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Preface

This thesis was submitted in partial fulfilment of the requirements for the doctor of philosophy

at the Norwegian University of Science and Technology (NTNU). The work has been carried

out at the Department of Structural Engineering from August 2010 to November 2014. It was

funded by the Centre for Research-based Innovation SIMLab. Professor Odd Sture Hopperstad

was the main supervisor and Dr. Stéphane Dumoulin from SINTEF Materials and Chemistry

was the co-supervisor. The thesis is divided into two parts. The first part is a synopsis and

includes an introduction, a literature study and a summary of the work. The second part con-

tains the articles, which were published, submitted or prepared by the candidate during the PhD

study.

Articles are included in the thesis:

1. Khadyko, M., Dumoulin, S., Børvik, T., & Hopperstad, O. S. (2014). An experimental-

numerical method to determine the work-hardening of anisotropic ductile materials at

large strains. International Journal of Mechanical Sciences, 88, 25–36.

2. Khadyko, M., Myhr, O.R., Dumoulin, S. & Hopperstad, O. S. (2014). A microstructure

based yield and work-hardening model for textured 6xxx aluminium alloys. Submitted

for publication.

3. Khadyko, M., Dumoulin, S., Cailletaud, G. & Hopperstad, O.S. (2014). Latent harden-

ing and plastic anisotropy evolution in AA6060 aluminium alloy. To be submitted for

publication.

4. Khadyko, M., Dumoulin, S., Børvik, T., & Hopperstad, O. S. (2014). Simulation of large-

strain behaviour of AA6060 under tensile loading using anisotropic plasticity models.

Submitted for publication.

Article included in the Appendix:
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5. Khadyko, M., Dumoulin, S., & Hopperstad, O. S. (2014). Slip system interaction matrix

and its influence on the macroscopic response of Al alloys. Materials Science Forum,

794, 566–571.
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Abstract

The present work examines various aspects of the plastic behaviour of the 6000 series of alu-

minium alloys, including yield, work-hardening, diffuse necking, flow stress anisotropy and

plastic flow anisotropy. The alloys were investigated experimentally, using tensile tests, and

their behaviour was modelled using the finite element method (FEM). The material in the finite

element simulations was described either by anisotropic phenomenological plasticity or crystal

plasticity models. The aim of the work was to study the cases in which crystal plasticity models

may improve the predictions compared to the phenomenological plasticity models or predict

new aspects of the material’s behaviour. The first part of the thesis is a literature study on crys-

tal plasticity theory and phenomenological plasticity and a synopsis of the articles, which are

included in the second part.

In Article 1 a method for finding the equivalent stress-strain curve from a uniaxial ten-

sile test for a material with anisotropic plastic behaviour after necking is proposed. The force

and cross-section diameter measurements in such test produce a true stress-strain curve until

fracture, but this curve includes a triaxial stress field, which develops in the neck. To remove

the influence of this triaxial field and obtain the equivalent stress-strain curve the reverse en-

gineering method was utilized. A set of specimens produced from the AA6060 and AA6082

alloys with different heat treatments was tested under uniaxial tension condition. These tests

were modelled using the FEM, with an anisotropic phenomenological plasticity material model.

The work-hardening parameters of this model (which define its equivalent stress-strain curve)

were set as the variables in the optimisation procedure. The anisotropic yield surfaces used

in the phenomenological model were found using the crystal plasticity model and the crys-

tallographic texture data obtained for the examined alloys. It was found that the equivalent

stress-strain curves obtained with this anisotropic plasticity model differ from the curves ob-

tained with an isotropic plasticity model, i.e. this method allows to account for the material’s

plastic anisotropy. The anisotropic yield surfaces obtained with the crystal plasticity model

3



allowed to predict the plastic flow anisotropy reasonably well.

In Article 2 the precipitation, yield stress and work-hardening model developed by Myhr et

al.1 is combined with a crystal plasticity model with Taylor type homogenisation. The same

alloys as in Article 1 were used. The precipitation model provides the information about the

solid solution and precipitate particles formed in the alloy, depending on its thermal history and

chemical composition. This information is then transformed into the parameters of the yield

and work-hardening model, which predicts the global equivalent stress-strain curve of the alloy.

In this work an alternative work-hardening rule was proposed, which also uses the information

about solid solution and precipitate particle data from the precipitation model. However, unlike

the rule proposed by Myhr et al. it is acting on the slip system level. The global equivalent

stress-strain is then calculated using the full constraint Taylor homogenisation model. In this

case the influence of crystallographic texture and its evolution on the yield strength and work

hardening is naturally accounted for. The results obtained by the two approaches were com-

pared to these experimental data. The comparison showed that while some features of the

alloys’ plastic behaviour were captured somewhat better by the new approach, the overall im-

provement was not large and the results were influenced to a greater extent by the precipitation

model than by the crystallographic texture.

In Article 3 the latent hardening and its influence on the plastic anisotropy of the aluminium

alloys was studied. Phenomenological and physically based crystal plasticity hardening models

use different descriptions of the latent hardening. The exact values of the latent hardening

matrix is a long-standing problem, which has been attempted to be solved both experimentally

and numerically. These efforts produced quite a few different results. Some typical latent

hardening matrices found in the literature were tested. The experimental study consisted of

uniaxial tensile tests in different material directions on an AA6060 alloy. These test were

simulated using the FEM with crystal plasticity. The results of the simulation were compared

to the experimental data. In the experiments, the material demonstrated an evolution of the

anisotropy of both flow stress and plastic flow. It was shown that while models with different

latent hardening matrices all reproduced the main tendencies of the alloy’s behaviour, there

were noticeable differences in the responses.

In Article 4 an AA6060 alloy sample is studied, in which an extremely sharp cube texture

1Myhr, O. R., Grong, Ø., and Pedersen, K. O. (2010). A combined precipitation, yield strength, and work

hardening model for Al–Mg–Si alloys. Metallurgical and Materials Transactions A, 41(9), 2276–2289.
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is observed. The material demonstrated an anomalous rhomboid shape of the fracture surface

in the tensile test with a notched cylindrical specimen. The test was modelled using the FEM,

with material described by the anisotropic phenomenological plasticity model and a crystal

plasticity model. The finite element model represented the specimen geometry and boundary

conditions realistically, with the average size of the constituent grains in the model close to

the real one. The combination of the realistic geometry and crystal plasticity model allowed

predicting the rhomboid shape of the notched specimen’s cross-section at larger strains, while

the phenomenological FEM failed to do so.
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Chapter 1

Introduction

1.1 Background, motivation and goals

Aluminium alloys have been used extensively as structural material in various branches of in-

dustry (building, offshore, automotive, aerospace and more) for decades. The low density,

relatively high strength and high corrosion resistance are very attractive advantages that often

outweigh the higher cost (compared to other materials). Aluminium alloys are well suited for

forming by extrusion (especially the 6000 series), deep drawing, welding and other production

techniques. In addition, their mechanical properties may be controlled within certain bound-

aries by thermal processing. It is not surprising that all aspects of this material are subjected to

extended research.

One of these aspects is the mechanical properties of aluminium alloys. Being a typical

metal, aluminium demonstrates quite small elastic strains and much larger plastic strains. The

engineering field tends to use a solution as simple and cheap as possible for design purposes,

but it has been understood in the last decades that the isotropic and linear models are not quite

enough, if one aims to achieve maximum efficiency of the production, reliability in operation

and controllability of possible failure. The precise knowledge of the plastic deformation prop-

erties is necessary for this.

Aluminium alloys do not make this an easy task. They demonstrate all sorts of plastic be-

haviour, including anisotropic yield and flow potentials and non-linear isotropic and kinematic

work hardening. Advanced phenomenological models can describe these features if they are

properly calibrated. While calibration of a simpler model requires just a few experimental tests

(typically uniaxial tension tests), these advanced models require a larger set of tests, including
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shear and plane strain tests, if one wishes to obtain models as accurate as possible. Metaphor-

ically speaking the plastic behaviour of an aluminium alloy is an elephant and the tests are the

blind men trying to describe it by touching just one of its sides. The problem is exacerbated

if we recall that the elephant is multidimensional (e.g. the anisotropic flow potential has five

dimensions in general case) and each new blind man costs a hefty sum of money.

On the other hand these complex plastic properties of the alloys are not random, but are a

result of their internal structure. Metallic alloys are polycrystals, and the regularities in the sta-

tistical distribution of the orientations of the constituent crystals are a source of yield and flow

stress anisotropy. The precipitate and solid solution contents in the alloy strongly influence the

work-hardening rate. Solid particles also control the kinematic hardening and ductile fracture.

Finding the exact nature of the link between the microstructure and the plastic properties is of

course a difficult task, and establishing reliable quantitative models is even more difficult.

One of the links between the microstructure and the macroscopic properties is given by the

crystal plasticity theory. It describes the plastic properties of crystals on the lattice level, using

only the crystal orientation and the slip system work-hardening as input. For example, when

it is applied to polycrystals, the 5-dimensional anisotropic flow potential surface of an alloy

may be derived from this limited input in detail, instead of being an experimentally calibrated

approximation (how well this result corresponds to the real yield surface is another question).

The great setback of the crystal plasticity models is their computational cost, which is huge,

compared to the phenomenological models. The computer technology needs to make a lot of

progress before we can try to replace phenomenological plasticity with the more physically

rooted crystal plasticity in technical applications. For now the two approaches can be used side

by side, complementing each other in this field. The crystal plasticity may provide some of the

calibration data for the phenomenological models. Another application of the crystal plasticity

is the study of phenomena that the present day phenomenological models are incapable of

predicting, because they lack the description of some important physical mechanisms of the

plastic flow.

The objectives set in this thesis are the following:

• To study the use of yield surfaces predicted by crystal plasticity based on texture at large

plastic strains (Article 1).

• To study the influence of the crystallographic texture and its evolution on the anisotropy

and work-hardening at large plastic strains of textured 6000 series alloys (Article 2).
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• To implement the influence of precipitate particles in crystal plasticity in a simple way

and study their influence on the 6000 series alloy mechanical behaviour (Article 2).

• To study and numerically predict the distortion hardening in the 6000 series alloys in

a broad range of plastic strains and reveal the connection between the results and the

structure of the crystal plasticity model (Article 3).

• To compare the predictions of the crystal plasticity and phenomenological plasticity mod-

els for necking in aluminium alloys with very sharp textures (Article 4).

The present thesis tries to cover these grounds. The overarching goal is to try and test the

crystal plasticity models in some context where the phenomenological models reach their limits

in their present form and oversimplify things or lack vital information. Every time the results

are compared to the experimental test results, some of which are also not the standard run of

the mill type. The results may be largely positive or sometimes less convincing, but in any

case they deepen our understanding of the behaviour of the aluminium alloys and its link to the

microstructure and underline the numerous problems that still remain.

1.2 Scope and limitations

The experiments were performed on the 6000 family of alloys (6060 and 6082). The uniaxial

tension test with an in-house laser gauge was the main test type. Tests were performed in

different material directions and on alloys with different tempers (thermal histories) on cast and

homogenised materials and extruded materials. The microstructural information was obtained

by scanning electron microscopy (SEM). The tests were performed at very low strain rates,

so that the strain-rate and dynamic effects were negligibly small and the deformation could be

considered quasistatic. The tests were performed at ambient temperature and slowly enough for

the thermal energy in plastic deformation to dissipate, so that the thermal effects in the material

were negligibly small.

Correspondingly the numerical models ignored dynamic, strain rate and thermal effects.

The flow potential of the phenomenological plasticity model was expanding isotropically, kine-

matic hardening was not considered. The two-term Voce hardening rule was used. The crystal

plasticity models used the rate-dependent formulation with a low value of the rate sensitivity

parameter, making it a rate-insensitive formulation. A local plasticity model was used; when
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the geometrically necessary dislocations and strain gradients were of interest, they were mod-

elled in a simplified way with a characteristic length parameter and an additional state variable.

No special measures were taken to model the grain boundaries or the microstructure inside the

grain (dislocation patterns, particles etc.): the global response of the polycrystal, rather than the

local one was usually sought after. The grain size effect was also not included in the models.

The initial slip resistance was usually assumed equal on all slip systems, except one instance

when this subject is specifically studied. Therefore the texture is the only source of the plastic

anisotropy in most simulations.

The deformation was studied until and after necking, but a fracture criterion was not imple-

mented and fracture was not studied experimentally.
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Chapter 2

Literature overview

2.1 First observations and experiments

The first purely experimental works that discovered a connection between the plastic deforma-

tion of a metal and the evolution of its microstructure were two consecutive articles by J. A.

Ewing and W. Rosenhaim: the preliminary one [1] and the main one [2]. First the metal spec-

imens were prepared by either polishing a surface of a metal piece and etching it or pouring

melted metal onto a glass or other smooth surface. Then a microscope was used to reveal the

microstructure of the specimens. It was found that all observed metals had a crystalline grain

structure. By lighting them from different angles, the orientations of the grains were found to

be different. Some of the specimens were also annealed and studied again. From the transfor-

mations of grains under thermal treatment and their shape, a conclusion was made about how

the differently oriented grains appear in metals.

Next the specimens were subjected to plastic tensile, compressive and torsion deformation.

The specimens were studied under the microscope, and for deformation above the elastic limit

straight parallel lines were observed on what was previously a smooth surface. The lines had

different directions in each grain. The lines appeared in different grains as the load increased

and sometimes another set of lines appeared in the same grain at an angle to the first ones at

higher loads. The compression test produced a set of lines that was indistinguishable from

the tension one. The torsion test also showed lines, although their orientation was somewhat

different. These lines were proved to be slips — the lines along which part of a grain sheared

relative to the rest of the grain, forming a slip step. These lines are consequently the lines of

intersection between atomic planes of the crystal lattice and faces of the grains. The shape of

15



Figure 2.1: Schematic diagram taken from [1] showing slip steps on the surface of a metal near

the boundary between two grains, A and B, before and after plastic straining. Dashed lines

show the trace of crystallographic planes of slip.

the grains was changing with deformation, but their crystalline structure still remained intact

and the slip lines appeared in the same manner, when the specimen was deformed and then

polished again.

These observations allowed a conclusion to be made about how the plastic deformation in

metals develops. Plastic deformation is due to slip of part of the crystal relative to the rest

of the crystal along the gliding crystallographic surfaces. Parts of each grain slip at finite

intervals throughout its volume along specific planes in specific directions, and this allows

the regular lattice structure to accommodate to the arbitrary distortion of the grain without

losing the regularity. Parts of grain between the slip lines were assumed to remain plastically

undeformed. So plastic deformation was best described not by homogeneous shearing but

rather by a series of discrete finite slips. An illustration of slip steps is shown in Figure 2.1. This

was only a reasonable assumption, left to be proved experimentally. Other observations made

in [2] considered another possible mechanism for plastic deformation in metals — twinning —

and also the time dependency of slip and irreversibility of plastic work under slip, but this was

only briefly mentioned.

2.2 Kinematics and kinetics of plastic slip

Ewing and Rosenhaim carried out their experiments before the invention of X-ray crystallog-

raphy and their assumptions, though reasonable, were only based on indirect observations. By

the 1920s X-ray diffraction was first used to determine the crystal structure of various metals
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and their conclusions were proved by direct measurements. In 1923 G. I. Taylor and C. F.

Elam used the new advances in technology to develop those results further and published a

preliminary study [3] and a more detailed article [4].

Advances in metallurgy made it possible to produce single crystals of aluminium instead

of usual crystal aggregates and machine them into specimens. Markings on the sides of spec-

imens allowed the measurement of deformations and X-ray spectrometry allowed measuring

the orientation of crystallographic planes. Then the specimens were subjected to uniaxial ten-

sion. Force measurements in combination with X-ray spectrometry and markings’ tracking

revealed the connection between the stress, the specimen distortion and the orientations of the

crystallographic planes.

One of the first observations was made about the preservation of cubic symmetry of the

crystal during the whole deformation process up to fracture. Taylor made a conclusion that

this must mean that the atoms of the lattice can only move in finite steps proportional to lattice

spacing.

The measurements showed that the plastic deformation of the specimens could indeed be

represented by shearing. The total displacement consisted of shear strains in the lattice and

rotations of the lattice. In this process some planes in the lattice were distorted and some

remained undistorted. The orientations of these undistorted planes were found from the defor-

mation measurements and after comparing their positions with the X-ray spectrometry results,

these planes were identified as the family of octahedral {111} planes. The aforementioned slip

was always happening on these planes. The direction of slip was identified as one of the 〈110〉
directions. The accurate correspondence between the planes found by two different methods

confirmed the idea of plastic deformation as slip on specific crystallographic planes in specific

directions. The combination of plane and direction was called slip system. The {111}〈110〉
slip systems are shown in Figure 2.2.

When the total stress was decomposed and the shear component, lying in each slip plane

along the corresponding slip direction (called resolved shear stress), was found for all slip sys-

tems, it turned out to be highest for the slip system that was actually slipping (the active one),

and was correspondingly lower for the inactive slip systems. Rotation of the crystal accom-

modating this shearing mode of deformation to the uniaxial elongation of the specimen was

observed. It rotated in such a way that the resolved shear stress on the active system increased.

On the other hand the resolved shear stress increased independent of rotations because of the
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Figure 2.2: A schematic lattice cell of an FCC crystal with one of the possible {111} slip planes

and possible 〈110〉 directions forming one of 12 possible slip systems [5].

hardening on this slip system (the self-hardening). Taylor assumed that all slip systems in the

crystal harden at the same rate even if only one of them is actually slipping. Hardening of

non-active systems was called latent hardening. If it was so, the crystal was expected to rotate

in slip towards a certain orientation, at which the resolved shear stresses on two slip systems

would become equal. Then the slip on a second (conjugate) system would also start and double

slip would be observed. The rotation of the crystal would stop as the two rotations, from each

of the slips, would be equal and cancel each other. But instead the crystal continued to rotate in

single slip beyond this direction (this behaviour was named "overshoot"), see Figure 2.3. The

resolved shear stress on the conjugate system was higher than the resolved shear stress on the

active system but it was not activated yet. It was an indication that latent hardening was greater

than self-hardening.

A series of experiments on single crystals was performed by E. Schmid in 1924 and pub-

lished in [6]. The experiments showed that at given conditions, for the same aluminium alloy,

the highest resolved shear stress at yield in the crystals was a constant, independent of the ori-

entation of the lattice in the specimen and which slip system it was reached on. Those results

were used to formulate a plastic criterion for metal single crystals: plastic deformation (or slip

on a slip system) starts when the resolved shear stress on one or more of the slip systems is not

lower than some value, called critical resolved shear stress (CRSS). This criterion, which was

named Schmid’s Law, became one of the foundations of the rate-independent crystal plastic-

ity theory. Both Schmid and Taylor stated that the stress components other than the resolved

shear stress did not influence the slip (although non-Schmid effects exist, it was a reasonable

assumption for the time being).

18



Figure 2.3: Projection of the tensile axis position in the lattice coordinates. The dashed line

shows the calculated rotation of axis in single slip. Dots show the measured rotation. If latent

hardening was equal to self hardening then the axis should rotate to the (121) symmetry axis

and stop, because the rotation from slips on two systems would be equal and cancel each other.

Taken from [4].
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In [4] more experiments were performed and with greater accuracy, but they only confirmed

the results from [3]. This time the crystallographic plane along which the slip would start

was predicted before the experiment. When the resolved shear stress was followed through

the process of deformation, the hardening was observed and a load-deformation curve was

obtained for the slip. Taylor used a quadratic polynomial function to approximate it. Finally

some comments about influence of hardening on the stability of plastic flow and an attempt to

formulate a fracture criterion were made.

These results were further developed theoretically by Taylor in [7]. He considered a crystal

under an arbitrary strain and attempted to develop a method for finding the slip systems which

this strain would activate and their respective slips. Taylor used the virtual work principle to

choose the active systems. First he showed, that while a strain tensor in general case has 6 in-

dependent components, for plastic deformation this number reduces to 5, because of the plastic

incompressibility. This means that from the 12 slip systems only 5 are needed to be activated

to accommodate this deformation. 792 possible combinations of 5 slip systems may be cho-

sen out of 12 slip systems. Then by some geometrical arguments he reduced the number of

combinations to choose between to 24. Later Bishop and Hill showed in [8] that a mistake was

made and the number is 92, but this mistake cancelled itself and did not affect the calculations.

Then the actual active slip systems were found numerically. The second idea originating in [7]

was the model for crystalline aggregate deformation. Taylor assumed that when a polycrystal

deforms, the local strains in all constituent crystals are the same and equal to the global strain.

He then used this assumption and the method for finding the active slip systems to construct a

load-displacement curve for an aggregate of crystals from the stress-strain curve of one slip sys-

tem. The yield stress obtained this way is the upper bound of the solution of a boundary value

problem of a polycrystal. He also used this method to calculate the rotations of the crystals

during deformation. The results were in good accordance with the experimental data.

So by the 1940s most vital components of the kinematics (slip systems, single and multiple

slip, crystal rotation and texture evolution) and kinetics of crystal plasticity (critical resolved

shear stress, self and latent hardening, choice of active slip systems, Taylor model) were for-

mulated.
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2.3 The dislocation theory

While the phenomenology of plastic slip was described, its physical mechanisms were still

unknown. Why would the crystals slip along these specific planes, how can a crystal lattice

be slipped, and what is the reason for hardening? Simple calculations showed that to shift a

perfect crystal lattice would require a stress comparable to the elastic shear modulus, which

was certainly not the case. Still some theories tried to prove that a perfect lattice must slip

easily, and hardening was explained by some irregularities which "lock" it. Taylor in [9] used a

different approach and assumed that a perfect lattice is very hard to slip, but some imperfections

in it make the necessary force much lower. The possible atomic structure of such imperfections

was proposed. As Figure 2.4 shows, this imperfection (or dislocation) may be represented as

an additional plane inserted into the lattice. As a result, instead of the stable equilibrium of

the perfect lattice, an unstable equilibrium of the new configuration arises. The dashed line in

Figure 2.4 b and e represents the atomic plane along which slip occurs. If a force (the resolved

shear stress) is applied along this line, then the unstable equilibrium is disturbed and the atom

at the end of the line will "jump" into a more stable position. This process will repeat itself until

the perfect lattice is recovered (Figure 2.4 c and f). It is obvious that this mode of deformation

will preserve the crystal structure globally. The dislocations would move through the crystal

and disappear on the boundary, leaving the whole crystal sheared. This propagation would

happen in finite time. Microscopic observations of a strained rock salt crystal showed some sort

of lines propagating through the crystal. This is mentioned as a positive evidence supporting

the theory. Taylor also tried to evaluate energies involved in the equilibrium configurations of

the atoms, though he admitted that this two-dimensional simplified picture cannot be very close

to the real crystal interior. The influence of temperature was explained, as high temperatures

would raise the energy of the atoms and help them overcome the potential barriers so reducing

the force necessary to start slipping. Similar types of crystal defects were proposed by Orowan

[10] and Polanyi [11] in the same year.

The dislocation in Figure 2.4 is not the only possible type of lattice defect. This type is

called the edge dislocation, and its characteristic is that the dislocation line is normal to the

plane of Figure 2.4 and the slip direction is in this plane. The direction and distance at which a

part of the crystal is displaced by dislocation is called the Burgers vector. Its magnitude is usu-

ally equal to the lattice spacing (a perfect lattice vector). Therefore, for the edge dislocation the

Burgers vector is normal to the dislocation line. Burgers proposed another type of dislocation
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Figure 2.4: Two types of edge dislocations, proposed by Taylor. Taken from [9].

in [12] in 1939, for which this vector is parallel to the dislocation line, a screw dislocation.

In 1907 Volterra [13] analysed how a class of finite deformations in an elastic medium

create stress-strain fields by representing any such deformation as a combination of elementary

cuts and welds of parts of the medium. This description appeared to fit perfectly for the analysis

of dislocations, where the lattice can be imagined cut, stretched and then welded back along

the line of the dislocation. Taylor used this analysis to find the elastic stress and strain fields

of a dislocation. Figure 2.4 shows two types of dislocations, called positive and negative by

Taylor. The difference is the direction of the Burgers vector. The analysis of their elastic fields

showed that dislocations will attract or repel each other depending on their "sign". Parallel

dislocations of opposite signs would cancel each other if they collide (dislocation annihilation).

Dislocations would move if a resolved shear stress is applied and also produce a stress field of

their own. Dislocations will also be produced at the crystal boundary. Taylor analysed some

simple arrangements of parallel dislocations at equilibrium and found the mean shear stress

produced. He found that a crystal with dislocations would have a finite shear strength and that

the production of dislocations would lead to hardening. Though he did not manage to verify

this theory against experimental data, he founded a field of dislocation dynamics which made

big progress later.

In the 1950 – 70s the early simplified models of Taylor were developed further. Dislocations

were found to dissociate into partial dislocations and stacking faults in some materials. Many

features of real dislocations were analysed: movement of dislocations between slip systems
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(cross slip), dislocations in elastically anisotropic medium, elastic fields of complex dislocation

arrays. Lomer [14] proposed a model for interaction of dislocations on conjugate slip planes

that would produce hardening and latent hardening. Frank and Read [15] proposed a mecha-

nism for a possible source of dislocations in a strained crystal, that could play an important role

in maintaining plastic flow.

Another important concept introduced in [16] is the geometrically necessary dislocation. If

the crystal is strained non-homogeneously (in bending or torsion), the lattice becomes plasti-

cally distorted, which would be impossible for a lattice with a sum of Burgers vectors of all

dislocations equal to zero. This distortion is made possible by a set of dislocations with non-

zero sum of Burgers vectors, which occupy a certain configuration within the crystal, so that the

stresses caused by the lattice distortion are minimized. The dislocation density associated with

this set will remain as long as this lattice distortion is present. These dislocations are thus called

"geometrically necessary dislocations" (GND) to differentiate from the "statistically stored dis-

locations", which provide the homogeneous plastic deformation. The GNDs play an important

role in the non-local crystal plasticity models [17].

2.4 Development of rate-independent crystal plasticity the-

ory

The next important development for rate-independent crystal plasticity was made by J.F.W.

Bishop and R. Hill and published in [8]. They introduced the principle of maximum plastic

work, which made finding the active slip systems for an arbitrary straining much easier. The

essence of this principle can be illustrated as follows.

The face centered cubic (FCC) crystal has 12 slip systems, for each of which a Schmid

criterion can be formulated. The Schmid criterion is an inequality |τα | ≤ τcr where τα is the

resolved shear stress on slip system α and τcr is the critical resolved shear stress assumed

identical on all slip systems. This inequality defines a hyperplane in the stress space. For an

FCC crystal there are 12 such inequalities and 24 hyperplanes. An inner envelope of these

hyperplanes forms a hyperpolyhedron, which is the yield surface of a single crystal, each facet

of the hyperpolyhedron corresponding to a slip system. As was shown in [8] plastic flow in

crystals is associated and obeys the normality rule, i.e. the plastic strain increment vector is

always normal to the yield surface. It leads to some interesting consequences. In the general
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Figure 2.5: Illustration of a projection of a single crystal yield surface (hexagonal crystal,

projection on the basal plane for simplicity). Stresses σ (1) and σ (2) will lead to the same

plastic strain, for any strain dε(3) only one stress σ (3) is necessary. Taken from [18].

case, a stress state which fulfils Schmid’s law will lie on the facet of the hyperpolyhedron and

will produce a certain plastic strain increment, normal to this facet. This situation corresponds

to single slip, in which only the slip system corresponding to this facet is activated. For some

other stress state, it will be at an edge or a vertex of a hyperpolyhedron (which corresponds

to the activation of two or more corresponding slip systems and thus multiple slip). Then the

direction of the produced plastic strain increment becomes undefined. It is only possible to

say that this direction lies between the normals to the adjacent facets at this edge or vertex (so

called cone of normals) but any direction in between is possible, because the normal at the

sharp vertex is undefined. This is illustrated in Figure 2.5.

If the deformation of the crystal is strain controlled, then in most cases its plastic strain

increment will originate in one of the vertices and its stress state will correspond to one of the

vertex stress states.

Now we look back at the problem that Taylor tried to solve in 1938. Which slip systems

will activate in an arbitrarily strained crystal and what stress will arise? Taylor compared the

problem to a problem of a non-conservative mechanical system with friction and applied the

virtual work principle. His hypothesis (which was only proven later by Bishop and Hill in [8])

was that the sum of slips in the actually active slip systems will be the least of all sums of slips
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Figure 2.6: Geometrical interpretation of Taylor and Bishop-Hill methods. a) Trying to put

the plastic strain increment in any other vertex than the actual one will lead to larger slips

dγ̃ , violate the yield condition and correspond to higher work than the actual one. b) The

given plastic strain increment can only be found within the cone of normals of the right vertex.

Putting it in the wrong vertex will correspond to a lower plastic work. Taken from [18].

of the possible slip systems. Hardening was assumed to develop similarly on all systems. He

approached this problem directly, found all combinations of slip systems which could produce

the given strain, found the sums of slips in them and chose the smallest one. As already said this

solution was so cumbersome that Taylor himself made a mistake in it. Another shortcoming

of his method was that it had not been proven that a stress could always be found to operate

any geometrically possible set of slips without exceeding the CRSS in non-active slip systems.

Bishop and Hill worked this out analytically, but their method becomes rather obvious from the

geometrical representation in Figure 2.6.

They started from two assumptions: i) the slip and the resolved shear stress have the same

direction and ii) the Schmid criterion is fulfilled (this criterion is ignored in Taylor’s method).

From this standpoint they proved that the plastic work of the actual stress corresponding to

the actual plastic strain will be larger than the plastic work from any other vertex stress. They

also showed how Taylor’s minimum shear principle could be derived from the same assump-

tions and generalized for arbitrary hardening (Taylor assumed isotropic hardening equal on all
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slip systems). Instead of minimizing the sum of slips, the plastic work should be maximized.

They also found and tabulated all vertex stresses (53 of them), so the problem of finding the

right one was greatly reduced. This model of a rate-independent polycrystal was consequently

called the Taylor-Bishop-Hill (TBH) model and it was proven later that the two approaches are

mathematically equivalent [19].

The problem which Bishop and Hill tried to solve in [8] and [20] was finding the yield

surface of a polycrystal from the single crystal properties. By this time several models of

polycrystalline aggregates were known. In [21] and [22] a model was proposed where each

grain is subjected to a uniaxial stress parallel to the specimen axis. In [23] each grain was

supposed to undergo the same extension as the specimen. All these models were criticized for

the lack of compatibility between deforming grains. The Taylor model assumed uniform strain

and thus avoided this problem but was criticized for lack of stress equilibrium between grains.

Still the Taylor model was preferred as more realistic. After developing the maximum work

principle, Bishop and Hill showed how it could be applied to the polycrystal to find its yield

surface.

In [20] the yield surface was found and compared to the von Mises, Tresca and to experi-

mental yield surfaces. The resulting yield surface lay between the von Mises and Tresca ones,

but not very close to the experiment. The stress-strain curve found with the new method was

the same as Taylor had found earlier.

