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a b s t r a c t

Aluminum electrolysis cells are characterized by harsh environments where several measurements
have to be done manually. Due to the operational costs related to manual sampling, the sampling
rates of these measurements are low. Therefore, the information in the data can be limited, making
it challenging to develop robust data-driven methods for aluminum electrolysis process. A broad
array of physics-based models have been developed throughout the years to provide excellent system
knowledge about the dynamics in the aluminum electrolysis cells. However, due to highly complex
and interrelated sub-processes, the state-of-the-art physics-based models are insufficient to accurately
express the dynamics in the cell. The combination of inadequate prediction models and low sampling
rates makes estimating process variables in the aluminum electrolysis process less accurate than what
is desired for optimal and safe operation of the cells. In this paper, a novel hybrid modeling approach
that addresses insufficient prediction models and low sampling rates is suggested. The novel hybrid
modeling approach involves manipulating a measured signal with a first principle model estimate. This
manipulation, which consists of subtracting the first principle model estimate from the measurements
of the signal, produces a residual that represents the unmodeled dynamics in the signal. Since the
unmodeled dynamics of the measured signal is much sparser than the measured signal itself, this
manipulation enables utilizing a powerful technique for estimating sparse signals from only a few
measurements. The technique is called compressed sensing. The manipulated data is used as input
data in a compressed sensing algorithm which produces a high fidelity estimate of the unmodeled
dynamics in the original signal. Thus, the novelty in this article is two-fold. First, compressed sensing is
introduced to the field of aluminum electrolysis. Second, the novel technique of sparsifying a measured
signal with a first principle model in order to utilize compressed sensing on the measured data is
introduced. The signal estimate of the unmodeled dynamics is integrated into an Extended Kalman
filter as a pseudo measurement to improve the estimation of the system states. The novel method
applies to signals with stationary periodical unmodeled dynamics. The case study in this article is
conducted on simulated data of a sub-process describing the mass balance in an aluminum electrolysis
cell.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the primary production of aluminum, aluminum is ex-
racted from alumina in the electrolytic Hall–Héroult process. The
luminum electrolysis cell consists of essential components such
s anode, cathode, and electrolyte [1]. The environment in the
luminum electrolysis cell is very harsh due to the high tem-
erature and highly corrosive electrolyte [2,3]. Sensor systems
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struggle to survive in the harsh environment, thereby requiring
manual sampling, which is costly due to its labor-intensive na-
ture. For this reason, there is a need to minimize the sampling
rate without compromising on safety and efficiency of aluminum
production.

Furthermore, in the industry, it is desirable to utilize advanced
process control systems such as Nonlinear Model Predictive con-
trol (NMPC) to optimize the operation (safe operation, maxi-
mized production, and minimized energy consumption) [4]. But
the NMPC’s performance is dependent on accurate state esti-
mation [5]. State estimation in aluminum electrolysis is a very
challenging task due to low sampling rates, low observability and

complex, interrelated sub-processes that are difficult to model.
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xpensive manual measurements and the challenge of estimating
tate variables are the main motivations to conduct this study.
ence, we can formulate the following research needs: • min-
mize the number of measurements • capitalize on the data to
mprove predictive modeling.

Addressing the first research need has been a challenge be-
ause of the strict constraint posed by the Shanon–Nyquist sam-
ling criterion [6], which demands a sampling frequency of twice
he fastest frequency component in the signal. The Nyquist rate
s far too high for what is profitable in the field of aluminum
lectrolysis, where sampling is very costly. Fortunately, in re-
ent times the field of Compressed Sensing [7] has emerged
s a way to bypass the Shannon Nyquist sampling criterion.
ompressed sensing (also known under the terminology com-
ressive sensing, compressive sampling and sparse recovery) is an
merging research area that aims to estimate a high dimen-
ional signal from a low dimensional measurement vector. This
esults in an underdetermined system of linear equations that
as infinitely many solutions. However, exploiting that the signal
s sparse or compressible in some domain makes the problem
f estimating a high dimensional signal vector from a low di-
ensional measurement vector possible [8]. Compressed sensing
ffers a framework that enables estimating signals from far fewer
easurements than required by the Nyquist criterion. Therefore,

ntroducing compressed sensing to estimate a measured signal in
luminum electrolysis makes it possible to minimize the num-
er of expensive manual measurements taken from that signal
nd at the same time achieve a high-resolution estimate of the
oarsely measured signal. To the best of the authors knowledge,
ompressed sensing has never been applied in the context of
luminum electrolysis before.
Compressed sensing has been used in a variety of appli-

ations for estimating signals and images from few measure-
ents. In image analysis, compressed sensing has been applied

n magnetic resonance imaging and hyperspectral images, in
iomedical applications, compressed sensing has been used in
or example electrocardiogram signals, in communication sys-
ems compressed sensing has been applied in wireless networks
nd multi input multi output communication, and in pattern
ecognition compressed sensing has been used in face recogni-
ion, speech and speaker recognition and gesture recognition to
ention a few [9]. Inspired by the research field of compressed
ensing, a research field called compressive system identifica-
ion has evolved. Compressive system identification addresses
he problem of identifying systems from only a small number
f observations. In [10] compressive system identification was
sed to identify Auto Regressive with eXternal input (ARX) mod-
ls for Linear Time-Invariant and Linear Time-Variant systems
ith a large number of inputs and unknown delays. In [11]
he method suggested includes compressed sensing and dynamic
ode decomposition with extension to actuated systems to iden-

ify reduced-order models on downsampled spatial measure-
ents of high-dimensional systems and reconstruct full-state
ynamic modes associated with the model. In [12] a method that
ncorporates physical knowledge into compressed sensing was
eveloped to reduce the volume of data and number of sensors
eeded for modeling and monitoring the temperature field of an
dditive manufacturing process. Different scientific work within
he field of Compressive system identification can also be found
n [13–17]. In general, compressed sensing is investigated on
ignals or systems that are already sparse. This is rarely the case
n the time-series data corresponding to the aluminum extraction
rocess. Thus utilizing the power of compressed sensing in the
urrent context requires manipulating the signal to make the
ignal sparse. This issue is addressed in this paper by sparsifying

