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Abstract—This paper considers path following control of
snake robots along straight paths. The proposed controller
propels the snake robot forward according to the motion
pattern lateral undulation while simultaneously adjusting the
heading of the robot according to a line-of-sight guidance
law that steers the robot towards and subsequently along the
desired path. Under the assumption that the forward velocity
of the snake robot is nonzero and positive, we prove that the
proposed path following controller K-exponentially stabilizes a
snake robot to any desired straight path. The paper presents
simulation results that illustrate the effectiveness of the path
following controller.

I. INTRODUCTION

Inspired by biological snakes, snake robots carry the
potential of meeting the growing need for robotic mobility
in challenging environments. Snake robots consist of serially
connected modules capable of bending in one or more planes.
The many degrees of freedom of snake robots make them
difficult to control, but provide traversability in irregular
environments that surpasses the mobility of the more conven-
tional wheeled, tracked and legged forms of robotic mobility.
This paper considers planar path following control of

snake robots along straight paths. Straight line path following
capabilities are important since they enable a snake robot
to follow a desired path given by waypoints interconnected
by straight lines. Straight line path following is therefore
relevant for many future applications of snake robots, such
as automated inspection rounds in inaccessible areas of
industrial process facilities or mapping of confined spaces by
moving along prescribed paths. Note that this paper considers
path following, in contrast to trajectory tracking, where the
goal is additionally to control the position of the system
along the path. During path following, we steer the system
towards and along the path, but do not consider the position
of the system along the path.
Research on snake locomotion has been conducted for

several decades. Gray [1] conducted empirical and analytical
studies of snake locomotion already in the 1940s, and Hirose
[2] studied biological snakes and developed mathematical
relationships characterizing their motion, such as the ser-
penoid curve. The main emphasis in literature so far has
mainly been on achieving forward and turning locomotion.
The next step will be not only to achieve locomotion, but also
to make the snake robot follow a desired path. The research
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on this control problem is still limited. The work in [3]
considers trajectory tracking of snake robots where a number
of the links are assumed to be wheeled (no-slip constraints)
so that the underactuation of the system is removed. Path
following of a snake robot with active wheels is considered
in [4], but no stability analysis of the controller is presented.
The authors have previously employed Poincaré maps to
study the stability properties of snake locomotion along a
straight path [5]. The presented analysis is, however, based
on numerical calculations and is thus only valid for a given
set of controller parameters.
Research on robotic fish and eel-like mechanisms is

relevant to research on snake robots since these mechanisms
are very similar. The works in [6]–[8] synthesize gaits
for translational and rotational motion of various fish-like
mechanisms and propose controllers for tracking straight and
curved trajectories. However, an analysis that formally proves
that the fish-like mechanisms converge to the desired path
still remains.
In this paper, we consider the problem of planar path

following control of snake robots. The contribution is a path
following controller that enables snake robots to track a
planar straight path. Using cascaded systems theory, we show
that under the assumption that the forward velocity of the
snake robot is nonzero and positive, the proposed controller
guarantees K-exponential stability of the distance between
the snake robot and the desired path and also K-exponential
stability of the heading of the robot with respect to the
direction of the path. The paper presents simulation results
that illustrate the effectiveness of the proposed controller.
The paper is organized as follows. Section II presents

some mathematical preliminaries. Section III presents the
model of the snake robot. Section IV presents the path
following controller. Section V presents simulation results.
Finally, Section VI presents concluding remarks.

II. MATHEMATICAL PRELIMINARIES

This section presents some stability concepts that are em-
ployed in Section IV to analyse the path following controller
of the snake robot. Consider the system

ẋ = f(x) (1)

where  : R≥0×R → R is piecewise continuous in  and
locally Lipschitz in x.
Definition 1: (GUAS, see Lemma 4.5 in [9]).