In [24] the TBH model was used to analyse the texture evolution, analogously to [7]. De-

spite all the simplifications and unclear issues of the model, the general trends of tensile and

compressive textures were captured in a qualitative sense. The importance of the hardening law

and the latent hardening for texture evolution was also analysed. One of the problems of the

TBH model discussed in [24] is the ambiguity of the choice of the active slip systems, when

the critical resolved shear stress is reached on more than 5 slip systems simultaneously. This

corresponds to the vertex where 6 or 8 facets intersect on the yield surface of a crystal. In

this case a range of slip systems combinations, satisfying the maximum work principle, could

be found, which would provide the same strain but different rotations. Bishop calculated the

possible ranges of rotations in these ambiguous situations and compared them with the actual

texture evolution, but provided no means to choose a definite one.

One of the big shortcomings of the TBH model, mentioned in [24], was the lack of elas-

ticity in the crystal description. In rigid plastic crystals the stress was developing instantly at
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all slip systems, activating them simultaneously, while in reality the development of stress is

controlled by development of elastic strains and slip systems can activate consecutively. In [25]

Lin proposed a model, where elasticity was accounted for. Two main components of the model

were the elastic relation — a simple linear Hooke’s law δτ = Gδγ (where δτ is an increment

of resolved shear stress and δγ is an increment in elastic resolved shear strain) and an arbitrary

hardening law as a functional relation between resolved shear stress and sum of plastic shears.

Lin discussed how the consecutive activation of slip systems under load would proceed, how

different hardening laws would lead to different activation sequences and different grain rota-

tions (and different texture evolution as a result). The last point discussed was how elasticity

reduced the range of possible slip combinations in ambiguous cases, but still did not rule out all

of them. The isotropic elasticity of crystals in [25] was a simplification, though elastic strains

are small and this simplification is reasonable. The lattice structure of aluminium crystals leads

to elastic anisotropy. The experimental measurements of elastic moduli of aluminium were

performed in [26]. In more advanced models developed later for the finite element method, an

anisotropic elastic potential function was introduced [27].

A convenient formulation of crystal plasticity in terms of finite deformation measures was

introduced in [28]. The total deformation of the medium was described by the deformation

gradient tensor. This tensor was multiplicatively decomposed into two tensor components —

elastic and plastic.

Though the finite deformations were introduced into crystal plasticity, the TBH model was

formulated using a small strain measure not defined exactly by the authors. The validity of

the established models of crystals for an arbitrary finite strain measure was not strictly proven.

In [29], [30] and [31], R. Hill considered the most basic elastic-plastic properties of polycrys-

talline aggregates (and metals in general) from a mechanical standpoint (without delving into

thermodynamics). An arbitrary strain (and corresponding conjugate stress) was used, so that

all derivations were independent of the strain measure chosen. Quantitative description of lo-

cal stress-strain fields was not attempted. Instead a global qualitative response as the relations

between macroscopic strain and stress rates in incremental isothermal deformation was stud-

ied. A polycrystal is a heterogeneous mixture of crystals and its macroscopic properties are a

reflection of the microscopic ones. Hill wanted to reveal which features of the microstructure

are "transmitted upwards through the hierarchy of observational levels". Hill showed that if the

crystal obeys Schmid’s law, then the polycrystal’s yield surface will always be convex and the
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Figure 2.7: In rate-independent plasticity the polycrystal yield surface is the inner envelope

of all slip systems’ yield planes. When the critical shear stress is reached somewhere in the

polycrystal, all planes corresponding to the active systems must contain the current stress state,

and hence a vertex develops. Taken from [32].

plastic strain rate will be normal to it. He proved that in elastically isotropic rate-independent

crystal plasticity a vertex will form on the yield surface at the point where the stress vector

touches the yield surface (see Figure 2.7). The yield surfaces of metals found experimentally

were smooth and thus the existence of sharp vertices was doubtable. Hill though showed that

anisotropy of elasticity will smoothen the vertex.

Still in this description elastic strains were assumed small. In [33] another level of gener-

alization was applied to the plastic properties of polycrystals. Rice approached the polycrystal

as a thermodynamic system. Its inelastic behaviour is caused by different kinds of structural

rearrangements (slip, twinning, phase transformations etc.). The extent of this rearrangement

at different points of a body is described by a finite number of internal variables. Together with

stress, strain and temperature they define the state of the body (state variables). The inelastic

deformation is viewed as a sequence of constrained equilibrium states and equilibrium thermo-

dynamics is used. No restrictions were made on the finiteness of elastic or plastic deformations,

as well as rate dependency — rate-independent plasticity is a special case of this general frame-

work. Rice showed that if the rate of progression of the structural rearrangements only depends

on the current stress state through a conjugate thermodynamic force, then there exists a scalar
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potential function of the macroscopic stress state at each instant in the history of deformation.

The plastic strain rate is a gradient to this potential (in the stress space). In the rate-independent

case this reduces to the usual normality rule. Rice also showed how these results could be ap-

plied to metals, where the slip on a given system (internal variable) depends on the global stress

through the resolved shear stress (conjugate thermodynamic force). The internal variables at

separate points for this case are replaced by field-like internal variables. In [34] R. Hill and J.

R. Rice developed a more detailed model of a general rate-independent polycrystal within the

framework of both [29] and [33]. They addressed the problem of uniqueness of slip system

combination and found the condition for unique slip as a requirement to the hardening law.

It turned out that uniqueness depends on hardening rates, the stress state and the number and

orientation of active systems and is generally not guaranteed for the rate-independent model.

Hardening on different slip systems was an issue first considered in the earliest works of

Taylor. As said earlier the overshoot of the tensile axis over the symmetry position indicated

that hardening on the inactive systems was higher than on the active one. Accurate measure-

ment of the overshoot could indicate how much higher it was. This method of measuring the

latent hardening ratio (LHR) — a ratio between critical resolved shear stress on active and la-

tent systems — is the simplest one but also the most inaccurate. Another method consists in

making a big sample of single crystal, straining it in single slip, then cutting smaller samples

out of it with different tensile axis orientations (i.e. different slip systems activated in consec-

utive tensile test). This method is much more difficult and only several works were performed

in this way. The difference between the two methods also lies in strain history. In the first one

two slips are acting simultaneously and in the second one they act separately.

In [35] the second method is used. The results as summed up in [18] show that the latent

hardening is almost always higher than the self-hardening. For coplanar slip systems the LHR

was found close to 1. For other systems it varied from 1.15 to 1.4. A later and more thorough

investigation was performed in [36]. The same general trend was found, although the coplanar

systems were found to have LHR higher than 1. The development of the LHR in the course

of straining was investigated. It was found that the LHR grows quickly from 1 to some higher

value and then slowly decreases to a constant value. This was approximated with a second

order polynomial law. These and some other works are analysed by R.J. Asaro in [37]. Two

problems common for all of them mentioned by Asaro is the lack of strain rate influence and

inconsistency of results with each other (which may be due to strain rate effects).
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2.5 Rate-dependent crystal plasticity theory

Rate independence of plastic flow was a reasonable assumption, but not entirely physically

valid. The dislocation dynamics predicted some sort of rate dependency or rate sensitivity. To

characterize this sensitivity a parameter m is defined by the following relation

m ≡ ∂ lnγ̇
∂ lnτ

(2.1)

In 1981 Chiem and Duffy [38] performed accurate measurements of τ versus γ relations, cou-

pled with observations of dislocation structures with electronic microscopy. They reported

different behaviour of dislocations at different strain rates. The value of m was measured at

different strain rates, it varied between 70 and 100. They found that it tends to decrease at

larger strain rates (meaning aluminium is more strain rate sensitive at higher strain rates) but at

quasistatic loading the material behaved as rather strain rate insensitive.

It was not clear whether there is a perceptible difference between a truly rate-independent

(described by Schmid law) and rate-insensitive (described by a viscoplastic constitutive relation

but with a very low strain rate sensitivity 1
m ) material. J.R. Rice analysed the difference between

the two in [32]. He used a relation between τ and γ̇ of a slip system in the form proposed by

Hutchinson in [39]

γ̇α = γ̇0

( |τα |
τα

c

) 1
m

sgn(τα) (2.2)

where γ̇0 was a reference strain rate and τα
c was the rate-dependent analogue of the critical

shear stress value. In this relation m is equivalent to the strain rate sensitivity in Equation (2.1).

Unlike the case of Schmid’s law, a non-zero plastic strain rate is present at all stress values

different from zero, but at large m its value is negligibly small. The yield surface of such

rate-dependent single crystal would not have sharp edges or vertices, but will have smooth

transitions between the facets, the radius of the transition curves depending on m. If m ap-

proaches infinity, the radius will approach zero and the overall form will be infinitely close to

the rate-independent yield surface. Still, according to the analysis [33] the normality of plastic

flow would be present as in Schmid’s law case. This leads to several important consequences.

The rate-independent theory predicts sharp vertices on the yield surface. They were searched

experimentally ever since their prediction but were not found. They would not appear in the

rate-dependent case, even if the rate sensitivity parameter is very high. Secondly, the ambi-

guity of slip system choice disappears. Geometrically it can be illustrated by the fact that a
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normal vector can now be found at all points of the yield surface, no sharp vertex with unde-

fined normal is present. Physically it means that when the stress approaches the corner of the

yield surface, slip will gradually begin on the conjugate systems, although at a much lower

rate and slip on the primary system will start to decrease and at some point in the middle of

the yield surface’s corner it will be equal for the two systems. Another difference between

the rate-dependent and rate-independent cases is the relation between stress and strain rate: in

rate-independent theory γ̇ is a function of τ̇ while in rate-dependent theory γ̇ is a function of

τ . In [32] Rice also demonstrates that calculations with high m in rate-dependent theory give

results practically indistinguishable from the rate-independent ones for problems where both

theories can be used.

The rate-independent approach was not abandoned though and a number of attempts to

improve it were made. In numerical models in the rate-dependent case if m is high the time

step becomes very small and calculation time grows considerably. Gambin in [40] also points

out that the reference shear rate in Equation (2.2) is arbitrarily chosen.

2.6 Finite element analysis

The finite element method (FEM) is a way of solving numerically the equations of equilibrium

in a continuum using the principle of virtual work. The method can be used with any kind of

constitutive relation. In the crystal plasticity field it may be used in combination with Taylor or

any other homogenisation model or with the single crystal constitutive relation directly. When

we talk about CP-FEM (crystal plasticity finite element method) here, it is implied that the

constitutive relation of a single crystal is used in the integration points, so that each element

models a grain or part of a grain. The advantage of CP-FEM is that it naturally satisfies both

compatibility and equilibrium conditions and allows representing the stress and strain gradients

at aggregate and grain levels, unlike Taylor and other such models. It is also usually the only

way of solving problems with complex boundary conditions and loading histories. It also

allows a natural introduction of some physical phenomena and parameters into the models, like

grain boundary effects or shear bands.

The FEM was developed in the 1940s, but was not used with crystal plasticity until the

1980s. The first CP-FEM simulations utilized simplified (two dimensional, three slip systems)

crystal model by Rice [32]. In a number of articles ([41], [42], [43], [44], [27]) the FEM and
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this model were successfully used to analyse the global response and the local behaviour of

single crystals and polycrystals. In [45] a 3D aluminium crystal with all 12 slip systems was

simulated for the first time.

To accurately describe the lattice rotation and large plastic deformations the finite La-

grangian description of kinematics and kinetics was utilised. The basic formulation is the stan-

dard Taylor expansion of the virtual work principle equation about the known state. Both im-

plicit and explicit schemes may be used, depending on the given problem. In [46] the schemes

are classified into three types: implicit based on deformation gradient and implicit and explicit

based on the slip rates. In [47] an explicit scheme based on deformation gradient is proposed.

If an implicit scheme is used, then to update any parameter in the crystalline solid, the value of

slip increment Δγ(α) on the slip system α is necessary. In the aforementioned articles Δγ(α) is

found (after some derivations) from a system of linear equations (see e.g. Equation (3.10) in

[27]). For the limit m → 0 (the rate-independent case) the system becomes unsolvable for some

combinations of slips on active slip systems, while for the finite positive values of m a unique

solution may always be obtained by choosing a small enough time step.

2.7 Strain localization

2.7.1 Necking

Experimental studies of single crystals and polycrystals of metals universally show that homo-

geneous deformation (in tensile, plane strain and other tests) can only develop until a certain

limit. Then the deformation becomes non-homogeneous, with some regions of the material

sample deforming much more than the rest. Fast accumulation of plastic strains in these regions

(localization of deformation) usually leads to fracture. One type of localization is necking — a

quick reduction of thickness (in case of plates) or diameter (in case of cylindrical specimens). If

the thickness reduction region is large compared to the thickness, then necking is called diffuse;

if this region is comparable in size to the thickness it is called localized.

The first analysis of necking in uniaxial tension was performed in [48] and a simple crite-

rion was derived, which stated that necking starts when the decrease of the force because of

reduction of cross section (which reduces to accommodate for plastic incompressibility) cannot

be compensated by hardening. In any other more complex stress-strain situation than uniaxial

tension, the criterion of necking is much more difficult to derive. For sheets or plates under
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general biaxial load a number of models exist. Swift [49] derived a criterion for diffuse neck-

ing by expanding the Considère [48] approach to the biaxial stress situation. In the same year

Hill analysed localized necking in [50]. He considered discontinuities in the stress and veloc-

ity fields and the corresponding hyperbolic equations, and found that velocity discontinuities

are an idealised mathematical description of localized necking. The neck would lie along the

characteristics of the corresponding equations, which are the lines of zero rate of extension

(i.e. all straining is due to thinning of the sheet). The model had some problems, notably it

predicted no necking in biaxial stretching. To overcome these difficulties models by Marciniak

and Kuczynski [51] and Hutchinson and Neale [52] assumed that the localized necking is ini-

tiated by some kind of inhomogeneity in the sheet. To simplify the calculations they assumed

a thickness variation in a rectangular region in the sheet. The finite element method was used

with relative success to predict the initiation and orientation of localized necks, e.g. [53].

2.7.2 Shear bands

Another type of strain localization which may occur in a strained solid is a shear band. A shear

band is a narrow band or slice of a material which undergoes much stronger straining than

the surrounding material. The shear bands were commonly observed in specimens strained

until high strains before fracture. A comprehensive experimental study of the phenomenon was

performed by Price and Kelly [54]. One of the first mathematical treatments of the problem

may be found in [55] and the development of these ideas in [56].

Hill [55] analysed what he called "waves" in solids. By a wave he meant a geometric

surface in the solid across which some of the field variables are discontinuous, like the gradient

of velocity, while other variables remain continuous, like the velocity itself. Generally the fields

in a solid body can be described by a set of partial differential equations and their boundary

conditions (so called Dirichlet problem). The equations may be classified into three types [57]:

hyperbolic, parabolic and elliptic. The usual elasticity problem which has smooth solutions in

the whole domain regardless of the boundary conditions is an example of elliptic type. When,

depending on the boundary conditions, the solution allows discontinuities in some fields, like in

the wave propagation problem, it becomes hyperbolic. Hill analysed a solid with a generalized

relation between the stress rate and strain rate expressed by an instantaneous modulus (which

he assumed symmetric) and normality in plastic deformation. He showed that under some

conditions the elliptic solution for this solid’s Dirichlet problem may become hyperbolic. He
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then showed that a stationary discontinuity of the velocity gradient may exist and identified it

as a mathematical description of a shear band. The initiation of the shear band (transition from

elliptic to hyperbolic solution) and its orientation is defined by the equation system

(niLi jklnl)gk = 0 (2.3)

where Li jkl is the material modulus, ni is the normal unit vector to the shear band plane and

gk is a vector defining the jump in corresponding field quantity across the shear band border.

A non-trivial solution of this equation corresponds to the transition into the hyperbolic regime

and the appearance of a shear band. This solution exists if the determinant of niLi jklnl is equal

to zero:

det(niLi jklnl) = 0 (2.4)

The initiation of necking is in a way similar to the initiation of a shear band, but in the case of

necking the initiation conditions depend on the geometry of the body and boundary constraints.

The shear bands may initiate even in a part of the body with all around boundary conditions that

prevent other types of localization. Its initiation only depends on the history of field quantities

in the body. Thus the shear band formation is a material instability and necking is a geometrical

one (though for some problems the border is not so clear, see [58]).

In [56] Rice used the results of Hill to analyse a number of common constitutive relations

including the crystal plasticity model. The common conclusion was that the materials with

positive hardening, smooth yield surface and normality are very resistant to the formation of

shear bands and bands form when the hardening rate drops to or below zero or the stress reaches

values of the order of the elastic modulus. For the crystals, some deviation from the Schmid

law (normality) was promoting shear band formation at much more realistic conditions. Other

factors promoting shear band formation include the yield surface vertices [53], void nucleation

and growth [58] and other softening mechanisms and geometrical imperfections. The analysis

by Hill and Rice was limited to the rate-independent case. The rate-dependent extension in

[58] shows that rate-dependent materials are even more resistant to shear band formation and

no loss of ellipticity is possible in Equation (2.3), but the imperfections may cause a transition

to the shear band regime anyway.

In [59] Asaro considered another trigger for shear band formation — geometrical softening.

It was mentioned above that, as a result of accommodation of shearing along the slip systems

to the boundary conditions of the solid, the slip systems tend to rotate from the original orien-

tations. Asaro used a two-dimensional simplified model of a crystal with three slip systems in
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single/double slip with consideration of slip system kinematics and found that a slip system in

tension or compression situation may rotate in such a way that the resolved shear stress on it

will increase for just this geometrical reason alone. Despite the fact that the physical hardening

rate on slip systems at any point of the system will remain positive, the effect of these rotations

may be so large that the total load on the body will decrease as if it softened. This softening

may be the vital factor for the band formation.

Several works used this idea to try and simulate the shear band formation numerically.

In [41] a rate-independent single crystal model was used, while [42] and [27] used a rate-

dependent model and [44] used compression instead of tension. The rate-independent model as

usual proved a limited usefulness and provided no solution for higher latent hardening and slip

on several slip systems. The rate-dependent model, even approaching the rate-independent case

with high values of m, gave solutions for all cases. The difference between the two was that the

shear bands in the rate-dependent case formed later in the strain history. The experimental ob-

servations were in good agreement with the results of the finite element simulations. Influence

of different factors on the formation and characteristics of the shear bands was studied. Mostly

the bands were either early and sharp, linear in form (for the alloys with lower hardening rate

and ductility), or formed later, more diffuse and could be rather curved, especially near the

interfaces (for the softer alloys with higher hardening rate).

The geometrical softening predicted a certain structure of the shear bands. This structure

was observed both in the experiments and the simulations, thus supporting this idea. The

band was a narrow region where the lattice orientation was rotated several degrees relative

to the surrounding lattice in such a direction that the resolved shear stress on the active slip

systems was higher. The band itself was not aligned with any of the slip systems, but was

close in orientation to the one with the highest resolved shear stress. The material inside the

band was heavily deformed, with strains reaching over 1, but still positively hardening. These

geometrical features were at least qualitatively reproduced in the simulations. Certainly some

features of the bands could not be reproduced. The formation of shear bands was preceded

by the formation of so-called coarse slip bands, which then would coalesce into shear bands

and the shear bands themselves consisted of thin layers with varying strain. The finite element

model of shear band development was limited by the size of the elements. The shape of the

elements and the density of the mesh had to be specially tuned to promote shear banding, and

the breadth of the band was usually one element (it could not naturally be smaller).
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Recently the hardening models utilizing GND density and plastic strain gradients as pa-

rameters were used in localization process simulations in [60]. The results did not differ much

from the results of simulations with phenomenological hardening models.

2.8 Polycrystal models

2.8.1 General remarks

Metallic alloys are aggregates of a large number of single crystals which grew in similar con-

ditions and are usually assumed to have similar properties. The properties of an alloy will be

defined by the properties of these crystals (grains) but also by how these grains are arranged to

form this alloy. The size and shape of constituent grains is called the morphology of the alloy

and depends on crystal growth and processing conditions, i.e. the thermomechanical history

of the sample. The crystal lattice within each grain will be oriented in some way relative to

the reference coordinate system connected to the alloy sample. The grain may be defined as a

domain within the sample where the lattice orientation remains approximately constant. The

grain boundary is the surface across which the lattice orientation makes a significant jump.

Some smaller variations of orientations within grains are possible, see [61]. The texture of a

polycrystal statistically describes the orientations of grains in this polycrystal. Because of a

large number of grains in any reasonable sample of aluminium, describing each individual ori-

entation is practically impossible. But if the orientations of a large enough number of grains (a

representative sample) is known, then it is assumed that in the rest of the polycrystal they have

the same statistical distribution. This is more or less true for situations where the stress-strain

history of the sample is mostly homogeneous, as in rolling, extrusion or wire drawing, but e.g.

in deep drawing the stresses and strains are not homogeneous and different parts of the sample

may have different texture evolution.

The first quantitative measurements of grain orientations in large enough samples of metals

(i.e. of textures of these metals) were performed by Decker et al. in [62] by X-ray diffrac-

tion. In [63] the use of the electron backscatter method is developed. The convenient method

of working with orientation data was pioneered by Bunge in [64]. To describe the statistical

distribution of orientations in the sample the orientation distribution function (ODF) f (Q) is

used, which defines the probability that an infinitely small volume fraction of polycrystal is

taken up by the lattice having its orientation in an infinitely small neighbourhood of orientation
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Q. To describe the orientations the Euler angles are used, which operate sequentially to rotate

the global reference system axes to the local crystal axes. The usual problem then is choosing

a limited number of orientations for a model, which will represent best the texture of the ma-

terial (the ODF). There are different ways to approach the task, like dividing the larger sets of

measured orientations into smaller sets and assigning a weight to them [65] or approximating

the ODF by a random background and several texture components with varying weights [66].

The texture of an alloy (in comparison to alloys with random distribution of orientations

which are sometimes said to have no texture) should lead to anisotropy of the plastic properties

of this alloy. Yield surfaces of single crystals are polyhedra; when combined in a non-textured

aggregate they are averaged to a smooth isotropic yield surface, but when some orientations

are more prominent than others (as in the textured aggregate) the features of the corresponding

single crystals’ yield surfaces emerge in the aggregate’s yield surface. Crystal plasticity can

capture these features. In [67] such calculations were performed and compared with experi-

mental observations. Although for part of them the correspondence was found very good, for

others it was not. Another possible source of anisotropy is the grain morphology. In many

cases after extrusion, compression or rolling the grains tend to be elongated along one of the

axes. In [68] the Taylor model is used together with the Hall-Petch relation [69] [70] to account

for the grain shape in texture evolution under straining. In [71] the influence of grain shape in

a polycrystal is studied by three different models and is found rather noticeable. In [72] it is

shown how the columnar grain shape can strongly influence the plastic strain ratio and how this

can be modelled by considering the geometrically necessary dislocation density.

Another possible source of anisotropy of a polycrystal is the dislocation structures that form

in grains during the straining history prior to testing. In [73] a model is developed where the

dislocation structures inside a grain (geometrically necessary boundaries) which may have dif-

ferent orientations in the material, are used in a Hall-Petch like relation to find the CRSS in

different directions. In [74] a model is developed which incorporates both texture and intra-

granular dislocation structure evolution into the usual rate-dependent crystal plasticity model.

The slip hardening is most commonly described by a convenient phenomenological func-

tion, like e.g. the Voce law [75]. This approach provided many results but incorporating the

size and load path effects is not very convenient. On the other hand, physically based models

which use the dislocation population as the main characteristic of the material do this incorpo-

ration naturally, like [76], where CRSS and slip rates are found from the dislocation densities
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and these densities are the parameters evolving during the loading history. The basis for these

models was developed in [77] and [78]. The statistically stored dislocation density evolution

was expressed by a simple differential equation, integration of which gave a law similar to the

Voce law. In both phenomenological and dislocation based models the stress-strain history in a

point of a solid is defined by the evolution of parameters in this point. These models are called

local. It was mentioned that heterogeneous plastic strain leads to emergence of geometrically

necessary dislocations. Increase in their density may lead to pile-ups of mobile dislocations and

increased slip resistance. Usually the plastic deformation in a polycrystal is non-homogeneous

near grain boundaries, and if the grain size is decreased, the volume fraction of heterogeneous

plastic strain increases, influencing the response of the polycrystal considerably. If a model is

supposed to take these effects into account, it must include the numerical value of inhomogene-

ity of plastic strain, i.e. the plastic strain gradient. To calculate a gradient, it is necessary to

know the plastic strain in points neighbouring the one under consideration, so the stress-strain

history in a point is defined not only by the evolution of parameters in this point, but also by its

neighbourhood. Thus these models are called non-local. Application of these concepts to the

crystal plasticity framework in [79] or [80] allows to reproduce some length scale effects but is

computationally costly.

Aluminium alloys contain other components (usually magnesium and silicon), making them

in principle multiphase systems. These components (phases) may be present in different forms:

solid solution or particles (precipitates) of different coherency. The size, form, orientation and

spacing of these particles may influence considerably the plastic properties of the alloy, like ini-

tial yield stress, anisotropy of plastic flow and hardening. In [81] some of these influences are

investigated with a focus on the kinematic hardening and the physical explanation of the precip-

itate hardening mechanism. The precipitates harden the alloy and may cause Bauschinger effect

not observed in pure aluminium; if the configuration is right they may reduce the anisotropy

of the alloy caused by texture [82], [83]. These effects may be modelled in different ways.

A theory where the precipitates are treated as elastic inclusions, based on [84], determines the

backstresses which arise due to different elastic properties of the precipitate and the matrix [82],

[85]. For higher stresses and strains in the precipitates the plastic inclusion theory, that treats the

precipitates as plastically deforming, is more accurate. Since 1948 and Orowan’s expression for

a dislocation overcoming a particle obstacle [86] models accounting for precipitate-dislocation

interactions were proposed and tested, [87] and [88].
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2.8.2 Taylor-type polycrystal model

If the texture of a polycrystal is not random, some grain orientations will be more prominent

than others, and it will ultimately lead to the anisotropy of the plastic properties of the poly-

crystal. Single crystals rotate under plastic strains as explained above, so the rotations of grains

under plastic loading will lead to texture evolution. The models of polycrystals, which use the

properties of single crystals, texture and morphology as input and predict the plastic anisotropy

and the texture evolution, were developed early on. In [7] Taylor suggested a model where it

is assumed that all grains undergo the same homogeneous strain as the sample. The stresses

for each grain would also be homogeneous within the grain and found from resolved shear

stresses on active systems. The total stress in the sample is then found as a volume average of

the stresses in the grains.

Relaxed Taylor models While in the real polycrystal the grains interact and become both

compatible and in stress equilibrium, the original Taylor model (also called Full Constraint

(FC) Taylor model) ignored half of the process. It seemed that by sacrificing some aspects of

compatibility, some equilibrium could be established and the predictions of the theory will be

closer to the experiment. These types of polycrystal models are called the Relaxed Constraint

(RC) models.

Honeff and Mecking in [89] proposed a model for alloys with elongated flat grains (lath

type) and flat grains with breadth and width of comparable magnitude (pancake type) which

are typical for rolling. For lath type, one of the shear strain rate components was not forced onto

the grain (relaxed) and for the pancake type two of the shear strain rates (both of which did not

distort the plane of the pancake) were relaxed. This means that these components in the global

strain rate tensor and the local one were different. Van Houtte in [90] analyses the equations for

slip rates in the grain in this case and shows that it is equivalent to introducing another virtual

slip system, the critical resolved shear stress for which is usually chosen to be zero. This virtual

slip system will always be active and take on one of the 5 independent components of the strain

rate tensor, and only 4 real slip systems will be active in lath grains (in case of pancake grains

it will be two virtual slip systems and 3 active real slip systems). Then he shows that this kind

of relaxation implies a stress condition and the stress tensor components corresponding to the

relaxed strain rate components will be zero (and consequently in equilibrium).

In [91] this type of model is developed further. The grain is divided into zones as shown
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Figure 2.8: The pancake type grain is divided into three zones, where different number of strain

rates are relaxed. Taken from [91].

in Figure 2.8, so that the corners (5) are fully strained, the sides (4) are relaxed once (have one

virtual slip system) and the center (3) is relaxed twice (has two virtual slip systems). The lath

model is similar but consists only of the 4 and 5 type zones. The modified model can also be

used for equiaxed grains under rolling or tension, then the FC Taylor model is used up to some

strain and is gradually replaced by the RC Taylor model. This approach had some advantages.

The predictions for texture evolution were somewhat improved compared to the FC Taylor

model. The grain morphology and its evolution also became a part of the model. But the

shortcoming were also considerable. The results were not much better than the ones obtained

with the FC Taylor model, and the model was limited to rolled/stretched cases of morphology.

The strict compatibility of grain deformations from the FC Taylor model was lost. It could be

tolerable if the average incompatibility in the polycrystal would be zero, but it was so only for

a special case of textures with symmetry around the normal direction.

An attempt to overcome the shortcomings of the first RC Taylor models was made in [92].

The suggested LAMEL model is also specific for rolling and flat elongated grains, but the

method is rather different. Instead of one grain as in the previous RC Taylor model, two brick-

formed grains stacked on one another lying along the rolling direction are considered, so that

they have one common boundary plane. The orientations for these grains are chosen at random

from the ODF data. Then two shear components (which do not lie in the interface plane) are

allowed to deviate from the global shear, in such a way that they are equal but have opposite

sign. This automatically leads to zero volume average of these relaxed shears, incompatible

with the other grains, and equality of volume average of all local strain rates and global strain
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rate. The same additional slip system formalism may be used to construct the equations and

find the slip rates. This time the shear stresses on the interface are also in equilibrium but they

are not zero. The LAMEL model allows some more accurate predictions of rolling textures but

is limited to the rolling case.

A more general model called GIA (grain interaction) was suggested in [93]. Instead of 2, a

cluster of 8 brick shaped grains is considered, with 12 interfaces between them. Thus, a total

of 24 shears in all grains are relaxed. The method is then similar to the LAMEL model, but

to keep the misfits of strain rates on inner interfaces and outer boundaries with the rest of the

polycrystal within reasonable limits, a penalty factor is introduced into the equations.

All these models assume homogeneous stress and strain inside the grains, which is not

true in real polycrystals. Also the boundaries between the grains in the cluster in the LAMEL

and GIA models and the outer grains are treated differently. The model called ALAMEL

(advanced LAMEL) [90] assumes a different approach. Instead of using grain centres as the

sampling points for stress and strain it uses the boundary between two neighbouring grains

and the regions of grain adjacent to the boundary as a basic unit for homogenisation. The

orientations of grains are taken from the ODF and the orientation of the grain boundary is

found from the microscopy data on grain morphology. Then the process similar to LAMEL is

used on them to find slip rates and stresses. The stresses must be in equilibrium on the boundary

and the average strain rate of the regions equal to the global strain rate. The orientations after

deformation are taken in the regions to construct the deformed texture. The ALAMEL model is

generally applicable and showed rather good results. It is also more physically feasible than the

FC Taylor model by allowing the jumps in strain rate between grains while keeping equilibrium

and compatibility.

