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Abstract— This paper presents a model of the kinematics and
dynamics of a planar, wheelless snake robot aimed at control
design and stability analysis purposes. The proposed model is
significantly less complex than existing models of planar snake
robot locomotion. The paper presents an analysis of an existing
complex snake robot model which reveals a set of essential
properties that characterize the overall motion of a planar snake
robot. The proposed model is developed to capture only these
essential properties of snake locomotion, thereby significantly
reducing the complexity compared to the original model used in
the analysis. The paper presents simulation results that indicate
that the qualitative behaviour of the proposed model and the
original complex model are similar, and that a quantitative
similarity is achieved with a proper choice of numerical values
of the friction coefficients in the two models.

I. INTRODUCTION

Inspired by biological snakes, snake robots carry the
potential of meeting the growing need for robotic mobility
in challenging environments. Snake robots consist of serially
connected modules capable of bending in one or more planes.
The many degrees of freedom of snake robots make them
difficult to control, but provide traversability in irregular
environments that surpasses the mobility of the more conven-
tional wheeled, tracked and legged forms of robotic mobility.

Research on snake robots has been conducted for several
decades and several models have been proposed to facilitate
a better understanding of snake locomotion. Gray [1] con-
ducted empirical and analytical studies of snake locomotion
already in the 1940s. Hirose [2] studied biological snakes and
developed mathematical relationships characterizing their
motion, such as the serpenoid curve. Several models of
wheelless snake robots influenced by ground friction have
been developed [3]-[11]. All these models are, however,
rather complex and thereby challenging to investigate an-
alytically. An interesting exception is the work by Nilsson
[12], which proposes and analyses a simplified model of the
forward velocity of a planar snake robot based on energy
arguments. In the authors’ opinion, our understanding of
snake locomotion so far is for the most part based on
empirical studies of biological snakes and simulation-based
synthesis of relationships between parameters of the snake.
This is due to the complexity of existing models of snake
locomotion.
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Fig. 1.

This paper has two contributions. The first contribution
is an analysis of an existing complex model of a planar
snake robot that identifies a set of essential properties of
snake locomotion. This analysis forms the basis of the second
contribution, which is a simplified model of planar snake
locomotion aimed at simplifying analytical investigations of
the equations of motion. The proposed model is also devel-
oped to facilitate synthesis of new control strategies for snake
robots. The basic idea behind the modelling approach is to
capture only the essential part of the snake robot dynamics,
i.e. the features that determine the overall behaviour of the
snake.

The paper is organized as follows. Section II presents an
existing complex model of a snake robot. Section III analyses
the complex model in order to identify fundamental proper-
ties of snake locomotion. Section IV presents the simplified
model of a snake robot. Section V presents a controller for
the robot. Section VI presents simulation results. Finally,
Section VII presents concluding remarks.

II. A COMPLEX MODEL OF A PLANAR SNAKE ROBOT

This section summarizes an existing complex model of a
planar snake robot previously presented in [11]. The model
will be analysed in Section III in order to identify some
essential properties of snake locomotion. This analysis will
be used as a basis for the development of a simplified model
of a planar snake robot in Section IV.

A. Kinematics of the snake robot

We consider a planar snake robot consisting of N links of
length [ interconnected by /N —1 active joints. The kinematics
of the robot is defined in terms of the symbols illustrated in
Fig. 1. All N links have the same mass m and moment of
inertia J. The total mass of the robot is therefore Nm. The
mass of each link is uniformly distributed so that the link
CM (center of mass) is located at its center point.

The snake robot moves in the horizontal plane and has a
total of IV + 2 degrees of freedom. The CM (center of mass)



position of the robot is denoted by p = (p.,p,) € R2
The absolute angle 6; of link 4 is expressed with respect to
the global z axis with counterclockwise positive direction.
As seen in Fig. 1, the relative angle between link ¢ and link
i+1 is given by ¢; = 6,1 —6;. The local coordinate system
of each link is fixed in the CM of the link with = (tangential)
and y (normal) axis oriented such that they are oriented in
the directions of the global x and y axis, respectively, when
the link angle is zero.