The equilibrium point x = 0 of the system (1) is globally
uniformly asymptotically stable (GUAS) if there exists a class
KL function  such that for any initial state x(0)

kx()k ≤ (kx(0)k  − 0) ∀ ≥ 0 ≥ 0 (2)



Definition 2: (Global K-exponential stability, see Defini-
tion 2 in [10]).
The equilibrium point x = 0 of the system (1) is globally
K-exponentially stable if there exist a positive constant 
and a class K function  such that for any initial state x(0)

kx()k ≤ (kx(0)k)−(−0) ∀ ≥ 0 ≥ 0 (3)

A definition of class K functions and class KL functions
is given in [9] (Definition 4.2 and 4.3). Next, consider the
cascaded system

ẋ = f1(x) + g(xy)y (4)

ẏ = f2(y) (5)

where x ∈ R, y ∈ R, f1(x) is continuously differ-
entiable in (x), and f2(y), g(xy) are continuous
in their arguments and locally Lipschitz in y and (xy),
respectively.
Theorem 3: (See Theorem 2 in [11]).

The cascaded system (4), (5) is GUAS if the following three
assumptions are satisfied:
(A1) The system ẋ = f1(x) is GUAS with a radially
unbounded Lyapunov function satisfying°°



°° kxk ≤  (x) ∀ kxk ≥  (6)

where   0 and   0 are constants.
(A2) The function g(xy) satisfies

kg(xy)k ≤ 1(kyk) + 2(kyk) kxk (7)

where 1 2 : R≥0 → R≥0 are continuous.
(A3) The system ẏ = f2(y) is GUAS and for all 0 ≥ 0

∞Z
0

ky()k  ≤ (ky(0)k) (8)

where the function (·) is a class K function.
Lemma 4: (See Lemma 8 in [12]).

If in addition to the assumptions in Theorem 3 both ẋ =
f1(x) and ẏ = f2(y) are globally K-exponentially
stable, then the cascaded system (4), (5) is globally K-
exponentially stable.

III. THE MODEL OF THE SNAKE ROBOT

This section summarizes the model of the snake robot
which the controller development in Section IV is based
upon. For a more detailed presentation of the model, the
reader is referred to [13].

A. Overview of the model

We consider a planar snake robot with links intercon-
nected by active revolute joints. The surface beneath the
robot is flat and horizontal, and each link is subjected to
a viscous ground friction force. The body shape changes of
the robot induce friction forces on the links that produce the
translational and rotational motion of the robot. A simplified
model that captures only the most essential part of the snake
robot dynamics is proposed in [13]. The idea behind this
model is illustrated in Fig. 1 and motivated by an analysis
presented in [13], which shows that:

Fig. 1. The revolute joints of the snake robot are modelled as prismatic
joints that displace the CM of each link transversal to the direction of
motion.

Fig. 2. Illustration of the two coordinate frames employed in the model.
The global - frame is fixed. The - frame is always aligned with the
snake robot.

• The forward motion of a planar snake robot is produced
by the link velocity components that are normal to the
forward direction.

• The change in body shape during forward locomotion
primarily consists of relative displacements of the CM
of the links normal to the forward direction of motion.

Based on these two properties, the simplified model
describes the body shape changes of a snake robot as linear
displacements of the links with respect to each other instead
of rotational displacements. The linear displacements occur
normal to the forward direction of motion and produce
friction forces that propel the robot forward. This essentially
means that the revolute joints of the snake robot are modelled
as prismatic (translational) joints and that the rotational mo-
tion of the links during body shape changes is disregarded.
However, the model still captures the effect of the rotational
link motion during body shape changes, which is a linear
displacement of the CM of the links normal to the forward
direction of motion.
The mathematical model of the snake robot is summarized

in the next subsection in terms of the symbols illustrated in
Fig. 2 and Fig. 3.

B. Equations of motion

The snake robot has  links of length  and mass 
interconnected by −1 prismatic joints. The prismatic joints
control the normal direction distance between the links. As
seen in Fig. 3, the normal direction distance from link  to



Fig. 3. Symbols characterizing the kinematics and dynamics of the snake
robot.

link + 1 is denoted by  and represents the coordinate of
joint . The positive direction of  is along the  axis.
The snake robot moves in the horizontal plane and has

 + 2 degrees of freedom. The motion is defined with
respect to the two coordinate frames illustrated in Fig. 2.
The - frame is the fixed global frame. The - frame is
always aligned with the snake robot, i.e. the  and  axis
always point in the tangential and normal direction of the
robot, respectively. The origin of both frames are fixed and
coincide.
As seen in Fig. 2, the global frame position of the CM