2.8.3 Self consistent models

In the self consistent approach each grain is viewed as an ellipsoid surrounded by an elastic-

plastic medium, subjected to an external strain history. Then the stress and strain in the grain are

calculated from these conditions. The elastic-plastic properties of the medium are in their turn

found by averaging the response of all the grains, thus it is called self consistent. The method

is based on the work by Eshelby [84] on ellipsoidal inclusions into the elastic medium, which

showed that strains in the ellipsoid may be assumed homogeneous and found in an easy and

convenient way. Then Hill [94] developed the formulation in the plastic domain. It was further
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improved to include rate dependence and finite deformations in [95]. The results obtained by

this approach in plastic anisotropy and texture evolution predictions are sometimes better than

those from the FC Taylor model.

2.8.4 Finite element polycrystal modeling

Most of what was said about single crystal FEM simulations is also valid for polycrystals.

There are also some special features. Now the domain consists of a number of grains with a

specific morphology, so a number of approaches may be utilized to model them. If only the

global response is of interest and some simpler hardening laws are used, then the grains may

be represented by cubes, truncated octahedra etc. (or in 2D by regular polygons) and meshed

by hexahedral elements. If the morphology should be represented more accurately, then grains

are represented by polyhedra (generated as a Voronoi tessellation) and tetrahedral elements

may be used, so that the grain boundary is flat and coincide with the element boundary — or

smaller hexahedral elements may be used, but the grain boundary is not represented realistically

in this case. The influence of element shape and mesh density on the solution, particularly

in the localization problems are studied in [96],[97], [98] and [99]. The results show that

hexahedral (brick) elements exhibit better performance than tetrahedra, the element size is a

defining parameter in the shear banding process, the local stress-strain gradients are sensitive

to the element type and size but the global stress-strain response is not.

2.8.5 Texture evolution modelling

The rotation of a single crystal in the course of plastic deformation by slip was described

above. The grains in the polycrystal are also constrained by the neighbouring grains and the

global boundary conditions, and rotate to accommodate their deformation thus changing the

texture. As the texture is a major source of plastic anisotropy, predicting the texture evolution

during different loading histories is one of the important tasks of CP theory. The first attempts

were made with the FC Taylor model and a limited number of evenly distributed grain ori-

entations [43]. This approach was developed in [100] and [101]. The FC Taylor model and

rate-dependent crystal plasticity with a phenomenological hardening law were utilized on a

set of several hundred orientations, first randomly distributed and then arranged to represent a

texture of a processed alloy (rolled or compressed). The results were compared to the experi-
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mental textures. In qualitative sense the predictions were mostly right, but it was noticed that

the textures predicted by the FC Taylor model were sharper than the experimental ones (the

peak intensities of major texture components were over-predicted) and some weaker and less

stable components of the real texture did not appear in the simulations.

The direct finite element modelling of grains was also attempted. In [102] the results from

an FC Taylor type model and an FE model, where each element represented one grain, were

compared and showed CP-FEM superiority even with this coarse simplified mesh. The fac-

tor that prevented CP-FEM from wider use was the high computational cost of the method,

which increased drastically for larger and more detailed polycrystal models. For this reason the

other variations of the Taylor model were still developed, despite the shortcomings of such ho-

mogenisation methods. In [103] different CP-FEM meshes representing the same polycrystal

were compared in performance with the FC Taylor model of this polycrystal. Higher resolution

meshes performed better as expected and the 3D meshes gave texture evolution closer to the ex-

perimental one than the 2D meshes. The study of the deformation throughout the mesh showed

that unlike the FC Taylor model, CP-FEM of appropriate resolution always produced strain

gradients, which arise as a result of grains adapting to each others deformation. An important

difference was the emergence of the shear component of the deformation in some grains while

the total deformation did not include shear. This shearing in some grains lead to the develop-

ment of secondary texture components. These components could not be captured in the Taylor

model at all.

In [97] the influence of mesh resolution was studied more in-depth, by making detailed

models of a polycrystal with each grain divided into almost 200 elements. Large number of el-

ements inside each grain allowed for inhomogeneous rotations of the lattice in the grains. Dif-

ferent areas rotated differently, depending on their local boundary conditions and formed cells

with misorientations smaller than those between different grains, but large enough to improve

the obtained deformation textures. In [90] and [104] predictions from different CP models are

again compared to the experimental textures. The authors point towards another possible dif-

ference between the Taylor type models and CP-FEM — the grains with the same orientations

but different surrounding grains will experience different stress-strain history and rotate differ-

ently. Another notable result is that the relaxed Taylor models showed the worst results of all

tested models. Despite some success, overall the predictions of texture evolution made by any

model are still not accurate and reliable enough to be really quantitative predictions.
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2.8.6 Shear bands in polycrystals

Most of what has been said about the mechanisms and processes of shear banding in single

crystals is true also for polycrystals. The rotation of grains during plastic deformation leads

to increased resolved shear stress on some slip systems and overall softening of the grain for

shearing. Shear bands develop in some favourably oriented grains and propagate through the

grain boundaries into the neighbouring grains. Rotation of neighbouring grains may reduce

misorientation between them and make the band propagation easier. The term "geometrical

softening" for single crystals is somewhat analogous to the "textural softening" of polycrystals.

Under loading the texture may evolve in such a way that the Taylor factor (see e.g. [8] for the

definition) for this polycrystal decreases, thus reducing the total force.

Numerical studies of localisation in polycrystals were started with phenomenological ma-

terial models [53]. As soon as crystal plasticity was introduced into simulations in the 1980s

it was used to study the localisation processes in [44]. The polycrystal was modelled as a 2D

set of regular polygons. Random orientations were used and formation of bands of high strain

were observed in the simulations. A similar investigation was performed in [105]. In these early

works the number of grains was limited and the elements used were usually triangles combined

into quadrilaterals, which were introduced in [53] and chosen for their ability to represent well

shear along diagonals. The elements were usually oriented in such a way as to promote the

anticipated shear band. In [106] the influence of element type and mesh density on the shear

band formation was investigated. Triangular and rectangular elements of different order and

integration type were tested. It was shown that triangular elements of lower order may even

prevent the band formation, while no such problems were encountered while using quadrilat-

erals. An improvement over the older simulations was the use of Voronoi tesselation to create

realistic irregular shaped grains. The influence of other parameters, like rate sensitivity, were

also investigated.

In [107] and [108] the FC Taylor model was used to model thin polycrystalline sheets

instead of modelling grains. Although the conditions for propagation of shear bands in such

approach is quite different from direct grain modelling, the results agreed reasonably well with

CP-FEM simulations and experimental data.

The influence of texture of a polycrystal on the development of the shear bands in it was

investigated in [109]. A Taylor type model was also used, but this time each integration point

was assigned 8 orientations, so that the material as a whole represented statistically the texture
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and was heterogeneous. Different textures gave different patterns of shear bands and cube

texture enhanced resistance to shear localization.

The more advanced hardening theory based on GND densities and plastic strain gradients

was applied to the localization problem in uniaxial tension in [110]. The influence of differ-

ent mesh configurations was studied. The model gave mostly the same results as the simpler

phenomenological models.

2.8.7 Texture gradients

A homogeneous texture throughout a sample is often a simplification. In processes such as

rolling and extrusion, the boundary conditions lead to inhomogeneous strains and as a result to

variation of the texture. The texture often has one strongest component at the surface, which

gradually changes to another component at the center, so this variation is called the texture

gradient. In [111] and [112] the texture gradients are measured in rolled sheets. The Taylor

type simulations of rolling gave a reasonably good correspondence with the measurements. In

[113] the influence of different parameters of the rolling process on the evolution of texture and

texture gradient was studied. In [114] a method of representing the texture gradient through the

thickness of a sheet by interpolation functions was developed.

The influence of texture gradients on yield surfaces and forming limit diagrams of alu-

minium alloys is studied in [115]. The Taylor type model is used to find the yield surfaces of

different layers in an aluminium sheet, with a specific focus on the vertex like shapes on the

surfaces. The experimental data has a large spread and the results are not conclusive, though

some influence of the texture gradient was observed. In [116] strain localization in the sheets

with through thickness texture gradient is simulated. Both the FC Taylor model and a CP-FEM

model with regular quadrilateral grains are used. The results are compared to the results ob-

tained for the homogeneous texture distribution. For the homogeneous texture the bands were

multiple and similar in intensity. In contrast, when the models with texture gradient were used,

the FC Taylor type model produced two bands, with a main band and a weaker secondary band.

In case of the CP-FEM model only one band was observed. The strong texture gradient clearly

influences the properties of the aluminium sheets but this influence is not highlighted in existing

literature.
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2.9 Phenomenological plasticity models

The phenomenological plasticity models are used in parts of this thesis, so a brief review of

this area is necessary. Before the crystalline nature of metals and the physical mechanism of

their plastic deformation became known, plasticity was studied and described by constructing

some constitutive equations, that connected stress and plastic strains. The phenomenological

plasticity models include a yield function, which defines the stress state at which the plastic

deformation starts, a flow rule, which defines the direction of the plastic flow, and the hardening

rule, which defines the evolution of the flow stress. For metals the associated flow rule is usually

assumed, which means that the plastic strains are normal to the yield surface in the stress space.

The hardening rule is usually chosen out of convenience. Therefore the yield functions will be

mostly discussed further.

The yield function is some norm of the stress tensor (usually the deviatoric stress tensor,

as the hydrostatic pressure does not affect the plastic flow in metals [117]), which turns it into

a scalar stress. Tresca proposed the first yield function in the middle of the 19th century. He

assumed that the yield starts as the maximum shear stress reaches a critical value. Later von

Mises proposed a quadratic form, which is until now the most popular yield function. This

function was generalised to a non-quadratic form in [118] and [119]. It was shown that the

exponent of the yield function depends on the crystalline structure of the metal, being 8 for

FCC and 6 for BCC metals. Hill proposed a generalisation of the von Mises function which

made it suitable for plastically anisotropic materials in [120]. It was further generalized by

making it non-quadratic and adding other terms in [121] and [122]. The Hershey’s isotropic

yield function was adapted for anisotropic plasticity by Barlat and co-authors in the YLD series

of yield functions [123], [124] and by Banabic et al. in BBC series of functions [125], [126].

Karafillis and Boyce proposed a way to account for anisotropy by a linear transformation

of the deviatoric stress tensor in [127]. A class of yield functions based on this linear transfor-

mation was developed by Barlat et al in [128] and [129].

These phenomenological functions are very flexible and can describe all sorts of plastic

behaviour but at a price of a large number of experimental tests, necessary to properly calibrate

them. Some of the tests could be replaced by the crystal plasticity simulations, as discussed in

[130], [131], [132] and [133].
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Chapter 3

Summary and remarks

3.1 Summary

The topic of the present thesis is the plastic properties of aluminium alloys, specifically the

6000 series, and the numerical models which describe these properties. The aspects of the plas-

tic behaviour studied in this work are the yield and work hardening, flow stress and plastic flow

anisotropy and their connection with the material’s microstructure and the influence of these

features on strain localisation in diffuse necking. The numerical models include anisotropic

phenomenological plasticity models and crystal plasticity models with various slip system

hardening rules, implemented as user subroutines in the finite element simulations. The ex-

perimental data is obtained from uniaxial tensile tests on cylindrical specimens. The accurate

measurement of diameters of the specimen in two directions, appropriately coinciding with the

local axes of material symmetry, allowed to estimate the average true stress in the post-necking

regime and the development of the plastic strain anisotropy. Consequently, the application of

the phenomenological and the crystal plasticity models to the anisotropic AA6000 alloys with

strong crystallographic textures at large plastic strains was tested in different contexts in all the

included articles.

Article 1 deals with estimating the equivalent stress-strain curve of the corresponding alloy

from the data provided by this experimental set-up. The true stress-strain curve may be calcu-

lated easily from the measurement results, if the cross section of the specimen is assumed to

remain elliptical at all times. This is a reasonable assumptions for a material with an orthotropic

symmetry. But this true stress will include a considerable contribution of a triaxial stress field,

that arises in the neck of the specimen. This field is due to the geometrical constraint of the
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specimen, as well as the material properties. The work-hardening of the material itself, es-

pecially in the large strain range after necking, is therefore very difficult to estimate from the

true stress-strain data. The existing analytical solutions assume an isotropic material. In the

present case, a number of specimens was produced from AA6060 and AA6082 alloys with dif-

ferent heat treatments, corresponding to T4, T6, T6x, T7 and O tempers. The microstructures

of the two alloys were investigated and their crystallographic textures were procured. Both

alloys were found to possess a strong texture, which indicates a yield surface different from an

isotropic one. The texture data was used to obtain the anisotropic yield surfaces, used in the

anisotropic phenomenological yield surface Yld2004-18p [128]. This plasticity model, imple-

mented in a FEM code in previous work, was used to simulate the uniaxial tensile tests. The

true stress-strain curve from the simulation contains the contributions from the material model

(equivalent stress-strain curve) and the geometrical constraint of the neck (triaxial stress field).

An optimization program used the work-hardening parameters of the equivalent stress-strain

curve as variables and the difference between the simulated and experimental true stress-strain

curve as residual that needs to be minimized. This allowed obtaining the work-hardening model

parameters (equivalent stress-strain curve) for all the tested alloy and heat treatment combina-

tions. The validity of these results depends on the accuracy of the FEM model in describing

the stress-strain fields in the specimen, especially in the necking zone. The same optimisation

procedure was performed with the same experimental data and an isotropic J2 plasticity model.

The comparison showed that the material anisotropy noticeably influences the stress and work-

hardening rate determined in the optimisation procedure. The yield surface estimated with the

crystal plasticity theory was evaluated by comparing the strains in the directions normal to

the tensile direction (the plastic strain ratio) in the simulation and the experiment. They were

found reasonably similar and quite different from unity (which was the case for the isotropic

material).

This experimental-numerical procedure was used in Article 2, 3 and 4 as well. In case of

Article 2, the same results from Article 1 were used as the experimental basis. Article 2 deals

with an existing nanoscale model, which uses the information about the chemical composition

of the alloy and its heat treatment to predict its yield strength and work-hardening. It uses

the dislocation density in the crystals of the alloy as the hardening parameter and predicts

its evolution depending on the solid solution concentration and precipitate particles size and

average distance. The transition from the local crystal level to the global level is made in a very
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simplified way, by using the Taylor factor, and the model was calibrated and tested on the non-

textured alloys only. In Article 2 it is proposed to make the local-global transition more realistic

by using a crystal plasticity model. The new formulation automatically includes the texture and

texture evolution influence on the yield and work-hardening properties of the alloy in case of an

arbitrary crystallographic texture. The proposed crystal plasticity model also uses dislocation

density as the work-hardening parameter on slip system level and includes the hardening caused

by the precipitate particles via the characteristic distance between them. The full constraint

Taylor model is used as the homogenisation method. The textured AA6060 and AA6082 alloys

in different tempers from Article 1 were used as a case study. Their precipitation particle and

solid solution content were predicted by the precipitate model and used together with their

texture data to find their yield stress and equivalent stress-strain curves. The results showed

that the texture has a noticeable influence on the yield stress and initial work-hardening rate

and texture evolution has some influence on the work-hardening rates at large plastic strains.

But the stress-strain curves obtained with the new method were only marginally closer to the

experimental ones. The influence of the precipitation model was found to be much stronger

than the influence of the crystallographic texture.

Article 5 from the Appendix contains some preliminary studies of the concepts, that were

later extensively examined in Article 3. Article 3 uses alloy AA6060 in T4 temper again, but

in this study the axes of the tensile specimens, cut from the extruded profile, are oriented in

different directions: from 0◦ to 90◦ at 22.5◦ intervals. The procedures developed in Article 1

are applied to these specimens and consequently the equivalent stress-strain curves until frac-

ture are obtained for this material in different material directions. The results reveal that the

anisotropy of the flow stress and the plastic flow for this material evolves considerably during

the deformation. The test is modelled by the FEM with the crystal plasticity material model.

Besides a phenomenological slip system hardening model (Voce), a class of work-hardening

models that use the dislocation densities on the slip systems as the hardening parameter was

used. These models describe the latent hardening using an interaction matrix, which is phys-

ically the relative strength of interaction between the dislocations on different slip systems.

Finding the correct values of this matrix is a long-standing problem in material science. A

number of values were found for it by different experimental and numerical methods. In Ar-

ticle 3 some typical values are evaluated for this particular test type (uniaxial tension). It is

demonstrated that the values of the interaction matrix affect some features of the evolving plas-
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tic anisotropy and have even stronger effect on the local behaviour of the constituent crystals.

Some other features of the plastic anisotropy could not be reproduced by the crystal plasticity

model, namely the higher yield stress and hardening rate in 0◦ direction. It could nevertheless

be reproduced if the initial dislocation density was assumed to be different on different slip

systems and if certain values of the interaction matrix were used. While estimating the values

of the interaction matrix from this sort of experimental data does not seem feasible, it could be

used to evaluate the values found by other methods.

Article 4 once again uses the experimental and numerical set-up from Article 1, but this

time on another AA6060 alloys in cast and homogenised and extruded states. The specimens

this time are either smooth as in Articles 1 and 3 or notched, with a 2 mm or 0.8 mm notch

radius. The extruded material is particularly interesting, because it demonstrates an extremely

sharp cube texture under the EBSD investigation and unusual rhomboid shapes of the fracture

surfaces of the notched specimens and almost rectangular shape of the fracture surfaces of the

smooth specimens. The cast and homogenised material demonstrates the circular fracture sur-

faces, typical for an plastically isotropic material. The procedures described in Article 1 are

used again to obtain the hardening parameters of the materials, though in this case the non-

elliptic cross-section of the extruded material specimens is likely to introduce an error. Crystal

plasticity and anisotropic phenomenological plasticity models were used with the same FEM

mesh to model the tensile tests. Unlike Articles 1–3, where crystal plasticity was used with a

representative volume element, the mesh used in crystal plasticity simulations in Article 4 was

based on realistic specimen geometry, with the average size of the grain in the model approxi-

mately equal to the average size of the grain in the tested alloy. For the cast and homogenized

material the results were similar: both plasticity models and specimen geometries produced

the same circular cross sections, as expected, and the force-displacement was predicted ac-

curately by both models as well. For the extruded material the results were more varied. The

phenomenological model failed to predict the unusual cross section shapes of the notched spec-

imens, while the crystal plasticity succeeded in this. For the smooth specimens the results were

less conclusive, both phenomenological and crystal plasticity models captured some features

of the experimental cross-section but failed at others. The force-displacement predictions were

off for both models, probably due to the error in the material parameters identification intro-

duced by the non-elliptic shape of the cross sections. The results demonstrated that in some

cases only a combination of a physically based material model (crystal plasticity) and a realistic
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geometry and boundary conditions (leading to an accurate description of the stress-strain field)

can reproduce the experimental results.

3.2 Suggestions for future work

• A number of simplifications were made in Article 1, that could introduce some error

(most likely insignificant) in the results. The full 3D yield surface could be obtained

from the crystal plasticity simulations, instead of a reduced one in the article and using

CP-FEM instead of the full constraint Taylor model.

• In Article 2 the main problem seems to be with the precipitation model. In terms of

its crystal plasticity part, a better homogenisation technique could be used, like relaxed

constraint, self-consistent or CP-FEM.

• The main weakness of the method in Article 3 is the use of full constraint Taylor for

material parameter identification. In that case the use of CP-FEM instead is problematic,

because of the high computational cost. But some other homogenisation methods could

be tested, their influence on the response for models with different interaction matrices

could be studied and eventually a more accurate material parameter identification could

be performed.

• In Article 4 a more advanced crystal plasticity hardening model could be used instead of

the Voce rule. The mesh could be more refined, to the point of representing each grain

with several elements.
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a b s t r a c t

The determination of work-hardening for ductile materials at large strains is difficult to perform in the
framework of usual tensile tests because of the geometrical instability and necking in the specimen at
relatively low strains. In this study, we propose a combination of experimental and numerical techniques
to overcome this difficulty. Extruded aluminium alloys are used as a case since they exhibit marked
plastic anisotropy. In the experiments, the minimum diameters of the axisymmetric tensile specimen in
two normal directions are measured at high frequency by a laser gauge in the necking area together with
the corresponding force, and the true stress–strain curve is found. The anisotropy of the material is
determined from its crystallographic texture using the crystal plasticity theory. This data is used to
represent the specimen by a 3D finite element model with phenomenological anisotropic plasticity. The
experimental true stress–strain curve is then used as a target curve in an optimisation procedure for
calibrating the hardening parameters of the material model. As a result, the equivalent stress–strain
curve of the material up to fracture is obtained.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One of the basic and most important experimental tests in
material science is the uniaxial tension test. A great variety of ways
to perform the test on a given material exists, with different sizes
and shapes of the specimens and different methods to apply the
tensile load and measure the resulting displacements and forces.
All these variations have a common core, defined by the way the
material (or in our case an aluminium alloy) deforms plastically. At
small strains, in the elastic and early plastic regime, the deforma-
tion of the specimen may be safely considered homogeneous
throughout the cross-section. Consequently the stress may be
calculated as the ratio of the total force and cross-section area
(either initial or current). In this regime of deformation the
specimen may also be assumed, without much loss of accuracy,
to deform homogeneously along its length, at least on some
considerable length span in the centre. It allows for a convenient
way to measure and calculate strains with strain gauges, extens-
ometers, digital image correlation or other techniques. The pro-
blems arise when the strain reaches some critical value and the
specimen goes into another regime of deformation – diffuse
necking [1]. The critical strain for necking is much lower than

the ultimate strain at fracture for most important aluminium
alloys. In the diffuse necking regime the deformation concentrates
in some area of the specimen and the strain becomes highly
heterogeneous. Moreover, the stress situation in the necking area
becomes much more complex. In the homogeneous regime the
component of the stress along the tensile axis is the only
component of the stress tensor and is therefore equal to the
equivalent stress, provided that the material is isotropic. If the
material is anisotropic, the latter holds only in the reference
direction. But in the necking area the heterogeneous deformation
field produces a complex stress field with triaxiality deviating
from the initial value. It is still possible to find the average true
stress component in the tensile direction as well as the average
true strain in the necking area, but this true stress component will
noticeably deviate from the equivalent stress [2]. The conceptual
difficulty here is that we are seeking the properties of the material,
but we measure the response of a specimen with all its constraints
and instabilities. While the material continues to work-harden up
until very large strains, we only have reliable information about its
behaviour in a relatively small strain range, where the specimen is
still geometrically stable.

The first attempt to overcome this problem was made by
Bridgman [3]. His approach was analytical and consisted of finding
the stress field in the neck region of a tensile specimen with
circular cross-section and isotropic plastic behaviour of the mate-
rial. The result was a parameter which transformed the true stress
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in the neck of the specimen (the smallest cross section) into the
equivalent stress. Later other researchers tried to improve the
initial solution aiming for better accuracy [4] or other specimen
geometries [5], but after all the Bridgman correction for the true
stress remains the most popular analytical method.

The main shortcomings of this solution are the much idealised
assumed properties of the material and the specimen. The mate-
rial must be isotropic, which makes the application of this method
to highly anisotropic textured aluminium alloys very dubious. The
correction in its initial form depends on the curvature of the neck
region which is hard to measure, and the existing phenomenolo-
gical methods, which avoid this measurement, sacrifice some
accuracy [6]. Thus, extracting the equivalent stress as a function
of strain from the tensile test after the onset of necking remains an
important problem.

We propose a method of extracting this information from a
specimen of arbitrary axisymmetric geometry and made of an
orthotropic material. Instead of an analytical solution we use a
numerical approach based on the finite element method (FEM).
Already in the 1970s, FEM was used to find stress–strain fields in
the necking area [7,8]. It has since then been used successfully to
model localisation up until fracture in uniaxial tension [9] and
plane strain [10], as well as for anisotropic textured aluminium
alloys [11]. Other examples of recent works, where FEM solutions
of localisation problems are validated by experimental data,
include [12,13].

The plastic anisotropy of the tested material is described by an
anisotropic yield function. This kind of yield function is also well
established. Since the early work of Hill [14], different formula-
tions have been proposed [15,16]. This sort of functions was found
to be an adequate representation of the plastic anisotropy of
aluminium alloys, when fitted to experimental data [17]. A class
of non-quadratic yield functions based on linear transformations
of the stress deviator was proposed in [18] and discussed more
generally in [19]. These yield functions typically use a large
number of parameters to describe the shape of the yield surface
of the material with high flexibility and accuracy. The drawback is
the correspondingly high number of material tests necessary to
identify these parameters.

To reduce the required number of tests in the parameter
identification procedure, the tests may be complemented by
numerical simulations utilising the crystal plasticity theory.
Knowledge of the crystallographic texture and the plastic beha-
viour of the slip systems in the individual crystals of the material,
allows us to substitute some of the tests with simulations. This
method was first used in [20,21]. By now it is used by many
researchers with relative success, especially in predicting the
plastic strain anisotropy of metals and alloys [22]. Though crystal
plasticity simulations may ignore some important physical
mechanisms playing a role in the plastic response, they are in
general cheaper than physical testing. The limits of this method
are discussed in [23]. Crystal plasticity is used to find the yield
surface of textured alloys in [24–26].

The method we propose is based on these techniques, well
established theoretically and validated by experiments. We use 3D
FEM simulations of a tensile specimen, with an anisotropic yield
surface, found from crystal plasticity simulations. The true stress–
strain response of the simulated specimen is then fitted to the
response of the real specimen by optimising the properties of the
simulated material – its yield strength and hardening parameters.
When these characteristics are found we can directly obtain the
equivalent stress–strain response of the material.

In recent years several researchers have approached the pro-
blem using a similar framework. Zhano and Li [27] used an
optimisation procedure to extrapolate the stress after necking.
Cabezas and Celentano [28] used FEM to find correction factors for

cylindrical and plane steel specimens. Bogusz et al. [29] used
digital image correlation and FEM simulations to compare correc-
tion factors from different analytical models. Ling [30] extrapo-
lated the hardening from before necking and validated it with an
FEM simulation of the post-necking deformation. Westermann
et al. [31] used the same laser gauge measurement and a similar
numerical simulation method as in this work, but for isotropic
aluminium alloys. However, to the authors' best knowledge, the
proposed combination of crystal plasticity, anisotropic material
model and optimisation technique to obtain the equivalent stress–
strain curve all the way to failure for a ductile aluminium alloy has
not been used before.

2. Experiments

2.1. Materials

Two aluminium alloys were used in the tests: AA6060 and
AA6082. The chemical composition of the alloys is given in Table 1.
The specimens were obtained from 10 mm thick and 90 mm wide
extruded flat profiles at 901 to the extrusion direction and heat
treated to five different tempers: T4, T6x, T6, T7 and O. The various
heat treatments are described in Table 2. The alloys were analysed
in the scanning electron microscope using electron back-scattering
diffraction (EBSD) and EDAX TSL OIM software to provide grain
morphology and texture. The orientation distribution functions
(ODF) for the two alloys are shown in Figs. 1 and 2. The EBSD
measurements were carried out in the plane defined by the
extrusion and normal directions of the profile, using 10 mm steps
on a square grid for the AA6060 alloy and 5 mm steps for the
AA6082 alloy. The ODFs were calculated from the pole figures in
the EDAX TSL OIM software using a harmonic series expansion and
triclinic sample symmetry [32]. The total number of measured
orientations (or grains/subgrains) is 2611 and 25512 for AA6060
and AA6082, respectively. The grain structure of the alloys is
presented in Fig. 3. The textures and grain structures are typical
for recrystallised alloys (AA6060) and non-recrystallised, extruded
alloys (AA6082), respectively. The AA6060 alloy has an equi-axed,
recrystallised grain structure, whereas the AA6082 alloy has a
non-recrystallised structure with flat, pancake-shaped grains. The
most prominent texture component in both alloys is a cube
component, but the other orientations differ strongly between
AA6060 and AA6082. The texture of the AA6060 alloy is comprised
of a strong cube texture with a minor Goss component, while the
AA6082 alloy has a cube texture with orientations along the β-
fibre, which runs from the Copper to the Brass orientation,
through the S component.

2.2. Mechanical testing

Tensile tests were performed at room temperature on three
specimens for each temper of each alloy, giving a total of 30 tests.
The geometry of the specimen is shown in Fig. 4. The cross-head
velocity of the universal tensile testing machine was 1.2 mm/min,
which corresponds to an initial strain rate of 5�10�4 s�1. The
force and the minimum diameter of the cross section in two
normal directions were measured during the whole test until

Table 1
Chemical composition of the alloys in wt%.

Alloy Fe Si Mg Mn Cr Cu Zn Ti

AA6060 0.193 0.422 0.468 0.015 0.000 0.002 0.005 0.008
AA6082 0.180 0.880 0.600 0.530 0.150 0.020 0.005 0.011
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Table 2
Heat treatment of the specimens to different tempers.

Temper Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

T4 540 1C in salt bath for 15 min Fast water cooling One week at room temperature – –

T6x 540 1C in salt bath for 15 min Fast water cooling 15 min at room temperature 185 1C in oil bath for one hour Air cooling
T6 540 1C in salt bath for 15 min Fast water cooling 15 min at room temperature 185 1C in oil bath for five hours Air cooling
T7 540 1C in salt bath for 15 min Fast water cooling 15 min at room temperature 185 1C in oil bath for one week Air cooling
O 540 1C in salt bath for 15 min Fast water cooling 15 min at room temperature 350 1C in salt bath for twenty four hours Air cooling

Fig. 1. Orientation distribution function for the AA6060 alloy.

Fig. 2. Orientation distribution function for the AA6082 alloy.
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fracture. The measurements of the minimum diameter were
performed with an in-house measuring rig. It consists of two
lasers mounted normally to each other and to the tensile axis of
the specimen. The lasers project light beams with dimensions
13�0.1 mm2 across the specimen and on the detectors at the
opposite side of the rig. The system uses a high-speed, contact-less
AEROEL XLS13XY laser gauge with 1 μm resolution, which is
installed on a mobile frame. The sample was scanned at a
frequency of 1200 Hz during the test and the measured data were
transferred by the built-in electronics to the remote computer via
fast Ethernet. This setup ensured that the minimum diameters of
the specimen in two normal directions were accurately measured
throughout the whole test.

We introduce a Cartesian coordinate system x,y,z, where x is
the extrusion direction, y is the transverse direction in the flat
profile and z is the normal direction (i.e. in the thickness direction
of the profile). The tensile direction is then always in the y
direction. If we denote the measured diameters Dx and Dz, and
assume that the deformed cross section is elliptical in shape
(which is a reasonable assumption for orthotropic material), then

we can find the current cross-section area as

A¼ π
4
DxDz ð1Þ

The true (Cauchy) stress is found as

σy ¼
F
A

ð2Þ

where F is the measured tensile force. If we also assume plastic
incompressibility, the true logarithmic strain can be expressed as

εy ¼ ln
A0

A

� �
ð3Þ

where A0 is the initial cross-section area of the specimen. These
measures only express the average response of the specimen after
necking starts. Similarly when equivalent strains are discussed,
logarithmic strain is used. It should be noted that the plastic
incompressibility assumption may not hold at strains near fracture
because of void nucleation and growth.

