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Abstract

An explosive growth of misleading and untrustworthy news articles has been ob-
served over the last years. These news articles are often referred to as fake news
and have been found to severely impact fair elections and democratic values. As
such, the need for accurate, adaptive and computationally effective classification
models is clear.

The biological immune system is a network of biological processes which protects
its host from foreign pathogens, distinguishing them from the host’s own cells.
The immune system is inherently adaptive, self-organising and robust, which has
inspired several computational classification models. Such models are known as
Artificial Immune Systems (AIS), which seek to utilize the underlying principles
and properties of the biological immune system to produce similar levels of ef-
fectiveness on computational applications. One such application is e-mail spam
detection, for which the nature of immune systems is inherently suited. Such ap-
plications, which apply AIS models to text classification, have shown promising
potential. This thesis investigates whether an Artificial Immune System could
be applied to the classification of fake news articles with similar success as found
for e-mail spam detection.

An AIS fake news classification model was designed, based on various existing
models – tuned to the needs of fake news classification. Further, comprehensive
feature extraction strategies were implemented and analyzed, based on the lin-
guistic writing styles of the news articles. Finally, the model was tested on three
distinct fake news datasets. Notably, the accuracy scores obtained beat those of
several state of the art models, suggesting there is considerable potential in this
AIS application.
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Sammendrag

Det har blitt observert en eksplosiv vekst av up̊alitelige nyhetsartikler de siste
årene. Disse nyhetsartiklene blir ofte referert til som ”fake news” og det har blitt
vist at disse kan ha alvorlige innvirkninger p̊a demokratiske prosesser. Behovet
for nøyaktige, adaptive og effektive filtreringsmodeller har dermed blitt mer og
mer tydelig.

Det biologiske immunforsvaret best̊ar av naturlige prosesser som beskytter krop-
pen mot fremmede smittestoffer. Disse smittestoffene kan være virus, bakterier,
sopp eller parasitter. En sentral del av dette er å skille disse fremmedstoffene
fra kroppens egne celler, et problem som er tett knyttet til klassifisering. Videre
er immunforsvaret kjent for å være b̊ade tilpasningsdyktig, selvorganiserende og
robust, noe som har inspirert mange forskere til å hente inspirasjon fra immun-
forsvaret n̊ar de designer klassifiseringsmodeller. Slike modeller er ofte kjent som
kunstige immunsystemer (Artificial Immune System, AIS). Disse forsøker å et-
terape de bakenforliggende prosessene til biologiske immunsystemer, for å oppn̊a
lignende grader av effektivitet. Et kjent applikasjonsdomene er filtrering av spam
e-post, hvor AIS-modeller har oppn̊add lovende resultater. Denne oppgaven har
vært rettet mot å undersøke om et kunstig immunsystem kan brukes p̊a klassi-
fisering av fake news, med samme suksess som for e-post spam.

En klassifiseringsmodell ble designet fra bunnen av, basert p̊a diverse eksisterende
AIS-modeller. Modelldesignet har vært vridd spesifikt opp imot fake news klassi-
fisering. Videre ble omfattende uthentingsstrategier implementert, for å hente ut
tall (som videre kan brukes til klassifisering) fra nyhetsartiklene. Disse strategiene
er basert p̊a skrivestilen som er brukt i nyhetsartiklene. Til slutt ble modellen
testet p̊a tre ulike fake news datasett. De oppn̊adde resultatene er kompetitive
med flere moderne klassifiseringsmodeller, selv om modellen har noe problemer
med å forbedre nøyaktigheten over tid. Likevel indikerer disse resultatene at å
bruke en AIS-modell p̊a dette applikasjonsdomenet har betydelig potensial.
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Chapter 1

Introduction

This chapter aims to introduce the motivation behind the selected research topic,
as well as the identified research goals. Further, the literature review protocol,
research methodology and thesis structure are presented.

1.1 Motivation

Over the last few years, an explosive growth of disinformation and untrustwor-
thy news articles on digital media has been observed [Meel and Vishwakarma,
2019]. These misleading news articles are generally known as fake news and have
been reported to erode public trust, freedom of speech and democracy [Zhou and
Zafarani, 2018]. In a 2017 poll, 64% of U.S adults reported that fake news arti-
cles had caused them considerable confusion regarding the truthfulness of recent
events [Volkova et al., 2017]. Additionally, the nature of modern social media
tend to reinforce and amplify the false and/or biased information, often referred
to as the Echo Chamber Effect [Jamieson and Cappella, 2008].

One of the most illustrative examples of the impact of fake new articles was
the months leading up to the 2016 U.S. presidential selection. Reportedly, the
fake news engagements on Facebook (defined as the total number of comments,
shares and reactions) were 20% higher than that of mainstream news articles,
throughout the final months leading up to election day [Berghel, 2017]. It is rea-
sonable to assume that this massive engagement, to some extent, had an impact
on the result of the presidential election. The skewed engagement ratio for deceit-
ful news articles aligns well with research showing that fake news generally are
retweeted by more users, and therefore spread far more swiftly than real news.
This effect is observed to be even greater when the news articles are of a political
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nature [Vosoughi et al., 2018].

Needless to say, this problem has created a need for effective filtering and clas-
sification models, to accurately separate the fake and fact-based news articles.
However, this has proven to be challenging, due to the nature of the fake news
and their similarity to real news articles. Several approaches has been suggested,
often combining the fields of linguistics, data mining and machine learning. Con-
versely, there has been few non-hybrid bio-inspired algorithms (hybrid algorithms
referring to algorithms combining bio-inspired models with more traditional ma-
chine learning models) proposed to tackle the issue. Some approaches involve
using a bio-inspired optimization technique to select and extract features, but the
actual classification is usually performed by applying traditional machine learn-
ing algorithms, such as State Vector Machine, k-Nearest Neighbors and Random
Forests [Zhou and Zafarani, 2019]. The proposed model takes a novel approach to
this classification problem, adapting an Artificial Immune System (AIS) inspired
model for the classification task using a wide variety of linguistic features.

1.2 Goals and Research Questions

The aim of this section is to present the goal for the research and model imple-
mentation, as well as the research questions which guided the literature review.
The goal represents the overall objective of the thesis. The research questions
seek to split the main goal into granular sub-goals – which are easier to evaluate
in terms of fulfilment than the overall goal.

Goal To investigate the applicability of an Artificial Immune System for the
classification of fake news articles.

The research questions aim to address two different sides of the overall goal, the
AIS side and the fake news feature extraction side. This division is also reflected
in the literature study in Chapter 3. As using an AIS to perform classification
of fake news is a completely novel approach, the problem of finding suitable
evaluation criteria is prominent. To combat this issue, the goal is divided into
three research questions.

Research question 1 How should the traditional design of an Artificial Im-
mune system be adapted to enable fake news classification?

The first research question is concerned with the AIS part of the proposed model.
As the underlying base of the model is an AIS, the characteristics of this model
should be tuned to reflect the challenges of classifying news articles. AIS mod-
els have typically been used to perform classification on benchmark classification



1.3. RESEARCH METHOD 3

datasets, therein not using extracted feature values (which may not be repre-
sentative). The added challenge of presenting an AIS with high-dimensional
and potentially unreliable features must therefore be considered and investigated
thoroughly.

Research question 2 Which feature extraction strategies are suitable for an
AIS adopted for the classification of fake and real news articles?

The second research question is concerned with which features that should be ex-
tracted from the news article samples. These extracted feature values is included
in the feature vectors of the antibodies/antigens of the AIS and as such, a so-
phisticated feature extraction strategy is essential to the success of the proposed
model. The goal of this research question is to gain knowledge of what such a fea-
ture extraction strategy should include. Furthermore, extensive pre-processing
and feature extraction strategies may boost the accuracy of the model, at the
expense of sacrificing efficiency and general applicability. As the overall goal is
a model that rapidly could be applied to previously unseen news articles, it is
preferred that the pre-processing and feature extraction of the news article are
computationally efficient.

Research question 3 How does the proposed model perform, in terms of accu-
racy, compared to other fake news classification methods?

The third research question is related to the comparison to other fake news clas-
sification models. These classification models may employ non-bio-inspired tech-
niques, but use the same datasets for training and testing as the proposed model.
Although not similar (in terms of approach) to the proposed model, these models
may serve as benchmarks for evaluation as the overall goal is the same. Such
comparisons also establish the relative position of the proposed model in the
research field.

1.3 Research Method

The aforementioned goal was chosen after a relatively brief literature study and
the subsequent discovery that this may be a ”missing link” in the research area.
Further, a more specific literature search was performed to confirm that this was
actually the case. After establishing the need for research into such a model, the
focus was shifted onto similar models for inspiration. This structured literature
review (further specified in 1.4) formed the technical base on which the proposed
model was designed. The relevant findings of the literature review is presented
in Section 3.
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After the structured literature review was performed, a model was proposed,
based on the results of the literature review. Further, the model was implemented
and experiments conducted in an iterative fashion, where the model was tweaked
to reflect the experimental results. These tweaks apply both to fine-grained pa-
rameter tuning and more grand-scale changes to the nature of the model. Lastly,
results of the proposed model were compared to the results of similar models –
in line with the stated research questions.

1.4 Structured Literature Review

This section outlines the strategy used for the structured literature review, in-
cluding sources, search words, inclusion criteria and evaluation criteria. The
literature search was guided by the following questions. As the scope of the
thesis narrowed, the search scope narrowed as well, focusing on articles highly
relevant to the proposed model.

• What are potential application areas of AIS models?

• How can feature extraction/selection be applied to AIS models?

• How can AIS be applied to text classification?

• What attributes characterize fake news articles and not real news articles?

• How can classification of fake news articles be conducted?

• Which feature extraction techniques are applied to raw news articles to
perform fake news classification, in existing models?

The sources chosen for the literature review were selected to cover the major
publishing platforms within the scientific area of Computer Science in general
and specifically bio-inspired AI. Articles of interest to the proposed model would,
with a high probability, be published/available at least one of the platforms. Ad-
ditionally, Google Scholar was used as the search engine for the literature search.
As this search engine searches across various publishing platforms and sources
for scholarly material and articles, this research strategy was likely to cover most
relevant literature.

Publishing platforms and search engines used for literature search

• Google Scholar

• IEEE Explore

• ACM
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• SpringerLink

• ResearchGate

• ScienceDirect

Additionally, Iris.ai was used to identify relevant literature. This is a machine
learning system designed for reviewing massive collections of research papers and
identifying relevant material through using Natural Language Processing (NLP).
The system works by processing a scientific article chosen by the user and then
identifying similar literature. The articles chosen for the Iris literature searches
were an AIS-based spam detection model by Saleh et al. [Saleh et al., 2019] and
Klyuev’s proposed semantic approaches for classifying fake news articles [Klyuev,
2018].

Further, when deciding the specific search phrases that would be used for search-
ing the stated sources, there was an emphasis on covering synonyms and words
having relatively similar meaning in the context of the research area. Addition-
ally, different word combinations were employed to cover more relevant material.

Keywords used for literature search (synonyms comma separated)

• AIS, Artificial Immune System, Immune System

• Fake News Classification, Fake News Detection, Fake News Filtering

• Fake News Benchmark, Fake News Dataset, Fake News Attributes, Fake
News Structure

• Spam Filtering, Spam Detection, Spam Classification, Anti-Spam Filter,
Spammer Detection

• Semantic, Linguistic, Style-based, NLP, Natural Language Processing, Text
Mining, Text Analytics, Sentiment Mining

The inclusion criteria for relevant articles were quite broad. This is due to the
novel nature of the proposed model, as to not exclude any literature that might
be relevant. More recent articles were preferred when the research area was re-
lated to fast-moving disciplines such as fake news characteristics, while older and
renowned papers were satisfactory for less dynamic topics such as AIS. The liter-
ature search pointed towards an increased research focus on AIS models adapted
for spam detection around 2003-2012. To include these in the literature study, a
generous requirement of the research being published after the year of 2000 was
decided. Regarding the literature concerned with fake news detection, most of
the literature is less than 5 years old. Therefore, the articles selected for this part

https://iris.ai/
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of the model were given a stricter requirement of being published no earlier than
2015.

Inclusion Criteria

• For AIS-based spam-detection: the research presented was conducted no
earlier than the year of 2000

• For fake news classification: the research presented was conducted no earlier
than the year of 2015

• The literature’s main research topic is either AIS adapted for text classifi-
cation or related to the identification of fake news

• The literature seems relevant from only reading the abstract and conclusion

• The literature is peer reviewed and published on a recognized publishing
platform

Lastly, quality criteria were established – in order to easily evaluate the quality
and relevance of the collected literature. These criteria serve as a subset of the
inclusion criteria, to compare collected articles and limit the scope further.

Quality Criteria

• The research conducted is quite recent, preferably less than 5 years old

• The literature’s main research topic is either AIS adapted for spam classi-
fication or fake news detection by using a linguistic/semantic approach

• The article has a significant amount of citations (although this will, of
course, depend on the recency of the article)

• The literature clearly presents the model proposed, preferably with pseu-
docode and/or illustrations

• The literature clearly states the results and compares them to similar mod-
els, preferably including standard deviations

• The literature contains a section dedicated to possible future work within
the research topic
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1.5 Preliminary Process Overview

Throughout the process of literature review, the research goal was developed it-
eratively. As the research progressed, model ideas were proposed, discarded and
changed. Figure 1.1 shows the preliminary overview of this process. Model ideas
and problem scopes are illustrated as rounded rectangles, while discoveries lead-
ing to the discardment of the related model idea are illustrated as grey rectangles.

Figure 1.1: Flowchart illustrating the preliminary process overview
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Initially, three separate problem scopes were considered. Two of these were based
on previous bio-inspired Master’s theses at NTNU. The first one was concerned
with bio-inspired techniques for analyzing image data from satellites, known as
remote sensing. This problem scope was further divided into applying evolution-
ary approaches to antenna design and the continuation of a previous Master’s
thesis focusing on hyperspectral imaging selection. Regarding the hyperspectral
image selection, potential future work was limited and the problem scope was
therefore dropped. The antenna design domain also proved problematic, due to
difficulties obtaining hardware information from relevant parties, where NASA
was the prevalent one due to previous collaboration. After some consideration,
this problem scope was also dropped.

Secondly, a potential problem scope concerned with using Particle Swarm Opti-
mization (PSO) for modelling social dynamics revolving around climate change
efforts was considered. Although highly relevant and interesting, this problem
domain was also dropped, due to an unclear problem scope and limited ground-
work on which to build a model upon.