he signal of interest in the novel hybrid modeling framework.
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Regarding the second research need, currently used physics-
based models derived from first principles describes complex
physical and chemical phenomena in the Hall–Héroult process
that have contributed to increased knowledge of the process and
the utilization of more efficient control strategies [18–20]. Based
on well-understood physics though robust and interpretable,
these models are computationally inefficient, inaccurate, and
incapable of modeling the unknown/poorly understood physics
on the fly. Some examples of these unknown/poorly under-
stood physics are interactions between the sub-phenomena like
magneto-hydrodynamic phenomena, the current distribution,
motion induced by the bubbles formed at the anode, and re-
activity and species concentration [21]. Data-driven modeling
comes as an attractive alternative because of its ability to model
physical phenomena, to a certain extent, without the need to
know the governing physics. For predicting variables that are
difficult to measure, Data-driven modeling methods have been
developed for the soft-sensing purpose in a broad range of indus-
trial processes [22]. The most commonly applied methods for the
purpose of soft sensing are Artificial Neural Networks (ANN), Par-
tial Least Square (PLS), and Support Vector Machines (SVM). These
methods occupy about 75% of all data-driven methods applied
in industrial processes [23]. In aluminum electrolysis, different
types of data-driven methods have been applied in soft sen-
sors. [24] suggests a Kernel Extreme Learning Machine to predict
the alumina concentration in the electrolyte. Least Squares SVM
models for predicting alumina concentration and electrolytic bath
temperature are developed in [25]. ANN approaches have been
applied in the electrolysis process to predict essential variables
that are difficult to measure [26–28]. These models show good
performance in modeling nonlinearities. However, they tend to
be black box and non-generalizable to new scenarios.

To address the shortcomings of physics-based and data-driven
modeling, a new breed of modeling called Hybrid Analysis and
Modeling (HAM) is emerging [29]. It is a modeling approach
that combines the interpretability, robust foundation, and under-
standing of a physics-based modeling approach with the accu-
racy, efficiency, and automatic pattern-identification capabilities
of advanced data-driven modeling algorithms. Hybrid models can
balance the advantages and disadvantages of first principle mod-
els and data-driven models and therefore have several advantages
over these classes of models such as higher prediction accuracy,
better calibration properties, enhanced extrapolation properties
and better interpretability [30]. Hybrid models can be designed
in many different ways to exploit the advantages of these mod-
els. In [31], a deep neural network is used to estimate process
parameters utilized in a first principle model. In [32] correction
terms are inferred from data and added to a model structure
consisting of first principle knowledge and the learned correc-
tion terms. In [33], a general mechanistic multi-scale modeling
framework for cell populations was developed. A mechanistic
model describing the dynamics of the states of individual cells
is combined with statistical models of the measurement data
and the states and parameters of the mechanistic model that
describes the dynamics of individual cells. The resulting model
is a partial differential equation model that describes the time
evolution of the population density among the cells.

In the proposed hybrid framework, the first principle knowl-
edge is used in a different matter. Estimates calculated by the first
principle model are subtracted from the measured values of the
states, which result in residual data that can be used to estimate
unmodeled dynamics of the system. While [31] and [32] suggests
hybrid models that estimate all the dynamics in the system,
the hybrid modeling framework in this work offers a method
to estimate the unmodeled dynamics that the current model

used to estimate the states in the system could not estimate.
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Fig. 1. Conceptual drawing of an aluminum electrolysis cell.

he purposed method can find periodical patterns in the residual
etween coarsely sampled measurements of a process variable
nd the predicted values of the same process variable.
Despite the aluminum electrolysis process being an interre-

ated process with many state variables, it is possible to consider
ub-processes of the electrolysis that describe some characteristic
ynamics of the process. In this article, simulated dynamics of the
luminum mass balance in the aluminum cell are considered. The
ynamics of this sub-process can be expressed in terms of two
tate variables: the aluminum mass in the cell and the thickness
f frozen electrolyte on the inside of sidewalls known as the
ide ledge. The side ledge works as a protective layer for the
idewall against the corrosive electrolyte and molten metal at
igh electrolysis temperature. Furthermore, the side ledge works
s thermodynamic insulation. Thus, it is essential for both safe
nd efficient operations. It is practically impossible to measure
he side ledge profile in operating electrolysis cells [34]. However,
he side ledge can be estimated from measurements of the metal
eight since it affects the displacement volume for the aluminum
n the cell and the metal height, see Fig. 2. However, the metal
eight measurements have to be sampled manually with a dip-
tick, observing the molten metalmark. Methods are developed
or determining the metal height, temperature, and electrolyte
ontent. However, most of these methods face technological chal-
enges in the actual production line. The major challenges are
elated to the high-temperature environment, extremely corro-
ive bath, and the inevitable crust at the top of the bath [35], see
ig. 1.
Therefore, due to labor-intensive costs, these measurements

re taken at low sampling rates. This makes it difficult to estimate
he side ledge thickness from measurements. There exist mod-
ls that can describe the dynamics of the side ledge thickness.
owever, due to many interrelated sub-processes in the alu-
inum electrolysis process, all dynamics in this variable cannot
e expected to be captured by these models.
Thus, the main objective of the paper is to minimize the

umber of expensive manual measurements needed to improve
tate estimation of essential variables in aluminum electrolysis
ells like the side ledge thickness.
To realize the objective, two research questions are formu-
ated. These research questions are: a
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• How can sampled data be manipulated so that the powerful
tool of compressed sensing can be utilized for estimating
unmodeled dynamics from sparsely sampled data?
• How can a high fidelity signal estimate of the unmodeled

dynamics be utilized in a Kalman filter to improve accuracy
of the estimated system states

This study introduces the powerful tool of compressed sensing
to estimate sparsely sampled signals in the process of aluminum
electrolysis. Furthermore, the study presents a way of manipulat-
ing a sampled signal with a first principle model to take advan-
tage of compressed sensing. That is, estimating a signal from far
fewer measurements than what is required by the Nyquist crite-
rion. Thus, instead of estimating the measured signal, the method
suggests estimating the dynamics in the signal that the first
principle model does not capture. This unmodeled dynamics in
the sampled signal is much sparser than the sampled signal, and
therefore it is required much fewer measurements to estimate
this signal with compressed sensing. The proposed approach of
sparsifying a measured signal to prepare it for compressed sens-
ing is, to the best of the authors knowledge, not been done
before. The novel hybrid modeling approach presented in this
study can estimate stationary, periodical unmodeled dynamics
in a sampled signal from few, randomly sampled measurements.
The estimate of the unmodeled dynamics is then utilized in an Ex-
tended Kalman Filter (EKF) to improve the accuracy of estimating
the side ledge thickness.

The case study in this article is conducted on a simulation
model described in Section 2.1. A signal is used equivalently to
a variable in this article. The term data refers to either simulated
data or sampled data. Sampled data is defined as the data that is
accessible for training a model or estimating a signal because the
data has been measured at different time instants. Simulated data
refers to the high fidelity data generated by a simulation model to
generate the signals in the process and is used as the ground truth
in the case study. If only the term data is used, it refers to sampled
data. The structure of the article is as follows. In Section 2, the
theory and methods applied in the work related to this paper is
described. In Section 3, there is a detailed description of the novel
hybrid modeling method and a description of how simulated data
is generated for analysis. In Section 4 the results from analysis are
presented and in Section 5 conclusions are made.