(center of mass) of the snake robot is denoted by (  ) ∈
R2. The global frame orientation, denoted by  ∈ R, is
defined as the angle between the  axis and the global 
axis with counterclockwise positive direction.
The state vector of the system is chosen as

x = (φ   v   ) ∈ R2+4 (9)

where φ =
¡
1 · · ·  −1

¢ ∈ R−1 are the joint coor-
dinates,  ∈ R is the absolute orientation, (  ) ∈ R2
is the global frame position of the CM, v = φ̇ ∈ R−1
are the joint velocities,  = ̇ ∈ R is the angular velocity,
and (  ) ∈ R2 is the tangential and normal direction
velocity of the snake robot. Note that we define the position
with respect to the global frame, but the translational velocity
with respect to the - frame.
As illustrated in Fig. 3, each link is influenced by a ground

friction force (acting on the CM of the link) and constraint
forces that hold the joints together. A model of these forces
is presented in [13], where it is also shown that the complete
model of the snake robot can be written as

φ̇ = v (10a)

̇ =  (10b)

̇ =  cos  −  sin  (10c)

̇ =  sin  +  cos  (10d)

v̇ = −1

v +

2


AD

φ+
1


DDu (10e)

̇ = −3 + 4

 − 1e
φ (10f)

̇ = −1

 +

22


e

φ− 2


φADv (10g)

̇ = −1

 +

22


e

φ (10h)

where u ∈ R−1 are the actuator forces at the joints and
e =

£
1   1

¤ ∈ R−1,
D =D

³
DD

´−1
∈ R×(−1),

A =

⎡⎢⎣1 1
 

 
1 1

⎤⎥⎦D =

⎡⎢⎣1 −1
 

 
1 −1

⎤⎥⎦ 
where A ∈ R(−1)× and D ∈ R(−1)× . The parame-
ters 1, 2, 3, and 4 are scalar friction coefficients that
characterize the external forces acting on the snake robot.
In particular, the coefficient 1 determines the magnitude of
the friction forces resisting the link motion, 2 determines the
magnitude of the induced friction forces that propel the snake
robot forward, 3 determines the friction torque opposing the
rotation of the snake robot, while 4 determines the induced
torque that rotates the snake robot. This torque is induced
when the forward direction velocity and the average of the
joint coordinates are nonzero. The role of each coefficient is
explained in more detail in [13].

IV. DESIGN AND ANALYSIS OF THE PATH FOLLOWING
CONTROLLER

In this section, we design and analyse a straight line path
following controller for the snake robot.

A. Control objective

The control objective is to steer the snake robot so that
it converges to and subsequently tracks a straight path while
maintaining a heading which is parallell to the path. To
this end, we define the global coordinate system so that
the global  axis is aligned with the desired straight path.
The position of the snake robot along the global  axis,
, is thereby the shortest distance from the robot to the
desired path and the orientation of the snake robot, , is the
angle that the robot forms with the desired path. The control
objective is thereby to regulate  and  to zero. Since snake
robot locomotion is a slow form of robotic mobility which is
generally employed for traversability purposes, the authors
consider it less important to accurately control the forward
velocity of the robot. During path following with a snake
robot, it therefore makes sense to focus all the control efforts
on converging to the path and subsequently progressing along
the path at some nonzero forward velocity  ∈ [min max],
where min and max represent the boundaries of some
positive interval in which we would like the forward velocity
to be contained.
From the above discussion, the control problem is to

design a (possibly time-varying) feedback control law

u = u(φ  v   ) ∈ R−1 (11)

such that the following control objectives are reached:

lim
→∞

() = 0 (12)

lim
→∞

() = 0 (13)



B. Assumptions

A planar snake robot achieves forward motion through
periodic body shape changes that generate external forces
on the robot from the environment, which propel the robot
forward. The most common form of such periodic body
shape changes is called lateral undulation [2] and consists
of horizontal waves that are propagated backwards along the
snake body from head to tail. The work by the authors in
[14], which investigates the velocity dynamics of a snake
robot during lateral undulation, shows that the forward
velocity during lateral undulation oscillates around a positive
nonzero average velocity that can be predetermined based on
the parameters characterizing the gait pattern. In other words,
when the snake robot conducts lateral undulation, the results
in [14] suggest that the forward velocity is contained in some
nonzero and positive interval [min max] that can be scaled
based on a set of gait pattern parameters. We therefore choose
to base the path following controller of the snake robot on
the following assumption:
Assumption 5: The snake robot conducts lateral undula-

tion and has a forward velocity which is always nonzero
and positive, i.e.  ∈ [min max] ∀  ≥ 0 where max ≥
min  0.