Lastly, the continuation of the work of the MAIM model [Baug et al., 2019],
was considered. Also the product of a previous NTNU Master’s thesis, MAIM
is an Island Model-based AIS, using principles of population migration between
separate isolated islands to boost the solution diversity and run-time efficiency of
an AIS. Several improvements of the model was considered, but the choice was
made to instead focus on applying an AIS to text classification. Upon further
research, it became apparent that although several researchers had applied AIS
models to spam classification, there was no published work describing the appli-
cation of an AIS at fake news classification. After this discovery, the problem
scope shifted to instead research and implement an AIS model for fake news clas-
sification.

Upon the shift in problem scope, a reconsideration was made as to whether to
keep the Island Model architecture of MAIM, or to start fresh with a more tradi-
tional AIS as base. As the benefits of MAIM were mostly prevalent for datasets
with fewer features, the impression was that the potential benefits of an Island
Model architecture was not worth the additional work required for implementa-
tion.

Additionally, using an Island-based model also means having to utilize crossover
operation between population members, instead of the more prevalent clonal se-
lection [De Castro and Von Zuben, 2000] algorithm used in most of the AIS
models adapted for spam classification. As these models serve as the main archi-
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tectural inspiration of the proposed model, the choice was made for the proposed
model to employ a variation of the clonal selection algorithm, with cloning and
subsequent mutation rather than the aforementioned crossover operation. More
about this in Chapter 3 and Chapter 4.

1.6 Thesis Structure

The subsequent sections will be presented as following: Chapter 2 is aimed at
providing the reader with the required background knowledge needed to under-
stand the proposed model. Additionally, the motivation behind the proposed
model is presented – in light of the current state of the research field. It should
be noted that some of the content is adapted from the research project conducted
during the 2020 Fall semester.

Chapter 3 introduces the current state of the art. This applies to both the
research area of fake news detection in general, as well as AIS adapted for fake
news classification. The focus of the chapter is on relating the collected literature
to the proposed model and present arguments for why the proposed model is a
valuable contribution to the academic research. Similarly to Chapter 2, some of
the content is adapted from the aforementioned research project.

Chapter 4 introduces the proposed model – as a natural continuation of Chapter
2 and 3. The architecture and behaviour of the model is presented in detail,
with the aim of presenting the model in a reproducible fashion. Additionally, the
reasoning behind and justification of the chosen architecture is explained.

Chapter 5 presents the results obtained by the proposed model. The section
also includes the experimental setup, as well as a discussion of which parts of the
proposed model may have contributed the obtained results.

In Chapter 6, a conclusion regarding the obtained results and findings is pre-
sented. Additionally, an evaluation of the goals and research questions is pro-
vided. Further, contributions to the research area are discussed, as well as pos-
sibilities for future work. Finally, bibliography and appendices are presented.
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Chapter 2

Background Theory

This chapter aims to introduce the necessary background knowledge needed to
understand the proposed model.

2.1 Background Theory

2.1.1 Bio-Inspired Computing

Within the field of Computer Science, biologically inspired (bio-inspired) com-
puting is a field of study which aims to employ biological processes to solve a
variety of computing problems. Examples of such biological processes are swarm
behaviour, evolution and clonal selection. Bio-inspired models seek to adapt these
processes to concrete computational problems. Applicable problem domains in-
clude optimization, classification, clustering and more. Additionally, bio-inspired
algorithms have shown to be efficient at both discrete and continuous problem
domains [Kar, 2016]. Needless to say, this makes such algorithms an exciting area
of research in an increasingly data-driven world.

Most bio-inspired algorithms make use of the principle of natural selection for
their computation, more specifically the ”the survival of the fittest”. This princi-
ple defines the biological concept of fitness as the degree of reproductive triumph,
meaning that the individuals who are genetically most adapted to their environ-
ments tend to produce more offspring. Thus, subsequent generations will inherit
the most successful attributes and the population as a whole moves towards
improved adaptivity. This is the principle behind Darwinian evolution [Darwin,
1859]. For this strategy to work, a degree of variety between individuals is needed.
This is achieved through re-combination of attributes (breeding) and mutation.

11
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Mutation refers to change in the DNA sequence as it’s being copied, cumulatively
leading to a change in attributes [Collins, 2020]. This results in the population
”trying out” different sets of attributes and how they perform in terms of leading
to increased reproductivity.

Traditional machine learning is revolved around learning from experience by
identifying emerging patterns in the data. These approached often use gradi-
ent descent to iteratively move toward solutions that minimize the loss function.
In high-dimensional spaces, this calculation can be quite demanding and time-
consuming. Comparatively, bio-inspired methods often employ a more stochastic
approach, where successful solutions breeds more successful solutions and random
mutation ensures that diversity is contained.

2.1.2 Evolutionary Algorithms

The proposed model is not technically an Evolutionary Algorithm (EA), but an
introduction to EAs is nonetheless included as it illustrates key functions and
components that the proposed model employs.

EAs aim to generate solutions to optimization problems based on the principles of
evolution and natural selection. They do this by using the following components:

• Representations (of individuals)

• Population initialization

• Fitness function

• Parent selection

• Recombination (crossover)

• Mutation

• Survivor selection

First, a representation of the individuals is chosen. Usually, each individual rep-
resents an individual solution to a specific problem and are usually represented
in memory as a bit string, an array of integers/decimal numbers or a tree.

The representation also includes the formulation of some fitness evaluation, to
differentiate the solutions as to how well they solve the given problem. This fit-
ness evaluation could for instance be the cost of traversing a graph a given way,
as in the Travelling Salesman Problem [Bernhard and Vygen, 2008]. Another
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Figure 2.1: Representation of an EA problem solution, as a vector of floating
numbers

example is the structural integrity of a construction, if the problem at hand is to
generate suggestions for the assembly of some construction. The fitness function
can also be a more complex calculation, which includes several aspects of the
problem space we want to optimize.

After the representation has been decided, the next component is the popula-
tion initialization. The population consists of a (usually pre-stated) number of
individuals. In accordance with Darwin’s theory of natural selection, it is the
population as a whole – and not the individuals – that evolve towards a greater
adaptation [Darwin, 1859]. Several initialization strategies can be employed, for
instance random start values or implementation of some external heuristics to
enhance the fitness of the initial population. After the population has been ini-
tialized, five steps are iteratively repeated until the termination of the algorithm
[Homayounfar, 2003]:

1. Fitness evaluation of every individual in the population. This fitness func-
tion will be closely tied to the computational problem which the algorithm
is trying to solve.

2. Parent selection. The most fit individuals (according to their respective
fitness values) are selected for reproduction. The heuristic for choosing
these individuals is up for experimentation, but often tournament selection
is used. This approach randomly selects k individuals from the population
of size N. Thereafter, these individuals compete in a tournament of size
k, where the one with best fitness is crowned the winner. This individual
is then chosen for reproduction. This process is then repeated until the
desired number of parent individuals is found, n. The advantages of this
approach over simply selecting the best n individuals, is that there is less
likeliness of quickly converging towards a local optimum in the search space
– due to more diversity within the population [Fang and Li, 2010].

3. Recombination (or crossover) is performed between the n individuals se-
lected for reproduction. Strategies for crossover vary greatly depending on
solution representation and the nature of the problem. An usual strategy,



14 CHAPTER 2. BACKGROUND THEORY

however, is k-point crossover. Illustrated in Figure 2.2 with k=2, this ap-
proach splits both parents at k points into k+1 segments. The children
are then created by combining these segments, concatenating every other
segment from each parent.

Figure 2.2: 1-point and 2-point crossover

4. Mutation is then performed by stochastically changing values in the indi-
vidual representations. Naturally, this heuristic is also dependent on the
chosen representation of solutions. Building onto the example represen-
tation in Figure 2.1, a reasonable mutation heuristic would be to iterate
through the vector elements with a mutation probability of p. Mutation
would then be applied to a random number of the elements in each solution.
This mutation could, for instance, be to increment or decrement the value
with some random number from a probability distribution. This way, both
the mutation rate and the mutation amount include a stochastic element,
preventing the population from converging prematurely.

5. Lastly, the optional step of survivor selection. Some of the individuals may
be directly transferred to the next generation, without being the products
of crossover nor mutation. The reasoning behind this is to keep exception-
ally good solutions across generations. However, this strategy should be
used with care as this has the potential to severely limit diversity in the
population.

It is important to note the importance of balancing the parameters which direct
the algorithm. For instance, an inflated mutation rate (and amount) may lead
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to too much diversity and the algorithm might resemble a random search and
diverge. On the other hand, a deflated mutation rate combined with too high
selection pressure may lead to premature convergence at a local optimum. Tuning
these parameters is central to the implementation of these types of algorithms
[Del Ser et al., 2019].

2.1.3 Biological Immune Systems

The natural biological immune system is revolved around a set of immune cells
called lymphocytes, which originate in the bone marrow. These cells are further
divided into B- and T-cells. The B-cells fight viruses and bacteria, often referred
to as antigens. They do this by producing Y-shaped proteins called antibod-
ies. These antibodies are specific to a subset of antigens capable of hurting the
host, known as pathogens [CTCA, 2017]. Their specificity is achieved through a
specially designed receptor which binds to specific pathogens through chemical
interaction. The antibody is said to activate when such a binding occurs. The
strength of this interaction is known as the affinity, depending on the relative
match between the antibody receptor and the antigen shape. When this affinity
is high, the antigen is said to be within the recognition region (RR) of the anti-
body. An important aspect of this imperfect matching is that an antibody can
be triggered to activate by a number of antigenic patterns – leading to enhanced
noise tolerance [Secker et al., 2003].

T-cells are further divided into helper and killer T-cells. The helper T-cells
trigger the B-cells into making antibodies and assist in the creation of killer T-
cells. The killer T-cells are responsible for destroying cells that are infected by
pathogens [CTCA, 2017]. Overall, the T-cells are responsible for alerting the rest
of the immune system to threats and encouraging the B-cells to ramp up their
response.

It is the manipulation of the populations of B- and T-cells which gives the bio-
logical immune systems their inherently dynamic and adaptive abilities. When a
antibody activates (a binding takes place), an immune response is triggered and
the cell starts a process of mutation and cloning. In a process known as clonal
selection, the cloning rate is proportional to the affinity of the connection, while
the mutation rate is inversely proportional to the affinity. This process creates
significant selection pressure on the antibodies, leading to increased affinity for
future connections and enhanced immune response efficiency [Secker et al., 2003].
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Biological Negative Selection

Negative selection refers to the differentiation between self and non-self, consid-
ered one of the most central mechanisms in the biological immune system, pro-
tecting the body from self-reactive lymphocytes [Ji and Dasgupta, 2007]. During
the T-cell maturing process, T-cells are first generated by a random genetic re-
arrangement process. Further, the T-cell undergo a selection procedure in the
thymus where the T-cells recognizing/binding to self-cells are destroyed. This
procedure is known as negative selection, protecting the body against T-cells
which encourage attacks on the self-cells. Thereafter, the T-cells are deployed
into the biological immune system, ready to attack external pathogens [Idris and
Selamat, 2011].

2.1.4 Classification

Classification refers to the task of categorisation. Given a set of vectors, contain-
ing a set of attributes, the task is to assign a class to each vector. These vector
attributes are often referred to as features and usually consist of numerical values
[Alpaydin, 2010]. These features describe central traits of the element which is
being classified and can be represented in a n-dimensional space, where n is the
number of features. Supervised learning refers to machine learning algorithms
where the model is given a training set containing a number of such vectors, with
their correct class assigned. The algorithms then use these examples to construct
models, which aim to find a curve in the feature space that divides the examples
into their respective classes. An example of this can be seen in Figure 2.3. Fu-

Figure 2.3: Simple classification example for a 2-dimensional feature space. The
line separates the elements into two distinct classes

ture (unseen) vectors lacking an assigned class can then be classified simply by
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plotting them in the feature space and see which category it fits into [Alpaydin,
2010]. This strategy is the fundamental logic behind classification, which the
proposed model is based on.

2.1.5 Pre-processing and Feature Extraction

In terms of classification problems considering high-dimensional data, pre-processing
and feature extraction are central concepts. These concepts refer to the ”clean-
ing” of the input data and the creation of new feature values based on the given
input data, respectively. This data cleaning includes the removal of unreliable
and noisy data which obscures the classification accuracy, as well as normalizing
feature values.

Feature extraction refers to creating new features from the data input. The
reasoning behind this strategy is that the data input can be high-dimensional –
which means that training the model with the raw data can be very slow. By
creating new features by combining original ones, the feature space dimension-
ality can be significantly reduced [Levine, 1969]. Additionally, some types of
input data can be very unfit for classification directly. Raw text is an example of
this, which is highly relevant for the proposed model. To perform classification
in the proposed model, feature values are created from the textual data input,
through pre-processing and feature extraction operations. Finally, the output
of the feature extraction will be the data which the model use for training and
testing.

2.1.6 Cross-Validation

k-fold cross-validation is a commonly used validation approach, which generally
results in less biased estimates of the performance (accuracy) of a model, than
a simple training/testing-split. The scheme starts by randomly shuffling the
dataset and then splitting it into k parts of roughly equal length. Further, one
of the k parts are removed from the remaining parts. The model is then trained
using the remaining k-1 dataset parts as training data. Then, the model is tested
on the dataset part initially removed. The current model iteration has never been
exposed to this data before and the results will therefore be an accurate estima-
tion of the model’s performance on unseen data. Further, the accuracy obtained
on the current testing set is saved and the model is discarded. This process is
repeated k times, each round with a different part of the dataset used for testing.
Finally, the accuracy scores obtained are averaged – to produce a final accuracy
score [James et al., 2013].

An important problem to consider in terms of cross-validation testing, is that
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of knowledge leakage. This refers to inadvertently providing the model with in-
formation from the testing set, in the training phase. This exposes the model to
data which it isn’t supposed to see until the testing phase and thus the model
may adapt to this data in a way that it otherwise wouldn’t, resulting in overly
optimistic results when the model is tested.

2.1.7 Artificial Immune Systems

Artificial Immune Systems (AIS) aim to replicate some of the functionality and in-
ner workings of biological immune systems. It is important to distinguish between
bio-inspiration and bio-plausible AIS models. The immune system is highly com-
plex and there is a trade-off between realism and computational benefits when it
comes to modelling it. Exactly where this trade-off point is located is still an open
question. The relevant AIS models for this thesis take inspiration from biological
immune systems, with a relatively high-level view at the natural complexity. This
means that the modelling complexity is drastically reduced (compared with bio-
logical immune systems), while the natural processes which provide considerable
computational benefits are taken advantage of.