B. Equations of motion

We employ a viscous ground friction model in this study.
Alternatively, we could have used a Coulomb friction model.
However, we conjecture that a viscous and a Coulomb
friction model are very similar from a control perspective
when the friction is anisotropic. The work in e.g. [6] supports
this conjecture. Moreover, viscous friction leads to simpler
equations of motion compared to Coulomb friction. This
greatly simplifies the analysis in Section III.

Under anisotropic friction conditions, a link has two
viscous friction coefficients, ¢; and c,,, describing the friction
force in the tangential (along link z axis) and normal (along
link y axis) direction of the link, respectively. As shown in
[11], the friction force on link 4, denoted by f,; € R?, can
be written in terms of the link velocity, ; and y;, as

r=[fl =l ®OIE o

where
F.(0;) = ¢ cos® 0; + ¢, sin? 0; (2a)
Fpy(0;) = (¢t — ¢p) sinb; cos 0; (2b)
F,(0;) = ¢, sin® 0; + ¢, cos® 0; (2¢0)

It is shown in [11] that the equations of motion of the
snake robot in terms of the joint angles, ¢ € RN~1, the
absolute link angle of the head link, 6 € R, the position
of the CM of the snake robot, p = (p,,p,) € R?, and the
joint torques, u € RY~1, can be written as

o=u (3a)

éN :9(¢a9N7(}57 €N7p.’1?7py?u) (3b)
N

Nmjpy =Y fu (3¢)
l]:Vl

Nmjpy = fy. (3d)
=1

where g(¢, GN,éS,ON,px,py,u) € R is a function of the
state vector and the joint torques. The model of snake
locomotion given by (3) will not be detailed further here, but
we note that the model is extremely complex from a stability
analysis perspective. This complexity is the main motivation
behind the simplified model developed in Section IV.

III. ANALYSIS OF THE COMPLEX MODEL

This section analyses the complex model given by (3)
in order to identify a set of properties that characterize the
motion of a planar snake robot. These properties will be
used as a basis for the development of a simplified model of
a planar snake robot in Section IV.
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Fig. 2. The mapping from sideways link motion to forward propulsion for
different viscous friction coefficients.

A. Analysis of propulsive forces during snake locomotion

This section investigates how a snake robot described by
(3) is able to propel itself forward. We assume that the
forward direction of motion is along the global positive z
axis. The total force propelling the CM (center of mass) of
the robot forward is therefore given from (3c) as

N
Ny =3 o (4)
=1

Wee see that the total propulsive force on the snake robot is
simply the sum of all external forces in the global = direction.
Inserting the expression for f, ; from (1) gives

N N
i=1 =1

It is seen from (5) that the total propulsive force consists of
two components, i.e. one involving the linear velocities of the
links in the forward direction of motion, F,.(6;)<; (since we
assume that the forward direction is along the = axis), and
one involving the linear velocities normal to the direction
of motion, Fy,(0;)y;. Fy(6;) is given by (2a) and is clearly
always positive. Furthermore, we assume that ©; > 0 when
the snake robot is moving forward (p, > 0). Due to the
minus signs in (5), this means that the component F, (0;)x;
is not contributing to the forward propulsion of the robot,
but rather opposing it. This is also expected since the snake
robot must naturally be subjected to a friction force in the
opposite direction of the motion.

Any propulsive force on the snake robot must therefore be
produced by the sideways motion of the links, i.e. the product
Foy(0:)yi. A plot of F,,(0;) for different values of the
normal friction coefficient c,, while keeping the tangential
friction coefficient ¢; fixed, is shown in Fig. 2. For each
plot, the angle between the link and the forward direction,
0;, is varied from —90° to 90°. The sideways motion of
the links have no effect on the propulsive force on the snake
robot when the friction coefficients are equal since this gives
F,y(0;) = 0. However, when ¢, > c¢;, Fig. 2 reveals that
F,,(0;) is negative as long as 6; is positive, and vice versa.
With reference to (5), this means that the sideways motion
of link ¢ produces a positive contribution to the propulsion
of the snake robot through the product Fy,,(6;)y; as long as
sgn(0;) = sgn(jy).

