-43 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 
 Vibrations of Flexible Beams,  PhD 
thesis, CeSOS 

IMT-
2009-43 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 
Ship Hulls with Emphasis on Combined Global and 
Local Loads. PhD Thesis, IMT 

IMT-
2009-44 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 
PhD Thesis, IMT 

IMT-
2009-45 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 
CeSOS 

IMT-
2009-46 

Ong, Muk Chen Applications of a Standard High Reynolds Number   
Model and a Stochastic Scour Prediction Model for 
Marine Structures. PhD-thesis, IMT 

IMT-
2009-47 

Hong, Lin Simplified Analysis and Design of Ships subjected 
to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-48 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 
PhD thesis, IMT 

IMT-
2009-49 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and 
Scheduling. PhD-thesis, IMT 

IMT-
2009-50 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 
Longlines. Ph.d.-Thesis, IMT. 

IMT-
2009-51 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 
Two-Dimensional Constrained Interpolation Profile 
Method, Ph.d.thesis, CeSOS. 

IMT-
2009-52 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 
Power Plants. Ph.d.-thesis, IMT 

IMT 
2009-53 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 
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