Generally, AISs have had success in a number of fields, including malware/anomaly
detection, combinatorial optimisation, clustering, classification and more [Hart
and Timmis, 2008]. In this introduction to AISs, the focus will be on classification-
based AIS, which is both the most common type as well as the relevant type for
the proposed model.

Antigens

In the AIS, antigens are the single data entries in the dataset, fed as input to the
classifier. The model will then perform classification of these data entries. The
antigens can be represented in a variety of ways, but the common representation
(and the one used in the proposed model) is a vector of length n, consisting of
n features. These feature values can be thought of as the coordinates of the
antigen in an n-dimensional feature space. It is the task of the antibodies to
classify these antigens, based on their respective position in this feature space
[Read et al., 2012].

Antibodies and Recognition Regions

In classification based AISs, the antibodies have a similar representation as the
antigens. The only difference is that the antibodies have two additional elements
– the class and the Recognition Region (RR) radius (if a hypersphere shape is
used for the RR). The class is the label of the antibody, collected from the data
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entry and used to further predict the class of the antigens. The antibodies share
the feature space with the antigens and will ”search” their local n-dimensional
space for antigens. This local space is known as the antibody’s recognition re-
gion. This region can be modelled as a variety of different geometrical shapes,
although hyperspheres are the go-to option for most applications [Hart, 2005].
A hypersphere is the generalization of a three dimensional sphere, which is a set
of all the points within a specific distance (referred to as the radius) from the
center. In AISs, this radius is dynamic and may increase or decrease for each
individual antibody throughout the training phase of the model.

The antibody will bind to all antigens within its recognition region, with a con-
nection strength known as the affinity. The affinity is usually calculated as the
inverse Euclidean distance from the antibody to the antigen in question [Read
et al., 2012]. This means that the closer the antigen and antibody is in the feature
space, the stronger the affinity will be.

The antibody will then try to assign its class to the antigens within its recognition
region. In the case that antigens are within several recognition regions, a heuris-
tic is needed to predicting the class which the antigen belongs to. Such heuristics
can be a k-Nearest Neighbors vote (where the connected antibodies vote their
individual class) or by summing all the affinities for each class and selecting the
class with the most cumulative affinities [Dudek, 2012]. These antigen class pre-
dictions are the output of a classification AIS. In Figure 2.4, an illustration of
the antibodies and class prediction is presented.

Figure 2.4: Antibody (Bx) and antigen (Gx) interactions in a 2-dimensional AIS
feature space (rx is the RR radius of antibody x)
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Clonal Selection

Most AIS models use the Clonal Selection Principle for training the model [Read
et al., 2012]. This principle describe the basic functionality of the immune re-
sponse to antigenic stimuli [De Castro and Von Zuben, 2000]. It is based on
the idea that only the cells that recognize antigens are allowed to proliferate,
thus creating selection pressure within the antibody population. This selection
pressure will then lead the population as a whole towards increased antigenic
adaption.

The CLONALG algorithm is a well known algorithm for implementing the prin-
ciple of clonal selection in AIS models, employing evolutionary concepts in its im-
plementation. The basic functionality of the algorithm is to calculate the affinity
between all the antigens and antibodies and then perform cloning of the antibod-
ies with the highest cumulative affinity to antigens. This cloning is performed
proportionally to the affinity, i.e. the antibodies with the highest affinity values
will have a higher chance of being the subject of cloning. Then, the newly cloned
antibodies will be mutated, at a rate inversely proportional to their respective
affinity. Lastly, the highest affinity antibody clones is copied into a memory set,
and the lowest affinity antibodies will be replaced by randomly generated alter-
natives [De Castro and Von Zuben, 2000]. The memory set will then be used to
classify previously unseen antigens.

Computational Negative Selection

The biological negative selection mechanism in the natural immune system was
introduced in Section 2.1.3. Research has been conducted into mimic this mecha-
nism in artificial immune systems. This research has primarily focused on binary
classification, where the model is only distinguishing between two classes [Ji and
Dasgupta, 2007]. Although some work has been conducted into generalising the
mechanism to multi-class classification, such as MINSA [Markowska-Kaczmar
and Kordas, 2008], the main focus has been on binary classification. As the
proposed model mainly employs binary classification, this section will mainly
consider binary negative selection models.

These models generally employ a population of antibodies with the same class,
spread throughout the feature space. If an antigen falls within the recognition
region of an antibody, it is classified according to that antibody’s class. If not, it
is classified as the alternative class. This removes the need for voting heuristics
when an antigen is covered by several antibody recognition regions, as all the
antibodies share the same class. The approach could also limit the amount of
training data needed, as all the training data potentially could be single-class [Ji
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and Dasgupta, 2007]. It will then become the goal of the AIS to detect antigens
which differ from the established ”norm”. The usual terms for this norm is ”self”,
while antigens that the system wants to remove/recognize (connect its antibod-
ies to) are referred to as ”non-self”. For practical applications, this norm can be
swapped to match the dataset available and the classification results wanted. I.e.
for spam classification the antibodies could either be spam samples or non-spam
samples.

It is important to note that if single-class training data is used, the antibody
population should be relatively large and features should be selected carefully
in order to prevent clustering of the antibodies throughout the feature space.
This is because these single-class antibodies must be an accurate representation
of all the potential data samples (antigens), in order to not classify incorrectly.
Further, the volume of the recognition region will approach zero as the num-
ber of dimensions increases – in comparison to the exponentially growing feature
space. This problem is known as the ”curse of dimensionality” [Baug et al.,
2019]. Single-class negative selection algorithms are especially vulnerable to this
problem, due to the aforementioned problem of covering the feature space to a
satisfactory degree [Ji and Dasgupta, 2007]. Thus, the number of features for
single-class negative selection models should be kept relatively low.

2.1.8 Text Analytics and Pre-Processing

The field of text analytics is revolved around extracting meaningful insights and
sentiments from raw text data. With the growing amount of available text
data on the Internet, this has become increasingly valuable. A wide range of
analytic models exists for this purpose, ranging from highly complex linguistic
natural language processing (NLP) tools to statistical approaches requiring less
pre-processing.

Tokenization

Within the field of text analytics, tokenization refers to the process of splitting
a text into smaller parts – called tokens. These tokens are usually single words,
although they could also be groups of words or even single characters. As for
single word tokenization, there’s also a question of correct parsing. Consider the
sentence ”Mr. O’Malley isn’t entertained by the boys’ stories”. Here, there are
three apostrophes, all used in different ways. There are several way of parsing
this sentence, one could consider the apostrophes as whitespaces and divide text
where they appear or one could ignore them and only split at whitespaces and
punctuation dots. These parsing choices could impact model performance further
down the road and should be considered accordingly [Oda and White, 2005].
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Stop Word Removal

Stop words are words which doesn’t add any significant meaning to a sentence.
As these words don’t carry any symbolic weight, they can be removed without
the sentence losing its meaning. Examples of such words are ”a”, ”the”, ”an”,
”about”, ”by” etc. By removing these words in the pre-processing phase, the
volume of data is significantly reduced. Simultaneously, noise is removed from
the data, as the stop words generally provide little information that can be used
for classification or clustering [Mahmoud and Mahfouz, 2012]. In a worst-case
scenario, the inclusion of these words might even confuse the model into perform-
ing poor classifications with a high degree of certainty.

However, improper removal of stop words might result in changing the meaning
of a text document. This means that the stop word selection should be consid-
ered carefully. For instance, if ”the”, ”not” an ”was” were to be considered stop
words and removed from the sentence ”The book was not good”, the meaning of
the sentence would be changed drastically, to ”book good”. The sentiment of the
sentence would then change completely, from negative to positive – which might
lead to poor classification results.

Regular Expressions

Regular expressions (regex) are patterns used to match certain character combi-
nations. These can be very general or highly specific. For instance, the general
regular expression ”/ab*c*/” matches an ”a” followed by zero or more ”b”s and
zero or more ”c”s. In other words, this expression also matches single ”a”s
– occurring in a wide range of words. Comparatively, the pattern ”/met/”
only matches words where that exact character combination occurs, such as
”metronome”, ”meter” or ”metropolitan”. This way, regular expressions can
be used to detect certain words or word-combinations throughout a document
[Oda and White, 2005].

Bag-of-Words

Bag-of-words (BoW) is an extensively used technique within the field of text an-
alytics [Secker et al., 2003]. The technique is a way of representing a text in a
simplified way, disregarding word order and grammar – but keeping multiplicity
of each word. This works by iterating through the processed document, split
at whitespaces (and possibly removed punctuation marks), and counting the oc-
currences of each word. For instance, consider the text: ”Mark liked the movie.
Samantha also enjoyed the movie.”. A BoW representation of this sentence would
be:
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{”Mark”:1, ”liked”:1, ”the”:2, ”movie”:2, ”Samantha”:1, ”also”:1, ”enjoyed”:1};

The BoW technique could also be combined with stop word removal, as a way to
disregard high occurrences of words like ”a” and ”the”.

Term Frequency

A common way of using BoW for classification, is to calculate term frequencies.
The simplest method of calculating term frequency is simply to divide the occur-
rences of a word by the total number of words in the document. This frequency
provides an estimate of the importance of the word, in the document.

A more sophisticated term frequency calculation is the Term Frequency - Inverse
Document Frequency (TF-IDF) method. The reasoning behind this method is to
deal with the issue of high frequencies of words carrying little useful information.
Words like ”the” and ”a” is likely to have high term frequencies, yet they are of
little use for classification purposes. The TF-IDF method works by diminishing
the weight of words occurring very frequently across all the document in the set,
while increasing the weight of terms which (generally) occur rarely. TF-IDF is
calculated as:

TF − IDF = TF (t, d) · IDF (t,D) =
ft′,d∑
t∈d ft,d

· log

(
N

1 + nt′

)
where ft′,d is the raw count of term t′ in the document d, N is the total number
of documents in the document set and nt′ is the number of documents where
term t′ occurs. It should be noted that several alternative methods of calculation
are possible as well.

N-grams

N-grams are a way of tweaking BoW to include more information about the
text [Saleh et al., 2019]. Consider a simple sentence such as ”The child asked
for ice cream.”. If one simply removes punctuation and splits the sentence at
whitespaces, ”ice” and ”cream” would be two separate tokens. These words
carry a significantly different meaning when appearing separate, than when they
appear together. This meaning might be lost if single-word BoW is used in the
tokenizer. One way to solve this is using N-grams. These are tokens consisting
of N words each, capturing the spatial information of the words. If N-grams
with N=2 (called a bigram model) is applied to the sentence above, the N-grams
would be constructed as: [”The child”, ”child asked”, ”asked for”, ”for ice”, ”ice
cream”].
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White- and Blacklisting

Within the field of textual classification, white- and blacklisting refers to the prac-
tice of explicitly including (whitelisting) or excluding (blacklisting) some textual
document from a document set based on the occurrence of certain words [Secker
et al., 2003]. These lists may be constructed based on pre-existing knowledge, or
during runtime. For instance, word like ”Viagra”, ”free”, ”buy” and ”cash” are
much more probable to be included in spam e-mails than in non-spam e-mails and
as such, they could be added to a blacklist of words in an anti-spam filter [Saleh
et al., 2019]. Correspondingly, words occurring regularly in non-spam e-mails
could be added to a spam filter whitelist.

Word Embeddings

As mentioned, the AIS models generally operates on real-valued numbers as fea-
ture values. Therefore, ways of extracting real-valued numbers from the article
text samples are central to the proposed model. Strategies like term frequency,
lexicon lookups (black-/whitelisting) and TF-IDF were mentioned as ways of do-
ing this. Another way is by using word embeddings. Word embedding refer to
placing similar (in terms of symbolic meaning) words close in the representational
feature space. This feature space can have different number of dimensions, but
(importantly) this number is equal for all words, i.e. the resulting output vectors
are fixed-length. For instance, the words ”happy” and ”excited” should be rela-
tively near in the representational feature space (the Euclidean distance between
them is relatively small), as the words have a similar symbolic meaning. This
is a complicated issue, subject to considerable recent research. Google’s BERT
(Bidirectional Encoder Representations from Transformers) [Devlin et al., 2019]
and AllenNLP’s ELMo (Embeddings from Language Models) [Peters et al., 2018]
are examples of recent developments concerned with this problem. These will be
explained further in Section 3.2.3.

2.1.9 Fake News Classification

Fake news classification models can employ a variety of strategies, but the usual
division is the partitioning into four distinct strategies [Zhou and Zafarani, 2018]:

1. Fact-based strategies, concerned with fact-checking the information stated
in the news articles. As the amount of manual labour for this strategy can
be immense, models adapting this strategy usually try to implement some
sort of automatic fact-checking against a knowledge base.

2. Semantic-based (linguistic-based) strategies, concerned with differentiating
real and fake news articles based on their writing style.
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3. Propagation-based strategies, concerned with studying the different prop-
agation patterns of fake and real news articles through social media. This
includes who, when and how many people share, comment or react to the
news articles.

4. Source-based approaches, concerned with classifying news articles based on
the credibility of the source(s). The sources can be the publishing media,
the reported speaker or the references provided.

As the proposed model seeks to employ the semantic approach to the classifica-
tion task, the other strategies are not explained in detail. The intuition behind
the semantic-based strategies is that fake news articles are written in a different
style than real news articles. Often, the authors want to promote an emotional
reaction in their readers – potentially leading to distrust or enragement towards
some entity. A 2018 study [Zhou and Zafarani, 2018] showed that fake news arti-
cles, compared to real news articles, have a higher degree of informality, diversity,
subjectivity and are written with a higher grade of emotion.

One approach to measure the degree of informality is to count the occurrences of
swear words. For diversity, a measure that can be used is the percentage of unique
verbs. For subjectivity, the amount of reporting verbs could be used. These are
verbs which change direct speech into reported speech, i.e. ”I have seen the new
film” into ”I told her (that) I had seen the new film”. In this example, ”tell/told”
is the reporting verb. Lastly, emotional writing can be measured by the use of
emotional and strong words such as ”lie”, ”steal” and ”kill” – and their various
forms. Such analytic characteristics are the groundwork which semantic-based
classification models seek to make use of.
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Chapter 3

State of the Art

This chapter presents the current state of the art in the research area related
to the proposed model. The chapter is split into two distinct parts. Section 3.1
will introduce the current state of the art in AIS used for classification, while
Section 3.2 will look at current development within the research field of fake news
classification. Section 3.2 will focus primarily on semantic based approaches,
as the other approaches briefly introduced in 2.1.9 are of less relevance to the
proposed model.