The strain ratio, denoted ry, is here defined as

ry ¼ dεx
dεz

ð4Þ

where εx ¼ lnðDx=D0Þ and εz ¼ lnðDz=D0Þ are the logarithmic
strains in the extrusion and normal directions, respectively. The
ratio ry equals unity for isotropic materials, while values different
from unity indicates anisotropic plastic flow. If the texture evolves
significantly with plastic deformation, ry is also expected to
change.

Fig. 3. Grain structure of the AA6060 (left) and AA6082 (right) alloys, where the extrusion direction is horizontal and the normal (or thickness) direction is vertical.

Fig. 4. Tensile specimen geometry.
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3. Material modelling

3.1. Crystal plasticity

To establish a yield surface to be used in the phenomenological
yield function, the crystal plasticity theory is utilised. It is imple-
mented numerically in a rate-dependent form with the Kalidindi
hardening model [33,34] and a Taylor-type polycrystal homogeni-
sation [35].

3.1.1. Single crystal kinematics and kinetics
A finite deformation formulation is used. The total deformation

gradient is multiplicatively decomposed into elastic and plastic
parts [36]

F ¼ FeFp ð5Þ

The plastic part Fp transforms the body from the initial
configuration Ω0 into the intermediate plastically deformed con-
figuration Ω. The elastic component Fe transforms the body from
intermediate into the current configuration Ω with elastic defor-
mation and rigid body rotation. The first transformation is due to
slip on the slip systems, which are here represented by couples of
vectors connected to the lattice. The lattice remains undeformed
during this transformation. During the second transformation the
lattice deforms and rotates together with the material. The
intermediate configuration is thus unaffected by rigid body rota-
tions, so the constitutive relations formulated in this configuration
are objective. The following relations are based on [33]. The
vectors mα

0 and nα0 are the slip direction and slip plane normal
vectors, respectively, for a slip system α in the initial and inter-
mediate configuration, whereas mα and nα are the slip system
vectors in the current configuration, rotated and stretched by the
elastic deformation gradient Fe. These vectors are normal to each
other in any configuration by definition. The plastic velocity
gradient L

p
in the intermediate configuration then has these

vectors as a basis

L
p ¼ _F

pðFpÞ�1 ¼ ∑
n

α ¼ 1
_γαmα

0 � nα0 ð6Þ

where _γα is the slip rate on slip system α in the intermediate
configuration and n is the total number of slip systems. The elastic
Green strain tensor E

e
in the intermediate configuration may be

defined as

E
e ¼ 1

2
½ðFeÞTFe�I� ¼ 1

2
ðCe�IÞ; C

e ¼ ðFeÞTFe ð7Þ

where C
e
is the elastic right Cauchy–Green deformation tensor and

I is the unity tensor. The second Piola–Kirchhoff stress tensor S in
the intermediate configuration is obtained by pulling back the
Cauchy stress tensor σ into this configuration

S ¼ detFðFeÞ�1σ ðFeÞ�T ð8Þ

This stress is power conjugate to the elastic Green strain and is
found from the hyperelastic law

S ¼ CS
el : E

e ð9Þ

where CS
el is the fourth order tensor of elastic moduli. It has

3 independent components and hence describes the crystal
anisotropy. The total power per unit volume _w produced by the
crystal consists of elastic (stored) and plastic (dissipated) parts

_w¼ _weþ _wp ¼ S : _E
e
þC

e
S : L

p ð10Þ

The plastic part of the total power may be also expressed through
the power spent on every slip system if the resolved shear stress

τα is introduced

_wp ¼ ∑
n

α ¼ 1
τα _γα ð11Þ

where τα is connected to the second Piola–Kirchhoff stress
through the slip system vector basis

τα ¼ C
e
S : ðmα

0 � nα0 Þ ð12Þ

3.1.2. Flow and hardening rules
The plastic flow is described by a widely used rate-dependent

rule proposed in [37] as

_γα ¼ _γ0
jταj
ταc

� �1=m

sgnðταÞ ð13Þ

where _γ0 is the reference slip rate, m is the instantaneous strain
rate sensitivity and ταc is the history dependent yield strength of
slip system α. The hardening rate of each slip system is defined by

_ταc ¼ ∑
n

β ¼ 1
hαβj _γβj ð14Þ

where hαβ are the slip hardening rates developing on slip system α
because of slip on system β. They may be decomposed into

hαβ ¼ qαβhβ ð15Þ
where qαβ is a matrix of self-hardening and latent-hardening
coefficients and hβ may be defined as proposed in [34]

hβ ¼ h0 1�τ
β
c

τs

 !a

ð16Þ

here h0 is the initial hardening rate, τs is the resolved shear stress
saturation value and a is the power law parameter. The initial slip
resistance ταc0 is assumed equal for all slip systems.

3.1.3. Polycrystal modelling
The material sample includes too many orientations to be

represented numerically as it is, so we represent it with a reduced
number of orientations, chosen by analysing its texture. It has been
shown that this reduced number is enough to accurately represent
the properties of the material in numerical simulations [26]. Each
grain is represented by its orientation and volume fraction. We
assume the volume fraction to be equal for all grains.

The Taylor model [35] assumes that all grains undergo the
same strain as the whole specimen. Stress equilibrium between
the grains is then not satisfied. The stress in the specimen is found
as an average, i.e.

σ ¼ 1
n

∑
n

g ¼ 1
σg ð17Þ

where σg is the Cauchy stress in grain g and n is the total number
of grains. The use of the Taylor model (here the so-called full-
constraint variant is used) against a FEM model of a polycrystal
and various relaxed constraint models is discussed in [23,38]. The
conclusion is that no method is universally good at describing the
polycrystal response, while the Taylor model has the advantage of
simplicity and computational efficiency.

Some common assumptions are made about the material. The
initial value of the slip resistance is the same on all slip systems, as
well as the other material parameters; i.e., the material has no
history of prior deformation. The influence of precipitates, inclu-
sions, dispersoids or any other factors is ignored; just pure Schmid
slip is considered, so that crystallographic texture is the only
source of plastic anisotropy. This assumption may seem crude, but
including these other factors is a very difficult task and for most
cases texture is by far the main source of anisotropy [39].
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3.2. Continuum plasticity

The behaviour of the material in the tensile tests is modelled by
an anisotropic hypoelastic–plastic continuum model. The main
features of this model are small elastic and finite plastic strains,
isotropic elasticity and orthotropic yield surface, associated plastic
flow and isotropic strain hardening. The corotational formulation
is used to simplify the description of plastic anisotropy. The
principal directions of the plastic anisotropy are aligned with the
coordinate system, connected to the un-rotated configuration. The
axes of this system are assumed to remain orthogonal during
deformation. The corotational Cauchy stress is also defined in this
system.

The corotational stress and rate-of-deformation tensors are
defined [40] as

σ̂ ¼ RTσR ð18Þ

D̂¼ RTDR ð19Þ

where D is the rate-of-deformation tensor in the current config-
uration, σ is the Cauchy stress tensor and R is the rotation tensor
found from the polar decomposition of the deformation gradient
tensor

F ¼ RU ð20Þ

The corotational rate-of-deformation tensor is decomposed into a
sum of elastic and plastic parts

D̂¼ D̂
eþD̂

p ð21Þ

In the hypoelastic formulation the corotational stress rate is
connected to the corotational deformation rate

_̂σ ¼ Ĉ
σ
el : D̂

e ð22Þ

where Ĉ
σ
el is the fourth order tensor of elastic moduli. Elastic

isotropy is assumed for the material, so only two independent
parameters are enough to define this tensor, i.e. the Young
modulus E and the Poisson ratio ν.

The yield function is formulated as

f ðσ̂; εÞ ¼ σðσ̂Þ�κðεÞ ð23Þ

where ε is the equivalent plastic strain, σ is the equivalent stress
and κ is the flow stress in uniaxial tension in the reference
direction. The evolution of the flow stress κ is described by a
two-term Voce rule [41]

κðεÞ ¼ κ0þ ∑
2

i ¼ 1
Qi 1�exp � θi

Q i
ε

� �� �
ð24Þ

where κ0 is the yield stress, and Qi and θi are model parameters
governing the work-hardening.

The corotational plastic rate-of-deformation tensor evolves
according to the associated flow rule

D̂
p ¼ _λ

∂f
∂σ̂

ð25Þ

where _λ is the plastic multiplier, which satisfies the loading–
unloading conditions, written in Kuhn–Tucker form as

_λZ0; f r0; f _λ¼ 0 ð26Þ

The form of the equivalent stress used here, called Yld2004-18p
by the authors, was developed in [19] to represent complex shapes
of anisotropic yield surfaces, viz.

σ ¼ 1
4
ϕ

� �1=m

ð27Þ

where

ϕ¼ϕð ~S 0; ~S″Þ ¼ ∑
3

i ¼ 1
∑
3

j ¼ 1
j ~S 0i� ~S

″
j jm ð28Þ

In this equation m is the shape parameter while ~S
0
and ~S″

represent the principal values of the stress tensors ~s 0 and ~s″. These
stress tensors are in turn produced by linear transformations of
the corotational stress tensor

~s 0 ¼ C0 : ŝ¼ C0 : T : σ̂ ð29Þ

~s″¼ C″ : ŝ¼ C″ : T : σ̂ ð30Þ
where the fourth order tensor T transforms the corotational stress
σ̂ into its deviatoric part ŝ and the fourth order tensors C0 and C″
contain the coefficients describing the anisotropy of the material.
In the orthotropic case 9 independent coefficients are enough to
define each of them, and on matrix form in Voigt notation they
read

~s 0x
~s 0y
~s 0z
~s 0xy
~s 0yz
~s 0xz

2
66666666664

3
77777777775
¼

0 �c012 �c013 0 0 0
�c021 0 �c023 0 0 0
�c031 �c032 0 0 0 0
0 0 0 c044 0 0
0 0 0 0 c055 0
0 0 0 0 0 c066

2
6666666664

3
7777777775

ŝx
ŝy
ŝz
ŝxy
ŝyz
ŝxz

2
6666666664

3
7777777775

ð31Þ

~s″x
~s″y
~s″z
~s″xy
~s″yz
~s″xz

2
666666666664

3
777777777775
¼

0 �c″12 �c″13 0 0 0
�c″21 0 �c″23 0 0 0
�c″31 �c″32 0 0 0 0
0 0 0 c″44 0 0
0 0 0 0 c″55 0
0 0 0 0 0 c″66

2
6666666664

3
7777777775

ŝx
ŝy
ŝz
ŝxy
ŝyz
ŝxz

2
6666666664

3
7777777775

ð32Þ

If all the non-zero anisotropy coefficients c0ij and c″ij are set to unity,
this yield function will reduce to an isotropic high-exponent yield
function. The total number of parameters to identify in the
continuum plasticity model is 26: two elasticity coefficients, E
and ν; the initial yield stress, κ0; the hardening parameters, Qi and
θi, i¼ 1;2; the shape parameter, m; and the 18 anisotropy
coefficients, c0ij and c″ij.

4. Parameter identification

4.1. Slip system level

The initial step of the method is to obtain an estimate of the
yield surface shape from the crystal plasticity (CP) simulations. The
microstructural study provided information about the orientations
of the grains in the alloys and allowed to build the corresponding
ODF. To run the CP model this information needs to be trans-
formed into a convenient set of orientations which accurately
represents the texture. Different methods of doing this exist, e.g.
[42,43]. The one used in this work is the following. A total of 1000
grain orientations were taken randomly from the whole set of
measured orientations. The number is small enough to provide
reasonable computation times and big enough to represent the
influence of all texture components on the shape of the yield
surface [44]. The representativeness of this random set in relation
to the components of the real texture was checked by making
several random choices of 1000 orientations, calculating the ODFs
of those reduced sets and comparing them with the ODF of the
real texture. The differences were insubstantial, so this method
was used for both alloys.
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The initial shape of the yield surface, i.e. the initial plastic
anisotropy, is commonly believed to depend mostly on the texture,
and in the utilised CP model it depends solely on the texture.
Hardening is assumed isotropic in the continuum model, meaning
that this shape stays the same throughout the deformation. The
factor that defines the shape of the yield surface of the polycrystal
is which slip systems in the constituent crystals activate and which
do not. Thus, the shape of the yield surface calculated for alloys
with different hardening parameters should be the same – as for
example in [45,46] the calculated yield surfaces for two different
AA6063 alloy specimens are the same. In addition, when the yield
surfaces were calculated with the same texture, but different sets
of hardening parameters, the results were also identical.

In our case we deal with two yield surfaces, corresponding to
two different textures. The same yield surface is used for all
tempers of the same alloy. The hardening parameters we used
are given in Table 3.

It should be mentioned that there may be some factors
influencing the crystallographic slip, which may lead to anisotro-
pic hardening or a different yield surface than the one found on
the basis of our assumptions, but accounting for them is a difficult
task and outside the scope of this article.

The crystal plasticity model is implemented into a user material
subroutine for LS-DYNA. The subroutine utilises an explicit inte-
gration scheme by Grujicic and Batchu [47]. Explicit time integra-
tion of the momentum equations is used. The material is
represented by a single eight-node element with one Gauss point
(reduced integration). Using more elements in the Taylor model
increases the computation time significantly, without substantial
improvement of accuracy. The yield surface is calculated as
follows. The element is subjected to a range of tensile and shear
strain combinations, creating a cloud of points in the strain space.
The straining stops each time the specific plastic work of deforma-
tion reaches a value of 0.5 MPa approximately corresponding to
incipient yielding. The resulting stress responses are also repre-
sented by points in stress space, lying on the yield surface, which
corresponds to this value of plastic work. Then an optimisation
script uses these stress points and the anisotropic yield criterion
defined by Eq. (23) to find the components of the transformation
tensors in Eqs. (31) and (32), see Table 4 for the obtained values.
The resulting yield surfaces are shown in Fig. 5, where σx is the
normal stress in the reference direction, which is here the
extrusion direction, σy is the normal stress in the transverse
direction of the flat profile, and σ0 � κ0 is the initial yield stress
in the reference direction. The contours represent lines of constant
shear stresses σxy in the plane of the flat profile. The calculated
yield surfaces fit well with the ones found for alloys with similar
texture/microstructure in [45]. The shear stresses σyz and σzx are
not applied to the model and the coefficients for these stresses in
Table 4 are equal to unity, i.e. they are assumed isotropic. It is a
reasonable assumption for a specimen made of a flat extruded
profile and deformed in tension, and these stresses in the simula-
tions are considerably lower than the other components of the
stress tensor. Therefore an improvement in the equivalent stress
predictions would most likely be minor, while the number of the
Taylor model runs will increase by an order of magnitude.

4.2. Continuum level

The next step is the application of these results to the
continuum plasticity model and fitting of the model to the
experimental data. The mesh of the FE model of the tensile
specimen is shown in Fig. 6. Owing to the orthotropic symmetry
and to reduce computation time only 1/8th of the specimen is
modelled. The dimensions of the smallest elements used in the
necking area are 0.3�0.3�0.07 mm3. Several test simulations
with larger and smaller elements were run to ensure that at this
element size the mesh does not affect the solution. Symmetrical
boundary conditions are utilised and constant velocity is applied
to the upper plane, where the specimen is fixed to the test
machine. It should be noted that in the experiments necking
occurs at a point determined by the imperfections of the speci-
men, while in the simulation the mesh is made without imperfec-
tions and the specimens necks in the centre (at the corresponding
edge of the mesh). The eight-node solid element with full
integration and formulation for elements with poor aspect ratio
available in LS-DYNA was used in the simulations. Explicit time
integration was chosen, since some initial test runs showed that
implicit integration for this model does not provide any consider-
able advantage in speed, stability or accuracy. Mass scaling (by
increasing the density of the material) was used to reduce the
simulation time. It was then checked that the kinetic energy was
still very small compared with the total energy of the specimen, to
ensure quasi-static loading conditions.

The elastic–plastic behaviour of the material is modelled as
described in Section 3.2. The 18 coefficients of the two linear
transformations of the stress tensor used to describe the plastic
anisotropy were determined as described in Section 4.1. The
elastic constants were set to nominal values for aluminium alloys.
It thus remains to determine the parameters κ0, Qi and θi of
the two-term Voce hardening rule. This is done using LS-OPT [48]

Table 3
Crystal plasticity model parameters used in the yield surface calculations.

c11 (MPa) c12 (MPa) c44 (MPa) _γ0 (s�1) m qαβ ;
α¼ β

αaβ

h0 (MPa) a τs (MPa) ταc0 (MPa)

106,430 60,350 28,210 0.010 0.005 1.00 411.25 1.354 104.02 46.70
1.40

Table 4
Coefficients of the YLD2004-18p yield function.

Coefficients AA6060 AA6082

c012 0.3050 0.8178
c013 0.8051 1.3225
c021 �0.3320 0.9947
c023 0.5246 1.3271
c031 �0.4386 0.2568
c032 0.6322 0.5350
c044 0.9768 1.2029
c055 1.0000 1.0000
c066 1.0000 1.0000
c″12 0.8578 �0.1288

c″13 �0.2922 0.7223

c″21 1.0911 1.1617

c″23 0.8548 1.3056

c″31 1.1442 0.9130

c″32 0.6040 0.6049

c″44 �0.2170 0.8661

c″55 1.0000 1.0000

c″66 1.0000 1.0000
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– an optimisation tool that interacts with LS-DYNA. Within each
iteration LS-OPT runs 10 simulations with LS-DYNA varying these
parameters within prescribed intervals. A true stress–strain curve
for the central cross-section area (where necking occurs) is
calculated at the end of each simulation. These curves are
compared to the true stress–strain curves found from the experi-
ments for the corresponding alloy. LS-OPT compares the experi-
mental curve with the simulated one, calculates the mean squared
error and varies the hardening parameters in such a way that in
the next iteration the mean squared error is reduced. After usually
15–20 iterations the mean squared error reduces from the range of
1–100 to around 10�5 and more iterations do not further reduce it.

5. Results

5.1. Continuum plasticity model calibration

The results of the optimisation procedure described in the
previous section are presented in Figs. 7 and 8 for the two alloys in
terms of the true stress–strain curves for the five tempers. The
measured true stress–strain curves, obtained for three specimens
of each alloy–temper combination, are in good agreement with
each other, so only one typical curve is shown. In general, the two-
term Voce hardening rule led to very good fits with small errors
for most of the simulations. The largest error is observed for

AA6060-T7, where the overall shape of the curve could not be
accurately reproduced. A better fit for this case would have been
obtained by using a three-term Voce hardening rule.

The simulation model accounts for plastic anisotropy, and the
correspondence of the anisotropy in plastic flow in the simulations
and experiments was also checked. This is done by comparing the
strain ratio ry obtained in experiments and simulations. The results
are shown in Figs. 9 and 10, where ry is the slope of the curves. The
experimental and simulated values of ry are reasonably close for
both alloys. A point of interest is that in the case of the AA6060
alloy we observe significant change in the ry value throughout the
test. The most obvious reason for this is an evolution of the texture

Fig. 5. Generated yield surfaces for alloys AA6060 (left) and AA6082 (right). Maximum value of σxy=σ0 is 0.88 for AA6060 and 0.52 for AA6082.

Fig. 6. Finite element mesh of the tensile specimen.
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with deformation. This means that the shape of the yield surface
also evolves and our assumption of isotropic hardening is reason-
able, but not generally correct. The AA6082 alloy demonstrates
much less evolution of ry, so at least for this alloy the assumption
of isotropic hardening holds with reasonable accuracy.

A comparison between the necking zones of the specimens at
fracture as observed in the experiments and predicted by the finite
element model is presented for two different alloys and tempers in
Fig. 11. In the figure, the experimental and numerical results have
been superimposed. Considering the discrepancy in the ry ratio
between the model and the experiment, the curvature of the
necking zone is well reproduced in both cases.

5.2. Equivalent stress–strain curves

The main result of the model calibration is the parameters in
the Voce hardening rule defining the equivalent stress–strain
curves of the materials. The results are compiled in Figs. 12 and
13. The equivalent stress–strain curves are plotted until the point
of fracture in the experiments. For most alloy/temper combina-
tions the equivalent stress–strain curves obtained for the three
specimens tested are in very good agreement with each other.
Therefore only the averaged equivalent stress–strain curve is
shown in the figures. In Table 5 the numerical values of the
hardening parameters for typical specimens are presented.

The first notable result is the profound effect of the heat
treatment on the initial strength and work-hardening of the two
alloys. A detailed discussion of the physical mechanisms respon-
sible for the observed behaviour will be presented elsewhere. The
second observation is the large difference in ductility between the

alloys. For the AA6060 alloy even the usually less ductile T6 and T7
tempers fracture at more than 120% strain.

The “apparent hardening rate” at large strains is much higher
for the true stress–strain curves than for the equivalent stress–
strain curves, see Fig. 14 for two examples. The reason for this is
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Fig. 11. Necking in FEM model and real specimen in AA6060-T4 (left) and AA6082-
T6x (right).
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obviously the contribution of the triaxial stress field to the true
stress measured after necking. The hydrostatic stress does not
contribute to the equivalent stress, which is based on linear
transformations of the stress deviator. Fig. 14 shows another
difference: the equivalent stress may be either higher or lower
than the true stress even before necking. The reason for this is that
the specimens are oriented at 901 to the extrusion direction, which
was taken here as the reference direction, and the stress in any
direction other than the extrusion direction depends on the
anisotropy of the yield surface. In this case, the 901 flow stress is
either lower (AA6060) or higher (AA6082) than the 01 flow stress.

The method of using an anisotropic plasticity model to find the
equivalent stress was compared to two simpler methods using either
an isotropic plasticity model or the modified Bridgman correction
method, as it is formulated in [6]. The T4 temper of both alloys was
used in the comparison. First, the numerical optimisation procedure
was performed with the isotropic von Mises yield surface instead of
the anisotropic Yld2004-18p surface. The resulting values of the
hardening parameters are given in Table 6, while the parameter set
obtained with the anisotropic plasticity model is given in Table 5. The
calibrated values of the hardening parameters for the isotropic and
anisotropic criteria differ considerably, from 15% to 20% to almost
twofold in case of the parameter θ2. A comparison of the equivalent
stress–strain curves obtained with the three different methods is
presented in Fig. 15. The results are noticeably different. The Bridgman
correction may over- or underestimate the equivalent stress, depend-
ing on the plastic anisotropy of the material. The von Mises yield
functionmodel gives predictions very similar to the Bridgmanmethod,
but only until a certain strain level (around 75%). However, compared
with the true stress–strain curve, the three equivalent stress–strain
curves are in reasonable agreement, especially considering the work-
hardening rate.

6. Discussion and conclusions

While it is hard to evaluate how accurately we predicted the
equivalent stress–strain curves, it is possible to re-evaluate the
accuracy of the initial assumptions in light of the results.

The first issue is the yield function. The full-constraint Taylor
simulations predicted the yield function rather well for both
alloys, as judged based on the measured strain ratio ry. The
assumption of isotropic hardening seems to be fulfilled with good
accuracy for the AA6082 alloy, but not for the AA6060 alloy. The
yield surface defines the direction of the plastic strain rate, and
this direction was gradually changing according to Fig. 9. However
the initial value of the strain ratio ry, and ergo the yield surface
shape, was predicted quite well by the full-constraint Taylor model
for the AA6060 alloy. Thus, the evolution of the ry ratio is most
probably due to evolution of the texture.

A possible improvement could be made by using more
advanced implementation of the crystal plasticity model. In [49]
the predictions of the yield surface of a similar alloy (AA6063)

Table 5
The obtained parameters for the two-term Voce hardening rule.

Alloy/temper κ0 (MPa) Q1 (MPa) θ1 (MPa) Q2 (MPa) θ2 (MPa)

AA6060-T4 65.00 97.69 1499.74 122.00 195.70
AA6060-T6x 65.00 67.41 1502.52 126.26 204.68
AA6060-T6 167.00 44.30 1489.83 111.66 78.20
AA6060-T7 125.00 39.17 3117.43 59.65 202.50
AA6060-O 42.00 46.36 1480.37 102.99 103.53
AA6082-T4 157.00 143.03 1961.54 105.74 269.89
AA6082-T6x 300.00 66.13 1296.66 59.76 104.59
AA6082-T6 305.00 46.59 1344.37 54.13 107.42
AA6082-T7 170.00 44.35 1515.79 45.51 460.98
AA6082-O 65.00 45.88 2179.59 87.46 319.21
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Table 6
The obtained parameters for the two-term Voce hardening rule, when an isotropic
von Mises yield surface is used.

Alloy/temper κ0 (MPa) Q1 (MPa) θ1 (MPa) Q2 (MPa) θ2 (MPa)

AA6060-T4 64.00 115.20 1263.85 148.96 95.66
AA6082-T4 159.00 110.58 2164.29 150.58 599.61
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Fig. 15. Comparison between different methods of estimating the equivalent
stress–strain curve in reference direction based on measured true stress–strain
curve in transverse direction for the AA6060 and AA6082 alloys in temper T4.
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were performed with full-constraint Taylor, self-consistent and CP-
FEM models. All of them gave rather good estimates of the strain
ratio ry in the 901 direction and each one had difficulties predicting
the yield surface in the area of the biaxial stress. The most accurate
yield surface shape may for now only be obtained by a costly
combination of several uniaxial tensile tests in different directions
in combination with shear and plane strain tests [50]. So the use of
CP-FEM or self-consistent models would most probably improve
results only marginally.

An improvement could come from using a full 3D stress field in
the yield surface calibration procedure, as already discussed in
Section 4.1. Overall, the improvement resulted from the use of
anisotropic criterion instead of an isotropic is quite substantial,
while further improvements in the anisotropic yield function are
difficult and give a considerably less effect on the final result.

Another issue is the two-term Voce hardening rule. It is rather
flexible and fits to most of the 6xxx alloys hardening curves well,
but in some cases, like AA6060-T7, it was likely not flexible enough
to reproduce some of the features of the true stress–strain curve. A
better result could have been obtained by using a three-term Voce
hardening rule.

Some improvements could be done in FEM implementation of
the methods too. An accurate description of the necking zone
requires a dense mesh. In addition very high local strains distort
the elements immensely. To prevent the elements from too much
of shape distortion and associated problems, they are initially not
cubic but flatted. Re-meshing the geometry at least partly after a
certain strain is reached may be a better way to handle this issue.
The main problem with all kinds of measures that makes the
model more accurate, but more complicated, is that it is run not
once but sometimes hundreds of times by LS-OPT to optimise the
hardening parameters, meaning that any increase in computation
time for one simulation leads to a much larger increase in the total
optimisation time.

The equivalent stress–strain curves were found for deformation
after necking and large strain values until fracture. It should be
remembered though that what was really found is the equivalent
stress–strain curves in an isotropically hardened two-term Voce
material with Yld2004-18p yield criterion implemented in an FEM
mesh. How well the predicted equivalent stress–strain curves
correspond to the real curves depends on how accurate the
assumptions and the models are. For practical applications the
accuracy of the results is determined by how well they predict the
forces and displacements in various problems, so at least for the
problem of necking in a cylindrical rod it is very accurate. The
comparison in Fig. 15 indicates that this approach is the next step
towards a more accurate estimate of the equivalent stress–strain
curves at large strains.

Acknowledgements

We want to thank Norsk Hydro ASA for the material used to
produce the specimens. The work done by Dr. Ida Westermann at
SINTEF Materials and Chemistry on heat treatment and texture
and microstructure investigation of the specimens is also much
appreciated.

References

[1] Considère M. Memoire sur l'emploi du fer et de l'acier dans les constructions.
Dunod; 1885.

[2] Mirone G. Role of stress triaxiality in elastoplastic characterization and ductile
failure prediction. Eng Fract Mech 2007;74:1203–21.

[3] Bridgman P. The stress distribution at the neck of a tension specimen. Trans
Am Soc Met 1944;32:553–74.

[4] Davidenkov N, Spiridonova N. Analysis of the state of stress in the neck of a
tension test specimen. Proc Am Soc Test Mater 1946;46:1147–58.

[5] Aronofsky J. Evaluation of stress distribution in the symmetrical neck of flat
tensile bars. J Appl Mech 1951:75–84.

[6] Le Roy G, Embury J, Edwards G, Ashby M. A model of ductile fracture based on
the nucleation and growth of voids. Acta Metall Mater 1981;29:1509–22.

[7] Needleman A. A numerical study of necking in circular cylindrical bar. J Mech
Phys Solids 1972;20:111–27.

[8] Norris Jr. D, Moran B, Scudder J, Quinones D. A computer simulation of the
tension test. J Mech Phys Solids 1978;26:1–19.

[9] Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile
bar. Acta Metall Mater 1984;32:157–69.

[10] Tvergaard V, Needleman A, Lo KK. Flow localization in the plane strain tensile
test. J Mech Phys Solids 1981;29:115–42.

[11] Fourmeau M, Børvik T, Benallal A, Lademo O, Hopperstad O. On the plastic
anisotropy of an aluminium alloy and its influence on constrained multiaxial
flow. Int J Plast 2011;27:2005–25.

[12] Dunand M, Mohr D. On the predictive capabilities of the shear modified
Gurson and the modified Mohr–Coulomb fracture models over a wide range of
stress triaxialities and Lode angles. J Mech Phys Solids 2011;59:1374–94.

[13] Nam AW, Choung J. Prediction of failure strain according to stress triaxiality of
a high strength marine structural steel. Collision and Grounding of Ships
Offshore. Taylor & Francis group; 2013 p. 69.

[14] Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proc R
Soc Lond A: Math Phys Eng Sci 1948;193:281–97.

[15] Hosford W. A generalized isotropic yield criterion. J Appl Mech 1972;39:607.
[16] Bron F, Besson J. A yield function for anisotropic materials application to

aluminum alloys. Int J Plast 2004;20:937–63.
[17] Barlat F, Maeda Y, Chung K, Yanagawa M, Brem J, Hayashida Y, et al. Yield

function development for aluminum alloy sheets. J Mech Phys Solids
1997;45:1727–63.

[18] Aretz H, Barlat F. General orthotropic yield functions based on linear stress
deviator transformations. AIP Conf Proc 2004;712:147.

[19] Barlat F, Aretz H, Yoon J, Karabin M, Brem J, Dick R. Linear transfomation-based
anisotropic yield functions. Int J Plast 2005;21:1009–39.

[20] Barlat F. Crystallographic texture, anisotropic yield surfaces and forming limits
of sheet metals. Mater Sci Eng 1987;91:55–72.

[21] Barlat F, Richmond O. Prediction of tricomponent plane stress yield surfaces
and associated flow and failure behavior of strongly textured FCC polycrystal-
line sheets. Mater Sci Eng 1987;95:15–29.

[22] Choi S-H, Brem J, Barlat F, Oh K. Macroscopic anisotropy in AA5019A sheets.
Acta Mater 2000;48:1853–63.

[23] Grytten F, Holmedal B, Hopperstad OS, Børvik T. Evaluation of identification
methods for YLD2004-18p. Int J Plast 2008;24:2248–77.

[24] Beradai C, Berveiller M, Lipinski P. Plasticity of metallic polycrystals under
complex loading paths. Int J Plast 1987;3:143–62.

