
BACHELOROPPGAVE:

Noxplus

FORFATTERE:
Tien Quoc Tran
Håkon Bjørklund
Even Arneberg Rognlien

DATO:
15.05.2015

Noxplus

Sammendrag av Bacheloroppgaven

Tittel: Noxplus

Dato: 15.05.2015

Deltakere: Tien Quoc Tran
Håkon Bjørklund
Even Arneberg Rognlien

Veiledere: Mariusz Nowostawski

Oppdragsgiver: Suttung Digital

Kontaktperson: Håkon Bjørklund, hkonbjork@gmail.com, 48 06 23 56

Nøkkelord: Norway, Norsk
Antall sider: 166
Antall vedlegg:
Tilgjengelighet: Åpen

Sammendrag: Nox er en spillmotor som kan brukes for å lage 2D-baserte
spill. Noxplus er en utvidelse av denne spillmotoren og
består av to hovedmoduler. Den første hovedmodulen går
ut på å implementere muligheten for å spole frem og
tilbake i tid mens spillet kjører. For få til dette på en
best mulig måte må ulike lagringsmetoder undersøkes og
ytelsestestes. Vi ser også på ulike paradokser som kan
oppstå ved tidsreise og hvordan det er mulig å oppdage
og løse disse i spillsammenheng. Et design er bestemt og
implementert for denne modulen. Den andre hovedmod-
ulen går ut på å gi spillmotoren støtte for 3D grafikk, samt
simulering av 3D-fysikk. Dette krever at teamet setter seg
inn i mange nye temaer rundt både grafikk- og fysikk mo-
torer. Modulen er splittet opp i tre submoduler; lasting av
modeller med mulighet for skjelett-animasjoner, simuler-
ing av 3D-fysikk og deferred rendering av lys

i

Noxplus

Summary of Graduate Project

Title: Noxplus

Date: 15.05.2015

Participants: Tien Quoc Tran
Håkon Bjørklund
Even Arneberg Rognlien

Supervisor: Mariusz Nowostawski

Employer: Suttung Digital

Contact Person: Håkon Bjørklund, hkonbjork@gmail.com, 48 06 23 56

Keywords: Game engine, Programming, Time manipulation, 3D,
C++

Pages: 166
Attachments:
Availability: Open

Abstract: Nox is a game engine used for creating 2D games. Nox-
plus is an extension to this game engine and covers two
main modules. The first main module is to implement a
time manipulation feature and develop new game me-
chanics, to seek out new exciting ways of gameplay. This
requires research on how storing, rewinding and replay-
ing the game world can be done most efficiently. We also
look into different time travel paradoxes, and how they
can be detected and resolved in a game. This research
culminates into the design and implementation of live
rewind and replay support in the Noxplus extension. The
second module is to give the engine support for 3D. This
includes research on game engine components and how
implementation of them can be done. This concludes with
the design and implementation of three sub modules;
model loading functionality with animation, 3D physics
simulation of the world and deferred rendering as the
chosen rendering method.

ii

Noxplus

Preface

We would like to thank Mariusz Nowostawski for being our supervisor and valuable asset
to our Bachelor, helping us with research, feedback and keeping us on track. Thanks
to Simon J. R. McCallum and Frode Haug for pointers and advice. Thanks to Suttung
Digital for being our employer. Especially Asbjørn Sporaland and Magnus Bjerke Vik for
being our contact persons and giving us feedback and help with the Nox engine and
the assignment. We would especially like to extend our thanks to Vik for helping with
testing for Mac and Linux in the last stretch of the assignment. Thanks to John Taylor for
feedback on the thesis.

iii

Noxplus

Contents

Preface . iii
Contents . iv
List of Figures . viii
List of Tables . x
1 Introduction . 1

1.1 Project Description . 1
1.1.1 Background . 1
1.1.2 Project goals . 1
1.1.3 Audience . 2

1.2 Scope . 3
1.2.1 Assignment Description . 3
1.2.2 Delimitation . 3

1.3 Project organisation . 4
1.3.1 Responsibilities and roles . 4
1.3.2 Group background and skills . 4
1.3.3 Practises and rules . 4
1.3.4 Risk analysis . 5

1.4 Plan for implementation . 5
1.4.1 Software Development Methodology 5
1.4.2 Project timeline . 5
1.4.3 Work breakdown structure . 6

1.5 Terminology . 6
1.6 Document Structure . 7

2 Requirements Specification . 8
2.1 Functionality . 8
2.2 Usability . 9
2.3 Reliability . 9
2.4 Performance . 9
2.5 Constraints . 9

2.5.1 Time constraints . 10
2.5.2 Software constraints . 10
2.5.3 Expandability . 10
2.5.4 Interoperability . 10
2.5.5 Hardware constraints . 11

2.6 User documentation and help system . 11
2.7 Licensing, laws and regulations . 11
2.8 Testing . 11
2.9 Deployment . 11

3 Development Process . 12
3.1 Project workflow . 12

iv

Noxplus

3.1.1 RUP . 12
3.1.2 Scrum . 14
3.1.3 XP . 15

3.2 Project Management . 15
3.2.1 Meetings . 15
3.2.2 Configuration management . 15
3.2.3 Coding environment . 16

3.3 Development workflow . 16
3.3.1 Assets . 17
3.3.2 Tools . 17

3.4 Organisation of quality assurance . 18
3.4.1 Documentation, coding conventions and source code 18

3.5 Workload . 18
4 Design . 19

4.1 Use case . 19
4.1.1 Risk analysis of use-case . 20
4.1.2 High-level use-case description . 21
4.1.3 Expanded use-case description . 22

4.2 Program flow . 24
4.3 Modules and submodules . 25

4.3.1 Physics . 25
4.3.2 Assets . 28
4.3.3 Rendering . 29
4.3.4 Actor control . 31
4.3.5 Time manipulation . 32
4.3.6 Demo . 38

5 Implementation . 40
5.1 Logical View . 41
5.2 System architecture . 42
5.3 Scene module . 45

5.3.1 Scene graph . 45
5.3.2 Camera . 46
5.3.3 Light . 46
5.3.4 Rendering . 47
5.3.5 Deferred rendering . 50
5.3.6 Transparency . 51

5.4 Actors . 52
5.4.1 Actor transform . 52
5.4.2 Actor graphics . 52
5.4.3 Actor light . 52
5.4.4 Actor physics . 53
5.4.5 Actor control . 53
5.4.6 Rotational control . 53

5.5 Model loader . 54
5.5.1 Basic model loading . 54
5.5.2 Loading animations . 55

v

Noxplus

5.5.3 Textures . 56
5.6 Physics module . 56

5.6.1 Bullet physics library . 56
5.6.2 Rigid bodies . 57
5.6.3 Collision shapes . 57
5.6.4 Collision detection . 58
5.6.5 Physics functions . 59
5.6.6 Debug renderer . 59

5.7 Timeline manipulation module . 60
5.7.1 Logging and storage . 60
5.7.2 Rewind and replay . 61
5.7.3 Paradox/conflict solver . 62
5.7.4 Logging of components . 62
5.7.5 Discarded prototypes . 63

5.8 Control system module . 66
5.8.1 Camera controls . 66
5.8.2 Time control . 66

5.9 Demo . 66
6 Testing . 67

6.1 Performance testing . 67
6.1.1 Rendering without physics . 67
6.1.2 Rendering and physics . 68
6.1.3 Lights rendering . 70

6.2 Unit testing . 71
6.3 Linux and Mac . 71

7 Discussion . 72
7.1 Scene module . 72

7.1.1 Rendering . 72
7.1.2 Animation performance . 72
7.1.3 Multithreading . 73
7.1.4 Transparency . 73
7.1.5 Deferred rendering . 73
7.1.6 Camera . 74

7.2 Model loader . 74
7.2.1 Loading models . 74

7.3 Physics module . 75
7.4 Time manipulation . 75

7.4.1 Working version: List and vectors 75
7.4.2 Swapping data to hard drive . 76

7.5 Demo . 76
7.6 Development . 77

7.6.1 Choosing assignment . 77
7.6.2 Directory and file structure . 77
7.6.3 Re-prioritising . 78
7.6.4 Requirements . 78
7.6.5 Software Development Methodology 78

vi

Noxplus

8 Conclusion . 80
8.1 Future work . 80

Bibliography . 82
A Source code and video . 86

A.1 Source code . 86
A.2 Video . 86

B Project Agreement . 87
C Group rules . 89
D Risk tabel . 91
E Gantt chart . 92
F Daily scrum . 93
G Milestone review . 139
H Meetings . 143
I Credits . 158
J Sprint review and retrospective meeting . 159
K Logged Hours . 165
L Nox control system . 166

vii

Noxplus

List of Figures

1 Work breakdown structure . 6
2 RUP document model . 12
3 Use case for new features . 19
4 System sequence diagram . 25
5 Physics component, JSON . 26
6 Physics component functions . 27
7 Graphics component, JSON . 29
8 Light component, JSON . 30
9 Control mapping, JSON . 31
10 Directional control component, JSON . 32
11 Rotational control component, JSON . 32
12 Negative delta time in Bullet . 36
13 Creation of time manager . 37
14 Design Class diagram . 41
15 Class diagram . 44
16 Render call . 48
17 Bone transformations in shader . 49
18 Stepping animation . 49
19 Passing bone transformations to the shader 50
20 Deferred rendering screen shot . 51
21 Transparent texture . 51
22 Animated goblin with visible bone . 55
23 Storage of animation . 55
24 Shared animation data . 56
25 Bullet Collision world hierarchy . 57
26 Debug renderer . 59
27 WorldState structure . 60
28 WorldLogger::setEndOfCurrentFrame() . 61
29 Storage of gameplay . 62
30 Logging using to array, rewind. 65
31 Logging using to array, replay. 65
32 Chart: Static low-poly . 67
33 Chart: Static high poly . 68
34 Chart: Animation performance . 68
35 Chart: Falling boxes . 69
36 Chart: Falling hulls . 69
37 Chart: Simultaneous collisions . 70
38 Chart: Light rendering . 70
39 Lights stress test . 71
40 Swapping frames to disk. 76

viii

Noxplus

41 Toogl summary report . 165

ix

Noxplus

List of Tables

1 Risk matrix . 5
2 Use-case risk matrix . 20
3 Multiverse theory scenario . 33
4 Dynamic Timeline theory scenarios . 33
5 Fixed Timeline theory scenarios . 34
6 Fixed or Dynamic Timeline theory scenarios 34

x

Noxplus

1 Introduction

1.1 Project Description

1.1.1 Background

We started thinking about what we should do for our Bachelor assignment in late 2014.
Our initial thought was to create a custom game engine from scratch and create a game
from this. After some discussions with Associate Professor Simon J. R. McCallum and As-
sociate Professor Mariusz Nowostawski, we realised that creating an engine from scratch
would be a too large assignment and there would be no way to actually get a good grade.
Why not use one of the engines already created? What new things would we add to the
field?

Then we heard about a bachelor group from 2014 consisting of Magnus Bjerke Vik and
Asbjørn Sporaland. During the years before their bachelor at Gjøvik University College
they created a game engine, that they now wanted to create a game for as their bachelor
assignment. Their engine is today named Nox. The Nox engine is designed to be flexible
and expandable to make it applicable for different types of games. It is written in C++
and is highly modular so that changing the subsystem implementations can easily be
done without breaking the system. This engine has advantages and disadvantages in
comparison to industry game engines such as Unity3D, Torque2D/3D, and Unreal Engine.

Our first encounter with with Sporaland was through the Graphic Programming course
on Gjøvik University College. After some discussions with his company, Suttung Digital,
McCallum and Nowostawski, we decided on using their engine and add something new
to it. The reason is that the engine is still in an early stage and not as complex as many
major game engines out there. They have made it open source, and it’s also convenient
that the creators are so close by. There were quite a few ideas flying around for the Bach-
elor assignment and in the end we ended up with two. Read more about the choice of
assingment and engine in Section 7.6.1.

We started out as a group of 5 people from 3 different areas of study. Two was from
Computer Engineering; Tien Q. Tran and Even A. Rognlien, two was from Information
Security; Daniel M. Antonsen and Joakim Harbitz and one was from Game Programming;
Håkon Bjørklund. Antonsen and Harbitz will have their own thesis focusing on security
within games. The other three would further develop the Nox engine. Both groups was
using the Nox engine and game engine development in general as a starting point, and
the groups was going to be working together on the security related parts of the project.
Certain aspects of the two theses was therefore going to be the same. Later we discovered
that we would not be working with security and nothing at all with the network of Nox.
However another Bachelor group would be working with the network part on the Nox
engine. Therefore we found it appropriate to split into two bachelor groups.

1.1.2 Project goals
Result goals

The main intention was to extend the Nox-engine and give it new functionality. Our con-
tribution will be added to the engine and become public to the world, making the engine

1

Noxplus

more interesting to other developers. The new functionality is the possibility to create
3D-games with time manipulation for use during gameplay. This entails that a developer
can create a world in 3D. The time manipulation will work for both physics, animations
and components and makes it possible to reverse and forward time during gameplay. We
also created a demo that shows the previously mentioned modules potential.

The bachelor thesis can be used for both developing new innovative games, and fur-
ther development and research of time management in games and simulation.

The demo and engine will together become something that we can add to our portfo-
lio and show our skill in programming and organisation. It will also become something
that Gjøvik University College can use in lessons and research purposes and the bachelor
thesis can be added to Gjøvik University College’s library B.

Effect goals

Suttung:

• Increased functionality for the Nox-engine.
• More attractive/interesting game engine for other game developers.

Gjøvik University College:

• Research and lesson material that other students can explore and use when study-
ing 3D engines and time manipulation in gameplay.

Noxplus:

• Increased knowledge and skills in game engine programming.
• Increased skill in familiarising oneself with other developers’ source code.
• Increased skill in handling larger projects.

1.1.3 Audience
Demo Audience

The demo will be used to demonstrate what we have done for Gjøvik University CollegėIt
is also an introduction for other developers to the updated Nox engine’s potential. Gjøvik
University College can use it as advertisement to show off what their students are capa-
ble of after a completed bachelor degree. For us it will be a project we can add to our
portfolio when searching for a job.

Engine Audience

The game and engine developers are the targeted audience for the engine and when
Suttung decides to merge the project with the Nox engine, it will become an even more
powerful development platform with a little explored area of timeline management in
3D.

Thesis Audience

The thesis is created for Gjøvik University College for research and teaching. It will also
be of use for students and other developers who are considering using some of the same
tools for creating their own engine or developing a game on the Nox engine. See Section
3.3.2 for full overview of the tools used in this project. It will also be of interest for
Suttung to use parts from it as a documentation base for the new improvements.

2

Noxplus

1.2 Scope

1.2.1 Assignment Description

We focused on the 3D aspect of game engines and how to create a module for this for
the Nox-engine. We also included a module for timeline manipulation in games. To be-
gin with, we started working on getting familiar with the existing Nox engine, and also
looked into other open source engines. This gave us a better overview of the strong and
weak sides of Nox and assessed their features in relation to manipulating timelines, see
Section 7.6.1 for why we chose Nox. The actual development task involved system de-
sign, high level C++ programming and some low level programming, e.g. GPU shaders.

3D rendering

The 3D rendering module was created as an extension to the Nox engine, so that the
engine can render both 2D and 3D. This module was required for the Time manipulation
module to be started on, as this is based on 3D timeline manipulation and not for 2D. The
task was to implement a renderer that renders 3D models and lights. This also required
that we researched and implemented a model loader for loading the models. Read more
in Section 2.1 to see what sub modules it will contain, and Section 4.1 under the use
case Render World.

Time manipulation

We classified different scenarios in time manipulation and from that we decided on what
we wanted to implement, and how we should implement it in our module. Read about
the choice in Section 4.3.5. The time manipulation had to apply for any actor in a 3D
world. The implementation of timeline manipulation ran parallel with the 3D integration
to make them as suitable as possible with each other.

3D physics

The original version of the Nox engine uses the Box2D physics library that only supports
2D. Our assignment included to research different physics engines and implement one
that supports 3D and our other requirements, read about the research and choice in
Section 7.3.

1.2.2 Delimitation

We set the following delimitation’s for our modules:

Timeline manipulation involved:

• Ability to pause and play.
• Ability to rewind time in a 3D world both backwards and then forward again.
• Detecting and resolving timeline manipulation paradoxes.

3D capabilities involved:

• Loading in 3D models from ".obj", ".dae" and ".md5" files. With support for textures,
bone structure and animation for the file types that support it.

• A scene graph to keep track of every actor in the scene and rendering them.
• Basic 3D lighting; directional, point and spot light.
• A submodule for 3D physics.

The demo includes:

3

Noxplus

A simple scene where the player can interact with many objects that also interacts
with each other, and the whole scene can be played backward and forward through the
elapsed play time.

1.3 Project organisation

1.3.1 Responsibilities and roles

The group leader was Håkon Bjørklund, his role was to keep an overview of the project,
arrange meetings, distribute work and make sure that goals were met. Keeping an overview
of the project involved: keeping track of the time schedule, enforce risk avoidance and
make sure the group rules were followed.

The person responsible for the infrastructure was Even A. Rognlien. He made sure we
followed the planned architectural design and if there were changes to be done to the
design, he updated the documents.

Tien Q. Tran was our version control manager and the person to make sure our repos-
itory was always structured and set up correctly. If anything went wrong, he became
responsible for fixing it. Tran was also responsible for managing and overlooking the
integration with Nox and other libraries.

Asbjørn Sporaland and Magnus Bjerke Vik was our contact persons within Suttung
Digital. Suttung Digital was our employer and gave us guidance and requirements for
the assignment. They also answered any of our questions regarding the Nox engine.

Mariusz Nowostawski was our supervisor and gave us feedback and guidance on both
the theses and the project.

1.3.2 Group background and skills

We had a bit of a varied background, Rognlien and Tran were from Computer Engineering
while Bjørklund is from Game Programming. Bjørklund also had a Bachelor in Event
Production and Interactive Media. We had worked together before on creating two small
games for Android; a 3D game using the Google cardboard API with OpenGL ES, and a
2D game where we did not use any advanced graphics library. Bjørklund was the only
one who had created a couple of small games for computers in C++ before. Rognlien
and Tran had more experience with creating applications. They also had experience with
Linux, while Tran in addition had additional experience with OS X. Only Bjørklund had
worked on an assignment of this size before, except from a system development task that
all three has done. However, we only did the planning, not the development itself.

We had to learn how the Nox engine is built and how it works. In addition we needed
to learn how the physics engine and model loader used works, and how to implement
them into Nox. All members had experience with C++ except C++11, but we had all
been through a course in graphics programming, so we knew OpenGL.

1.3.3 Practises and rules

Our group had to follow the group rules and the project agreement B C. All group mem-
bers had to try to keep normal work hours, 8 - 16, but this was not enforced as long as
everyone showed up for all planned meetings. When someone came up with an idea for
new functionality, he had to take it up with the rest of the group, we then decided if it
was a good idea and how we would incorporate it into the current plan.

4

Noxplus

1.3.4 Risk analysis

Negligible Minor Moderate Significant Severe
Rare Low Low Low Medium Medium
Unlikely Low Low Medium Medium Medium
Moderate Low Medium Medium Medium High
Likely Medium Medium Medium High High
Very likely Medium Medium High High High

Table 1: Depicts how we rate risks, out from likelihood and impact.

1.4 Plan for implementation

1.4.1 Software Development Methodology

Rational Unified Process (RUP) is an iterative development methodology that is used
for for example software development [1]. We have been using RUP as our main de-
velopment methodology for the documentation. Because it gave us many artifacts that
were relevant for our thesis, read more about them in Section 3.1.1. Scrum and Extreme
programming (XP) is both an iterative agile software development methodology for man-
aging product development. We used Scrum combined with Extreme programing for the
development process. You can read more about them in Section 3.1.2 and Section 3.1.3
respectively. This provided us with an agile and flexible implementation process.

The main reason we chose RUP and Scrum is because we needed to see what the
end product looked like at a regular basis. Since both are iterative development models
this gave us an advantage. If we had chosen a development model like the Waterfall
model this would not be possible before late into the project [2]. This would have been
a problem for us since we needed to see what effects our new code had on the overall
project, to be sure that our plans were good and did not destroy the current functionality
of the engine. With an iterative process we were also able to uncover risks early in the
development phase instead of late. This mitigated risks and was one of the reasons we
chose not to use the spiral development model [2]. The other reason is that RUP has
a risk analysis artifact we wanted to use. Scrum on the other hand is missing some
documentation for developers, but with the RUP model we believed this would make up
for it. The XP model does not have adequate documentation and was therefore a bad
model for us since we needed documentation for our thesis. However, there is a couple
of principles in XP that we wanted to use for our project.

As we were going to spend most of our time in the development phase we chose to
use the Scrum roles. Since Bjørklund is the group leader and many of his assignments
align with the assignments of the Scrum Master role it was best that he took this role.
All three members took the role as the Product owner, handling the backlog and sprints.
More about this in Section 3.1.

1.4.2 Project timeline

As mentioned in Section 1.4.1 RUP and Scrum was our main development model. Our
Gantt diagram follow the structure of the RUP phases: inception and elaboration, with a
construction phase consisting of Scrum sprints. At the end of our Gantt diagram there is
a timeline for our thesis. The inception phase’s we established the main foundation for
our project by setting up the group rules, contracts, project plan and system design. The

5

Noxplus

elaboration phase started after the system requirements from Suttung was well enough
defined to start working on the system design plans. During the 11 sprints of the con-
struction phase, we implemented the system.

1.4.3 Work breakdown structure

Simple scene Basic shaders

Model loader Physics library Demo

Control system

Timeline
manipulation

Figure 1: Breakdown of the work.

We wanted to start with a simple, empty scene with a pair of basic shaders. After integrat-
ing a model loader, we would load and use some basic 3D models to test the integration
of a physics library. The plan was then to add some basic user controls to move the objects
around and test their physics. Then we would focus on some simple time manipulation.
When all of this were working as expected, the final step would be to create the final
demo.

1.5 Terminology

• API - Application Programming Interface.
• GUI - Graphical User Interface.
• IDE - Integrated Development Environment (ex. Visual Studio or Eclipse).
• Json - Javascript Object Notation. Lightweight data interchange format (json.org).
• GUC - Gjøvik University College.
• RUP - Rational Unified Process, development methodology.
• Scrum - An incremental, agile software development methodology. (wiki).
• Artifacts - A document or model created by people involved in a development pro-

6

Noxplus

cess.
• 3D - Three Dimensions.
• 2D - Two Dimensions.
• VAO - Vertex Array Object
• VBO - Vertex Buffer Object
• Assimp - Open import asset library.
• Bullet - Physics engine.

1.6 Document Structure

The document is structured into eight chapters with Appendixes at the end.

1. Introduction contains the introduction to the thesis, description and the planning
of the project.

2. Requirements Specification contains the requirements for the extension.
3. Development Process describes the work flow through the project, how the devel-

opment methodologies were used and the tools.
4. Design contains the design of the system, the use cases and the flow of the system.
5. Implementation contains how the design and the different modules was imple-

mented.
6. Testing contains how the tests were done and the results.
7. Discussion contains choices that were made under the different modules, including

thoughts and ideas.
8. Conclusion contains a summary of what was done and possible future work.

7

Noxplus

2 Requirements Specification

The assignment is quite large (see Section 1.2) and there were requirements that needed
to be concretized before the elaboration phase could start. There were requirements
given by Suttung, Gjøvik University College, and some requirements set by ourselves.

2.1 Functionality

For the main modules, defined in 1.4.3, the following functionality requirements were
set.

The Scene module includes:

• Rendering in 3D.
• Scene graph for 3D.
• 3D shaders.
• 3D camera.
• API for game developer.

The Model loading module includes:

• Asset loader.
• Static models support.
• Animated models support.
• Texture mapping support.
• API for game developer.

The Physics module includes:

• Physics engine.
• Basic collision shapes (box, sphere, cylinder..).
• Advanced collision shapes (Concave hull, compound..).
• Collision detection with custom made actions.
• API for game developer.

The Timeline manipulation module includes:

• Logging of the game world.
• Logging of custom created components.
• Rewind capability.
• Replay capability.
• Developer created functions for solving conflicts/paradoxes.
• API for game developer.

The Control system module includes:

• Actor controls.
• Camera controls.
• Time controls.
• API for game developer.

8

Noxplus

The Demo includes demonstrations of:

• Time manipulation.
• Physics.
• Model loading.
• Controls.

2.2 Usability

To be able to use the Nox engine and the extension to its full potential there are re-
quirements to the game developer. The developer must know the programming language
C++, since the whole engine and the extension is built on this language and implements
functionality from up to version C++11. CMake is an open source make system that
uses platform-independent configuration files to generate workspace files for different
IDE’s and compilers [3]. The developer needs to know or learn how to set up a project in
CMake since the engine is platform independent. JavaScript Object Notation (JSON) is a
lightweight data-interchange format [4]. The developer needs to know this language to
be able to create a set of actors and place them in a world.

With this as a basis, it will be relatively simple to set up a basic scene with models and
light. The developer will not need to study low level topics as scene graphs, rendering
and matrix algebra to be able to use the engine, as all this will be covered by the API.
The developer shall receive relevant errors and warnings in the command window when
developing on our engine.

2.3 Reliability

The engine will run stable without stuttering. It will also be robust so the developer do
not accidentally crash it and will make sure no unhandled exceptions can occur from the
engine’s side. There will not be any significant drops in performance during heavy load
and memory usage needs to be handled properly when it comes to the time manipulation
module.

2.4 Performance

The engine shall manage to keep stable at around 60 fps (frames per second). It must be
able to have at a minimum 30 animated actors at the same time. It shall be optimised to
make scaling and duplication of actors possible without noticeable loss of performance.
This has to happen in accordance with the Extreme Programming principles 3.1.3, code
optimisation is to happen at the end of the construction phase.

The time manipulation module will use extra memory and it is important that the
engine does not use more than 1 MB when logging one actor for one minute. This applies
as long as no custom made components are being logged.

2.5 Constraints

The Nox engine only supports 2D and was not developed with a 3D possibility in mind.
In the extended engine, the game developer must be able to choose between using 2D
and 3D mode.

9

Noxplus

2.5.1 Time constraints

The project was started in the beginning of January with a final deadline of May 15th,
2015. Due to the short project period of four months, time was the main concern through
the whole project. The time that was assigned had to suffice for the modules planned.
The milestones that can be read about in Appendix G, were set to alleviate this problem.

A project plan had to be delivered to our supervisor before the development started.
This was to give Gjøvik University College an initial overview of the project and the team
members. By the end of February, a website had to be created so interested parties could
follow the work.

2.5.2 Software constraints
Nox

The system had to be designed in a way that integrated easily into Nox and followed
the design of Nox as close as possible to best avoid having two completely separated
designs in one engine. This meant that the modules could not be freely designed. How-
ever, the extension to the Nox engine had to avoid breaking its support for 2D. The 2D
performance had to remain the same after the Noxplus was integrated.

As mentioned in Section 3.4.1, the coding standards and conventions that Suttung
has created for writing readable code had to be followed. The commenting was done so
documentation could be generated by Doxygen. This had to be in English, just as the
code, to support a wider audience.

2.5.3 Expandability

Since the Nox engine and the Noxplus extension is open source it was important that the
engine remained expandable. When the work is published, other developers will expand
on the system, change modules and improve it. This made it important that the modules
created are easily understandable, removable and reusable. The third party libraries will
be possible to replace without effecting the rest of the engine. Other developers who use
the engine will also have to follow this principle.

Third-party libraries

The model loader brought some limitations to what types of model files the engine can
load. It was possible to write custom file loaders, but due to time 2.5.1, this was not
an option. Other third-party libraries had to be adopted in a way that they were well
integrated but could be easily changed without destroying the engine as a whole. Thus,
none of the components were to be fully dependent on a particular third party library.
The physics engine used had to be fully deterministic for re-simulation for the time ma-
nipulation module. Read more about it in Section 4.3.5.

2.5.4 Interoperability

One essential part of the Nox engine is that it is cross platform. One requirement from
Suttung was that this was maintained. As new modules were implemented the engine
had to be tested regularly and made sure it was still working on Linux, Windows and Mac,
read more about it in Section 6.3. It was also important that the third-party libraries that
were used also ran on the different platforms.

10

Noxplus

2.5.5 Hardware constraints

The computer that is to be used for development with this engine has to have a graphics
card that support OpenGL version 3 or above. It also needs at least 1MB per actor of free
RAM per minute when using the time manipulation module.

2.6 User documentation and help system

The demo was created to show the potential and capability of Noxplus, in addition it can
be used by developers to see how things work with the new extension. This should work
well in collaboration with the demos Suttung created for the Nox engine.

When Suttung published the Nox engine, a Google Group [5] was created to pro-
vide support for game developers, contributors, the Noxplus team, and other interested
parties. The same group will be used for support on the Noxplus extension.

2.7 Licensing, laws and regulations

It was important that the project did not conflict with the project agreement or the MIT
license for the Nox engine. When using resources from other designers and developers
the license of these had to be followed. This included all API’s, third-party libraries, code
libraries, textures and other assets that are not already a part of the original engine. If no
licence was found credits had to be given to the author, both in the code and in the credits
in this thesis. Standard code snippets found on any programming discussion forums or
web pages was not required to be credited as long as parts of it were rewritten. For all
tools that are used, the accompanying laws and licences must be followed.

The final product will have the MIT license, this to minimise any trouble for Suttung.
This makes it possible for other developers to use only certain parts of the engine without
having to comply to different licenses. Because of this, it was important the code is
readable and flexible so that Suttung, game developers, enthusiasts, engine developers
and contributors understands the code.