3.1 Artificial Immune Systems

The goal of this section is to introduce the current state of the art within the
field of Artificial Immune Systems (AIS) and the various approaches to central
AIS characteristics such as affinity calculation, mutation, reproduction strategies
and class prediction. These central attributes have a significant impact on the
model performance and, as such, the selected approaches vary greatly in recent
contributions.

Additionally, adapting an AIS for fake news classification is a novel approach
and, as such, the closest problem scope in the literature would be AISs used for
spam detection. Thus, section 3.1.9 will focus on contributions focusing on AISs
adapted for spam classification.

3.1.1 Affinity Calculation

As affinity values are critical to the functioning of AIS models, several different
methods of calculation have been proposed. The most common affinity measures
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make use of Euclidean distance to calculate the distance between an antibody
and an antigen in an n-dimensional feature space. The Euclidean distance is
defined as:

d(p, q) =
√

(q1 − p1)2 + (q2 − p2)2 + ...+ (qn − pn)2

for n dimensions. qx and px are the feature values at index x, for the antibody
and antigen.

In AISLFS [Dudek, 2012], the authors employ local feature selection in their
model, which means that each antibody only calculates distance and affinity to
antigens for some selected features. The distance is calculated as:

d(yk,xj ,Ωk) =

(∑
i∈Ωk

|yk,i − xj,i|p
)1/p

with p = 1 if the Manhattan distance metric is used and p = 2 if the Euclidean
distance metric is used (the model was run with both alternatives, scoring mostly
evenly). Further, the affinity is calculated as:

a(yk,xj ,Ωk) =

{
0, if d(yk,xj ,Ωk) > rk(Ωk) or rk(Ωk) = 0

1− d(yk,xj ,Ωk)
rk(Ωk) , otherwise

Where Ωk is the set of selected features for the kth antibody and d(yk,xj ,Ωk) is
the distance between the kth antibody yk and the jth antigen xj . This affinity
calculation provides an upper limit for affinity values. The affinity will always
be between 0 and 1 and will increase linearly as the distance decreases/RR ra-
dius increases. This affinity calculation also rewards large antibody radii, but
as the RR radii are calculated deterministically instead of randomly mutated in
AISLFS, this is less of an issue. Additionally, the antibodies of AISLFS employ
local feature selection. Antigens which lie close to an antibody in the feature
space (the Euclidean distance is low =⇒ the affinity value is high) may still not
be within the antibody RR, as the the antibody might not consider the feature
values which place the antigen close. The local feature selection in AISLFS is
further explained in Section 3.1.7.

In VALIS [Karpov et al., 2018], the authors calculate the affinity as:

Wbg = B

(
d(b, g)

r

)
with

B(x) =

{
1, if x ≤ 1

0, otherwise
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In other words, the Euclidean distance is calculated and divided by the RR ra-
dius. If the resulting value is smaller or equal to 1 (the the antigen is within the
antibody RR), the affinity is set to 1. If not, the affinity will be 0, i.e. a step
function is used. The use of a step function for affinity calculation will not by it-
self encourage antibodies to move towards antigens in the feature space (which is
preferred, as the classification accuracy of the model then likely would increase).
If an antigen is within the RR of the antibody, the affinity score between the
antibody and the antigen won’t increase as the antibody moves towards the anti-
gen. Instead, it will remain 1 until the antigen is no longer within the antibody
RR.

Additionally, the use of RR radius in the denominator encourages large anti-
body RR radii, which might lead to antibodies connecting to antigens of different
classes. However, this simplistic affinity measure is counteracted by a sophisti-
cated fitness function which punishes the clustering of antibodies and connection
to different-class antigens.

In MAIM [Baug et al., 2019], the affinity measure is defined as:

Wbg =

{
1

d(b,g) , if d(b, g)≤ r

0, otherwise

where r is the RR radius. In other words, affinity is calculated as the inverse
Euclidean distance. This encourages antibodies to place themselves as close as
possible to antigens in the feature space. Additionally, by not using a step func-
tion for affinity calculation (such as VALIS), the affinity values will reflect how
close the antibody and antigen in question is, in the feature space. As the affinity
values are used extensively in the fitness calculations, this floating number affinity
measure has a significant impact on the model. However, this affinity calculation
also allows for high affinity values when d(b, g) approaches 0, which might skew
the fitness calculations. The affinity calculation doesn’t have an upper roof for
affinity values, such as VALIS and AISLFS. The authors don’t mention the im-
pact or any means of handling this, nor how the affinity is calculated when d(b, g)
is 0.

3.1.2 Negative Selection

The biological inspiration and computational strategy of negative selection was
introduced in section 2.1.3 and 2.1.7, respectively. When applied to AIS models,
the principle of negative selection alter the way antibodies are initialized and
evolved, i.e. how they move around in the feature space. In the MINSA model
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[Markowska-Kaczmar and Kordas, 2008], the authors attempt to extend the neg-
ative selection principle to perform multi-class classification. They do this by
defining several antibody sets, which each have some amount of same-class anti-
bodies performing negative selection. In MINSA, these antibodies are generated
randomly. This initialization scheme is in contrast to most models, which use
antigens to initialize antibodies. This means that antibody feature vectors are
initialized to those of various antigens from the training set. The reasoning be-
hind this antibody initialization scheme is to cover the feature space sufficiently
for each class. To do this using only antigen-initialized antibody feature vectors,
a large number of antigens for each class would be needed. By instead initializing
antibody feature vectors randomly and relying on antibody evolution to perform
accurate classification, the need for comprehensive training data is reduced.

The overall aim of the antibody evolution in MINSA is to maximize the av-
erage affinity towards non-self antigens (antigens with a different class than the
antibody) and minimize the average affinity towards self antigens (antigens with
the same class as the antibody). If the antibody doesn’t connect to any of the self
antigens (Euclidean distance to antigen > antibody RR radius), it is added to a
set of effective antibodies. If the antibody connects to one or more self antigens,
it is mutated and presented with the antigens again. The set of effective anti-
bodies will further be used to detect non-self antigens in the subsequent testing
phase. Additional antibodies are continuously generated, so that the model is
encouraged to cover a larger portion of the feature space – as the effective anti-
body set will grow rapidly.

A slightly different method of antibody initialization is used by Laurentys et
al., in their negative selection AIS [Laurentys et al., 2010]. The authors use a
fixed minimum coverage percentage, i.e. to which degree the antibodies cover the
feature space. New antibodies will be generated randomly until this minimum
coverage is achieved. In order to prevent antibody clustering, each new antibody
is presented to the existing antibodies – to check for overlap. A significant char-
acteristic of the model is that it also includes a limit on how many antibodies
there can be in the antibody set. This characteristic means that the algorithm
parameters for antibody set size and coverage ratio must be selected carefully,
depending on the number of features in the datasets used. Further, the exis-
tence of a limit on antibody count and the avoidance of antibody RR overlap are
meant to deal with the issue of MINSA where a disproportionately large amount
of antibodies were needed to perform accurate classification. However, as the
authors don’t test their model on any benchmark datasets, the full effect of these
strategies are hard to measure and compare to that of MINSA.
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3.1.3 Mutation Strategies

The antibody mutation strategy may vary based on whether the feature vec-
tor consists of bits or real-value numbers. However, the usual strategy involves
adding or subtracting a random normalized value to the feature value, with some
probability. In VALIS [Karpov et al., 2018] and MAIM [Baug et al., 2019], this
probability is equal to 1/(1 + nf ), where nf is the length of the feature vector.
In VALIS, the RR radius is mutated by using a random multiplier from a log-
normal distribution, while the feature values are mutated by adding/subtracting
a random number from a log-uniform distribution. This is difference in distribu-
tion function is attributed to the large effect of mutating RR radius, compared to
mutating feature values. Additionally, in VALIS, each antibody is put through
the mutation process again, until at least one mutation occur. This ensures that
the feature vector and/or RR radius of the antibody clones are not equal to those
of their parent. In MAIM, this strategy of repeating the mutation process is not
adopted, as individually evolving antibody populations on isolated islands pro-
vide enough diversity to the main antibody population.

In AISLFS, a different mutation strategy is used. Unlike in most other AIS
models, the feature values are not changed [Dudek, 2012]. Rather, mutation only
affects the feature subset, randomly including or excluding one of the features.
As a result, each clone will have a different feature subset than its parent. This
makes for a RR shape strategy where each antibody has an individual geometrical
RR shape, depending upon which feature values are included or not. This strat-
egy also renders the antibodies static in the feature space, as the feature values
themselves aren’t changed. This means that the model relies on accurate training
samples to place the antibodies strategically in the feature space (antibodies are
initialized from training set antigens).

3.1.4 Fitness Calculation

Although most AIS model don’t explicitly employ fitness functions, they usually
have some measure of antibody performance, used to evolve the antibody pop-
ulation. Ji et al. utilize a fitness function in their model, providing a fitness
score for each antibody based on the antibody RR volume, number of connec-
tions and degree of overlap with other antibody RRs [Ji and Dasgupta, 2004].
The reasoning behind including degree of overlap in the fitness function is to pro-
mote diversity in the population and avoid antibody clusters in the feature space.

In AISLFS [Dudek, 2012], the fitness of each antibody is measured by looking at
the antibody’s avidity. The avidity is defined as the combined affinity between
the antibody and all the same-class antigens within its recognition region (RR),
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introduced in Section 3.1.1. Although relatively simple, this fitness measure con-
tribute to producing good accuracy results. However, this fitness evaluation must
be considered in light of the nature of the model, where only a subset of feature
values are considered at each antibody.

The authors of VALIS [Karpov et al., 2018] employ an explicit fitness function in
their model, serving as the core of the model. The fitness is calculated for each
antibody separately, based on all the available antigens in the training set. This
process repeats each generation. The VALIS fitness function is based on several
parameters, including affinity to antigens, relative accuracy (connected to same-
class or different-class antigens) and sharing factor. The role of the sharing factor
is the same as of the overlap calculation in the previously introduced model by
Dasgupta et al. [Ji and Dasgupta, 2004]. This sharing factor is included to pro-
mote diversity and punish antibodies connected to the same antigens. If several
antibodies are connected to the same antigen, they will only receive a portion
of the ”reward” and thus antibodies are encouraged to explore the feature space
further.

3.1.5 Selection Strategies

The usual choice of selection strategy in AIS models is the one used in Clonal Se-
lection Algorithm (CLONALG) [De Castro and Von Zuben, 2000]. As mentioned
in Section 2.1.7, this strategy is based on the process of natural clonal selection
in the biological immune system. This process is revolved around a loop, in
which the antibodies are exposed to a (single) random antigen. Each iteration,
the affinity between each antibody and the antigen is calculated. Further, the n
antibodies with highest affinity with the antigen are selected. These antibodies
are then cloned proportional to their affinity (higher relative affinity means more
clones) and then mutated inversely proportional to their affinity (lower relative
affinity means less mutation). Finally, the affinities of all the clones are calculated
and the best-performing ones replace the worst-performing antibodies. Models
utilising the CLONALG strategy for mutation includes AIRS [Watkins et al.,
2004] and AISEC [Secker et al., 2003], among others.

Although being one of the most popular algorithms used to implement AIS
models, CLONALG is said to be sub-optimal for classification tasks [Sharma
and Sharma, 2011]. Sharma and Sharma instead propose an altered version of
CLONALG, named CLONAX. The algorithm differs from CLONALG in that in
the memory set of antibodies (the set used for classification), the antibodies are
valued for their accuracy. This means that antibodies which connect to few or
no antigens of different classes are favoured. To find antibodies which satisfy this
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criteria, antibody clones are put through a filtering process. The authors com-
pare their CLONAX algorithm to CLONALG on 5 different datasets, showing
that CLONAX generally produces more stable results across all the datasets.

In AISLFS [Dudek, 2012], every antibody generates n clones each iteration, which
then undergo mutation inversely proportional to their fitness. The antibody
clones are evaluated according to how many same-class antigens they bind to
and the best-performing one will replace the parent. This replacement happens
regardless of whether the clone performs better than its parent, to boost diversity
and prevent premature convergence. By rewarding clones which bind to a large
amount of antigens, an optimization process is created, where the number of anti-
gens within the antibody RRs are maximized and the number of features used is
minimized. Additionally, apoptosis (death) of antibodies is proposed. This elim-
ination process kills off redundant antibodies by iteratively removing antibodies
until removing more will decrease the accuracy of the classifier. However, this
process includes sequential backward selection loops and therefore significantly
increases the time complexity of the algorithm.

As outlined in Chapter 2, crossover is a computational way to mimic biologi-
cal breeding. Most AIS models don’t utilize crossover, but rather depend solely
on cloning and mutation to boost diversity. The AIRS [Watkins et al., 2004],
AISLFS [Dudek, 2012] and CLONALG [De Castro and Von Zuben, 2000] models
are examples of state of the art AIS models utilising only mutation. However,
VALIS [Karpov et al., 2018] and MAIM [Baug et al., 2019] use crossover in their
models. In VALIS, uniform crossover is employed on both the antibody feature
values and the antibody RR radius – recombining successful antibody parents.
However, the authors don’t present significant arguments as for why they chose
to do so and subsequently don’t debate the effect of the crossover operation on
the results.

Another notable strategy adopted in VALIS is that the selection of antibody
for crossover is carried out through the use of tournament selection, where the
antibodies compete based on their individual fitness – calculated from the fit-
ness function. Crossover is only performed between antibodies of the same class,
which means that each tournament is ran with a predetermined amount of same-
class antibodies. Finally, the tournament winner is chosen for reproduction with
another tournament winner with the same class.

In MAIM [Baug et al., 2019], the architecture of the model is largely based on
that of VALIS, but built on top of an Island Model topology. Antibody popula-
tions evolve on isolated islands, with periodical migration in between them. The
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island topology calls for a crossover operation, in order to reap the benefits of
this topological choice. If no crossover operation was used, the island migration
would have less effect.

3.1.6 RR Radius Initialization

Another interesting strategy of AISLFS, is the RR radius calculation. Each gen-
eration, the RR radius is set to the largest possible value, without including any
antigens of a different class in the RR. As each antibody only considers a subset of
the feature values, the RR radius is only considered for the individually selected
feature values for each antibody. Notably, the RR radius is re-calculated in the
same way each iteration. This means that the antibody radii are not mutated
randomly throughout the runtime as is usual in AIS models, but rather they are
calculated in a deterministic manner.