[25] Zattarin P, Lipinski P, Rosochowski A. Numerical study of the influence of
microstructure on subsequent yield surfaces of polycrystalline materials. Int J
Mech Sci 2004;46:1377–98.

[26] Saai A, Dumoulin S, Hopperstad O. Influence of texture and grain shape on the
yield surface in aluminium sheet material subjected to large deformations. AIP
Conf Proc 2011;1353:85.

[27] Zhano K, Li Z. Numerical analysis of the stress–strain curve and fracture
initiation for ductile material. Eng Fract Mech 1994;49:235–41.

[28] Cabezas EE, Celentano DJ. Experimental and numerical analysis of the tensile
test using sheet specimens. Finite Elem Anal Des 2004;40:555–75.

[29] Bogusz P, Popławski A, Morka A, Niezgoda T. Evaluation of true stress in
engineering materials using optical deformation measurement methods. J
KONES Powertrain Transp 2012;19:53–64.

[30] Ling Y. Uniaxial true stress–strain after necking. AMP J Tech 1996;5:37–48.
[31] Westermann I, Pedersen K, Furu T, Børvik T, Hopperstad OS. Effects of particles

and solutes on the strength, work-hardening and ductile fracture of alumi-
nium alloys; 2014 [submitted for publication].

[32] Engler O, Randle V. Introduction to texture analysis: macrotexture, micro-
texture, and orientation mapping. Boca Raton, Florida, USA: CRC Press,; 2010.

[33] Needleman A, Asaro R, Lemonds J, Peirce D. Finite element analysis of
crystalline solids. Comput Methods Appl Mech Eng 1985;52:689–708.

[34] Kalidindi SR, Bronkhorst CA, Anand L. Crystallographic texture evolution in
bulk deformation processing of FCC metals. J Mech Phys Solids
1992;40:537–69.

[35] Taylor GI. The mechanism of plastic deformation of crystals. Part I. Theoretical.
Proc R Soc Lond A: Math Phys Eng Sci 1934;145:362–87.

[36] Lee E, Liu D. Finite‐strain elastic – plastic theory with application to plane‐
wave analysis. J Appl Phys 1967;38:19–27.

[37] Hutchinson J. Bounds and self-consistent estimates for creep of polycrystalline
materials. Proc R Soc Lond A: Math Phys Eng Sci 1976;348:101–27.

[38] Li S, Engler O, Van Houtte P. Plastic anisotropy and texture evolution during
tensile testing of extruded aluminium profiles. Model Simul Mater Sci
2005;13:783–95.

[39] Kocks UF, Tomé CN, Wenk H-R. Texture and anisotropy: preferred orientations
in polycrystals and their effect on materials properties. Cambridge, UK:
Cambridge University Press; 2000.

[40] Belytschko T, Liu WK, Moran B. Nonlinear finite elements for continua and
structures. Chichester, New York: John Wiley; 2000.

[41] Voce E. The relationship between stress and strain for homogeneous deforma-
tion. J Inst Met 1948;74:537–62.

M. Khadyko et al. / International Journal of Mechanical Sciences 88 (2014) 25–36 35



[42] Melchior MA, Delannay L. A texture discretization technique adapted to
polycrystalline aggregates with non-uniform grain size. Comput Mater Sci
2006;37:557–64.

[43] Böhlke T, Haus U-U, Schulze V. Crystallographic texture approximation by
quadratic programming. Acta Mater 2006;54:1359–68.

[44] Lequeu P, Gilormini P, Montheillet F, Bacroix B, Jonas J. Yield surfaces for
textured polycrystals – I. Crystallographic approach. Acta Metall Mater
1987;35:439–51.

[45] Achani D, Hopperstad OS, Lademo OG. Behaviour of extruded aluminium
alloys under proportional and non-proportional strain paths. J Mater Process
Technol 2009;209:4750–64.

[46] Pedersen KO, Lademo OG, Berstad T, Furu T, Hopperstad OS. Influence of
texture and grain structure on strain localisation and formability for AlMgSi
alloys. J Mater Process Technol 2008;200:77–93.

[47] Grujicic M, Batchu S. Crystal plasticity analysis of earing in deep-drawn OFHC
copper cups. J Mater Sci 2002;37:753–64.

[48] Stander N, Roux W, Goel T, Eggleston T, Craig K. LS-OPT user's manual.
Livermore, California, USA: Livermore Software Technology Corporation;
2008.

[49] Dumoulin S, Engler O, Hopperstad O, Lademo O. Description of plastic
anisotropy in AA6063-T6 using the crystal plasticity finite element method.
Model Simul Mater Sci 2012;20:055008.

[50] Zhang K, Holmedal B, Manik T, Zhao Q. Crystal plasticity calculations of
mechanical anisotropy of aluminium compared to experiments and to yield
criterion fittings. In: Proceedings of the ICAA13 13th international conference
on aluminum alloys; 2012. p. 915–20.

M. Khadyko et al. / International Journal of Mechanical Sciences 88 (2014) 25–3636



Article 2 

 

M. Khadyko, O. R. Myhr,  S. Dumoulin,  O.S. Hopperstad 

A microstructure based yield and work-hardening model for 
textured 6xxx aluminium alloys. 
 
Submitted for possible journal publication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



1 
 

A microstructure based yield and work-hardening model for 

textured 6xxx aluminium alloys 

M. Khadyko1,*, Ole Runar Myhr1, 3, S. Dumoulin2 and O.S. Hopperstad1 

1 Structural Impact Laboratory (SIMLab), Centre for Research-based Innovation, Department of Structural Engineering, 

Norwegian University of Science and Technology, NO-7491 Trondheim, Norway 
2SINTEF Materials & Chemistry, NO-7465 Trondheim, Norway  

3Hydro Aluminium, Research and Technology Development (RTD), Romsdalveien 1 

NO-6601 Sunndalsøra, Norway 

 

Abstract 

 The plastic properties of an aluminium alloy are defined by its microstructure. The 

most important factors are the presence of alloying elements in form of solid solution and 

precipitates of various sizes, and the crystallographic texture. A nanoscale model that predicts 

the work hardening curves of 6xxx aluminium alloys was proposed by Myhr et al. [1]. The 

model predicts the solid solution concentration and the particle size distribution from the 

chemical composition and thermal history of the alloy. The yield stress and the work 

hardening of the alloy are then determined from dislocation mechanics. The model was 

largely used for non-textured materials in previous studies. In this work, a crystal plasticity 

based approach is proposed for the work hardening part of the nanoscale model, which allows 

including the influence of the crystallographic texture. The model is evaluated by comparison 

with experimental data from uniaxial tensile tests on two textured 6xxx alloys in five temper 

conditions.  

 

 

Keywords: aluminium alloys; solutes; precipitates; dislocations; work-hardening; crystal 

plasticity. 
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1. Introduction 

Aluminium alloys are the second most important metallic structural materials after 

steel and are used in the broadest range of products. The variety of their applications is 

mirrored by the variety of properties they exhibit. The yield strength, work-hardening and 

fracture strain of two aluminium alloys may differ by an order of magnitude. Age-hardening 

may dramatically change these parameters even for the same alloy. In addition some 

aluminium products, including extruded and rolled sheets, possess considerable plastic 

anisotropy. Such variety of properties has quite often some common underlying physical 

mechanism, which just manifests itself differently in different conditions. An important task 

of the material science is to uncover these physical mechanisms and to express them through 

quantitative models, which can be used in practical applications. 

 The plastic anisotropy was the first characteristic feature of aluminium which was 

explained by such quantitative physical models. In [2, 3] Taylor developed a theory of plastic 

deformation of crystals and polycrystals using aluminium for experimental validation. The 

crystals deform plastically by slip on certain slip systems, defined by crystallographic planes 

and directions. Therefore the crystalline grains of any metal are intrinsically plastically 

anisotropic. Polycrystals containing a multitude of grains may be plastically isotropic if the 

constituent grains are oriented randomly. If some grain orientations are more prominent, or in 

other words if the polycrystal has a non-random crystallographic texture, the grains with these 

orientations will have a pronounced contribution to the anisotropy of the whole sample. If the 

texture of the polycrystal is known, a variety of methods is available to determine the plastic 

anisotropy, including the full-constraint Taylor model, relaxed-constraint Taylor models, the 

self-consistent viscoplastic model and finite element models [4-10].  

The next aspect of the plastic behaviour of aluminium alloys is their work-hardening. 

Taylor in [11] and Orowan in [12] introduced the key concept of a dislocation as a defect of 

the crystal lattice which propagates through the crystal, transfers plastic deformation, carries 

elastic energy and interacts with other dislocations. Taylor analysed the dislocation structure 

in the crystal and connected the flow stress in the crystal with its dislocation density. The 

problem that remained was to determine the evolution of the dislocation density during plastic 

deformation. Kocks and Mecking [13, 14] proposed an evolution law which consists of two 

terms. The first term describes the accumulation of dislocations with plastic deformation and 

is inversely proportional to the mean free path of the dislocation before it is stopped by 

interaction with another (immobile) dislocation. The second term describes the annihilation of 
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dislocations during straining (dynamic recovery) and is proportional to the distance between 

two dislocations with opposite Burgers vector at which they annihilate each other. Different 

improvements and modifications have been proposed for this basic model including kinematic 

hardening [15] and influence of grain size [16, 17]. The original model was formulated with 

the very simplified assumptions of homogeneous dislocation density inside the material. 

Nevertheless, even after a more rigorous analysis, when the dislocation structures inside the 

grain (dislocation cells) are taken into consideration, the general evolution rule still holds [18, 

19].  

 Aluminium alloys usually contain particles of varying size and chemical composition, 

such as precipitates, dispersoids and constituent particles. Their influence on the work-

hardening was analysed from the point of view of dislocation theory by Ashby in [20, 21]. It 

was demonstrated that the dislocation density associated with non-homogeneous plastic 

deformation around non-shearable particles (geometrically necessary dislocations, as opposed 

to the statistically stored dislocations) is inversely proportional to the average distance 

between the particles. Estrin [22, 23] proposed a generalization of the Kocks-Mecking model 

where different dislocation accumulation (and consequently work-hardening) mechanisms 

were represented by their characteristic distances and linearly added together. This approach 

was used to build the models which account for the precipitate particles in [24-26].  

The two aspects of aluminium alloys – anisotropy and dislocation density based work-

hardening – were combined in a crystal plasticity model in [27] and developed further in [28]. 

The hardening in this model has the same form as in the Kocks-Mecking model, but acts on 

each slip system controlling the critical resolved shear stress instead of the global stress. This 

model only includes the evolution of statistically stored dislocations, but it may be 

generalized in the same manner as the Kocks-Mecking model with terms for other factors 

contributing to work-hardening added linearly. These terms will again be inversely 

proportional to the characteristic distance of the corresponding work-hardening mechanism. A 

crystal plasticity model which includes grain size influence is developed in [29] while 

twinning is included by its characteristic distance in [30].  

Even if the mechanical properties of an aluminium alloy are closely related with its 

microstructure, the experimental determination of the microstructure of an alloy is a difficult 

and tedious task. In [31] and [1] an attempt is made to derive the microstructure from the 

chemical composition and the thermal history of the alloy. In [1] a complete model for this is 
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proposed, which combines a precipitation model and dislocation based initial yield strength 

and work-hardening models for the 6xxx family of alloys. It is referred in this article as the 

Nanostructural Model (NaMo). The theory behind the model is developed by Myhr and co-

workers in [32-34]. The work-hardening model is a version of the Kocks-Mecking equation 

formulated in terms of global stress and strain. In [35] the NaMo precipitation model was 

used together with a crystal plasticity model to study the influence of precipitates on the 

work-hardening and anisotropy of the aluminium alloys. 

NaMo, as formulated in [1], is treating the polycrystalline nature of aluminium in a 

very simplified manner, reducing the texture and grain rotation effects to one constant 

parameter. Furthermore, it was calibrated and tested on aluminium alloys with random 

texture. In the present work, the effects of crystallographic texture are implemented into 

NaMo more properly using the crystal plasticity theory. Thus, the plastic anisotropy and the 

influence of texture and grain rotations on the initial yield stress and work-hardening are 

included in the model. A series of experiments was conducted on different temper conditions 

of the AA6060 and AA6082 alloys with pronounced texture and the results were compared to 

the predictions of NaMo with and without the crystal plasticity modification. This allows 

estimating how well NaMo works for textured aluminium alloys and to which extent the 

deviations between predictions and experimental data are caused by crystallographic texture 

effects or the underlying precipitation model. 

2. Experiments 

A series of quasi-static tensile tests were performed on cylindrical specimens made of the 

aluminium alloys AA6060 and AA6082. The compositions of the two alloys are given in 

Table 1. The specimens were taken from 10 mm thick and 90 mm wide extruded flat profiles 

at 90° to the extrusion direction and were given a separate solution heat treatment at 540o C 

for 15 minutes before they were quenched to room temperature and subsequently aged to 

tempers T4, T6x, T6, T7 and O, where the T4 temper corresponds to one week room 

temperature storage. The heat treatment is described in more detail in Table 2 (see also [36]). 

The uniaxial tensile tests were performed in a testing machine with laser gauges, allowing 

precise measurements of the specimen’s minimum diameter at high frequency. The test set-up 

made it possible to obtain the true stress-strain curve until fracture for all specimens. The 

crystallographic texture of the alloys was measured with a scanning electron microscope 
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using electron back-scattering diffraction. The results were processed using harmonic series 

expansion to find the orientation distribution function (ODF) for the alloys. These ODFs were 

used in a crystal plasticity model to calculate the yield surface of the alloys. 

 Table 1: Chemical composition of the alloys, wt%. 

Alloy Fe Si Mg Mn Cr Cu Zn Ti 

AA6060 0.193 0.422 0.468 0.015 0.000 0.002 0.005 0.008 

AA6082 0.180 0.880 0.600 0.530 0.150 0.020 0.005 0.011 

 

Table 2: Heat treatment of the alloys. 

Temper Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

T4 540°C in salt 
bath for 15 

min 

Water 
quenching 

One week at 
room 

temperature 

___ ___ 

T6x 540°C in salt 
bath for 15 

min 

Water 
quenching 

15 min at 
room 

temperature 

185°C in oil 
bath for one 

hour 

Air cooling 

T6 540°C in salt 
bath for 15 

min 

Water 
quenching 

15 min at 
room 

temperature 

185°C in oil 
bath for five 

hours 

Air cooling 

T7 540°C in salt 
bath for 15 

min 

Water 
quenching 

15 min at 
room 

temperature 

185°C in oil 
bath for one 

week 

Air cooling 

O 540°C in salt 
bath for 15 

min 

Water 
quenching 

15 min at 
room 

temperature 

350°C in salt 
bath for 

twenty four 
hours 

Air cooling 

 

A finite element model of the tensile specimen was built, with the material described by 

an anisotropic plasticity model using a two-term Voce work-hardening rule. The tensile test 

was simulated and the true stress-strain curve from the simulation was fitted to the true stress-

strain curve from the experiments by optimizing the parameters of the two-term Voce work-

hardening rule. Thus the equivalent stress-strain curve until fracture was obtained for each 
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material. It should be noted that the equivalent stress-strain curves were determined by using 

the extrusion direction as the reference direction; i.e., the obtained equivalent stress-strain 

curves are consistent with true stress vs. logarithmic plastic strain curves from uniaxial 

tension tests in the extrusion direction. The test specimens on the other hand were cut at 90° 

to the extrusion direction, because the results from tension tests in the in-plane transverse 

direction tend to be more consistent and reliable. The results are presented in Figure 1. 

 Further details on the experimental set-up and procedures, the numerical modelling and 

optimization, and the results are given in [37].   

 

a) 

 

b) 

Figure 1: Equivalent stress-strain curves for a) AA6060 and b) AA6082, using the extrusion 

direction as the reference direction [37] 
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3. Theoretical foundation 

3.1.  Nanostructural model (NaMo).  

A detailed outline of the theory and assumptions lying in the foundation of NaMo is given 

elsewhere [1, 32-34], therefore only a review of the key ideas and equations will be given 

here. The model consists of three parts: a precipitation model, a yield strength model and a 

work-hardening model.  

3.1.1. Precipitation model 

The chemical composition of the alloy and the thermal history are used as an input for 

the precipitation model. Time is discretized into small steps. The first component of the model 

is the nucleation law. It predicts the number of stable nuclei, which form at every time step. 

The incubation period is neglected and the steady state nucleation rate j  calculated according 

to  

 
( )

2
3

0
0

1
exp exp

R Rln
d

e

A Q
j j

T TC C
= − −  (1) 

where the first exponential term expresses the energy barrier against heterogeneous 

nucleation, and the second accounts for the temperature dependency of the diffusion 

coefficient. Further, T  is the temperature, R  is the universal gas constant, C is the mean 

solute concentration in the matrix, eC  is the equilibrium solute concentration at the 

particle/matrix interface, 0A  is a parameter related to the energy barrier for nucleation, dQ  is 

the activation energy for diffusion and 0j  is a pre-exponential term. The nucleated particles 

are idealized as spherical and are characterized by their radius r , solute concentration pC  and 

an interface energy. These particles may either dissolve or grow as described by the second 

component of the model – the particle radius rate law 

 i

p i

C Cdr D

dt C C r

−
=

−
 (2) 

where iC  is the solute concentration at the particle/matrix interface and D  is the diffusion 

coefficient. The Gibbs-Thomson equation [32] is used to relate iC  to the equilibrium 

concentration eC . When this equation is combined with Equation (2), an expression for the 
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critical radius 0r   for a particle that neither dissolves nor grows can be derived. At a certain 

time step during a heat treatment, particles smaller than 0r  dissolve while particles larger than 

0r  grow, which leads to the evolution of a distribution of particles of various size, i.e. a 

discrete particle size distribution (PSD) with a defined number of particles within each size 

class ( )2/rr Δ±   (if 0→Δr  then the function becomes continuous). 

 A range of different particles may form in 6xxx alloys depending on the chemical 

composition and the heat treatment, but the ones that are of main interest here are the 

nanometre scale hardening particles consisting of Mg and Si (e.g. ''β  and 'β  particles), as 

well as clusters and GP-zones, which may form at room temperature. Each of these classes or 

groups of particles is represented by a separate PSD in the model, i.e. one PSD for ''β  and 

'β  particles and one for clusters and GP-zones. 

 The third component of the model is the continuity equation. It is used to find the 

mean solute concentration C in the matrix, and is based on the fact that even though there 

may be a transition between elements in solid solution and in the particles comprising the two 

PSDs during a heat treatment, the overall content of each alloying element remains constant. 

The continuity equation reads [36] 

 

3 3
0 1 2

3 3

4 4
3 3

4 4
1

3 3

p i i p j j
i j

i i j j
i j

C C r N C r N

C

r N r N

π π

π π

− +

=

− +

 (3) 

where 0C  is the initial solute concentration in the alloy, 
1pC  and 

2pC   are the concentration of 

alloying element in particles which belong to each of the two size distributions. iN  and jN    

are the number of particles per unit volume within the discrete radius intervals ( )2/rri Δ±  

and ( )2/rrj Δ±  corresponding to each of the distributions. 

3.1.2. Yield strength model 

The yield strength model uses dislocation theory to convert the results from the 

precipitation model, i.e. the mean solute concentration and the PSD, into a corresponding 

room temperature yield stress. It considers two kinds of contributions: precipitation 
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strengthening pσ  and solid solution strengthening ssσ , in addition to the intrinsic strength of 

the pure aluminium iσ .  

The precipitation strengthening contribution pσ  corresponds to the difference in yield 

stress between a material containing particles, and an identical material without particles. For 

the former material, pσ  can be attributed to the extra stress needed for a dislocation to break 

away from particles acting as obstacles along the dislocation line when the dislocation starts 

to move. A reasonable expression for pσ  can be obtained by calculating the mean obstacle 

strength of particles that interact with a bowing dislocation along the entire dislocation line by 

considering the specific strength of each individual particle according to the two governing 

mechanisms, i.e. shearing of small, and Orowan bypassing of larger particles that exceed a 

critical radius. In addition, the mean effective particle spacing must be calculated from the 

particle size distribution using the Friedel formalism [38] before pσ  can be obtained as 

described in [39].  

The solid solution contribution is due to individual atoms of Si, Mg, Mn and Cu that 

are present in the aluminium matrix. These atoms serve as weak obstacles for the dislocations 

and their overall strength contribution is calculated using the framework outlined in [32,37]. 

When several strengthening mechanisms are operating simultaneously, it is assumed that their 

contributions may be added linearly. Thus the total initial yield strength of the material is 

calculated as  

 y i ss pσ σ σ σ= + +  (4) 

3.1.3. Work-hardening model 

The work-hardening model is based on the assumption that the total dislocation 

density may be decomposed into two parts: the statistically stored and geometrically 

necessary dislocation densities sρ  and gρ , respectively, which evolve independently from 

each other. These two contributions to the dislocation density may be added linearly and 

applied in the Taylor equation to obtain the work-hardening as [11] 

 d y s gM bσ σ σ α μ ρ ρΔ ≡ − = +  (5) 
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where α  is a constant, M  is the Taylor factor, μ  is the shear modulus and b is the magnitude 

of the Burgers vector. The evolution of sρ  is described by the Kocks-Mecking equation [14] 

 ( )1 2
1 2

p
s s sd k k dρ ρ ρ ε= −  (6) 

where 1k  characterizes the generation of dislocations and is assumed constant for the 6xxx 

family of alloys, 2k  is the recovery term which depends on the solid solution concentration 

and pε  is the equivalent plastic strain. This expression may be integrated analytically which 

gives 

 
22

1 2

2

1 exp
2

p

s

k k

k

ε
ρ = − −  (7) 

The dependence of 2k  on the concentration of elements in solid solution arises from several 

mechanisms [13, 14] and is described by  

 
( )

2 1 3/4

3
ˆ

Mg

M b
k k

k C

α μ
=  (8) 

Here 3k  is a parameter, determined by calibration against experimental data, and ˆ
MgC  is the 

equivalent magnesium concentration, which is a parameter that accounts for the different 

alloying elements contribution to dynamic recovery. For Al-Mg-Si alloys, a reasonable 

estimate is the following [1]: ˆ 0.5 eff
Mg SiC C C= + , where eff

SiC  is the effective silicon 

concentration, which is obtained through a correction for the amount of Si being tied up as 

coarse particles [33]. Note that C  is taken as the mean concentration of Mg in solid solution 

for AlMgSi alloys. 

 The evolution of the geometrically necessary dislocation density is a variation of the 

Ashby equation [21], adapted for the global plastic strain  

 4

,

p
g

g o

k

b
ρ ε

λ
=  (9) 

where 4k  is a parameter, determined by calibration to tests and ,g oλ  is the characteristic 

geometric slip distance associated with the Orowan particles. The geometrically necessary 
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dislocation density only increases up to a certain value, at which recovery mechanisms are 

triggered. The critical plastic strain cε  at which this occurs depends on the volume fraction of 

the Orowan particles of , namely 

 
ref

refo
c c

o

f

f
ε ε=  (10) 

where ref
of  and ref

cε  are the corresponding values of a reference alloy. The precipitation 

model provides information about both the geometric slip distance ,g oλ  and the volume 

fraction of the Orowan particles of  [36], i.e. 

 
1

2
, 8   for  g o i i i c

i

r N r rλ

−

= >  (11) 

 34
   for  

3o i i i c
i

f r N r rπ= >  (12) 

where cr  is the particle radius defining the transition between shearable and non-shearable 

particles. Note that ,g oλ  and of  are calculated from just one of the two PSDs, i.e. the PSD 

representing β ′′  and β ′  particles, since for the other distribution representing clusters and 

GP-zones, all particles are less than the critical radius (i.e. i cr r< ).  

 

3.2. Crystal plasticity model 

3.2.1. Single crystal kinematics and kinetics 

The finite deformation formulation is used. The deformation gradient F  is 

multiplicatively decomposed into an elastic part eF  and a plastic part pF  

 e p=F F F  (13) 

Here pF  accounts for plastic slip and transforms the crystal from the initial configuration 0Ω  

into the intermediate plastically deformed configuration Ω while eF  accounts for the elastic 

deformations and rigid body rotations and transforms the crystal from the intermediate 
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configuration Ω into the current configuration Ω . The slip systems are defined by the slip 

direction vector 0
αm  and the slip plane normal vector 0

αn  in the initial configuration. They 

stay the same in the intermediate configuration and transform into vectors αm  and αn , 

respectively, in the current configuration. These vectors may be used as a basis of the plastic 

velocity gradient pL  in the intermediate configuration 

 ( )
1

0 0
1

n
p p p α α α

α

γ
−

=

= = ⊗L F F m n  (14) 

where αγ  is the slip rate on slip system α  in the intermediate configuration and n  is the total 

number of slip systems.  

The elastic Green strain tensor eE  in the intermediate configuration may be defined as 

 ( ) ( ) ( )1 1
,

2 2

T Te e e e e e e= − = − =E F F I C I C F F  (15) 

where eC  is the elastic right Cauchy-Green deformation tensor and I  is the unity tensor. If 

the Cauchy stress tensor σσσσ  is pulled back into this configuration, the second Piola-Kirchhoff 

stress tensor S  is obtained 

 ( ) ( )
1

det
Te e− −

=S F F Fσσσσ  (16) 

By assuming small elastic deformations, it is reasonable to adopt a linear hyperelastic model 

to describe the elastic behaviour  

 :S e
el= CS E  (17) 

where S
elC  is the fourth order tensor of elastic moduli. The total power per unit volume w 

consists of elastic and plastic parts 

 : :e p e e pw w w= + = +S E C S L  (18) 

The plastic power may be rewritten as a sum of powers spent on all the slip systems 

 
1

n
pw α α

α

τ γ
=

=  (19) 
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where ατ  is the resolved shear stress on slip system α , power conjugate to the slip rate αγ . 

It may be found from the second Piola-Kirchhoff stress tensor as 

 ( )0 0:eα α ατ = ⊗C S m n  (20) 

3.2.2. Flow and work-hardening rules 

The plastic flow is described by a rate-dependent rule  

 ( )

1

0 sgn
m

c

α

α α

α

τ
γ γ τ

τ
=  (21) 

where 0γ  is the reference slip rate, m  is the instantaneous strain rate sensitivity and c
ατ  is the 

history dependent critical resolved shear stress of slip system α . The initial value of yield 

strength is equal to c y
ατ τ=  for all slip systems. 

We introduce work-hardening by connecting the critical resolved shear stress rate c
ατ  

to the slip rates on the slip systems 

 
1

n

c qα β
αβ

β

τ θ γ
=

=  (22) 

where /cd dθ τ≡ Γ  is the hardening rate defined by a master curve, and qαβ  is the matrix of 

self-hardening and latent-hardening coefficients. The accumulated slip Γ  is defined by the 

evolution equation 

 
1

n
α

α

γ
=

Γ =  (23) 

and the master hardening curve is given by 

 c y s gbτ τ αμ ρ ρ= + +  (24) 

where sρ  and gρ  are the average densities of statistically stored and  geometrically 

necessary dislocations, respectively. Similarly to NaMo, it is assumed that the two dislocation 

densities may be added linearly and used in the Taylor equation to obtain the work-hardening. 

The dislocation density evolutions are connected to the accumulated slip by 
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 ( )1 2
cp cp

s s sd k k dρ ρ ρ= − Γ  (25) 

 
1

1

a

g
g sat

g

d d
bL

ρ
ρ

ρ
= − Γ  (26) 

where 1
cpk  and 2

cpk  are correspondingly the accumulation and annihilation terms for 

statistically stored dislocations, L  is a parameter proportional to the characteristic distance 

between the Orowan particles and sat
gρ  is the density of geometrically necessary dislocations 

at saturation. The evolution of the geometrically necessary dislocation density is formulated in 

a slightly different manner than in NaMo, while keeping the behaviour of linear increase and 

fast saturation at some critical value. The value of parameter a  may be chosen high enough to 

approach Equation (9) as closely as necessary. The work-hardening rate θ  is the derivative of 

the master curve cτ  with respect to the accumulated slip Γ , viz. 

 gc c s c

s g

dd d

d d d

ρτ τ ρ τ
θ

ρ ρ

∂ ∂
≡ = +

Γ ∂ Γ ∂ Γ
 (27) 

which by use of Equations (25) and (26) may be rewritten as 

 1 2

1
1

2

a

gcp cp
s s sat

gs g

b
k k

bL

ραμ
θ ρ ρ

ρρ ρ
= − + −

+
 (28) 

3.2.3. Polycrystal modelling 

The behaviour of the polycrystal is modelled using the assumption of a constant 

deformation gradient in all grains – i.e. the full-constraint Taylor model. This model does not 

provide stress equilibrium between the grains and usually slightly overestimates the global 

stress. Nevertheless, it is still fairly accurate and computationally efficient. The use of this 

model for predicting the yield stress anisotropy against other models (relaxed constraint, self-

consistent and finite element models) is discussed in [4] and [40].  

The deformation gradient is equal to the global deformation gradient for all constituent 

grains and the global Cauchy stress σσσσ  is found as an average of the local Cauchy stresses kσσσσ  

in the grains 
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1

1 gn

k
kgn =

=σ σσ σσ σσ σ  (29) 

where 
gn  is the number of grains. The contribution of all grains to the total stress is the same, 

meaning it is assumed they all have equal volume. 

 The plastic rate-of-deformation tensor p
kD  for grain k  may be found as the symmetric 

part of p
kL , i.e. 

 ( )( )1

2

Tp p p
k k k= +D L L  (30) 

and is used to define the equivalent plastic strain rate in grain k  by  

 
2

:
3

p p p
k k kε = D D  (31) 

The Taylor factor for grain k  is then defined as 

 k
k p

k

M
ε

Γ
=  (32) 

where kΓ  is the accumulated slip rate of the same grain. The Taylor factor for the polycrystal 

is then defined in the form 

 
1

1

1

1

g

g

n

k
kg

n
p

k
gg

n
M

n
ε

=

=

Γ

=  (33) 

where it was used that all grains are assumed to have equal volume in the full-constraint 

Taylor model.  

4. Parameter identification 

Before NaMo may be used to calculate the stress-strain curve of a 6xxx aluminium 

alloy, it must be calibrated against experimental data. The parameters that need to be 

calibrated are: 
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• the dislocation accumulation coefficient, 1k  

• the coefficient connecting equivalent Mg concentration and recovery, 3k  

• the coefficient connecting characteristic slip distance and geometrically 

necessary dislocation accumulation, 4k  

• the reference critical strain, ref
cε  

• the reference particle volume fraction, ref
of  

The parameters 1k  and 2k  are found by fitting the Equation  (5) for work hardening and 

Equation (7) for statistically stored dislocation density to the experimental stress-strain curves 

for two alloys with no considerable particle influence; 3k  is then found from the obtained 2k . 

The remaining parameters 4k , ref
cε  and ref

of  are found by fitting the same equations and in 

addition Equation (9) for the geometrically necessary dislocation density to the experimental 

stress-strain curve of an alloy with considerable influence of precipitate particles on the 

response. The details of the calibration and the parameter values for 6xxx alloys may be found 

in [1].  

