
A 3D Motion Planning Framework for Snake Robots

Pål Liljebäck, Kristin Y. Pettersen, Øyvind Stavdahl, and Jan Tommy Gravdahl

Abstract— This paper presents a motion planning framework
for three-dimensional body shape control of snake robots.
Whereas conventional motion planning approaches define the
body shape of snake robots in terms of their individual joint
angles, the proposed framework allows the body shape to be
specified in terms of Cartesian coordinates in the environment
of the robot. This approach simplifies motion planning since
Cartesian coordinates are more intuitively mapped to the
overall body shape of the snake robot. The paper demonstrates
the applicability of the framework for realizing different types
of three-dimensional motion patterns.

I. INTRODUCTION

Snake robots are robotic mechanisms designed to move
like biological snakes [1]. The advantage of such mecha-
nisms is their long and flexible body, which gives them the
potential to move and operate in challenging environments
where human presence is undesirable or impossible. Potential
applications of these mechanisms include search and rescue
operations, inspection and maintenance, and subsea opera-
tions. Due to their complex dynamics and unique forms of
propulsion, snake robots pose many open research problems.

Numerous approaches to motion control of snake robots
have been proposed in the literature, and the reader is
referred to [2] for a detailed overview. The majority of
previous approaches specify explicitly the motion of each
individual joint angle of the snake robot. Motion planning on
the joint angle level is, however, a particularly challenging
task if we are primarily interested in controlling the overall
(macroscopic) body shape of the robot, which is generally the
case. For this reason, it would simplify the control problem
if we could specify the motion in terms of parameters which
are more intuitively mapped to the overall body shape.

This idea is related to joint space versus task space control
of a conventional robot manipulator [3], whose motion is
usually specified in the task space of the end effector and
then mapped to the motion of each joint. The ’task’ space of
a snake robot is, however, defined in terms of the position
of all the links (i.e. not only the end effector) since it is the
interaction between the links and the physical environment
that creates the propulsion forces. Moreover, unlike most
robot manipulators, snake robots are underactuated since
they have more degrees of freedom than independent control

Affiliation of Pål Liljebäck is shared between the Dept. of Engineer-
ing Cybernetics at the Norwegian University of Science and Technology
(NTNU), 7491 Trondheim, Norway, and SINTEF ICT, Dept. of Applied
Cybernetics, 7465 Trondheim, Norway. E-mail: Pal.Liljeback@itk.ntnu.no.

Kristin Y. Pettersen is with the Centre for Autonomous Marine Operations
and Systems, Dept. of Engineering Cybernetics at NTNU, 7491 Trondheim,
Norway. E-mail: Kristin.Y.Pettersen@itk.ntnu.no.

Øyvind Stavdahl and Jan Tommy Gravdahl are with the Dept. of
Engineering Cybernetics at NTNU, 7491 Trondheim, Norway. E-mail:
{Oyvind.Stavdahl, Tommy.Gravdahl}@itk.ntnu.no.

This work was partly supported by the Research Council of Norway
through project no. 205622 and its Centres of Excellence funding scheme
project no. 223254.

inputs. For these reasons, motion planning methods for robot
manipulators are not directly applicable to snake robots.

Motivated by the above discussion, we propose in this pa-
per a general framework which facilitates three-dimensional
motion planning for snake robots. Instead of specifying joint
angles, the framework allows the motion to be specified
in terms of coordinates of shape control points (SCPs).
A continuous curve between the SCPs defines the desired
shape of the snake robot and is mapped to the individual
joint angles through a curve fitting process. The paper
demonstrates how the framework can be applied to design
complex three-dimensional motion patterns for snake robots.

Motion planning for snake robots based on continuous
curves has also been considered in previous literature [4]–[7].
This paper is, however, different from these previous works
both in terms of the parametrization of the continuous curve
and in terms of the approach for generating dynamic motion
patterns based on the continuous curve.

This paper builds on results presented by the authors in
[8], where this motion planning framework was considered in
the context of planar (two-dimensional) motion. This paper
extends the previous results by showing how the framework
can be extended to specify three-dimensional motion.

The paper is organized as follows. Section II presents
parameters of the snake robots considered in the paper. The
motion planning framework is presented in Section III, and
its applicability for three-dimensional motion planning is
demonstrated by simulation results presented in Section IV.
Finally, Section V presents concluding remarks.