The function F,,(#;) can be viewed as a mapping from
link velocities normal to the direction of motion into force



components in the direction of motion. The extrema of
Foy(0;) occur at §; = +45°. This means that, for a given ¢;,
a link produces its highest propulsive force when it forms an
angle of +45° with the forward direction of motion.

The above analysis is summarized by the following prop-
erties of planar snake locomotion:

Property 1: For a snake robot described by (3) with
cn, > ¢4, forward propulsion is produced by the link velocity
components that are normal to the forward direction.

Property 2: For a snake robot described by (3) with ¢,, >
ct, the propulsive force generated by the transversal motion
of link 7 is positive as long as sgn (6;) = sgn (9;).

Property 3: For a snake robot described by (3) with ¢, >
¢t, the magnitude of the propulsive force produced by link ¢
increases when |0;| increases as long as |6;| < 45°.

Note that these results are general in the sense that no
assumptions have been made regarding the actual motion
pattern displayed by the snake robot.

B. Analysis of turning locomotion

Having determined in the previous subsection how propul-
sion is generally achieved with a snake robot, we now
investigate how turning motion is achieved. We assume
that the snake robot moves by lateral undulation with a
serpenoid curve [2]. This is a gait pattern consisting of
horizontal waves that are propagated backwards along the
snake body from head to tail. This is also the gait pattern
most relevant for snake locomotion on flat surfaces. As
proposed in [2], lateral undulation is achieved by controlling
joint ¢ € {1,--- , N — 1} of the snake robot according to

¢i,ref = asin (Wt + (7’ - 1) 6) + ¢o (6)

where a and w are the amplitude and frequency, respec-
tively, of the sinusoidal joint motion and § determines the
phase shift between the joints. The parameter ¢, is a joint
angle offset value that controls the overall direction of the
locomotion. The effect of this parameter is illustrated in Fig.
3, which shows the result of a simulation of a snake robot
described by (3) with NV = 10 links of length [ = 0.14 m.
The top of Fig. 3 shows the trace of the head during the
motion, while the bottom of the figure shows the average
joint angle, which is defined as ¢ = ﬁ Zi\gl ¢;. The
snake robot is controlled according to (6) with @ = 30°,
w="70°/s, and § = 40°. The offset angle is set to ¢, = 5°
in the time interval ¢ € [20, 30] and ¢, = —10° in the time
interval ¢ € [50, 60]. The triangles pointing up and down in
the top of Fig. 3 indicate, respectively, the beginning and
end of these two time intervals. The offset angle is set to
¢, = 0° outside these two time intervals.

Fig. 3 shows that the snake robot crawls forward without
turning as long as the average joint angle, ¢, is zero.
However, when the average joint angle is non-zero, the
direction of the motion changes. We see from the figure
that a positive (resp. negative) average joint angle produces
a counterclockwise (resp. clockwise) rotation of the snake
robot. We also see that the speed of the directional change
is correlated with the amplitude of the average joint angle.
This result is supported by the directional controllers for
snake locomotion considered in e.g. [6], [13]. The following
property summarizes this analysis:
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Fig. 3. Simulated motion of a snake robot with N = 10 links. A joint
offset angle of ¢, = 5° and ¢, = —10° is introduced at ¢t = 20 s and
t = 50 s, respectively. Top: Trace of the head of the snake robot. Bottom:
The average joint angle.

Property 4: During lateral undulation with a snake robot
described by (3) with ¢, > ¢, the overall direction of the
locomotion remains constant as long as the average joint
angle is zero, but will change in the counterclockwise (resp.
clockwise) direction when the average joint angle is positive
(resp. negative). The amplitude of the average joint angle
determines how fast the direction of the locomotion changes.