In VALIS [Karpov et al., 2018] (and MAIM [Baug et al., 2019]), a different RR
initialization scheme is used. Here, the RR radius of each antibody is initialized
to the Euclidean distance to a random same-class antigen in the training set.
The reasoning behind this strategy is to increase the probability that all antigens
are covered by at least one antibody, i.e. the antigen is within at least one anti-
body’s RR. The downside of this strategy is that the antibodies might (at least
initially) cover several antigens of a different class, especially if the antigens are
not particularly clustered corresponding to their class, in the feature space. If
the model don’t allow enough room for mutation and local search, this could lead
to poor classification accuracies. However, in MAIM, the authors saw significant
improvements in accuracy after this initialization scheme was implemented, re-
placing a random initialization (where the RR radii were set to a random floating
number >0).

3.1.7 Recognition Region Strategies

Although spherical (referred to as hyperspheres when number of dimensions >3)
RRs generally are used in AIS applications, there are alternative geometrical RR
shapes. The optimal RR shape may be very problem dependent [Hart, 2005].
Subsequently, Hart et al. show that both the accuracy and convergence of AISs
may be affected by the RR shape choice. This is due to the difference in how
many antigens each antibody connects to, as well as the ratio of how many of
these antigens have the same class as the antibody. The placement of the anti-
gens in the feature space may encourage a RR shape different than the traditional
hypersphere.

Another approach is that of previously mentioned AISLFS [Dudek, 2012], where
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each antibody performs individual (local) feature selection. Local feature selec-
tion refers to antibodies individually selecting their own subset of the feature
space. This means that each antibody clone performs mutations on their feature
vectors, flipping each feature value on or off with a predetermined probability. If
an antibody feature value is switched off, it will not be considered when calculat-
ing affinity, i.e. the corresponding feature value in the antigen which is compared
to the antibody will also not be considered. This strategy results in unique RR
shapes for each antibody.

For high-dimensional feature spaces, using only a subset of the features may
boost performance significantly, without decreasing accuracy [Dudek, 2012] [Baug
et al., 2019]. By having unique RR shapes for each antibody, a accuracy boost
may be achieved, as well as reducing the effect of the aforementioned ”curse
of dimensionality”. Additionally, feature selection is typically carried out glob-
ally in ML models, determining a single feature set for the entire model. This
approach is good for simplicity and efficiency, but does not take into account
that different features have variable importance in different regions of the feature
space. With local feature selection, the model is tuned to adapt better to the
varying importance of each feature. It is important to note that these benefits are
mostly prevalent for high-dimensional datasets, i.e. datasets with large amounts
of features.

3.1.8 Class Prediction

Class prediction strategies refer to the strategies used to assign class labels to
antigens, after the training phase of the model is complete. In AISLFS [Dudek,
2012], the authors present three different methods of class prediction. The first
one works somewhat similar to a k-Nearest Neighbors approach, simply summing
up how many antibodies which cover the antigen, for each class. For instance, if
an antigen is covered by two antibodies with class A and one with class B, the
antigen is assigned class A. Although performing surprisingly well, this approach
is outperformed by the two other approaches proposed. The second approach
relies on summing up the affinities of all the antibodies covering the antigen, for
each class:

vag,k =
∑

ab∈Bk

Wab,ag

where k is the class, Bk is the set of antibodies with class k and Wab,ag is the
affinity between antigen ag. The third approach is defined as:

vag,k = snk
(ag)
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where nk is the number of antibodies with class k and snk
is the algebraic sum

defined recursively as:

snk
(ag) = Wabk,ag + snk−1(ag)−Wabk,ag · snk−1(ag)

In other words, the approach includes applying the probabilistic OR operation to
all the affinities between the antigen ag and the connected antibodies with class
k. The second and third approaches score roughly the same in terms of accuracy
results, alternating on producing the best scores for different datasets.

In VALIS [Karpov et al., 2018], the vote of antigen ag to class k is calculated as:

vag,k =
∑

ab∈Bk

Wab,ag ·Aab

where Bk is the set of antibodies with class k, Wab,ag is the affinity between
antigen ag and an antibody with class k and Aab is the weighted accuracy of
antibody ab. In other words, this approach is similar to that of AISLFS, except for
the weighted accuracy component. The weighted accuracy is defined as the total
affinities of an antibody to same-class antigens, divided by the total affinities from
the antibody to all of the antigens within its RR – further explained in 4.2.7. The
inclusion of the weighted accuracy in the voting scheme is not further explained
by the authors, but it provides each antibody with a ”credit” – indicating its
trustworthiness. If an antibody has a low weighted accuracy, this means that
it’s connected to at least one antigen of a different class. This means that the
antibody cannot necessarily be trusted and its vote should subsequently bear less
weight. Finally, the antigen is assigned the class which corresponds to the highest
cumulative vote tally.

3.1.9 AIS-Based Spam Detection

Applications such as spam and fake news classification may be a niche in which
AIS models perform superior to other machine learning techniques. This lack
of an AIS niche has been a common critique of AIS models [Baug et al., 2019].
Generally, AIS models are outperformed by established state of the art ML algo-
rithms for multi-class classification tasks, but promising results has been found
for AIS models performing binary text classification [Secker et al., 2003] [Idris
and Selamat, 2011].

The nature of spam and fake news differ in a lot of ways, but are still eligi-
ble for comparison as the overall architecture of the AIS model might remain the
same. The main difference is related to the features used to construct antibodies
and antigens, as well as the pre-processing necessary to obtain these features.
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As the exact features used for spam classification aren’t necessarily relevant for
fake news classification, this section will look at spam-classifying AIS models as
a whole, investigating model architecture and features used.

Representation and Affinity Calculation

The AISEC model is an AIS adapted for classifying spam e-mails [Secker et al.,
2003]. The model adopts an algorithm similar to negative selection. Antibodies
are single-class (spam samples) and are represented as two-part feature vectors
– for each e-mail sample. Each field contains a bag-of-words of the subject and
sender field of the e-mails, respectively. As the feature vector don’t contain nu-
merical values representing various aspects of the text, but rather all the words
included in the stated fields, the affinity cannot be calculated as the Euclidean
distance. Instead, the affinity strategy adopted is word-matching against a pre-
existing list of words likely to be related to spam. Further, for every word in
the antigen vector fields, the AISEC algorithm checks for an exact (case insen-
sitive) match in the antibodies’ respective feature vectors [Secker et al., 2003].
The affinity is then calculated as the number of words matching, divided by the
length of the feature vector, i.e. the blacklisted words’ term frequency.

Oda and White [Oda and White, 2005] adopt a different strategy for feature
representation, using regular expressions as antibody features. This means that
the antibodies have individual combinations of regular expression rules, match-
ing (connecting to) different antigen samples. This means that antibodies either
connected to a given antigen or not (depending on the regular expression match)
– strength of connection was not considered. The model use negative selection
and as such, all the antibodies seek to connect to spam-labelled antigens. Each
antibody also has two weights, counting the cumulative number of spam and
non-spam messages matched, respectively. These weights are used to iteratively
remove poor-performing antibodies from the population.

An alternative affinity measure is presented in Mahmoud and Mahfouz’ SMS
spam filtering model [Mahmoud and Mahfouz, 2012]. In their model, the authors
use spam and non-spam SMSs as antibodies. The affinity is calculated as:

fj =
Sf/TS

(Sf/TS) + (Hf/TH)

where Sf and Hf represent the number of matches with labelled antibody spam
and non-spam SMSes, respectively. The affinity is calculated for each token in
the antigen SMS. Additionally, TS and TH represent the total number of spam
and non-spam (SMS) antibodies, respectively. If this affinity exceeds a predeter-
mined threshold (the RR radius), the antibody connects to the antigen.
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In the 2019 paper [Saleh et al., 2019], Saleh et al. propose a spam e-mail spam
classification model, loosely based on the negative selection AIS architecture.
Similarly to AISEC [Secker et al., 2003], the authors employ a blacklisting strat-
egy. However, the model is not an AIS in the traditional sense. Instead of using
data samples as antibodies, evolved through mutation or crossover operations,
they use three subsequent filters which they refer to as detectors. Each antigen
is fed through these detectors, which perform lookups to spam and non-spam
databases to determine the class of the antigen. The detectors themselves are
not evolved as the model is trained, but the spam and non-spam databases are
continually updated with words and N-grams from the labelled antigen samples.

Feature Extraction

The antibody representation of AISEC [Secker et al., 2003] was presented 3.1.9.
Antibodies are single-class and represented as two-part feature vectors, contain-
ing a bag-of-words of the subject and sender field of the e-mails, respectively.
Conversely, the actual message field of the e-mails aren’t included in the feature
vector. The problem of such a simple strategy is that it does not take into ac-
count the message field (leading to easy avoidance by the spammers), as well as
the need for an updated blacklist. The authors state that an increase in accuracy
may be achieved by adapting more complex antibody features such as measuring
term importance with inverse document frequency (TF-IDF) or including the
message field text into the feature vector. They also propose that a more elabo-
rate affinity function may further improve the performance of the model.

As mentioned, Oda and White [Oda and White, 2005] used regular expressions
as feature representations for the antibodies in their e-mail spam classification
model. These regular expressions were constructed by using randomly recom-
bined information from an heuristic library. The heuristic library consisted of
regular expressions, selected specifically for their high occurrence in spam e-mails.
These regular expressions include matches for specific HTML-formatting and cer-
tain words appearing fairly close in the e-mails, in addition to matching individual
words. The authors argue that this results in more useful antibodies, capable of
achieving good accuracy results with fewer antibodies. The testing performed
supports this statement, as the model produced promising results with relatively
small antibody sets. With antibody features represented as regular expressions,
evolution of the antibody population is performed by randomly adding a regular
expression from the library to an antibody, with some probability.

Mahmoud and Mahfouz used spam and non-spam SMSs as antibodies in their
SMS spam filtering model [Mahmoud and Mahfouz, 2012]. Upon antibody initial-
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ization, the message fields of the SMSs are tokenized and run through a stop word
removal filter. Tokenization allows for easier comparison with antigen samples.
This comparison is performed by using the aforementioned affinity calculation.
Further, the affinity is then used to calculate the Spam Score:

Spam Score =

∑n
f=0 fj

NT

where n is the number of antibodies connecting to the antigen, fj is the affinity
and NT is the number of tokens (words) in the antigen sample. The Spam Score
is the deciding classification factor, labelling the antigen as spam if it surpasses
some predetermined threshold. Arguably, this model is more robust than AISEC,
due to considering the message field and not just e-mail subject and sender fields.

The model of Saleh et al. [Saleh et al., 2019] illustrates the relative feature
simplicity of modern AIS models adapted for spam detection. The features tend
to consist of relatively simple word counting strategies or lexicon lookup strate-
gies. As mentioned, the model uses three filters (detectors) as antibodies, which
each antigen is fed through in order to determine the class. These detectors use
lexicon look ups for N-grams and single words appearing in the message field.
By using N-gram lookups, the model can determine that the antigen is indeed
spam with a high degree of confidence, if there is a match. This due to the low
probability of a random N-gram match. The downside of this approach is that
going through the text body looking for both single and multiple word matches
in the token databases requires extra computation. As the detector filters them-
selves are static, the actual training of the model is this process of constructing
the lexicons. These spam and non-spam lexicons are constructed from labelled
e-mail samples, as the model is trained. Keywords and N-grams are added to
the corresponding lexicon if their TF-IDF frequency surpasses a predetermined
threshold.

3.2 Semantic-Based Fake News Classification

This section is dedicated to providing the reader with a look at the current state
of the art within the field of fake new classification using semantic approaches,
in context of relevance to AIS-based fake news classification. The emphasis will
be on the linguistic features used and not on the nature of the machine learning
models employed – as these are of less relevance to the proposed model.

When it comes to the identification of fake news articles based on their writ-
ing style, proposed models range greatly in terms of complexity. Some models
aim to use relatively simple word count and term frequency techniques, while
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others employ complex linguistic models to identify degree of subjective bias,
moral foundation and psycholinguistic cues (writing characteristics providing in-
sight into the emotional state of the author) [Klyuev, 2018]. As such, this section
is divided into different strategies implemented in various fake news classification
models.

3.2.1 Term Counting Strategies

The authors of the 3HAN model [Singhania et al., 2017] found that simple word
count based models, which don’t consider word ordering or semantics, performed
suprisingly well. This suggests that vocabulary and word usage patterns are
quite distinguishable when comparing fake and real news articles – indicating
good classification potential for a model lacking complex semantic pre-processing.

In their study [Rashkin et al., 2017], Rashkin et al. conducted an analytic study
on the language used in news articles. The authors compared the linguistic
characteristics of real news with that of satire, hoaxes and propaganda. Using
frequency analysis of words belonging to specific linguistic groups, the authors
identified clear characteristics of the news articles labeled as untrustworthy. Per-
haps not surprisingly, the findings indicated that swear words appeared 7 times
as frequently in fake news articles as in trusted ones. More interestingly, second
person pronouns – (”you”, ”your” and ”yours”), appeared 6.7 times as frequent,
and modal and action adverbs appeared 2.6 and 2.2 times as frequent, respec-
tively. Such significant differences are excellent for precise separation and are,
as such, promising for the proposed model. However, some external linguistic
lexicon is needed to place the words into the correct groupings.

Volkova et al. tested a wide variety of linguistic features in their models [Volkova
et al., 2017]. The models were used to perform binary classification on Twitter
news posts. In their models, they found that incorporating linguistic features
into the models boosted the classification result significantly. These linguistic
features included bias cues, subjectivity cues, psycholinguistic cues and moral
foundation cues. Bias was identified through the use of assertive verbs (aggres-
sive action verbs, such as ”persuaded”), factive verbs (presupposing truth) and
implicative verbs (implying truth). The frequency of these words were used as
feature values in the models. Concerning subjectivity, the authors made use of
external lexicons to identify strongly subjective words and opinion words. The
psycholinguistic cues and moral foundation cues were extracted using NLP tech-
niques and are further discussed in Section 3.2.3.

Rashkin et al. also found that the inclusion of numbers were more than half
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as likely in fake news articles as in real ones. This characteristic was also found
in a study by Meel and Vishwakarma, where the authors ground this finding on
fake news articles lacking concrete numerical data on which to base the articles
[Meel and Vishwakarma, 2019]. Meel and Vishwakarma also extend this char-
acteristic to textual data, i.e. proper nouns such as the name of a person or a
place. These are concrete textual facts that fake news articles seem to often lack.
However, Horne and Adali conclude exact opposite, stating that fake news arti-
cles use significantly more proper nouns than real ones [Horne and Adali, 2017].