II. THE SNAKE ROBOT

This section presents the kinematic structure of the class
of snake robots considered in this paper. Properties related
to the dynamics of the robot (mass, max actuator torque,
etc.) are not specified since the proposed motion planning
approach is carried out on a purely kinematic level.

The general kinematics of the snake robot is illustrated
in Fig. 1 using the parameters summarized in Table I. In
particular, the snake robot consists of N serially connected
rotational joints, where the rotation axes of consecutive
joints are orthogonal. The majority of existing snake robots
belongs in this class, including snake robots with 2-DOF
joint modules where the yaw and pitch axes are intersecting.

The kinematic parameters illustrated in Fig. 1 have been
defined according to the Denavit-Hartenberg Convention [3],
which is a systematic procedure for modelling the kinematics
of serially connected joint mechanisms. The specific Denavit-
Hartenberg (DH) parameters of the snake robot are listed in
Table II. In particular, ai defines the link length between
joint i and joint i + 1, di defines the transversal offset of
joint i + 1 with respect to joint i (which is assumed to be
zero), αi defines the relative angle between the rotation axis
of joint i and joint i+1, and θi defines the angle between the

Fig. 1. The kinematics of the snake robot modelled according to the Denavit-Hartenberg Convention. The y axis of each frame is not shown.

Fig. 2. Overview of the motion planning framework.

xi−1 and xi axis. The angle of joint i is denoted by qi and
corresponds to the parameter θi for i ∈ {1, . . . , N}. Note
that the parameter αN−1 is −π2 if N is an even number and
π
2 if N is an odd number. The reader is referred to e.g. [3]
for a more detailed description of these parameters.

The global frame position and orientation of the robot’s
head tip is defined by the homogenous transformation matrix

T g
h =

[
xh yh zh Oh

0 0 0 1

]
∈ R4×4 (1)

Furthermore, the global frame position and orientation of
frame i ∈ {0, . . . , N} is calculated as

T g
i =

[
xi yi zi Oi

0 0 0 1

]
= T g

hT
h
0T

0
1(q1)T

1
2(q2) · · ·T

i−1
i (qi)

(2)
where

T h
0 =

−1 0 0 −a0
0 −1 0 0
0 0 1 0
0 0 0 1

 (3)

and where T i−1
i (qi) is defined for i ∈ {1, . . . , N} as

T i−1
i (qi)=

cos qi − sin qi cosαi sin qi sinαi ai cos qi
sin qi cos qi cosαi − cos qi sinαi ai sin qi
0 sinαi cosαi 0
0 0 0 1

(4)

III. THE MOTION PLANNING FRAMEWORK

In this section, we propose a general approach for speci-
fying the three-dimensional motion of snake robots.

A. Motivation and Overview of the Framework
The propulsion of snake robots is generated by body shape

changes which induce contact forces from the environment
that propel the robot [2]. The most fundamental objective of

TABLE I
THE KINEMATIC PARAMETERS OF THE SNAKE ROBOT.

Symbol Description

N Number of joints.

xg ,yg ,zg ∈ R3 Coordinate axes of global frame.

xh,yh,zh ∈ R3 Coordinate axes of head frame.

xi,yi,zi ∈ R3 Coordinate axes of frame i ∈ {0, . . . , N}. The
rotation axis of joint i ∈ {1, . . . , N} is zi−1.

Oh ∈ R3 Origin of frame attached to the robot’s head tip.

Oi ∈ R3 Origin of frame i ∈ {0, . . . , N}.
a0,aN ∈ R Length of head and tail link, respectively.

ai ∈ R Link length between joint i and joint i+ 1.

qi ∈ R Angle of joint i ∈ {1, . . . , N}.

a control strategy for a snake robot is therefore to control
its body shape. Previous control approaches for snake robots
solve this problem by specifying directly the motion of each
individual joint. A challenge with this direct joint control
approach is that the mapping from individual joint angles to
the overall body shape of a snake robot is generally quite
complex. For this reason, it would simplify the control prob-
lem if we could specify the motion in terms of parameters
which are more intuitively mapped to the overall body shape
of the snake robot. In particular, a tool which simplifies
body shape control will also simplify the task of adapting
the motion in challenging and cluttered environments.

The motion planning framework proposed in the following
is motivated by the above discussion and is summarized in
Fig. 2. In particular, the desired shape of the snake robot is
specified in terms of shape control points (hereafter denoted
SCPs). The SCPs are interconnected by a curve denoted the
shape curve, which defines the macroscopic shape of the
snake robot. A virtual snake robot (hereafter denoted VSR)

TABLE II
THE DENAVIT-HARTENBERG PARAMETERS OF THE SNAKE ROBOT.

i ai di αi θi

0 a0 0 0 π

1 a1 0 −π
2

q1

2 a2 0 π
2

q2

3 a3 0 −π
2

q3
...