To use the crystal plasticity version of the hardening model (CP-NaMo), it is 

necessary to find out how the output of the precipitation model of NaMo is connected to the 

parameters of CP-NaMo. The accumulation coefficient 1
cpk  is assumed constant for the 6xxx 

family of alloys, in the same way as 1k . The recovery coefficient 2
cpk  is assumed to depend on 

the equivalent magnesium concentration in the same form as 2k , i.e. 

 
( )

2 1 3 4

3
ˆ

cp cp

cp
Mg

b
k k

k C

αμ
=  (34) 

The parameter L  is proportional to the slip distance ,g oλ , viz. 

 4 ,
cp

g oL k λ=  (35) 

where 4
cpk  is a parameter. It should be noted that ,g oλ  is calculated from the precipitation 

model and has a direct physical meaning of slip distance, while L  is a parameter proportional 

to it, but also including the contribution of the calibration procedure. The geometrically 

necessary dislocation density increases until saturation value sat
gρ ; that happens when the 
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accumulated slip reaches its critical value cΓ . This value in turn depends on the volume 

fraction of Orowan particles of   analogously to Equation (10), i.e. 

 
ref

refo
c c

o

f

f
Γ = Γ  (36) 

Provided that parameter a  in Equation (26) is sufficiently large, the saturation value for the 

geometrically necessary dislocation density may be estimated without much loss of accuracy 

as  

 5
cp

sat
g

o

k

f bL
ρ =  (37) 

where 5
cpk  is a parameter. Therefore the set of constants, which must be found for CP-NaMo 

is the following 

• the dislocation accumulation coefficient, 1
cpk  

• the coefficient connecting equivalent Mg concentration and recovery, 3
cpk  

• the coefficient connecting slip distance and geometrically necessary dislocation 

accumulation, 4
cpk  

• the coefficient defining the saturation density of the geometrically necessary 

dislocations, 5
cpk  

The initial slip resistance yτ  is found directly from the initial yield stress part of NaMo. 

NaMo uses the stress relations formulated on slip system level and multiplies the result by the 

Taylor factor to transform them to global stresses. If this multiplication is left out, we obtain  

 y i p ssτ τ τ τ= + +  (38) 

where the contribution to the yield stress of the intrinsic strength of aluminium, the particles 

and the solid solution are denoted iτ , pτ  and ssτ , respectively. 

The numerical set up of CP-NaMo consists of an 8-node element with reduced integration 

(i.e. only a single integration point), using full-constraint Taylor type homogenization in the 

integration point. The explicit solver of the nonlinear finite element program LS-DYNA was 
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used. The crystal plasticity material model is implemented as a user material subroutine. This 

subroutine utilizes the explicit integration scheme by Grujicic and Batchu [41]. The single 

integration point, full-constraint Taylor method may seem rather crude, but comparison of the 

experimental tests with the explicit finite element modelling (either one or more elements per 

grain) showed that it predicts the stress rather accurately, only several percent higher than a 

much more complex and time consuming finite element model.  

  The goal of the calibration was to find a set of parameters cp
ik  that would result in the 

same stress-strain response from CP-NaMo and NaMo for the reference materials. The first 

two reference materials are AA6060 and AA6082 in T4 temper. They were chosen because 

the geometric slip distance for these materials is very high, meaning that their stress-strain 

response is not influenced by the precipitates. Therefore the 1
cpk  and 2

cpk  coefficients may be 

isolated and used to find the coefficient 3
cpk . The calibration was performed with LS-OPT 

[42], which is an optimization program that runs several LS-DYNA simulations with different 

values of material parameters and compares the results of the simulations with some reference 

data. The mean squared error is calculated for each set of values and new values are chosen in 

such a way that the mean squared error is reduced. Usually after 15-20 iterations an optimal 

set of values is found. This procedure was used for the two aforementioned materials, 

utilizing the same 1
cpk  and two different 2

cpk  as the parameters varied by LS-OPT. When the 

two 2
cpk  were found, they were used in Equation (34), together with the equivalent Mg 

concentration, known from the precipitation model, to find 3
cpk .  

 The second step was to find the precipitate related constants. For this the AA6060 

alloy in T6 temper was chosen. The geometrical slip distance for this material was small 

enough to show a considerable influence on the stress-strain response. The coefficient 2
cpk  for 

this alloy is found from the already determined coefficient 3
cpk , whereas 1

cpk  is the same for all 

alloys. The parameters L  and sat
gρ  (and thereby 4

cpk  and 5
cpk ), were found by adjusting them 

in such a way that gρ  would grow at the same rate and saturate at the same value compared 

to sρ  in CP-NaMo as in NaMo, i.e. 

 
sat sat
g g

sat sat
s sCP NaMo NaMo

ρ ρ

ρ ρ
−

=  (39) 
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and 

 
sat sat
g g

sat sat
s sCP NaMo NaMo

ε

ε
−

Γ
=

Γ
 (40) 

where sat
gε  and sat

sε  are plastic strain values at which geometrically necessary and statistical 

dislocation densities saturate in NaMo, while sat
gΓ  and sat

sΓ  are the analogous accumulated 

slip values in CP-NaMo. 

 The rest of crystal plasticity model parameters were taken from literature (e.g. [7]). 

Their values are shown in Table 3. 

 The stress-strain curves from NaMo and CP-NaMo are presented in Figure 2. Because 

NaMo uses the Taylor factor 3.1M =  corresponding to random texture, a set of 1000 random 

orientations was used as the input into the calculations. In NaMo this value stays the same 

throughout the deformation, but in CP-NaMo it evolves, as may be seen in Figure 3. The 

difference in Taylor factor is as high as 15% for large strains, leading to different shape of the 

stress-strain curve. NaMo has a characteristic saturation of the stress, where the hardening rate 

falls practically to zero, while CP-NaMo for random texture continues to harden even when 

the dislocation densities on active slip systems have saturated, because of the evolution of the 

Taylor factor. Another difference is the latent hardening parameter qαβ
 in CP-NaMo, which is 

not found in NaMo and could hardly be implemented in it in a simple way. So, if this is taken 

into account, obtaining exactly the same stress-strain curves with CP-NaMo and NaMo is not 

possible (and probably not desired) in some cases. The data from the precipitation model, 

used as the input is given in Table 4 and the obtained parameters of CP-NaMo are given in 

Table 5. The coefficient 1
cpk , constant for all materials (i.e. combinations of alloy and temper), 

is equal to 5 11.25 10 mm −⋅ .  

 We attempted a more direct calibration, where the experimental curves and CP-NaMo 

were used from the very beginning, but this attempt failed. Remarkably, the stress-strain 

curves in temper T4 for the two alloys did not fall into the assumed framework in which the  

work hardening is controlled solely by the equivalent Mg concentration, and the obtained 

values of 2
cpk  did not allow to find a reasonable value of 3

cpk . 
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Table 3: Parameters of crystal plasticity model 

, 

MPa 

, 

MPa 

, 

MPa 

, 

 s-1 

 qαβ

 
 μ , 

MPa  

a
 
 b , 

mm 

106430 60350 28210 0.010 0.005 1.4, if 
α β≠   

1.0, if 
α β=  

24400  0.3 72.86 10−⋅  

 

Table 4: Output of the precipitation and yield strength models of NaMo 

Alloy/temper ˆ
MgC , wt% ,g oλ , m of  yτ , MPa 

AA6060-T4 0.638 1.00 109  6.54 10-22 17.6 

AA6060-T6x 0.370 4.19 6.55 10-10 45.6 

AA6060-T6 0.149 2.52 10-6 1.11 10-3 61.7 

AA6060-T7 0.0450 6.34 10-7 7.52 10-3 44.9 

AA6060-O 0.645 4.40 103 0.00 12.7 

AA6082-T4 0.882 1.25 1012 6.54 10-22 42.9 

AA6082-T6x 0.511 1.25 109 1.04 10-20 68.6 

AA6082-T6 0.265 1.55 10-6 1.82 10-3 88.2 

AA6082-T7 0.189 4.63 10-7 9.71 10-3 67.3 

AA6082-O 0.288 2.50 10-5 8.55 10-3 22.7 
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Figure 2: Equivalent stress-strain curves used in the calibration of CP-NaMo. 

Table 5: The parameters of CP-NaMo. 

Alloy/temper 2
cpk  L , mm sat

gρ , mm-2

AA6060-T4 7.47 4.72 1013 1.92 1018 

AA6060-T6x 11.68 1.99 105 4.49 107 

AA6060-T6 24.59 1.20 10-1 4.37 107 

AA6060-T7 65.75 3.01 10-2 2.58 107 

AA6060-O 7.41 2.09 108 1.00 1020 

AA6082-T4 5.74 5.91 1016 1.54 1015 

AA6082-T6x 8.98 5.91 1013 9.47 109 

AA6082-T6 15.36 7.34 10-2 4.37 107 

AA6082-T7 20.26 2.20 10-2 2.74 107 

AA6082-O 14.35 1.19 5.77 105 

 

 

Figure 3: Evolution of Taylor factor M  with equivalent plastic strain for different textures. 

5. Results 

 The results of the optimization procedure described in Section 4 were used to find the 

work-hardening parameters of all the tested alloy/temper combinations. Then an equivalent 

stress-strain curve was obtained and compared to the experimental data and the basic NaMo. 

In this procedure the crystallographic texture of the alloy was used. NaMo is formulated in 

terms of slips and resolved shear stresses, and uses the Taylor factor 3.1M =  to find the 
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global stress and strain. This approach is reasonable to use for alloys exhibiting random 

texture (and perhaps weak texture), but in the case of the present experiments the texture is 

not random. Instead of a constant Taylor factor we obtain a value relevant for the actual alloy 

and also its possible evolution, as shown in Section 4.  

The equivalent stress-strain curves obtained from NaMo and CP-NaMo are compared 

with the experimental ones for all alloy/temper combinations in Figure 4 to Figure 8. These 

figures also present the work-hardening rate as a function of equivalent plastic strain and 

work-hardening. In these plots the work-hardening rate Θ is defined as  

 p

d

d

σ

ε
Θ ≡  (41) 

where σ  and  pε  denote the equivalent stress and the equivalent plastic strain, respectively, 

with the extrusion direction used as reference direction. 

 With respect to the texture of the AA6060 alloy, the actual Taylor factor is much 

lower than for a random texture as seen in Figure 3. This gives a large difference between the 

stress-strain curves obtained by NaMo and CP-NaMo. A second difference between the model 

predictions may be seen e.g. for tempers T6 and T7. The work-hardening rate predicted by 

NaMo drops very abruptly when the geometrically necessary dislocations stop to accumulate. 

This behaviour is not observed in the experiments and is quite unphysical. In CP-NaMo 

saturation of the density of geometrically necessary dislocations leads to a smooth transition 

towards lower work-hardening rate. Out of the two alloys considered, the predictions for this 

alloy are the least accurate. The error is also not systematic for either of the two models. 

While the hardening rate is predicted with reasonable accuracy for all tempers, except temper 

O, the predicted stress level is, in general, deviating considerably. The initial work-hardening 

rate of the CP-NaMo prediction for this alloy is generally lower than the one of NaMo, most 

probably because of the Taylor factor difference.  

The actual Taylor factor for the AA6082 alloy is quite close to the one for the random 

texture, and, thus, the difference between the stress-strain curves predicted by NaMo and the 

CP-NaMo is less pronounced. However the evolution of the Taylor factor is more noticeable 

than for the AA6060 alloy, which leads to better predictions of the work-hardening rate at 

large strains with CP-NaMo than NaMo. The predictions for the O temper fail again, but for 

the other tempers the predictions are fairly accurate. The initial yield stress deviates from the 
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experimental one for tempers T6x and T7, but the predictions of the work-hardening are 

reasonably good for all tempers except the O temper.  

  

a) 

 

 

b) 

Figure 4: Comparison between NaMo, CP-NaMo and experimental data for the T4 temper of 

the two alloys in terms of the equivalent stress, σ , vs. the equivalent plastic strain, pε , and 

the work-hardening rate, Θ, vs. the work-hardening, d yσ σ σΔ ≡ − :  a) AA6060-T4 and b) 

AA6082-T4 
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a) 

 

b) 

Figure 5: Comparison between NaMo, CP-NaMo and experimental data for the T6x temper of 
the alloys: a) AA6060-T6x and b) AA6082-T6x 
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a) 

 

b) 

Figure 6: Comparison between NaMo, CP-NaMo and experimental data for the T6 temper of 
the alloys: a) AA6060-T6 and b) AA6082-T6 
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a) 

 

b) 

Figure 7: Comparison between NaMo, CP-NaMo and experimental data for the T7 temper of 
the alloys: a) AA6060-T7 and b) AA6082-T7 
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a) 

 

b) 

Figure 8: Comparison between NaMo, CP-NaMo and experimental data for the O temper of 
the alloys: a) AA6060-O and b) AA6082-O 

6. Discussion and conclusions 

CP-NaMo provided some improvements over the basic NaMo, mainly as a means to 

account for the texture influence in a better way than by just using a constant Taylor factor, 

but overall it did not improve the results, which are still dominated by the precipitation and 

yield strength model. They may be improved by including some other possible dislocation 

obstacles. For example the Cr dispersoids that are present in the AA6082 alloy may be added 
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as another sort of non-shearable particles. In this alloy the yield strength was underestimated 

for all but the T7 temper, unlike the other alloy where the stress was either overestimated or 

underestimated without a preference. 

The precipitation model provides input for both the yield stress and the work-hardening 

model, and is therefore crucial for the accuracy of the predictions of the resulting stress-strain 

curves. Accordingly, inaccurate predictions of the precipitate structure will inevitably lead to 

deviations between the predicted and measured initial yield strength as well as work-

hardening. There are a number of simplified assumptions both for the nucleation and the 

growth and dissolution equations which may be violated and cause errors in the predictions.  

Inaccurate predictions by the precipitation model is probably a major reason for the 

deviations between predictions and measurements for the O-temper condition since this 

particular heat treatment has not been comprehensively investigated and verified for NaMo 

previously. For the O-temper, the precipitation model predicts almost no formation of 

particles for the AA6060 alloy, which is an unrealistic result, since there will be precipitation 

of coarse particles taking place during ageing at 350oC [43], which is not captured by the 

nucleation law. A more accurate description of the nucleation would have changed the 

complete stress-strain curve through the introduction of coarse non-shearable Orowan 

particles and a corresponding increase in the density of geometrically necessary dislocations 

as well as an associated lowering of the solid solution level, leading to increased dynamic 

recovery and a decreased density of statistically stored dislocations.  

The precipitation model is also a main reason for the deviations between NaMo and 

measurements for the underaged T6x temper condition. This is a demanding ageing heat 

treatment to predict since the nucleation rate may be very low for a certain time period at the 

start of the ageing, known as the “incubation time”. Since the incubation time is not included 

in the nucleation laws of the precipitation model, NaMo may be somewhat inaccurate for the 

early stages of ageing. For the present materials, the low composition alloy AA6060 exhibits 

a distinct incubation period, where the macroscopic yield strength remains almost constant, 

and where NaMo overestimates the precipitation and the corresponding yield stress 

significantly, as can be seen in Figure 5 (a). This is in contrast to the AA6082 alloy, which 

due to its higher alloy content, does not show a pronounced incubation period and for which 

NaMo tends to underestimate the initial yield stress, as can be seen in Figure 5 (b). 
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The numerical implementation of CP-NaMo could be made more advanced and a finite 

element model of a polycrystal with realistic grain shapes modelled with many elements could 

be used, but the increase of the computation time would be dramatic, while the accuracy of 

stress predictions would most probably be minor. 

A common trend may be noticed for the two alloys. Whenever the strains reach high 

values, the hardening rate of the experimental stress-strain curve shows two distinct regions. It 

is especially visible on the Θ - dσΔ  plots. The work-hardening rate Θ  decreases linearly 

until some point and then the slope changes and starts decreasing at a slower rate. This is 

certainly a consequence of the two-term Voce hardening rule, which was used to extract the 

equivalent stress from the after-necking regime of the test samples. However, the two-term 

Voce rule fits very well to the experimental data, and much better than a one-term Voce rule. 

The first term describes the initial hardening and saturates quickly, while the second term 

describes the slower saturating hardening at higher strains. Indeed, real alloys exhibit non-

zero work-hardening also at the later deformation stages. It is denoted Stage IV hardening, it 

has a constant rate and is quite low, yet noticeable. The NaMo and CP-NaMo on the other 

hand are an approximation for a one-term Voce rule and therefore cannot properly describe 

hardening at higher strains. It should be noted that the particle-induced hardening is in a way 

the second term, but it behaves differently than the second term displayed by the experimental 

data. It saturates at relatively small strains and gives no contribution in the later stages of 

deformation. For example in [44] the Stage IV hardening is studied experimentally and a 

model is proposed, which accounts for it. This model connects Stage IV hardening with the 

dislocation substructure and adds a term to Equation (24) which starts to dominate the 

hardening rate at large strains. Some similar approach could be used for NaMo.  

Out of 10 alloy/temper combinations, NaMo and CP-NaMo failed to predict the behaviour 

of 5, succeeded for 2 and made a mistake in the initial yield stress for 3. One should 

remember that these results were obtained without any reference to the actual tensile tests 

performed on these specimens, just using the chemical composition, the thermal history and 

texture measurements. Even if all the difficulties encountered in explaining the plastic 

behaviour of aluminium alloys based on microstructure are considered, this result is not 

satisfactory and leaves a lot of room for improvement in future work. 
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Abstract 

 The crystal plasticity theory predicts that hardening on a particular slip system and its 

corresponding work-hardening rate will depend on the slip activity on both this slip system 

and all others. The exact form of this dependence is defined by the latent hardening 

description in form of the latent hardening matrix or the interaction matrix. It has been 

assumed that this matrix describes the relative strength of various dislocation interactions and 

is therefore the same for a wide range of alloys with the same lattice structure. Different 

methods have been used to estimate the values of the interaction matrix components: one is 

experimental and uses strain-path changes; another simulates the dislocations dynamics in a 

crystal directly at the microscale and estimates the strength of the forming locks. In this work, 

the influence of the interaction matrix (and thus latent hardening) on the development of 

plastic anisotropy is studied. An extruded AA6060 alloy is tested in uniaxial tension in 

different directions and the anisotropy of the alloy is found to evolve considerably throughout 

the deformation. A crystal plasticity model is used to simulate the experimental tests, and the 

use of different interaction matrices is evaluated. A noticeable influence on the predicted 

evolution of plastic anisotropy as well as the stress-strain field and slip inside the constituent 

grains is found. 
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1 Introduction 

The mechanisms of plastic deformation of metallic materials at the microscale can be 

described by the crystal plasticity theory. Metals and alloys are crystalline materials and the 

basic deformation mechanism in the plastic regime is represented by slip on specific 

crystallographic planes and directions denoted slip systems. The kinematics of this type of 

plastic deformation was first described by Taylor in [1, 2]. The plastic deformation 

accumulating on the slip systems leads to an increase in the resolved shear stress, i.e. the 

material work-hardens. The work-hardening in a crystal is particularly complex, because the 

slip resistance increases not only on the active but also on the non-active slip systems. The 

work-hardening of each slip system is therefore divided into self and latent hardening. The 

influence of latent hardening on the plastic deformation of a single crystal was observed 

already in [2], where the slip systems were activated or remained inactive depending not only 

on the orientation of the crystal but also on its deformation history. The response of a 

polycrystal depends on the properties of the constituent crystals and will also be affected by 

latent hardening. Therefore, predicting the properties of a polycrystal depends, among other 

things, on a good prediction of the latent hardening. This problem has been approached in 

different ways. The basic assumption that all non-active systems harden similarly was used in 

phenomenological models [3-5], where the self and latent hardening were described using two 

independent components. A more complex approach within the phenomenological framework 

was used in [6].  

 In [7] Taylor proposed a relationship between the resolved shear stress on the slip 

systems and the dislocation density in the crystal. It was combined with an equation 

describing the evolution of the dislocation density in [8] and [9], formulated for global stress 

and strain in the material. Later in [10] it was modified by accounting for dislocation densities 

on different slip systems. In this model, the dislocations interact with each other and get 

pinned on each other, forming different types of dislocation locks [11]. Depending on the 

relative position of the slip systems, these locks are divided into coplanar, collinear, Hirth 

(normal), glissile and sessile (Lomer-Cottrel) types. The relative strength of these locks 

combined together with the self-hardening, constitutes an interaction matrix with 6 

independent components. This matrix in principle defines both the flow stress (i.e. the stress 

which is necessary to overcome the lock and to start the dislocation movement and plastic 

deformation) and the hardening rate – the stronger the lock, the more easily the dislocations 

get caught into it, contributing to the work-hardening. Teodosiu [10] used a very simple 
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interaction matrix, based on the assumption that the self-hardening was negligible compared 

to latent hardening, which was the same on all slip systems (a similar approach was used in 

[12] for modelling the plastic behaviour of copper). 

The interaction between different slip systems and latent hardening were studied 

experimentally in [13, 14] and [15] on aluminium single crystals and in [16] on copper. The 

method used consisted in deforming the specimen in order to activate some specific slip 

systems, followed by a change in deformation path and then measuring the resistance on the 

other slip systems. The results were not very accurate or consistent with each other, probably 

due to the complexity of the experimental procedure. However, some general conclusions 

were made: the interaction matrix was reduced to 4 independent components, corresponding 

to different types of locks and these components were arranged from strongest to weakest. 

Coplanar, collinear and Hirth types were united under one value. These results were used in 

[17-20]. The model used in the latter treated the interaction matrix for flow stress and 

hardening differently. It was assumed that the flow stress is dominated by the averaged short-

range interactions between dislocations and the interaction matrix in the strength expression 

was reduced to either one common coefficient or two – for self and latent hardening.  

 A new approach, which uses advances in computational mechanics, has been used to 

find the values of the interaction matrix components. It uses dislocation dynamics 

simulations, where the dislocations in a deforming crystal are modelled explicitly as moving, 

interacting linear defects in the lattice. In [21-23] the components of the interaction matrix 

were obtained by this method. The results were not consistent with [13]: the collinear 

interactions were shown to be much stronger than other types and merging coplanar, collinear 

and Hirth type interactions into one matrix component was shown to be unreasonable. Though 

these results were obtained under some strict assumptions (small strains, elastic constants and 

other material parameters for pure copper) they provide a way to estimate the interaction 

matrix for any face centred-cubic (FCC) metal.  

 In [24] the strain-path change approach was used again to try to find the interaction 

matrix of an FCC material in the light of these new results. Copper specimens were subjected 

to strain-path change (from pure shear to uniaxial tension) and the obtained stress-strain data 

were used to calibrate a model similar to the one proposed by Teodosiu [10, 25] and a 

phenomenological model relying on local hardening.  

 The crystal plasticity models have been known and used in the modelling of single 

crystals and polycrystals for a long time, thus the latent hardening has been also studied and a 

large volume of experimental results has been accumulated. However, what the actual latent 
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hardening matrix (or interaction matrix) for any given material is still remains an open 

question. The results obtained with different experimental and numerical procedures are quite 

different from each other. On the other hand, the obtained results are not tested on different 

kinds of loading conditions and materials. As stated above, the latent hardening is an 

important factor in the plastic deformation of a crystal and its influence should probably 

express itself in a variety of ways, not limited to the case of changing strain-paths.  

 In the present work, an experimental study is performed for an extruded aluminium 

alloy AA6060 in temper T4 with strong cube texture. Tensile tests are carried out in different 

material directions of the flat profile using cylindrical samples. The average true stress and the 

average true strain within the minimum cross-section are measured to failure. The 

experiments show that the anisotropy in flow stress and plastic flow is not constant but 

evolves considerably throughout the whole deformation process. To evaluate the influence of 

the interaction matrix (or latent hardening) on the predicted plastic anisotropy, these tests are 

modelled using the crystal plasticity finite element method (CP-FEM) with different 

interaction matrices and the predicted global response is compared to the experimental one. 

The local response at the level of the slip systems obtained in the CP-FEM simulations with 

different interaction matrices is also discussed.   

The article is organised as follows. The mechanical tests on the extruded aluminium 

alloy AA6060 in temper T4 are described in Section 2. A review of the adopted crystal 

plasticity models is given in Section 3, while the finite element modelling is described in 

Section 4. The procedure of the calibration of the crystal plasticity models is presented in 

Section 5 using corrected data from the mechanical tests. Section 6 presents the results from 

the experimental and numerical studies and discusses the findings. Conclusions are provided 

in Section 7. 

2 Experimental results 

 

The material, which was used as a model material, is the AA6060 aluminium alloy in 

T4 temper, delivered as an extruded flat profile with 10 mm thickness and 90 mm width. 

There are several reasons for choosing this alloy and heat treatment for this study. It is a 

recrystallized material with large equiaxed grains (see Figure 1), so that the influence of grain 

morphology on the material properties is small. The material is very ductile, so that the stress-

strain curve for strains up to 140% may be obtained. The T4 temper corresponds to heating 
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the material at 540°C in salt bath for 15 min, followed by water quenching and storage at 

room temperature for prolonged time. This makes sure that Mg and Si, which are the primary 

alloying elements, are present in the alloy in form of solid solution and GP-zones/clusters, 

while precipitate particles are not formed during natural ageing. Depending on their size, the 

precipitates may act as a source for geometrically necessary dislocations during plastic 

deformation, in addition to the statistically stored dislocations [26], which cannot be described 

by the work-hardening rules adopted in this work.  

The chemical composition of the alloy is given in Table 1. The material was analysed 

in the scanning electron microscope using electron back-scattering diffraction (EBSD) and 

EDAX TSL OIM software to provide grain morphology and texture. The grain morphology 

and the Orientation Distribution Function (ODF) are presented in Figure 1 and Figure 2, 

respectively. The EBSD measurements were carried out in the plane defined by the extrusion 

and normal directions of the profile, using 10 μm steps on a square grid. The ODF was 

calculated from the pole figures in the EDAX TSL OIM software using a harmonic series 

expansion and triclinic sample symmetry [27]. The total number of measured orientations (or 

grains) in the sample is 2611. The main component of the texture is a strong cube texture with 

a minor Goss component. Both the texture and the grain morphology are typical for 

recrystallized alloys.  

 

Table 1: Chemical composition of the alloy in wt%. 

 

Fe Si Mg Mn Cr Cu Zn Ti 

0.193 0.422 0.468 0.015 0.000 0.002 0.005 0.008 
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Figure 1: Grain morphology of the AA6060 alloy. 

 

 

 

Figure 2: Orientation Distribution Function (ODF) for the AA6060 alloy 
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The tensile specimens were obtained from the extruded flat profile at different angles 

θ   to the extrusion direction with 22.5° interval (i.e., θ  equals 0°, 22.5°, 45°, 67.5° and 90°). 

Three specimens were tested for each direction, giving a total of 15 tests. The specimen 

geometry is shown in Figure 3. A rectangular coordinate system xyz  is defined such that the 

x -axis is in the transverse direction and the y -axis is in the longitudinal direction of the 

specimen, while the z -axis is always in the thickness direction of the extruded profile. Two 

laser gauges were measuring the diameters of the specimens in the width and thickness 

directions at high frequency during the tests, so the minimum diameters before and after 

necking are known with high accuracy. If we denote the measured diameters xD  and zD , and 

assume that the deformed cross section is elliptical in shape (which is a reasonable 

assumption for an orthotropic material), then we may find the current cross-section area as  

 
4 x zA D D
π

=  (1) 

The true (Cauchy) stress is found as  

 y

F

A
σ =  (2) 

where F  is the measured tensile force. If we also assume plastic incompressibility, the 

logarithmic strains may be expressed as 

 0

0 0

ln , ln , lnx z
x y z

D A D

D A D
ε ε ε= = =  (3) 

where 0D  and 2
0 04A Dπ=  are the initial diameter and cross-section area of the specimen, 

respectively. The logarithmic strain is also used further in this work. The strain ratio is 

defined as  

 x
y

z

d
r

d

ε

ε
=   (4) 

which equals unity for isotropic materials.  

The results from the tensile tests are presented in Figure 4 and Figure 5. Figure 4 a) 

presents representative true stress-strain curves to failure, whereas the scatter between parallel 

tests is displayed in Figure 4 b). These results clearly demonstrate the anisotropic work-

hardening of the AA6060 alloy. Figure 5 a) presents the plastic flow in terms of the strain in 

the transverse direction of the tensile specimen as a function of the thickness strain. The 

thickness direction of the specimen always coincides with the thickness direction of the 
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profile, while the width direction of the specimen is rotating and coincides with the width 

direction of the profile for the 0° orientation and with the extrusion direction for the 90° 

orientation. The strain ratio as function of tensile strain and tensile direction is plotted in 

Figure 5 b). The anisotropy of the plastic flow is initially very strong but diminishes with 

tensile straining due to texture evolution. Since the results for the three specimens of each 

orientation are very close to each other, a representative curve for each orientation is shown 

and used further. 

 

Table 2: Interaction matrix for FCC crystals as defined by Franciosi [15].  

 

 A2 A3 A6 B2 B4 B5 C1 C3 C5 D1 D4 D6 

A2 0g  1g  1g  3g  4g  4g  2g  4g  5g  2g  5g  4g  

A3  0g  1g  4g  2g  5g  4g  3g  4g  5g  2g  4g  

A6   0g  5g  5g  2g  5g  4g  2g  4g  4g  3g  

B2    0g  1g  1g  2g  5g  4g  2g  4g  5g  

B4     0g  1g  5g  2g  4g  4g  3g  4g  

B5      0g  4g  4g  3g  5g  4g  2g  

C1       0g  1g  1g  3g  4g  4g  

C3        0g  1g  4g  2g  5g  

C5         0g  4g  5g  2g  

D1          0g  1g  1g  

D4           0g  1g  

D6            0g  

 

 

Figure 3: Uniaxial tensile test specimen geometry. 
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      a) 

 

      b) 

Figure 4: True stress yσ  versus logarithmic strain yε  curves for specimens with different 

orientations θ : a) representative curves, b) curves from all three specimens of each 

orientation with a 50 MPa shift between the orientations. 
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      a) 

 

      b) 

Figure 5: a) Logarithmic width strain xε  versus logarithmic thickness strain zε  for the 

specimens in different directions and b) the strain ratio yr  versus longitudinal logarithmic 

strain yε .  
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3 Constitutive modelling  

 

 The finite deformation formulation is used. The total deformation of the crystal from 

the initial configuration 0Ω  to the current configuration Ω  is mapped by the deformation 

gradient tensor F , which may be multiplicatively decomposed into elastic and plastic parts 

[28]   

 e p=F F F   (5) 

where pF  maps the transformation between the initial configuration 0Ω  and the intermediate 

plastically deformed configuration Ω , and eF maps the transformation from Ω  to Ω . Thus, 

pF  accounts for plastic slip and eF  accounts for elastic deformations and rigid body 

rotations. The slip systems in the initial and intermediate configurations are defined by 

vectors 0
αm  and 0

αn  — the slip direction and slip plane normal, respectively. These vectors 

are connected to the lattice and remain unchanged by pF , while eF  transforms them into 

current configuration vectors αm  and αn . Here α  identifies the relevant slip system. The 

plastic velocity gradient in the intermediate configuration pL  is defined as  

 ( )
1

0 0
1

n
p p p α α α

α

γ
−

=

= = ⊗L F F m n   (6) 

where αγ  is the slip rate on slip system α  and n  is the total number of slip systems (12 in the 

case of an FCC lattice). The elastic Green strain tensor eE  in the intermediate configuration is 

defined as  

 ( ) ( )1
,

2

Te e e e e= − =E C I C F F   (7) 

where eC  is the elastic right Cauchy-Green deformation tensor and I  is the unity tensor. The 

second Piola-Kirchhoff stress tensor S  in the intermediate configuration may be found from 

the Cauchy stress tensor  as 

 ( ) ( )
1

det
Te e− −

=S F F F   (8) 

This stress is power conjugate with the elastic Green strain tensor eE  and may be found from 

the hyperelastic law 

 :S e
el=S C E   (9) 
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where S
elC  is the tensor of elastic moduli. In the case of orthotropic symmetry it is defined by 

three independent components, describing the elastic anisotropy of the crystal.  