2. Theory

2.1. Aluminum electrolysis cell

In this study, the simulated data is generated from a sim-
plified simulator of the aluminum electrolysis cell representing
the mass balance in the cell. Aluminum is extracted in the Hall–
Héroult process, which involves dissolving alumina (Al2O3) into
n electrolytic bath mainly consisting of cryolite (Na3AlF6). An

electric current is sent through the cell, and aluminum ions in the
electrolyte are reduced to aluminum. The aluminum reduction
cell consists of basic components of an electrolysis cell such as
anode, cathode, and electrolyte. One or several carbon anodes
are immersed into the electrolyte, also known as the bath. This
is illustrated in Fig. 1. In this figure, the main components of an
aluminum cell and a rough sketch of its design is presented. The
carbon anodes are consumed in the process. This is expressed in
the overall reaction of aluminum production in the Hall–Héroult
process:

2Al2O3 + 3C→ 3CO2(g)+ 4Al(l). (1)

he carbon in the reaction comes from the anode. The molten
luminum is considered as the cathode in the reaction.
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Fig. 2. Geometry of simulated aluminum cell. The side walls are assumed horizontal and the side ledge thickness is assumed uniform. In real aluminum cells, the
ottom of the side walls are in general sloping walls. Furthermore, the side ledge thickness is in general not uniform.
Fig. 3. Matrix illustration of the linear underdetermined system y = Φx. Since
the system is underdetermined and the signal x is in general not sparse, the
system can in general not be solved or have infinitely many solutions. The left
vector illustrates the measurements y, the matrix in the middle illustrates the
measurement matrix Φ and the vector on the right illustrates the signal x.
The black areas in Φ are zero entries, and the white areas are ones. Φ maps
values between x and y. Colors in x and y correspond to numeric values and
range from small values corresponding to dark and large values corresponding
to light. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

where Φ is the measurement matrix of size m × n. Fig. 3
illustrates the linear system in matrix form. This expresses that
the number of equations (m) is much smaller than the number of
unknowns (n).

On the sidewalls of the cell, a ledge of frozen electrolyte
called side ledge is formed. The side ledge works as a thermal
insulator but most importantly as a protecting layer preventing
the sidewall from corroding.

The mass balance of the aluminum cell was derived in [36].
Let m be the mass of aluminum in the cell, such that:
dm
dt
= ṁgen(t)− ṁout (t), (2)

here ṁgen(t) is the mass rate of aluminum generated at time
instant t , and ṁout (t) is mass rate of aluminum taken out of the
cell. This can be approximated to a discrete model:

∆m(k) = ∆t(ṁgen(k)− ṁout (k)), (3)

where k = {1, 2, 3, . . .} represent discrete time instants and ∆t
is the sampling time for when the model is updated. The mass of
aluminum generated per time unit is given by Faraday’s law:

ṁgen(k) =
∆Q (k) · CE ·MAl , (4)
F · z ·∆t
65
Fig. 4. Matrix illustration of how the signal x is represented in terms of a basis
Ψ s. Hence the measurements y are represented in terms of the measurement
matrix Φ , basis matrix Ψ and basis coefficients s. In both (a) and (b), the leftmost
vector is the measurements y and the rightmost vector is the coefficient vector
s. In s, the black areas are zero entries. In (a), the middle-left matrix is the
measurement matrix Φ . The black areas in Φ are zero entries, and the white
areas are ones. The middle-right matrix is the transform basis Ψ . In this case,
Ψ is the Discrete cosine transform (DCT). In (b), the middle matrix is the matrix
product Θ = ΦΨ . Despite the resulting system in (b) being underdetermined,
the system can be solved for s if a suitable basis is found so that s is sparse.
That is the case in this illustration, where s is two-sparse. Colors in y, Ψ and
s correspond to numeric values and range from small values corresponding to
dark and large values corresponding to light. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

where CE is the current efficiency, MAl = 26.98 g/mol is the

molecular mass of aluminum, F = 96485.3329 C/mol is Faraday’s
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onstant and z = 3 is the number of electrons involved the reac-
ion generating one aluminum atom. The charge ∆Q transferred
rom time instant k− 1 to k is calculated by the time integral of
he current I given by:

Q =
∫ k

k−1
I(τ )dτ . (5)

ssuming that the current I is constant within a time interval ∆t ,
enerated mass rate can be formulated as:

˙ gen(k) =
CE ·MAl

F · z
I(k). (6)

urthermore, assuming constant current efficiency during a time
nterval ∆t , the mass generated during a time interval ∆t can be
formulated as

mgen(k) = ṁgen(k)∆t (7)

The mass flow rate out of the cell relates to metal tapping.
Assuming constant flow rate during the tapping yields:

mout (k) = ∆t · ṁout (k) (8)

The metal height hm is a function of the average cross-section area
of the cell and the volume of molten aluminum in the cell. It is
assumed that the cross-section area is uniform. This follows from
the assumption of horizontal side walls and uniform side ledge
thickness, see Fig. 2. The metal height can be formulated as:

hm =
VAl(mAl, ρAl)
AAl(l, w, xsl)

, (9)

here VAl is the volume of molten alumininum, mAl is the mass of
molten aluminum in the cell and ρAl = 2200 kg/m3 is the density
of molten aluminum. AAl is the cross section area where the cell
is occupied by aluminum, l is the cell length, w is the cell width
and xsl is the side ledge thickness. VAl is given by:

VAl =
mAl

ρAl
. (10)

Fig. 2(b) show a snap shot of the cross section of the electrolytic
according to the simulation. Fig. 2(a) illustrates that the side ledge
thickness is uniform. These drawings illustrates that the uniform
cross section area of aluminum is given by:

AAl = (l− 2xsb) · (b− 2xsb) (11)

The thickness of the frozen electrolyte known as side ledge
xsl is determined by a complex interaction between heat balance,
amperage, bath composition, cell resistance, movements in the
bath induced by magnetism, bubbles, and more [37]. Therefore,
this variable is challenging to estimate. As stated above, this
variable relates to the cross-section area AAl and, consequently, to
the metal height hm. Therefore, estimating the metal height with
compressed sensing techniques can reveal information about the
side ledge thickness. The side ledge is crucial in preventing cor-
rosion of the sidewalls. Thus this information is of great value.
The side ledge thickness, which represents unmodeled dynamics
in the cell, is simulated as a sum of cosine waves.