...
...

...
...

N − 1 aN−1 0 −π
2

qN−1

N aN 0 0 qN

TABLE III
THE PARAMETERS OF THE MOTION PLANNING FRAMEWORK.

Symbol Description

n Number of SCPs in the shape curve.

P i ∈ R3 Coordinates of the ith SCP.

S(s) ∈ R3 Shape curve which interconnects the SCPs.

sh ∈ R Shape curve location of the VSR’s head.

φh ∈ R Roll angle of VSR about the shape curve.

sref ∈ R Reference point on the shape curve when aligning
the links of the VSR.

lLAD ∈ R The look-ahead distance of the alignment algorithm.

with identical kinematic structure as the physical robot is
aligned along the shape curve, starting from some specified
location along the curve. The joint reference angles for the
physical robot are then defined as the joint angles of the
VSR. Furthermore, dynamic motion patterns for the physical
robot are produced by varying the SCP coordinates and/or
the location of the VSR along the shape curve with time.

As illustrated in Fig. 2, motion planning is carried out
within this framework by specifying the Cartesian coordi-
nates of the SCPs and the location and orientation of the
VSR’s head tip along the shape curve. The joint reference
angles for the physical snake robot follow implicitly from
the explicitly specified body shape since the framework
automatically aligns the VSR along the shape curve.

The details of this motion planning approach are presented
in the following subsections, where we will make use of the
parameters listed in Table III.

B. The Shape Control Points and the Shape Curve
To construct the shape curve defining the desired shape

of the snake robot, we begin by defining a set of SCPs.
The global frame coordinates of the SCPs are denoted by
P 0,P 1, . . . ,P n−1, where n is the number of SCPs in the
shape curve and P i = [Pi,x, Pi,y, Pi,z]

T ∈ R3. The number
n of SCPs is generally not fixed since, as exemplified later in
this section, the motion of the snake robot can be defined by
periodically extending the shape curve with SCPs according
to the desired motion pattern.

The shape curve interconnecting the SCPs is denoted
by S(s), where s ∈ [0, n− 1] is the scalar shape curve
parameter. The curve is produced by interpolating between
the SCPs using any chosen interpolation method such that
S(i) = P i, where i ∈ {0, . . . , n− 1}. Note that motion

planning strategies for the SCPs can be specified indepen-
dently from the choice of interpolation.

Example 1: A shape curve based on n = 4 SCPs is
plotted in Fig. 4(a). The SCP coordinates are P 0 = (0, 0, 0),
P 1 = (0.25, 0.15, 0), P 2 = (0.5, 0, 0.05), and P 3 =
(0.75,−0.15, 0.3). The shape curve S(s) was constructed
using a piecewise cubic hermite interpolating polynomial
[9], which is produced in Matlab using the function ’pchip’.
This interpolation method creates smooth curves which do
not overshoot the SCPs. The coordinates of any point along
the shape curve is retrieved using the shape curve parameter
s ∈ [0, 3]. For instance, we have that S(0) = P 0, S(2) =
P 2, and S(2.5) gives the coordinates of the point midway
between P 2 and P 3 on the shape curve.

C. The Virtual Snake Robot (VSR)
The shape curve S(s) defines the shape that we want the

snake robot to attain. As illustrated in Fig. 2, this curve is
mapped to joint reference angles for the physical snake robot
by aligning a VSR (with identical kinematic structure as the
physical robot) along the curve and then using the resulting
joint angles of the VSR as reference angles for the physical
robot. The motion planner only needs to specify the location
of the head tip of the VSR on the shape curve. The alignment
of the VSR is subsequently carried out automatically within
the framework, which means that a motion pattern can be
designed on the shape curve level without concern about the
motion of the joints. As explained in the next subsection
and illustrated in Fig. 3(a), we define the location of the
VSR’s head tip in terms of the shape curve parameter sh ∈
[0, n− 1] and the roll angle φh about the shape curve.

Remark 2: The shape curve does not necessarily need to
be produced from the SCPs before specifying the location
sh of the VSR’s head tip since, by design, we know that
sh ∈ [0, n− 1] and that S(i) = P i for i ∈ {0, . . . , n− 1}
regardless of how the shape curve is produced from the SCPs.