2.8 Testing

Source code will always be tested by another group member before it is pushed to the
stable branch. Before large changes to the work a push to the stable branch will be per-
formed. Informal performance/stress testing will be done regularly to detect bottlenecks
early. Read more in Section 3.3 GoogleTest is as C++ test framework that has support
for multiplatforms []. Testing will be done with GoogleTest. Read more about what was
tested in Chapter 6.

2.9 Deployment

On the deadline at May 15th, a pull request containing the new features from Noxplus
was created to the Nox engine. Suttung will handle it from that point.

11

Noxplus

3 Development Process

3.1 Project workflow

Documents that were created for the project, both for Gjøvik University College and the
ones based on artifacts from RUP, were incorporated into this thesis. They are therefore
not added as an appendix. The following Section is an overview of those artifacts. The
artifacts have been modified to fit the project’s needs better. Some of the topics written
in the document for Gjøvik University College covers artifacts from RUP, in that case
these were added to the following overview. You can read more about the choice of
development methodology in Section 1.4.1.

3.1.1 RUP

RUP provided us with requirements, analysis and design in the inception and elabora-
tion phase [1] [6]. Figure 2 summarise what artifacts from RUP that were used. These
are further described later in this Section. The construction phase was substituted with
Scrum and some principles of Extreme Programming, as described in Section 1.4.1.

Figure 2: The different RUP artifacts/documents that were used.

12

Noxplus

Inception:

During the Inception phase the project and its delimitation’s were established. The fol-
lowing artifacts from RUP were chosen, and was the focus during the inception phase:

• Risk list
The risk list was intended to help reduce the possibilities of potential dangers and
make the team more prepared if problems occurred. This was updated throughout
the project, read more in Section 1.3.4.

• Project glossary
To make the thesis easier to read, a glossary was included for the project as a quick
look-up for abbreviations and words. Instead of having three different ones as RUP
suggest, this artifact is modified to only use one glossary where words, expressions
and abbreviations that are used throughout the thesis are listed. This is located in
Section 1.5.

• Software development plan
This document encompasses the chosen artifacts and what parts that fit for Nox-
plus:

◦ Risk Management Plan. The risk management plan was modified and com-
bined with the risk list, setting an extra column containing strategies to avoid
or eliminate the threats. A table showing how we rate the different risks with
regards to likelihood and impact 1.3.4 was also created.

◦ Programming guidelines.
The programming guidelines were the ones Suttung set up as mentioned in
3.4.1.

This was all the artifacts that were used from the Software development plan. The
14 others are for bigger teams and larger project and they did not suit this project.

• Requirements

◦ Software requirements specification
The use case model can be found under 4.1, with different types of use case
descriptions following that.

Elaboration:

In this phase a detailed project plan was created where the requirements and system
architecture were specified.

• Requirements:

◦ Supplementary requirements
This is the requirements for the extension when it comes to platform, legal
and regulatory requirements, application standards, quality attributes, includ-
ing usability, reliability, performance, supportability requirements and design
constraints. All of this is written in Chapter 2.

• Analysis and design:

◦ Design model
This was used to describe the classes and the relationship between them, it
serves as an abstraction of the system giving the team a better overview on

13

Noxplus

how the classes interacts with each other.
◦ Software Architecture Document This document covers aspects of the Design.

An overview of the architecture were created based on the Design Model and
use cases, where the outline of the classes within different layers are drawn up
and where the communication happens between them. This helped the team
develop the system better, giving an idea how the classes and different layers
come together to form the extension as a whole.

◦ Revised risk list An updated risk list were made in the Inception phase. This
lists the risks with solutions or the prevention of them, see Section 1.3.4.

Deployment:

See Section 2.9.

3.1.2 Scrum

Scrum was the choice of methodology for the construction phase. Each day started with a
daily scrum meeting using the voice over IP client, Skype. Due to the fact that no regular
working hours were set, the daily scrum meetings started once every team member was
ready and logged onto Skype that day. The meetings ran for about 10 to 15 minutes
where the team discussed what was done the previous day and what was to be done
that day. It was helpful to leave the Skype call on after the meetings as a channel for
discussing problems and solutions while working.

The team decided to use one week sprints which started each Wednesday and lasted
until Tuesday. During a sprint period, a set of tasks were allocated to be done before
the sprint’s end. The main reason for having one week sprints was because there were
regular meetings with supervisor and Suttung on the same day as the sprint started. By
ending each sprint a day before the meetings, the team could prepare and plan a new
sprint and have it reviewed by supervisor and Suttung on the meetings the next day.
After each sprint ended there was a short sprint review and retrospective meeting trough
Skype where the team discussed what was accomplished during the sprint, what was
done right and what could be done better in the upcoming sprints J. Read more about
our sprints in 3.3.

From Scrum, the following artifacts were selected:

• Product backlog gave the team a good prioritised overview of the tasks to be com-
pleted.

• Sprint planning meeting helped the team decide on which tasks to be implemented
in the upcoming sprint.

• Sprint backlog gave the team a structured overview of the tasks to be completed in
the ongoing sprint.

• Daily Scrum meeting increased the overview of the sprint progression and kept
everyone updated on the current status.

• Sprint review gave the team the opportunity to tell each other what had been
accomplished during the sprint.

• Sprint retrospective meeting gave the team the opportunity to reflect on what was
done wrong and what was good.

JIRA was used for keeping the backlog and sprints. More about the sprints and use of
JIRA is described in Section 3.2.2.

14

Noxplus

3.1.3 XP

From Extreme Programming the following principles were used [7]:

• Code refactoring and design improvements were done continuously through the
whole project, but design changes were discussed with the rest of the group first.

• Team members followed the same coding standard.
• Collective code ownership gave all team members a better overview of the project.
• System metaphor made the code more readable for other developers and the team.
• Code optimisation at the end of the construction phase, so that all functionality

was implemented in time.
• Pair programming, to make difficult tasks easier and detect errors earlier in the

development phase.

3.2 Project Management

3.2.1 Meetings

On Tuesdays there was a sprint review and planning meeting before the meetings the
next day. Every Wednesday at 10:00 a meeting was held with Supervisor Nowostawski,
and 11:30 there was a meeting with employer Suttung. There was a short log written
from every meeting, the meeting log is found in Appendix H.

In the daily meetings that were held every day, a review was done on what each group
member had done the previous day and what was to be done the current day. Any minor
development problems were brought up in these meetings so a solution could be found
for it. Most of the time this was not needed as all team members were online on Skype
with each other most of the day, and was able to solve problems at the same time they
arose.

Milestones

After each milestone a meeting was held where the team together wrote a review for the
finished milestone. This included a list of what the team had accomplished so far, a list of
what was expected for the next milestone and a small section of thoughts for the passed
milestone. If a goal in the passed milestone was not completed, the goal’s priority was
revised and a decision was made if it where to receive a lower priority or be postponed.
The milestone review can be found under Appendix G.

3.2.2 Configuration management
Version management

Bitbucket is a cloud based Git solution by Atlassian [8], and was used for managing and
sharing the code base of Noxplus. All team members have experience with Bitbucket
from earlier projects. The Git repository was mainly maintained using Atlassians GUI-
based Git-client, SourceTree [9]. There was both advantages and disadvantages using
SourceTree versus the command line. It gave the developers a better overview of the
files, branches and commits, but it was not clear exactly what it was doing to the repos-
itory behind the GUI. This was a bit frustrating, but it was working with us 95% of the
time. Semantic versioning was not used for Noxplus, since Suttung have not done it, the
development time is short and the release is handled by Suttung.

15

Noxplus

Time management

To log the work hours we used Toggl [10], together with the Toggl mobile app. We
created our own workspace where all group members were invited. It was a great tool
for keeping track of the group and the group members individual working hours. We
could see statistics of how many hours we had spent during a sprint, and on which tasks.
In addition it gave us statistics for how much we worked in total over the project period.
This can be found in Appendix K.

Change management

JIRA is an issue and project tracking software [11]. The issue and project tracking was
done using JIRA, which was hosted on Gjøvik University College’s servers. The product
backlog was kept track of using JIRA, updated before each sprint and changed as de-
velopment progressed. In the sprint review meetings the sprint was summarised. This
involved a review of what had been done during the sprint while comparing and updat-
ing the Scrum board in JIRA. The sprint was then closed and the next sprint was created,
where we added issues and tasks that had to be done in the coming week. Tasks that was
still relevant and had not been closed in the last sprint were either given a lower priority
and postponed, or moved over to the new sprint.

Documentation management

ShareLatex is a cloud-based, open source writing tool [12]. This was used to write the
final thesis, making it easier to cooperate with the group. The Latex document is compiled
and previewed on the go, and everyone can write at the same time.

Google Docs is also a cloud-based writing tool. Logs from our meetings at Gjøvik
University College or Mustad were first written on paper and later in Google Docs [13].
All other logs and documentation was written here first. Here all Noxplus team members,
Suttung and Supervisor could participate in the writing and had access to the documents
at all time.

These tools were used to make sure everyone were up to date and making it easier to
cooperate on the documentation part.

3.2.3 Coding environment

Microsoft Visual Studio is an integrated development environment [14]. This was the
chosen IDE for the development phase. Suttung helped with testing on Linux and Mac,
so there was no need to use any other. To avoid compatibility issues standard C++11
syntax was used.

CMake was used to build project files for different environments, like Visual Studio,
and was already used by Suttung. All third-party libraries that were needed also used
CMake, so the including of them as sub modules was a more or less automated process
once the CMake files were set up correctly. By looking at Suttung’s existing CMake files
it became easy to get an idea on how to work with it.

3.3 Development workflow

When starting a sprint each group member chose a task they would like to do, and moved
that task from "To do" to "In progress" on the Scrum board. Research was then done on
the topic to see how such a task could be implemented. In some cases the research had
already been done in the elaboration phase, in that case the implementation would start

16

Noxplus

immediately. If there were multiple ways to do it and the design was not already done
in the elaboration phase, a group discussion was initiated on what might be the best
choice out from the research that was found. If no consensus was made, a meeting with
supervisor and employer was arranged. When a task had been implemented or the task
was stable, it was pushed to our main branch and tested by a second group member to
make sure that it was stable and did what it was supposed to.

If anyone got stuck or needed help on a programming task, the team members worked
together, either two or all three. For the advanced issues this was quite efficient, as many
coding errors were spotted immediately by the other developer(s) and feedback could
be given instantly. TeamViewer is a tool that lets one or more person(s) view and control
another PC from their own [15]. Since all development was done in the team members’
own homes, TeamViewer was often used for pair programming.

If there was a large change to the system, the stable code was pushed to a stable
branch before it was pushed to the development branch. This was then tested by all
group members before being accepted. When a large new task that possibly would break
the engine for a longer period of time, a new branch was created where this task was
pushed to while the implementation was under way. Doing it this way would let the other
developers continue their work without waiting or being interrupted by the larger task.
When the task was finished it was tested to make sure that it did what the task said, that
it did not break the design of the system or create any performance issues. When it got
accepted, the task was moved from "In progress" to "Resolved". Exceptions to this was if a
new task was created to resolve a current issue, that did not create any major implication
for the rest of the group. Every group member had to agree on such an exception.

When pushing large code modifications to the main branch in git, it would always be
done in coordination with the rest of the group. Sometimes there were merge conflicts
that needed all developer’s attention.

When developing the engine there was used two git repositories, one for the low
level development of the engine and one for testing at the game developer level. The
first repository was used to host the Noxplus engine, which was a fork of the Nox engine.
The second repository was used to host the test project which used the Noxplus engine
as a sub module. Whenever a change was made to the engine it was tested using the test
project. This way of working made it possible to completely separate the engine from the
test code used in the development project. Read about the testing in Chapter 6.

3.3.1 Assets

Only assets that were free to use was used when creating the demo 1.2.2 and doing the
performance testing 6.1. This included 3D models and textures. The only requirement
was to give credits to the one who created it. This was added in Appendix I.

3.3.2 Tools

The following tools were used during the development:

• Visual Studio 2013 was our chosen IDE, since all team members have experience
with it and are programming on Windows.

• Blender, for creating 3D models and exporting them.
• Gimp, for creating textures.
• Microsoft Project, for creating the Gantt chart.

17

Noxplus

• Microsoft Visio, for flowcharts and diagrams.
• Microsoft Office Excel, for creating performance charts.
• Skype, for meetings and discussion.
• TeamViewer, for doing pair programming.
• Paint, for sketching and discussing ideas.

For management tools see Section 3.2.2.

3.4 Organisation of quality assurance

3.4.1 Documentation, coding conventions and source code

To make sure Noxplus ended up as a quality product that met the plans and fulfilled all
the requirements, all work was logged. All team members had their own log where they
wrote important choices that were done while developing. This was helpful both during
development and during the writing of the thesis.

In addition to logging choices, logging of the working hours was also done, see Section
3.2.2 for more information. It was also important that each group member was followed
up on and did testing while in the development phase.

A close working relationship with Suttung was maintained throughout the project,
keeping them up to date with what had been done and what was going to be done. They
also helped out with testing for Linux and Mac, read more about Testing in Chapter 6.

3.5 Workload

The groups working hours can be found in Appendix K. Each member has worked about
41 hours per week. As seen in the summary from Toggl, some weeks have less working
hours than others. This was due to other deadlines each group member had to maintain.
The last 6 weeks of the project was most intense. The 35 hours of work per week that
was set for each group member in the group rules was met, see Appendix C for the group
rules. 600 hours are the expected amount of time a student is to use on the Bachelor
assignment and each member managed over >700 hours each.

18

Noxplus

4 Design

The most comprehensive and critical functionality that was implemented was the 3D sup-
port, see Section 2.1. Without this there would be no time manipulation as this depends
on 3D. The idea was that the enhanced engine can be used for both 2D and 3D games,
and it is up to the game developer to choose one of them. To make it more clearly what
is used for the different purposes, all the 3D specific classes have the suffix "3d" to specify
that this is a class only to be used when creating a 3D game. The focus was on reusing as
many modules as possible from the Nox engine and make a good programming interface
that is both easy to understand and easy to use. With a similar structure to the 2D, it is
also easier for game developers to switch to 3D after making games with the 2D.

4.1 Use case

Developer

Bullet
<<Extern System>>

Assimp
<<Extern System>>

Manipulate time

Render world

Manage logic

Manage world

Nox
<<Extern System>>

Figure 3: Use case diagram for the new features

The most important developer interactions and external systems for our assignment was
found. Use cases was created from them to give an overview of what a developer can use
the engine for and where the external systems interact with Noxplus. The model consists
of one main user, the Developer, and three external systems, Bullet, Assimp and Nox.
Assimp handles the loading of files for 3D models [16], while Bullet is the physics engine
that was chosen to be implemented [17]. More about the choice of physics engine and

19

Noxplus

model loader is written in Section 7.3 and 7.2 respectively. All use cases are developed to
work with the Nox engine, making it natural to have Nox as an external system. The use
case "Manipulate time" is dependant on that there is a 3D world where it can manipulate
the time. The Developer is the one who initialises all the use cases.

4.1.1 Risk analysis of use-case

The risk analysis of the use cases were created to uncover what elements in the planned
extension that was the most critical. The risk analysis was divided into three main areas.
These was:

• Technological risks: How likely it was that the team did not have adequate tech-
nology/knowledge to perform/implement the different functions.

• Project risks: To what extent the different functions could lead to problems in rela-
tion to cooperation and organisation in the system.

• Employer risks: To what extent the different functions was essential for the exten-
sion to satisfy the requirements.

Use case Technological Project Employer Total
Manipulate time High High High High
Manage logic Medium High High High
Render world Low High High Medium
Manage world Low Medium High Medium

Table 2: Illustrates the risks for our use-cases in three main areas.

As the table shows the most risky use case for the system is the "Manipulate time" use
case. This is because the area of time manipulation is a little explored area within games
and there is little information on this area. This is also the most important module for
the extension.

Another high-risk use case of the project is the "Manage logic". The team have never
worked with any physics engine before, and Noxplus is fully dependent on physics in
our world. A solution could have been to write our own physics engine, but functionality
such as complex collision shapes, collision detection and ray tracing that are being used,
are highly advanced areas and would have taken considerable amounts of time.

The rest of the use cases were considered of medium risk to the extension of the Nox
engine. These were not as technologically advanced as the previously mentioned ones.

20

Noxplus

4.1.2 High-level use-case description

Use case Manipulate time
Actor Game developer and Nox
Purpose Game developer can manipulate time in game.
Description The developer can turn this case on or off. Time can be

played backwards stopped and played forward again. The
developer also have the possibility to set three custom
made function. These are run at different times; When
the playback is stopped, when the playback is finished and
when the playback is started. The Nox engine’s event sys-
tem manage rendering of new actors and avoids rendering
of actors that are actively being hidden during rewind and
replay. It is also used to detect changes in the world so they
can be logged. The data of the objects are only logged when
they have been changed.

Use case Manage logic
Actor Game developer, Nox and Bullet
Purpose Manage physics, actors and handle event
Description The developer can change the properties for the physical

world and control the physics such as position, speed and
torque of each actor individually. Bullet will respond by
triggering events when actors move or collide. An actor
component for the physics is used as the API the Developer
can use to change physic parameters. The event system of
Nox is used for collision and among others logging of the
world. The stepping time of the physics is decided by Nox’s
timer.

Use case Render world
Actor Game developer, Nox and Bullet
Purpose Trigger drawing of the world
Description The developer decides when the window should draw an

image, and Bullet controls drawing of its own debug data
visualising the collision shapes. Utility functions from Nox
is used for loading and compiling shaders.

Use case Manage world
Actor Game developer, Nox, Assimp and Bullet
Purpose Add and remove actors from the world and manage all ac-

tor components.
Description The developer is able to add and remove actors from the

world and find, add, remove and modify all actor compo-
nents. Bullet and Assimp are only able to modify their own
respective component. The Nox engine’s world manager is
used for managing all the actors.

21

Noxplus

4.1.3 Expanded use-case description

The two most risky use cases was turned into expanded use cases, because of the findings
in the risk analysis 4.1.1.

22

Noxplus

Use case Manipulate time
Actor Game developer and Nox
Goal Game developer can manipulate time in in-game
Description The developer can turn this case on or off. Time can be

played backwards stopped and played forward again. The
developer also have the possibility to set three custom
made function. These are run at different times; When
the playback is stopped, when the playback is finished and
when the playback is started. The Nox engine’s event sys-
tem manage rendering of new actors and avoids rendering
of actors that are actively being hidden during rewind and
replay. It is also used to detect changes in the world so they
can be logged. The data of the objects are only logged when
they have been changed.

Pre-Conditions Time manipulation is enabled.
Post-Conditions N/A
Special Requirements For logging and rewinding custom-made components, the

developer must implement custom "onSave" and "onRe-
store" functions for those components that is supposed
to be logged. The function "logComponentData" must be
called each time the component is to be logged.

Detailed course of events:
Game developer action: Engine response:

1. The use case begins when the devel-
oper starts the engine.

3. Starts rewinding.

5. Stops rewind and starts replay.

7. Awaits playback to finish.

2. Starts logging.

4. Starts rewinding what it logged.

6. Runs the function the developer has
set. It then starts replaying.

8. Playback finishes and it runs the
function set by the developer.

Alternative Scenarios:
1. The developer did not initialise the module. No time manipulation is possible.

6. The developer has not set any function. Engine will just replay.

6. The developer has set a function that spawns or removes an actor, event is sent.

7. The developer stops the playback. Engine runs the function the developer set for
this, if any.

7. Event is sent if the developer removes or spawns an actor in the function.

8. The developer has not set any function. Engine will keep running and logg as
normal.

8. Event is sent if the function spawn or removes an actor.

23

Noxplus

Use case Manage logic
Actor Game developer, Nox and Bullet
Goal Manage physics, actors and handle events
Description The developer can change the properties for the physical

world and control the physics such as position, speed and
torque of each actor individually. Bullet will respond by
triggering events when actors move or collide. An actor
component for the physics is used as the API the Developer
can use to change physic parameters. The event system of
Nox is used for collision and among others logging of the
world. The stepping time of the physics is decided by Nox’s
timer.

Pre-Conditions 1. Logic and physics are created.
Post-Conditions N/A
Special Requirements N/A

Detailed course of events:
Game developer action: Engine response:

1. The use case begins when the logic is
started.

3. Developer creates an actor with physi-
cal properties.

5. Developer change the actors physical
properties.

2. Engine starts updating the logic and
the physics.

4. Engine creates physics body for the
actor.

6. Engine applies the physical changes
for the actor.

7. Physics is updated. Positional changes
that happens to a physics body are ap-
plied to the related transform compo-
nent.

Alternative Scenarios:
4. If developer provides conflicting physical properties, e.g giving a static object a
mass property, the conflicted property will not be used.

7. If collisions between actors are detected it will run the collision functions set by
the developer or broadcast the collision event.

4.2 Program flow

The program starts when the application enters the main execution loop managing user
inputs and system events before updating all the application processes.

24

Noxplus

Application Logic Renderer
Time

manager
World logger

Game
developer

Physics

execute()

shutdown()

Render
window view

World

onUpdate() update()

onUpdate()

onUpdate()

update()
onUpdate()

render()

SdlApplication

onUpdate()

Execution loop

loggWorld()

updatePhysics()

Figure 4: System sequence diagram

When the execution loop is started the application calls the onUpdate function for
all its processes; Render window view, Physics and Time manager. The Render window
view updates the view which is used to render the logic. The Physics updates all the
actors’ physical states in the game’s world and tells the World logger to log each actor
that changes. If the world logger have previously logged data for the current frame it
will update the physics using the stored data. The Time manager will update the physics
world accordingly to the current mode; regular play, replay and rewind. After Application
is done updating its process it will update itself by calling the onUpdate function which
the game developer implements. The game developer calls the render function here if
she wants to render the world.

4.3 Modules and submodules

A component is a piece of functionality for an actor. See the Nox thesis for full description
[18].

4.3.1 Physics

The ActorPhysics3D is the component for an actor that is to be affected by physics.
When an actor is created from the JSON file it is possible to create this component and
enter what physical values the actor is to have. If a value for a physical attribute is not
set in the JSON file a default value is given. The values that are available are dependent
on the collision shape that is set in the file. The game developer can choose what kind of
shape she would like, it can be simple shapes like a box, sphere or cone. It can also be a
more complex shape like one assembled by many basic shapes (compound shape) or one
that is based upon the mesh of the actor’s 3D model (concave or convex shape). There
are a couple of shapes that can only be static; like the plane and the concave shape. If
no collision shape is given to the actor it will not have the possibility to have physical
properties and is not able to detect collisions.

25

Noxplus

"goblinSoldier":
{

"components":
{

"Physics3d":
{

"type": "dynamic",
"shape": "convexhull",
"size": { "x": 3, "y": 3, "z": 6},
"quick_cd": true,
"mass": 10,
"angularFactor": 0.0,
"angularDamping": 0.0,
"linearDamping": 0

}
...

}
...

}

Figure 5: Example of a physics component entry in the JSON file.

The Figure 5 shows how a physics component can be set up. Here the actor goblinSoldier
is defined as a dynamic actor and it uses the models mesh as the collision shape. Using
the mesh as a collision shape is quite expensive for calculations and collision detection,
but this is avoided by using the quick_cd parameter. This parameter tells Bullet that
when creating the shape it can optimise the shape by removing parts of the mesh, this
is recommended to avoid heavy computations. See performance difference in Section
6.1.2. The mass needs to be above 0 or else the actor will not move.

26

Noxplus

void applyCentralForce(const glm::vec3& force);
void applyCentralImpulse(const glm::vec3& impulse);
void applyImpulse(const glm::vec3& impulse, glm::vec3& relativePosition

);
void applyDamping(float timeStep);
void applyGravity();
void applyTorqueImpulse(const glm::vec3& torque);
void applyForce(glm::vec3& force, glm::vec3& relPos);
void applyTorque(glm::vec3 torque);
void setLinearVelocity(glm::vec3 velocity);
void setAngularVelocity(glm::vec3 velocity);
void setTransform(glm::vec3 position, glm::quat rotation, glm::vec3

scale);
void setAngularFactor(float factor);
void setSleepingThresholds(glm::vec2 angAndLin);
void setAnisotropicFriction(const glm::vec3& anisotropicFriction);
void setCenterOfMassTransform(const btTransform& xform);
void setCollisionFlags(int flags);
void setDamping(float linearDamping, float angularDamping);
void setFriction(float friction);
void setGravity(const glm::vec3& acceleration);
void setIgnoreCollisionCheck(bool ignore);
void setInterpolationAngularVelocity(glm::vec3& angularVelocity);
void setInterpolationLinearVelocity(glm::vec3& linearVelocity);
void setInterpolationWorldTransform(btTransform& transform);
void setLinearFactor(glm::vec3& linearFactor);
void setRollingFriction(float friction);
void setRestitution(float restitution);

Figure 6: All the apply and set functions for an actors physics component.

In addition the developer can use the physics component to give an Actor new physical
properties or retrieve them through many different get and set functions. Figure 6 shows
all the set and apply functions available for a game developer. There are equivalent get
functions for all the set functions.

Basic shapes

There are 6 basic shapes that can be used for collision detections, these are the fastest
for computing collision.

• Box, needs the size as a vector.
• Sphere, is in need of the radius as a float.
• Cylinder, requires the size as a vector.
• Capsule, is needing the height as a float and the circle radius as a vector.
• Cone, needs a circle radius as a vector and the height as a float.
• Plane, can only be static and needs a plane offset as a vector and a constant as a

float.

Advanced shapes

The more complex ones are needing a bit more information.

• Concave hull shape, can only be static and requires a mesh, this is used to create
the shape.

• Convex hull shape, requires a mesh, this is used to create the shape. Can also pass

27

Noxplus

in a scaling scalar to scale the mesh shape. In addition a Boolean quick_cd can
be passed, to say if the mesh is to be optimised so that it takes less computational
power, this is recommended.

• Compound shape, requires at least two shapes and their data.

Collision callbacks

The game developer has the possibility to decide what should happen to an actor when it
collides. This can be done in two ways. One option is to write a function and register it in
the simulation class together with an actor ID. The function parameters gives the game
developer access to both actors that collided, and the game developer can decide what
to do with both. This is done through an std::function. Another option is to let the
game application listen for collision events and parse each of them when received. The
event that is received contains the collision information on what actors collided, together
with where the collision happened on the actors and the forces. The game developer can
choose what to do with this event.

4.3.2 Assets

More than 40 different file formats are supported by Assimp. The following file types
have been tested with good results: ".obj", ".dae", ".md5". For model files with more
than one animation, using the ".md5" file format is recommended. When there is only
one animation ".dae" can be used. The ".obj" file does not support animation and can
therefore only be used for loading static models.

Loading models

Actors that has a 3D model needs a path in the actor’s JSON file that tells where the
model’s file is located. Together with the file path, it also requires a name. See Figure 7
for an example. The name is used by the engine to select the right model when the actor
is about to be drawn. If multiple actors are using the same name under Graphics3d,
all these actors will be drawn with the same model. The reason it is done this way is
optimisation; say the game developer wants to spawn 100 trees using the same actor
file. All the tree-actors will have the same Graphics3d name. The model will be loaded
one time when the first actor is created, and all the other 99 will be set to use this model.
For the textured models, the file paths of where the texture files are located are stored
in the model file and the textures are loaded automatically. There is a limit to how many
actors that can live in a scene, see Section 6.1 for more information.

Animations

If the model file contains animation data, a startAnimation index can be specified
in the JSON file. The indexing starts at 0 and goes up to the number of animations -1.
The value tells which animation that should be played when the game starts. If no value
is set, or if the index is invalid, no initial animation will be played for the actor. The
animationSpeed sets how fast the animation should be played. Value 1 will play the
animation at its normal speed, 2 will double the speed, 0 will pause it, and negative
values will play it backwards. animationStartTime can be set to specify how many
seconds into the animation it should start playing at. By default it will automatically start
playing at the beginning of the animation.

Information about the active animation is stored in the actor’s ActorGraphics3d
component. The animation can be changed during runtime with the following function:

28

Noxplus

ActorGraphics3d::setAnimation(int index, bool logIt, float speed,

float startTime).

If the animation change should be logged by the world logger, the logIt argument
must be true. This will make the change of animation visible during rewind and replay.

"goblinSoldier":
{

"components":
{

"Graphics3d":
{

"name": "goblin",
"dataPath": "assets/models/goblin/Goblin.dae",
"startAnimation": 0,
"animationSpeed": 1.0,
"animationStartTime": 10.0

}
...

}
...

}

Figure 7: Example of a Graphics3d entry in the JSON file. The actor is using an animated 3D model.

4.3.3 Rendering

Like with the Nox engine, for rendering, the game developer should create a custom
window class that inherits from the RenderSdlWindowView class. The constructor
of RenderSdlWindowView takes two Boolean arguments; create2dRenderer and
create3dRenderer. It is possible to set both to true. In that case, it will create one 2D
and one 3D renderer. The 2D renderer will use Nox’s OpenGlRenderer class, while the
3D renderer uses the Noxplus’ OpenGlRenderer3d class. These flags will only control the
rendering; to render both 2D and 3D, a 2D logic must also be created first.

Noxplus comes with a generic camera. An instance of the camera must be created by
the game developer, and set in the renderer. The only value that is passed into the con-
structor of the camera is the size of the screen. To change it, the values in the constructor
must be changed.

An object of the window should be created in the user created Application class
4.3.6. The window’s render() member function should be called in the application’s
onUpdate() which is run about 60 times per second. Animations are updated by the
engine according to the active play mode; pause, rewind, replay or normal.