C. Model transformation

On the basis of Assumption 5, we will disregard the
dynamics of the forward velocity  given by (10g) and
instead treat the forward velocity as a positive parameter
satisfying  ∈ [min max].
As seen in (10f) and (10h), the joint coordinates φ are

present in the dynamics of both the angular velocity  and
the sideways velocity  of the snake robot. This complicates
the controller design since the body shape changes will affect
both the heading and the sideways motion of the robot.
Motivated by [15], we see that it is possible to remove
the effect of φ on the sideways velocity by the coordinate
transformation:

 =  +  cos  (14a)

 =  +  sin  (14b)

 =  +  (14c)

where  is a constant parameter defined as

 = −2 ( − 1)


2

4
(15)

With the new coordinates in (14), the model (10) is trans-
formed into

φ̇ = v (16a)

̇ =  (16b)


 =  cos  −  sin  (16c)


 =  sin  +  cos  (16d)

v̇ = −1

v +

2


AD

φ+
1


DDu (16e)

̇ = −3 + 4

 − 1e
φ (16f)



 =  +   (16g)

where, by Assumption 5, the parameter  ∈ [min max]
and max ≥ min  0, and where

 = 
³1

− 3

´
(17a)

 = −1


(17b)

The two scalar constants  and  have been introduced in
(16g) for simplicity of notation in the following sections.
Remark 6: The coordinate transformation (14) is illus-

trated to the left in Fig. 4 and can be interpreted as moving
the point that determines the position of the snake robot a
distance  along the tangential direction of the robot to a new
location, which is precisely where the body shape changes of
the robot (characterized by eφ) generate a pure rotational
motion and no sideways force.

D. The path following controller

The path following controller of the snake robot consists
of two main components. The first component is the gait
pattern controller, which propels the snake robot forward
according to the gait pattern lateral undulation (as stated
in Assumption 5). The second component is the heading
controller, which steers the snake robot towards and sub-
sequently along the desired path. The two components of
the path following controller are now presented.
1) Gait pattern controller: As proposed in [2], lateral un-

dulation is achieved by controlling joint  ∈ {1 · · ·  − 1}
of the snake robot according to the sinusoidal reference

ref =  sin (+ (− 1) ) +  (18)

where  and  are the amplitude and frequency, respectively,
of the sinusoidal joint motion and  determines the phase
shift between the joints. The parameter  is a joint offset
coordinate that the heading controller will use to control the
direction of the locomotion. As shown in [16], the average
forward velocity  of the snake robot during straight path
motion is given by

 =
2

21
2 (19)

where  is a constant parameter determined by the phase
shift . This relation can be used to choose the gait para-
meters , , and  in order to achieve the desired average
forward velocity.
In order to make the joints track the joint reference coor-

dinates given by (18), we set the actuator forces according
to the linearizing control law

u = 
³
DD

´−1 ³
u+

1


φ̇− 2


AD

φ
´

(20)

where u ∈ R−1 is a new set of control inputs. This control
law transforms the joint dynamics (16e) into v̇ = φ̈ = u.
Subsequently, we choose the new control input u as

u = φ̈ref + 

³
φ̇ref − φ̇

´
+  (φref − φ) (21)

where   0 and   0 are scalar controller gains
and φref =

¡
1ref  · · ·  −1ref

¢ ∈ R−1 are the joint
reference coordinates given by (18). By introducing the error
variable eφ = φ− φref (22)



Fig. 4. Left: The coordinate transformation of the snake robot. Right: The
Line-of-Sight (LOS) guidance system.