D. The Alignment of the VSR along the Shape Curve
Since the snake robot consists of joints interconnected

by straight links, it is generally not possible to align the
VSR perfectly along the continuous shape curve. There are,
however, many ways of achieving an approximate fit of the
VSR along the curve. The alignment strategy that we propose
in the following is not optimal by any specific measure, but
performs well in terms of fitting the VSR along general three-
dimensional shape curves. Moreover, a great advantage of the
algorithm is its computational simplicity, which facilitates
motion planning in real-time. Note that motion planning on
the shape curve level can be carried out independently of the
chosen method for aligning the VSR along the curve.

A detailed description of the algorithm is given in the
following subsections. The algorithm is summarized in Fig. 3
and aligns the VSR starting with the head tip at the desired
location and then working its way backwards to the tail.

1) The Input to the Algorithm: The alignment algorithm
takes two scalar inputs. The first input is the shape curve
parameter sh ∈ [0, n− 1] of the head tip of the VSR and
the second input is its roll angle φh about the shape curve.

2) The Output from the Algorithm: As illustrated in Fig. 1
and described in Table I, the kinematics of the snake robot is
defined in terms of N+2 coordinate systems, i.e. the h frame

(a) Alignment of the head frame.

(b) Alignment of frame i ∈ {0, . . . , N}.

Fig. 3. The strategy for aligning the VSR along the shape curve. (a) The
VSR is aligned from the head link and backwards. The location sh of the
head tip and the roll angle φh of the VSR about the shape curve are inputs
to the algorithm. (b) The link from frame i−1 to frame i is ’aimed’ towards
a reference point on the shape curve denoted by sref.

attached to the head tip, frame i ∈ {0, . . . , N − 1} attached
to each of the N joints, and finally the N frame attached
to the tail tip. The output from the alignment algorithm
is the origin and orientation of each of these frames. This
output includes the angle qi of each joint i ∈ {1, . . . , N} of
the VSR, which the motion planning framework outputs as
reference angles for the physical robot.

3) The Placement of the Head Frame: The algorithm
starts by defining the origin of the head frame as Oh =
S(sh). Furthermore, the xh axis is defined as illustrated in
Fig. 3(a), i.e. as the unit vector from O0 to Oh, where O0

is the origin of the frame of joint 1. The calculation of O0

is described below, so for now we assume that O0 has been
defined. The xh axis is therefore given as

xh =
Oh −O0

‖Oh −O0‖
(5)

where we divide by the norm of the vector to make xh a
unit vector. As shown in Fig. 3(a), the yh and zh axes are
determined by the roll angle φh of the VSR about the shape
curve, which is an input to the algorithm. To this end, we
first calculate a temporary axis denoted by y

′

h, which we
define to be horizontal through the cross product

y
′

h =
zg × xh
‖zg × xh‖

(6)

where zg is the global z axis. A temporary zh axis, denoted
by z

′

h, is then calculated as

z
′

h = xh × y
′

h (7)

The temporary head frame, which is defined by the axes
xh, y

′

h and z
′

h as shown in Fig. 3(a), is now rotated by
the specified angle φh about the xh axis, thereby achieving
the specified roll angle of the VSR about the shape curve.
The orientation of the head frame with respect to the global
frame is thus calculated as

Rg
h =

[
xh yh zh

]
=
[
xh y

′

h z
′

h

]
Rx(φh) (8)

where Rx is the rotation matrix for an elementary rotation
about the x axis [3], which is defined as

Rx =

1 0 0
0 cosφh − sinφh
0 sinφh cosφh

 (9)

4) The Placement of the Joint Frames: The origin and
orientation of the remaining N + 1 coordinate frames are
calculated in consecutive order by following the steps below
for each frame. The origin of frame i ∈ {0, . . . , N} is
denoted by Oi and its coordinate axes are denoted by xi,
yi and zi, respectively. The algorithm makes use of a
reference point sref, which is initialized as sref = sh and
then traced backwards along the shape curve to define the
desired placement of each frame.