29

Noxplus

Light

"Light3d":
{

"lights":
{

"light name":
{

"type": "directional/spot/point",
"offsetPosition": {"x": 0.0, "y": 0.0, "z": 0.0},
"cutOfAngle": 20.0,
"direction": {"x": 0.0, "y": 0.0, "z": 1.0},
"color": {"r": 1.0, "g": 1.0, "b": 1.0},
"range": 10.0,
"ambientIntensity": 1.0,
"diffuseIntensity": 1.0,
"constantAttenuation": 1.0,
"linearAttenuation": 1.0,
"exponentialAttenuation": 1.0,
"rotateWithActor": true,
"castShadows": false

},
"light name two":
{

// Light data
},
...

}
}

Figure 8: Example of a Light3d entry in the JSON file.

The game developer can create and attach multiple light sources to an actor using the
Light3d component, this is done by specifying a Light3d entry inside the actors JSON
file, under the components section. A typical entry for this component is shown above in
Figure 8, where the different properties describes:

• Light name is used as an index when referring to the light.
• Type is either directional, point or spot light.
• OffsetPosition is the position used to offset the light from the actor position.
• CutOfAngle is the cone angle in radians.
• Direction describe the lights direction.
• Color is the light colour represented in RGB format.
• Range describes how far the light shines.
• AmbientIntensity describes the intensity of the ambient lighting.
• DiffuseIntensity describes the intensity of the diffuse lighting.
• ConstantAttenuation describes the constant light strength reduction.
• LinearAttenuation describes the linear light strength reduction.
• ExponentialAttenuation describes the exponential light strength reduction.
• RotateWithActor is used to decide if the light should rotate with the actor or not.
• CastShadows is used to decide if the light should cast shadows or not.

30

Noxplus

The game developer can create multiple lights inside the lights section. Each light
entry inside the lights section is started with the light name followed by a set of
properties describing the light to be created. Directional, point and spot light have a few
common required properties:

• OffsetPosition.
• Color.
• AmbientIntensity.
• DiffuseIntensity.
• RotateWithActor.
• CastShadows.

In addition to these common properties each of the light types requires additional prop-
erties. Directional light needs direction. Point light needs constantAttenuation,
linearAttenuation and exponentialAttenuation. Spot light needs every one
of them.

4.3.4 Actor control

"vectorControls":
{

"actions":
[

"move",
"rotate"

],
"buttons":
{

"W":
[

{
"action": "move",
"vector": {"x": 1.0, "y": 0.0, "z": 0.0}

}
],
"E":
[

{
"action": "rotate",
"vector": {"x": 0.0, "y": -1.0, "z": 0.0}

}
]

}
}

Figure 9: Example of mapping controls with a JSON file, using directional and rotational control
component.

The game developers can handle basic control of the actors using the Directional-

Control3d and RotationalControl3d component. To use these components the
developer needs to create a JSON control file which maps action events to different keys,
see Appendix L for a full overview of the different control types that can be created.
Both control components are using vector control, meaning that the control data is rep-

31

Noxplus

resented as a vector of 3 where the values range from 0 to 1. The right hand coordinate
system is used. In Figure 9 there is shown an example of a JSON control file creating ac-
tions for the directional and rotational control and mapping them to two different keys.
The actions section is where the actions are created, the move action is used by the di-
rectional control and the rotate action is used by the rotational control. The actions can
be mapped to different keys in the buttons section. For example the W key is mapped to
the action move. In this example the vector is x = 1, y = 0 and z = 0, this means that
the actor is moved to the right every time the W key is pressed.

Directional control

"3dDirectionControl":
{

"movementSpeed": 5.0,
"relativeToCamera": true,
"relativeToRotation": false

}

Figure 10: Example of a directional control component entry in the JSON file.

The directional control component handles the actors movement in x, y and z axis allow-
ing the actor to move freely in all directions. The movement speed defines how fast the
actor will move, in meters per second. The relativeToCamera and relativeTo-

Rotation describes if the controls should be relative to the camera or the actor rotation
or both. For example if "relative to camera" is enabled, the left, right, up and down di-
rections will be transformed accordingly to the cameras coordinate system. The "relative
to actor" works the same way using the the actor coordinate system. If it is not relative
to the camera, nor the actor, it will be relative to the OpenGL right handed coordinate
system.

Rotational control

"3dRotationControl":
{

"rotationSpeed": 5
}

Figure 11: Example of a rotational control component entry in the JSON file.

The rotational control component handles the actors rotational control in x, y and z axis.
The rotationSpeed is a scalar describing how fast the actor is rotated using radians
per second.

4.3.5 Time manipulation
Mapping of time manipulation

Before starting with the time manipulation module a plan had to be made on what kind
of time manipulation that was to be implemented. Scenarios for different time travelling
theories was discussed and mapped, both possible and not possible ones for game engine
implementation.

The Multiverse theory expands on the theory of Big Bang. When the Big Bang hap-

32

Noxplus

pened it did not just happen once but an infinite number of times. This is the inflationary
variant of the theory and there are many others [19] [20].

Multiverse
Scenario Example

Branching timeline. If a change is made after travelling back a new timeline
branch is created. You can now travel between them, and
play forward again. Time flows normal in the timeline you
are not in even when rewinding or replaying in the other
timeline.

Table 3: Scenario for the Multiverse theory.

Dynamic timeline
Scenario Example

Rewind time, change something, replay
and see a difference.

The comic "The Order of the Stick" has
an example; murdering a person in the
past, kills the whole family tree from
the dead person’s place in the tree, back
in the future [21].

Rewind time. If a change is made after
travelling back in time the future will
be discarded.

This is done in the game "Braid" where
the player can rewind back in time. If
he makes a change, he cannot replay
back to the feature [22].

Travel back and forth between snap-
shots of the world. If a change is made
after travelling back to a snapshot the
future snapshots will be updated.

The game "Dark Chronicle" lets you
make changes in the past and the fu-
ture is updated [23].

Table 4: Scenarios for the Dynamic Timeline theory.

Table 4 shows the possible scenarios we came up for where the action in the past is
affecting the future [24] [25].

33

Noxplus

Fixed timeline
Scenario Example

Pause world, give commands and then
resume the world.

The game, "Pillars of Eternity", lets you
pause the time whenever you want in
combat so that you can give your team
commands before continuing. [26]

Pause world, walk around in the
paused world and do stuff before press-
ing play again.

This is done in the movie "Click" where
the main character pauses the time to
punch an annoying boss in the face.
When the time is resumed the boss was
in pain [27].

Speed up/slow down world or selected
actors while playing.

This is done in the movie "Click" where
the main character slows down or
fast forward the time when something
interesting or uninteresting happens
[27].

Receive other people’s time, they
lose the time they gave away, while the
other gain it. Increase speed of time for
the person who gave away time and
the other who gained will slow down
their speed. World moves at normal.

Rewind without making any changes. This is done in the movie "Click" where
the main character travels back in time
in order to gather information about
how he and his wife first meet [27].

Table 5: Scenarios for the Fixed Timeline theory.

The Table 5 is a collection of scenarios we came up with for the fixed timeline theory
or closed timeline curve. Meaning that if a change to an object occurs in the past it will
return to its original state in the future [28] [29].

Fixed or Dynamic timeline
Scenario Example

Rewind time to interact with your past
self.

"Company of Myself" is a game that
uses this kind of mechanic [30].

Travel back and forth between snap-
shots of the world and time.

A player takes a snapshot of the world,
keeps playing. After a while he takes
a new snapshot. Player can now travel
between these two points.

Travel between different eras. In the TV programme "Doctor Who"
there are both fixed points in time that
cannot be changed, but the rest can.

Table 6: Scenarios for either Fixed or Dynamic Timeline theory.

Certain scenarios fits under both dynamic and fixed timeline, depending on imple-
mentation. Another Table was created 6.

The group decided that with careful planning and given the short amount of time, the
following scenarios would be possible to implement in the game engine:

34

Noxplus

• Rewind without making any changes.
• Rewind time to interact with yourself.
• Rewind time, change something, replay and see a difference.

Choosing implementation

There was multiple ways of how the rewind and replay functionality could be imple-
mented. A good source of inspiration came from the game "Braid" [22] and a video where
Jonathan Blow, the developer of Braid, talks about how he implemented the rewinding
[31]. The team created a list of different options:

• Store the entire world each frame when playing, and then rewind and replay using
the stored world.

• Store the world changes at intervals and interpolate between the intervals.
• Store the world changes at intervals and re-simulate between them.
• Store snapshots of the world at intervals and store just the changes between them.
• Store physics events and re-simulate them after rewinding.

Re-simulating the physics backwards would be impossible. However, with Bullet being
deterministic it should be possible to re-simulate it forward. The problem would be if the
simulation of physics was to be done backwards as the rewind technique, without using
snapshots of the world where we store the world state. Using snapshots, would give the
possibility to re-simulate physics forward, but not backward. When the data has been
manipulated to be reversed it could cause deviations and give a different result when
rewinding. Replaying would work as expected, because the same values are used during
the re-simulation. It would not be possible to rewind using negative delta time since
Bullet does not support it. When negative delta time was passed to Bullet it seemed like
the time stopped and boxes floated around, you can see a picture of it in Figure 12.
However the world does run and you can move the camera around and spawn actors,
they will also float around.

35

Noxplus

Figure 12: Stepping the physics world using negative delta time in Bullet.

The team decided that the safest way to get a working result in time, was to log all
position changes for each actor trough the gameplay. The question was how to make it
efficient, and with lowest possible memory usage. To save space, only the actors that
change in some way, being position, rotation or animation, was logged. This has been
done in other games before, like the 2D platformer Braid [22]. Another idea when it
came to efficiency was to store the logged data continuously in memory, with the same
order that is was logged. This way the CPU cache would be utilised during lookup of the
data later, for example during rewind. Reading data from the memory continuously is
faster than looking up fragmented data.

Logging gameplay

The next decision was on how to log the world. One idea was to save the entire world at
each frame before the physics were updated. This would take more space, but it would
give the developer more opportunities, like swapping directly to different world states.
Another idea was to log the same place where the actor’s transform component is syn-
chronised with the physics. With the memory usage in mind, it was decided that the best
choice would be the last mentioned one. This would make it easy to log just the actors
who are updated and avoid logging actors that does not change during a frame.

The next problem was how and when to store data. There were different ideas for
this too:

1. Using a map to log physical changes for every actor in the world and use a separate
array containing data for each frame, telling which physical changes to use at that
frame.

2. Using an array where each entry is a frame. The data of all the actors are stored in

36

Noxplus

it, if an actor is not updated we will not add it in the entry, since it will not need
any changes.

3. Using an array where each entry is a change.

The first option would cause many map look-ups and fragment the data in memory,
meaning the extra speed from CPU caching would be lost.

The second option would be problematic. When creating the the array for storing the
data, every array element must have enough space to store all the actors that possibly
can change. If new actors are spawned during gameplay it might not be enough space in
each array element. A solution would be to let the game developer set how many slots
there should be at each element, but this is not a memory saving solution.

The third idea was the first prototype that was implemented in Noxplus. This is de-
scribed in the Section 5.7.5.

Time manipulation API

auto worldLogger = make_unique<DefaultWorldLogger3d>(logic);
auto conflictSolver = make_unique<DefaultTimeConflictSolver3d>();
auto timeManager = make_unique<TimeManipulationManager3d>(move(

worldLogger), move(conflictSolver));

physics->setTimeManager(timeManager.get());
logic->setTimeManager(move(timeManager));

Figure 13: Example of how the time manipulation manager is created

When designing the API it was important that it was easy to set up and use for the game
developer. To be able to achieve this, most of the complexity of the time manipulation
was hidden behind easy to use functions. See Section 5.7 for how it was implemented.

In order to use the time manipulation features mentioned in Section 2.1, that Noxplus
provides, the game developer must create a TimeManipulationManager3d and add
it to the application’s logic. All rewind, replay and pausing should be done using the
functions provided by TimeManipulationManager3d. Time manipulation manager
controls the game’s time line using three functions; rewind, play and pause. The rewind
function plays the time backwards until the play function is called. It will automatically
pause the game when the beginning of the gameplay is reached. The play function starts
playing the time forward applying the logged data (if any) to the world until the rewind
function is called. The pause function stops the time and all the actors in the world
freezes in their current state.

In order to create the TimeManipulationManager3d the developer needs to create
an object of DefaultWorldLogger3d and DefaultTimeConflictSolver3d. The
world logger logs all actor state changes in the world, while the conflict solver is used to
solve conflicts or paradoxes that can happen during time manipulation.

Using the conflict solver’s setConflictSolverFunction(..) the game devel-
oper can set a std::function using the actor ID as argument that will be called when a
conflict or paradox occurs for that actor. When the function is set, there must also be
specified what type of conflicts it is used for. At the time of writing, only the ACTOR_-

INTERRUPTED conflicts are detected. These conflicts occurs when an actor that is being
replayed is interrupted, for example if there is a collision between a replaying actor and a

37

Noxplus

non-replaying actor. Additionally there are three other functions; setOnReplayStarted,
setOnReplayStopped and setOnReplayFinished. These are used to set functions
that will be run when replay starts, when replay is stopped by the player, and when it
is finished replaying the saved data. For example if the game developer is creating a
game where the player is interacting with its past self, the game developer might want
to spawn a new actor when the replay starts, and remove it when the replay is finished.

Conflict solving

There are numerous possible conflicts that can happened when playing with time. A
brain storming was done on what possible conflicts that can occur, and the ideas were
categorised and grouped based on which conflicts could be solved using one implemen-
tation of a conflict solver. All conflicts that were found had one thing in common; The
source of every conflict during time travel is when the past is interrupted from an ex-
ternal source. For example in the grandfather paradox everything starts when a person
travels back in time to kill his own grandfather [32]. Did he kill himself? If so how could
he travel back in time to carry out the murder if he never existed? This paradox is caused
by an interruption done on the grandfather. If the conflict solver could detect this inter-
ruption, the game developer would be able to cover most of the conflicts and paradoxes
that can occur. The team decided to implement the conflict solver using Bullet’s collision
callback system that already was integrated in Noxplus, see 5.7.3. If used correctly, the
conflict solver can solve a large amount of different conflicts. The game developer can
solve the grandfather paradox by attaching an "interrupted"-function to the grandfather
which handles the paradox. When the interruption occurs, Bullet will detect it as a col-
lision and the conflict solver will launch the grandfather’s "interrupted"-function. What
consequences this gets is up to the game developer to decide.

Logging of components

It is possible to make components that can be used with the time manipulation. Compo-
nents with rewind and replay possibilities need to derive the TimeLoggingComponent
instead of the normal component class. The TimeLoggingComponent class works like
a normal component but it provides three extra functions for handling the logging and
restoration of component data; onSave(saveData), onRestore(restoreData) and
logComponent(). The first function is used to save component data using the saveData-
.save<type>(data) function. The second function restore the component data using
the restoreData.load<type>(data) function. The data needs to be loaded in the
same order as it was saved, read more about this in Section 5.7.4. The third function tells
the world logger to log this component, this function is called by the game developer, for
example every time the component data has been changed.

4.3.6 Demo

Suttung have created several demos for Nox that shows examples of how the different
features can be used. The Noxplus-team have created one demo that demonstrates and
shows the added features of Noxplus , see the demo here [33]. The demo is paused when
first launched and is unpaused using the P button. Rewind is done by the Backspace

button while the Enter replays. The middle mouse-button is used for shooting
boxes and the left mouse-button rotates the camera. Clicking the right mouse-button

while hovering over an actor gives control over that actor, and it can be moved by the

38

Noxplus

TFGH buttons. WASD is used for moving the camera and holding shift while moving
increases the speed.

39

Noxplus

5 Implementation

The Nox-engine is written in C++11. To keep the Nox-engine as consistent as possible
the same programming languages and standards have been used for the Noxplus exten-
sion. Simple DirectMedia Layer 2.0 (SDL 2.0) is used for access to input devices, audio
and graphics via OpenGL [34]. Open Graphics Library 3.0 (OpenGL 3.0) is an API for
talking with the GPU [35]. The Nox engine uses SDL 2.0 to manage the graphics window
and user inputs, while OpenGL 3.0 is used for drawing the graphics. These are cross plat-
form and can be used both for 3D and 2D graphics. Additionally, Assimp was used for
reading of 3D model files. SDL Image 2.0 is an image loading library that requires SDL
2.0 [36]. This was used for loading textures. For simulating 3D physics the open source
physics engine, Bullet, was used.

40

Noxplus

5.1 Logical View

IRenderer3d

onRender()
toggleDebugRendering()
resizeWindow()

Simulation3d

onUpdate()
createActorBody()
changePhysicalPropertie
s()

ActorGraphics3d

playAnimation()

hasAnimation
modelMesh

TimeManipulationManager3d

rewind()
play()
pause()

DefaultWorldLogger3d

loggWolrdState()
getWorldState()

DefaultTimeConflictSolver3d

setConflictParadoxSolverFunctions()

ActorLight3d

enable()
disable()

lights

AnimationChanged3d

eventId
actorGraphics

ActorDirectionControl3d

handleControl()

ActorRotationControl3d

handleControl()

TransformationNode3d

onNodeEnter()
onNodeLeave()

SpotLight3d

render()

SdlTexture3d

load()
bind()

texture

RenderNode3d

onNodeEnter()
onNodeLeave()

PointLight3d

render()

OpenGlRenderer3d

onRender()
toggleDebugRendering()
resizeWindow()

Mesh3d

loadMesh()
void render()

LightRenderNode3d

onNodeEnter()
onNodeLeave()

GraphicsAssetManager3d

loadAssetFromFile()
getObjectMesh()

DirectionalLight3d

render()

Camera3d

moveCamera()
rotateCamera()

world::Manager (NOX)

handleActor()

Logic (NOX)

RenderSdlWindowView (NOX)

GBuffer3d

startFrame()
bindForGeometry()
bindForLight()
presentBuffer()

BaseLight3d

 render()

ActorCollisionEvent3d

eventId
isStarting
firstActor
secondActor

Transform3d

getTransformationMatrix()

position
scale
rotation
qRotation

TransformChange3d

getTransformationMatrix()

eventId
position
scale
rotation
qRotation

Actor (NOX)

BulletSimulation3d

onUpdate()
createActorBody()
handleCollision()
changePhysicalProperties()

physicsWorld

BulletDebugDraw3d

onDebugRender()

isDebugRenderEnabled

ActorPhysics3d

changePhysicalProperties()

physics

ActorMotionState3d

getWorldTransform()
setWorldTransform()

IAssetLoader3d

loadAssetFromFile()
getObjectMesh()

ITexture3d

load()
bind()

IConflictSolver3d

setConflictParadoxSolverFunctions()

ITimeManager3d

pause()
play()
rewind()

play mode

IWorldLogger3d

loggWolrdState()
getWorldState()

GameRenderer

GameApplication

components

1..1

0..0

0..* 0..0

1..1

0..0

1..1

1..1

0..1

1..1

1..1
1..1

1..1

1..1

1..1

0..0

1..1 0..0

1..1

0..0

1..1

0..0

0..*0..0

0..*
0..0

0..* 1..1

SceneGraphNode (NOX)
1..1

0..0

0..*

1..1

2..2

1..1

0..1

0..1

0..1

0..1

0..1

0..0

0..*

Broadcasts

0..0

0..*

Broadcasts

1..1

1..1

0..*

1..1

1..1

0..0

0..0

0..*

Broadcasts

0..0

1..1

1..1

0..0

1..1

0..0

TimeLoggingComponent3d

onSave
onRestore
logComponentData

TimeManipulationData3d

save()
load()

binary data

0..*

1..1

0..*

0..0

Figure 14: Design Class diagram

41

Noxplus

The design class diagram in Figure 14 was created from the class diagram 15 and the use
case model 4.1, to make it easier to know the structure of the system and how everything
connects. The requirements that are set in the Requirements specification chapter 2 were
followed when it was created. The design class diagram shows important layers and
sub-layers used by Noxplus. Most of the classes are specific for Noxplus except the ones
marked "(NOX)". The design follows the layers that Nox use, where there are two major
layers. This had to be done to follow the design of the Nox engine as this is one of our
requirements 2.5.2. These layers are the application layer and the logic layer. This is the
same Design as Suttung mentions in their thesis [18], where they follow the design laid
out by the book Game Coding Complete [37]. There are however layers within these two
layers to use the famous divide and conquer principle [38], making it easier to develop
the system.

The RenderSdlWindowView, inside the window layer, is an implementation of the
View class which is not shown in the diagram. The View class is within the logic layer,
and the RenderSdlWindowView is inheriting from this. It is used by the renderer to
"look into" the logic so it knows what to render. Without this it would not find any actors
or receive any broadcast messages. It is through this view that the game developer will
create his game. Read more about the View class in the Pyroeis document [18].

The game/developer layer is not a part of the Nox engine but a separate project
depending on the Nox engine for creating a game. The GameApplication creates and
stores an instance of the window, the logic, the physics, the world, the time manager and
the event manager. The window is then added to and managed by the logic as a view.

The logic layer handles everything that has to do with the logic of Noxplus. Inside this
layer in the world layer, we created a third layer. This is where the use case Manipulate
Time was developed 4.1. Not only is the Manipulate time layer inside the world
layer, but this is also where the world::Manager is residing. The developer can get
this through the logic context, which again is gained through the RenderSdlWindow-
View. The Manager class is the most important class for our use-case Manage World

4.1.
OpenGlRenderer3d, in the application layer, is the main class that keeps track of all

the graphics and rendering. It has a connection to the actors through the actor compo-
nent ActorGraphics3d and the render nodes. This is one of two connections between
the application layer and the logic layer, the other being the RenderSdlWindowView,
creating low coupling between the two major layers. This helped with finding faults since
the exchange of data is minimal and changing parts of the system became easier since
there are just a few classes that needs to be modified. There will also be people who
would only want parts of the extension, this way makes it easier to pick it out of the
extension.

By dividing the logic layer into smaller ones we get higher cohesion. This gives in-
creased complexity, but a better overview of the system, makes it easier to change mod-
ules and the development can happen more in parallel. The increased complexity is some-
thing the team can live with since it helps more than it hurts [39].

5.2 System architecture

To get enough time for the time manipulation the 3D module had to be narrowed down.
The areas of 3D graphics are endless [40]. The focus was on what the research told us

42

Noxplus

was the most important.

43

N
oxplus

TimeManipulationManager3d

DefaultWorldLogger3d

DefaultTimeConflictSolver3d

BulletSimulation3dBulletDebugDraw3d

ActorPhysics3d

ActorMotionState3d

ActorGraphics3d

ActorLight3d

AnimationChanged3d

ActorDirectionControl3d

ActorRotationControl3d

ActorCollisionEvent3dTransform3d

TransformChange3d

TransformationNode3d

SpotLight3d

SdlTexture3d

RenderNode3d

PointLight3dOpenGlRenderer3d

Mesh3d

LightRenderNode3d

GraphicsAssetManager3d

DirectionalLight3d

Camera3d

1..1 0..0

0..*

0..0

0..1

0..0

1..1

1..1

1..1

1..1

Actor (NOX)

1..1
0..0

0..*0..0

Broadcasts

0..0

0..*

Broadcasts

0..0

0..*

Broadcasts

world::Manager (NOX)Logic (NOX)
0..1 1..1

1..11..1

1..1

1..1
0..*

1..1

RenderSdlWindowView (NOX)

1..1

0..0

1..1

0..0

GBuffer3d
1..1

BaseLight3d
0..*1..1

0..*

0..0

1..1
0..0

2..2 0..0

1..1

0..0

1..1 0..0

0..* 0..00..* 0..0

1..1

Component (NOX)

0..*

1..1

1..1

0..0

1..10..0

1..1

0..0

1..1

M3

TimeLoggingComponent

TimeManipulationData3d

0..*

0..0

Figure
15:C

lass
diagram

44

Noxplus

The class diagram shows most of the classes in the system, the only classes who are
not shown here are: the interface classes and the 2D specific classes that are not used
by the 3D and time manipulation module. It was created out of the use cases and the
assignment description and has been reworked multiple times throughout the project.
The system has five important classes; OpenGlRenderer3d, BulletSimulation3d,
ActorGraphics3d, Actor and Logic. OpenGlRenderer3d handles the rendering
of models and lights. It is the main component for the "Render world" use case, since it
contains the root node of the scene graph, you can find the use cases under Section 4.1.

BulletSimulation3d is the class responsible for physics update and collision han-
dling, and is the class that communicates with Bullet. This is the reason that it has so
many connections to other classes. Actor is the class that represents an object in the
scene; it could be a light or a model. The Actor class has many different types of com-
ponents that goes through the same state cycles as the Actor. The class was part of the
original Nox engine, and only a few parts was modified to fit the Noxplus extension. The
Logic class is the class that represents the logic context; it contains the physics, world
manager, data storage, broadcaster, time manager and all the Views. It binds the whole
logic together and lets other views look into the logic.

Only the most basic fundamentals was implemented first. This was to have some-
thing that could run at all times. The team worked in an iterative way 1.4.1, and it was
important to always have the possibility to test new features as they were developed.

To differentiate between what has been implemented by the team and what has been
reused from other developers open source projects a colour scheme is used. All the green
classes is the classes that has been implemented by the team. However there is two
exception; Even though the BulletSimulation3d is marked green it still contains
two functions that have been reused from an external source. It is still being marked
green because the reused part is only about 5%. The SdlTexture3d class has 10 lines
of reused code. The classes marked with grey is the classes that are based on other
external open source projects, but have been adapted and integrated to fit the design
of Nox. It required a big amount of working hours to analyse and adapt the code to fit
Noxplus. The classes marked with purple colour is the the classes that are written by Nox
and modified by us. The changes made are minor but it requires deep understanding of
the Nox engine and its infrastructure.

5.3 Scene module

5.3.1 Scene graph

The first scene graph implementation was simple. The renderer did only require a render
node in the scene graph used for rendering an object. The renderer contained a render
node acting as the root node of the scene graph. At this point the renderer was only
capable of rendering static objects and all that was needed to be done was to create a
new render node and attach it to the root node, whenever a new actor was created. The
shaders used to render the objects, only transformed the object to the right world position
and gave them a static colour. This was used as a base and later two additional scene
graph nodes was added for managing transformation and lighting. Every node overrides
two key functions onNodeEnter and onNodeLeave, these two functions are called
recursively when a parent node is traversed. The onNodeEnter is called when entering
a node and the onNodeLeave is called before exiting the node. In addition to these

45

Noxplus

two key functions, the nodes used for rendering and lighting needs two extra functions,
onAttachToRenderer and onDetachedFromRenderer. The first function is called
for the current node and all its child nodes, when a renderer is attached or detached
from a particular node. The second function is called when a node is being added, or
when it is removed from a node that already has an attached renderer.

Transformation node

The Transformation node handles the transformation of translation, rotation and scaling
for its child nodes. This is done in the onNodeEnter function which provides a refer-
ence to a model matrix which is recursively passed down to the child nodes. Before the
reference to the model matrix is being passed down to the child nodes, the transforma-
tion node saves the value of current model matrix before transforming it using its own
transformation data. The onNodeLeave function restores the nodes original state using
the previously saved model matrix.

Renderer node

The render node renders an actor using the actor graphics component which contains
the actors mesh data, see Section 5.4.2 for detailed explanation. The rendering is done
in the onNodeEnter function using the uniform handle arguments and a pointer to
the actor graphics component. When rendering the actor graphics component it will use
the model matrix provided by its parent node. The onNodeLeave is left as an empty
implementation because for us there is no need for any post render operations. However
it could be useful for an engine developer.

Light node

The light render node handles the rendering of a light source attached to an actor. This
node do not have the need for the onNodeEnter and onNodeLeave functions so it
is left as empty implementations. This node do not render the lights themselves, but it
tells the renderer to store and render the light later. This is done in the onAttachTo-
Renderer and onDetachedFromRenderer using the renderer pointer argument. The
onAttachToRenderer will run adding the light to the renderer and the onDetached-
FromRenderer removes the light from the renderer.

5.3.2 Camera

A basic camera class was created. The initial projection matrix is generated in the con-
structor. It is used together with the view matrix to update the view projection matrix.
The view projection matrix is used in the renderer to generate the model view projection
matrix which in turn is passed to the shader to map from object space to world space.
Read about the camera controls in Section 5.8.1.

5.3.3 Light

The light is implemented using an abstract class BaseLight3d used by Directional-
Light3d, PointLight3d and SpotLight3d. The BaseLight3d manages common
data and functions used by all the light types. It has three important functions; one init
and two render-functions that the derived classes needs to implement. The init func-
tion is used to initialise the OpenGL uniforms handles used by the shader programs. As
mentioned, there are two overloaded versions of the render function. The first func-
tion is used to render into the stencil buffer used to delimit the light range, the second

46

Noxplus

function renders the light.

Point light

The point light needs additional positional and attenuation data to describe the lights
position and the gradual loss in intensity, the attenuation is described using constant,
linear and exponential attenuation. A sphere mesh is used to render the point light, the
radius of the sphere is calculated using the attenuation data making it just big enough to
cover the lights affected area avoiding wasted light calculations.

Spot light

Because of the similarity between the point and the spot light, the spot light is derived
from the point light. The only difference between the spot and point light is the lights
geometry where the point light has the geometric properties of a sphere while the spot
light has the geometric properties of a cone. The size of the cone is defined by a cutoff
angle which is used to calculate the cone size in the shader.

Directional light

The directional light has an additional direction property which describes the light’s shin-
ing direction. The light is rendered using a quad mesh scaled after the window size. The
directional light affects the whole world so it do not need the render function which
renders to the stencil buffer delimiting the light range.