2.2. Extended Kalman filter

The Kalman filter is a set of equations that provide a recursive
solution of the least-squares method. It supports estimates of
past, present, and future states based on measurements, models,
and uncertainties in the system. Although the Kalman filter was
initially derived for linear systems, it has been extended to non-
linear systems through online Taylor expansions of the nonlinear

system. This extension is referred to as Extended Kalman Filter

66
Fig. 5. Canonical example, 2-dimensional subspaces in R3 .

(EKF). The EKF addresses the problem of estimating the state x
of a nonlinear system

xk+1 = f (xk,uk,wk) (12)

yk = h(xk, vk), (13)

where f (·) and h(·) are in general nonlinear functions. wk repre-
sents the process noise, vk represents the measurement noise, yk
epresents the measurement, and uk represent the control input.
he subscript indicates at what time step the variable is sampled
r estimated. The process and measurement noise are assumed
o be normally distributed random variables with zero mean and
ovariances Q and R respectively:

∼ N (0, Q) (14)

v ∼ N (0, R). (15)

he Kalman filter algorithm can roughly be divided into two
teps, where equations of the Kalman filter fall into the groups
f either time update or the measurement update. Equations in the
ime update stage are responsible for projecting the current state
stimate x̂k and error covariance estimate Pk forward in time
o get the a priori state estimate x̂−k+1 and covariance estimate
−

k+1. Equations in the measurement stage are responsible for
eedback from measurements to correct the a priori estimates,
ence give the a posteriori estimates x̂k and Pk [38]. The a priori
nd a posteriori error covariance estimates are defined by:
−

k = E
[
(xk − x̂−k )(xk − x̂−k )

T ] (16)

Pk = E
[
(xk − x̂k)(xk − x̂k)T

]
(17)

The algorithm is as follows:
Algorithm 1: EKF
Time update:;
x̂−k+1 = x̂k +∆t · f (x̂k,uk);
P−k+1 = AkPkAT

k + Qk ;
Measurement update:;
Kk = P−k Hk(HkP−k H

T
k + Rk)−1 ;

x̂k = x̂−k + Kk(yk − h(x̂−k ,uk));
Pk = (I− KkHk)P−k ;

Ak is the Jacobian matrix of f ((xk,uk,wk)) with respect to x,
Hk is the jacobian matrix of h(xk, vk) with respect to x and Kk is
the Kalman gain. ∆t is the sampling time and x̂−k+1 is calculated
according to the forward Euler method.
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.3. Compressed sensing

The Shannon–Nyquist theorem states that the signal infor-
ation is preserved if it is sampled uniformly at a rate at least

wo times faster than its bandwidth. In different applications,
ignal acquisition is prohibitive due to the cost of measuring
he signal or simply because sensors do not sample the signal
t rates as high as required by the Shannon–Nyquist theorem.
ompressed sensing provides an alternative to Shannon–Nyquist
ampling when the estimated signal is sparse or compressible [7].
onsider the signal x of length n represented in a transform basis
such that x = Ψ s. A sparse signal x can in some basis Ψ be

epresented by k ≪ n nonzero coefficients in s. A compressible
ignal x can be approximated by k ≪ n coefficients in s. That
s, when coefficients in s are sorted according to magnitude,
hey decay rapidly after the k’th coefficient. Compressed sensing
ddresses the problem of estimating a signal x of length n from
linear measurements y when m ≪ n by finding a solution to

n underdetermined linear system:

= Φx, (18)

Now, consider the mapping of the signal x from time or space
omain to a transform basis Ψ

= Ψ s, (19)

here s are the coefficients representing the signal x in Ψ . The
esulting linear system is given by

= Θs, (20)

here Θ = ΦΨ , Θ ∈ Rm×n This transformation is illustrated in
ig. 4. The rows of Φ , {φj}

m
j=1, represent the measurement vectors,

while the columns of Ψ , {ψj}
n
j=1, represent orthonormal basis

vectors. If an appropriate basis Ψ is chosen so that the signal x
67
is sparse in this domain, a solution for s of Eq. (20) can be found
from far less measurements than if the original system in Eq. (18)
was to be solved for x.

.3.1. Low complexity structures
As mentioned, the linear system in Eq. (18) has fewer equa-

ions than unknowns, thus it is underdetermined. However, by
tilizing the fact that the signal of interest x ∈ Rn belongs to
low-dimensional subspace of dimension k, the system can still
e solved. In other words, low complexity structures allows for
ecovering a signal x by solving the underdetermined system y =
x. This touches the core of compressed sensing. All signals x ∈
n can be expressed in a basis {ψi}

n
i=1 in terms of n coefficients

si}ni=1 as x =
∑n

i=1 siψi = Ψ s. If the signal is k-sparse, it can
e expressed by k nonzero coefficients si. This can be expressed
athematically as ∥s∥0 ≤ k, where ∥·∥0 is the ℓ0 pseudonorm ex-
ressing the number of nonzero coefficients. The set of all sparse
ignals is the union of

(n
k

)
k-dimensional subspaces spanned by

basis vectors. This gives the union-of-subspaces model and can
e formulated mathematically as:

∈

⋃
S⊂[n],|S|=k

WS =: Σk. (21)

ere WS is one subset of Ψ indexed by the index set S ⊂ [n]
ith cardinality |S| = k. Hence Σk is the union of subspaces that
orrespond to vectors with at most k nonzero coefficients [39].
As an intuitive example, consider the canonical example in

ig. 5, where the signal lives in R3. The union of subspaces
panned by maximum two vectors (2-sparse vectors) is illustrated
y the three 2-dimensional subspaces W1, W2 and W3 in R3.
onsidering the k-sparse signal in a n dimensional space, the
umber of possible k dimensional subspaces the solution can live
n is

(n
k

)
≈ klog(n/k). This is an important quantity in compressed

ensing in terms of required measurements.
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Fig. 7. In (a), the orange graph represents the estimated metal height hmodel based on Faraday’s law and knowledge of the amount of metal tapped. The blue graph
represents the simulated metal height hm . The green points represent measured metal height hmeas . In (b), the black graph represent the difference between simulated
and estimated metal height hunmod = hm−hmodel , whereas the green points represent the difference between measured and estimated metal height at the time instants
when the measurements where taken hresidual = hmeas − hmodel . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
To include sets that do not necessarily form subspaces, a more
general notion is needed for low-complexity structures. If the set
of basis vectors is replaced with an arbitrary compact set, the
signal models generated is referred to as simple sets:

Definition 2.1 (Simple Set). Let A ⊂ Rn be an origin-symmetric
compact set, and k ∈ R. Then a set K ⊂ Rn of vectors on the form

x =
k∑

i=1

ciai, ci ≥ 0, ai ∈ A (22)

is called a simple set. Since elements in K are conic combinations
of at most k elements in A, K can be described as follows: K =
conek(A). Moreover, since K is generated by the set A, A is called
an atomic set.