To calculate Oi, sref is moved backwards along the shape
curve to the point whose linear distance to the previously
aligned frame (i.e. Oi−1) equals lLAD ∈ R. The design
parameter lLAD is referred to as the look-ahead distance and
defines how far backwards along the shape curve to ’aim’ the
next link to be aligned. As shown in Fig. 3(b), the location
of sref with respect to frame i− 1 is defined as

rref = S(sref)−Oi−1 (10)

where ‖rref‖ = lLAD. The algorithm attempts to place Oi

such that the link between Oi−1 and Oi (i.e. between joint
i and joint i+ 1) is aligned with rref. This link is, however,
constrained to move in the plane normal to the rotation axis
of joint i (i.e. zi−1), which means that a perfect alignment
between the link and rref will generally not be possible.
The algorithm therefore aligns the link such that the closest
possible match with rref is achieved. As illustrated in Fig.
3(b), the closest match is found by first finding a vector r⊥
which is normal to the plane spanned by zi−1 and rref, i.e.

r⊥ = zi−1 × rref (11)

Subsequently, we find the closest match with rref by defining
the link between Oi−1 and Oi to be normal to the plane
spanned by r⊥ and zi−1. As seen from Fig. 3(b), this is
equivalent to defining the xi axis as

xi = r⊥ × zi−1 (12)

We are now ready to calculate the angle qi of joint i, which
is the angle between the xi−1 and xi axis (see Section II).
We first express the xi axis with respect to frame i−1. This
vector is denoted by xi−1i and is found as

xi−1i =
(
Rg
i−1
)T

xi (13)

where Rg
i−1 is the rotation matrix describing the global

frame orientation of frame i − 1, which was determined in
the previous step of the algorithm. By denoting the x and

y component of this vector by xi−1i,x and xi−1i,y , respectively,
the joint angle is found as

qi = atan2
(
xi−1i,y ,x

i−1
i,x

)
(14)

where atan2(·) is the four quadrant inverse tangent. Note that
xi−1i,z is always zero since the xi axis by design is normal
to the zi−1 axis.

Using (2), we can now calculate the origin and orientation
of frame i with respect to the global frame as

T g
i =

[
xi yi zi Oi

0 0 0 1

]
= T g

i−1T
i−1
i (qi) (15)

where T g
i−1 was determined in the previous step of the

algorithm and T i−1
i (qi) is defined in (4).

Remark 3: The choice of look-ahead distance lLAD is
important. If we assume that all links of the robot have equal
length, i.e. ai = a for i ∈ {0, . . . , N}, then lLAD should be
chosen such that lLAD ≥ a. If lLAD < a, then the alignment
will cause each link to ’overshoot’ its reference point on the
shape curve. From the authors’ experience, the algorithm will
generally perform well if lLAD ∈ [a, 2a].

Example 4: Fig. 4(b) shows the alignment of a VSR with
N = 6 joints along the shape curve plotted in Fig. 4(a). The
link lengths were ai = 0.1 m, where i ∈ {0, . . . , 6}, and the
look-ahead distance was lLAD = 2a0.

E. Generating Motion Patterns
1) General Approach: The presentation so far provides a

framework for generating joint reference angles correspond-
ing to body shapes defined by SCP coordinates. We can
use this framework to generate dynamic motion patterns for
a snake robot by varying the SCP coordinates and/or the
location of the VSR along the shape curve with time. In
particular, motion patterns can be generated in three ways:

1) Progressing the VSR forward along the shape curve
while continuously retrieving its joint angles. The re-
trieved angles will vary as the VSR is progressed along
the curve, thereby generating dynamic joint reference
angles for the physical robot in accordance with the
motion pattern drawn out by the shape curve.

2) Fixing the VSR on the shape curve while varying the
SCP coordinates with time. Although the location of
the VSR is fixed on the shape curve, its joint angles
will vary as the SCP coordinates are changed.

3) A combination of approaches 1 and 2.
With approach 1, the VSR will at some point reach the

last SCP of the shape curve. When this happens, we can
maintain the motion by extending the curve with new SCPs
according to the desired motion pattern. To this end, we
introduce two important instruments. The first instrument is
the shape frame, which defines the direction in which the
shape curve is extended when new SCPs are added. The
second instrument is the gait segment, which defines the
shape curve over a single cycle of a motion pattern, thereby
acting as the ’building block’ of the shape curve. Section IV
presents simulation results which illustrate these approaches.