the resulting error dynamics of the joints can be written as
eφ+ 

eφ+ eφ = 0 (23)

which is clearly exponentially stable [9]. This means that
the joint coordinates exponentially track the reference coor-
dinates given by (18).
2) Heading controller: In order to steer the snake robot

towards the desired straight path, we employ the Line-of-
Sight (LOS) guidance law

ref = − arctan(


∆
) (24)

where  is the cross-track error and ∆  0 is a design
parameter referred to as the look-ahead distance. This LOS
guidance law is commonly used during e.g. path following
control of marine surface vessels [15], [17]. As illustrated to
the right in Fig. 4, the LOS angle ref corresponds to the
orientation of the snake robot when it is headed towards the
point located a distance ∆ ahead of the snake robot along
the desired path. The value of ∆ is important since it will
determine the rate of convergence to the desired path.
As mentioned in Section IV-D.1, we will use the joint

offset coordinate  in (18) to ensure that the heading of the
snake robot  tracks the LOS angle given by (24). Motivated
by [15] and [18], we conjecture that making  track the LOS
angle ref will make the snake converge to the desired path
and subsequently follow the path with its heading parallell
to the path. In other words, we conjecture that a control law
making  track ref will fulfill the control objectives (12)
and (13). To derive the control law for , we first rewrite
the dynamics of  given by (16f) as a function of the joint
reference coordinates given by (18). From (22), we have that
φ = φref +

eφ. Using (18), we can therefore rewrite (16f) as
̇ = −3 + 4

+ 4
−1

µ
−1P
=1

 sin(+ (− 1) ) + e eφ¶ (25)

Consequently, choosing  as

 =
1

4

³
̈ref + 3̇ref − ( − ref)

− 4
−1

−1P
=1

 sin(+ (− 1) )
¶ (26)

where   0 is a scalar controller gain, enables us to write
the error dynamics of the heading angle  as

e + 3

e + e = 4

 − 1e
 eφ (27)

where we have introduced the error variablee =  − ref (28)

Remark 7: The joint coordinate offset in (26) depends on
the inverse of the forward velocity . This does not represent
a problem since, by Assumption 5, the forward velocity is
always nonzero. The implementation of the path following
controller must ensure that the controller is activated after
the snake robot has obtained a positive forward velocity.
Remark 8: The error dynamics of the joints in (23) and

the error dynamics of the heading in (27) represent a cas-
caded system. In particular, the system (23) perturbs the
system (27) through the interconnection term 4

−1e
 eφ.

Using cascaded systems theory, it will be shown in Section
IV-F that the origin of this cascaded system is globally K-
exponentially stable.
We have now presented the complete path following

controller of the snake robot. The structure of the complete
controller is summarized in Fig. 5.

E. Main result

Based on the guidance and control laws presented in the
previous subsection, we now formulate the main result of
this paper.
Theorem 9: Consider a planar snake robot described by

the model (16) and suppose that Assumption 5 is satisfied.
If the parameter ∆ of the LOS guidance law (24) is chosen
such that

∆ 
||
| |

µ
1 +

max

min

¶
(29)

then the path following controller defined by (18), (20), (21),
(24), and (26) guarantees that the control objectives (12) and
(13) are achieved for any set of initial conditions satisfying
 ∈ [min max].

Proof: The proof of this theorem is given in Section
IV-F.
Remark 10: Theorem 9 does not specify the boundary

values min and max of the interval in which the forward
velocity  is contained. By Assumption 5, however, there
exists a positive interval that contains  for all time  ≥ 0.
In practice, conservative values for these boundary values
can be chosen, but in order to achieve a tighter bound on
∆, we would like to specify min and max as a function of
the gait pattern parameters , , , and . This remains a
topic of future work.