Again, consider the canonical example, where A = {±ei} ⊆
Rn. The simple set K = cone (A) correspond to the set Σ (Rn) of
k k
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k-sparse vectors. Furthermore, introducing the notion of atomic
norm, which is important in terms of compressed sensing:

Definition 2.2 (Atomic Norm). The function

∥x∥A = inf

{∑
a∈A

ca : x =
∑
a∈A

caa, ca ≥ 0 ∀a ∈ A

}
(23)

associated with an atomic set A ⊂ Rn is called the atomic norm
of A at x.

A general strategy in compressed sensing is to recover or
estimate simple sets through atomic norm minimization (ANM):

min
x
∥s∥A s.t. y = Θs. (24)
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Fig. 8. The signal illustrated on matrix form. The blue columns of Θ corresponds
to the blue nonzero coefficients in s. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

2.3.2. Restricted isometry property
Consider the matrix Θ = ΦΨ in Eq. (20). In general, this

matrix is rank deficient and hence loses information. However, Θ
can be shown to preserve information in sparse and compressible
signals if it satisfies the restricted isometry property (RIP).

Definition 2.3 (RIP). A matrix A is said to satisfy the RIP of order
k if

(1− δ)∥x∥22 ≤ ∥Ax∥
2
2 ≤ (1+ δ)∥x∥22 (25)

For all x ∈ Σk with δ > 0.

The intuition of the RIP is that for any index set S ⊂ [n] with
cardinality |S| ≤ k, the submatrix with columns of A indexed
by S: AS approximately acts like an isometry on the set of k-
sparse vectors. Direct construction of the measurement matrix
Φ such that Θ = ΦΨ involves verifying Eq. (25) for all

(n
k

)
sparse vectors x ∈ Σk. However, RIP can be achieved with high
probability by selecting Φ as a random matrix [7]. This implies
that to successfully estimate the signal of interest, a reasonable
sampling strategy would be to sample the variable of interest at
random time instants.

2.3.3. Signal estimation techniques
Given the linear system y = Θs, there are infinitely many

coefficient vectors s that is consistent with the m ≪ n number
of measurements. Therefore, to find the correct or approximate
solution s, it is necessary to exploit the a priori knowledge of
sparsity or compressibility of the signal. This indicates minimiz-
ing the number of nonzero coefficients in s so that Θs still is
consistent with the measurements y. In its most explicit form,
this minimization is done through ℓ0-minimization:

min
s
∥s∥0 s.t. y = Θs. (26)

The optimization program in Eq. (26) shows remarkable results as
it is only dependent on m = 2k independent measurements to re-
cover s [40]. However, ℓ0-minimization is provably NP-hard [41].
Furthermore, the solution of a ℓ0-minimization problem can be
highly sensitive to measurement noise and sparsity defects [39].
A key insight in compressed sensing is the convex relaxation of
the optimization program in (26). The closest convex relaxation
of (26) is the ℓ1-minimization known as Basis Pursuit (BP) [42]:

min
s
∥s∥1 s.t. y = Θs. (27)

The convex minimization problems such as the one in (27) guar-
antee a more stable solution that can also be solved in polynomial
time. However, with this relaxation, there comes a cost in terms
of increased number of required measurements, m = O(k ·
log (n/k)) as it relies on the RIP [40]. Both optimization programs
in (26) and (27) are formulated for exact reconstruction of the sig-
nal x due to the equality constraint. To account for measurement
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noise, the equality constraint can be replaced by an inequality
constraint such as in Quadratic Constraint Basis Pursuit (QCBP):

min
s
∥s∥1 s.t. ∥y−Φx∥22 ≤ η (28)

Here, η represents the noise level of the measurements. There-
fore, it is desirable to estimate this noise level to get the most
precise estimate of the signal of interest. Other convex programs
are the least-absolute shrinkage selection operator (LASSO) [43], the
Dantzig selector (DS) [44] and basis pursuit denoising (BPDN) [39].
Recovery guarantees are usually strongest for convex optimiza-
tion programs. However, these programs become less practical as
the problem increases in size. Thresholding algorithms represent
a compromise between theoretical guarantees and efficient pre-
dictable running times. Thresholding algorithms can be divided
into hard and soft thresholding. The following hard thresholding
algorithm hard thresholding pursuit (HTP) has been involved in the
cope of this article:
Algorithm 2: HTP
Result: si
Input: Θ Rm×n, y ∈ Rm, k ∈ [n] ;
nitializalize: s0 ← 0, i← 0;
while While condition do

instructions;
vi+1 ← sn − µΘT (Θs− y) (Gradient descent step);
Gn+1 ← Hk(vi+1) (Support identification) ;
si+1Gn+1

← Θ
†
Gn+1

y (Least squares update) ;
i← i+ 1;

end

Here, Hk is a hard thresholding operator, identifying the in-
ex set G ⊂ [n] which support the k largest values of s, and

zeroing out any values supported on Ḡ. µ is a hyperparameter
proportional to the gradient descent term. In the most basic
case of the HTP algorithm, µ = 1. In a more general case of
the HTP algorithm, the hyperparameter µ ̸= 1. Another hard
thresholding algorithm is Iterative hard thresholding (IHT) [45],
which HTP is based on. The main difference between the two is
that HTP converges faster than IHT [39]. Examples of soft thresh-
olding algorithms are Smoothing proximal gradient method [46],
and Fast iterative shrinkage-thresholding algorithm [47]. One
of the most generic classifications of recovery algorithms split
the algorithms into three different classes. Two of them are
mentioned already, namely convex optimization and threshold-
ing algorithms. Another class of recovery algorithms is iterative
greedy algorithms [39]. Some of the most famous greedy methods
are Orthogonal matching pursuit (OMP) [48] and Compressive
sampling matching pursuit (CoSaMP) [49].