2) The Shape Frame: When new SCPs are added in order
to extend the shape curve, the direction in which the curve is
extended will affect the direction in which the snake robot is
propelled. We can utilize this property to steer the direction

of the robot’s motion by introducing a coordinate frame
whose orientation is defined by a heading controller, and
which is used as the reference frame when new SCPs are
added to the shape curve. The frame is denoted as the shape
frame and, as illustrated in Fig. 5, its axes are denoted by
xs, ys and zs, respectively. Moreover, its origin coincides
with the last SCP of the shape curve, whose coordinates are
P n−1 = S(n− 1). The orientation of the shape frame with
respect to the global frame is expressed by the rotation matrix

Rg
s =

[
xs ys zs

]
∈ R3×3 (16)

and can be regarded as a directional control input for the
robot.

3) The Gait Segment: Snake robots are usually controlled
according to predefined gait patterns, which are carried out
in combination with feedback control laws that e.g. steer
the heading and/or adapt the motion to the environment. To
facilitate predefined gait patterns within the motion planning
framework, we introduce a gait segment, which describes the
shape curve over one cycle of a particular motion pattern.
The gait segment is the ’building block’ of the shape curve
and is defined as a collection of k SCPs denoted by{

P GS
0 ,P GS

1 , . . . ,P GS
k−1

}
(17)

where P GS
i ∈ R3 and superscript ’GS’ is short for gait

segment. Sustained motion according to the gait segment is
achieved by repeatedly concatenating the shape curve with
the gait segment coordinates while the VSR is progressed
forward along the curve. The gait segment coordinates are
expressed with respect to the shape frame. As illustrated in
Fig. 5, an SCP from the gait segment is added to the shape
curve by calculating its global frame coordinates P new as

P new = P n−1 +Rg
s

(
P GS
j − P GS

j−1

)
(18)

where P n−1 is the location of the last SCP of the shape
curve, Rg

s is the rotation matrix that describes the orientation
of the shape frame, and where j ∈ {1, . . . , k − 1}. Note that
the gait segment is concatenated with the shape curve one
SCP at a time since this allows us to steer the direction of
the motion by adjusting Rg

s each time a new SCP is added.
After all k SCPs from the gait segment have been added to
the shape curve, the process starts over from the first SCP.

Example 5: A gait segment constructed from k = 9 SCPs
is plotted in Fig. 4(c) using the same interpolation as in
Example 1. The figure also shows the shape curve formed by
concatenating the gait segment four times. The shape frame
was initially oriented along the axes of the global frame.
During the last two concatenations, however, the shape frame
was rotated 45◦ about the global z axis by choosing Rg

s =
Rz(45

◦), where Rz describes an elementary rotation about
the z axis. As a result, the progression direction of the shape
curve was changed by 45◦.

IV. APPLICATIONS OF THE MOTION PLANNING
FRAMEWORK

This section presents simulation results which demonstrate
the applicability of the motion planning framework for re-
alizing different types of three-dimensional motion patterns.
The main feature to note from the simulation results is that
at no point during the gait design process did we need to
consider the specific joint angles of the robot.

(a) A shape curve constructed from
n = 4 SCPs.

(b) A VSR with N = 6 joints
aligned using lLAD = 2a0.

(c) A gait segment (top) and the resulting
shape curve (bottom).

Fig. 4. (a) Example of a shape curve constructed from n = 4 SCPs. (b) Alignment of a VSR with N = 6 joints using the look-ahead distance lLAD = 2a0.
The transversal axis at each joint indicates the rotation axis. (c) An example of a gait segment (top) constructed from k = 9 SCPs and the shape curve
(bottom) formed by concatenating the gait segment four times. During the last two concatenations, the shape frame was rotated 45◦ about the z axis.

Fig. 5. New SCPs are added to the shape curve with reference to the shape
frame, whose origin coincides with the last SCP of the curve.

A. Simulation Setup

The simulations were carried out using Open Dynamics
Engine (ODE) [10], which is an open-source software library
for simulating articulated rigid-body dynamics. The software
allows for fast simulations of complex articulated structures
in easily reconfigurable obstacle environments.

The snake robot was implemented in ODE according to
the kinematics in Fig. 1. The number of joints was N = 16
and the distance between the joints was ai = 0.08 m for
i ∈ {0, . . . , N}. The robot moved on a flat surface and had
a quadratic cross-section with height/width equal to 0.07 m.

The motion planning framework was implemented in
Matlab R2011a and the kinematic parameters of the VSR
were equal to those of the robot in ODE. Shape curves were
constructed using the piecewise cubic hermite interpolating
polynomial described in Example 1. Moreover, the alignment
of the VSR to the shape curve was carried out with look-
ahead distance lLAD = 2a0 = 0.16 m. The joint angles of
the VSR were used as joint reference angles for the snake
robot in ODE with an update frequency of 30 Hz.