C. Analysis of link motion during snake locomotion

From the results of the two previous subsections, it
should be clear that planar snake locomotion consists of
periodic body shape changes that generate external forces
that propel the snake forward. These body shape changes can
be characterized in terms of the joint angles ¢, = 6,41 — 6;
defined in Section II-A. From Property 1, we know that the
forward motion is induced by the motion of the links normal
to the forward direction. This result led the authors to wonder
if the body shape changes can be characterized in terms of
the translational displacements of the links instead of the
rotational joint motion. The motivation behind this idea is
that translational motion is generally less complex to model
than rotational motion. In particular, the model given by (3),
which describes the rotational link motion of a snake robot,
is quite complex.

To elaborate this idea further, the motion of a snake robot
described by (3) with N = 10 links of length [ = 0.14 m is
shown in the top of Fig. 4. The robot conducts lateral un-
dulation along the global z axis in accordance with (6) with
a=30° w=30°/,,0 =40° and ¢, = 0°. The two bottom
plots in Fig. 4 show the relative displacement between the
CM (center of mass) of two arbitrarily chosen links (link
4 and link 5) in the global = and y direction, respectively.
The plots indicate that, during lateral undulation, the relative
displacement between the CM of two adjacent links along the
forward direction of motion is approximately constant, while
the relative displacement normal to the direction of motion
oscillates around zero. This observation is an important basis
for the modelling approach described in Section IV and is
summarized as follows:
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Fig. 4. Top: Simulated motion of a snake robot with N = 10 links.
Middle: Relative displacement between the CM of link 4 and link 5 in the
global x direction. Bottom: Relative displacement between the CM of link
4 and link 5 in the global y direction.

Property 5: The change in body shape during lateral
undulation consists mainly of relative displacements of the
CM of the links normal to the forward direction of motion.
The relative displacements of the CM of the links along the
forward direction are approximately constant.

IV. A SIMPLIFIED MODEL OF A PLANAR SNAKE ROBOT

In this section, we employ the results from the previous
section in order to develop a simplified model of a planar
snake robot. This model is intended for control design and
stability analysis purposes.

A. Overview of the modelling approach

The idea behind the simplified model is illustrated in
Fig. 5. The approach is basically to describe the body shape
changes of a snake robot as linear displacements of the links
with respect to each other instead of rotational displacements.
From Property 5, we know that these linear displacements
should be normal to the forward direction of motion. In
addition, we know from Property 1 that these transversal
displacements of the links are what propel the snake robot
forward. This essentially means that we will model the
revolute joints of a snake robot as prismatic (translational)
joints. The rotational motion of the links during body shape
changes will in other words be disregarded. However, the
model will still capture the effect of the rotational link motion
during body shape changes, which we know from Property 5
to be primarily a linear displacement of the CM of the links
normal to the forward direction of motion.

The kinematics and dynamics of the snake robot will be
detailed in the following subsections in terms of the symbols
illustrated in Fig. 6 and Fig. 7. We will consider a planar
snake robot with NV links of length [/ interconnected by N —1
prismatic (translational) joints. All N links have the same
mass m, and the total mass of the snake robot is thus Nm.

The following vectors and matrices are used in the

development of the model:
11 1 -1

A: D:

Direction of
motion U

Fig. 5. The revolute joints of the snake robot are modelled as prismatic
joints that displace the CM of each link transversal to the direction of
motion.

Fig. 6. Illustration of the two coordinate frames employed in the simplified
model. The global -y frame is fixed. The ¢-n frame is always aligned with
the snake robot.

where A € R(Nfl);N and D € RIWW-DxN, Fujr}hermore,
e=1 1" eRY, &=l 1" eRV,
D=D' (DDT)  eRV¥(N-1),
We will use subscript ¢ to denote element ¢ of a vector.

When parameters of the snake robot links are assembled into
a vector, we associate element ¢ of this vector with link .