 The stress acting on the slip systems and power conjugate with the slip rate αγ  is the 

resolved shear stress ατ . It is found from the second Piola-Kirchhoff stress tensor as 

 ( )0 0:eα α ατ = ⊗C S m n   (10) 

 

 The flow rule used here is the well-known viscoplastic rule [29] which controls the 

activation of the slip systems 

 ( )

1

0 sgn
m

c

α

α α

α

τ
γ γ τ

τ
=   (11) 

where 0γ  is the reference slip rate, m  is the slip rate sensitivity parameter and c
ατ  is the slip 

resistance of slip system α .  

 The Teodosiu-type hardening models use the dislocation density as the hardening 

parameter. Then the hardening of slip system α  is described by an equation proposed in [7] 

and [10]: 

 0
1

n

c a b dα αβ β

β

τ τ μ ρ
=

= +   (12) 

where a  is a dimensionless coefficient, μ  is the elastic shear modulus, b  is the length of the 

Burgers vector, βρ  is the dislocation density on slip system β , and dαβ  is the interaction 

matrix, showing the relative strength of interaction between the dislocations on slip systems 

α  and β . The initial slip resistance 0τ  is assumed to be the same on all slip systems. The 

dislocation density βρ  is assumed to have initially a negligibly small positive value. The 

dislocation density evolves according to [9, 10] 

 
1

1 1
2

n

cg y
b K

α αβ β α α

β

ρ ρ ρ γ
=

= −  (13) 

where K  is a dimensionless parameter that defines the accumulation of dislocations, cy  is the 

distance at which two dislocations with opposite Burgers vectors annihilate each other. gαβ  is 

the interaction matrix, similar to dαβ , but in this case the strength of dislocation interaction 

defines the accumulation of forest dislocations on slip system α  depending on the dislocation 
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density on system β . The total number of components in each of the interaction matrices gαβ  

and dαβ  matrix is 144. The number of independent components is 6, corresponding to 

different types of the slip systems mutual orientations. The interaction matrix gαβ  is given 

explicitly in Table 2 the interaction matrix dαβ  has an analogous structure. 

 The phenomenological models describe work-hardening on slip systems with some 

convenient function. The latent hardening description is usually simpler than in the Teodosiu-

type models and is limited to one matrix, connecting hardening rate with slip rate. As a typical 

example of the phenomenological model with this latent hardening description we consider 

the two-term Voce rule 

 ( )
1

n

c qα β
αβ

β

τ θ γ
=

= Γ   (14) 

where qαβ  is the matrix of self-hardening and latent-hardening coefficients, and the 

accumulated slip Γ  is defined by the evolution equation 

 
1

n
α

α

γ
=

Γ =   (15) 

The master hardening rate ( )θ Γ  is defined as 

 ( )
2

1

exp k
k

k k

θ
θ θ

τ=

Γ = − Γ   (16) 

where kθ  and kτ  are material parameters. The initial slip resistance 0c
ατ  is assumed equal for 

all slip systems.  

 In the numerical implementation of the single crystal plasticity model into the finite 

element method, one element may either represent a part of a grain (or possibly the whole 

grain) or it may represent many grains. In the latter case, the full-constraint Taylor method is 

used here to compute the element stresses. The full-constraint Taylor-type homogenisation 

assumes a constant deformation gradient throughout all the grains of a polycrystal, ignoring 

stress equilibrium, and the total stress is obtained as a simple average of the stresses in the 

grains: 

 
1

1 gn

g
ggn =

=   (17) 
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where g  is the Cauchy stress in grain g , and gn  is the total number of grains. The grains are 

assumed to have equal volume.  

4 Finite element modelling 

 The uniaxial tensile test was modelled using the finite element method. In all 

simulations the solid linear eight node “brick” elements with selectively reduced integration 

were used. This type of finite elements is usually avoided in the context of crystal plasticity 

simulations. The main reason for this is that the actual grains or their representation with 

Voronoi tessellations are too complex to represent with a mesh consisting of regular 

hexahedra, so the grain volume and grain boundary shape will be only approximated, while 

the tetrahedral elements may represent them accurately. Still, as it was found in [30], the use 

of hexahedral elements in crystal plasticity simulations does not affect the global response of 

a modelled polycrystal. Considering the local response, the use of tetrahedral elements is 

necessary if the goal is to approximate a real polycrystal grain morphology as precisely as 

possible. On the other hand, if the goal is to model some representative polycrystal, e.g. 

consisting of equiaxed grains with similar volume, then the choice of element type is not as 

critical. The representation of grain boundaries in such models is usually rather simplified and 

abstract, and there is no evidence that the smooth grain boundary of tetrahedral mesh is 

substantially better than the jagged boundary of a hexahedral mesh in predicting the global 

stress-strain response. The hexahedral element also has an advantage of numerical efficiency. 

The linear tetrahedral elements give a noticeably stiff solution compared to quadratic 

tetrahedral or linear hexahedral [31], while the number of degrees of freedom for a linear 

hexahedral element is lower than for a quadratic tetrahedral (8 nodes against 10). In our case, 

the polycrystal was represented by cubic “grains” of equal volume, i.e. equal number of 

elements per grain.  

 The finite element program LS-DYNA was used for all simulations. The crystal 

plasticity material model was implemented as a user-material subroutine [32]. The subroutine 

utilizes an explicit integration scheme by Grujicic and Batchu [33]. Explicit integration of the 

momentum equations was used with mass scaling to reduce computation time.  

 The response of the material was studied by using a representative volume element 

(RVE) with periodic boundary conditions. In some cases the Taylor type homogenisation was 

used to reduce computation time. In this case, one element was used as an RVE and periodic 

boundary conditions were applied to its nodes. The tensile tests in different directions were 
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simulated by rotating the texture around the z -axis (i.e. the thickness direction) by the 

appropriate angle. The texture was represented by a set of 1000 orientations, picked randomly 

from the total set of 2611 measured orientations. To ensure that this set represents the total 

texture well, several sets were picked in this way and ODFs were created for them. The 

difference in ODFs was insubstantial.  

 Several meshes with different number of elements representing each grain were tested. 

The corresponding stress-strain curves are shown in Figure 6 using parameters identified 

below and the interaction matrix of Fivel et al. [18]. If more than 1 element per grain is used, 

the gradients of the stress-strain fields inside the grains may be modelled. The higher mesh 

resolution allows for better compatibility of the neighbouring grain deformations, relaxing the 

resulting local stresses and reducing the global average stress. The difference between the 

global response of a mesh with 8000 elements and meshes with 27000 or 64000 elements is 

not very large, while the computation time is roughly proportional to the number of elements. 

In the following, the Taylor model was used only for the identification of the parameters of 

the different hardening rules due to its computational efficiency. A mesh with 8000 elements 

was used for all other simulations where each grain was represented by 8 elements, see Figure 

7.  

 

Figure 6: Stress-strain curves from FE models with different mesh resolution. 
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Figure 7: FE mesh with 8000 elements representing 1000 grains. 

5 Parameter identification 

 

The above described numerical setup provides the framework for uniaxial tension, 

where the only component of the stress tensor is the tensile stress. On the other hand, in the 

experiments the stress situation becomes complex after necking, with the triaxial stress field 

contributing to the true stress. To remove this influence and find the corrected stress, the 

following procedure was used. The specimen was modelled using the finite element method. 

The material was represented by a phenomenological plasticity model with anisotropic yield 

function [34] and isotropic hardening, described by a two-term Voce rule. The shape of the 

yield surface for the AA6060 material was found from the texture data using crystal plasticity 

and the full-constraint Taylor model [35]. The parameters in the Voce rule were determined 

through an optimization procedure using the LS-OPT software [36]. Simulation of the tension 

test was performed with different sets of parameters in the Voce rule. The true stress-strain 

curve was computed and compared with the experimental one. This was repeated until both 

curves were coinciding thus providing an optimum set of parameters for the Voce rule.  A 

detailed description of the procedure is given in [37]. 

.  
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This procedure was used to find the corrected stress in the 90° orientation, which was 

taken as the reference direction. Let θσ   denote the corrected stress at orientation θ   and let 

p
θε   be the corresponding logarithmic plastic strain. Since the 90° orientation is chosen as the 

reference direction, we will define the equivalent stress by 90eqσ σ≡  and the equivalent plastic 

strain by 90
p

eqε ε≡  . The equivalent plastic strain for other orientations is defined from the 

incremental work relation 

   p p
eq eqdw d dθ θσ ε σ ε≡ =   (18) 

where θσ   and eqσ   are evaluated at the same level of specific plastic work pw .  

To find the corrected stress θσ  in other directions, the Bridgman correction [38] was 

used, viz.  

 
( ) ( )1 2 / ln 1 / 2

y

R a a Rθ

σ
σ =

+ ⋅ +
  (19) 

where a  is the minimum radius and R  is the radius of curvature of the neck. The geometry of 

the neck was estimated by the relation proposed by Le Roy et al. [39], i.e.  

 ( )p p
u

a
k

R θ θε ε= −   (20) 

where p
uθε  is the logarithmic plastic strain at the start of necking at orientation θ  and k  is a 

parameter. This parameter was found for the 90° direction by fitting the corrected stress-strain 

curve found from Equation (19) to the equivalent stress-strain curve found from the 

optimization procedure described above. The obtained value of 0.45k =  was then used for all 

other orientations, while p
uθε  was found directly from the directional tensile tests. The 

corrected stress-strain curves are presented in Figure 8.   
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Figure 8: Flow stress (or corrected stress) versus equivalent strain for samples in different 

directions, where the flow stress 90σ  at orientation 90θ = °  equals the equivalent stress eqσ .    

 

 The second stage of the study was to identify the parameters of the crystal plasticity 

model. The parameters 0γ , μ , m  and b  in Equations (11)–(13) may be found in [10] and 

[19]. However, of principal interest here are the components of the interaction matrices dαβ  

and gαβ  in addition to the parameter a . They were taken from different sources and may be 

divided into three categories. The first one proposed in [10] and [12] assumes that the latent 

hardening is dominating and equal for all dislocation locks. It was used in simulations of Cu 

behaviour but the same kind of arguments may be applied to Al as another FCC metal. The 

second one is the four-component interaction matrix gαβ  in Equation (13) for the dislocation 

density evolution following the conclusions of Franciosi [13]. They are also usually 

normalized, so that the coefficient 5 1d = . In both above approaches the interaction matrix in 

Equation (12) is reduced to one or two components (for self and latent hardening). In the third 

category, both interaction matrices have six independent components. The values of the used 

matrices with corresponding references are given in Table 3 and Table 4. In the case of two-
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term Voce hardening, the self-hardening is assumed equal to unity, while the latent hardening 

term ,qαβ α β≠  is equal to 1.4, following the conclusions in [14]. This value is most widely 

used in the literature.   

 The remaining parameters are the work-hardening parameters K  and cy , or kθ  and kτ  

( 1,2k = ) in the case of the two-term Voce rule, which have to be fitted to the experimental 

data. This was done using the optimization program LS-OPT. As described previously, it fits 

the output of LS-DYNA (e.g. in form of a stress-strain curve) to a target curve (in this case 

the experimental equivalent stress-strain curve in the 90° direction) by varying chosen 

parameters of the LS-DYNA simulations (in this case K  and cy  or kθ  and kτ ). After 

calculating the mean squared error between the simulated and target curves it adjusts the 

parameters in such a way that the error is reduced at the next iteration. During this procedure 

LS-DYNA simulations are run many times, so the numerical model needs to be rather 

efficient, if the optimization process is to be finished in reasonable time. Therefore, the full-

constraint Taylor model was used. The use of this homogenisation procedure against others, 

like the relaxed-constraint Taylor model and the viscoplastic self-consistent model is 

discussed in [40, 41].  

 The initial slip resistance 0τ is assumed to be equal for all the models. It was found 

through the aforementioned fitting procedure, where 0τ  was the only variable, using the two-

term Voce work-hardening rule – it is the most computationally efficient model – and used for 

all models. For this material 0 27 MPaτ = . 

 The results of the optimization procedure are presented in Table 5 and Table 6. One 

may notice that for the interaction matrices with similar structure (i.e. the 6 or 4 component 

matrix) the K  and cy  parameters are also similar. The stress-strain curves obtained with 

different matrices, compared to the experimental target curve are presented in Figure 9. By 

varying just two parameters, it was possible to fit the crystal plasticity models to the 

experimental target curve, with only small discrepancies between the models with different 

matrices. This provides a common reference point for their comparison. Then uniaxial tension 

in different material directions was simulated, using these work-hardening parameters and the 

8000 element mesh described above. 
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Table 3: Interaction matrix for strength, Equation (11). 

 

Parameter sets a  0d  1d  2d  3d  4d  5d  

Teodosiu et al. (1991) [10] 1 0.42 0.52 0.52 0.52 0.52 0.52 

Delaire et al (2000) [12] 1 0.52 0.72 0.72 0.72 0.72 0.72 

Tabourot et al. (1997) [17] 0.3 1 1 1 1 1 1 

Fivel et al. (1998) [18] 0.3 1 1 1 1 1 1 

Dumoulin et al. (2000) [19] 1 0.3 0.07 0.07 0.07 0.07 0.07 

Tabourot et al. (2001) [20] 1 0.16 0.11 0.11 0.11 0.11 0.11 

Madec et al. (2003) [22] 1 0.084 0.084 0.051 1.265 0.075 0.084 

Devincre et al. (2008) [23] 1 0.122 0.122 0.07 0.625 0.137 0.122 

Gérard et al. (2012) [24] 0.38 0.025 0.01 0.04 14.3 0.6 0.5 

 

Table 4: Interaction matrix for dislocation density evolution, Equation (13). 

 

Parameter sets 0g  1g  2g  3g  4g  5g  

Teodosiu et al. (1991) [10] 0 1 1 1 1 1 

Delaire et al (2000) [12] 0 1 1 1 1 1 

Tabourot et al. (1997) [17] 0.2 0.3 0.3 0.3 0.4 1 

Fivel et al. (1998) [18] 0.01 0.4 0.4 0.4 0.75 1 

Dumoulin et al. (2000) [19] 0.2 0.8 0.8 0.8 0.8 1 

Tabourot et al. (2001) [20] 0.96 0.96 0.96 0.96 0.96 1 

Madec et al. (2003) [22] 0.084 0.084 0.051 1.265 0.075 0.084 

Devincre et al. (2008) [23] 0.122 0.122 0.07 0.625 0.137 0.122 

Gérard et al. (2012) [24] 0.025 0.01 0.04 14.3 0.6 0.5 
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Table 5: Calibration results for the hardening model with different interaction matrices. 

 

Parameter sets K  [mm]cy  

Teodosiu et al. (1991) [10] 27.755 66.516 10−⋅  

Delaire et al (2000) [12] 31.767 66.578 10−⋅  

Tabourot et al. (1997) [17] 7.833 51.038 10−⋅  

Fivel et al. (1998) [18] 8.827 51.044 10−⋅  

Dumoulin et al. (2000) [19] 12.756 69.090 10−⋅  

Tabourot et al. (2001) [20] 17.824 66.226 10−⋅  

Madec et al. (2003) [22] 3.606 66.000 10−⋅  

Devincre et al. (2008) [23] 6.014 65.139 10−⋅  

Gérard et al. (2012) [24] 5.933 65.244 10−⋅  

 

Table 6: Calibration results for the two-term Voce hardening model. 

0c
ατ , MPa 1τ , MPa 1θ , MPa 2τ , MPa 2θ , MPa 

27.00 24.85 183.81 29.17 40.95 

 

 

Figure 9: Calibration of the crystal plasticity model with different interaction matrices using 

the equivalent stress-strain curve in the 90° direction. 
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6 Results and discussion 

 To represent the in-plane anisotropy of the material, the flow stress ratio / eqθσ σ  is 

plotted against the orientation angle θ  for given values of the equivalent plastic strain eqε . It 

is recalled that 90eqσ σ≡  and further that the stresses are evaluated at the same value of the 

specific plastic work p pw dθ θσ ε= . The experimental results are shown in Figure 10 for 

different amounts of plastic work. The plastic anisotropy of the material obviously evolves 

considerably from the point of yielding to fracture (which happens at strain around 100% for 

the 45° orientation). The general trend is that the flow stress ratio exhibits a maximum at 0° 

and a minimum at 22.5° at the early stages of deformation which changes into a maximum at 

45° and a minimum at 0° at large deformations. One possible reason for the shift from 

maximum to minimum at 0° could be high initial values of the dislocation density on the slip 

systems activated when loading is in this direction.  

 

Figure 10: Flow stress ratio / eqθσ σ  from the experiment versus specimen orientation θ . The 

stress ratio is taken at equal values of plastic work for all directions, corresponding to the 

plastic strain in the reference direction, given in the legend.  

 

The evolution of the anisotropy in plastic flow may be evaluated from Figure 5a), 
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logarithmic strain zε  in the thickness direction of the extruded profile, or in Figure 5 b) 

presenting the strain ratio yr  as function of tensile strain and tensile direction. It is seen that 

yr  differs between the different orientations at small strains, while at larger strains yr  tends to 

approximately unity for all orientations. This type of behaviour may be expected from a 

ductile polycrystal. The slip in the constituent grains has to be kinematically compatible with 

the extension of the specimen, which leads to grain rotations. The flow of the polycrystal is a 

combination of the material flow in the constituent grains, so these rotations lead to its 

evolution. In addition, the rotations change the resolved shear stress on the slip systems, so 

that new systems may activate, or the old ones may deactivate. 

 The flow stress ratios / eqθσ σ  obtained with crystal plasticity and different interaction 

matrices are compared to the experimental data in Figure 11 to Figure 16. The yield stress 

anisotropy (which in the current approach was assumed to be only texture dependent), i.e. 

flow stress ratio measured at 0.2% plastic strain, is practically the same for all models (see 

Figure 11), but the flow stress ratios start diverging already at 1% equivalent plastic strain. 

The general trend in all the CP models is similar to the experimental one, with a minimum at 

the 22.5° orientation at smaller strains and a maximum at 45° for larger strains. An important 

difference between simulations and experiments is that the predictions, which are based on 

the assumption of equal initial slip resistance and the measured crystallographic texture, 

generally give a lower flow stress ratio at the 0° direction than observed in the experiments. 

The minimum at 22.5° disappears completely from the experimental curves, but remains, 

though reduced, in the CP models. The maximum at 45 ° is quite overestimated by the 

interaction matrices after Gérard et al. [24] and Devincre et al. [23]. The simple latent 

hardening matrix of the two-term Voce law gives the same basic trend as the dislocation 

density based models.    

 The strain ratio yr  obtained for the different interaction matrices is compared to the 

experimental data in Figure 17. The variation between the responses for different models here 

is noticeable, but lower than the variation of the flow stress ratio. The CP models fit quite well 

with the experimental results both with respect to the initial value of the strain ratio and its 

evolution. The largest discrepancy between simulations and experiments occurs at the 0° and 

45° orientations.  
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Figure 11: Flow stress ratio / eqθσ σ  at incipient yielding (0.2% plastic strain) versus 

specimen orientation θ  from the experimental tests and simulations. 
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and consequently strains and stresses. Therefore the models with different latent hardening 

matrices demonstrate some noticeable differences in plastic behaviour on the polycrystal 

level. 

 

a) 

 

b) 

Figure 12: Flow stress ratio / eqθσ σ  against sample orientation θ  for different interaction 

matrices at specific plastic work corresponding to 1 % plastic strain in the 90° direction. In  a) 

the initial dislocation density is equal for all slip systems, in b) it is increased for the A2 slip 

system.  
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a) 

 

b) 

Figure 13: Flow stress ratio / eqθσ σ  against sample orientation θ  for different interaction 

matrices at specific plastic work corresponding to 10 % plastic strain in the 90° direction. In  

a) the initial dislocation density is equal for all slip systems, in b) it is increased for the A2 

slip system.  

 

0.9

0.95

1

1.05

1.1

1.15

0 22.5 45 67.5 90

 /
eq

, deg.

eq = 10%

experiment

Voce

Teodosiu et al.

Fivel et al.

Devincre et al.

Gerard et al.

0.9

0.95

1

1.05

1.1

1.15

1.2

0 22.5 45 67.5 90

 /
eq

, deg.

experiment

Devincre et al.

Gerard et al.

Devincre et al
initial DD
Gerard et al
initial DD



27 
 

 

a) 

 

b) 

Figure 14: Flow stress ratio / eqθσ σ  against sample orientation θ  for different interaction 
matrices at specific plastic work corresponding to 20 % plastic strain in the 90° direction. In  

a) the initial dislocation density is equal for all slip systems, in b) it is increased for the A2 

slip system.  
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a) 

 

b) 

 

Figure 15: Flow stress ratio / eqθσ σ  against sample orientation θ  for different interaction 
matrices at specific plastic work corresponding to 30 % plastic strain in the 90° direction. In  

a) the initial dislocation density is equal for all slip systems, in b) it is increased for the A2 

slip system.  
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Figure 16: Flow stress ratio / eqθσ σ  against sample orientation θ  for different interaction 

matrices at specific plastic work corresponding to 50 % plastic strain in the 90° direction. 
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a situation where for some orientations the crystal has to slip on a certain set of slip systems 

(by geometrical constraint), but this set, through the interaction matrix, is hardening much 

faster than the same slip system sets in other grains for the same material. This leads to some 

peculiar behaviour, when similar responses of a polycrystal are provided by very dissimilar 

local plastic response. A particularly interesting question would be to prove experimentally 

which type of latent hardening is closer to the physical reality. 

  To test the validity of the hypothesis that the initial dislocation density may skew the 

stress anisotropy out of the texture defined pattern, simulations were performed with 

increased initial density on the slip system A2 for the matrices of Devincre et al. and Gérard 

et al. The 4-component matrix models were not used, because in these cases, the different 

initial dislocation densities on different slip system do not play a significant role in the 

anisotropy of the plastic flow for the already discussed reason of “averaging”. The results are 

presented on Figure 12 to Figure 15. The system A2 was chosen based on some preliminary 

simple simulations with the full-constraint Taylor model. The initial dislocation density on 

system A2 was set to 8 23 10 mm−⋅ . The results show that indeed the initial dislocation density 

may increase the stress ratio in the 0° direction towards the experimental values. The 

interaction matrix though still controls the anisotropy development: the new stress ratios 

mirror the general trends of the models without the initial dislocation density, e.g. the 

overshoot at 45° is still present. Therefore the hypothesis that the initial dislocation density 

affects the anisotropy is physically plausible.  

 Another difference between different latent hardening descriptions is how they behave 

in different methods of homogenisation. Namely in this work the full-constraint Taylor model 

and the CP-FEM were used. Using simple hardening rules in the crystal plasticity model, like 

the two-terms Voce rule, the full-constraint Taylor model gives rather accurate predictions of 

the global stress when compared to CP-FEM simulations [42]. However, when adopting the 

Teodosiu-type crystal plasticity model, the difference between the full-constraint Taylor 

model and even the simplest CP-FEM simulation with one linear element representing one 

grain becomes much more substantial, see Figure 6. As a result, the obtained values of  K  

and cy  are not very accurate. A calibration of the material parameters using CP-FEM is 

possible but the increase of the computation time is large: the simulation with an 8000 

element mesh took 40 times as much computer time as a simulation with the full-constraint 

Taylor model. In principle, the annihilation distance cy  is a physical parameter, defined 

mainly by the solid solution concentration in the alloy and independent of the interaction 



31 
 

matrix. The values of cy  found form calibrations with different interaction matrices (Table 5) 

are mostly quite similar, but not the same. The consequence is that the hardening properties of 

the single crystals in the performed simulations may differ. This adds another complication in 

the use of the dislocation density based CP models. Nevertheless, the main point of this work 

still stands. When the single crystal simulation was run with different values of K  and cy  but 

the same interaction matrix, the slip system activation pattern was the same. The activation of 

slip systems, and therefore the evolution of plastic anisotropy, is controlled by the interaction 

matrix within a broad range of K  and cy  .   

7 Conclusions 

 The AA6060 material in T4 temper was used to study the evolution of plastic 

anisotropy at large strains. To this end, uniaxial tensile tests in different material directions 

were performed with a test set-up that allowed obtaining the average true stress and the 

average true strain in the minimum cross-section of the sample at very high strains and until 

fracture. To investigate the influence of the interaction matrix on the predicted evolution of 

plastic anisotropy, these tensile tests were simulated with the CP-FEM, using hardening 

models with different latent hardening descriptions found in the literature, and the results 

were compared to the experimental data.  

The examined material demonstrated a continuous evolution of the anisotropy in flow 

stress and strain ratio that depended on the tensile direction. The CP-FEM models, using 

different latent hardening descriptions, all captured the general trends of this evolution quite 

well. On the other hand, different latent hardening matrices lead to noticeable discrepancies 

between the produced results, especially in the predicted evolution of the flow stress 

anisotropy. The discrepancies become even bigger if the local response of the constituent 

grains is concerned. The latent hardening description was also shown to be important if 

variations in the initial dislocation density are to be considered. While this type of tensile tests 

could hardly be used to find the values of the interaction matrix, it could well be used to 

assess the validity of the values found by other methods.   
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Figure 17: Logarithmic width strain xε  versus logarithmic thickness strain zε  for different 

specimen orientations θ  from experiments and simulations with different interaction 

matrices. The slope of the curves represents the strain ratio yr . 
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Abstract 

Cylindrical smooth and notched AA6060 samples were tested in tension. The material 

was either cast and homogenized or extruded with strong cube texture. The textured 

specimens demonstrated unusual shapes of the fracture surface that deviated from elliptical 

and were more rectangular in shape. A phenomenological plasticity model was used in finite 

element simulations of the tensile tests, together with a crystal plasticity model. The 

phenomenological plasticity model could not reproduce the evolution of the cross-section of 

the specimens made from the textured material. The crystal plasticity finite element model on 

the other hand demonstrated behaviour closer to the experiment. 
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1. Introduction 

The uniaxial tension test is at first sight a simple problem in mechanical science. The 

stress tensor has only one component and the strain is practically homogeneous in a large 

region of the specimen. However, even this simple case turns into a much more complex 

problem after the onset of necking. The strain field becomes highly heterogeneous and stress 

heterogeneity follows. The stress field also becomes triaxial. An accurate solution of this 

problem is very important. The uniaxial tension test is widely used to find the mechanical 

properties of metallic materials and finding the evolution of these properties after necking 

depends on the accuracy of this solution. The fracture of ductile materials happens usually 

after a considerable post-necking deformation, therefore any attempts to predict fracture based 

on the stresses, strains or deformation energies require a precise knowledge of the mechanical 

fields within the neck.  

The problem of localization in uniaxial tension has been treated analytically since  

Considère [1] derived a criterion for the onset of necking. It was later analysed more 

rigorously as a bifurcation problem in [2] and its analytical equations were approached 

numerically in [3]. In [4] the stress triaxiality was accounted for and the equivalent stress in 

the smallest cross-section was found for the case of a round specimen made of an isotropic 

material. In later years this solution was extended to other cross-section geometries [5], and 

its accuracy was improved [6, 7]. The solution in [4] requires the measurement of the neck 

curvature, which is hard to perform accurately. A more practical solution which sacrifices 

some accuracy to avoid this measurement was derived in [8]. The search for new analytical 

solutions continues practically to present day [9, 10].  

An alternative to the analytical solution is the numerical solution obtained by using the 

finite element method (FEM). The first attempts of analysing the tensile test and localization 

problems with FEM were made already in the 1970s in [11] and [12]. The FEM has an 

advantage of not being limited to some specific specimen geometry or material properties. It 

was used to study localization in smooth and notched cylindrical tensile specimens [13-16], 

tensile specimens with rectangular cross-section [17], plane-strain tension [18] and metal 

sheets [19, 20]. It was also used to study the influence of more advanced material models, like 

strain gradient plasticity, on the necking phenomenon [21-23]. 
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The plastic anisotropy of the material may be described using phenomenological 

anisotropic yield functions. Anisotropy was introduced into the plastic flow description in 

[24]. Different ways to implement anisotropy were proposed later [25, 26]. The simulations of 

anisotropic materials using this type of yield functions, fitted to experimental data, usually 

produce rather accurate solutions [27]. In [28] a type of yield functions based on linear 

transformations of the stress deviator was proposed and described more generally in [29]. A 

large number of free parameters make these yield functions very flexible and able to 

reproduce complex anisotropic behaviour, but also very hard to calibrate properly. 

The more physically based, yet more complex, way to define the material properties in 

FE simulations is to use the crystal plasticity (CP) theory. It provides a realistic description of 

the plastic flow as a result of slip on crystallographic planes in the multitude of crystalline 

grains constituting the metallic specimen. The complex anisotropic plastic behaviour then 

emerges naturally from the model, as a result of the crystallographic texture and hardening on 

the slip system level. The CP material model is very computationally heavy, so it is rarely 

used to model the whole specimen, which consists of millions of grains. It is often used to 

model the localization in metal sheets, where only a small part of the sheet needs to be 

represented, with applied plane-strain or plane-stress boundary conditions [30-33]. The CP 

model allows studying phenomena which are outside the scope of the phenomenological 

models, like surface roughening [34], and their influence on necking. Other applications of 

the CP model are localization in thin films [35], tubes under pressure [36] and deep drawing 

[37]. In [38] and [39], tensile tests on Al and Cu single crystals with rectangular cross-section 

of the specimen are simulated, but, in general, necking in the uniaxial tension test is not often 

studied using CP models. 

In this work both the CP-FEM and the FEM with phenomenological anisotropic 

plasticity are used to simulate the tensile test on smooth and notched cylindrical specimens. 

Two materials of the same AA6060 alloy were studied – the first material was cast and 

homogenized, while the second material was extruded into a flat profile. As expected, the cast 

and homogenized material displayed a random distribution of grain orientations, while the 

extruded material exhibited a peculiar, very sharp crystallographic texture. As the results of 

the tensile tests show, the texture has a very strong effect on the shape of the cross-section 

during necking and until fracture. It is in the following attempted to reproduce this behaviour 

of the real materials in the numerical simulations.  
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2. Experimental procedures 

The aluminium alloy AA6060 was provided as DC-cast extrusion ingots of 100 mm 

diameter produced in a laboratory casting machine by Hydro Aluminium R&D Sunndal. The 

chemical composition of the alloy was (in weight %): 0.2 Fe, 0.5 Mg, 0.4 Si and Al balance. 