B. Simulation 1: Sidewinding Motion

During sidewinding motion, a snake moves sideways by
raising its head and throwing it sideways, and then repeating
the same motion with the rest of its body in a cyclic manner

[2]. A snake robot can achieve this motion by moving its
body according to a horizontal wave superimposed by a
vertical wave with a 90◦ phase shift between the two waves.
To this end, we first specified the desired body shape of the
snake robot by defining the parametric curve

B(β) =

Bx(β)By(β)
Bz(β)

 =

 kx
β
2π

ky sin(β)
kz sin(β + π

2)

 ∈ R3 (19)

where β ∈ [0, 2π], kx ∈ R defines the length of the curve
along the x axis, ky ∈ R defines the amplitude of the
horizontal wave in the x-y plane, and kz ∈ R defines the
amplitude of the vertical wave (phase shifted by 90◦) in the
x-z plane. We then used B(β) to define a gait segment with
k = 9 SCPs according to (17) such that

P GS
i = B(2π8 i) , i ∈ {0, . . . , 8} (20)

The resulting gait segment and the aligned VSR are plotted
in Fig. 6(a), where we chose kx = 0.7a0(N+1) = 0.952 m,
ky = 3a0 = 0.24 m, and kz = a0/3 = 0.0267 m.

To achieve sidewinding motion, we followed the approach
described in Section III-E.3 and progressed the VSR forward
along the shape curve at a constant speed such that

∣∣∣Ṡ(sh)∣∣∣ =
0.5 m/s and with roll angle φh = 0. Furthermore, to illustrate
how the shape frame described in Section III-E.2 can be
used to influence the direction of the motion, the shape
frame was first oriented along the axes of the global frame
and then rotated at a constant velocity about the global
z axis in order to steer the robot in the counter-clockwise
direction. In particular, the shape frame in (16) was defined
as Rg

s = Rz(ψs), where Rz(ψs) is the rotation matrix
for an elementary rotation about the global z axis by an
angle ψs, which we defined as ψs = 0◦ and ψ̇s = 0◦/s
for t ∈ [0 s, 5 s], ψ̇s = 22.5◦/s for t ∈ [5 s, 10 s], and
ψ̇s = 0◦/s for t ∈ [10 s, 15 s].

The shape curve developed during 15 seconds of motion is
plotted in Fig. 6(b), while Fig. 6(c) shows the position of the
centre link of the snake robot (link 9) simulated using ODE.

Fig. 7. Screen-shots of sidewinding motion simulated in ODE.

The ODE simulation is also visualized in Fig. 7. The results
show that sidewinding motion was successfully achieved and
that the shape frame rotation successfully steered the robot
in the counter-clockwise direction.

C. Simulation 2: Vertical Wave Motion

The next simulation illustrates how propulsion can be
achieved by vertical body waves. To this end, we followed
the exact same approach as in the previous subsection with
the following differences. The parametric curve in (19) was
redefined to be a purely vertical wave in the x-z plane by
defining Bx(β) = kx

β
2π , By = 0 and Bz(β) = kz sin(β),

where we chose kx = 0.7a0(N + 1) = 0.952 m and
kz = 0.1a0(N +1) = 0.136 m. We also increased the speed
of the VSR along the shape curve such that

∣∣∣Ṡ(sh)∣∣∣ = 2 m/s,
and we defined the shape frame to be aligned with the global
frame (Rg

s = I3×3). The simulation result is shown in Fig.
8, where Fig. 8(a) shows the resulting gait segment and the
aligned VSR, while Fig. 8(b) shows screen-shots from the
ODE simulation which illustrate how the vertical body waves
propelled the robot.

(a) The gait segment.

(b) Screen-shots from ODE.

Fig. 8. Simulation results of vertical wave motion. (a) The gait segment
and the aligned VSR, where the transversal axis at each joint indicates the
rotation axis. (b) Screen-shots of the motion simulated in ODE.

D. Simulation 3: Lateral Rolling Motion

During lateral rolling motion, a snake robot moves side-
ways by curving its body slightly while rolling about its
longitudinal axis. Instead of progressing the VSR forward
along the shape curve by continuously increasing sh, we
can achieve this rolling motion by keeping sh fixed while
continuously increasing the roll angle φh about the curve.
In particular, we defined a constant shape curve consisting

(a) The gait segment. (b) The shape curve. (c) The position of the snake robot.