B. Kinematics of the snake robot

The snake robot moves in the horizontal plane and has a
total of N + 2 degrees of freedom. We define the motion of
the robot with respect to the two coordinate frames illustrated
in Fig. 6. The z-y frame is the fixed global frame. The t-n
frame is always aligned with the snake robot, i.e. the ¢ and
n axis always point in the tangential and normal direction
of the robot, respectively. The origin of both frames are
fixed and coincide. We will denote the direction of the ¢
axis as the tangential or forward direction of the robot, and
the direction of the n axis as the normal direction. Note
that we do not refer to the ¢t-n frame as the body frame

Vn

(ptypn) l—\lt (ti+1,ni+1)

(ti1,Ni1)
——— - - - - d)l

fnl
n U1 [¢i-1 I '
hiit =
' ) fii
g () i

Fig. 7.
robot.

>hy;

Symbols characterizing the kinematics and dynamics of the snake



of the snake robot since the ¢-n frame is not fixed to the
robot. However, if a body frame fixed to the robot had been
defined, the orientation of this frame would be identical to
the orientation of the ¢-n frame.

The position of the snake robot is described through the
coordinates of its CM (center of mass). As seen in Fig. 6
and Fig. 7, the global frame position of the robot is denoted
by (ps,py) € R?, while the t-n frame position is denoted
by (pt,pn) € R% The global frame orientation of the robot
is denoted by # € R and is expressed with respect to the
global x axis with counterclockwise positive direction. The
angle between the global x axis and the t axis is also
0 since the t-n frame is always aligned with the robot.
Describing the position in a frame which is always aligned
with the snake robot is inspired by and similar to a coordinate
transformation proposed in [14].

Remark 6: A snake robot with revolute joints, such as the
robot described by (3), has no explicitly defined orientation.
A common approach in previous literature has therefore been
to describe the orientation of a snake robot as the mean of
the absolute link angles [15], [16]. The present modelling
approach avoids this issue since the scalar variable 6 provides
an explicit representation of the orientation of the snake
robot.

The relationship between the ¢-n frame position and the
global frame position is given by

(7a)
(7b)

Pt = Pz cos O + p, sind
DPn = —Pgsinf + p, cosd

The forward and normal direction velocity of the CM of the
snake robot, v; and v, are illustrated in Fig. 6 and can be
written as

(8a)

(8b)

Uy = Py cos 0 + p, sin
Up = —Pg sinf + p, cos o
Differentiating (7) with respect to time and inserting (8) gives

Pt = V¢ + (9a)

(9b)

pn = Un _ptg

We denote the ¢-n frame position of the CM of link ¢ by
(ti,n;) € R2 The N — 1 prismatic joints of the snake robot
control the normal direction distance between the links. As
seen in Fig. 7, the normal direction distance between link 4
and link 7 4+ 1 is given by

(10)

and represents the coordinate of joint ¢. The controlled
distance ¢, replaces the controlled joint angle in the original
model given by (3). The link positions are constrained by
the prismatic joints according to

Gi = Nit1 = Ni

ti—tip1 +1=0
ni —nit1+¢; =0

(11a)
(11b)

These holonomic constraints may be expressed in matrix
form for all links as

Dt+le=0
Dn+¢=0

(12a)
(12b)

Body angle = 6;

Direction of
motion
Body angle ~ k(¢i1 + ¢;)

ﬂ SO /

i

Fig. 8. The body angle of link ¢ is 6; for a snake robot with revolute
joints. For a snake robot with prismatic joints, we can regard ¢, _; + ¢, to
be approximately proportional to the body angle with respect to the forward
direction.

where D and e are defined in Section IV-A, t =
(t1,--,ty) € RN, n = (ny,---,ny) € RY, and ¢ =

(1, dn_1) € RV~L The t-n frame position of the
CM can be written in terms of the link positions as
Dt = WeTt (13a)
1
m:NJn (13b)

where e is defined in Section IV-A. Combining (12a), (12b),
(13a) and (13b) gives

D [ e D _| -9
2l [ (] o

We can solve (14) for the link positions as
t=pe—IDe
n=p,e— D¢

(15a)
(15b)

_ -1
where D = D7 gyDDT € RVN>*(N=1) By differentiat-
ing (15a) and (15b) with respect to time and inserting (9a)
and (9b), the individual link velocities are given as

i= (vt +p7l9> e
n = (vn fpté) efﬁt'b

C. Ground friction model

We employ a viscous ground friction model similar to the
friction model described in Section II-B. The ground friction
forces, which act on the CM of each link, must be defined
so that Property 1, Property 2, and Property 3 from Section
III-A also apply to the simplifed model of the snake robot.