3. Method and data generation

3.1. Set-up for data generation and pre-processing

The cell dimensions in the simulated cell are assumed to be
l = 20 m as the length and w = 2 m as the width. The
initial side ledge thickness has been set to xsl = 0.08 m and
is assumed to be uniform along all sidewalls. The unmodeled
dynamics are expressed as variations in the side ledge. They are
assumed to be two cosine waves with frequencies 2[per day] and
5[per day] with associated amplitudes of respectively 0.02 m and
0.01 m. The fact that stationary periodical signals have been used
to simulate unmodeled dynamics can be justified by the nature
of the process. The aluminum electrolysis is a semi-batch process
with periodical control inputs that induce periodical dynamics on
the system states. Examples of these periodical control inputs are



E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Journal of Process Control 105 (2021) 62–77

o
a
d
a

a
i
a
m
G
a
i
t
I
a
m
2
t

m

w
m
T
t
g

m

o
E
d
t
c

Fig. 9. Methodology: The numerical model generates high temporal resolution time-series of the height hmodel . From the measurements, coarse resolution time-series
f height hmeas is obtained. The difference between them when height measurements are taken is referred to as hresidual . hresidual , which has the same time resolution
s hmeas is provided as an input to the compressed sensing algorithm to generate a signal estimate and hence high-resolution estimate hunmod of the unmodeled
ynamics expressed in the height signal. hunmod is then provided to an EKF as a pseudo measurement to estimate the side ledge thickness. The numerical model f
nd the height measurement hmeas are also provided to the EKF to estimate the state vector x.
lumina feed and anode change. This causes periodical dynamics
n the side ledge thickness. The stationarity assumption is an
pproximation that can be justified for shorter periods. The initial
ass of molten aluminum in the cell is set to mal = 14, 700 kg.
iven the dimensions of the cell, the initial side ledge thickness,
nd the density of molten aluminum, this corresponds to an
nitial metal height of hm[0] = 0.183 m. The line current is set
o I = 330 kA and is assumed constant during the simulation.
n the current work, a current efficiency of CE = 0.95 is used
nd assumed to be constant. Eq. (6) with these inputs yields the
ass of aluminum produced in the cell to be 2524 kg/day (∼
500 kg/day). The amount of aluminum mass tapped at each
apping is done according to the following control strategy:

out =

⎧⎪⎪⎨⎪⎪⎩
mref + k · (hmeas − href ), if hmeas not

older than 5 hours
mref , if hmeas is

older than 5 hours.

(29)

here mref = 2500 kg and href = 18 cm. hmeas is the measured
etal height. Metal is tapped from the cell every 18− 48 hours.
he line current I and current efficiency CE is used as input
o Eq. (3) to generate a high resolution timeseries of the rate of
enerated aluminum mass.
As described in Section 2.3.2, having a random measurement

atrix, Φ will ensure successful recovery of the signal with high
probability. Therefore, measurements of the metal height are
sampled at random time instants. The average sampling rate is
varied for different simulations to test the limit of required data.
This is also the case for the standard deviation of the measure-
ment noise, which is varied to test the reconstruction algorithms
robustness against noise. The measurement noise is assumed to
be Gaussian white. In the simulation, the measurements are values
f the simulated metal height chosen at random time instants.
ach measurement has an added value drawn from a normal
istribution with zero mean and a standard deviation chosen for
hat simulation. The simulations were conducted for a period
orresponding to 100 days with a small timestep of ∆t = 5 min.
70
3.2. Novel hybrid framework

The proposed method is a novel hybrid approach that utilizes
first principle system knowledge to manipulate a measured sig-
nal. The manipulated data is the residual between the measured
signal and an estimate of the measured signal calculated by a
physics-based model. This residual represents the unmodeled
dynamics in the measured signal. The signal representing the
unmodeled dynamics in the measured signal is much sparser than
the measured signal itself. Therefore, much fewer measurements
are required to estimate the unmodeled dynamics in the mea-
sured signal compared to estimating the measured signal with
compressed sensing techniques. The novel method is limited to
estimating stationary unmodeled dynamics. A compressed sens-
ing technique is used to estimate the sparse residual and thereby
gaining information about the periodic disturbances. This infor-
mation is provided to an EKF as a pseudo measurement, leading
to an increase in state estimation accuracy. Fig. 9 illustrates the
novel hybrid framework developed in the work related to this
article.

3.2.1. Sparsification of a signal
The dynamics of the metal height is in its nature a non-sparse

signal in the discrete cosine transform (DCT). This is due to the
discontinuities of the sawtooth shape in the signal. Fig. 6(b),
which shows the DCT of the metal height signal, illustrates this
point.

Moreover, the metal height signal is non-stationary due to the
non-regular tapping of metal. The compressed sensing method
used in this work estimates the frequency components of a signal
based on measurements of that signal. Since the metal height
signal is non-stationary, the frequency components will contin-
uously vary. This makes it much more difficult to predict the
signal in the future. Instead, by utilizing this first principle model
based on Eq. (6) and the available knowledge about the amount
of aluminum tapped from the cell, it is possible to sparsify the
signal and remove non-stationarities from the signal.
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Fig. 10. Performance plot of the HTP algorithm and QCBP optimization program.
n the horizontal axis, the number of measurements of metal height in the
imulation varies, while the noise to signal ratio varies along the vertical axis.
he noise to signal ratio is defined as the ratio between the standard deviation of
he measurement noise and the average amplitude of the unmodeled dynamics
ignal for any given simulation. For a given noise to signal ratio and a given
umber of measurements, the color black indicates that the reconstruction
lgorithm found the correct support for the signal.

The idea is to estimate the signal hunmod in Fig. 7(b) that
epresent the unmodeled dynamics in the metal height signal by
sing the data points hresidual as input in a compressed sensing
lgorithm. Subtracting the estimated signal h based on the
model p
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Fig. 11. RMSE for simulations with varying measurement noise and number of
measurements used in estimation of the signals.

physical model from the measured metal height hmeas gives a
ignal hresidual representing the unmodeled dynamics and mea-
urement noise. This signal hunmod is much more sparse in the
iscrete Cosine transform (DCT) domain than the metal height
ignal hm. This can be seen by comparing Fig. 7(c) and Fig. 6(b).
iven that DCT is used as a basis, estimating the new signal
unmod with compressed sensing requires much fewer datapoints
han what is required for estimating the metal height hm with
ompressed sensing. Furthermore, by including a first principle
odel in the estimation process and leaving estimation of only

he unmodeled dynamics to compressed sensing, the robustness
f the state-of-the-art estimate is preserved. Fig. 8 illustrates the
ignal representation in terms of the matrix representation from
ig. 4(b).