5.3.4 Rendering
Rendering actor graphics

All model rendering is done in the render function of the Mesh3d class. During the
creation of an actor’s Mesh3d, see Section 5.5, a new OpenGL vertex array object (VAO)
is created and bound to the OpenGL context. This is kept bound while the mesh data of
the actor is loaded and buffered to OpenGL, and is again bound later when the object is
about to be drawn to the screen.

Some actors have more than one mesh entry in their model file. When the model file
is loaded, all vertices, indices, normals, colours and texture coordinates for all the mesh
entries will be pushed on their own respective vectors and buffered to OpenGL at the
same time. To later render this correctly, which sections of the vectors that belongs to the
different mesh entries must be specified. This is done by using the MeshEntry struct, in
the Mesh3d class. For each mesh entry in the model file a MeshEntry is created. The
struct stores where in the vector the vertices/indices for the particular mesh entry starts
and how many vertices/indices it has.

When rendering the Mesh3d all mesh entries in the object are looped trough and ren-
dered one by one. The draw call glDrawElementsBaseVertex is used, where what
parts of the buffered vertex and index data that should be used to draw is specified. Each
vertex has a related normal, colour and texture attribute, so the same numbers are used
for these. See Figure 16. Without the use of mesh entries, all vertecies would have been
drawn as one mesh and there would have been drawn lines between them.

47

Noxplus

glDrawElementsBaseVertex(GL_TRIANGLES,
entries[i].numIndices,
GL_UNSIGNED_INT,
(void*)(sizeof(int) * entries[i].baseIndex),
entries[i].baseVertex);

Figure 16: Render call

Rendering Animations

Skin animated 3D models contains a skeleton of connected bones. For humanoid charac-
ters, the bones are often structured like in the real human body, with simplifications. See
Figure 22. The skeleton is linked to the animation data created in a 3D modelling pro-
gram like Blender [41], that tells how the skeleton should be deformed at a given time.
Each vertex on the actual 3D model has a maximum of 4 affecting bones with belonging
weights, that tells how much impact each surrounding bone has on the vertex. When a
bone is moved or rotated, the vertices will move along with different speeds depending
on the bone weight for the particular vertex.

For rendering animations, two extra attributes was added to the geometry fragment
shader:

layout (location = 4) in ivec4 boneIDs;
layout (location = 5) in vec4 weights;

and two new uniforms:

uniform bool hasAnimation;
uniform mat4 bones[100];

The two attributes boneIDs and weights tells which 4 bones that belongs to the cur-
rent vertex, with 4 belonging weights. These are static and are buffered to the OpenGL
context when the Mesh3d is created. At each frame when an animated model is rendered,
pre-calculated bone transformations (see 5.5.2) for the current frame is sent to the shader
uniform bones[100]. A maximum of 100 bones can be uploaded per mesh, however,
the actor shown in Figure 22 only uses 19. We have the uniform hasAnimation, to tell
the shader if it should use the bones-array or not.

48

Noxplus

mat4 boneTransform = mat4(1.0);

if(hasAnimation)
{

boneTransform = bones[boneIDs[0]] * weights[0];
boneTransform += bones[boneIDs[1]] * weights[1];
boneTransform += bones[boneIDs[2]] * weights[2];
boneTransform += bones[boneIDs[3]] * weights[3];

}

vec4 skinVertex = boneTransform * vec4(vertex, 1.0);
gl_Position = mvpMatrix * skinVertex;
...
vec4 skinNormal = boneTransform * vec4(normal, 0.0);
Normal0 = (modelMatrix * skinNormal);
WorldPos0 = (modelMatrix * skinVertex);
...

Figure 17: Use of bone transformations in the shader.

For each vertex that is rendered, the shader will look at the four bone IDs to see
which bones affect the vertex. The IDs are used as indices into the bones[100] array
where the shader finds the bone’s transformation matrix. The weights tells how much
each bone affects the vertex. This will be used to offset the vertex and the belonging
normal by multiplying them with the bone transformation matrix and the weight (see
Figure 17).

Information about the animation to be played is saved in the Actor’s graphics com-
ponent, as mentioned in 4.3.2. On each frame, the stepAnimation() is called to step
the time of the animation forward. The time is used to fetch the right set of bone trans-
formation matrices from the component’s mesh before passing them to the shader. See
Figure 18.

void ActorGraphics3d::stepAnimation(const nox::Duration& deltaTime)
{

this->currentAnimationTime +=
(util::durationToSeconds<float>(deltaTime)

* this->currentAnimationSpeed);
}

Figure 18: How animation time is incremented/decremented for each frame.

The code in Figure 19 shows how the bone transformation matrices for one model
are passed to the shader for each frame.

49

Noxplus

for (unsigned int i = 0; i < boneTransforms.size(); i++)
{

std::string name = "bones[" + std::to_string(i) + "]";
GLuint boneLocation = glGetUniformLocation(renderData.

getBoundShaderProgram(), name.c_str());
glUniformMatrix4fv(boneLocation, 1, GL_TRUE, glm::value_ptr(

boneTransforms[i]));
}

Figure 19: Passing bone transformations to the shader.

5.3.5 Deferred rendering

The onRender() function in the OpenGlRenderer3d class renders the whole world
to the window. It traverses the root node and renders the objects in the scene graph
together with the lights added by the light render nodes described in Section 5.3.1. The
rendering is divided into three render passes; geometry, stencil and light. These render
passes renders into the GBuffer which manages a framebuffer object with multiple
texture buffers attached to it. Each texture buffer stores data about a temporary texture.
The depth texture buffer is a texture containing depth data about what the camera sees
and is used by OpenGL to determine whether an object is in front or behind another.
The geometry pass traverses the root node and renders all the objects colour, normal and
position data into their own respective texture buffers as well as populating the depth
texture buffer inside the GBuffer3d. After the world is rendered in the geometry pass,
it will use the created textures to render a lit world. This is done by looping through all
the lights and render them using the stencil pass followed by a light pass. The stencil pass
do not render to any texture buffer, but it creates a stencil buffer, like a paper with holes,
used to delimit the light volume so the light will not affect objects outside of its range.
After the stencil buffer is created the light pass renders the light and the objects that are
affected by it into a final texture in the GBuffer3d. After the lights are rendered into
the final texture it is blitted to the screen.

50

Noxplus

Figure 20: Deferred light rendering makes it possible to have many light sources without significant
performance loss.

5.3.6 Transparency

Figure 21: The first picture shows a transparent grid. The Second picture shows two transparent
object without proper sorting.

Rendering transparent objects requires additional work compared to rendering non trans-
parent objects, this is due to the fact that the transparent objects needs to be rendered
in the order back to front to get the transparency to look right. They also needs to be
rendered last after every non transparent objects are rendered. To solve this problem the
drawing of the transparent and non transparent objects are separated by storing all the
transparent objects in a separate vector. The non transparent objects are rendered first

51

Noxplus

when traversing the scene graph, and the transparent objects are drawn at the end of
the frame. If the vector was not sorted correctly on distance from the camera, the result
would be as shown in Figure 21.

5.4 Actors

Everything that exists in the 3D world is called an actor. An actor can be anything from a
player, a house or a simple light source. The actors are empty containers for components
describing a functionality like health, graphics, light and animation. Every component
needs to implement the following functions: initialize, serialize, onUpdate,
onCreate, onComponentEvent. The actors are created from JSON files 4.3, see the
Pyroeis document for detailed information [18].

5.4.1 Actor transform

The transform component handles the actors translation, rotation and scaling. The ini-
tialise function retrieves and stores initial values for these from actor’s JSON file. The
getTransformationMatrix function generates a transformation matrix using the po-
sition, rotation and scaling data, this function is used to get the model matrix when ren-
dering the actor. When this component changes it broadcasts an transformation changed
event notifying other systems.

5.4.2 Actor graphics

ActorGraphics3d is a component created for handling actors graphical properties
like shape, animation and colour. This component contains four major data members;
meshData, actorTransformNode, renderTransformNode and a rendererNode.
The meshData is a pointer to a Mesh3d object containing 3D model data. The remain-
ing three data members are scene graph nodes used to render the model data. The
actorTransformNode contains the actors transformation data 5.4.1. The render-

TransformNode is appended to the actorTransformNode and is used to change
or offset the actors original transformation. The rendererNode is appended to the
renderTransformNode so it can use the transformation data from the transforma-
tion nodes when rendering the model data. The model data pointer is set when the
component is created in the initialise function which provides a JSON object con-
taining the name of the model and a path to its data. After parsing the JSON object it
runs the asset managers function for loading in a model using the name and path as
arguments, see 5.5. After the initialisation is done it will run the onCreate function
which creates the three scene nodes and appends them in the right order and broad-
casts an event telling the renderer to add the actorTransformNode to the root node.
The onComponentEvent function updates the actorTransformNode transformation
data whenever the actor transform component is changed.

5.4.3 Actor light

Light sources are created and managed by the component ActorLight3d. When the
component is created it will run the initialise function which provides a JSON object
as a argument containing data about multiple light sources. It loops trough all the light
entries in the JSON object, parses them, creates the lights and adds them to their own
LightRenderNode3d object. After the LightRenderNode3d object is created it is
added to a unordered map using the lights name as a entry index, it will also broadcast

52

Noxplus

an event telling the renderer to add the LightRenderNode3d object to the root node.
After the initialise function is done it will run the onCreate function and get a
pointer to the actors transform component which is used to update the light positions
whenever the actor position changes in the onComponentEvent function.

5.4.4 Actor physics

The component that handles physics for an actor is called ActorPhysics3d. When
initialised it tries to retrieve all information about its physical properties, type and shape
from the JSON object. The information it cannot find is set to a default value, usually
0 or an empty string. With the exception of certain properties, for example a dynamic
object where it can not find the mass; the mass will be initialised to 1. Without it the
object might just as well be a static object. You can read more about this in Section 4.3.1.
The component has many get and set functions for the physical properties, these are
used to control Bullet when stepping the physics world 5.6.5. The ActorPhysics3d

component is interacting with the physics engine through the BulletSimulation3d

class.

5.4.5 Actor control

Nox provides a key mapper that allows the game developer to map actions like "move left"
or "move right" to different keys using JSON, see Section 4.3.4. When a key with a regis-
tered action is pressed or toggled the corresponding action event is broadcasted. Nox pro-
vides an abstract class for handling the action events produced by the key mapper. Every
control related component needs to derive this class and implement the handleControl
function which provides a reference to an action event allowing the component to han-
dle the action. Two components were created for handling the directional and rotational
control of the actors using Nox vector control. See the Pyroeis document [18].

Directional control

The directional control component handles the movement of the actors in x, y and z
axis. The initialise function retrieves data about movement speed and whether the
control should be relative to either the camera or the actor rotation using the JSON object
provided in the function argument. If the control is not relative to the camera or the actor
it will be relative to the OpenGL coordinate system. When the handleControl function
retrieves an action event with the id "move", it will get the movement values represented
as a vector3. If the relative to camera or actor is enabled it needs to convert the movement
vector3 to the right coordinate system before storing it. The onUpdate function updates
the actors physical properties by setting the linear velocity to the stored movement data
multiplied with the movement speed.

5.4.6 Rotational control

The rotational control component handles the rotation of the actors in x, y and z axis. The
initialise function retrieves rotation speed from the provided JSON object. When the
handleControl retrieves an action event with the id "rotation" it stores the rotation
values represented as a vector of 3. The onUpdate function updates the actors physics
by setting rotational speed to the stored rotation data multiplied with the rotation speed.

53

Noxplus

5.5 Model loader

Assimp, which was our selected model loader, provided us with a fast and simple inter-
face for reading 3D model files 1.2.2. This made it easy to load the files, but using the
loaded data correctly was the difficult part. Assimp was the most documented loader that
was found, however parts of Assimp had almost no official documentation, for example
how to use it for loading animation. A few good tutorials were found on how to use it and
how animations could be loaded. The YouTube tutorials by "thecplusplusguy" [42], and
the website ogldev.atspace.co.uk by Etay Meiri [43] helped us. Regarding the skin anima-
tions, none of the group members had any previous experience with this, and the process
was more advanced than we imagined. We ended up using parts of the code/structure
from ogldev’s tutorials [43]. Due the poor documentation on animations with Assimp,
we saw no other option given our short time. Ogldev’s code is free to use and uses the
same MIT licensing as Suttung. Even though much of the code was used, it took time
understanding and refactoring it to our purpose.

5.5.1 Basic model loading

Loading models with Assimp was done using Assimp’s Importer class. The importer’s
ReadFile() member function takes the filename as an argument, and different flags
such as aiProcess_Triangulate and aiProcess_GenSmoothNormals can be used
to tell the importer to perform different mesh calculations and mesh optimisations before
it is finished. The function creates and returns an aiScene object where all data loaded
from the model file can be fetched: vertex data, normals, texture coordinates, material
data, animation data and more. Assimp uses its own types of vectors, matrices, floats,
and so on. All the data has to be converted to standard OpenGL Mathematics (GLM)
before it can be used with OpenGL. All loaded data for a model is stored in the Mesh3d
class, which also contains the information used for rendering, like VAO and mesh entries
information.

Model loading optimisation

All loaded mesh/3D model data is managed by the GraphicsAssetManager3d class
that contains a map of Mesh3d objects indexed by name. To start with, each mesh was
loaded once per actor that was using it. This would mean that if 100 actors were loaded,
all using the same monkey head mesh, the model file would be processed and stored in
memory 100 times. This is obviously inefficient, so a solution to how one mesh could
be used for several actors was needed. The solution was to store all meshes in a map.
When a new actor with a 3D model is about to get loaded, it will check what asset the
actor is trying to load, and if the asset’s name already exists in the map, the loading will
be skipped. Often the game developer wants to load several actors that uses the same
mesh data, and this will definitely save her both loading time and memory. There is some
overhead when looking up a map entry, but as this only happens during start up, it will
not affect the gameplay experience.

54

Noxplus

5.5.2 Loading animations

Figure 22: Animated goblin with visible bone structure

The animation data that is stored in the model files is only key frames that the bones
moves between. For example, in the first key frame the actor’s arms are hanging down,
and in the next key frame the arms are raised. There is no way to fetch each animation
frame directly from the file. In order to render a smooth animation, bone transformation
has to be calculated between the two key frames using interpolation. To save perfor-
mance all the transformations between the key frames are pre-calculate when the game
starts. During rendering, the bones can be fetched directly instead of being calculated at
each frame. Since an animation looks the same every time it is played this was done. See
Section 7.1.2 for memory usage when it comes to animations.

Some model files contains more than one animation, for example "idle", "walk" and
"jump". For each animation the model has, a loop runs, increments the current "time" and
calculates all the bone transformations at that point. All animation frames for an actor
are stored in a map<aiAnimation*, vector<vector<mat4»> inside the Mesh3d

class. The inner vector<mat4> holds all the bone transformations for one frame, for
example the first frame in "jump". This vector is kept inside another vector that holds
all the frames for the animation ("jump"). The map holds all the animations, mapped to
the original aiAnimation from Assimp, where the animation data is calculated from.
Figure 23 illustrates how the first 4 frames of one animation with 4 bones are stored in
a vector<vector<mat4».

Figure 23: Storage of 4/60 seconds of an animation

The memory usage for each stored animation depends on the number of bones, ver-
tices and length of the animation. For instance, the dance-animation of the goblin in
Figure 22 lasts about 24 seconds. With a frame time of 1/60 second, 1440 frames will

55

Noxplus

be generated. With 19 bones and one 4x4 matrix per bone taking 64 bytes each, it ends
up with about 1,75 megabytes for the 24 seconds, or around 73 kilobytes per second.
Additionally there is also the bone data that holds which vertices that is affected by
which bones. For that there are 4 integers for the bone IDs and 4 floats for the bone
weights, per vertex. The goblin has 2880 vertices, so the total size of bone information
is 2880*((4*4B)+(4*4B)) = 92 kilobytes. The graphics asset manager mentioned ear-
lier will make sure that no 3D models are loaded twice - thus generating the animation
frames will only happen once, even if the developer wants several clones of the actor.
Figure 24 illustrates how animation frames are shared between actors.

Figure 24: Two actors sharing the same Mesh3d, playing different animations

5.5.3 Textures

For loading and storing 3D textures, a third-party library was needed. For this the open
source texture loader SDL_image was used. This was already included in the Nox engine,
and all Noxplus members was familiar with it. It provides an easy API for loading and
storing textures.

5.6 Physics module

An interface class, Simulation3d, was created for the integration of the physics engine.
The BulletSimulation3d class extends this class and handles all communication with
our chosen physics engine Bullet, with one exception. See Section 7.3 for why we chose
this physics engine and Section 5.6.1 for the exception. The interface class contains a
large number of member functions that all implementations need to implement. The rea-
son for creating the interface class was to follow the requirements mentioned in Section
2.5.3, making it simpler to remove Bullet and implement another physics engine. The
interface class that Suttung already had created could not be used since it is only meant
for 2D physic engines.

5.6.1 Bullet physics library

Bullet has a class called MotionState, this is used for linking the renderer and the
physics together. This class was derived to create a custom class that links the 3D ren-

56

Noxplus

derer with Bullet. This choice was made after some research and talking with supervisor
Nowostawski, who said there are usually two ways to do it:

1. Pointer from the physics to the scene graph.
2. Pointer from the scene graph to physics.

The way that was implemented, with the MotionState class, is the same as point one
in the list. A possible, if terrible solution could have been to updated the physics then
loop through our scene graph and update the position and rotation of our actors with
the information from the physics. This would have been a complex and inefficient way.

In BulletSimulation3d there is one instance of btDiscreteDynamicsWorld
which acts as the simulated 3D world. It is able to simulate discrete physics, but in case
soft bodies is to be implemented later it can be replaced with a btSoftRigidDymaics-
World which is an extension of the previously mentioned class, as shown in Figure 25.

Figure 25: Bullet Collision world hierarchy. [44]

5.6.2 Rigid bodies

In order to simulate a world using Bullet, a set of rigid bodies with physical shapes must
be created. This is done by first creating a ActorMotionState3d object which links
the physics to the rendering. The function setWorldTransform runs when a body has
moved. The getWorldTransform runs just once when the body is added to the world
so Bullet knows the initial position. Lastly a collision shape is created, more about this
in Section 5.6.3. Then an object is created that contains all the data a rigid body uses
when being created. We pass in the MotionState object, the mass and the inertia of the
actor, and its shape. With this object, the rigid body object is created and has its physical
properties set. Now with an instance of the rigid body, a void pointer that Bullet has
called userPointer is set to point to a struct we made that contains a pointer to the
actor and a pointer to the rigid body. This is used for many things, but the most important
is the collision handling. A reference of this struct is retrieved from a map using the ID
of the actor and have the user-pointer point to it. The final step is then to add the rigid
body to the physics world.

5.6.3 Collision shapes

A collision shape is needed to be created for actors in order to simulate the world prop-
erly. These shapes can be basic shapes, like a box, cylinder or sphere, or they can be
shapes formed by the vertex positions in a mesh. What type of shape an actor should use
is read from the actor’s JSON file, together with other physical properties such as mass,
position and friction. This is used to create a btRigidBodyConstructionInfo which
is passed as an argument when the rigid body is created. The collision shape is used for

57

Noxplus

detecting collision and needs to be created outside Bullet and passed into the physics
world with the rigid body. A collision shape can be reused for multiple objects and Bullet
suggests to do this with the more complex shapes [45]. Convex hull shapes does just this,
as long as the objects have the same name in the JSON file.

Convex hull shapes

As mentioned in 4.3.1, the mesh is needed to create this collision shape. Before creating
a new shape, it checks a map that contains all the convex hull shapes by name, if it is
found it will reuse the shape. If the shape has to be created, it needs to retrieve the mesh.
It uses the actors ActorGraphics3d component for this. This is where the mesh is stored.
When retrieved the indices and vertices are used to create a btTriangleMesh. This is
then used when creating a btConvexTriangleMeshShape object, which is set to be
a convex hull shape. If the optimise Boolean is passed as true, Bullet will optimise the
shape by reducing the number of vertices before the new shape is set. If not, the new
shape will be used directly. When the shape is created, it is added to the map so it can be
reused later.

Concave hull shapes

The concave hull shape also use the mesh to create a collision shape, however this type of
shape can only be given to a static object. The mesh is retrieved and the shape is created
in the same way as it is done for the convex hull shape 5.6.3, it is just set to be a concave
hull shape object instead.

Compound shape

When creating a compound shape it will use the createShape function for every shape
the actor has. It is always using dynamic aabb tree to accelerate early rejection tests.
It can be composed of all the before mentioned shapes 4.3.1 4.3.1, with the exception
of the static ones. The concave shape is an exception to this and it will let you move it
around, like it was dynamic.

5.6.4 Collision detection

Bullet is handling the collision detection and every time when Bullet has done its work it
runs a function that the game developer set, (myTickCallback). This functions iterates
over all the contacts manifold, a contact manifold contains all the contact points for a
pair of objects, meaning a collision has happened. Whenever a collision pair is found that
does not come from the last time Bullet ran, a function is run to add this pair. Then a
comparison with the new collision pairs runs with the ones from last round and check for
matches, if there are no match for some of the old, it means that the collision has ended.
The function to remove collision pairs is then called. Lastly the new collision pairs are
updated to be the old ones.

In the function for adding new collision pairs we first check if any of the objects that
are in the collision are non-actors, if so nothing is done. At the time of writing nothing is
done with non-actors. If they are proper actors the sum of the normal and friction forces
are calculated and, depending on how the developer has set up the collision callbacks
either; run through the collision callbacks that have been set by the developer for the
actors or send out an event with the information and let the developer handle it. If the
function to remove collision pairs are called the same things are done as if there was
a new collision the difference is that the forces and contact points are not found and

58

Noxplus

passed.

Collision callbacks

There were two possibilities when it came to implementing the collision callbacks. One
way was to set up an event system so that when a collision was registered an event was
broadcasted to the system and the developer would set up a listener and choose what
he wanted to do with the actors. The second possibility was to set up a map with the
collisions callbacks that the game developer could add the callbacks into. It was decided
that both choices should be implemented so they could be tested against each other, and
so the developer could choose the preferred one. In the end we decided to keep both and
differentiate between what one to use with a Boolean.

The collision callbacks are stored in two maps, an actor ID is required to be passed
with the callback together with what type of callback it is. There are two kinds of call-
backs, one for when the collision stops and one when the collision starts. A map is used
for each type so that the two types of callbacks are not mixed. The callback is given an ID
for the map inside the first map. A second map is used for every entry in the first map so
a game developer can set multiple collision functions. The ID for the callback is returned
when first added in the map. It is also possible to remove a collision callback with the
ID for the callback, together with the ID for the actor and what type of collision callback
it is. If the callback to be erased is found, the remove-function will return true, and if it
fails it will return false.

5.6.5 Physics functions

There are several set and get functions for the physic, that can be are accessed for each
actor through their actor physics component. See Figure 6.

5.6.6 Debug renderer

Figure 26: Rendering of the physics collision shapes.

59

Noxplus

Bullet provides a simple API for rendering the collision shapes geometry and repre-
sents their state using colours. A class that inherits from the Bullet’s interface class
btIDebugDraw was created and called BulletDebugDraw3d. The interface class pro-
vides an essential function drawLine(from, to, colour). The drawLine function
represents a line where the starting and ending point is the arguments from and to. For
each collision shape this function is called multiple times creating the collision shapes ge-
ometry line by line. The lines received from the drawLine function is stored in a vector
using a struct containing the starting point, ending point and the colour of the line. At
the end of each frame the lines stored inside the vector is rendered using a simple shader
which transforms the vertices and sets the colour. The initial way of doing the debug
rendering was to render one by one line each time drawLine was called, resulting in
many additional OpenGL draw calls.

5.7 Timeline manipulation module

To create the time manipulation module and its features 2.1, the gameplay data had to
be stored somehow. This was discussed extensively and after some days of prototyping,
we decided that the safest and most flexible way to do it was to store the data in a list.
Read more about the prototypes in Section 5.7.5.

The focus was on storing data in a way that it could be accessed as fast as possible
when it was needed. By storing and accessing the data continuously in the memory, the
CPU cache would be utilised and we would get a slightly faster look-up of data.

5.7.1 Logging and storage

Logging and fetching data is handled by the world logger, DefaultWorldLogger3d.
All frames are stored in a list of WorldState structs. Attaching and removing parts of
a list is easier than with an array or a vector. Each world state contains multiple vectors
storing all changes that happened since the last frame, see Figure 27.

struct WorldState
{

std::vector<ActorPhysicsState> actorStates;
std::vector<ActorAnimationState> animationChanges;
std::vector<ActorAddedOrRemoved> actorsAddedOrRemoved;
std::vector<TimeManipulationData3d> componentChanged;

};

Figure 27: WorldState containing all changes that happened in a frame

The structs ActorPhysicsState, ActorAnimationState, ActorAddedOrRemoved
and TimeManipulationData3d are all used by the world logger. ActorPhysics-
State stores the actor’s physical properties such as position, rotation, scale, velocity
and forces. It also holds a pointer to the actor’s physics and transformation component
so these can easily be accessed when the list is traversed. ActorAnimationState con-
tains information about an animation change; the ID, time and speed that was active
before the change, and the ID, time and speed that it was changed to. The old anima-
tion information is required when the time manipulation manager is rewinding, and the
information about the next animation is used during replay. It also has a pointer to the
actor’s graphics component so the current animation data can be accessed and changed

60

Noxplus

quickly. An ActorAddedOrRemoved struct tells that an actor is added or removed at
the current frame. It stores an Identifier that tells which actor is added/removed and
a Boolean that tells if it was removed or added. TimeManipulationData3d is used for
logging custom made components, more about this in the upcoming Section 5.7.4.

When the DefaultWorldLogger3d is created, it creates a buffer world state node.
If changes are made during the first frame of the game, all these changes are saved to
this node. At the end of each frame the member function setEndOfCurrentFrame()

is called. Here the filled buffer world state is pushed back on the list before a new buffer
world state is created, see Figure 28. The new node will be used to save all the changes
for the next frame. The frameIterator is a list iterator that always points to the cur-
rent world state and is used during rewind and replay.

void DefaultWorldLogger3d::setEndOfCurrentFrame()
{

if (this->rewindEnabled == false && this->frameIterator == this->
savedFrames.end())

{
savedFrames.push_back(this->bufferWorldState);

// Create a new one to be filled:
this->bufferWorldState = new WorldState();
this->frameIterator = this->savedFrames.end();

}
}

Figure 28: The setEndOfCurrentFrame function that runs at the end of each frame.

Logging of physical changes is done in the DefaultWorldLogger3d class, by the
member functions logActorState. This is called from the ActorMotionState3d

class’ setWorldTransform member function which is automatically called by Bullet
each time a collision body moves.

The world logger extends Nox’s interface IListener and is set to listen for the events
SceneNodeEdited and AnimationChanged3d. The SceneNodeEdited event oc-
curs when an actor is added or removed from the scene graph. AnimationChanged3d
happens when the actor’s animation is changed, for example from "idle" to "run", in its
graphics component. When the AnimationChanged3d or SceneNodeEdited events
occur, a new entry will be stored in their respective vector in the current world state
node.

5.7.2 Rewind and replay

Figure 29 illustrates how the data is stored in a list. During rewind, the engine will
step backwards in the list, node by node, read the changes that is stored in the node
and apply them to the physics component of the actors that the changes belongs to.
When the replay is running, the physics will be applied just like during rewind, but it
will also clear the data in the node so new, updated data can be saved. No nodes will
ever be deleted, they are just updated. Because the changes are set in Bullet directly,
these changes will immediately be sent to the logger and will replace the deleted data.
Sometimes, new actors are spawned during replay, and in that case, these will be logged
in the current node, together with potential interactions with the world. When rewinding

61

Noxplus

or replaying the animation it will use the stored animation data inside the current node.
It applies the changes by using the pointer to the graphics component. As mentioned in
Section 5.7.1 both the information about the previous animation and the new animation
is logged every time an actor changes animation. During rewind it will set the graphics
components animation id, speed and time to the stored "previous" data. If it is replaying
it will use the "current" data. If the node has some data about removal or adding of an
actor it will send out a SceneNodeEdited event to tell the engine to remove or add the
actor from the scene graph. If custom created components has been logged on a frame,
the component’s onRestore will be called. See 5.7.4.

Figure 29: Shows the three first frames of gameplay, stored in a list

5.7.3 Paradox/conflict solver

The class DefaultConflictSolver3d is created to help the game developer solve
the paradoxes or conflicts that happens when changes are done to the past, see Section
4.3.5.

One type of time conflict is direct interaction with the past. For detecting these con-
flicts, Bullet’s own collision detection is used. A flag in the actor’s physics component tells
whether the actor is being simulated or replayed. When the actor is created, this flag is
set to true, telling that it is simulated by the physics world. During rewind, all actors will
get their simulated-flag set to false. New actors that are spawned has no logged data and
will be simulated by the physics during replay. When a replaying actor is hit by a simu-
lated actor, the actor that is being replayed will start being simulated too. When Bullet
detects a collision between two actors during replay, it will first check if one of the actors
have their flag set to true. If so, it will launch the conflict solver function if it was set, for
the actor that is being replayed, before it sets it to start simulating.

In addition to the actor-specific conflict functions, there are also three other functions
that the game developer can set. These are mentioned in Section 4.3.5 and works the
same way as the actor-specific functions.