The material was homogenized in a laboratory furnace using temperature-time cycles similar 

to the industrial practice, consisting of a soaking treatment followed by a predetermined 

cooling rate (see [40] for details). The ingot was subsequently extruded in an 800 tons 

laboratory press to rectangular profiles with dimensions 10×50 mm2 using industrial extrusion 

parameters, i.e., billet temperature of 475°C, container temperature of 435°C and ram speed 

of 5 mm/s. The profiles were cooled in air after extrusion. 

Test specimens were made from the cast and homogenized billet and from the extruded 

profile and tested after more than one week storage at room temperature to obtain a stable 

condition. Triplicate tensile tests were performed on axisymmetric smooth and notched 

samples oriented along the longitudinal axis of the ingot and the extrusion direction of the 

profile, respectively. The geometry of the test samples is shown in Figure 1.  

 
 

 
Figure 1: Geometries of the smooth and notched specimens where two values of the notch 
radius R  (2.0 mm and 0.8 mm) were tested. 
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Optical micrographs of the grain structures of the two materials are shown in Figure 2. 

The two materials have equiaxed grain structure. Grain sizes of about 66 μm and 59 μm were 

found for the cast and homogenized and the extruded materials, respectively. 

 

         

Figure 2: Grain structure for cast and homogenized (left) and extruded (right) materials [40]. 

 

The crystallographic textures of the two materials were measured with a scanning 

electron microscope using electron back-scattering diffraction. The results were processed 

using harmonic series expansion to find the orientation distribution functions (ODF) presented 

in Figure 3. The ODFs show that the cast and homogenized material has random texture, as 

expected, while the extruded material has a strong cube texture with maximum intensity 

above 100 times random.  

 The average strain rate before necking was 4 15·10 s− −  for the smooth specimens and the 

cross-head speed of the testing machine was adjusted to obtain approximately the same strain 

rate also in the notched specimens. The applied force and diameters aligned with the initial 

material directions at the minimum cross section of the specimen were measured continuously 

until fracture, using an in-house measuring rig with two perpendicular lasers [41]. A 

coordinate system was used, where x-direction is the reference direction, coinciding with the 

extrusion direction or billet direction in case of cast and homogenized material, y-direction 

coincide with the transverse direction of the billet and z-direction coinciding with the 

thickness direction. The Cauchy stress and the logarithmic longitudinal strain were calculated 

as 

 0and ln
AF

A A
σ ε= =  (1) 
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where F  is the applied force, 2
0 04A Dπ=  is the initial cross-section area and 0D  is the initial 

diameter of the gauge section. The current area of the cross section was estimated as 

 
4 y zA D D
π

=  (2) 

where yD  and zD  are the diameters measured continuously by the laser-based measuring 

system. The extruded material was assumed to be orthotropic, and the diameters yD  and zD  

were measured in the long and short transverse directions of the profile, respectively. The cast 

and homogenized material was assumed to be isotropic. The strain ratio r  was defined as 

 y

z

d
r

d

ε

ε
=    

where the logarithmic strains in the transverse directions are defined by 

 
0 0

ln , lny z
y z

D D

D D
ε ε= =  (3) 

Further details regarding the experimental setup and results can be found in [40].  

             

Figure 3: Orientation distribution function for cast and homogenized material (left) and  
extruded material (right). The sections in Euler angle space ( )1 2, ,ϕ ϕ Φ  are presented at 

2 0 ,5 ,10 ,...,90ϕ =  with 1ϕ  as abscissa and Φ  as ordinate. The level curves are shown at 

intensities 1, 2, 4, 8, 16, … times random and the maximum intensity is given for each 
material [40]. 
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3. Material modelling 

3.1. Crystal plasticity 

3.1.1. Single crystal plasticity 

The framework for finite deformations is considered in this work where the total 

deformation gradient is multiplicatively decomposed into elastic and plastic parts [42] 

 e p=F F F  (4) 

The plastic part pF  transforms the body from the initial configuration 0Ω  into the 

intermediate plastically deformed configuration Ω  due to plastic slip, whereas the elastic part 

eF  transforms the body from intermediate into the current configuration Ω  with elastic 

deformation and rigid body rotation. The plastic velocity gradient pL  in the intermediate 

configuration is defined by 

 ( )
1

0 0
1

n
p p p α α α

α

γ
−

=

= = ⊗L F F m n  (5) 

where the orthonormal vectors 0
αm  and 0

αn  are the slip direction and slip plane normal 

vectors, respectively, for a slip system α  in the initial and intermediate configurations, αγ  is 

the slip rate on slip system α , and n  is the total number of slip systems.  

The elastic Green strain tensor eE  in the intermediate configuration is given by 

 ( ) ( )1
,

2

Te e e e e= − =E C I C F F  (6) 

where eC  is the elastic right Cauchy-Green deformation tensor and I  is the unity tensor. The 

second Piola-Kirchhoff stress tensor S  in the intermediate configuration reads as 

 ( ) ( )
1

det
Te e− −

=S F F F  (7) 

where  is the Cauchy stress tensor. Since eE  and S  constitute a power conjugate pair, a 

linear hyperelastic relation for small elastic strains is defined by 

 :S e
el=S C E  (8) 
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where S
elC  is the fourth order tensor of elastic moduli that has three independent components 

describing the elastic anisotropy of the crystal.  

The plastic flow is described by  

 ( )

1

0 sgn
m

c

α

α α

α

τ
γ γ τ

τ
=  (9) 

where 0γ  is the reference slip rate, m  is the instantaneous strain rate sensitivity, c
ατ  is the 

yield strength of slip system α , and the resolved shear stress ατ  is obtained as 

 ( )0 0:eα α ατ = ⊗C S m n  (10) 

The hardening is defined by  

 ( )
1

n

c qα β
αβ

β

τ θ γ
=

= Γ  (11) 

where ( )θ Γ  is the master hardening rate, qαβ  is the matrix of self-hardening and latent-

hardening coefficients, and the accumulated slip Γ  is defined by the evolution equation 

 
1

n
α

α

γ
=

Γ =  (12) 

The master hardening rate ( )θ Γ  is defined as 

 ( )
2

1

exp k
k

k k

θ
θ θ

τ=

Γ = − Γ  (13) 

where kθ  and kτ  are material parameters. The initial slip resistance 0c
ατ  is assumed equal for 

all slip systems.  

3.1.2. Polycrystal plasticity 

In this work the polycrystal is modelled by two homogenisation methods: the full-

constraint Taylor model and the crystal plasticity finite element model (CP-FEM).  
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The full-constraint Taylor model [43] assumes that all grains undergo the same strain 

as the whole specimen. Stress equilibrium between the grains is then not satisfied. The stress 

in the specimen is found as an average, i.e. 

 
1

1 gn

g
ggn =

=  (14) 

where g  is the Cauchy stress in grain g  and gn  is the total number of grains and where it is 

assumed that all grains have the same volume. This model is used when only the global 

response of the polycrystal is of interest.  

When the local behaviour should be properly described, each grain is modelled separately 

by one element, i.e. using CP-FEM, so that both stress equilibrium and strain compatibility 

are naturally accounted for, although at the expense of a much higher computational time. 

3.2. Continuum plasticity 

The corotational stress and rate-of-deformation tensors are defined as  

 ˆˆ ,T T= =R R D R DR  (15) 

where  is the Cauchy stress tensor, D  is the rate-of-deformation tensor, and R  is the 

rotation tensor found from the polar decomposition of the deformation gradient tensor. The 

corotational rate-of-deformation tensor is decomposed into a sum of elastic and plastic parts 

 ˆ ˆ ˆe p= +D D D  (16) 

A hypoelastic relation for small elastic strains is defined by 

 ˆ ˆˆ : e
el
σ= C D  (17) 

where ˆ
el
σC  is the fourth order tensor of elastic moduli. Elastic isotropy is assumed for the 

material, so only two independent parameters are enough to define this tensor, i.e. the 

Young’s modulus E  and the Poisson ratio ν .  

The yield function is formulated as 

 ( ) ( ) ( )ˆ ˆ,f ε σ κ ε= −  (18) 
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where ε  is the equivalent plastic strain, σ  is the equivalent stress and κ  is the flow stress in 

uniaxial tension in the reference direction. The evolution of the flow stress κ  is described by 

a two-term Voce rule 

 ( )
2

0
1

1 exp i
i

i i

Q
Q

θ
κ ε κ ε

=

= + − −  (19) 

where 0κ  is the yield stress, and iQ  and iθ  are model parameters governing the work-

hardening.  

The corotational plastic rate-of-deformation tensor evolves according to the associated 

flow rule 

 ˆ
ˆ

p f
λ

∂
=

∂
D  (20) 

where λ  is the plastic multiplier, which satisfies the loading-unloading conditions, written in 

Kuhn-Tucker form as 

 0, 0, 0f fλ λ≥ ≤ =  (21)                        

The linear transformation-based anisotropic yield criterion Yld2004-18p [28, 29] is 

adopted here to represent the plastic anisotropy of the two AA6060 materials. The yield 

function is defined by 

 ( )
3 3

1 1

, 4
m m

i j
i j

S Sφ σ
= =

′ ′′ ′ ′′≡ − =S S  (22) 

where m  is the shape parameter; ′S  and ′′S  represent the principal values of the stress 

tensors ˆ:′ ′=s C s  and ˆ:′′ ′′=s C s , ŝ  being the corotational stress deviator. The coefficients 

describing the orthotropic anisotropy of the material are the components ijc′  and ijc′′  of the 

fourth-order transformation tensors ′C  and ′′C , respectively. On matrix form in Voigt 

notation these stress transformations read as 
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  (24) 

There are 18 coefficients to describe the plastic anisotropy, while the yield surface 

exponent m , usually set to 8 for FCC materials, governs the shape (or curvature) of the yield 

surface. If all the 18 anisotropy coefficients are set to unity, the Yld2004-18p yield function 

reduces to the isotropic high-exponent Hershey yield function [44]. The total number of 

model parameters of the continuum plasticity model to identify is 26: two elasticity 

coefficients, E  and ν ; the initial yield stress, 0κ ; four hardening parameters, iQ  and iθ , 

1, 2i = ; the shape parameter, m ; and the 18 anisotropy coefficients  ijc′  and ijc′′ . 

All material models used in the study were implemented in the explicit nonlinear FEM 

code LS-DYNA [45] as user-material subroutines. The explicit integration scheme by 

Grujicic and Batchu [37] was used for the CP model (both single- and poly- crystal) while the 

cutting plane algorithm proposed by Ortiz and Simo [46] was used for the continuum 

plasticity model. Owing to the explicit time integration of the momentum equations, the time 

steps were very small and the adopted stress-update algorithms were found to be accurate, 

robust and efficient, even if they are only conditionally stable. 

4. Parameter identification 

4.1. Continuum level 

The experiments produced average Cauchy stress vs. logarithmic strain curves 

representative for the smallest cross-section of the tensile samples. In order to proceed, it was 

necessary to determine the equivalent stress-strain curves of the materials based on these 
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results. As already stated, the average Cauchy stress is dependent not only on material 

properties, but also on the specimen geometry, and is influenced by the triaxial stress field in 

the necking area. To extract the equivalent stress the following numerical procedure was used. 

The smooth tensile specimen was modelled using FEM. To reduce the computation 

time and considering the orthotropic nature of the material, only 1/8th of the specimen was 

modelled with symmetric boundary conditions on the appropriate planes. The simulations 

were carried out using the explicit solver of the nonlinear FEM code LS-DYNA [45]. Mass 

scaling was used to reduce the CPU time. To ensure a quasi-static solution, it was checked 

that the kinetic energy remained a small fraction of the internal energy of the sample 

throughout the simulations. The mesh was built using hexahedral solid elements with full 

integration (8 integration points) where 10 elements are used across the radius of the 

cylindrical sample, and is shown in Figure 4. Several meshes with different element sizes 

were tried to ensure that the mesh resolution did not affect the solution. The material 

behaviour was represented by the anisotropic plasticity model described in Section 3.2. The 

anisotropy coefficients ijc′  and ijc′′  may be identified if enough stress points on the yield 

surface of the material are known from experiments. These experimental data were not 

available in the present work, so a workaround was used, utilizing the CP theory.  

 

Figure 4: Finite element mesh used in the parameter identification process. 

 

It is commonly assumed that the yield surface of a polycrystal, modelled by the above 

described CP theory, depends practically solely on the texture [47]. The hardening does not 

play a significant role in the plastic flow anisotropy at small values of the plastic work, and 
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the grain rotations are negligibly small. Hence, the yield surfaces found for alloys with similar 

textures are always similar, see e.g. [48] and [49]. It is therefore possible to estimate the yield 

surfaces of the alloys investigated in this work without prior knowledge of their hardening 

properties. We can thus use the hardening parameters of a similar alloy from the literature, 

which are given in Table 1 and Table 2, in combination with the full-constraint Taylor model 

to find the yield surfaces for the two materials under study. A single element with one 

integration point was used. A total of 1000 grain orientations were randomly chosen from the 

measured sets of orientations to represent the texture of the material. Periodic boundary 

conditions were applied to the nodes and the element was subjected to a wide range of strain 

paths. The straining stopped when the plastic work reached the prescribed value, 

corresponding to 0.2% plastic strain in uniaxial tension in the reference direction. This 

allowed obtaining conforming stress states on the yield surface. Then an optimisation script 

was used to find a set of anisotropy coefficients ijc′  and ijc′′  corresponding to the obtained 

yield surface shape. The yield surfaces obtained for the two materials are shown in Figure 5 

and the corresponding anisotropy coefficients may be found in Table 3. The reference 

direction is the longitudinal direction of the extrusion ingot for the cast and homogenized 

material with random texture and the extrusion direction for the extruded material with strong 

cube texture.  

Figure 5: Yield surfaces obtained with the full-constraint Taylor CP model for the cast and 
homogenized (left) and extruded (right) materials  
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Table 1: Parameters of the CP model taken from the literature [50] [51] and used in all 
simulations. 

, 

MPa 

, 

MPa 

, 

MPa 

, 

 s-1 

 qαβ   

106430 60350 28210 0.010 0.005 1.40, if α β≠  

1.00, if  α β=  

 

Table 2: Parameters of the two-term Voce hardening rules used in the CP calculations to 
determine the yield surface. 

0c
ατ , MPa 1τ , MPa 1θ , MPa 2τ , MPa 2θ , MPa 

27.00 24.85 183.81 29.17 40.95 

 

Table 3: Components of the Yld2004-18p transformation tensors. 

Coefficients 
Cast and 

homogenized 
Extruded 

12c′  1.0000 0.2015 

13c′  1.0000 0.7199 

21c′  1.0000 -0.2025 

23c′  1.0000 0.5182 

31c′  1.0000 -0.4494 

32c′  1.0000 0.5750 

44c′  1.0000 1.0296 

55c′  1.0000 1.0000 

66c′  1.0000 1.0000 

12c′′  1.0000 1.0346 

13c′′  1.0000 -0.1664 

21c′′  1.0000 1.0885 

23c′′  1.0000 0.8119 

31c′′  1.0000 1.2441 

32c′′  1.0000 0.6630 

44c′′  1.0000 0.0001 

55c′′  1.0000 1.0000 

66c′′  1.0000 1.0000 

11c 12c 44c 0γ m
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Thus, the remaining parameters to be found for the phenomenological model were the 

yield stress 0κ  and the hardening constants iQ  and iθ , 1, 2i = . To find these parameters, the 

FEM model of the tensile test was run with LS-DYNA and the nonlinear optimisation tool 

LS-OPT [52]. The free variables were the hardening constants while the yield stress was 

found directly from the tensile test data. In the optimisation process, LS-OPT compares the 

true stress-strain curve obtained with the FEM model with the prescribed experimental true 

stress-strain curve and varies iQ  and iθ , 1, 2i = , using an optimization algorithm, so that the 

difference between the two curves (mean squared error) is minimum. 15-20 iterations, 

consisting of 8 simulation runs each were necessary to minimize the mean squared error. As a 

result, a set of hardening parameters was obtained, which produces a response of the FEM 

model similar to the response of the real specimen. The parameters thus obtained are given in 

Table 4. The resulting true stress-strain curves from the FEM model are compared to the 

experimental ones in Figure 6. The equivalent stress-strain curves for the materials in the 

reference direction are then found directly from the hardening parameters. These curves are 

shown in Figure 7.  

4.2. Slip system level 

Some of the CP model parameters are common for a broad range of Al alloys and may 

be found in the literature. In particular, the parameters 0γ  and m  in Equation (9) governing 

rate dependence, the matrix components qαβ  in Equation (11) governing latent hardening, and 

the components of the tensor of elastic moduli S
elC  in Equation (8) may be found in [50] and 

[51]. The values used here are given in Table 1. On the contrary, the initial slip resistance 0c
ατ  

and the hardening parameters kθ  and kτ , 1, 2k = , in Equation (13) are material dependent 

and have to be fitted to the experimental data.  

The material was modelled by a representative volume element (RVE) – a 10 10 10× ×   

element cube with periodic boundary conditions applied to the nodes on the facets (Figure 8). 

To represent the texture, sets of 1000 orientations were chosen randomly from the measured 

set of grain orientations for each material. Then each orientation was assigned to a grain, 

represented by an element. The RVE was subjected to uniaxial tension in the reference 

direction. The optimization software LS-OPT was used again in a similar manner as above.  
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Table 4: Parameters of the two-term Voce hardening rule used in the phenomenological 
plasticity model. 

Material 0κ , MPa 1Q , MPa 1θ , MPa 2Q , MPa 2θ , MPa 

Cast and 
homogenized 

70.00 82.93 1820.17 129.96 299.04 

Extruded 70.00 122.81 2151.39 51.35 84.99 

 

Figure 6: True stress-strain curves from the experiment and the simulations used in the 
material model calibration for the cast and homogenized and the extruded materials. 

 
 

  
 

Figure 7: Equivalent stress-strain curves obtained after a numerical fitting procedure for the 
cast and homogenized and the extruded materials. 
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The equivalent stress-strain curve determined with the CP-FEM model was compared 

to the equivalent stress-strain curve obtained in the previous section. The free variables were 

the initial slip resistance 0c
ατ  and the hardening parameters kθ  and kτ , 1, 2k = . By changing 

them in every run of LS-DYNA according to an optimization algorithm, the equivalent stress-

strain curve from the numerical model was fitted to the equivalent stress-strain curve obtained 

for the material. The results of this procedure are shown in Figure 9. The parameters obtained 

for the CP model are given in Table 5.      

Table 5: Parameters of the two-term Voce hardening rule used in the CP model. 

Material 0c
ατ , MPa 1τ , MPa 1θ , MPa 2τ , MPa 2θ , MPa 

Cast and 
homogenized 

23.00 18.99 151.19 23.61 33.88 

Extruded 28.00 40.17 292.75 12.72 6.40 

 

 
 
Figure 8: RVE used for calibration of the crystal plasticity two-term Voce hardening rule.  
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Figure 9: Calibration of the CP model for the cast and homogenized and the extruded 
materials based on the experimentally obtained equivalent stress-strain curves. 

5. Finite element modelling 

For the purpose of identifying material parameters, quite simple FEM models were 

used for both the phenomenological and CP material modelling. The proper study of the post-

necking behaviour of the specimens requires a much more detailed specimen description.  

However, a representation of the specimen as a polycrystalline body with each 60-100 

μm sized grains modelled by at least one element would require a CP-FEM model consisting 

of many millions of elements. To reduce the computation time some simplifications and 

reductions had to be made. Most part of the specimen in case of both smooth and notched 

geometry undergoes relatively small strains compared to the neck region. Therefore the 

meshes of the specimens were divided into two parts: a part encompassing the necking region 

and a part adjacent to the fixed end of the specimen. The part undergoing large strains is 

assigned either a CP material model or the Yld2004-18p material model. The part with lower 

strains is assigned a simple isotropic J2 plasticity model with two-term Voce hardening. For 

the notched specimens the notch area contains the vast majority of plastic deformation, so the 

rest of the specimen is not modelled fully as for the smooth specimen, where the highly 

strained regions are more extensive.  

The size of the elements also varies for the two parts. In the necking area, the average 

dimension of an element is 100-120 μm in the thickness and width directions. In the reference 
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direction, the elements are shorter the closer they are to the symmetry plane of the mesh in the 

middle of the gauge area. During necking the edge elements undergo very large strains, which 

may lead to numerical problems. To keep the element aspect ratio within reasonable limits 

during the whole deformation process, the elements are initially shorter in this direction, with 

a length of about 25 μm. The size of the elements is therefore not the same as the size of the 

grains in some directions. This was done for the practical reasons of keeping the model size 

within reasonable limits of around a hundred thousand elements, while still being very close 

to the physical dimensions of the grains. On the other hand even when the element size was 

increased to around 150-200 μm, the response of the model (forces and deformation patterns) 

was still very similar. The number of elements in the meshes used for the localisation 

simulations is shown in Table 6. All simulations were run on a node of the Vilje 

supercomputer at Norwegian University of Science and Technology [53], with the node 

consisting of 2 eight-core processors. The typical total CPU time for each simulation was 100-

200 hours for the CP-FEM and 50-150 hours for the Yld2004-18p plasticity model, depending 

on the number of elements in the model, while the simulation time, due to parallel computing, 

was around 10 times shorter. 

Table 6: Parameters of the numerical models 

Specimen geometry 
Number of elements in the 
anisotropic plasticity part 

Number of elements in the 
J2 plasticity part 

Smooth 149472 41520 

Smooth 1/8th 103054 9526 

Notch 2 mm 56592 30136 

Notch 0.8 mm 85788 23080 

 

 

The meshes of the smooth and notched specimens are presented in Figure 10. 

Symmetry boundary conditions were applied at the middle cross-section of the specimen, 

while the clamped end was subjected to a velocity ramped smoothly to a constant value. The 
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specimen was also prevented from rigid body motions. Eight-node brick elements with 

reduced integration and Flanagan-Belytschko stiffness form hourglass control [54] were used 

to discretize the specimens. Explicit time integration of the momentum equations was applied, 

with mass scaling to decrease computation time. It was carefully checked in all simulations 

that the kinetic energy remained very small compared with the internal energy to ensure that 

the numerical solution could be considered quasi-static.  

 
 

 
 

 
 

Figure 10: Finite element meshes used in the tensile test simulations: smooth (top), 2 mm 
notch (middle) and 0.8 mm notch (bottom). Red colour is used for the phenomenological 
plasticity model parts and blue for the CP model parts. 
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6. Results and discussion 

The true stress-strain curves from the experiments for the cast and homogenized and 

the extruded materials for smooth and notched specimens, as calculated from Equation (1), 

are shown in Figure 11. The results from all 3 parallel tests are shown. The parallel tests are 

found to give consistent results, except for one of the parallel tests on the specimens with 2 

mm and 0.8 mm notch of the extruded material.  

 
Figure 11: Experimental average Cauchy stress vs. logarithmic strain for the cast and 
homogenized (top) and extruded materials (bottom) obtained for smooth and notched 
specimens. 
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The smooth specimens deform until much larger strain and unlike the notched 

specimens they have a long linear part of the stress-strain curve after necking. The notched 

specimens on the other hand demonstrate a higher initial slope of the stress-strain curve and, 

in case of the cast and homogenized material, a higher maximum stress. The reason for this 

difference is obviously the difference in the specimen geometry and, in particular, the 

superimposed triaxial stress field within the pre-machined notch. Accordingly, the response of 

the specimen is governed both by the work-hardening of the material and the contribution of 

the constraint imposed by the neck or notch, as discussed in Section 4.1. In contrast, the yield 

stress is approximately the same for all specimens. 

The results obtained for the extruded material should be used with caution, because the 

assumption of an elliptical shape of the cross-section at all times during deformation seems 

not to hold. The cross-sections of the specimens after fracture are presented in Figure 12. 

While the cast and homogenized material exhibits the expected circular cross-sections, the 

shapes of the extruded material specimens are either rhomboid for the notched specimens or 

approximately rectangular for the smooth specimens. Therefore, the calculated cross-sectional 

areas and consequently the strains and stresses will deviate from the real ones as the 

deformation progresses closer to failure. The exact deviation is difficult to calculate because 

the qualitative change in the shape of the specimen during deformation is impossible to 

capture with the present setup.  

Consequently, in the following, to present the results of the simulations, the force as a 

function of the minimum specimen diameter in the thickness direction was used. The results 

of the simulations, using the phenomenological plasticity model with anisotropic yield 

criterion and the CP-FEM model, are presented in Figure 13, Figure 14 and Figure 15. Both 

plasticity models worked well for the cast and homogenized material. The phenomenological 

plasticity model tends to slightly underestimate the yield stress for the notched specimens. In 

the case of the notched geometry, both numerical models overestimate the force after necking, 

while for the smooth geometry the CP-FEM underestimates it. On the other hand, the results 

for the extruded material are less consistent with the experiment. The results for the smooth 

specimen are similar to the corresponding results for the cast and homogenized material, with 

CP-FEM underestimating the force after necking. The response of the notched specimens was 

not predicted well. For both 2 mm and 0.8 mm notch radii the trend is the same, namely that 

both the phenomenological and crystal plasticity models overestimate the maximum force.  
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Figure 12: Geometry of fracture surface for the cast and homogenized material (left) and the 
extruded material (right): smooth specimens (top), 2 mm notch specimens (middle) and 0.8 
mm notch specimens (bottom).  
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Figure 13: Force-diameter diagrams for the cast and homogenized material: smooth 
specimens (top) and notched specimens (bottom) with 2 mm (left) and 0.8 mm (right) 
notch radius in experiment and simulations using the phenomenological and crystal 
plasticity models. 

 

The phenomenological model also gives a faster force reduction after necking than the 

CP-FEM model, which has a slope closer to the experimental one. The explanation for this 

behaviour lies probably in the evolution of the cross-section shape and the resulting difference 

in local stress and strain fields. It is important to recall here that the identification of the 

parameters of the two plasticity models relies on the measured true stress-strain curve which 

is less accurate for the extruded material because of the non-elliptical shape of the minimum 

cross-section of the specimens.   

The deformed shapes produced by the phenomenological and CP-FEM models are 

shown in Figure 16 and Figure 17. As expected, the cast and homogenized material behaves 

isotropically and the cross-sections remain circular in all simulations; although with CP-FEM 

the grains deform differently, depending on their orientation, and create a rough, uneven 

surface, as in the experiments. Noticeably for the extruded material the surface roughness is 

much less pronounced for the CP-FEM simulations results. For the extruded material the 
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phenomenological plasticity model produced elliptic cross-sections in all cases, though the 

curvature of the ellipses is different for the smooth and notched specimen geometries, and for 

the smooth geometry it is almost rectangular. The CP-FEM model produced a more circular 

shape of the cross-section for the smooth geometry and a distinct rhomboid shape for both 

notched geometries. The comparison with the cross-sections of the real specimens shows that 

in this case the CP-FEM model of the notched specimens was much closer to the qualitative 

behaviour observed experimentally. The stress and strain fields and the plastic anisotropy 

predicted by the Yld2004-18p function are quite different from the experimental. This is also 

apparent from the strain ratio diagrams for the extruded material shown in Figure 15. The 

strain ratio predicted by the CP-FEM model is closer to the experiment and to unity for the 

notched specimens, while Yld2004-18p yield surface overestimates it; for the smooth 

specimen, the opposite trend is observed. 

 

  

Figure 14: Force-diameter diagrams for the extruded material: smooth specimens (top) and 
notched specimens (bottom) with 2 mm (left) and 0.8 mm (right) notch radius in experiment 
and simulations using the phenomenological and crystal plasticity models. 
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Figure 15: Smooth specimens (top) and notched specimens (bottom) with 2 mm (left) and 0.8 
mm (right) notch radius in experiment and simulations using the phenomenological and 
crystal plasticity models: logarithmic strains in thickness vs. width directions for the 
experiment and simulations on the extruded material.  

 The rhomboid shape of a deformed cross-section is not often observed for Al alloys 

and is most likely a result of the extremely sharp cube texture. The CP-FEM model managed 

to capture the collective behaviour of the grains, by accounting for their real physical modes 

of deformation by slip on slip systems. The phenomenological model naturally lacks such 

capability. The extremely sharp texture though leads to some complications for the smooth 

specimen. When the same mesh was used for the CP-FEM model of the extruded material as 

for the cast and homogenized material, the model tended to predict necking in combination 

with a shear localization mode, producing a very different cross section and too soft response 

compared to the experiment and the phenomenological plasticity model. A large number of 

grains with almost perfect Cube orientation were situated in close neighbourhood to each 

other because of the sharp texture of the material. These grains, in form of their representative 

elements, tend to fall into a shear mode of deformation easily and disrupt the normal necking 

process. This does not happen when the random texture of the cast homogenised material is 

used, neither is such phenomenon observed in experiment. Thus it is a numerical problem of 
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this particular texture and mesh combination. To stabilize the deformation behaviour, only a 

quarter of the mesh presented in Figure 10 was used with applied symmetry boundary 

conditions. The notched specimens’ simulations showed that the material modelled with CP-

FEM retained the orthotropic behaviour and the xz and yz planes indeed were its symmetry 

planes. Consequently, the introduction of these symmetry planes as boundary conditions into 

the smooth specimen model should not distort the results. The additional symmetry planes 

allowed for a stable neck forming. 

  

  

  

Figure 16: Cross-sections of the uniaxial tension (top), 2 mm notch (middle) and 0.8 mm 
notch (bottom) specimens from FEM simulations at strains approximately corresponding to 
fracture with phenomenological plasticity (left) and crystal plasticity (right) for the cast and 
homogenized material. 
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Figure 17: Cross-sections of the uniaxial tension (top), 2 mm notch (middle) and 0.8 mm 
notch (bottom) specimens from FEM simulations at strains approximately corresponding to 
fracture with phenomenological plasticity (left) and crystal plasticity (right) for the extruded 
material. 
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The most obvious weakness of the methodology used is the material parameter 

identification. The identification of the equivalent stress-strain curve relies on the assumption 

of an elliptical specimen cross-section, while the real cross-section deviates from it, 

introducing the first source of error. It also relies on a yield surface found with a CP model 

and representative set of grain orientations, which has its own difficulties [55, 56]. The CP-

FEM model with one element representing one grain is also not ideal, allowing only for 

limited strain compatibility and stress relaxation between the grains. Although this should not 

affect the global response considerably, the local stress and strain fields and the resulting 

localized deformation may be more affected. 

The Al alloys with strong textures may, as it was shown, demonstrate unusual plastic 

behaviour after necking. The phenomenological models fail to capture this behaviour, but the 

use of CP-FEM may provide a means to describe it. In modelling ductile fracture of Al alloys, 

a correct description of the local stress and strain fields is crucial for successful predictions. 

The CP-FEM model may therefore give the edge that the phenomenological plasticity models 

lack.      
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