.2.2. Integrated solution
In Fig. 9, a schematic representation of the integrated so-

ution is presented. The integrated solution is composed of a
hysics-based model f , a compressed sensing signal estimation
lgorithm, a Kalman filter, and a metal height measurement. The
hysics-based model is as follows:

=
dm
dt
= ṁin − ṁout =

CE ·MAl

F · z
I[k] − ṁtapped[k]. (30)

estimates the mass flow in the electrolytic cell based on the in-
uts from the line current I[k] and flow of tapped metal ṁ [k]
tapped
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Fig. 12. In (a), the blue graph represents the simulated metal height hm , whereas the orange graph represents the estimated metal height, estimated by the Kalman
ilter. The green points are the measured values of the metal height. In (b), the residual between simulated metal height hm and Kalman filter-estimated metal height
ĥm is shown. The unmodeled dynamics in the metal height are estimated from the QCBP program. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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at each time instant k. Given an estimate of the mass of aluminum
and displacement volume in the cell, a metal height estimate
can be calculated. This gives the first principle estimate hmodel
isualized in Fig. 7(a). Since the dynamics of the side ledge thick-
ess affects the displacement volume in the cell, it also affects
he metal height in the cell. The lack of a model estimating
he dynamics of the side ledge thickness causes the unmodeled
ynamics in the height signal hunmod visualized in Fig. 7(b). The
ompressed sensing signal estimation method estimates the un-
odeled dynamics expressed in the height signal hunmod using the
anipulated datapoints hresidual in Fig. 7(b). This estimate is then
sed as a pseudo measurement for the Kalman filter to estimate
he side ledge thickness xsl. In terms of a state-space model, the
nput vector is defined as:

k = [u1,k, u2,k] =

[
ṁin,k

ρ
,

ṁout,k

ρ

]
, (31)

he state vector is defined as:

k = [x1,k, x2,k] = [m, xsl], (32)

nd the measurement is defined as

= hmeas. (33)

his gives the following state-space model:

ẋ1
ẋ2

]
=

[
u1 − u2 + v1

v2

]
, (34)

=
x1

+ w. (35)

Area(x2)
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v = [v1, v2] is process noise, whereas w is the measurement
noise.

Furthermore, the pseudo measurement representing the esti-
mated unmodeled dynamics is defined as:

ypseudo = ĥunmod. (36)

pseudo is used as a high-frequency measurement when a signal es-
imate is available. The pseudo measurement has corresponding
alman filter Covariance matrices for the pseudo measurement
pseudo and Rpseudo. Since the physics-based model is assumed to
ave great abilities in estimating the mass balance of the cell, the
lement of Qpseudo representing the process noise covariance for
he mass estimate Q11 is set to zero. The element of Qpseudo repre-
enting the process noise covariance of the side ledge thickness
22 is set to one. The measurement noise covariance Rpseudo is
uch smaller than Q22, indicating that the pseudo measurement

pseudo is trusted much more than the a priori estimate of the side
edge thickness. Thus, the a posteriori estimate of the side ledge
hickness will be greatly influenced by the pseudo measurement.
ince Q11 = 0, the a posteriori estimate of the mass will not be
nfluenced by the pseudo measurement.

Algorithm 3 describes how the pseudo measurements ypseudo
re incorporated into the EKF. ypseudo is treated as a measure-
ent in the EKF. In a regular measurement update, when the a
osteriori estimate x̂k is calculated, a model estimate h(x̂−k ,uk)
f the variable x is subtracted from the measurement to include
oth measurement and model estimate in the posterior estimate.
owever, since y is the estimate of the unmodeled dynamics,
pseudo
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Fig. 13. In (a), the simulated and estimated volume of aluminum in the cell is shown. The simulated thickness of the side ledge is shown in (b) Simulated values
are in blue while estimated values are in orange. The side ledge thickness is estimated from the QCBP program. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Algorithm 3: EKF with pseudo measurement
Time update:;
x̂−k+1 = x̂k +∆t · f (x̂k,uk);
−

k+1 = AkPkAT
k + Qk ;

f Meaurement yk is available then
Measurement update:;
Kk = P−k Hk(HkP−k H

T
k + Rk)−1 ;

x̂k = x̂−k + Kk(yk − h(x̂−k ,uk));
Pk = (I− KkHk)P−k ;

lse
Kk,pseudo = P−k,pseudoHk(HkP−k,pseudoH

T
k + Rk,pseudo)−1 ;

x̂k = x̂−k + Kk,pseudoyk,pseudo;
Pk,pseudo = (I− Kk,pseudoHk)P−k,pseudo

end

there is no model estimate of this signal. Thus, the posterior
estimate after the pseudo measurement is included only de-
pends on the a priori estimate and the pseudo-measurement, see
Algorithm 3.

4. Results

In this section, the results from a case study of the hybrid
ethod explained in Sections 3.2.1 and 3.2.2 are presented. The
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data generation of the simulated data used in the case study is
described in Section 3.1. The unmodeled dynamics that the hybrid
modeling framework aims to estimate is a periodical, stationary
signal composed of two frequency components. As stated in the
introduction, it is of interest to minimize the number of mea-
surements and at the same time improve predictive modeling.
Therefore Section 4.1 investigates the number of measurements
required to successfully estimate the unmodeled dynamics with
the novel hybrid method. Furthermore, the robustness against
measurement noise of the method is assessed. Section 4.2 illus-
trates how the estimate of the unmodeled dynamics provided by
the novel method affects the state estimation in the Kalman filter.
Throughout the study, two different compressed sensing tech-
niques were applied. These are the QCBP optimization program
and two versions of the HTP algorithm.

4.1. Noise and measurement study

The performance of the hybrid modeling approach given two
different compressed sensing techniques is assessed in this sec-
tion. The performance measure in Fig. 10 is a binary value stating
if the correct signal support for the unmodeled dynamics was
found by the compressed sensing algorithm or not. Signal support
means the coefficients defining the signal in the sparse, trans-
formed domain. The performance measure in Fig. 11 is the rooted
mean square error (RMSE). The performance in both Fig. 10
and Fig. 11 is tested for several measurements and noise levels.

The HTP algorithm explicitly requires that the algorithm search
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Fig. 14. In (a), the blue graph represent the simulated metal height hm , whereas the orange graph is the estimated metal height, estimated by the Kalman filter.
he green points are the measured values of the metal height. In (b), the residual between simulated metal height hm and Kalman filter-estimated metal height ĥm

is shown. The unmodeled dynamics in the metal height is estimated from the HTP algorithm. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
for a signal support with a given number of coefficients. Since
the QCBP program is an optimization program minimizing the
ℓ1-norm of the support coefficients s with constraints on the
quadratic error between measurement and estimated signal, it
is not expected that the program will find a signal support with
the exact same number of coefficients as the correct solution. In
general, some coefficients that are not part of the correct solution
can be expected to be included in the estimate calculated by the
QCBP program. Therefore, the requirement for the QCBP program
to succeed in the performance test presented in Fig. 10 is that it
finds the correct support and that the largest erroneous estimated
coefficient is smaller than 0.3 times the smallest of the correct
coefficients.