5.7.4 Logging of components

After some discussion with the group we came up with a few ideas for logging the com-
ponents. One of the main problems was that we did not know how to handle logging
of unknown data which the developer creates in each custom created component. Us-
ing template and interface classes was tried as a solution to this problem, but it did not
work. How could the data be stored in an efficient way in the world logger or stored at all,
when the data types that had to be stored was unknown? After consulting Nowostawski
the problem was solved with a serialisation technique where the user needs to imple-
ment two functions where the data is being marshalled and unmarshalled. The data
could then be stored continuously in memory as binary data or JSON. Since JSON adds

62

Noxplus

overhead, the decision to store it as binary was made. The TimeLoggingComponent

which is an abstract class derived from the component class was created. Every compo-
nent that wants to be logged need to derive this class instead of the original component
class. The TimeLoggingComponent class provides three additional functions for solv-
ing the logging and restoration of the component; logComponentData, onSave and
onRestore, see Section 4.3.5 for how they are used. The first function initiate the world
logger’s logComponentData function and is called whenever the component data has
changed. The second and third function saves and restores the component using the class
TimeManipulationData3d which is a container for storing and restoring component
data. This container has two functions for saving and restoring data; save and load.
The save function saves the data as raw data inside a char vector. When a component
is logged the world logger creates an object of the container and stores it the current
world state before passing it down to the component using the component’s onSave
function. The load function takes a pointer to the object that wants to be restored and
copies the raw data stored inside the vector to the pointer’s memory address. When
the component needs to restore the saved data, the world logger will pass the same
TimeManipulationData3d object to the component using its onRestore function.
onRestore is called by the world logger during rewind and replay.

5.7.5 Discarded prototypes
First prototype: One array

The best way to store the physical changes was to store them as vectors instead of full
model matrices, this was found during the implementation of the first prototype. This
increased the time to store them away and use them because of the converting back and
forth. However the choice was base memory usage concerns.

A struct containing the data for one actor-change was created to store all changes
sequentially as single entries in the array. The struct would have a Boolean flag to
mark where each frame ends; the last stored entry in the array would get the flag set
to true when the frame finished. Having unused Boolean entries in each struct would
not take up noticeable amounts of memory. With one frame per entry where all actor
changes was to be stored, space had to be prepared for each frame. How much space
was needed for each frame would vary, based on how many actors that was in the world.
Either the developer would have to set it or there had to be a pointer in each struct

telling where the data is stored outside the array. None of these was an option. Pointers
would fragment the data and we would loose performance having the data spread all
over in our memory. Having unused entries would not be great either.

Once the basic logging, rewind and replay was working the team started thinking
about some things that had to be taken care of. The thing was that the physics was
stopped updating during rewind. This would become a problem since the physics had to
run for collision detection and updating objects that were to be updated during playback
and rewind.

New actors spawned before playback would not be logged before the playback was
done. When the playback was finished, the logging of the new actor started, but this
was saved in the end of the array. What the team wanted was to log the newly spawned
actor and append this data to the frame area where it belongs in the array. Then, during
rewind, the array could be looped sequentially and the stored changes applied.

63

Noxplus

There were several ideas how to solve it:

1. Convert the array to have pointers. This changes the memory from continuous
memory to scattered, this will increase time for retrieving data and this was not
optimal.

2. Sort the array so new data could be inserted in a frame specific frame. This is
time consuming and sorting an array for 2 million entries would take about half a
second. It could be done in a separate thread and skip a frame for every time new
data for a new actor was to be added so the child thread had the time it needed to
do the insertion.

3. Use the current array and logging method and create an external list with nodes
sorted on frame number, pointing to the right elements of the array. This would
maintain the continuous storage of data, but the look-ups in the array during
rewind/playback would not be fully sequential. Traversing it would cause possi-
bly a lot of cache misses on the CPU, so performance wise it would basically be the
same as storing all the data in a linked list.

4. Loop through the array once before new actors is spawned and reserve space for
the new actors in each stored frame. The problem with this method is that it’s
newer known if the new spawned actor is going to move/change it state every
frame resulting in potential unused entries in the array.

5. Let the user set the amount of new actors that are to be spawned in a game. So an
amount of needed array elements can be reserved when the game starts. The same
problem arises as the previous point. If the actors are to move around on every
frame is unknown. If no actors are moving there would be a lot of wasted space.

6. Log the new data at the end of the stored data, while playing the data from the
beginning of the array and set this to be overwritten by new data later. When all
this space has been overwritten, the logger can continue writing at the end of the
array again. In theory, it could work, but it would be a mess of indexes to keep
track of, and the chance of bugs is large.

To start with, an array with 2.000.000 entries were created, just to make sure that
memory was not a problem. Some calculations were done on how long it would take
before the array was full. The following numbers were calculated out from one actor
continuously moving and being logged 60 times per second:

33.333 seconds log time with 1 actor
16.666 seconds log time with 2 actors
11.111 seconds log time with 3 actors
8.333 seconds log time with 4 actors
6.666 seconds log time with 5 actors
166 seconds log time with 200 actors

The program would not allow any larger array than this. A possibility to circumvent this
would be by storing the array globally, but keeping our data secure took priority.

Second prototype: Two arrays

The second try was none of the above but a completely different idea. There would be
two arrays, one used for logging and one used for playback, at one time. The logging

64

Noxplus

would start like before on the first array, and when rewind started it would play back-
wards on that array and apply all the physical states that is stored here, to the world.
When the rewind stops and the replay starts, it would swap array and start logging on
the second array while reading/playing the data from the first array.

Figure 30: Logging data using two arrays: first rewind

In Figure 30, when the active logging-array change from array 1 to 2, a link is created
between the two arrays telling what index the logging will start at in array 2. This item
in array two, index 0, will be marked with the index of where array 1 left, which was
index 7. This way it would know where to swap array when looping trough the arrays
during rewind or playback. In this example, a new actor is spawned after the player stops
rewinding and gameplay continues. This actor will be able to do changes in what was
previously logged. The new actor will be logged on the second array, together with the
old gameplay that was stored on the first array. This solution gives us continuous memory
and good caching utilisation. The only problem is that there are now 2 arrays taking up
the double amount of memory.

Figure 31: Logging data using two arrays: replay

This option works for straight forward rewind and playback, but when the player
starts rewinding before all the old data has been saved, this data will later be overwritten
and lost. The team tried to find a way to handle this by storing different indexes, but

65

Noxplus

realised that the complexity would make the Time manipulation module weak and it
would not reach the requirement of robustness 2.3.

5.8 Control system module

5.8.1 Camera controls

The camera controls must be implemented by the developer in an update function, but
the functions that are to be called to move the camera itself are in the Camera3d

class. There are 4 functions that control the direction of the camera; moveForward,
moveBackward, moveLeft and moveRight. The left and right functions moves the
camera from side to side, instead of actually rotating the camera. Camera rotation is
done with the mouse, it finds the length of how far the mouse has moved, if it is less
than the max amount, a new view direction is calculated. It is also possible to reset the
camera in case the developer becomes lost, through the reset() function.

5.8.2 Time control

- Rewind - Forward replay - Pause

5.9 Demo

66

Noxplus

6 Testing

6.1 Performance testing

The performance tests were run on a computer with the following specs:

• Operating System: Microsoft Windows 7 Ultimate 64 bit.
• CPU: Intel Core i7 920 @ 4 GHz.
• GPU: NVIDIA GeForce GTX 560 Ti.
• RAM: 16 GB @ 1600 MHz.

6.1.1 Rendering without physics

To test the rendering performance several stress tests were performed. In the first test a
wooden textured box with a number of 356 polygons were used. This was cloned and
placed to form a wall of boxes. All boxes were visible during the test and all physics were
disabled. Figure 32 shows how the frame rate drops with different amount of boxes.

0

10

20

30

40

50

60

1000 2000 2500 3000 4000 5000 6000 7000 8000 9000 10000

Fr
am

e
s

p
e

r
se

co
n

d

Number of objects

Static wooden boxes (no physics)

Figure 32: Performance when rendering static low-poly boxes without physics.

A test was also done with a more complex model. This model has 16 912 polygons
which is a lot more than the wood box. The frame rate starts to drop at about 100 objects,
which corresponds to 1 691 200 polygons vertexes. With the wood boxes, the frame rate
starts dropping at 712 000, which means that drawing more polygons per object is most
efficient. See Figure 33.

67

Noxplus

0

10

20

30

40

50

60

100 200 300 400 500 1000

Fr
am

e
s

p
e

r
se

co
n

d

Number of objects

Static high mesh objects (no physics)

Figure 33: Performance when rendering static high-poly meshes without physics.

Animation performance was tested using multiple actors playing the same animation.
From the tests we saw that the frame rate was varying a lot while the animations were
playing, and apparently it depended on what part of the animation that was playing. The
chart in Figure 34 shows the maximum and minimum measured frame rate during the
tests. The frame rate did not start to drop before the number of goblins passed 20.

0

10

20

30

40

50

60

20 25 30 35 50 100 500 1000 2000

Fr
am

e
s

p
e

r
se

co
n

d

Number of objects

Static animated goblins (no physics)

Min

Max

Figure 34: Performance during animation rendering.

6.1.2 Rendering and physics

The first physics test was done by placing boxes in a tower and let them fall. All boxes
are using the simple "box"-shape. Each simulation ends when all boxes has landed and
come to rest. The chart in figure 35 is based on the lowest registered frame rate during
each simulation with different amount of boxes.

68

Noxplus

0

10

20

30

40

50

60

50 90 100 125 150 175 200 300 400

Fr
am

e
s

p
e

r
se

co
n

d

Number of objects

Falling tower of simple boxes with physics

Logging enabled

Logging disabled

Figure 35: Performance chart of a tower of boxes falling.

The other physics test was done using convex hull shapes, also placed as a tower.
A goblin figure with a number of 26574 vertices were used. The test was performed
both with the optimisation flag set to true and false 4.3.1. Figure 36 shows how much
performance is gained by using the optimisation flag, versus no optimisation. With two
or more fully convex meshes colliding, the frame rate will drop significantly. This is
however dependent on how many vertices the model has. The test was performed with
and without a logging time manipulation manager, and according to the test, it was not
noticeable performance loss when logging.

0

10

20

30

40

50

60

1 2 5 10 50 90 100 125 150 175 200 300 400

Fr
am

es
 p

er
 s

ec
o

n
d

Number of items

Falling tower of covex hull shapes

Full convex mesh

Optimised covex mesh

Figure 36: Performance chart of falling concave hull shapes.

Performance of simultaneous collisions between models was tested by placing a num-
ber of actors at the same spot before starting the physics. Also this test was run with and
without logging. The lowest registered frame rates were used to map the performance.
As shown in Figure 37, the logging does not seem to have any effect on the performance
as long as the number of collisions stays below 25. Normally no objects should start at
the same spot, so Figure 35 gives a more realistic picture.

69

Noxplus

0

10

20

30

40

50

60

20 25 30 35 40 50 75 100 125 150 175 200

Fr
am

es
 p

er
 s

e
co

n
d

Number of objects

Simple boxes with physics starting at same place

Logging enabled

Logging disabled

Figure 37: Boxes colliding simultaneously by starting at same spot.

6.1.3 Lights rendering

Noxplus uses deferred rendering to render lights. This is described in 5.3.5. To test how
the light rendering performs during high load, multiple sources were placed in a square
over a surface. See Figure 39. Looking at the test results in Figure 38, up to 400 light
sources are rendered without problems. The radius of each light in this test was calcu-
lated to be 7.32. From 400 and up the frame rate drops next to linearly with the number
of light sources.

0

10

20

30

40

50

60

400 450 500 1000 1500 3000

Fr
am

e
s

p
e

r
se

co
n

d

Number of objects

Light rendering

Figure 38: Performance chart of light rendering

70

Noxplus

Figure 39: Stress testing deferred rendering

6.2 Unit testing

GoogleTest framework was used to do testing for specific cases. Tests was set up for the
different modules; For the physics module three different tests were set up, where only
one gave us some exceptions: When testing the creation of an actor body. It was found
that we needed some checks in the ActorMotionState3d class to make sure that both
of the required actor components were made. A mistake was found where we needed
to make sure that the mass of a static object is set to 0. For the Timeline Manipulation
module we found an index mistake. The logic tests all went fine without a single error or
exceptions.

6.3 Linux and Mac

To follow the requirements of having Noxplus cross platform 2.5.4. Testing to make sure
that the extension ran fine on both Linux and Mac had to be done. This was done with
help from Suttung, as they had both Linux and Mac set up with the engine. They did so
on our request at regular intervals. They then reported back on what they found at the
next meeting. If they knew how to fix it, they did so and created a pull request that we
then later pulled in to our repository.

71

Noxplus

7 Discussion

This chapter contains thoughts and ideas around what we have done and what we could
have done differently if we were to do the assignment again. We also talk about things
we tried for different problems and why we made the choices we did for implementation
and design. In addition we talk about problems that occurred during the assignments.
Possible solutions for these problems are also talked about.

7.1 Scene module

7.1.1 Rendering

When we first started looking into how we could implement the rendering system we
found that there where two possible solutions. The first choice was to redesign the ex-
isting classes and functions, making support for a third Z axis. The second choice was to
create our own separate rendering architecture in a similar way to how the current 2D
rendering works. A decision was made to create a similar 3D rendering system, while we
learnt how Nox worked. We would then refactor the Nox renderer to have support for a
third axis. During our implementation and design of the 3D modules we found that the
2D rendering system in Nox was not as modular and flexible as we initially had thought.
Refactoring the 2D rendering system to also support 3D would not be possible without
rewriting the whole renderer. A new decision was made to use what parts we could from
the 2D renderer and use what we had at the time. The decision was made on the basis of
a meeting with Supervisor and Suttung H, to avoid ruining the functionality of the Nox
engine.

The interesting outcome of this decision is that in theory it should be possible to use
both the 2D and 3D rendering system together. Something like Sarepta studio did in the
game Shadow Puppeteer [46]. This is however not tested and as mentioned is only a
theory.

When creating the rendering system we had to chose between two different ap-
proaches; create a simple renderer and use it as a base for further development or design
and implement the whole renderer at once. Because we wanted to start implementing
the time manipulation module as fast as possible we chose the first approach and started
with creating a really simple renderer we could use to render simple models and primi-
tive objects such as cubes and spheres. With this simple rendering system we could start
developing the time manipulation modules in the earlier stages of the development phase
while making improvements and adding new features to the renderer.

7.1.2 Animation performance

One of the problems we encountered with the bone/skin-animated models was that they
slowed down the rendering dramatically. In the beginning, on every frame, the bone
structure of the model was traversed while it interpolated and calculated the actor’s new
"pose" for the next frame. Having one or two animated actors in the scene went fine, but
when we added a few more the frame rate dropped a lot.

When we brought the problem to our supervisor Nowostawski, he suggested that we

72

Noxplus

calculated all animation frames before we started rendering the animation. This is how
it’s done in most other game engines too, so we decided to give it a try and found that
this worked well. The pre-calculation of animation frames did not require any significant
memory space 5.5.2. Considering the performance boost it gave us by not calculating all
the bone transformations on the go, it was a good decision.

7.1.3 Multithreading

During the problem with animation and the frame rate drop we thought about threading
the renderer. We believed the problem was that the renderer took too long. Threading
the renderer is quite common since the CPU will spend most of its time waiting for the
GPU to finish its work. Meaning that if we threaded the renderer the CPU will be free to
do the physics update while the GPU does its own thing.

Another idea was to traverse the scene graph and make one thread per node that
started calculating the animation for each actor asynchronous. When all threads were
finished, the scene graph could be traversed and again and rendered. We were quite
unsure about this idea, because so many threads would be created and deleted at each
frame.

The problems we encountered however was not easily solved. The first problem was
how would us threading the rendering affect the Nox engine? Would it ruin it for Suttung
so they could not take in our extension? We brought it up in a meeting with them, where
they said they had thought about threading the renderer, but they haven’t had time to do
it. And they did believe it would destroy things for them H. We also found a problem with
the OpenGL context. If we were to thread the renderer we had to initialise OpenGL on the
render-thread, since the OpenGL context needs to be on the same thread as the OpenGL
specific functions are called. This would require us to move the initialisation of it and
that would definitively destroy functionality for Suttung. We decided against threading
the renderer and let Suttung handle it, we would rather try and find another solution.
The thought turned away from threading and towards optimising the current extension.
This would go against the principle from Extreme programming; to do optimisation in
the end of the construction phase, but we did not see any other solution 3.1.3.

7.1.4 Transparency

We did have transparency implemented in the beginning of Sprint 4, see Section 5.3.6,
but when we later implemented deferred rendering, we had to rewrite the rendering
process. The transparency rendering where down prioritised and we did not get the time
to re-implement it. This should not have been implemented before later in the process
when we were sure that what we had would not change. The sources we found also says
that transparency is very difficult to implement when using deferred rendering [47].

7.1.5 Deferred rendering

When implementing the light it was essential that the design would scale well with many
lights without being the engine bottleneck. To achieve this we had to do some research
and find a rendering design that would suit our needs. After doing some research we
found that we had to decide between the two rendering designs; forward or deferred
rendering. Forward rendering is the standard rendering technique that most engines
uses, but the problem with this rendering technique is that it does not scale that well
in the aspect of lighting compared to deferred rendering. This is due to the fact that

73

Noxplus

the numbers of lights calculations preformed by the forward rendering designs is heav-
ily dependent on the size of the scene, the number of total light calculation needed is
calculated by multiplying the number of geometry fragment and the number of lights
in the scene. Because of this dependency it is really expensive to have lights in bigger
scenes. The deferred rendering design decouples the scene geometry and the lights by
rendering to a buffer before applying the light calculations using the the same buffer.
The total numbers of light calculations needed is the size of the buffer multiplied with
the numbers of lights in the scene, the buffer size is usually the same as the window res-
olution. We decided to use the deferred rendering design because it is more scalable and
preforms far less light calculations on bigger scene than the forward rendering design
[48]. Deferred shading is a widely explored area of 3D graphics, and we found a good
tutorial on this that we based the implementation on using the same code/structure with
some modifications [49]. The code from the tutorial is free to use and uses the same MIT
licensing as Nox.

7.1.6 Camera

The camera has a known problem, being the famous gimbal lock problem, this should be
solved with using quaternion instead of matrix rotation. It has been made as generic as
possible so it is usable for many different scenarios.

7.2 Model loader

As the fundamental rendering began to finish, we wanted to add a little extra so we could
give our demo a better look. We started looking at different asset loaders for loading
3D models into the engine. One option was "lib3ds". However, this only supported 3D-
Studio’s ".3DS" files, which is not convenient as a 3D Studio license is quite expensive. We
also looked at the API of Autodesk, which is another well known file format, but we were
more interested in a loader that supports multiple file formats. With that in mind, we
came over Trimesh2 [50]. This is a multiplatform library with utilities for input, output,
and basic manipulation of 3D triangle meshes. Trimesh2 were not well documented, it
had not been updated for a couple of years and there is no git or CMake support. The
final choice was therefore Assimp. To us this seemed like the most used loader, it supports
over 40 different file formats, and it got more documentation. We also found a couple of
good tutorials on how to use it.

7.2.1 Loading models

One problem with our implementation is that all model files are loaded when the first
actor that is using the model is created. This means that when a mesh spawns in-game
for the first time, the game will freeze while the model is loading. The only solution
to prevent this is to spawn the actor somewhere the player cannot see it, and when it is
supposed to be spawned, it can be moved to the right spot, or cloned. A better solution to
this problem would be to make sure that all models are pre-loaded before the game starts.
The engine could go trough the folder structure, look for files with specific endings and
load them. This should be fairly simple to do if we add the loaded models to the existing
map (Section 5.5.1) and change the engine to map on file names instead of the "name"
specified together with the file name in the JSON file.

Another improvement when it comes to loading models would be to run each actor
creation on its own thread. Then all actors could load asynchronously, instead of being

74

Noxplus

queued like they are now. None of the actors are dependent on each other, so synchroni-
sation should not become a problem.

7.3 Physics module

We had to chose how to design the physics and look at the available physics engines. We
knew we needed something that would work well with our time manipulation module.
An engine that could re-simulate the physics exactly as it was every time after we rewind
and started playing it forward normal again when there was no changes to the world. We
looked at Havok, however it is not open source, a license is needed for it if a developer is
to sell his game for more than $10 USD. This makes it unsuitable for our project because
of our Licensing Requirements 2.7. Another engine we looked at was the Open Dynamics
Engine (ODE). This is both open source, deterministic and platform independent [51].
Bullet is the last physics engine we looked at, it is open source and platform independent
[17], and according to Nowostawski; deterministic. The reason we wanted the physics
engine to be deterministic was because it was a requirement 2.5.3 for our time manipula-
tion part so we could try re-simulation 4.3.5. We could not find any relevant differences
between the two so the reason we chose Bullet was that it had support for OpenCL. We
wanted to try running our physics on the GPU if we had the time. We could not find any
information on if ODE has support for OpenCL or anything like it. Bullet is a well known,
professional physics engine used in many video games [52]. It is also used for making
special effects in movies, and NASA has used it for testing a new space robot project
[17]. Bullet simulates our world’s physical laws and provides us with advanced collision
detection, and supports soft and rigid body dynamics.

Collision callbacks

What we wanted to implement was the possibility to run a single callback function,
so that not every callback functions that have been set for an actor runs every time a
collision occurred. When setting callback functions the ID of the callback is returned
and the developer could then use this together with the ID of the actor when a collision
occurred to specify what callback function is to run. At the point of writing this is only
possible with removing the callbacks that the developer do not want to run.

7.4 Time manipulation

7.4.1 Working version: List and vectors

The last thing we implemented and went with can be read about in Section 5.7. Here we
used a list where we created and added a node for every single frame. Due to the fact
that no sorting or re-organisation are required in this implementation, we could have
used a vector or an array instead. The reason we did not do this was to make swapping
of data to the hard drive easier when this is implemented in the future. Attaching and
removing parts of a list is easier than with an array or a vector.

All changes that happen in a frame will be stored continuously, however the storage of
each frame will still be fragmented. This is because the changes for each frame is stored
in separated vectors, see 5.7.1. In a small world with only a couple of actors, this is not
efficient. On the other hand, in a small world, there is often few resources needed for
physics and rendering, which will compensate. In a big world with a lot of actors, there
are a lot of changes that happens at each frame and there will be more data stored in

75

Noxplus

each node, thus more data will be stored continuously.
We can not skip to different points in time in the prototypes. The rewind and replay

happens sequential for all of them. This could be solved by creating snapshots of the
whole world at regular intervals. We could then jump between them.

During research of time manipulation, we found a way to handle particle effects.
Jonathan Blow the developer of the game Braid was the one who inspired this [22].
Implementing a way to store the seed that was used for the pseudorandom number
generator, so that you would always get the same random values every time you ran it.

7.4.2 Swapping data to hard drive

One of the time manipulation features we thought of during implementation was rewind
and replay time equal to how long the game had been running. To achieve this we could
not depend on the memory alone, we had to figure out an efficient way to utilise the
hard drive for storing of data. We discussed a few possible solutions and concluded with
a design that we could implement, but we dropped it, due to the fact that it was not in
our original plans. The idea was to always have three logical blocks of stored frames in
memory at the same time; one "past"-block, one "current"-block and one "future"-block,
each having a fixed number of frames. Figure 40 illustrates the same timeline going
trough 3 different stages during replay. The little arrow is where the game currently is.
When the current gameplay reaches the "future"-block, the "past"-block is written to disk
and deleted from memory. The "future" block becomes the new "current" block, and data
is read from the disk to become the new "future"-block. The blocks limits are decided by
indexes pointing to the starting and ending nodes.

Figure 40: How data is swapped to disk during replay

7.5 Demo

Our initial plan was to create one demo for each of our modules, one for each of the
milestones, and then merge them into one big demo. We always postponed this due to
wanting to change our class names and directory structure 7.6, later it was postponed
due to time. However, we did create a demo at the end of the project that shows all of

76

Noxplus

the functionality of our modules.
When creating the demo we had to decide how we wanted to do it. Where we making

a small simple game or just some simple interactions. We decided to make things inter-
esting and go for a simple game. Read more about the design of the game in 4.3.6 and
implementation of the game in 5.9.

7.6 Development

7.6.1 Choosing assignment

At the start of the Bachelor assignment we had to make a choice between two assign-
ments:

1. Customising a game engine to improve the performance in a specific development
area.

2. Extending Suttung Digital’s game engine, Nox engine, with the ability to represent
the game world in three dimensions (3D).

The one we were sure we wanted to do was number 2. After some discussions with
McCallum, Nowostawski and Suttung we came to a decision. We were going to try both
and set a cutoff date where we decided if we where to continue onward with both or
drop 1. A later decision we came to was; to never cut the time manipulation part since
this would be where the possibility of the best grade was.

When we first were going to choose what engine we wanted to develop on both Unreal
engine 4 and Unity 5 were not free to use before early March [53] [54]. They are also
both large engines and would take time to learn. We were also focusing on technology
and not developing games. One of the assignments also specifies that we are to extend
the Nox engine with 3D capabilities. Our employer Suttung, was more interested in us
working with Nox and having the developers of the game engine close by would help us
a great deal. Choosing Nox over Torque3D had advantages and disadvantages. The first
disadvantage was that Nox does not have the amount of support and documentation
that Torque3D does. However the advantage was that we had the developer close by
and could ask them questions on a regular basis. In addition, Torque3D already have 3D
functionality implemented and would not give us anything to work with [55].

Since our assignment was quite large we had to narrow down our assignment. We did
this by creating a list of what modules that where required and what we wanted to do
as shown in Figure 1. The choices was made based on our research [40] and knowledge
from previous courses.

7.6.2 Directory and file structure

During the implementation phase we discovered that we needed a new directory struc-
ture. Suttung’s directory structure was not enough for the additional 3D extension. We
brought it up on a meeting with them and they told us to make a draft. We sent them
a draft on the 21. February, they did some modifications on it and said they would im-
plement it. This took longer than anticipated by us, not before 25. of March was there a
change from Suttung, and they had only changed the graphic folder and its subfolders.
We then decided that we would make due and work with what we got.

During this period we also discussed about changing the prefix of our classes to a
suffix. When we started we named our classes with the prefix "Trd", to avoid conflicts

77

Noxplus

with Suttung’s classes. Both Suttung and supervisor thought a suffix "3d" would be better.
This was changed after the "new" directory structure was received. This was also a big
reason why we kept postponing creating our demo’s since we would have had to rewrite
them to work with the new structure and class names.

7.6.3 Re-prioritising

During one of our meetings in the later part of our project with Supervisor we decided to
focus on time manipulation rather than focus on creating a nice API for developers. We
agreed that the time manipulation module is a more important, exciting and new area
within games so we decided to put our focus there rather than the API’s.

A month before the end of our project, our supervisor Nowostawski suggested we
re-prioritise our tasks relative to time manipulation. Focus should be put there instead of
for example deformable mesh, since it is not an important feature, hard to implement,
and should therefore have a low priority. We where also told to reorganise our plans and
make sure we have the most important topics sorted for the next month.

7.6.4 Requirements

One of our requirements that we followed through the whole project was to have a
physics engine that was deterministic. This was so that when we started on the time
manipulation we could try using re-simulation instead of logging the whole world at
every frame. We decided to not do this after some discussion with Bernt Tore Jensen and
our supervisor. Read more about it in Section 4.3.5. However we did not remove it from
our requirements in case an engine developer wants to try it.

Another of our requirements that we did not have time for was to make sure there
are no significant drop in performance during heavy load. Our plan was to implement
a "trivial" flag for the actors. They would either be skipped during a physics update
or skipped for collision detection. Another thing could be to also use the flag during
rendering, so it will be skipped when rendering the scene.

7.6.5 Software Development Methodology

rewrite after Gantt this section may overlap with Development process, go through it and
check The use of RUP in the project have had both good and bad sides. The most helpful
artifact was the design class diagram. It showed us how the classes and the layers where
working together to form the system as a whole. It was created after we found out that
we had problems understanding how Nox worked. After it was created we realised that
we should not have jumped into Nox without creating the artifacts that we had planed
for. The revised risk analysis was also helpful since some of the risks we came up with
actually happened, although they just minor ones. We where missing people for up to
a week more than once, the persons had to work extra hours too make up for the lost
ones. We also had problems understanding Nox as mentioned above we solved this by
both creating some artifacts from RUP and we talked with Suttung. Suttung helped us
by creating some demos to show the functionality of the Nox engine. The programming
guidelines was helpful to keep everything we made consistent. The requirement speci-
fication and supplementary requirements also helped us with making choices at many
points during the whole project. The negative side was that RUP is quite the extensive
methodology and figuring/remembering what the different documents were for and how
they were set up took too long. We believe that RUP helped as much as it hindered our

78

Noxplus

project, we could have focused on Scrum and have had the same results. We would still
have created the design class diagram and the Use cases and their explanations. It could
have been because we the documents a bit late and they were not solid. We fixed this
during the project and they became more helpful.

Scrum was our most valuable development methodology. The backlog was updated
every time we found a new task that needed doing. Sometimes we threw the task into the
current sprint if we found it important and meant that it had to be done before another
task in the sprint was started. The sprints was created almost every week and lasted for
seven days, sometimes we found it better to extend it if we felt that there where enough
work to last another week. The last month we extended the sprint to last until the end
of the project, since we had work to do on the thesis. This helped us keep an overview
over what kind of assignments we had before the end of the project. The retrospective
meetings were a waste of time. We found our mistakes early but they where always down
prioritised since we believe they were not that important. Closing and starting tasks was
one of those things, our burndown chart looks terrible, but we never had problems with
knowing what tasks needed to be done and what tasks where being worked on. The
milestone reviews helped us keep our backlog up to date and gave us an overview of
what tasks we had to do. Some months we had planned too many tasks but we managed
to get through it with a good result. The sprint review was a nice asset, it helped us keep
us on track when it came to what tasks that had to be done to meet our milestone and
goal. Since all group members were available on Skype at all times, we found that the
daily scrum were not needed. Everyone always knew what the others were doing at all
times.