In their benchmark study, Gravanis et al. looked at which linguistic features
and word embedding strategies could lead to high accuracy results for fake news
classification [Gravanis et al., 2019]. The authors found that the best performing
classification was obtained using the union of all features proposed from three
different papers. These features include big words, word count, sentence depth,
pausality and pronouns, among others. However, this feature set consisted of
almost 60 features in total – which might lead to reduced efficiency. Subsequent
feature selection could possibly decrease the amount of features and therein run
time. Additionally, the authors performed feature ranking to determine the top
ten features for each dataset. These features are shown in Figure 3.1. Due to
the variability of usefulness of the various features (for the different datasets), it
is hard to precisely identify the best-performing features overall. However, some
features such as total word count, pronoun usage, sentence length and frequency
of big (long) words appear to work well across several of the datasets and were
as such considered to be relevant for the proposed model.

Figure 3.1: Top performing features for various fake news datasets [Gravanis
et al., 2019]

In their 2019 paper, Ozbay and Alatas adapted two bio-inspired optimization
models for classifying fake news articles [Altunbey Ozbay and Alatas, 2019]. No-
tably, their models produced promising results with relatively simplistic features.
During the pre-processing phase, the authors performed tokenization, stop word



42 CHAPTER 3. STATE OF THE ART

removal and word stemming (reducing words to their base form). Term frequen-
cies were then calculated using a predetermined set of terms. However, they
don’t specify which words they compute the term frequencies for, other than
stating how many they used for the various datasets. Nevertheless, the obtained
results hint at the effectiveness of stop word removal and word stemming in the
pre-processing phase, for fake news classification.

Grammatical Quality

Grammatical quality of writing might also be indicative of the truthfulness of
news articles [Klyuev, 2018]. Burgoon et al. used Flesch-Kincaid grade level as a
feature in their classification model, to assess the grammatical quality [Burgoon
et al., 2003]. Flesch-Kincaid grade level provides an indication of how difficult
an english text is to understand, in the form of a score between 1-100. The
score is calculated according to a formula, using the total number of words, sen-
tences and syllables in the text. The authors found that truthful news articles in
general had higher Flesch-Kincaid scores, in addition to more complex sentence
structures (longer sentences) and more syllables per word – than deceitful articles.

Another measure of the grammatical quality is the percentage of grammatically
incorrect sentences, as well as the lack of advanced (uncommonly used) words –
indicating a less advanced vocabulary. Syntactic analysis tools (tools analysing
the linguistic structures) such as Stanford CoreNLP can be used for this purpose
[Klyuev, 2018]. CoreNLP can be used to generate a score of the grammatical
quality of a text – which further can be used as a numerical feature value.

3.2.2 Differential Weighting

News article headlines are often designed to shock, surprise or tempt the reader
to continue reading [Volkova et al., 2017]. The authors of the 3HAN model [Sing-
hania et al., 2017] aimed to take advantage of this characteristic, by weighting
the headline more than the remaining article, when extracting features. 3HAN
is based on three distinct levels, concerned with the words, sentences and head-
line of the articles, respectively. These levels are combined into a news vector,
by processing articles in a bottom-up manner. The authors justify this division
by claiming that the headlines of news articles is known as a distinguishing fea-
ture. Subsequently, a relatively small subset of words and sentences (those in the
headline) carry a disproportional value for classification and should therefore be
weighted more.

The authors of 3HAN further maintain that this difference of importance means

https://nlp.stanford.edu/software/
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that the relative importance of a news article can be modelled as an inverse pyra-
mid (where the width illustrates relative importance), with the headline at the
top. They infer this from the repetitive nature of fake news articles, where the
text corpus is often repeated with slightly different semantics. This is supported
by Horne and Adali, who conclude that fake news articles use repetitive content
in the corpus and rather pack long sentences into the headline [Horne and Adali,
2017]. Considering the nature of clickbait articles, this is inherently intuitive, as
the fake news authors wish to attract readers by using shocking headlines.

Considering the 3HAN model [Singhania et al., 2017], this means that the head-
line and initial paragraph should be considered as more important (in terms of
classification) than the rest of the news article. The authors implement this
weighting by assigning attention weights to sentences and words depending on
their placement in the article. The authors attribute the high classification accu-
racy to this differential importance weighting. Additionally, they conclude that
their headline premise is valid, as the model which include the headline weighting
scores better than the one without (although the difference is less than 1%).

In practice, this differential weighting strategy could be implemented into the
proposed model by multiplying term frequencies found in the headline by some
factor – so that these carry more weight than if they’re found in the article corpus.
Feature values of antibodies and antigens would then be changed correspondingly
and would therein change position in the feature space – potentially simplifying
classification.

3.2.3 Use of External NLP Tools

The Stanford CoreNLP software was introduced in Section 3.2.1. The software
can also be used for a wide variety of text analytics. In the 3HAN model [Sing-
hania et al., 2017], the authors used CoreNLP to tokenize sentences and perform
word stemming, followed by grouping of the words. Used in this way, the software
can aid the pre-processing phase of feature extraction – using built-in libraries
for word stemming etc. Furthermore, Stanford CoreNLP also includes tools for
performing sentiment analysis of text corpus. Sentiment analysis is based around
extracting the expressed opinion and subjective state of the text, i.e. determine if
the text is inherently positive or negative. As shown by Meel and Vishwakarma,
multiple models have found success in using sentiment analysis to aid fake news
classification [Meel and Vishwakarma, 2019]. One of these is the fake news detec-
tion model by Bhutani et al., where the authors found that extracting sentiment
from the news articles improves classification accuracy [Bhutani et al., 2019]. The
authors further hypothesized that the sentiments found in the articles could serve
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as a pivotal deciding factor for classification, as the sentiments extracted from
fake news articles generally were more negative than those extracted from real
ones.

In the aforementioned models of Volkova et al., LIWC was used for identify-
ing psycholinguistic cues [Volkova et al., 2017]. LIWC (Linguistic Inquiry and
Word Count) is a language psychology analysis framework [Pennebaker et al.,
1999]. The psycholinguistic cues include the use of persuasive and biased lan-
guage in the text. For example, LIWC picks up on rhetorical questions and
emotional language to identify these persuasive cues. The authors also used
LIWC to extract moral foundation cues, which refer to the ethical principles on
which the news articles are built on. The accuracy results improved significantly
when these cues were used to aid classification – leading to the hypothesis that
fake news articles appeal to different ethical foundations than verified news. In
practice, for the proposed model, LIWC could be used to compute a category
in which the article is believed to belong to (in terms of moral foundation and
psychological state of the author). Further, some hash-function could map these
categories to real-valued numbers – which could then be used to aid classification.

In the benchmark study by Gravanis et al., the accuracy score was improved
when additional word embedding features, generated with word2vec [Mikolov
et al., 2013], were used – boosting the accuracy across all the testing datasets
[Gravanis et al., 2019]. The authors used a pre-trained model (trained with
Google News articles) to generate a fixed-length vector for each news article.
This allows numeric representation of each news article, with the hope of captur-
ing the symbolic meaning of each article – so that similar articles are placed in
clusters in the feature space. These results highlight the promising capabilities
of applying text embedding models to the classification task.

More recent developments in the field of text embedding includes the ”Bidirec-
tional Encoder Representations” (BERT) [Devlin et al., 2019] and ”Embeddings
from Language Models” (ELMo) [Peters et al., 2018] models. These models build
context-dependent vectors rather than vectors representing the meaning of each
word (like word2vec does). This means that the models evaluate the setting in
which each word appears, when the meaning of the word is computed – leading
to much more accurate vector representations. For instance, the word ”watch”
has vastly different meanings in the two sentences: ”I looked at my watch” and
”I love to watch movies”. Word2vec would assign ”watch” the same vector in
both these instances, while ELMo and Bert would not. BERT is also capable
of representing entire sentences as fixed-length floating number vectors, which is
highly relevant to the proposed model.

https://liwc.wpengine.com/
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The authors of Fakeddit [Nakamura et al., 2020] introduced a model which classi-
fies Reddit news submissions. In their model, the authors used BERT to generate
sentence embeddings for each submission title. This way, the authors were able
to represent the submission title as fixed-length vectors, which were then used
directly for classification. The results obtained further support the usefulness of
text embeddings for fake news classification.

The authors of FakeBERT proposed an approach to fake news classification us-
ing solely BERT embeddings [Kaliyar et al., 2021]. BERT processes the input
sentence from both left-to-right and right-to-left, where other word embedding
models generally only does one of the two. The authors theorize that this bidi-
rectional training approach is excellent for modelling the relevant information
of fake news articles, as both semantic and long-distance dependencies in input
sentences are captured. The authors used a sequence length of 512 tokens as
input to their pre-trained BERT model, which is the maximum available input
sequence. However, they don’t specify how they extract these 512 tokens from
the full news article samples (which likely are longer than 512 tokens), other than
that they extract embeddings for a sentence or a set of words.

3.2.4 Relevant Datasets

As fake news is a relatively recent phenomenon, there are no clear-cut benchmark
datasets used across the various research articles. Some authors use manually la-
belled websites from sites such as PolitiFact [Wang, 2017] [Singhania et al., 2017],
while other use labelled Twitter news posts [Gravanis et al., 2019]. Additionally,
many researchers construct their own datasets for evaluating their models. This
inconsistency makes for difficult comparisons between models. The sample size,
source and number of classes may also vary between the different datasets, as can
be seen in Table 3.2.

https://www.politifact.com/
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Figure 3.2: Overview of various fake news datasets and their attributes [Naka-
mura et al., 2020]

Small and single-sources datasets might not serve as accurate representations of
news articles found ”in the wild”. This highlights the difficulty of dataset se-
lection, for fair and realistic model testing. This section will introduce relevant
datasets for fake news classification, along with an assessment of suitability with
the proposed model. Only the Liar, FakeNewsNet and Fakeddit datasets from
Table 3.2 will be discussed in detail. The reasoning behind this is that many
of the datasets listed were only used by the creators or were focused on other
aspects of classification, like image recognition. As mentioned in Section 3.2.1,
Gravanis et al. determined the top features for a variety of datasets in their
benchmark study [Gravanis et al., 2019]. Referring to Figure 3.1, the difference
in feature performance between the datasets supports the authors’ claim that
single-sourced datasets could be biased and therefore unfit for training.

The Kaggle fake news dataset is a large-scale dataset originally posted as a clas-
sification competition on the Kaggle website, not to be confused with the dataset
referred to in Figure 3.1. The dataset includes binary class labels (reliable and
unreliable), article text, title and author. The article samples in the dataset are
real-world news articles, propagated during the 2016 U.S. presidential election.
The dataset has been used in several models since its release in 2018, which makes
the dataset fit for comparing accuracy results with other models.

The Fakeddit dataset [Nakamura et al., 2020] is a massive-scale dataset, con-

https://www.kaggle.com/c/fake-news/overview
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sisting of more than 1 million individual samples – gathered from Reddit. These
samples not only contain the article corpus, but also images, metadata and com-
ment data. Although not particularly relevant to the proposed model (which only
looks at the headline and article text), these are advantages that might make it
suited for the role of a fake news classification benchmark dataset, in the future.
The Fakeddit dataset features multi-class labelling. The authors additionally set
up the dataset to allow for 2-class, 3-class and 6-class classification – enabling
both binary and fine-grained (more than 2 classes) classification. The 6-class la-
bels include true, satire/parody, misleading content, manipulated content (mostly
applying to images), false connection and imposter content. The downside of the
Fakeddit dataset is that it was released very recently (May 2020), and thus there
are few models tested on the dataset yet. This means that there are few models
with which to compare classification accuracy to.

FakeNewsNet is a dataset released in 2018, featuring 602,659 short Twitter state-
ments labelled as real or fake [Shu et al., 2018]. The dataset contains a rich set of
features, including contextual metadata as well as the tweet texts. The samples
are collected from PolitiFact and GossipCop. Similar to Fakeddit, the FakeNews-
Net dataset is also quite recent, but multiple researchers have nevertheless used
the dataset to test their models. The recency of the datasets indicates that the
language used in the text samples are up-to-date with modern writing styles,
making it relevant for a model adapted to modern social media.

Lastly, the Liar dataset is a 2017 dataset consisting of 12,836 short political
statements [Wang, 2017]. Like the Fakeddit, the dataset features six different
class labels, ranging from ”pants-fire” to ”true”. The samples are fact-checked
twice and the authors argue that the samples are as unbiased as possible, due to
sampling from various sources and balancing the amount of samples per political
party affiliation. Additionally, there is roughly the same amount of samples per
class label (except for the ”pants-fire” class). Metadata is also included for the
samples, including subject, context, speaker, political party etc.

The authors of Liar also tested several state of the art ML models on their
dataset. The accuracies of these models were quite poor, generally achieving an
accuracy of around 0.20. This is likely due to the nature of using six separate
classes, where fine-grained classification is difficult. Needless to say, differentiat-
ing between ”mostly-true” and ”half-true” is difficult even for humans and cannot
be directly compared with the accuracy scores of models which test on binary
class datasets.
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Chapter 4

Model and Architecture

This chapter aims to explain the architecture of the proposed model, including
the algorithmic approach, relevant parameters and the graphical visualisation tool
used for plotting solutions. The source code for the proposed model can be found
at: www. github. com/ SimenSverdrup/ An-AIS-for-Fake-News-Classification

4.1 Datasets

The investigations into relevant datasets (see Section 3.2.4) led to the discov-
ery of three datasets which are generally accepted as valid benchmarks. These
are the Kaggle Real-World dataset [Kaliyar et al., 2021], FakeNewsNet (FNN)
dataset [Shu et al., 2018] and the Liar dataset [Wang, 2017]. These datasets have
been used in multiple models and were released quite recently – which gives the
datasets relevance to today’s writing styles.

The accuracy results obtained (by the various models) on the three datasets vary
significantly. The Liar and FNN datasets are objectively difficult to classify, with
Liar accuracies typically spanning the 0.15-0.25 range (for 6-class classification)
and FakeNewsNet accuracies spanning the 0.55-0.65 range. Comparatively, accu-
racies for the Kaggle dataset typically span the 0.80-0.95 range. It was theorized
that this variation in dataset difficulty would test the robustness of the proposed
model, as well as the breadth of possible applications. The Kaggle dataset would
test the model’s performance on a typical fake news dataset, Liar would test the
proposed model’s ability to perform fine-grained classification and FNN would
test the model’s ability to perform difficult binary classification.