F. Proof of the main result

We will prove Theorem 9 in three steps. In the first
step, we show that the complete system, including the path
following controller, can be written as a cascaded system. In
the second step, we prove stability of the nominal systems in
the cascade. Finally, we derive bounds on the interconnection
terms between the nominal systems, which, by Theorem 3
and Lemma 4, allow us to conclude stability of the complete



Fig. 5. The structure of the path following controller.

cascaded system. We will follow the steps of a similar proof
presented in [19].
We begin by rewriting the dynamics of the cross-track

error  and the sideways velocity  in terms of the heading
error e. From (28) and (24) we have that

 = − arctan(
∆
) + e (30)

By using the relations sin(− arctan(
∆
)) = − √

2+∆
2
and

cos(− arctan(
∆
)) = ∆√

2+∆
2
, it can be verified that (16d)

can be rewritten as


 = −



 +

∆


 + e (31)

where
 =

q
2 +∆

2 (32)

 =
sinee

¡
∆+ 

¢


+
1− cosee

¡
 − ∆

¢


(33)

Through similar manipulations, we can rewrite (16g) as



 =
∆

3
 +

µ
 − ∆2

3

¶
 − ∆

2
e +

e (34)

Introducing the error variables

η =

"eφ
eφ
#
∈ R2−2 ξ =

"e
e
#
∈ R2 (35)

and using (23), (27), (31), and (34), the model of the snake
robot (16) during path following can be written as" 




#
= C()

∙



¸
+H(  ξ)ξ (36a)

ξ̇ =

∙
0 1
− −3

¸
ξ +Hη (36b)

η̇ =

∙
0 I
−I −I

¸
η (36c)

where I ∈ R(−1)×(−1) is the identity matrix and

H =

∙
0 0

4
−1e

 0

¸
(37)

H(  ξ) =

∙
 0

−∆
2

 

¸
(38)

C() =

" −


∆


∆
3

³
 − ∆2

3

´# (39)

The system (36) is a cascaded system. In particular, the η-
dynamics in (36c) perturbs the ξ-dynamics in (36b) through
the interconnection term Hη, and the ξ-dynamics perturbs
the ( )-dynamics in (36a) through the interconnection
term H(  ξ)ξ.
We now investigate the stability of the nominal systems of

the cascade, i.e. all parts of (36) except the interconnection
terms. The origin η = 0 of the linear system (36c) and
the origin ξ = 0 of the linear nominal system in (36b)
are globally exponentially stable since the system matrices
clearly are Hurwitz for , 3, ,   0 (see Definition
4.5 in [9]). The nominal system of (36a), which is given by" 




#
= C()

∙



¸
(40)

is identical to a system considered in [19] in conjunction
with path following control of a marine surface vessel. It
is shown in [19] that (40) is globally K-exponentially stable
with a quadratic Lyapunov function as long as the look-ahead
distance satisfies

∆ 
||
| |

µ
1 +

max

min

¶
(41)

This corresponds to condition (29) in Theorem 9. Due to
space restrictions, we will not repeat this proof here. Since
exponential stability implies K-exponential stability, we can
conclude that all nominal systems of the cascade (36) are
globally K-exponentially stable.
Next, we derive bounds on the interconnection terms in

the cascade. The induced 2-norm of the matrix H satisfies
(see Appendix A in [9])

kHk2 ≤
√
2 − 2max



2X
=1

{H} ≤
√
24max√
 − 1 (42)

while the induced 2-norm of the matrix H(  ξ) satis-
fies

kHk2 ≤
√
2max



P2
=1{H}

≤ √2max
³
||+ ||∆

2
|| ||

´
≤ √2

³
||+ ||∆

2
||+ ||

´ (43)

The function  given by (33) is bounded according to

≤
¯̄̄
sin

¯̄̄
max∆+||||


+
¯̄̄
1−cos

¯̄̄
max||+||∆



≤ max∆


+
||||


+

max||


+
||∆
≤ 2max + 2||

(44)



By inserting (44) into (43), it is straightforward to verify that

kHk2 ≤ F1 + F2
°°°°∙

¸°°°°
2

(45)

where

F1 =
√
2

µ
2max

µ
1 +

||
∆

¶
+ ||

¶
(46)

F2 = 2
√
2

µ
1 +

||
∆

¶
(47)