We are quite happy that we included Extreme Programming, all of the principles
worked well for us. Especially the pair programming principle. We didn’t always program
in pair but when we had difficulties or started new larger tasks we set two on it until the
most difficult part was done.

79

Noxplus

8 Conclusion

The Noxplus extension encompasses two main modules. The first was to create a time
manipulation module for games in 3D. This was implemented with both rewind and re-
play functionality. A conflict solver was also implemented as a solution to possible para-
doxes and conflicts between actors. Three functions was included for game developers so
they can decide on what they want done when replay starts, when replay ends and when
replay is interrupted. They can be left empty. New actors spawned in any of these func-
tions will be logged. If game developers create new components they can also be logged
if done correctly, read how in Section 4.3.5. We have not found a module like this in any
other game engines and it creates many new opportunities for new game mechanics in
games.

The second module was to extend the Nox engine with the possibility for 3D. This was
done by implementing an asset loader, that can load multiple file types that are supported
by 3D modelling programs for example: Blender and 3D Studio Max. However, only two
of the file types Noxplus support, supports animation. The second functionality that was
added was physics for 3D. The physics that was implemented in the Nox engine only
supported 2D so we had to implement a physics subsystem that worked for 3D. We also
implemented deferred rendering for rendering lights, models and debug geometry. We
created a scene graph to organise the rendering of the scene. A control system was also
implemented to control the actors and camera in the scene.

A demo was created to show the functionality namely: rendering, physics, asset load-
ing, rewind, replay and conflict solving. It is used for demonstrating our work and as an
introduction to Noxplus. We created the sky dome ourselves and borrowed the rest of
the assets.

We are quite happy with the finished product, we managed to increase the function-
ality for the Nox engine and make it more attractive for both game developers and game
engine developers as we defined in our goals 1.1.2. However there were some function-
ality that would improve Noxplus. These are listed in the Future work Section 8.1. We
have become better programmers while working with this project, increased our knowl-
edge and skill in both game engine programming and handling larger projects. We have
never worked with c++11 features before, for example std::functions, lambda and move
semantics. There where many problems that were encountered but we solved them to
our best ability, like our solution to the time manipulation 5.7.

8.1 Future work

Due to the task being quite large we have found features during the project that would
make the engine better. These are mentioned here:

• Rewind and playing forward is possible at different speeds, done by scaling the
delta time calculated in the execution loop.

• Review what the Information Security group have done and apply suggestions we
find relevant to Noxplus.

80

Noxplus

• Time manipulation for 2D.
• Combination of 2D and 3D rendering, using Nox’s 2D rendering on top of noxplus’s

3D rendering or reversed.
• Optimise for more actors in a scene by fully exploiting Bullet using its OpenCL

support.
• Support logging of custom components that the developer adds to actors, for ex-

ample health.
• Time manipulation for particle effects.
• Ability to turn off actors from logging, by using a flag.
• Support for triggers and complex collision shapes.
• Solving camera rotation using quaternion instead of matrices.
• Soft bodies for physics simulation.
• Soft shadow mapping.
• Reuse model textures by using a map.

81

Noxplus

Bibliography

[1] Rational unified process, best practices for software development teams (online).
URL: https://www.ibm.com/developerworks/rational/library/
content/03July/1000/1251/1251_bestpractices_TP026B.pdf

(Visited 14.5.2015).

[2] Sommerville, I. 2011. Software Engineering. International Computer Science
Series. Pearson. URL:
https://books.google.no/books?id=l0egcQAACAAJ.

[3] Cmake (online). URL: http://www.cmake.org/ (Visited 15.5.2015).

[4] Introducing json (online). URL: http://www.json.org/ (Visited 15.5.2015).

[5] Digital, S. 2015. Nox engine google group.
https://groups.google.com/forum/#!forum/nox-engine/. Visited
May. 2015.

[6] Rational unified process (online). URL:
http://sce.uhcl.edu/helm/rationalunifiedprocess/ (Visited
14.5.2015).

[7] The rules of extreme programming (online). URL:
http://www.extremeprogramming.org/rules.html (Visited 14.5.2015).

[8] Bitbucket (online). URL: https://bitbucket.org/ (Visited 15.5.2015).

[9] Sourcetree (online). URL: http://www.sourcetreeapp.com/ (Visited
15.5.2015).

[10] Toggl (online). URL: http://www.toggl.com/ (Visited 15.5.2015).

[11] Jira (online). URL: https://www.atlassian.com/software/jira (Visited
15.5.2015).

[12] Jira (online). URL: https://www.sharelatex.com/ (Visited 15.5.2015).

[13] Google docs (online). URL: https://docs.google.com/ (Visited 15.5.2015).

[14] Microsoft visual studio 2013 (online). URL:
https://msdn.microsoft.com/en-US/vstudio (Visited 15.5.2015).

[15] Teamviewer (online). URL: https://www.teamviewer.com/ (Visited
15.5.2015).

[16] Assimp, open asset import library (online). URL:
http://assimp.sourceforge.net/main_doc.html (Visited 15.5.2015).

82

https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
https://books.google.no/books?id=l0egcQAACAAJ
http://www.cmake.org/
http://www.json.org/
https://groups.google.com/forum/#!forum/nox-engine/
http://sce.uhcl.edu/helm/rationalunifiedprocess/
http://www.extremeprogramming.org/rules.html
https://bitbucket.org/
http://www.sourcetreeapp.com/
http://www.toggl.com/
https://www.atlassian.com/software/jira
https://www.sharelatex.com/
https://docs.google.com/
https://msdn.microsoft.com/en-US/vstudio
https://www.teamviewer.com/
http://assimp.sourceforge.net/main_doc.html

Noxplus

[17] Real-time physics simulation, home of the open source bullet physics library and
physics discussion forums (online). URL:
http://bulletphysics.org/wordpress/ (Visited 15.5.2015).

[18] Vik, M. B. & Sporaland, A. 2014. Pyroeis.
http://hdl.handle.net/11250/216763. Visited, Dec, 2014.

[19] Hockenberry, J. 2013. Multiverse: One or many?
http://www.worldsciencefestival.com/programs/multiverse/.
Visited May. 2015.

[20] Multiverse (online). URL: http://en.wikipedia.org/wiki/Multiverse
(Visited 15.5.2015).

[21] Burlew, R. 2003. Giant in the playground. http://www.giantitp.com/.
Visited May. 2015.

[22] Braid (game), 2008, Microsoft Game Studios and Number None, Inc. Number
None, Inc. and Hothead Games (dev.). URL: http://braid-game.com/
(Visited 15.5.2015).

[23] Dark chronicle (game), 2014, Sony Computer Entertainment. Level-5 (dev.). URL:
http://en.wikipedia.org/wiki/Dark_Chronicle (Visited 14.05.2015).

[24] Paradox (online). URL: http://www.umich.edu/~engtt415/paradox/
(Visited 15.5.2015).

[25] Time travel (online). URL: http://en.wikipedia.org/wiki/Time_travel
(Visited 15.5.2015).

[26] Pillars of eternity (game), 2015, Paradox Interactive. Obsidian Entertainment
(dev.). URL: http://eternity.obsidian.net/ (Visited 15.5.2015).

[27] Coraci, F. Click. http://www.imdb.com/title/tt0389860/. Last visited
May 2015.

[28] Gödel, K. Jul 1949. An example of a new type of cosmological solutions of
einstein’s field equations of gravitation. Rev. Mod. Phys., 21, 447–450. URL:
http://link.aps.org/doi/10.1103/RevModPhys.21.447,
doi:10.1103/RevModPhys.21.447.

[29] Closed timelike curve (online). URL:
http://en.wikipedia.org/wiki/Closed_timelike_curve (Visited
15.5.2015).

[30] Company of myself (game), 2009. 2DArray (dev.). URL: http:
//www.kongregate.com/games/2DArray/the-company-of-myself

(Visited 15.5.2015).

[31] Blow, J. 2010. The implementation of rewind in braid. http:
//gdcvault.com/play/1012210/The-Implementation-of-Rewind-in.
Visited May. 2015.

83

http://bulletphysics.org/wordpress/
http://hdl.handle.net/11250/216763
http://www.worldsciencefestival.com/programs/multiverse/
http://en.wikipedia.org/wiki/Multiverse
http://www.giantitp.com/
http://braid-game.com/
http://en.wikipedia.org/wiki/Dark_Chronicle
http://www.umich.edu/~engtt415/paradox/
http://en.wikipedia.org/wiki/Time_travel
http://eternity.obsidian.net/
http://www.imdb.com/title/tt0389860/
http://link.aps.org/doi/10.1103/RevModPhys.21.447
http://dx.doi.org/10.1103/RevModPhys.21.447
http://en.wikipedia.org/wiki/Closed_timelike_curve
http://www.kongregate.com/games/2DArray/the-company-of-myself
http://www.kongregate.com/games/2DArray/the-company-of-myself
http://gdcvault.com/play/1012210/The-Implementation-of-Rewind-in
http://gdcvault.com/play/1012210/The-Implementation-of-Rewind-in

Noxplus

[32] Skow, B. 2013. Notes on the grandfather paradox. Last visited May. 2015, last
modified 2013.

[33] Noxplus. 2015. Noxplus demo. http://hovedprosjekter.hig.no/v2015/
imt/spill/noxplus/?page_id=43.

[34] Simple directmedia layer (online). URL: http://www.libsdl.org/ (Visited
15.5.2015).

[35] Opengl (online). URL: https://www.opengl.org/ (Visited 15.5.2015).

[36] Sdl_image 2.0 (online). URL:
https://www.libsdl.org/projects/SDL_image/ (Visited 15.5.2015).

[37] M. McShaffry, D. G. 2012. Game Coding Complete. Cengage Learning PTR.

[38] F. Buschmann, R. Meunier, H. R. P. & M.Stal. 1996. Pattern - oriented Software
Architecture. John Wiley & Sons Ltd.

[39] Briand, L., Morasca, S., & Basili, V. Jan 1996. Property-based software
engineering measurement. Software Engineering, IEEE Transactions on, 22(1),
68–86. doi:10.1109/32.481535.

[40] Gregory, J. 2014. Game Engine Architecture, Second Edition. A K Peters/CRC Press.

[41] Blender (online). URL: http://www.blender.org/ (Visited 15.5.2015).

[42] thecplusplusguy. 2013. Opengl glsl tutorial 6 - assimp 3d model loader (part 1:
static models). https://www.youtube.com/watch?v=ClqnhYAYtcY.
Visited Apr. 2015.

[43] Meiri, E. 2012. Skeletal animation with assimp.
http://ogldev.atspace.co.uk/www/tutorial38/tutorial38.html.
Visited Mar. 2015.

[44] Bullet collision detection & physics library (online). URL:
http://bulletphysics.org/Bullet/BulletFull/

classbtDiscreteDynamicsWorld.html (Visited 15.5.2015).

[45] Bullet (online). URL: http:
//bulletphysics.org/mediawiki-1.5.8/index.php/Main_Page

(Visited 15.5.2015).

[46] Shadow puppeteer (game), 2014. Sarepta Studio (dev.). URL:
http://shadowpuppeteer.com/ (Visited 15.5.2015).

[47] Rendering transparency in a deferred pipeline (online). URL:
http://techblog.floorplanner.com/

rendering-transparency-in-a-deferred-pipeline/ (Visited
14.5.2015).

84

http://hovedprosjekter.hig.no/v2015/imt/spill/noxplus/?page_id=43
http://hovedprosjekter.hig.no/v2015/imt/spill/noxplus/?page_id=43
http://www.libsdl.org/
https://www.opengl.org/
https://www.libsdl.org/projects/SDL_image/
http://dx.doi.org/10.1109/32.481535
http://www.blender.org/
https://www.youtube.com/watch?v=ClqnhYAYtcY
http://ogldev.atspace.co.uk/www/tutorial38/tutorial38.html
http://bulletphysics.org/Bullet/BulletFull/classbtDiscreteDynamicsWorld.html
http://bulletphysics.org/Bullet/BulletFull/classbtDiscreteDynamicsWorld.html
http://bulletphysics.org/mediawiki-1.5.8/index.php/Main_Page
http://bulletphysics.org/mediawiki-1.5.8/index.php/Main_Page
http://shadowpuppeteer.com/
http://techblog.floorplanner.com/rendering-transparency-in-a-deferred-pipeline/
http://techblog.floorplanner.com/rendering-transparency-in-a-deferred-pipeline/

Noxplus

[48] Forward vs deferred rendering (online). URL:
http://gamedevelopment.tutsplus.com/articles/

forward-rendering-vs-deferred-rendering--gamedev-12342

(Visited 14.5.2015).

[49] Meiri, E. 2012. Deferred shading part 1-3.
http://ogldev.atspace.co.uk/www/tutorial35/tutorial35.html

http://ogldev.atspace.co.uk/www/tutorial36/tutorial36.html

http://ogldev.atspace.co.uk/www/tutorial37/tutorial37.html.
Visited Mar. 2015.

[50] Trimesh2 asset loader (online). URL:
http://gfx.cs.princeton.edu/proj/trimesh2/ (Visited 15.5.2015).

[51] Open dynamics engine (online). URL: http://www.ode.org/ (Visited
15.5.2015).

[52] Bullet (software) (online). URL:
http://en.wikipedia.org/wiki/Bullet_%28software%29 (Visited
15.5.2015).

[53] If you love something, set it free (online). URL:
https://www.unrealengine.com/blog/ue4-is-free (Visited
15.5.2015).

[54] Unity pro and unity personal software license agreement 5.x (online). URL:
http://unity3d.com/legal/eula (Visited 15.5.2015).

[55] Torque3d (online). URL:
http://www.garagegames.com/products/torque-3d/overview

(Visited 15.5.2015).

85

http://gamedevelopment.tutsplus.com/articles/forward-rendering-vs-deferred-rendering--gamedev-12342
http://gamedevelopment.tutsplus.com/articles/forward-rendering-vs-deferred-rendering--gamedev-12342
http://ogldev.atspace.co.uk/www/tutorial35/tutorial35.html
http://ogldev.atspace.co.uk/www/tutorial36/tutorial36.html
http://ogldev.atspace.co.uk/www/tutorial37/tutorial37.html
http://gfx.cs.princeton.edu/proj/trimesh2/
http://www.ode.org/
http://en.wikipedia.org/wiki/Bullet_%28software%29
https://www.unrealengine.com/blog/ue4-is-free
http://unity3d.com/legal/eula
http://www.garagegames.com/products/torque-3d/overview

Noxplus

A Source code and video

A.1 Source code

The source code can be found on Bitbucket.
The link for the demo/development: https://bitbucket.org/tienqt/noxplus-demo
The link for the engine: https://bitbucket.org/tienqt/noxpluss-engine

A.2 Video

There are some videos made of the final product, they can be found on our website:
http://hovedprosjekter.hig.no/v2015/imt/spill/noxplus/?page_id=43

86

https://bitbucket.org/tienqt/noxplus-demo
https://bitbucket.org/tienqt/noxpluss-engine
http://hovedprosjekter.hig.no/v2015/imt/spill/noxplus/?page_id=43

Noxplus

B Project Agreement

87

Noxplus

C Group rules

89

Noxplus

D Risk tabel

Descriptor Probability Impact Risk mitigation plan

Missing group
member 7+ days

Moderate Severe Missing person works extra hours before
and after to make up for it. Also add extra
working hours for the rest of the group.
Notify team leader as fast as possible
and adjust the project plan. Follow group
rules.

Internal conflicts Unlikely Severe Follow the group rules.

Physics engine we
have integrated
cannot do what we
wanted it to do.

Rare Severe Make small tests to see if things we want
is possible before we implement and get
to far. Modify the engine to do what we
want it do it.

Missing essential
equipment

Unlikely Significant Buy or borrow equipment. Use the labs if
necessary.

Missing
milestones

Likely Moderate Adjust the project plan or add extra
working hours to catch up

Supervisor and
Suttung is
unavailable for an
extended period of
time

Unlikely Moderate Reprioritize task list and do what we can
without their guidance.
Always plan one week ahead, make sure
everyone understands their task for the
next week.

Delayed access to
Noxengine

Unlikely Moderate Start exploring other 3Dengines and
write small test modules for Noxengine if
possible.
Write a 3D rendering system with little
external dependencies, so it is easy to
implement in the Nox Engine.

Missing group
member. 1 7
days

Likely Minor Missing person works extra hours before
and after to make up for it.
Notify team leader as fast as possible
and adjust the project plan. Follow group
rules.

Problem
understanding the
Noxengine

Moderate Negligible Arrange a meeting with Suttung or
supervisor.

91

Noxplus

E Gantt chart

92

Noxplus

F Daily scrum

Monday February 9th
Håkon:

 Create a new camera class for 3D TrdCamera(). Start on camera movement.

Tien:

 Work with world/scene management; parse world jsonfiles and load 3D actors to the
world.

Even:

 Create interface between 3D renderer and Tien’s work with world loading.

Tuesday February 10th
Håkon:

 Did:
 Created a separate camera class
 Implemented a new camera class only for 3D, to make code more readable

 To do:
 Finish camera class and basic movement of camera (with mouse look)
 Create a TransformChange class for 3D
 Help with scene graph

Even:

 Did:
 Created interface classes for loading 3D models based on file path from json

files.
 To do:

 Add scene graph for world based on data from json files. Will place static
objects in the world.

Tien:
 Did:

 Created a component class for actor graphics
 Do:

 Add scene graph for world based on data from json files. Will place static
objects in the world.

93

Wednesday February 11th

Even:

 Did:
 Together with Tien we implemented our own type of scene graph nodes and

managed to load assets and create scene graph dynamically from json file.
 To do:

 Going on vacation, not much time for work today..

Håkon:

 Did:
 Almost finished camera. Camera moves with keys and mouse. Wanted to

remove the windows lag when pushing buttons.
 To do:

 Finish that damn camera!
 Create a TransformChange class for 3D
 Clean up
 Help Tien

Tien:
 Did:

 Add scene graph for world based on data from json files. Will place static
objects in the world.

 To Do:
 Clean up.
 Update scenegraph with new transform matrices.

Thursday February 12th

Tien:

 Did:
 Cleaned up

 To Do:
 Integrate Bullet
 Test TrdTransformChange class

Håkon:

 Did:
 Moved camera controls out of camera and into TrdApplication.

 Created TrdTransformChange class.
 Cleaned up

 To Do:
 Integrate Bullet
 Test TrdTransformChange

Friday February 13th

Tien:

 Did: Tried to add bullet as a submodule for the noxengine, but ran into internal linking
problems within bullet cmake.

 To Do:

 Solve bullet internal link problems.

Håkon:

 Did:
 Tried to add bullet as a submodule.
 Finished TrdTransfromChange

 To Do:

 Learn Bullet
 Solve bullet internal link problems.

Saturday February 14th

Tien:

 Did:
 Solved bullet internal linking problems and added bullet as a subproject for the

noxengine.
 To Do:

 Read bullet documentation.

Håkon:

 Did:
 Looked at Bullet tried to learn how it works.
 Tried finding the linking problem.

 To Do:

 Learn Bullet

Sunday February 15th

Tien:

 Did:
 Read bullet documentation
 Study hello world bullet application.

 To Do:
 Set up empty skeleton class for bullet intergration with nox.

Håkon:

 Did:
 Read documentation and setup Bullet in it’s own project.
 Ran some debugging
 Pulled in pull request from Magnus

 To Do:

 Create skeleton classes for bullet integration with Nox.

Monday February 16th

Tien:

 Did:
 Created a simulation class and interface class for bullet.
 Added bullet simulation class into nox system.
 Discarded everything

 To Do:
 Read about syncing bullet with rendering system.

Håkon:

 Did:
 Created skeleton classes for Bullet integration. (Pushed)
 Started testing out implementation.

 To Do:

 nothing (Artificial Intelligence presentation on Tuesday)

Tuesday February 17th

Tien:

 Did:
 Read bullet documentation.

 To Do:
 Create a test branch for bullet.

 Create a prototype for bullet simulation class.

Håkon:

 Did:
 Nothing, AI.

 To Do:

 Try setting up init function and addRigidBody function for Bullet

Wednesday February 18th

Tien:

 Did:
 Created a test class for bullet simulation:

 Init and loading physics object from json files with basic colision shapes.
 To Do:

 Clean up bullettest branch.
 Close current sprint and set up a new sprint.

Håkon:

 Did:
 Sat up the init function. Tried creating the rest. Failed. Discarded

 To Do:

 Study Bullet some more.
 Fixed the backlog and sprint.

Thursday February 19th

Tien:

 Did:
 Close current sprint and started a new sprint.
 Cleaned up bullet test branch.

 To Do:
 Sync bullet with rendering system using a custom motion state class.

Håkon:
 Did:

 Looked at Bullet some more.

 To Do:
 Create function to create different shapes

Friday February 20th

Tien:

 Did:
 Syncing bullet using custom motion state class.

 To Do:
 Create concave hull shape.

Håkon:

 Did:
 Created function for different collision shapes

 To Do:

 Look at Rotation and callback

Even:

 Did:
 Nothing

 ToDo:
 Start looking at what Tien and Håkon have done and look at concave hull

shapes for Bullet physics

Saturday February 21th

Tien:

 Did:
 Nothing.

 To Do:
 Vietnamese new year celebration and birthday party.
 Create the Directory structure with the group.

Håkon:

 Did:
 .Nothing

 To Do:
 Do what i was supposed to do.
 Create the Directory structure with the group.

Even:

 Did:
 Looked at Tien and Håkons code.

 ToDo:
 Create the Directory structure with the group.
 Look more at Tien and Håkons code while looking at concave hull shapes

Sunday February 22th

Tien:

 Did:
 Create the Directory structure with the group.

 To Do:
 Refactor current rendering system to use RenderData.
 Implement debug render mode.
 Fix documentation.

Håkon:

 Did:
 Create the Directory structure with the group.
 Tried fixing the rotation with quaternions, between Bullet and TrdTransform.

Need some help, asked for meeting with Nowostawski.

 To Do:
 Create the callback system.
 Fix documentation.

Even:
 Did:

 Create the Directory structure with the group. Started looking at concave hull
shapes.

 ToDo:
 Look more at Tien and Håkons code while looking at concave hull shapes
 Fix documentation.

Monday February 23th

Tien:

 Did:
 Fixed documentation.
 Looked at renderings system.

 To Do:
 Implement debug rendering.
 Refactor rendering system to use RenderData.

Håkon:

 Did:
 Fixed documentation
 Tried fixing the rotation and implement the callback

 To Do:

 Ask for some help.
 Fix the rotation/ create readin functions that do rotation/scale/translation
 Implement the callback properly.
 Look at Mathematics for 3D Game Programming and Computer Graphics
 Look at Game Coding Complete

Even:
 Did:

 Looked at overall progress vs remaining work, together with group.
 Tried to find a way of getting mesh data from BulletSimulation class.

 ToDo:
 Look more at how to access mesh data from inside BulletSimulation class.

Tuesday February 24th

Tien:

 Did:
 Read about different rendering system.

 To Do:
 Implement debug renderer using renderData.

Håkon:

 Did:
 Asked for help. Almost no help received when asked.
 Looked at Mathematics for 3D Game Programming and Computer Graphics
 Looked at Game Coding Complete
 Started implementing callback

 fixed rotation

 To Do:
 Finish callback

Even:
 Did:

 Looked more at how to access mesh data from inside BulletSimulation class.
 Started implementing Bullet debug rendering together with Tien

 ToDo:
 Finish debug rendering
 Start looking at textures.

Wednesday February 25th

Tien:

 Did:
 Implemented debug renderer with Even.

 To Do:
 Read about world management (Game coding complete).
 Read about bitbucket
 Close branch

Håkon:

 Did:
 Finished callback

 To Do:

 Create the event system for the callback
 Clean up rotation mess
 Read about time manipulation

Even:
 Did:

 Finished debug rendering
 Discussed code and stuff

 ToDo:
 Finish sprint and setup new with group
 Look at textures

Thursday February 26th

Tien:

 Did:
 Read about world management (Game coding complete).
 Read about bitbucket
 Closed branch

 To Do:
 Implement scene graph

Håkon:

 Did:
 Read about time manipulation
 Wrote some documentation for sprints.

 To Do:

 Finish the event system for callback

Even:
 Did:

 Added loading of textures
 ToDo:

 Optimize loading, management and switching of textures
 Fix some texture issues

Friday February 27th

Tien:

 Did:
 Created a class overview for our current system.

Read about scene graph.
 To Do:

 Refactored scene graph with even.
 Look at alpha rendering

Håkon:

 Did:
 Finished the event system for callback

 To Do:

 Clean up personal log and callback.

Even:
 Did:

 Created class overview with the rest of the group, mapping our current system.
 Optimized switching of textures using the RenderData class

 ToDo:
 Improve scene graph
 Look at rendering steps/passes/alpha textures

Saturday February 28th

Tien:

 Did:
 Refactored scene graph with even.
 Implemented alpha rendering with even.

 To Do:
 fix alpha rendering issue.

Håkon:

 Did:
 Cleaned up personal log and callback

 To Do:

 Weekend off

Even:
 Did:

 Refactored scene graph with Tien.
 Implemented two render passes, one for solid meshes and one for alpha

meshes.
 ToDo:

 Fix alpha issue

Sunday March 01th

Tien:

 Did:
 Didn't manage to fix alpha rendering issue.

 To Do:
 Fixed rotation problems in bulletSimulation/actorMotionState.
 Create convexhullshape with even.

Even:
 Did:

 ToDo:

 Look at rotation problem with Tien

Monday March 02th

Tien:

 Did:
 Fixed rotation problems in bulletSimulation/actorMotionState.
 Create convexhullshape with even.

 To Do:
 Update class overview
 Memory leak.
 Bullet rotation.

Håkon:

 To Do:
 Finish class diagram with group
 Merging changes to Nox and pull requests with group
 Try to do onCollision differently.

Even:

 Did:
 Added support for loading convex and concave hull shape into Bullet

simulation.
 Changed debug renderer to use Bullets own debug colors.

 ToDo:
 Refactor RenderSdlWindowView to support both 3D and 2D rendering

Tuesday March 03th

Tien:

 Did:
 Update class overview.
 Memory leak in event system.

 To Do:
 Merged pull requests from suttung.

 Synced nox fork with suttung.

Håkon:
 Did:

 Finish class diagram
 Merging done
 Still trying to do onCollision differently from event queue system

 To Do:

 Keep trying to implement the onCollision

Even:
 Did:

 Merged TrdRenderSdlWindowView with RenderSdlWindowView to make
support for both 3D and 2D rendering.

 Update class diagrams with group.
 ToDo:

 Look at memory leaks.
 Look at Tien merging pull requests from Suttung

Wednesday March 04th

Tien:

 Did:
 Write missing documents

 To Do:
 Set up new sprint.
 Look at deferred rendering.

Håkon:

 Did:
 Failed implementing the onCollision differently

 To Do:

 Look at the onCollision from developers viewpoint. Work with the group.
 Implement new collision Shapes.

Even:

 Did:
 Looked at memory leaks.
 Watched Tien merging pull requests from Suttung

 ToDo:
 Do sprint planning with group.
 Look at deferred rendering

Thursday March 05th

Tien:

 Did:
 Tried basic deferred rendering.

 To Do:
 Setting up Api for collision.
 Read about frame buffers.
 Try deferred lighting.

Håkon:

 Did:
 Logs and meetings
 read up on new collision shape

 To Do:

 Implement new collision shape

Even:
 Did:

 Sprint planning
 Started reading about deferred rendering

 ToDo:
 Fix compound collision shapes with Håkon

Friday March 06th

Tien:

 Did:
 Had problems with rendering light.
 Forgot to activate the textures before usage.

 To Do:
 Render direction and point light.

Håkon:

 Did:
 Implemented Compound shape

 To Do:

 Nothing before tuesday, AI assignment.

Even:

 Did:
 Fixed compound collision shapes with Håkon

 ToDo:
 Work with deferred rendering with Tien

Saturday March 07th

Tien:

 Did:
 Implemented directional and point light. Error when looking thru and entering

light volume.
 To Do:

 Fix the problems above using stencil buffer.

Even:
 Did:

 Worked with Tien on deferred rendering
 ToDo:

 day off

Sunday March 08th

Tien:

 Did:
 Read about stencil buffers.

 To Do:
 Fix lighting problems using stencil buffer.

Even:
 Did:

 nothing
 ToDo:

 Work more on deferred rendering

Monday March 09th

Tien:

 Did:
 Fixed the lighting issue using stencil buffer.

 To Do:
 Implement spot light.

Even:

 Did:
 Worked with Tien on deferred rendering

 ToDo:
 Work more on deferred rendering

Tuesday March 10th

Tien:

 Did:
 Implemented spotlight with even.

 To Do:
 Read about different ways to implement time traversing in game.

Håkon:

 To Do:
 Clean up rotation
 Check error on laptop
 Meeting with the rest

Even:

 Did:
 Worked with Tien on deferred rendering
 Started playing with time rewinding

 ToDo:
 Study time rewinding in the game Braid,
 Look more at time rewinding
 Finish deferred rendering, making it generic (not hardcoded)

Wednesday March 11th

Tien:

 Did:
 Discussed different ways to implement time traversal with the group.

 To Do:
 Close current sprint.
 Set up new sprint.
 Write sprint/meeting documents.

Håkon:

 Did:
 cleaned up rotation
 checked error on laptop
 had meeting with the rest of the group.