Property 1 requires that the normal direction velocity
of link ¢, which is given by n;, produces a friction force
component in the tangential direction. In order to preserve
Property 3, we assume that the magnitude of this tangential
friction force component is proportional to ¢,_; + ¢,, i.e.
the relative distance between link ¢ — 1 and link ¢ + 1. This
assumption is illustrated in Fig. 8, which shows that we can
regard ¢,_;+¢; to be approximately proportional to the body
angle with respect to the forward direction. Property 2 is
preserved if the tangential friction force component produced
by n; is positive when sgn (¢;_; + ¢;) = sgn(n;) and
negative otherwise.

(16a)
(16b)



We denote the tangential and normal direction friction
force on link ¢ by f;; and f,, ;, respectively. The following
friction model complies with the above requirements:

Jri| _ —C1 C2 (¢i1+¢i)][-':|
l:fn,i:l [02 (¢i—1+¢5) Milp=o (47

—
The viscous friction coefficient ¢; determines the magnitude
of the friction force components resisting the tangential and
normal link motion, while ¢, determines the magnitude of
the tangential and normal friction force components induced
by the normal and tangential link velocities, respectively. The
subscript # = 0 after the link velocity means that the friction
model disregards the link velocity components due to the
angular velocity of the snake robot, 8. This is a reasonable
assumption since the dynamics of the angular rotation of the
snake robot will generally be much slower than the body
shape dynamics. This assumption also simplifies the friction
model significantly. The friction forces on all N links can

now be expressed as
|:ft:| _ —clIyn co diag (ATq,’)) [t] as)
fn cy diag (AT¢) lo—o

where f, € RY and f, € RY contain, respectively, the
tangential and normal direction friction forces on the links,
Iy is the N x N identity matrix, A is defined in Section IV-
A, and the operator diag (-) produces a diagonal matrix with
the elements of its argument along its diagonal. Inserting
(16a) and (16b) into (18) with # = 0 gives

fi=—cve+ cadiag (AT(]b) (vne — 5¢)
fn=—clvpe+ clﬁé + covy diag (ATqS) e

—ci Iy

(19a)
(19b)

D. Dynamics of the snake robot
This section presents a model of the accelerations of the
snake robot. From Fig. 7, it can be seen that the force balance

for link ¢ is given by
mt; = foi+ hei — heioa

mit; = fni — Ui + Ui—1

(20a)
(20b)

where f;; and f,, ; are the ground friction forces defined in
(17), h¢; and hy ;1 are the joint constraint forces on link ¢
from link i + 1 and link 7 — 1, respectively, and w; and u;_1
are the actuator forces at joint 7 and joint ¢ — 1, respectively.
The joint constraint forces, h;; and h; ;_i, prevent relative
motion between the links in the tangential direction and
the actuator forces, u; and u;_1, produce relative motion
between the links in the normal direction. The force balance
for all links can be written in matrix form as

mt=f,+D"h, (21a)
miv=f, —D"u (21b)
where D is defined in Section IV-A, h; =
(het, -+ henv—1) € RN and w = (ug,--- ,un—1) €
RN-1 Premultlplymg (21b) by L D gives
1 1
D#=—Df, - —DD"u (22)
m m

By differentiating (12b) twice with respect to time, it is easily
seen that D71 = —¢. We can therefore write the body shape
dynamics of the snake robot as

- 1 1
¢=—-—Df,+—DD"u (23)

m m
Inserting (19b) into (23) and using the easily verifiable

relations De = 0, DD = Iy_;, and D diag AT¢>> e =
—AD7T ¢, we get

b=—"d+

The tangential and normal direction acceleratlon of the
CM of the snake robot, denoted by v; and v,,, respectively,
are given as the sum of all tangential and normal direction
forces on the links divided by the mass of the snake robot,
Nm. This is written

vtADT¢ + = DDT (24)