Fig. 6. Simulation results of sidewinding motion. (a) The gait segment and the aligned VSR, where the transversal axis at each joint indicates the rotation
axis. (b) The shape curve developed during the motion, where the aligned VSR is plotted at t = 5 s, 10 s, and 15 s, respectively. (c) The position of the
centre link (link 9) of the snake robot simulated using ODE.

(a) The shape curve.

(b) Screen-shots from ODE.

Fig. 9. Simulation results of lateral rolling motion. (a) The shape curve
and the aligned VSR, where the transversal axis at each joint indicates the
rotation axis. (b) Screen-shots of the motion simulated in ODE.

of the three SCPs P 0 = (−0.5a0(N + 1), 3a0, 0) =
(−0.68, 0.24, 0), P 1 = (0, 0, 0), P 2 = (0.5a0(N +
1), 3a0, 0) = (0.68, 0.24, 0). Furthermore, we fixed the head
of the VSR at the last SCP by defining sh = 2 and we
continuously rotated the VSR about the shape curve by
defining φ̇h = −360◦/s. The simulation result is shown
in Fig. 9, where Fig. 9(a) shows the shape curve and the
aligned VSR, while Fig. 9(b) shows screen-shots from the
ODE simulation which illustrate the sideways rolling motion.

E. Simulation 4: Descending a Staircase

The last simulation illustrates the explicit nature of the
motion planning framework in terms of defining the body
shape of the snake robot. The goal was to make the snake
robot in ODE crawl down a staircase with steps that were
0.2 m in both depth and height. This was achieved by
defining a gait segment corresponding to a single step of the
staircase as shown in Fig. 10(a). As a result, the progression
of the VSR along the shape curve, which is plotted in
Fig. 10(b) at t = 7.5 s, caused a staircase-like pattern
to be propagated along the body of the simulated robot.
This pattern enabled the robot to climb stepwise down the
staircase as illustrated in Fig. 10(c).

V. CONCLUSIONS

This paper has presented a motion planning framework
for three-dimensional body shape control of snake robots,
where continuous curves defined by shape control points are
mapped to dynamic motion patterns for the snake robot. The
framework allows the motion to be controlled by parameters
which are intuitively mapped to the overall body shape of

(a) The gait segment. (b) The shape curve.

(c) Screen-shots from ODE.

Fig. 10. Simulation results of a snake robot descending a staircase. (a)
The gait segment and a few joints of the aligned VSR, where the transversal
axis at each joint indicates the rotation axis. (b) The shape curve developed
during the motion, where the aligned VSR is plotted at t = 7.5 s. (c)
Screen-shots of the motion simulated in ODE.

the snake robot. The applicability of the framework was
demonstrated by simulation results.

REFERENCES

[1] S. Hirose, Biologically Inspired Robots: Snake-Like Locomotors and
Manipulators. Oxford: Oxford University Press, 1993.

[2] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl, Snake
Robots - Modelling, Mechatronics, and Control, ser. Advances in
Industrial Control. Springer, 2013.

[3] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics.
Springer, 2008.

[4] G. S. Chirikjian, “Design and analysis of some nonanthropomorphic,
biologically inspired robots: An overview,” Journal of Robotic Sys-
tems, vol. 18, no. 12, pp. 701–713, December 2001.

[5] H. Date and Y. Takita, “Control of 3d snake-like locomotive mecha-
nism based on continuum modeling,” in Proc. ASME 2005 Interna-
tional Design Engineering Technical Conferences, 2005, pp. 1351–
1359.

[6] H. Yamada and S. Hirose, “Study on the 3d shape of active cord
mechanism,” in Proc. IEEE Int. Conf. Robotics and Automation, 2006,
pp. 2890–2895.

[7] R. Hatton and H. Choset, “Generating gaits for snake robots by an-
nealed chain fitting and keyframe wave extraction,” in Proc. IEEE/RSJ
Int. Conf. Intelligent Robots and Systems, 2009, pp. 840–845.

[8] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl, “Com-
pliant control of the body shape of snake robots,” in Proc. IEEE Int.
Conf. Robotics and Automation, 2014, pp. 4548–4555.

[9] F. N. Fritsch and R. E. Carlson, “Monotone piecewise cubic inter-
polation,” SIAM J. Numerical Analysis, vol. 17, no. 2, pp. 238–246,
1980.

[10] R. Smith, “Open Dynamics Engine,” http://www.ode.org, 2014, online.