 To Do:
 Meetings
 Logs

Even:

 Did:
 Looked at video about the time management in the Braid game
 Discussed different ways of storing time history with group

 ToDo:
 Retrospective meeting
 Set up new sprint

Thursday March 12th

Tien:

 Did:
 Write meeting/logg documents.

 To Do:
 look at nox control system.

Håkon:

 Did:
 Meetings
 Logs

 To Do:
 Implement Collision Detection API

Even:

 Did:
 Meetings

 ToDo:
 Look at Assimp animations/bone structure.

Friday March 13th

Tien:

 Did:
 Looked at nox control system.

 To Do:
 Look at raytest used in bullet.

Håkon:

 Did:
 Implementing Collision Detection API

 To Do:
 Continue with Collision Detection API

Even:

 Did:
 Started looking at assimp’s animation system. Decided to rewrite our mesh

system.
 ToDo:

 Rewrite mesh loading to work better with animations.

Saturday March 14th

Tien:

 Did:
 Look at raytest used in bullet.

Håkon:

 Did:
 Continued with Collision Detection API

 To Do:
 Private matters to attend.

Even:

 Did:
 Started rewriting mesh loading (TrdSceneLoader)

 ToDo:
 Weekend

Sunday March 15th

Tien:

 To Do:
 Implement mouse picking using raytest.

Håkon:

 To Do:
 Visitors

Even:

 Did:
 Weekend

 ToDo:
 Weekend

Monday March 16th

Tien:

 Did:
 Implement mouse picking using raytest.

 To Do:
 Try to move selected actor towards mouse cursor.

Håkon:

 To Do:
 Continue with Collision Detection API

Even:

 Did:
 Weekend

 ToDo:
 Continue on new mesh loading

Tuesday March 17th

Tien:

 Did:
 Tried to move selected actor towards mouse cursor.

 To Do:
 Implement actorcontrol for 3dDirection.

Håkon:

 Did:
 Continued with Collision Detection API:

 To Do:
 Finish Collision Detection API:
 Look at the last shapes for collision shapes.

Even:

 Did:
 Worked on mesh loading.

 ToDo:
 Start working on animations again

Wednesday March 18th

Tien:

 Did:
 Started on actor control for 3dDirection.

 To Do:
 Finish actor control for 3dDirection.

Håkon:

 Did:
 Looked at reusing shapes for collision saving memory.

 To Do:
 Finish Collision Detection API.
 Look at the last shapes for collision shapes.

Even:

 Did:
 Did some work on animations

 ToDo:
 Finish animations

Thursday March 19th

Tien:

 Did:
 Modified Noxs control system to support 3d
 Helped even with animation problem; bones are stretched all over the place.

did not find the problem.
 To Do:

 Start on the directional control component.
 Help Even with solving the bone problem.

Håkon:

 Did:
 Finished Collision Detection API

 To Do:
 Look into BVHTriangle collision shape

Even:

 Did:
 Finished animation class

 ToDo:
 Find out why the animations look so deformed, and fix it.

Friday March 20th

Tien:

 Did:
 Started on the directional control component.
 Found the problem with the deformed bones.

 To Do:
 Finish the directional control component.

Håkon:

 Did:
 Looked into BVHTriangle collision shape.

 To Do:
 Look into deformable mesh/collision shape

Even:

 Did:
 With great help from Tien, we fixed the deformed animations.

 ToDo:
 Create game developer API for controlling the animations.

Saturday March 21th

Tien:

 Did:
 Almost finished the directional control component.
 Tried to fix onUpdate function not called for components

 To Do:
 Finish directional control component

Håkon:

 Did:
 Started with deformable mesh

 To Do:
 Help Tien with Actor Movement
 Help Even with Animation
 Look into reuse of collision shapes

Even:

 Did:
 Started on animation control API.

 ToDo:
 Look at animation optimization (threading?)

Sunday March 22th

Tien:

 Did:
 Finished the directional control component.

 To Do:
 N/A

Håkon:

 Did:
 Helped Tien with Actor Movement
 Helped Even with Animation
 Looked into reuse of collision shapes

Even:

 Did:
 Looked at threading together with Håkon.

Monday March 23th

Tien:

 Did:
 N/A

 To Do:
 Look at memory leak
 Finish rotational control component

Håkon:

 To Do:
 Look into threading
 Help Even with Animation
 Help Tien with Actor Controls
 Continue with Deformable mesh

Even:

 ToDo:
 Look more at threading with Håkon; how and where to do it.

Tuesday March 24th

Tien:

 Did:
 Finished rotational control component.
 Fixed memory leak
 Fixed component not being updated problem.

 To Do:
 Read about shadow mapping
 Clean up
 Map time manipulation classes.

Håkon:

 Did:
 Looked into threading the renderer.
 Helped Even with Animation
 Helped Tien with Actor Controls
 Continued with Deformable mesh

 To Do:
 Refactor Collision detection/ API
 Testing Impact mesh

Even:
 Did:

 Looked more at and discussed threading with Håkon. Decided to talk with
Mariusz about it.

 ToDo:
 Create interface for updating and rebuffering vertex positions for a mesh

(Håkon will use it for impact (deformable) collision shapes).

Wednesday March 25th

Tien:

 Did:
 Read about stencil shadow mapping.
 Mapped time manipulation classes

 To Do:
 Rename all classes.

Håkon:

 Did:
 Refactored Collision detection / API
 Tested impact Mesh, don’t work.

 To Do:
 Meetings/Documents
 Look more into threading the renderer. Cleaning up the includes, commenting.

Even:

 Did:
 Created interface in TrdMesh for updating and rebuffering vertex positions.

 ToDo:
 Meetings.

Thursday March 26th
Tien:

 Did:
 Renamed all classes fixing the sufix

 To Do:
 Sync nox with noxplus.

Håkon:

 Did:
 Cleaned up includes

 To Do:
 Implement reuse of collision shapes.

 Tweak collision shapes
 Fix warnings.
 Animation optimisation with Even
 Help Tien with Pulling/merging latest Nox engine update.

Even:

 Did:
 Meetings + Tried to help Tien with pulling/merging latest NOX engine.

 ToDo:
 Work with another course..

Friday March 27th
Tien:

 Did:
 Failed to sync nox with noxplus. Problems build new third party lib added by

nox.
 To Do:

 Try to fix syncing problem.

Håkon:

 Did:
 Fixed warnings.
 Implemented Reuse of collision shapes for convex shapes
 Helped Even with animation optimisation.
 Tweaked collision shape implementation.

 To Do:
 Artificial Intelligence course

Even:

 ToDo:
 Fix performance issue with multiple animations: generate animation “frames”

before game starts.

Saturday March 28th
Tien:

 Did:
 Suttung fixed the third party lib.
 Failed to sync again. The third party lib won’t link properly.

 To Do:
 Fix link problem with the third party lib.

Even:

 Did:

Sunday March 29th
Tien:

 Did:
 Tried to fix linker problem by going thru CMake files.

 To Do:
 Light

Even:

 Did:
 Friday: Started implementing animation optimization. Huge performance boost!

 ToDo:
 Fix independent animations for actors with same mesh.

Monday March 30th
Tien:

 Did:
 Found the problem with linking the third party lib.
 Started on lighting

 To Do:
 Read oglDev deferred shading tutorial

Håkon:

 To Do:
 Play around with time manipulation.

Even:

 Did:
 Started working on making animations independent of mesh. Put animationdata

into “ActorGraphics3d” so every actor has their own.
 ToDo:

 Finish and clean up new animation structure.

Tuesday March 31th
Tien:

 Did:
 Read all three part of oglDev tutorial

 To Do:
 Light

Håkon:

 Did:

 Tried some simple rewinding.
 To Do:

 Easter (The Gathering)

Even:

 Did:
 Finished, cleaned up and pushed the new animation structure.

 ToDo:
 Write log for last two weeks.

Wednesday April 01th
Tien:

 Did:
 Light

 To Do:
 Light

Even:

 Did:

 ToDo:
Thursday April 02th
Tien:

 Did:
 Light

 To Do:
 Light

Even:

 Did:
 Cleanup Texture3d and OpenGlRenderer3d

 ToDo:
 Look at lighting with Tien.

Friday April 03th
Tien:

 Did:
 Light

 To Do:
 Light

Even:
 Did:

 Looked at lights with Tien.
 ToDo:

 Look at kinematic bodies.
Saturday April 04th
Tien:

 Did:
 Light.
 Render to texture.

 To Do:
 Light

Even:

 Did:
 Looked at kinematic bodies.

 ToDo:
 Look at kinematic bodies

Sunday April 05th
Tien:

 Did:
 Light

 To Do:
 Light

Even:

 Did:

 ToDo:

Monday April 06th
Tien:

 Did:
 Light

 To Do:
 Set up classes for time manipulation.

Even:

 Did:
 Light with Tien.

 ToDo:
 Set up classes for time manipulation.

Tuesday April 07th
Tien:

 Did:
 Time manipulation

 To Do:

 Time manipulation
Håkon:

 To Do:
 Work with Tien and Even on Time manipulation.

Even:

 Did:
 Time manipulation

 ToDo:
 Time manipulation

Wednesday April 08th
Tien:

 Did:
 Time manipulation

 To Do:
 Time manipulation

Håkon:

 Did:
 Worked with Tien and Even on time manipulation.

 To Do:
 Continue with time manipulation

Even:

 Did:
 Time manipulation

 ToDo:
 Time manipulation

Thursday April 09th
Tien:

 Did:
 Time manipulation

 To Do:
 Time manipulation

Håkon:

 Did:
 Work with Tien and Even on Time manipulation.

 To Do:
 Continue with time manipulation

Even:

 Did:

 Time manipulation
 ToDo:

 Time manipulation

Friday April 10th
Tien:

 Did:
 Time manipulation

 To Do:
 Time manipulation

Håkon:

 Did:
 Work with Tien and Even on Time manipulation.

 To Do:
 Continue with time manipulation

Even:

 Did:
 Time manipulation

 ToDo:
 Time manipulation

Saturday April 11th
Tien:

 Did:
 Time manipulation

 To Do:
 Time manipulation

Håkon:

 Did:
 Work with Tien and Even on Time manipulation.

 To Do:
 Continue with time manipulation

Even:

 Did:
 Time manipulation

 ToDo:
 Time manipulation

Sunday April 12th
Tien:

 Did:
 Time manipulation

 To Do:
 Time manipulation

Håkon:

 Did:
 Work with Tien and Even on Time manipulation.

 To Do:
 Continue with time manipulation

Even:

 Did:
 Time manipulation

 ToDo:
 Time manipulation

Monday April 13th
Tien:

 Did:
 Time manipulation

 To Do:
 Time manipulation

Håkon:

 Did:
 Work with Tien and Even on Time manipulation.

 To Do:
 Continue with time manipulation

Even:

 Did:
 Time manipulation

 ToDo:
 Time manipulation

Tuesday April 14th
Tien:

 Did:
 Time manipulation

 To Do:
 Time manipulation

Håkon:

 Did:
 Work with Tien and Even on Time manipulation.

 To Do:
 Setup thesis and start writing.

Even:

 Did:
 Time manipulation

 ToDo:
 Time manipulation

Wednesday April 15th
Tien:

 Did:
 Time manipulation

 To Do:
 Time manipulation

Håkon:

 Did:
 Sat up thesis and started writing Introduction.

 To Do:
 Continue with thesis.

Even:

 Did:
 Time manipulation

 ToDo:
 Time manipulation

Thursday April 16th
Tien:

 Did:
 Time manipulation

 To Do:
 Time manipulation
 Thesis

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 Time manipulation

 ToDo:
 Time manipulation
 Thesis

Friday April 17th
Tien:

 Did:
 Time manipulation
 Thesis.

 To Do:
 Thesis.

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 Time manipulation
 Thesis

 ToDo:
 Thesis

Saturday April 18th
Tien:

 Did:
 Time manipulation
 Thesis

 To Do:
 Time manipulation
 Thesis.

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:

 ToDo:

Sunday April 19th
Tien:

 Did:
 Thesis.

 To Do:
 Thesis.

Håkon:

 Did:
 Writing thesis

 To Do:
 Artificial Intelligence project

Even:

 Did:
 Thesis

 ToDo:
 Thesis

Monday April 20th
Tien:

 Did:
 Thesis.

 To Do:
 Thesis.

Even:

 Did:
 Thesis

 ToDo:
 Thesis

Tuesday April 21th
Tien:

 Did:
 Thesis.

 To Do:
 Thesis.
 Webpage

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 Thesis

 ToDo:
 Thesis

Wednesday April 22th
Tien:

 Did:
 webpage
 thesis.

 To Do:
 Thesis.
 Webpage.

Håkon:
 Did:

 Writing thesis
 To Do:

 Continue with thesis.

Even:

 Did:
 Thesis

 ToDo:
 Thesis

Thursday April 23th
Tien:

 Did:
 Thesis
 webpage.

 To Do:
 Thesis

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 Writing on requirement specifications

 ToDo:
 Writing on requirement specifications

Friday April 24th
Tien:

 Did:
 Thesis

 To Do:
 Create class diagrams.

Håkon:

 Did:
 Writing thesis

 To Do:

 Continue with thesis.

Even:

 Did:
 Writing on requirement specifications

 ToDo:
 class diagram with Håkon

Saturday April 25th
Tien:

 Did:
 Created class diagram.

 To Do:
 Thesis

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 class diagram with Håkon

 ToDo:
 system sequence diagram with Tien

Sunday April 26th
Tien:

 Did:
 Thesis.

 To Do:
 Thesis.

Håkon:

 Did:
 Writing thesis

 To Do:
 Start on demo

Even:

 Did:
 system sequence diagram with Tien

 ToDo:
 writing on design

Monday April 27th
Tien:

 Did:
 Thesis.

 To Do:
 Logging of component.
 Setting up demo.

Håkon:

 Did:
 Started on demo with even.

 To Do:
 Continue with thesis.

Even:

 Did:
 Started on demo with Håkon. Fixed issue with nonsleeping physics shapes.

 ToDo:
 Finish demo. Look at possible bug with collision callbacks (?). Crash when

more than one callback in world ??

Tuesday April 28th
Tien:

 Did:
 Thesis.

 To Do:
 Thesis.

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 Worked on Demo

 ToDo:

 writing on design
 looked at how to save user created components, with Tien

Wednesday April 29th
Tien:

 Did:
 Thesis.

 To Do:
 Thesis.

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 looked at how to save user created components, with Tien

 ToDo:
 rewriting some parts based on feedback from Mariusz. With Håkon

Thursday April 30th
Tien:

 Did:
 Thesis.

 To Do:
 gTest.
 Thesis.

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 rewriting some parts based on feedback from Mariusz. With Håkon

 ToDo:
 rewriting some parts based on feedback from Mariusz. With Håkon

Friday May 1th
Tien:

 Did:
 gTest.
 Thesis.

 To Do:
 gTest

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 rewriting some parts based on feedback from Mariusz. With Håkon

 ToDo:
 rewriting some parts based on feedback from Mariusz. With Håkon and Tien

Saturday May 2th
Tien:

 Did:
 gtest

 To Do:
 N/A

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 rewriting some parts based on feedback from Mariusz. With Håkon and Tien

 ToDo:
 rewriting some parts based on feedback from Mariusz. With Håkon and Tien

Sunday May 3th
Tien:

 Did:

 To Do:
 Refactor time manipulation.

Håkon:

 Did:
 Writing thesis

 To Do:
 Work with demo

Even:

 Did:
 rewriting some parts based on feedback from Mariusz. With Håkon and Tien

 ToDo:
 worked on demo. Conflict solver (interruption solving) + håkon: skybox

Monday May 4th
Tien:

 Did:
 Refactored time manipulation.

 To Do:
 Thesis.

Håkon:

 Did:
 Created 3D models with texture, skybox and plane.
 Wrote a bit on thesis.

 To Do:
 Continue with thesis.

Even:

 Did:
 worked on demo. Conflict solver (interruption solving) + håkon: skybox

 ToDo:
 write on implementation

Tuesday May 5th
Tien:

 Did:
 Thesis.

 To Do:
 Thesis.

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 write on implementation

 ToDo:
 write on implementation

Wednesday May 6th
Tien:

 Did:
 Thesis.

 To Do:
 Thesis.

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.
 Write logs and fix documents.

Even:

 Did:
 write on implementation

 ToDo:
 write on implementation

Thursday May 7th
Tien:

 Did:
 Thesis.

 To Do:
 Thesis.

Håkon:

 Did:
 Writing thesis
 fixed some logs

 To Do:
 Continue with thesis.

Even:

 Did:
 write on implementation

 ToDo:

Friday May 8th
Tien:

 Did:
 Thesis.

 To Do:
 Thesis.

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 write on implementation/discussion

 ToDo:
 write on discussion

Saturday May 9th
Tien:

 Did:
 Thesis.

 To Do:
 Thesis.

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 write on discussion

 ToDo:
 write on discussion

Sunday May 10th
Tien:

 Did:
 Thesis.

 To Do:
 Thesis.

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 write on discussion

 ToDo:
 write on discussion

Monday May 11th
Tien:

 Did:
 Thesis.

 To Do:
 Logging og components.

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 write on discussion

 ToDo:
 write on discussion

Tuesday May 12th
Tien:

 Did:
 Thesis.

 To Do:
 Thesis.

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 write on discussion

 ToDo:
 rewrite on suggestions from Mariusz+ some performance testing

Wednesday May 13th
Tien:

 Did:
 Thesis.

 To Do:
 Thesis.

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 rewrite on suggestions from Mariusz+ some performance testing

 ToDo:
 performance testing + polishing requirements

Thursday May 14th
Tien:

 Did:
 Thesis.

 To Do:
 Thesis.

Håkon:

 Did:
 Writing thesis

 To Do:
 Continue with thesis.

Even:

 Did:
 performance testing + polishing requirements

 ToDo:
 polishing thesis

Noxplus

G Milestone review

Review of Milestone 1, 04.02.15 24.02.15:
What we have:

● Simple scene (Basic rendering system)
● Basic shaders(Position transformation and fixed color)
● Basic modelloader (Loading Vertex, normal, uv and material.)
● Basic physics (Basic collision shapes and simple collision callback)
● Demo of physics

Time spent: 3 sprints. 04.02.15 24.02.15
Time left: 10 sprints.
Next Milestone review:

what we expect for the next 3 sprints:

● Advance rendering system (threading/deferred rendering)
● Advance modelloader (Texture support, bone/joint animation)
● Advance physics (Advance collision shape, soft body mesh collision)
● Basic to advanced time manipulation (Basic: rewind controlled actor position.

Advanced: Rewind every actor position).
● Website

Review of Milestone 2, 25.02.15 17.03.15:
What new we have:

● Advanced physics(advanced collision shapes and a proper callback system)
● Modelloader (Support for bones and texture)
● Advanced rendering system (deferred rendering and alpha rendering)
● Light (point, directional and spotlight)
● Actor controls
● Animation

Different tasks took longer than expected like Physics and Animation. We are currently
looking into threading either the renderer or just the calculations of animation bone data. Time
manipulation was pushed back to next sprint so we could finish up most of the tasks we felt
was necessary for a good starting base. Soft body mesh is down prioritized to the point that it
might not be implemented at all, the same will happen with some of the most complex
collision shapes. We were told that the website is not very important either so we down
prioritized that too.

What we expect for the next 3 sprints:

● Threaded renderer
● Demos (at least 4, one for rendering, one for physics, one for light, one for animation)
● Advanced time manipulation
● Shadow mapping but it has very low priority.
● Clean up, comment and verify that we have followed Suttung’s coding conventions.

139

● Get review/feedback on our code from Mariusz

Review of Milestone 3, 18.03.15 07.04.15:
What new we have:

● Optimized animation rendering
● API for animation control
● Physics optimization
● Lighting component
● Better actor control
● An early overview of how we want the time manipulation API

We looked at how we could make the rendering run on another thread. The problem was that
OpenGL must be initialized on the same thread as it is going to be used. Anyways, the main
bottleneck was the calculations of bone transformations for each frame, so we got a tip from
Mariusz that we could just calculate all the frames once and fetch them when they need to be
used. This was very efficient.

Also the threading of the renderer would take too much time since there would be much that
had to be changed. Some changes could also ruin the 2D part of the engine.
Advanced time manipulation.
We forgot about easter, and most of us had plans and little was done in that time period.
We haven’t had time for getting some feedback from Mariusz.
Shadow mapping is dropped.
Still need some cleaning and commenting, but we are soon done.

What we expect for the next 3 sprints

● Thesis started (60% done)
● Time manipulation
● Extended physics API
● Website
● Finish cleaning and commenting

Review of Milestone 4, 08.04.15 28.04.15:
What new we have:

● Time manipulation (still need some tweaking)
● Thesis 33.3...3% done
● Extended physics API
● Website

The fundamentals of our time manipulation is done. It took some days of trying and failing
before we found a working solution. We have started on a conflict solver that the game

developer can set to decide different time manipulation paradoxes. We have not implemented
the detection of conflicts, but this will be done. A demo is under development currently there
is just a wall of boxes and a camera that will shoot boxes in the direction it is looking. The
current version can be used for demonstrating basic rewind and replay. We need to add more
example scenarios in the demo.

We started writing slowly on april 17th. After 12 days we have written about 40 pages. It will
probably will be some minor and major adjustments during the rest of the writing process, and
we believe we have about ⅓ of the thesis done by now.

Website is up, no content, but we will put something from our thesis in there. There were no
commenting or cleaning done this week so we still have that left. It should not take that long
however. The extension on the physics API took a day, it was brain dead work.

What we expect for the next 2 weeks + 2 days:

● Time manipulation tweaked.
● Demo
● Thesis finished
● Finished cleaning and commenting.

Review of Milestone 5, 29.04.15 14.05.15:
What new we have:

● Demo 100% done.
● Thesis 100% done.
● Conflict detection.
● Refactor world logger to use list.
● Complete webpage.
● Finished cleaning and commenting.

We finished writing the thesis, it took quite a long time. And it needed a lot of refactoring. Still
could have been better, but everything can always be better.

The demo environment was changed some, and additional models was loaded and added, so
we have more to play with.

We refactored the world logger and implemented conflict solving and logging of components.
The world logger is now using list instead of arrays and the indexes has been cleaned up
making the code more readable. The conflict solver can now detect conflicts and let the game
developer handle them. Components can now be logged and rewinded/replayed.

1 Milestone:
Simple scene
Basic shaders
Basic modelloader
Basic physics
Demo of physics

2 Milestone
Advance rendering system (threading/deferred rendering)
Advance modelloader
Advance physics
Basic to advanced time manipulation.
New demo of time manipulation

3 Milestone
Advanced time manipulation.
Optimization
Finish off things that we haven't had time for.
New demo of everything.

4 Milestone
Thesis start 60% finished
Website

5 Milestone
Thesis is main focus

Noxplus

H Meetings

13.1 Meeting with Suttung and Nowostawski
● Time, physics and 3Drendering as one module
● Go very simple first when starting the new module for the engine and then dig down

and go deep.
● Will we use offtheshelf physics engine or build our own?

○ Need to look at rolling backward and forward physics
○ inverse kinematic

● Find examples of games using timeline manipulation
○ braid

● Physics engine examples:
○ Havoc
○ Bullet

● Suttung would like 3D module for the engine but is also interested in the timeline
module.

● Timeline module is selling point for us.
● Need to find the limitations for the different engines we are considering, what is

possible and what is not.
● How will we do the timeline?

○ Record events, replay it
○ resimulation

● Effect is the most important thing.

14.1 Meeting with Nowostawski
● Plan milestones
● Technologies

○ We are spreading too thin, we need to focus more on our part and not the
Engine itself.

○ Find our core dependencies
○ We should not for example be dependent on SDL.
○ Assetloader
○ OpenGL
○ etc.

● Find out how dependent our modules are on NOX.
● Mariusz believes we should use Bullet as physics engine

○ fastest
○ does a lot on the gpu already
○ supports opencl

● Take a look at Havoc too, but it is pay to use.
● Have a Future Work section

○ time manipulation for 2D

143

● Stress more that the engine is to be open source
○ add it to project plan where it is applicable
○ simplify core library for other students

● Group rules need change
○ No warning
○ How are we going to work
○ stress positiv more
○ last resort to kick people

● How much will the two groups interact? and how?
● Find different games that use time manipulation

○ How is it used?
○ Try out different ways, experiment.
○ reviews of existing games

■ play or check out gameplay and review them.
● Create a simple world with player first for the demo
● Define other roles as well, infrastructure, assets, integration with NOX, version

management etc.
● Can use the background from the assignments Simon wrote

14.1 Meeting with Suttung
● Receive the engine later today
● They are using an MIT license since they find it easier to understand than the open

source license.
● Remove section of ownership from the contract
● Signing contract next wednesday
● Engine:

○ Multiple threads for:
■ preparing things that are sent to the gfx card
■ AI

○ Actor is things that have an ID, consists of components.
○ The functionality is in the components.
○ The World handler handles the actors.
○ Event manager maintains the communication between systems. Example:

transformations
○ Gameview from the document is View in the engine.
○ The player and AI send them same logic.

● A lot of talk about Suttung, it was nice hearing about their company.

21.01 Meeting with Nowostawski
● Since it’s a large and difficult thing we are doing, Mariusz means we should narrow our

idea.
● Company of Myself is a game that plays on time manipulation
● Another game, cursor time? tenth ..
● We should figure out the demo and use it as a goal. It should have a simple

environment.
● When figuring out the demo we should choose a “time mechanic” we want to

implement
● Mariusz thinks it could be beneficial with a mailing list, so if we have questions we can

use that to contact Suttung or the other bachelor group working with NOX.
● When we mentioned that we are having abit problems with understanding NOX,

Mariusz said we should try for a couple of weeks if we still are having problems we
need to figure something out.

● Project plan can be changed after the due date
● Give Mariusz a message when we made changes that we want him to look at.

(documents and such),
● We can give him a message this friday to have him look at the project plan since it’s

due next week.

21.01 Meeting with Suttung
● They believe their code is self explanatory, but they agree that certain parts are not

very well documented.
● They are prioritizing writing an overview of the different classes.
● We might have to find some sort of Texture atlas, They are making one but we might

need our own.
● Project agreement is signed
● They tried showing us some more code.

28.01 Meeting with Nowostawski postponed until 29.01

28.01 Meeting with Suttung
● They think we should implement Bullet like they did Box2D with Cmake, and that

should work.
● We have to implement our own physics interface for Bullet.
● Discussing how to implement the 3D, if we are to:

○ Creating our own separate rendering classes/architecture in a similar
architectural way to how the current 2D rendering works.

○ Redesigning the existing classes and functions, making support for a third axis
(XY+Z).

● They think we should first go for point one and then go for point two if we can.

● We might need to find a texture atlas, the one they use is a pay for version.

29.01 Meeting with Nowostawski

● For the project plan we should add in the result goals what we expect, so simple that
our mums could understand it. High level wording, Avoid the tech aspects. A summary
of sorts.

● Under the Effect goal for GUC, what kind of research?
● We need to discuss bullet. 3 sentences.
● In the report we should add introductions for everything we mention SDL2, Bullet etc.
● Also need to add in OpenCL if we are using that in the project plan, not just mention it.
● Under 3D Physics we can talk about Bullet
● Need to set a date for when we are to choose between the two points under 3D

rendering.
● Will we support 2.5D ? Mariusz suggest we don’t, since our assignment is big as is.
● How will we deal with changes in the Engine from Suttung, changes might break our

current work.

Meeting with Nowostawski 04.02
● Discussed splitting with the IS group, decided on splitting from us and check the other

group working with Nox since they do Network.
● Wondered about what was happening with the mailing list
● Check how other engines has done rendering and representation.
● Nowostawski agreed that we should have simple scene up this week and a basic

design skeleton. We should have limitations tight at first and then set wider as we
work.
How many assets can the assetmanager handle when we are doing timeline
management, and such.

● The other group working with nox, didn’t like the namespaces and loggers.

Meeting with Suttung 04.02
● Talked about the renderer in Nox.

They suggested we made a separate renderer that handled the rendering for 3D. And
then merged that into Nox.

● We might need our own scene graph since theirs are focused on 2D.
● Talked about the Directory structure and decided on that if we want to make changes

to it, we suggest it to Magnus first so they can do it. This includes renaming files and
such too.

Meeting with Nowostawski 11.02
● Discussed repo problems.

○ Instead of having Master branch as the “stable code” branch, we could use it as
the development branch and have a second branch where we push the code
after it’s been sucessfully tested.

● Scene graph
○ Talked about what the nodes should contain and how they should be used. We

discussed how we had done it, and Mariusz said it was ok.
● Caching scene graph
● How to handle what is infront of camera:

○ Look where the position of camera is. From that you can calculate what is
infront of camera and visible. Dot product, negative is behind and positive in
front.

● Are we going to rerender things from scratch when it comes to time management?
● Need to remember to invalidate storaged stuff. And to do that we need to set a point

for how long back you can travel in time.
● For static objects you can just cache position.
● For Dynamic objects we need to be clever and find a way.
● How will we integrate/Design physics? Two choices:

○ Point to the object in the physic engine from the scene graph
○ Or point from the scene graph to the object in the physics engine.

● We should have our three components up and running. They should only be basic.
○ Simple Renderer (done)
○ Physics (Main goal this sprint)
○ Scene graph (almost done)

● Create a simple demo when physics are done.
● Web page. Mariusz don’t think there is a deadline for it.
● TODO: invite Nowostawski to our repo.

Meeting with Suttung 13.02
● Use Namespace instead of Trd
● Pleased we added assimp as a submodule
● Remember to test on Linux and Mac too.

○ Remember to use / in all includes (Mac)
● Link

○ Physics to Transformation component to Render actor graphic, use bullet user
data ptr(void ptr).