‘ 1, . 1,
b=y (€)= eS8
. 1 T . 1 7

b = g (¢ i) = et fn @5D)

where we note that the joint constraint forces, h;, and the
actuator forces, u, are eliminated when the link acceler-
ations are summed, i.e. e DT = 0. Inserting (19a) and
(19b) into (25a) and (25b), and using the easily verifiable

relations e’ diag (ATqb) e = 2¢'¢, €D = 0, and
e diag (AT¢) D = ¢TAD, we get
2
b= — Ly + =20, — 62 +=¢"ADd  (6a)
m Nm
2
oy = — 2o, 4+ =24, (26b)
m Nm

As noted in Remark 6, a significant difference between
the snake robot with revolute joints in (3) and the snake
robot with prismatic joints in the simplified model concerns
the absolute orientation of the robot. The snake robot with
revolute joints has no explicitly defined orientation since
there is an independent link angle associated with each link.
The orientation of the robot with prismatic joints, however, is
explicitly defined in terms of the scalar angle 6, which is also
the angle of all the links. This difference must be taken into
account when we model the angular acceleration, 6, of the
snake robot with prismatic joints. The model must comply
with Property 4 from Section I1I-B, which basically requires
that the direction of the forward motion (i.e. the orientation )
changes when the average of the joint coordinates, ﬁETqﬁ,
is nonzero. A model that complies with this property is

1 vtech

The rotation of the snake robot is opposed by a viscous
friction torque determined by the friction coefficient c3. In
addition, the average of the joint coordinates induces a torque
on the robot which is scaled through the coefficient ¢4 and
also through the forward velocity v;. The induced torque
must be multiplied by v, since the snake robot otherwise
would experience a constant angular velocity when it is lying
still with a nonzero average joint coordinate. Even though the
model of 6 is not based on first principles, the behaviour of

6 = —639 —|— 27)



this model will closely resemble the behaviour of a snake
robot with revolute joints when the coefficients c3 and cq4
are properly chosen.

E. The complete simplified model of the snake robot

This section summarizes the complete model of a planar
snake robot with N links of mass m. Since the robot has
N + 2 degrees of freedom, a state vector containing the
generalized coordinates and velocities of the robot will have
dimension 2N + 4. We choose the state vector as

T = (¢,9,pt,pna Vg, Vo, ’Ut,vn) S R2N+4 (28)

where ¢ € RV~ are the joint coordinates, § € R is the
absolute orientation, (p;,p,) € R? is the t-n frame position
of the CM, vy, = ¢ € RV~ are the joint velocities, vy =
0 € R is the angular velocity, and (v,v,) € R? is the
tangential and normal direction velocity of the snake robot.
From (9), (24), (26), and (27), we can write the complete
model of the snake robot as

¢ =, (292)
0 = Vg (29b)
Dt = Ut + Dnls (29¢)
Dn = Up — Ptg (29d)
by = _ﬂ% 4 —vaDch) +— DDT (29¢)
Vg = —c3vg + NC4 Vg eT¢ (299)
) —
vy = —ﬂvt + ﬁvn_T(ﬁ - ¢TAD77¢ (29¢)
Nm
2
i = — v, + 20 P (29h)
Nm

where u € RV ™! are the actuator forces at the joints, A, D,
D, and ‘e are defined in Section IV-A, and c¢1, ¢2, ¢3 and ¢4
are scalar constants characterizing the external forces acting
on the snake robot.

V. CONTROLLER DESIGN

In this section, we propose a controller for the snake
robot. Since DD? € RIN-Dx(N=1) in (29¢) is a constant
invertible matrix, we can linearize the dynamics of the joints
with the following linearizing controller:

u=m (DDT)71 ( +2 ¢ - UtADT¢)

where @ € RY~! is a new set of control inputs. This
controller transforms the joint dynamics (29e) into vy =
¢ = W, which is identical to the joint dynamics of the snake
robot with revolute joints in (3). We set uw according to the
control law

u = &rcf + kd ((.ﬁrcf - d)) + kp (¢rcf - (:b) (31)

where £, and kg are positive scalar controller gains and
¢.os € RV~ are the joint reference coordinates. The error
dynamics of the joints is therefore given by

(Bt = B) + Fia (bret = ) + ki (brer —#) =0 (32)

which is clearly exponentially stable.