By testing on three distinct datasets with different sample sources, it was be-
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lieved that the general applicability of the model would be thoroughly tested
and the results would subsequently bear weight in terms of general applicability.
The performance of classification models may vary greatly depending on which
datasets are used for testing and results obtained using single datasets for evalua-
tion should generally be taken with a grain of salt [Bozarth and Budak, 2020]. As
such, it was decided that the proposed model should use three distinct datasets
for model training and accuracy testing.

4.2 Model Architecture

This section presents the architecture of the proposed model, excluding the fea-
tures employed (these can be found in Section 4.3). Subsection 4.2.1 introduces
the overall structure of the model, to provide an overview of the model. Further,
Subsection 4.2.2 presents the model parameters, which may impact the results.
The remaining subsections cover the main elements of the model.

4.2.1 Model Structure

The algorithm of the underlying AIS takes its main inspiration from VALIS [Kar-
pov et al., 2018]. However, some attributes have been changed in order to tailor
the algorithm towards fake news classification. To address the challenge of rapidly
growing feature spaces when text embedding features were used (more about this
in Section 4.3.4), a scheme for local feature selection amongst the antibodies was
implemented – inspired by that of AISLFS [Dudek, 2012]. Further, the crossover
strategy from VALIS was replaced by a mutation scheme – to better evaluate the
value of the extracted features. The overall structure of the proposed model can
be seen in Figure 4.1.
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Figure 4.1: The overall structure of the proposed model

4.2.2 Model Parameters

The relevant parameters of the proposed model are presented in Table 4.1, to-
gether with their respective abbreviations. These abbreviations are used in the
following subsections.
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Model Parameters
Parameter Explanation
Cross-validation split (k) The number of splits used for k-fold cross-

validation
Datasets (D) The set of relevant datasets
Classes (C) The set of classes for the selected dataset
Total population (P) The total antigen population of the current

training set (before antibodies are initialized)
Generations (G) The number of generations (iterations)
Feature vector mutation proba-
bility (pfv)

The probability of a single antibody feature
value mutation

RR radius mutation probability
(pr)

The probability of mutation on the antibody
recognition region radius

Antibody ratio (ABratio) The ratio of antibodies, compared to the cur-
rent antigen training set (determining the de-
gree of data reduction by the model)

Antibody initialization split
(ABinit−split)

The ratio of antibodies initialized with anti-
gen featue values vs initialized with random
feature values

Antigens (AG) The set of antigens for the current training
split k

Antibodies (AB) The set of antibodies for the current genera-
tion and training split k

Features (F) The set of features used for the selected
dataset

Antibody replacement ratio
(ABrr)

The maximum ratio of antibodies being re-
placed (decreases each generation)

Antibody removal threshold
(ABrt)

The minimum antibody fitness value

Antibody clones (ABc) The number of clones each selected (for repro-
duction) antibody produces

Tournament size (T) The number of antibodies to compete in each
tournament (statically set to 1/10 of the num-
ber of antibodies in the antibody set)

Antibody features used (ABF ) The feature subset used by the antibody

Table 4.1: The parameters of the proposed model
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4.2.3 Antibody and Antigen Structures

The structures of the antigens and antibodies in the proposed model are mostly
standard (as introduced in Section 2.1.7). Antigens consist of a feature vector
and a class label. Antibodies are similarly structured, but also include an addi-
tional value stating the radius of the RR region, as well as a vector identifying
which features the given antibody uses. A hypersphere was selected as the ge-
ometrical RR shape, due to its simplicity and efficiency. Additionally, plotting
of the feature values (with the implemented solution plotting tool, see Section
5.1) did not result in any clear alternatives. As an important part of the model
is the feature extraction, an alternative RR shape might also skew the results.
This is due to features being weighted differently in terms of inclusion into the
RRs. Non-hyperspherical RRs would stretch further in some dimensions (i.e., for
some features), than others – leading to an unfair evaluation of the features. If
maximal accuracy was the only goal of the proposed model, this would be okay,
but as the scope of the thesis includes evaluating applicability of features as well,
this is sub-optimal.

As mentioned, each antibody employs feature subset selection, inspired by AISLFS
[Dudek, 2012]. This selection was implemented through each antibody having a
vector which keeps track of which features the antibody uses for calculating affin-
ity to antigens. This means that the antibody might lie close to a given antigen
in the feature space, but the antibody might not consider (use) the feature which
puts them close to each other. The antigen might then still fall outside the RR of
the antibody. Further, the antibody would then not connect to the antigen and
subsequently not vote on the antigen class in the class prediction phase, thus not
negatively impacting the classification. The vector indicating which features the
antibody uses is further referred to as the feature selection vector.

The structure of the antibodies can be seen in Figure 4.2. It is important to
distinguish the feature vector and the feature selection vector. The feature vec-
tor contain all the feature values (floating numbers) of the antibody, while the
feature selection vector contains booleans indicating which features the antibody
will actually use. As the length of the feature vectors of antibodies and antigens
is static, the structure of the antigens is the same as for the antibodies, but with-
out the RR radius and feature selection vector. It is important to note that the
antigens don’t mutate and thus they stay the same throughout the execution of
the algorithm.



54 CHAPTER 4. MODEL AND ARCHITECTURE

Figure 4.2: Structure of an antibody with spherical RR, in a 2-dimensional feature
space

Negative selection was ultimately discarded. This was due to the benefits of using
this approach being unclear. The antibody fitness and selection scheme would
likely not work optimally with negative selection, as antibodies are only slightly
punished for including different-class antigens in their RR. It was therefore theo-
rized that the model would struggle with differentiating between self and non-self
antigens, especially when the feature values are extracted during runtime (and
therein might not be accurately representative of antigen classes). As the pro-
posed model includes a large amount of features, there was also uncertainty tied
to how negative selection might work with high-dimensional feature spaces.

4.2.4 Normalization

As the recognition region shape used in the model is an hypersphere, normal-
ization of feature values was necessary – in order to not weigh features unfairly.
The initial normalization scheme included Z-Score normalization, as in VALIS
[Karpov et al., 2018]. This strategy changes each feature value as:

x′ =
x− x̄
σ

where x is the old value, x′ is the new value, x̄ is the average value for x across all
the data samples and σ is the standard deviation. However, after some prelimi-
nary testing, it was determined that Min-Max normalization resulted in slightly
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better results. This approach re-scales each value as:

x′ =
x−min(x)

max(x)−min(x)

where x is the old value, x′ is the new value, min(x) is the minimum feature value
across all the data samples and max(x) is the maximum feature value across all
the data samples. It’s important to note that the normalization was carried out
for each feature value separately. In other words, when calculating min(x) and
max(x), these denote the minimum and maximum value across all the data sam-
ples’ ith feature vector index, where i ∈ [0, length(feature vector)]. Thus, the
feature values at the ith and (i+1)th indices are considered independent when
performing normalization.

Further, some extracted features resulted in negative feature values (see Sub-
section 4.3.4). In order to normalize these feature values, a simple approach of
adding the minimum feature value (before normalization) to all the values was
implemented. This approach finds the minimum (most negative) feature value
across all the data samples, at a given feature vector index. Then, the absolute
value of this feature value is added to all the feature values at this index. This
ensures that each feature value has a minimum value of 0. Finally, the Min-
Max normalization scheme is used on the new feature values. This normalization
strategy results in all the new values being linearly mapped to a number ∈ [0, 1].

4.2.5 Initialization

The proposed model is initialized with an initial antigen population. For the
benchmark (not fake news) classification datasets (see Section 5.2.1), the antigen
feature values are simply the normalized (see Section 4.2.4) feature values of the
datasets. For the fake news datasets, the antigen feature values are calculated
through feature extraction, as explained in depth in Section 4.3. The antigen
class labels are set to the class labels of their respective sample in the dataset.

The size of the antibody set is based on the antibody ratio (ABratio) parameter,
which state the ratio between antibodies and antigens in the current training
set. For reference, VALIS [Karpov et al., 2018] and AISLFS [Dudek, 2012] use
a constant value of 1.0 as ABratio, meaning that the amount of antibodies is
set equal to the number of antigens in the training set. This allows for more
fine-grained distinction (which some datasets require), at the cost of no data re-
duction (the amount of antibodies is equal to number of input samples). This lack
of data reduction is acceptable when model testing is conducted with traditional
classification benchmark datasets (with sample sizes ranging from 150-800), but
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is infeasible for the large scale fake news datasets used for testing the proposed
model (with thousands of samples). As the feature values are normalized between
[0-1] in the proposed model, there is also a disproportional ”return of investment”
for large antibody population sizes. This is due to not needing additional anti-
bodies to cover antigen outliers – as these would be normalized into the [0-1]
range. When small numbers of features are used, it’s unnecessary to employ a
large antibody population – as a smaller antibody population would still cover
the feature space adequately. As such, the (ABratio) parameter is not defined
statically, so that it can be tuned according to the characteristics of the datasets
which are used for testing.

Further, the antibody initialization approach consists of two mixed initializa-
tion schemes, that of AISLFS [Dudek, 2012] and that of MAIM [Baug et al.,
2019], respectively. These two initialization schemes result in two antibody sets,
which are then combined into one. This approach was used to reap the benefits
of both initialization schemes, without sacrifice, as both schemes showed promis-
ing results during the model refinement testing (see Section 5.2.1). For the first
antibody set, the feature values and class of the antibodies are set to those of
randomly selected antigens from the current training set (see Section 4.2.11). The
initialization scheme was implemented so that several antibodies aren’t initialized
with the same antigen’s feature values. This initialization approach is similar to
that of VALIS Karpov et al. [2018] and AISLFS [Dudek, 2012], among others.

The second antibody set are initialized similarly to the initialization scheme of
MAIM [Baug et al., 2019]. This initialization scheme revolves around randomly
assigning feature values and classes to the antibodies. The range of possible
feature values are defined as the span from 10% less than the minimum feature
value (at a given index) in the training set, to 10% more than the maximum
value. Adding this randomly initialized antibody set boosted model performance
on the Wine and Diabetes datasets especially – indicating that the model may
benefit from this initialization scheme when larger numbers of features are used
(the Iris dataset includes 4 features, compared to 8 and 13 for Diabetes and
Wine, respectively). The ABinit−split parameter was introduced to denote the
ratio between the two initialization schemes, i.e. an ABinit−split of 0.9/0.1 means
that 90% of the antibodies are initialized with the AISLFS approach and 10%
with the MAIM approach.

Two different RR radius initialization schemes were considered, that of AISLFS
and that of VALIS. In the AISLFS approach, the RR radius of each antibody
is initialized to be as large as possible, without including any antigens of a dif-
ferent class in the RR. In the VALIS approach, the RR radius is set to include
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at least one (random) antigen of the same class, in the RR. This RR radius is
used regardless of whether this also allows antigens of a different class inside the
RR. After model refinement testing of the two approaches (see Section 5.2.1), it
was decided to use the VALIS initialization scheme. Finally, the feature selection
vector (identifying which features the antibody will use) is initialized to initially
consider all the features.

4.2.6 Affinity Calculation

Various possible methods of affinity calculation were presented and discussed in
Section 3.1.1. The affinity measure selected for the proposed model was inspired
by the affinity measure in AISLFS [Dudek, 2012], where the affinities always
remain between 0 and 1. Comparatively, the affinity calculation of MAIM [Baug
et al., 2019] would result in the affinities (and therein fitnesses) approaching
infinity when the Euclidean distance approached zero. As the proposed model
uses an initialization scheme where a part of the antibodies are initialized with
the feature values of random antigens (thus having an Euclidean distance of
zero to these antigens), this affinity measure would cause problems. As such, the
antibody-antigen affinities of the proposed model are inspired by that of AISLFS,
calculated as:

a(abk, agj) =

{
0, if d(abk, agj) > rabk
1− d(abk,agj)

rabk

, otherwise

where d(abk, agj) is the Euclidean distance between antibody k and antigen j
and rabk is the RR radius of antibody k. The Euclidean distance is calculated as:

d(abk, agj) =

√∑
i∈F ′

(abk[i]− agj [i])2

where F ′ is the feature set of antibody k (a subset of the total feature set F)
and abk[i] and agj [i] refers to the feature value at index i in the antibody and
antigen feature vector, respectively. It is important to note that only the values
of features which are included in the antibody feature selection vector are used
in the Euclidean distance calculation.

Additionally, it should be noted that rabk is in the denominator in the affin-
ity calculation. Thus, the problem of antibodies employing excessively large RR
radii to increase affinity and therein fitness must be considered. This problem
is avoided due to the subsequent fitness calculation, which punishes antibodies
which include different-class antigens in their RR, as well as sharing same-class
antigens with several other antibodies.
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4.2.7 Fitness Evaluation

The fitness calculation is a crucial part of the underlying AIS, serving as the
backbone of the proposed model. The fitness function was adapted from VALIS,
due to its flexibility and proven efficiency. Additionally, the fitness function’s
ability to encourage exploration of the feature space, without introducing too
much diversity, was considered. The fitness calculation consists of three main
components and is calculated as:

F (ab) =
Weighted Accuracy(ab) · Sharing Factor(ab)

Total Affinity(ab)

where ab is the antibody for which the fitness is being calculated. The components
are explained further in the following subsections.

Total Affinity

Total Affinity refers to the summed affinities between the antibody and all the
(connected) antigens, regardless of their class. As the affinity is 0 between an
antibody and any antigen outside its RR (as explained in 4.2.6), the sum cover
the entire antigen set G:

Total Affinity(ab) =
∑
ag∈G

Wab,ag

where ab is the antibody in focus, ag is an antigen, G is the set of all the anti-
gens in the current training set and Wab,ag is the affinity between antibody ab
and antigen ag. As this component is in the denominator of the fitness function,
antibodies are punished for connecting to a large amount of antigens. Although
seeming somewhat counter-intuitive for covering the feature space, this encour-
ages antibodies to ”specialize” and locate a smaller subset of antigens which are
covered by few or no antibodies. Thus, the feature space coverage is in fact
improved.

Weighted Accuracy

The role of the Weighted Accuracy is to measure the degree to which the anti-
body connects to antigens of the same class. The summed affinity between each
antibody and its (connected) antigens with the same class label is divided by the
antibody’s Total Affinity. Additionally, Laplacian smoothing is employed to pre-
vent overfitting. This smoothing is altered slightly from VALIS, as VALIS uses
α = 1 and the proposed model uses α = 1.5. The reasoning behind this choice
was that preliminary testing with α = 1 resulted in high-variance results. Addi-
tionally, as the fake news datasets are very large compared to the classification
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benchmark datasets, it was reasoned that overfitting would be less of a problem
for the proposed model (than for VALIS). As such, the Weighted Accuracy is
calculated as:

Weighted Accuracy(ab) =
α+

∑
ag∈Gab

Wab,ag

k +
∑

ag∈GWab,ag

where k is the number of classes in the dataset and Gab is the set of antigens
connected to ab with the same class as ab.