● They suggested we should use a separate repo for demos
● For the time manipulation they suggest we try first with:

○ Track all transformations
○ Then track changes in the matrices.

Meeting with Nowostawski 18.02
● We should start thinking about how to wire things. Since what we are creating is part

of an engine. What to wire for just the demo and what to wire for people who want to
use the engine.

● If the demo we create is complex, can we reduce that complexity?
○ We should try to make things as little complex as possible.
○ Create many small demos first and then put them together as a large one.

● We should start thinking about how we want to do the time manipulation.
○ Speeding up and slowing down time should be simple.
○ Reversing time or jumping back in time?

● When it comes to the thesis we should keep track of :
○ What do we add and why?
○ Why we added what we did and why didn’t we add something?

■ Time constraints, difficulty etc.
● Need a bigger picture of the whole project now. Need to find out how far behind/in

front we are. Use Gantt and find out why there are discrepancies.

Meeting with Suttung 18.02
● Talking about problems with our code they found.
● Sporaland will make a pull request soon of things he found that was easy to fix. These

are changes that are needed for Mac to run properly and certain things that are good
practice.

○ VAO
○ Shader

● Use renderData for managing VAO switching.
● Indenting when it comes to Namespace, needs to be fixed. Don’t need to have the

code so far out to the right.
● Should think about optimization when it comes to what’s in front and behind the

camera.
● GL_FragColor is deprecated and should be removed (check it after the pull request

from Sporaland)
● Parse the tree then render so you don't render something you don’t need to.
● Remember to draw things in the correct order to avoid unnecessary draw calls.

○ Draw things that are in front first then backwards
○ When drawing things with alpha you should draw that after the nonalpha

mesh. Front to back.
● Look at deferred rendering
● Look at GlRenderTarget.
● Suttung suggested we merged in changes to Nox weekly.
● Problem with building assimp static since both nox and assimp uses Poly2Tri which

creates two slightly different libs using the same name. Nox engine can't link properly
because of this. Magnus tried to remove assimps Poly2Tri and link it directly to Noxs
Poly2Tri but it didn’t work because of the minor differences in the lib files. Suttung
suggested we asked Mariusz about it.

● Something wrong with the rendering on Mac, the airplane is a plane (weird square).

Meeting with Nowostawski 25.02
● Might want to look at threading the Renderer.
● The other group working with Nox said they would look at doing some 3D? Mariusz will

look more into this.
● Can delete a branch in bitbucket after merging into master.
● Might want to figure out if we are to use event queue system for collisions or create a

function the game developers can use onCollision()
○ reasons?
○ load handling, what to do with different events under heavy load?
○ limitations of our system, test.

● Discussed threading. We should handle it. Not the developers. Might want to look into
Future/Promise

● Discussed time manipulation.
○ Bullet is deterministic so should be able to resimulate an action with the same

starting parameters.

Meeting with Suttung 25.02
● Pull request from Sporaland

○ Mac fixes.
○ Renderer fixes.
○ Still don’t render properly on Mac, he will look more into it when he have time

● Pull request from Vik
○ Some fixes

● Look at activating openCL
● Discussed having the logic in it’s own thread. Might destroy things for Suttung. But

they have thought about it themselves.
● Discussed having the renderer in it’s own thread. Might be possible but will it optimize

much for us?
● They suggest we start with simple things for optimization.

○ look at running Bullet as multithread
● If we are going to multithread we might look at OMP or use c++11 threads.
● Regarding the Collision events, we should try both and see what is best.

○ event queue
○ overloaded function onCollision().

● Discussed memory problem with shared pointer. No conclusion, just gotta try finding it
ourselves.

● Discussed texture. They suggested we start with one simple texture and then try
packing them so we avoid binding textures all the time.

Meeting with Nowostawski 04.03
● Talked about Namespace/suffix. Nowostawski means we should use suffix. So that it’s

easier for any developers to use it.
Strong side of open source is that people can change things in the engine.

● Thesis: Why we spent time on Nox?

● time manipulation
● why not time manip for Unreal?

○ Unreal wasn’t open source at the time we started
○ Our employer was more interested in Nox, why they don’t use Unreal,

you will have to ask them about.
○ Big engine, will take time to learn.
○ we are focusing on tech not game.

● Talked a lot about api/interface for onCollision()

Suggest we start looking at it from the developers side and see how we would like the
collision from their side.

Meeting with Suttung 04.03
● Valgrind for checking uninitialized variables and for memory leaks.
● talked about why our demo was different on our laptops than on our stationaries.

○ windows 8 demands uniforms are uploaded correct and is used correctly.
● Try using gDEBugger
● How to create child actor from json file. No examples out yet, Magnus will send us an

example later.
● Directory structure will be implemented like Magnus suggested. (maybe not before

next week because of astral integration with nox).
● Talked about graphics and physics failure on our laptops. Might be because of

uninitialized variables, this depends on the specific platform/environment..

Meeting with Nowostawski 11.03
● Nowostawski want to measure performance on game objects between Unreal, Unity

and Nox. He will set up for Unreal and Unity. We will do it for Nox. Nowostawski will
tell us when he has made it.

○ Number of calls
○ How long it takes total
○ code complexity.
○ Number of variables.
○ Number of if’s and switches,

● Hypothesis is that ours is faster but more complex since we are at a lower level.

● How are we to create 500 objects? write them all in the Json file? Nowostawski
suggest we ask Suttung if they have an editor or something. Can we create them
programmatically.

● Maybe create an API for creating objects?
● Regarding the pseudo code for the collision:

■ Dont need to pass source since it has “this”. So destination and other
parameters like force.

■ Lambda don’t need source either since it can be retrieved from
reference

■ To have as few things to pass as possible since we don’t want to
introduce bugs for the developer. Meaning we hide the wiring in the
engine.

● Interface class for Actor to override the collision
● Check out Life is Strange game
● Work we identify during our work should be added as future work.

● What type of time travel do we want.

○ Just rewind backwards, stop and play normally from there on a new
timelinefork?

○ Rewind backwards, stop and play in parallel with the actions you did before
rewinding?

○ Possible to go back in time, do something different, then step/rewind forward
again and automatically get a different result?

● Look at different games, classify the different types of time travel.

Meeting with Suttung 11.03
● Actors can be created programmatically using actor definition(path to actor json file).
● Components can be created and added to actors using json objects. If the user don't

want to load a json object from file or create one programmatically it is also possible to
send in a nullptr instead of the json object setting the values manually.

● onCreate() function from Component are supposed to be called automatically after the
actor is created which it is not doing.

● Suttung don’t have a Json editor, they want one but haven’t gotten around to it yet.
● isActive() in an actor says if it will be simulated by the world and if it’s visible or not.

We should test this for us.
● Suttung suggest we should not use a interface class for collision but std function. They

believe it was more flexible.
● You can have an interface but you would have that for a component not the actor.
● check gaffrongames.com (google fixed delta times)

Meeting with Nowostawski 18.03 - Nowostawski was not available this
week.

Meeting with Suttung 18.03
● The View class is an interface towards the logic layer.
● A view can only have one controlled actor.
● Suttung haven’t tested with multiple views in RenderSdlWindowView.
● Asked about how we should represent the different onCollision functions an actor can

have. They suggested we should use a Map since there is need to find the correct
onCollision to remove it. Speed shouldn’t be an issue before you have a lot of them.

● There are four different control types:
○ Vector a 2D vector with values between 0 and 1.
○ Strength a linear value between 0 and 1.
○ Switch a boolean value for on and off.
○ Toggle sends a signal.

Meeting with Nowostawski 25.03
● Mariusz suggested we reprioritize our tasks relative to time manipulation. Deformable

mesh isn’t something that is very useful for this and is also really hard and should
therefore have very low priority. We should reorganize and reassess for the next 34
weeks.

● We asked about threading the renderer since we are having problems with lagg when
it comes to Animation and Mariusz said we should try to thread it and 4 actors with
animation should be fine.

● We should make a decision on if we are making a game engine with a good API for
game developers or making a game engine for game engine developers/tinkerers.

● Mariusz recommends we don’t spend time on making a nice API but rather focus on
the time manipulation module.

● We created a classification of different types of time travel.
○ We should also map those who aren’t doable for the thesis.
○ Provide games or movies as examples for them.
○ Now we should split the big cases into small sub cases
○ We should then create sets of those who are covering the same cases and

would need some of the same implementation.
○ Then we can choose the architecture that cover the most cases and what we

would like to try with constraints and difficulty in mind.
● Nowostawski suggest we start cutting corners, as we are closing in on the time we

should start with the thesis.

Meeting with Suttung 25.03
● Promised they would fix the Directory structure today
● Problems with Merging: Suttung added formatting class for logging. Internal crash in

format.h. Haven’t tested on Windows yet so might be that or it might be us. He will look
into it.

● They are considering moving their repository over to gitlab.com. This wont have
negative any impact on use.

● Controlled actors animation is regulated by a animation control component which
receives movement event from the control mapper.

● How to use nox engine on eclipse in linux:
○ Build the cmake project using Eclipse CDT4 Unix Makefiles option in the

configuration settings.
○ Create a new Eclipse project and import in the Unix make files into the project.
○ Set Eclipse working directory to source folder.

● We discussed the threading over Renderer;
○ Maybe have the different processes on threads but that would require a

substantial refactoring of the whole engine and would take much time.
● Nox builds both 64 and 32 bit
● Memory allocation:

○ Suggested we used std::Array to set of enough memory for time manipulation
since it has pointers.

○ Vectors are also a possibility.

Meeting with Nowostawski 15.04
Nowostawski had a new “time manipulation class”. Person A gives time to person B, Person A
loses the amount of time he gives to B.

We talked about the animation problem we had awhile back. Nowostawski mentioned how
some let the physics take care of some of the animation. Say person A get shot in the
stomach by person B. Where person A then either is animated to look right or that soft body is
used to simulate that he was shot.

We should make a demo for models, physics, animation and time manipulation.

We should make a plan for the next three weeks from next wednesday.

Nowostawski suggest we prioritize in this order:

1. Finish time manipulation
2. Clean up the project.
3. Make demo
4. Find limits (How many actors we can run at once. How long time manipulation lasts

and such. Remember to write down the specs and framework on the computer we do
stress tests).

Appendix time spent on project.
Appendix everything you don’t know what to do with.

Make presentation a tech presentation not a design. But make the presentation pretty.

Meeting with Suttung 15.04

Let them know when and where the presentation is of the Bachelor assignment.

Cite before or after “.”
But always after.

Meeting with Nowostawski 22.04
 We should start writing about the most important stuff (time manipulation).
 We should plan so we iterate over the writing process. First time is a draft, next time

look at spelling errors and restructure, same next time, and next time and so on.
 We can set references to other chapters we know we are going to write later, but not

written yet.
 The security part is not very relevant for us. We could write about memory leaks and

stuff, maybe.
 Deployment: for our context it’s not that interesting. However, we may discuss how our

work affects the deployment of the NOX engine. Also discuss integration with NOX
will there be two separated NOX engines, one for 2D and one for 3D? How will the
engine be maintained later? We should discuss this with Suttung.

 Move “Future work” part to the “Conclusion” section.
 Rename “Time manipulation manager” to “Time manipulation” under subsystems.
 Move section 4 to after section 6.
 Discussion: Personal thoughts.

Part1: What we have done and what should have been done different.
Part2: Reflection: tools, methodology(?)

 Conclusion: more concrete.

Meeting with Nowostawski 29.04
● We should use \n{note} for when we need to note things. Add a ‘d’ in front of ‘n’ to note

that you finished it. \dn{note}
● We can repeat small things in the report or just refer to where it is written. Repeat can

be used in things like chapter introductions.
● The design should be written for developer, while implementation should be written for

people working with the engine. What is the toolbox? Concepts and facilities should be
written. We should not use any class names here, except from the class diagram.

● Implementation should contain: language, algorithms and construction. What does an
engineer need?

● Our diagrams need to be readable as a printed version. Either split or make it
bigger/rotate it.

● Text in the diagrams should be same size and font as captions.
● Explain things we write about, we might understand it but the reader might not know.

● In discussion or testing phase we should have some figures or charts showing
performance with different amount of actors.

● We speculate too much when writing. Fix this
● Write about the iterations we did with Suttung when it comes to testing. What did we

have to change to make things work on Linux and Mac. This could be in Deployment
under RUP or Testing chapter.

● RUP part: we do not need to refer to where in the thesis it is, that is overkill.
● Ideas that we tried, but failed on should not be in design or implementation. We can

write about it in discussion.
● It’s better to ask Mariusz to give feedback on chunks of text.
● In project management section, make clearer why we used Google Docs.?
● Use capital letter when writing the words “Chapter” and “Section”. Always use this in

front of the number/reference: “Section \ref{sec:troll}”.
● Move process chapter before design chapter.

Meeting with Nowostawski 06.05

● Document structure should be last in the Introduction.
● We need to talk about the integration with Nox under Deployment
● Requirements needs to say what not how, so we should move the use case and the

things for that to Design. Anything that is too detailed for requirements should be
moved to Design.

● Abstract and Conclusion needs to be well written. This is probably what sensors will
read first. Very important that this is written well.

● The conclusion has to give the essence of what we have done.
● Abstract should contain:

○ Topic/goal
○ What we have done
○ what results we have

● caption should be written like: \caption[short title]{description}
● Background could be written more academic, it is very “chatty” right now.
● Bullet points need to end with “.” and start with capital letter OR start with small letter

first and a “,” after each point when listing things.
● The goal needs to be changed a bit; The target audience for the engine is … “type”

developer. “Type” = core engine developer AND normal game developer.
● Avoid “()”
● Avoid things that refer to time. “At the point of writing” can be used.

○ “Currently” is bad
● Conclusion should contain the section about “time manipulation has little research”.
● What kind of time we are focusing on.
● If we want Mariusz to read the thesis before the weekends we have to ping him before

5pm on friday.
● Avoid words like “more”, it’s not to the point and can’t be measured.
● The thesis is riddled with past tense problems.

○ was and has been
● The main goal … of the inception…

● “But” is not a word we should start a sentence with.
● page 10. Area of time manipulation.
● Need to fix grammar problems, but focus on content first of all.

Meeting with Nowostawski 11.05
● Abstract:

○ Tell what Nox is and Noxplus.
○ Not how we worked.
○ More engaging.
○ Explain more physics and such.
○ Tell it like the reader don’t know what we have been doing
○ Start with second sentence.

● Remove the words “very” and “much”.
● Move time constraints under constraints
● Capitalize engine in “Nox Engine”
● Need to fix where we used the “GUC” macro
● Page 3. specify, loading from where?
● Keep terminology in main document
● Introduce something and then why. (ex: CMake)
● Specify if it is open source or not.
● Refer to the class in the doxygen. Can upload doxygen on website.
● Conflict solving ++ in the requirements
● Workload needs to be rewritten and added under 3.5
● 5.7 The tech stuff from time manipulation?
● Can talk about plan and execution in the same section.
● Future work: The bullet points should have some sentences with plan on how.
● Try and say more what the library did for us but put more emphasis on what we have

done. Bullet/Assimp/Nox is ok.
● Highlight work we have done.
● Rewrite the part about the chaotic system. Problem is with the storage requirements.

Meeting with Suttung 12.05
● They wanted a pull request, from our repo to their to take in the new features.
● Should have split features into branches.
● Takes long time to go through everything, testing and reviewing it, before taking it in.

So they do not have time to take it in at this time.
● Will test for Mac today.

Meeting with Nowostawski 13.05
● Abstract:

○ Noxplus and tasks needs a connection
○ Extension with what?

○ In this thesis we describe what Noxplus …
○ Solution 2:
○ 2 tasks, achieved it by extending nox > noxplus
○ goals are not a good word, use features or functions. Since this is a software,

use extension.
● Dont care about tech in the conclusion, so talk high level. Meaning the file extensions:

○ Maya, 3D studio files
● Careful with “implemented a physics engine”, use something like: “implemented a

physics submodule/interface”.
● What does the demo have and demonstrates? “It is used for … and shows ...”
● What have we learned? Give some sort of evidence. Like lines of code from previous

projects vs Noxplus. The corridor will do. Cite? Did we use new features?
● We should not talk about “having to cut things”. It weakens the thesis. SHows that we

have now planned well. DO NOT ADMIT MISTAKES! We can however mention that
we have learned to scope projects better for the next project.

● We have done a lot of work, but there are still work to be done. <Future Work
● Explain combination of 2D and 3D.
● To tackle more actors > exploit Bullet to it’s fullest, using OpenCL.
● Solving camera rotation using quaternions.
● Future work should be: problem > solution
● Assimp lacks documentation > evidence
● No “seemed”. Report facts.
● Deployment in implementation not discussion.
● Move Assets to implementation.
● “A bit more” rephrase 7.2.1
● All claims should have evidence.

Noxplus

I Credits

We would like to thanks:

• Ogldev, Etay Meiri for providing use with good tutorials on skinning animation and
deferred shading.

• Opengameart, Danimal for the animated goblin 3D model distributed under the CC
BY 3.0 license. No changes was made to the 3D model.
License: (http://creativecommons.org/licenses/by/3.0/).
Artwork: (http://opengameart.org/content/goblin-animated-by-motion-capture).

• AlpArt on TurboSquid.com for providing us with the free wooden box model. No
changes were made.
Licence: (http://support.turbosquid.com/entries/31030006-Royalty-Free-License?locale=1)
Artwork: (http://www.turbosquid.com/3d-models/wooden-box-3ds-free/631645)

• Anton Gerdelan for good mouse picking tutorial.
Tutorial: (http://antongerdelan.net/opengl/raycasting.html).

• Niven for mouse picking.
(http://www.cplusplus.com/forum/general/135193/).

• Credits to Mike Shaffry and David Graham, from Game Coding Complete, fourth
edition.

158

Noxplus

J Sprint review and retrospective meeting

Sprint 1:
Review:

● Sat up the project. Had some problems with Cmake but figured it out later.
● Camera is done. Have a bug with rotation. Low prio fix. Gimbal Lock. Can be fixed with

constraining the angle or rotation with quaternion.
● Transformation component is done.
● Open asset loader(Assimp) is integrated into the engine, loading and displaying a

static model.
● Created scenegraph for 3D.
● Created actor for 3D.

● The TrdOpenglRenderer class was not set as finished even though we had a simple

scene up by the end of sprint since it wasn’t as finished as we would have liked it to be
as a basic renderer. It was the same deal with the shaders.

● The git repository was not marked as finish because the development branch had a
few issues .

Retrospective:

● Bad at logging. Need to be better.
● Bad at using Jira. Need to be better.

Sprint 2:
Review:

● Prototype of bullet integration is done. (Init empty world and create sphere and plane
collision shape).

● Problems with making Bullet a submodule for our project, turned out it was we
missing some changes that was needed in some cmake files.

● Created components for Actors: physics and transformation change.
● Created component for Mesh.
● A prototype for bullet interface and simulation class was created but not marked as

finished because the simulation class still needed to be restructured and refactored.

Retrospective:

● Bad at logging. Need to be better.
● Bad at using Jira. Need to be better.

159

Sprint 3:

Review:

● Implemented basic callback system for collisions between two actor, missing the event
system.

● Put together a proposal for new folder structure.
● Implemented debug rendering for Bullet.
● Creating the BulletSimulation class was not set as finished. Most of the tasks is now

completed:
● Callback function
● onSyncState function.

● Missing now only createShape function. It is created just missing the complex shapes.
It has all the basic shapes.

● We haven’t received the new directory structure from Suttung so the task to create
namespace for 3D, commenting and refactoring the Rendering system was
postponed.

● Rendering system was also postponed due to Even being on vacation and we would
like to have him here when we do it.

● The demo was postponed because we wanted to create it when we cleaned up
everything.

Retrospective:

● Bad at logging. Need to be better. (Seriously need to be better now)
● Bad at using Jira. Need to be better. (Seriously..)

Sprint 4:

Review:

● Implemented texture for 3D models. Currently loading new texture for each model,
need to create a map to prevent the same texture to be loaded in multiple times.

● Refactored scene graph. Support for child nodes and each child will update their
model matrix as the graph is traversed. .

● Introduced two rendering steps. The renderer will first draw all solid meshes, and
finally it will draw the meshes with alpha textures (transparent ones). We did look at
how to order the drawing of the alpha textures, but we need to work more on that.

● We didn’t create new namespaces because we are still waiting for Magnus to create
the new directory structure. We have also decided to not create new namespaces for
3D because the namespaces would make it harder to distinguish the 2D and 3D
functions from the game developer's view. Using suffix on our classes would be a
more tidy approach.

● We haven't commented every function yet because were waiting for the new directory
structure form Magnus before will clean up the project.

● The demo was postponed again because we wanted to create it when we cleaned up
everything.

● Implemented a callback system using the event system. Sending events throughout
the system with broadcasting. Need to try different things.

● Still missing certain complex shapes in the createShape function. Haven’t been
worked much on.

● We didn’t have time to start playing around with time manipulation.

Retrospective:

● We need to learn to close issues we are done with and add new ones when we see
issues we need to address.

● Good at using Toggle!
● Need to get more sleep so we can work even harder.

Sprint 5:

Review:

● Cleaned up rotation, wasn’t much to do.
● The physics/graphics issues on laptop fixed itself, we believe it was that we buffered

things twice. Was fixed when deferred rendering was implemented.
● We wrote different Pseudocode for the API for onCollision so we could discuss the

different ways to implement it and what way would be the best.
● We also wrote Pseudocode for the API for time manipulation. We are going to have to

rewrite that one after discussion with Nowostawski.
● Almost done with deferred rendering. Handles easily many lights at the same time.

Need to make a generic interface for creating lights, placing them and attaching them
to other actors.

Retrospective:

● Getting better at closing issues, but we still have some way to go.
● Still good at using Toggle.
● Sleep handling still bad. But is also getting better.

Sprint 6 (7):
Review:

● There won’t be added any more shapes before we finish the time manipulation
module. Shape for deformable mesh was suggested that we dropped since it was
really difficult.

● Need some feedback for the reuse of collision shape, we think we finished it but it will
stay in the backlog until we gotten some feedback.

● The demo was postponed again because we wanted to create it when we cleaned up
everything.

● We haven't commented every function yet because were waiting for the new directory
structure form Magnus before will clean up the project.

● Still haven’t had time for some of the items in the sprint: Cleaning up includes,
commenting, triggers, optimizing deferred rendering, fix warnings, making lighting
generic and checking the isActive function.

Retrospective:

● Getting better at closing and creating issues, but we still have some way to go.
● Still good at using Toggle.
● Sleep handling is bad again.
● Need to prioritize tasks and plan a few sprints ahead.
● We didn’t manage to get much done in sprint 6 so we decided to extend it into sprint 7.

This was mostly because the task we worked on was too large. So we need to be
better at splitting the tasks up into smaller ones to see how much work a task really is.
We also need to increase our working hours, we have been a little lazy. We believe
this is due to that we don’t see much progress. The demos would have helped
showcase this but since we don’t have the directory structure yet we been postponing
it.

Sprint 8:
Review:

● OnCreate() was fixed, we forgot to test if an actor had a Transform3d instead of
transform component.This also fixed the memory leak.

● Reuse of collision shapes was said to be ok.
● Demo was postponed again.
● We cleaned up some code and commented some. Not done yet.

● Triggers and kinematic shapes are down prioritized.
● Started mapping time manipulation. Decided what types of time manipulation we

wanted to support.
● Time manipulation module was done in sprint 910. Not in 8 as Jira says.

Retrospective:

● We completely forgot about Easter, we should have taken this into account when
planning the sprint.

● Håkon left for The Gathering and there was no meeting with supervisor/Suttung on the
day we were supposed to close the sprint, so we didn’t set up a sprint for the last part
of the Easter. We were still working, but we should have closed and set up a new
sprint.

Sprint 910:
Review:

● Created a component for lighting.
● Created classes for logging and managing time.
● Static rewind and forward playback is done.
● Sat up LaTeX, so we can start writing.
● Pausing the game/logic works now.

Retrospective:
● We should branch more often when developing new engine features.
● We are still too lazy with Jira.
● Need to reprioritize again, and plan for the last month.
● Given up on working from 816, we are now working from 13 to after midnight.

Sprint 11:
Review:

● Cleaned up and commented code.
● Created the Demo
● Refactored world logger to use List instead of array.
● Implemented conflict detection.
● Sat up thesis structure.
● Added support for spawning new actors during gameplay.

Retrospective:
● We started on the thesis so we extended this sprint by 2 extra weeks.
● Increased our working hours to over 50 hours a week per person.
● We should have branched for each feature we created to help lessen the workload for

Suttung.

● We are great at using Toggl.
● Still terrible with closing tasks that were done.

N
oxplus

K
Logged

H
ou

rs

Figure
41:Sum

m
ary

report
from

toogl.

165

Noxplus

L Nox control system

/**
* Generates logic::control::Action events based on the keyboard input.

*
* The mapping from keys to events is loaded from a JSON file with loadKeyboardLayout().

* There are four types on control actions (all based on logic::control::Action, so see there for more info):

* - Vector.

* - Strength.

* - Switch.

* - Toggle.

*
* ## Key Strings

* For mapping a key string to an actual SDL_Scancode, the SDL_GetScancodeFromName() is used.

* So all key strings must match a string in SDL_GetScancodeFromName(). See http://wiki.libsdl.org/SDL_Scancode for all

* the possible values.

*
* Since SDL_Scancode is used, the keys are independent of the keyboard layout. So mapping WASD to actions would result

* in the same physical location on both a qwerty and dvorak keyboard. The qwerty layout is always the layout used for SDL_Scancode.

*
* ## Control Types

*
* Each control type has its own property in the JSON file:

* - Vector: __vectorControls__

* - Strength: __strengthControls__

* - Switch: __switchControls__

* - Toggle: __toggleControls__

*
* ### Vector Controls

* The vector controls is a set of actions and directions belonging to these actions. For example there can be

* an action "move" and four directions vec2(1, 0), vec2(0, 1), vec2(-1, 0) and vec2(0, -1) (there is no limit).

* All directions have a key mapped to it. For example for "move" you could have D, W, A, S matching the directions

* mentioned above. Combining several directions will average the vectors. For example holding W and D will trigger

* a direction of vec2(0.7, 0.7). All directions are normalized.

*
* The format for the vector controls is as follows:

* - __actions__:array[string] - A list of all the available actions. An action used in __buttons__ must be listed here.

* - __buttons__:map[array[object]] - Keys mapping to arrays of direction actions.

* + __action__:string - Name of the action that this key will trigger.

* + __vector__:vec2 - The direction of the action that this key will trigger.

*
* ### Strength Controls

* These are mapped as switch controls where pressing a key will result in strength 1, while releasing will result in strength 0.

* See Switch Controls for more.

*
* ### Switch Controls

* A switch control is either on or off. It is off when a key isn’t pressed and on when a key is pressed. The JSON format is as follows:

* - __actions__:array[object] - All the actions available.

* + __name__:string - Name of the action that will be triggered.

* + __keys__:array[string] - All the keys that will trigger this action.

*
* ### Toggle Controls

* A toggle control has no state, it is just a plain signal. Only a key press will trigger a toggle action. The JSON format

* is exactly the same as Switch Controls.

*/

166

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Project Description
	Background
	Project goals
	Audience

	Scope
	Assignment Description
	Delimitation

	Project organisation
	Responsibilities and roles
	Group background and skills
	Practises and rules
	Risk analysis

	Plan for implementation
	Software Development Methodology
	Project timeline
	Work breakdown structure

	Terminology
	Document Structure

	Requirements Specification
	Functionality
	Usability
	Reliability
	Performance
	Constraints
	Time constraints
	Software constraints
	Expandability
	Interoperability
	Hardware constraints

	User documentation and help system
	Licensing, laws and regulations
	Testing
	Deployment

	Development Process
	Project workflow
	RUP
	Scrum
	XP

	Project Management
	Meetings
	Configuration management
	Coding environment

	Development workflow
	Assets
	Tools

	Organisation of quality assurance
	Documentation, coding conventions and source code

	Workload

	Design
	Use case
	Risk analysis of use-case
	High-level use-case description
	Expanded use-case description

	Program flow
	Modules and submodules
	Physics
	Assets
	Rendering
	Actor control
	Time manipulation
	Demo

	Implementation
	Logical View
	System architecture
	Scene module
	Scene graph
	Camera
	Light
	Rendering
	Deferred rendering
	Transparency

	Actors
	Actor transform
	Actor graphics
	Actor light
	Actor physics
	Actor control
	Rotational control

	Model loader
	Basic model loading
	Loading animations
	Textures

	Physics module
	Bullet physics library
	Rigid bodies
	Collision shapes
	Collision detection
	Physics functions
	Debug renderer

	Timeline manipulation module
	Logging and storage
	Rewind and replay
	Paradox/conflict solver
	Logging of components
	Discarded prototypes

	Control system module
	Camera controls
	Time control

	Demo

	Testing
	Performance testing
	Rendering without physics
	Rendering and physics
	Lights rendering

	Unit testing
	Linux and Mac

	Discussion
	Scene module
	Rendering
	Animation performance
	Multithreading
	Transparency
	Deferred rendering
	Camera

	Model loader
	Loading models

	Physics module
	Time manipulation
	Working version: List and vectors
	Swapping data to hard drive

	Demo
	Development
	Choosing assignment
	Directory and file structure
	Re-prioritising
	Requirements
	Software Development Methodology

	Conclusion
	Future work

	Bibliography
	Source code and video
	Source code
	Video

	Project Agreement
	Group rules
	Risk tabel
	Gantt chart
	Daily scrum
	Milestone review
	Meetings
	Credits
	Sprint review and retrospective meeting
	Logged Hours
	Nox control system