(30)

VI. COMPARISON BETWEEN THE COMPLEX AND THE
SIMPLIFIED MODEL

This section presents simulation results in order to com-
pare the complex snake robot model given by (3) and the
simplified model given by (29). Both models were imple-
mented and simulated in Matlab R2008b on a laptop running
Windows XP. The dynamics was calculated using the ode45
solver %n Matlab with a relative and absolute error tolerance
of 107°.

A. Simulation parameters

We considered a snake robot with N = 10 links of length
[ = 0.14 m and mass m = 1 kg. The links of the snake robot
with revolute joints had moment of inertia J = 0.0016 kgm?.
The friction coefficients of the complex model were set to
¢ = 0.5 and ¢,, = 3, while the friction coefficients of the
simplified model were set to ¢c; = 0.45, co = 3, c3 = 0.5
and ¢4 = 20. Note that defining a suitable mapping between
the friction coefficients in the two models remains a topic of
future work. Both models were simulated with the controller
given by (31) with controller gains set to k, = 20 and kg =
5. The joint reference coordinates were calculated according
to the motion pattern lateral undulation, defined in (6).
The joint reference coordinates in the complex model were
calculated with o = 30°, w = 70°/s, and § = 40°, and in the
simplified model with « = 0.1 m, w = 70°/s and § = 40°.
The joint offset coordinate was set to ¢, = 6a in the time
interval ¢ € [20,30] and ¢, = —¢« in the time interval ¢ €
[50, 60]. The offset angle was set to ¢, = 0 outside these two
time intervals. The initial state values of both models were
(¢=0,0=0,p,=0,p,=0,v4,=0,v9=0,v, =0, v, =0).

B. Simulation results

The simulated motion of the CM of the snake robot with
the complex and the simplified model is shown in Fig. 9(a)
and Fig. 9(b), respectively. In both figures, the configuration
of the snake robot is shown at ¢t = 10 s, ¢ = 40 s, and
t = 70 s. The simulated orientation of the snake robot with
both models is shown in Fig. 9(c). The orientation with the
complex model was estlmated as the average of the link
angles, ie. as 0 = + Z 1 0;. The orientation with the
simplified model was glven by 0. Fig. 9(d) and (e) show
the CM velocity of the snake robot in the global x and y
direction, respectively.

The simulation results indicate that the qualitative behav-
iour of the snake robot with the simplified model is similar
to the behaviour with the complex model. With the chosen
numerical values of the friction coefficients, we also achieved
a good quantitative similarity between the two models.
The plots corresponding to the complex model have high-
frequency fluctuations that are not visible in the plots from
the simplified model. This indicates that there are nonlinear
components of the complex model that are not included in the
simplified model. However, the similar behaviour of the two
models indicate that the simplified model contains the parts
of the complex model that determine the overall motion of
the snake robot. This suggests that we may use the simplified
model to develop general analysis and control design results
that will also apply to the complex model.
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Fig. 9. Simulation results that compare the complex and the simplified
model of the snake robot.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a simple model of the kinematics
and dynamics of a planar, wheelless snake robot aimed at
control design and stability analysis purposes. The proposed
model is significantly less complex than existing models of
planar snake locomotion.

The paper has presented an analysis of an existing com-
plex snake robot model which revealed a set of essential
properties that characterize the overall motion of a planar
snake robot. The model proposed in this paper was developed
to capture only these essential properties of snake loco-
motion. This approach produced a model with significantly
reduced complexity compared to the original model used
in the analysis. The simulation results indicated that the
qualitative behaviour of the proposed model and the original
complex model are similar, and that a quantitative similarity
is achieved with a proper choice of numerical values of the
friction coefficients in the two models.

In future work, the authors will employ the proposed
model in order to develop and analyse stability of controllers
for snake robot locomotion.
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