Fig. 10 shows how QCBP and HTP estimation strategies per-
form to find the correct support or basis coefficients in the simu-
lations with different levels of measurement noise and different
number of measurements used in the estimation. In the HTP
algorithm, tuning the hyperparameter µ turns out to be of great
importance. The amplitude of the unmodeled dynamics estimated
is small in magnitude (< 0.01[m]). Therefore, the gradient de-
scent term µΘT (Θs−y) for the basic implementation of HTP with
µ = 1 becomes very small after the first iteration and converges.
Implementing the HTP algorithm with µ ≫ 1 estimates the
orrect support in many more cases than the basic test with µ =
. Fig. 10(b) and Fig. 10(c) show that the success of the method
s dependent on both the number of measurements used and the
easurement noise. The figures show a clear tendency that the
umber of measurements required for a successful signal estima-
ion increases with increasing noise. Fig. 11 shows the RMSE for
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the estimated signals from the QCBP program in Fig. 11(a) and the
RMSE for HTP algorithm with µ = 700 in Fig. 11(b). Simulations
with different levels of noise and number of measurements are
included in the test. Fig. 10 and Fig. 11 are results from the same
test. Fig. 11(a) shows that the RMSE increases proportionally with
the measurement noise for the QCBP program. The explanation
for this can be that the optimization program in QCBP has an
inequality constraint allowing for a certain maximum quadratic
error between the estimate and the measured values proportional
to the standard deviation of the noise. Furthermore, comparison
of Figs. 10(c) and 11(a) indicates that the RMSE does not seem
to be significantly dependent on the number of measurements
used to estimate the signal as long as the correct support is
estimated. The same can be said about the HTP algorithm, which
has consistently low values of the RMSE as long as the correct
support is found. Figs. 10(b) and 11(b) show that the RMSE is
significantly lower when the correct support is found compared
to when the correct support is not found. The QCBP program
has an inequality constraint that allows for a certain quadratic
error between measured and estimated values that limits the
RMSE regardless of if the correct support is found or not. The HTP
algorithm does not have this limitation in RMSE in the search for
correct support. Hence, in general, the RMSE will be significantly
larger if HTP finds the wrong support for the signal. For the QCBP
program, this difference is not that clear due to the quadratic
constraint.
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Fig. 15. In (a), the simulated and estimated volume of aluminum in the cell is shown. The simulated thickness of the side ledge is shown in (b). Simulated values
are in blue while estimated values are in orange. The side ledge thickness is estimated from the HTP algorithm. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
4.2. State and signal estimates

In this section, the estimated metal height, height residual as
well as the state estimates of aluminum mass and side ledge
thickness is presented. In Figs. 12 and 13, simulated values
and estimates when using the QCBP optimization are presented,
whereas in Figs. 14 and 15 simulated values and estimates when
using the HTP algorithm are presented. In both cases, a noise to
signal ratio equal to 0.215 was used. The time interval for the
figures includes the measurement from which the compressed
sensing reconstruction algorithm finds the correct support of the
unmodeled dynamics. In the case presented, the HTP algorithm
needed a few more measurements than the QCBP algorithm to
find the correct support for the unmodeled dynamics. That is,
the QCBP program needed 25 measurements of the signal to
find the correct support for the signal while the HTP algorithm
needed 28 measurements to find the correct support for the
signal. Therefore, the time frame shown in Figs. 12 and 13 differs
from the time frame in Figs. 14 and 15.

Fig. 12(a) shows the simulated and the estimated metal height.
The unmodeled dynamics are estimated by the QCBP optimiza-
tion program using data points hresidual, plotted as green points
in Fig. 7(b). The estimate is then fed into the Kalman Filter as
a pseudo measurement, where the covariance matrices Qpseudo
and Rpseudo are tuned such that only the side ledge thickness
xsl is updated. Fig. 12(b) shows the residual between simulated
and estimated metal height. Fig. 12(a) shows that the estimated
metal height changes character and simultaneously follows the
simulated metal height as the green data point is measured at
75
day 23. Looking at Fig. 12(b), it is clear to see the height residual
hm − ĥm decreases significant at this point.

Fig. 13 shows the estimated and simulated states x as they
are defined in the EKF. The estimate of the unmodeled dynamics
is based on the same estimate as in Fig. 12.

Fig. 14 corresponds to Fig. 12 and Fig. 15 corresponds to
Fig. 13. The difference is that the estimate in Figs. 14 and 15 is
calculated by the HTP algorithm, while the estimates in Figs. 12
and 13 is calculated by the QCBP program. The HTP algorithm
estimates a signal with a much smaller RMSE than the QCBP
algorithm for this specific case. Fig. 11, shows that this is the case
for the simulations where the correct support is found.

5. Conclusion

This article introduces a novel hybrid modeling method that
addresses the problem of estimating stationary, periodical un-
modeled dynamics from a non-sparse, non-stationary signal mea-
sured at low sampling rates. The two research questions investi-
gated have been satisfactorily addressed. These are pointed out
below:

• The first research question sought an answer regarding the
potential manipulation of the coarsely sampled signal so
that compressed sensing techniques could be utilized for
signal estimation. It was observed that most of the non-
sparsity in the measured signal was due to the linear in-
crease caused by the aluminum production and discontinu-
ities due to sudden drops of the amplitude in the signal re-

sulting from a regular tapping of the molten aluminum. This
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resulted in the measurement signal being non-sparse even
in the frequency domain. Fortunately, the cause and effect
of these linear increases and discontinuities were very well
captured by the physics-based model. Simply subtracting
the estimated metal height signal based on a physics-based
model from the measured metal height signal yields ma-
nipulated measurements representing a new signal, namely
the unmodeled dynamics of the metal height. As shown in
Section 4.1, compressed sensing show promising results in
estimating this residual signal from a limited number of
measurements with Gaussian measurement noise.
• The second research question pertained to utilizing the es-

timated signal in a Kalman filter to improve the accuracy
of the state estimation. The proposed method answered
this by including the estimated signal as a pseudo mea-
surement into the Kalman filter. The pseudo measurement
is treated as a separate high-resolution measurement with
corresponding Covariance matrices tuned according to the
uncertainty about the state estimates. It was demonstrated
that the state estimate of one of the variables improved
significantly when a signal estimate of the unmodeled dy-
namics is available.

In the proposed approach, only stationary unmodeled dy-
amics are considered. This is because the compressed sensing
echniques used in the method only consider stationary signals.
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