We are now ready to apply Theorem 3 to the cascaded
system (36). We first consider the cascade of (36b) and (36c),
for which it is straightforward to verify that Assumptions
A1 and A3 of Theorem 3 are satisfied since the system
(36c) and the nominal system of (36b) are both globally
exponentially stable. Furthermore, Assumption A2 is trivially
satisfied since kHk2 is bounded by the constant derived in
(42). The cascaded system (36b), (36c) is therefore GUAS
and, by Lemma 4, also globally K-exponentially stable.
Next, we consider the cascade of (36a) and (36b), for

which Assumption A1 and A3 of Theorem 3 are again
satisfied since the nominal system of (36a) and the perturbing
system (36b) are both globally K-exponentially stable. Fur-
thermore, it follows directly from (45) that Assumption A2
is satisfied. The cascaded system (36a), (36b) is therefore
GUAS and, by Lemma 4, also globally K-exponentially
stable.
In summary, the complete cascaded system (36) is glob-

ally K-exponentially stable. From (30), this implies that
() → 0, which means that control objective (13) is
achieved. It subsequently follows from (14b) that ()→ 0,
which means that control objective (12) is achieved. This
completes the proof of Theorem 9.

V. SIMULATION RESULTS

In order to illustrate the effectiveness of the proposed path
following controller, the model of the snake robot (10) and
the controller were implemented and simulated in Matlab
R2008b on a laptop running Windows XP. The dynamics
were calculated using the ode45 solver in Matlab with a
relative and absolute error tolerance of 10−6.
We considered a snake robot with  = 10 links of length

 = 014 m and mass  = 1 kg. These parameters character-
ize a physical snake robot recently developed by the authors.
Furthermore, we chose the friction coefficients as 1 = 045,
2 = 3, 3 = 05 and 4 = 20, and the controller gains as
 = 20,  = 5, and  = 005. The gait parameters
were chosen as  = 01 m,  = 70◦/s, and  = 40◦,
which by (19) corresponds to the average forward velocity
 =

2
21

2 = 01 m/s. By making the conjecture that
the forward velocity will always be contained in the interval
 ∈ [min max] = [05 2] = [005 m/s 02 m/s], the
lower bound on the look-ahead distance ∆ is given by (29)
as ∆  015 m. During the simulations, we chose the look-
ahead distance equal to the length of the snake robot, i.e.
∆ = 14 m, which is well above the estimated lower limit.
The initial state of the snake robot was set to φ = 0◦,

 = 90◦,  = 0 m,  = 1 m, v = 0◦s,  = 0◦s,
=01 m/s, and =0 m/s, i.e. the snake robot was initially
oriented along the global  axis and located 1 m away from

the  axis with an initial forward velocity of 01 m/s, i.e.
moving away from the desired path.
Note that the calculation of the control input in (21) and

(26) requires the derivative of ref and  with respect to
time. During the simulations, we generated these signals by
using a 3rd order low-pass filtering reference model (see e.g.
Chapter 5 in [17]).
The simulation results are shown in Fig. 6. From Figures

6(a) and 6(b), we see that the position of the snake robot
converges nicely to the desired path (i.e. the  axis). Fig.
6(a) also shows the configuration of the snake robot at  = 1
s,  = 30 s, and  = 70 s. Note that Fig. 6(b) shows the cross-
track error in terms of the  axis coordinate of the CM of the
robot, not the transformed -axis coordinate given by (14b).
The heading of the snake robot, shown in Fig. 6(e), also
converges nicely to zero, i.e. to the direction of the desired
path. As seen in Fig. 6(c), the forward velocity is always
nonzero and positive, as required by Assumption 5, and
converges to the velocity  =

2
21

2 = 01 m/s, which
was estimated above. Fig. 6(d) shows the joint coordinate of
an arbitrarily chosen joint (joint 5) during the path following.
The plot shows a very good tracking of the joint reference
coordinates. In summary, the simulation results illustrate that
the proposed controller successfully steers the snake robot
towards and along the desired straight path.

VI. CONCLUSIONS AND FUTURE WORK

This paper has proposed a path following controller that
enables snake robots to track straight paths. Using cascaded
systems theory, we have proven that the proposed path
following controller K-exponentially stabilizes the snake
robot to any desired straight path under the assumption that
the forward velocity of the robot is nonzero and positive.
The paper has presented simulation results that illustrated
the effectiveness of the path following controller.
In future work, the authors will specify the bounds on

the forward velocity of the snake robot in terms of the gait
pattern parameters.
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