Sharing Factor

The Sharing Factor component of the fitness function plays a critical role in
the model. The component stimulates the antibodies to continually search their
local feature space for antigens, by only giving a portion of the ”reward” to each
antibody connecting to the same antigen. When several antibodies cover the same
antigens, the Sharing Factor quickly drops and the antibodies are encouraged to
move or reduce their RR. As the worst-performing antibodies are replaced every
round, the model would quickly converge towards local optima if the Sharing
Factor didn’t encourage the antibodies to avoid crowding high-concentration (in
terms of antigens) regions of the feature space. The authors of MAIM [Baug
et al., 2019] (which adapt a similar fitness function) found that this was indeed
the case, as the accuracy was severely degraded when the Sharing Factor was
not used in the fitness function. As such, the Sharing Factor is calculated as:

Sharing Factor(ab) =
∑
ag∈G

W 2
ab,ag∑

ab∈Bag
Wab,ag

where Bag is the set of antibodies connecting to antigen ag and the remaining
notations are the same as in the previous subsections. The Sharing Factor is cal-
culated by squaring the affinity from the antibody to one of its connected antigens
and dividing by the sum of all the affinities of the antigen (the affinity between
the antigen and all its connected antibodies). This provides a measure of the por-
tion that the antibody’s affinity to the antigen make up, compared to all of the
antigen’s affinities. Finally, this fraction is summed up for all the antigens within
the RR of the antibody – resulting in the Sharing Factor of that specific antibody.

It should be noted that the affinity in the numerator is squared. This gives
the affinity a greater impact on the fitness score – to not give the Sharing Factor
too much influence on the fitness. As the class prediction scheme (see Subsection
4.2.10) is somewhat based upon several antibodies covering the same antigens, it
is not optimal that each antigen is covered by only one antibody. By squaring the
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affinity in the numerator, antigen sharing is not completely discouraged – strik-
ing a balance between discouraging overcrowding and encouraging local search.
Overall, the fitness calculation was adapted from VALIS, with the only tweak
being the slightly altered Weighted Accuracy. The fitness calculation scheme is
illustrated in Figure 4.3.

Figure 4.3: The fitness calculation strategy of the proposed model, with k=2

4.2.8 Antibody Selection

After the antibody fitnesses has been calculated, antibody selection is carried
out, based on fitness values. Each generation, n antibodies are selected for re-
production. Tournament selection strategy (see Subsection 2.1.2) is used to find
these n antibodies. Tournaments of a static size of 1/10 of the total antibody
set are created, by randomly picking antibodies from the antibody set. Each
tournament will produce a winner (by having the highest fitness score in that
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particular tournament), which is allowed to reproduce. If the winner of a tourna-
ment has already been allowed to reproduce that generation, the antibody with
the second-highest fitness score is chosen as the winner instead. Implementations
were made to ensure multiple versions of the same antibody don’t compete in the
same tournament.

The reasoning behind using tournament selection instead of simply selecting the
n antibodies with the highest fitness scores (like VALIS does), is to introduce a
greater degree of diversity into the antibody population. Through tournament
selection, even antibodies with a relatively low fitness score may be allowed to re-
produce, if its tournament contestants have even lower fitness scores. This results
in more feature space exploration, which therein prevents premature convergence.

Further, each of the n selected antibodies produces m clones, for a total of n ∗m
new clones. The clones are then mutated and their fitnesses calculated. Then,
the n best clones replace the n poorest performing (in terms of fitness) antibodies
in the population, regardless of whether their fitness is better or worse than these
antibodies. By replacing the worst antibodies with new clones regardless of their
fitness scores, the diversity of the antibody population will decrease more slowly
than if the fitness scores were considered. This is due to new mutations being
introduced to the population at every generation. It is worth noting that this
selection approach only gives the new antibodies one generation to ”prove their
worth” in the antibody population. If a new antibody is one of the n antibodies
with the worst fitness score in the next generation, it’s discarded after only one
generation. This halts further local search surrounding the antibody parent, until
a new antibody clone potentially mutates to similar feature space coordinates.
This is a necessary sacrifice, in order to make the model run efficiently. More
exhaustive local search would quickly increase both time and space complexity
drastically, especially for high-dimensional feature spaces.

As the new clones replace current antibody individuals regardless of perform-
ing better or worse, some heuristic to aid the population (as a whole) to steadily
improve was needed. If no such heuristic was used, the model could replace a
significant portion of the antibody population all the way to the last genera-
tion – leading to large variation in accuracy results. To solve this problem, a
reproduction ratio calculation was introduced – similar to that of VALIS. This
reproduction ratio is based on the current generation number, compared to the
total number of generations. The reproduction rate will gradually decrease, in
relation to a distribution, as the model progresses through the generations. This
means that the value for n (the number of antibodies to be replaced) progressively
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decreases. The reproduction ratio is calculated as:

ABrr(g) = ratiomax ·
(

2

nab

) 3
2 ·

g
gtotal

where g is the current generation number, gtotal is the total number of genera-
tions, ratiomax is the maximum ratio of antibodies to be replaced and nab is the
total number of antibodies. Further, the number of antibodies to be replaced is
calculated as:

n = floor (ABrr · nab)

The proposed model’s method of reproduction ratio differs from that of VALIS,
as VALIS utilize a static value of 0.5 for ratiomax. Not using a static ratiomax

value allows for experimentation with different values of the maximum replace-
ment ratio, as presented in Section 5.2.1. Additionally, VALIS raise ( 2

nab
) to the

power of g
gtotal

, instead of 3·g
2·gtotal

. This change (in the proposed model) lead to
the number of new antibodies declining more slowly across the generations. This
change was implemented to introduce more diversity into the antibody popula-
tion, which otherwise would be less diverse than that of VALIS – as the proposed
model doesn’t utilize crossover between antibodies.

As antibodies are continuously replaced with randomly mutated clones through-
out the generations, some poor-performing antibodies might still be present in
the antibody set at the last generation – leading to degraded accuracy. To solve
this problem, the proposed model employs apoptosis of antibodies – inspired by
AISLFS [Dudek, 2012] (as mentioned in Section 3.1.3). After the generation loops
are complete, the fitnesses of the antibodies are calculated on the training set.
The fitnesses are compared to the antibody removal threshold and antibodies
scoring lower than this are removed from the antibody set. This fitness threshold
is generally set quite low, as the training set isn’t necessarily representative of
the entire antigen population. The apoptosis process serves mainly as a tool to
remove antibodies which are added late in the process, that don’t connect to any
antigens.

4.2.9 Mutation and Feature Subset Selection

As mentioned, the proposed model includes local feature selection amongst the
antibodies, inspired by AISLFS [Dudek, 2012]. As opposed to AISLFS, the pro-
posed model does not rely solely on mutating which features are used by each
antibody (feature subset selection), but rather the features values, feature subset
selection and RR radii are all mutated randomly, for each antibody. The inclusion
of local feature selection combined with feature value and RR radius mutation is
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attributed to the large amount of features and difficulty of classification (the Liar
and FNN datasets are inherently hard to perform classification on). Addition-
ally, each antigen sample is less representative of an ”average antigen” with that
particular class label – as the feature values are extracted rather than provided
”as-is”, in a dataset. The authors of AISLFS only test their model on benchmark
classification datasets, with given feature values and a relatively small amount of
features.

Although being inspired by VALIS [Karpov et al., 2018], the proposed model
doesn’t employ crossover for reproduction. The reasoning behind this was that
crossover is uncommon in AIS models generally and the literature study revealed
no spam-classifying AISs which utilized crossover – only mutation. Additionally,
as the features extraction was of an experimental nature, the impression was that
crossover operations would introduce too much diversity into the population –
which in turn would make it difficult to give a fair comparison of the efficiency of
the various features (and their correlation). Further, changes were implemented
in the model to introduce additional diversity into the antibody population –
somewhat substituting the effect of crossover (see Section 4.2.8).

Instead of using crossover, each antibody selected for reproduction produces
clones, which are subsequently run through a mutation process. First, the an-
tibody feature selection vector is mutated. This is done by iterating through
the vector and randomly flipping a boolean value with a probability of 1

2∗size(F ) ,

where size(F ) denotes the amount of feature values in the feature vector. It
should be noted that size(F ) is used rather than size(F ′), i.e. the antibody’s
feature subset. Further, the strategy of VALIS where the antibodies are put
through the mutation process repeatedly until at least one mutation occurs, is
not used for the feature selection vector. This (and the low mutation probabil-
ity) is due to the fact that including/excluding a given feature may have drastic
impact on the antibody fitness, to a much larger extent than altering a feature
value or RR radius slightly. As such, a mutation of the feature selection vector
is not forced upon antibody clones.

Next, the feature values and RR radius is mutated. Different mutation strategies
were presented and discussed in Section 3.1.3. The mutation strategy used in the
proposed model is inspired by that of MAIM [Baug et al., 2019], where the each
value selected for mutation is multiplied by random number in the range 0.1-2.0,
by some probability. The authors of MAIM tested several different coefficient
ranges, with 0.1-2.0 scoring slightly better than the others. This mutation strat-
egy was selected instead of VALIS’ approach, which involves using a log-uniform
density function, due to its simplicity. The RR radius is mutated the same way
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as the feature values. Additionally, the aforementioned strategy of continually
repeating the mutation process until at least one mutation occurs is used for
the feature values and RR radius (in union). This strategy was implemented to
increase the diversity of the antibody population.

4.2.10 Class Prediction

After the training phase of the algorithm is finished, the model performs clas-
sification (predicting the class) of the previously unseen antigens in the testing
set. The voting heuristic was decided based on the discussions in Section 3.1.8.
AISLFS [Dudek, 2012] tested three different strategies – with two of them scor-
ing roughly the same in terms of accuracy. Conversely, VALIS only tested one
voting strategy, which included weighting an antibody’s class vote according to
its Weighted Accuracy in addition to its affinity to the antigen. The decision was
made to use AISLFS’ second class voting strategy, as the authors tested several
alternatives and their selection therefore carry more weight than that of VALIS.
Additionally, the strategy of VALIS was tested during preliminary testing – per-
forming slightly worse than that of AISLFS. As such, each antigen in the testing
set is classified by using a voting function for each class k in the dataset:

vag,k =
∑

ab∈Bk

Wab,ag

where k is the class, Bk is the set of antibodies with class k and Wab,ag is the
affinity between antigen ag and antibody ab. In other words, all the antigens in
the testing set are presented to the final antibody population and the antibody-
antigen connections are calculated. Then, for every antigen, all the antibodies
connecting to it votes on a class. The antibody class vote is simply the class of
the antibody and the weighting of the vote is determined by the affinity between
the antibody and the antigen. The class voting scheme is illustrated in Figure
4.4, where four antibodies vote on the classes of two antigens – based on affinities.
V oteAG1X refers to the voting tally for assigning class X to antigen AG1.
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Figure 4.4: The class prediction (voting tally) strategy of the proposed model

Finally, after all the class votes have been summed up for each class, the class
with the highest cumulative vote tally is assigned to the antigen. If an antigen
isn’t connected to any antibodies, it is assigned the class of the antibody with

the lowest d(ab,ag)
rab

ratio, i.e. the Euclidean distance to the antibody divided by
the antibody RR radius.

4.2.11 Cross-Validation

The proposed model was run with k-fold cross-validation, as introduced in Sub-
section 2.1.6. To prevent knowledge leakage, all the manipulation of the dataset
other than shuffling and splitting into k parts are carried out within the training
loop. This can be seen in the pseudocode of the algorithm in Section 4.2.1. If,
for instance, the normalization was moved outside the loop, the model would po-
tentially get information about the testing set beforehand – which would result
in overly optimistic results.
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4.2.12 Feature Space Assessments

As introduced in Subsection 3.1.7, several machine learning techniques (including
AISs) suffer from the ”curse of dimensionality”, meaning that the models tend
to have a hard time when presented with high-dimensional data (large number
of features) [Dudek, 2012][Baug et al., 2019]. In the proposed model, this dimen-
sionality problem is reduced through multiple strategies. First, antibodies are
initialized both randomly (like in MAIM [Baug et al., 2019]) and with antigen
feature values (like in AISLFS [Dudek, 2012]). This scheme, paired with initial-
ising the antibody RR radii large (set to include a randomly selected antigen of
the same class as the antibody), serves as an initial ”stepping stone” for helping
the antibodies find antigens in the feature space.

Additionally, the local feature selection employed by each antibody helps re-
duce the amount of dimensions which are actually used by each antibody (when
calculating affinity/Euclidean distance). Through inspection of the features used
by each antibody during preliminary testing, the local feature selection scheme
reduces the feature space dimensionality considerably. This feature reduction
potential was also found in AISLFS, where the authors found that high accu-
racy results could be obtained with a fraction of the available features, for some
datasets.

4.2.13 Pseudocode

The full pseudocode of the proposed model can be seen in Algorithm 1.
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Data: a labeled dataset
Result: a set of antibodies capable of classifying previously data samples
parse dataset;
initialize antigens;
shuffle antigens;
split antigens into testing and training sets;
for training split in k do

initialize antigens from training set k;
extract features values;
normalize feature values;
initialize antibodies;
for generation in G do

calculate number of antibodies to be replaced (n);
calculate connections between antibodies and antigens;
calculate fitness of all antibodies;
perform tournament selection to find n antibodies which are
allowed to reproduce;

clone the n antibodies m times each;
mutate the n*m clones;
remove the n worst-performing antibodies from the antibody set;
move the n best-performing clones into the antibody set;

end
remove antibodies with fitness < antibody removal threshold;
present the antibodies with the unseen testing set in k;
calculate connections between antibodies and antigens;
predict the class of all the antigens in the testing set;
calculate accuracy;

end
calculate the average accuracy for all the testing sets;

Algorithm 1: Pseudocode of the proposed model

4.3 Pre-processing and Feature Extraction

This section introduces the pre-processing and feature extraction of the proposed
model. As the input data to the model are news articles, strategies for extracting
feature values which represent the class label of the articles were needed. The
features of the proposed model are divided into four main categories. These cate-
gories are term frequencies, grammatical features, text embeddings and sentiment
analysis. Overall, the features used include both features from other state of the
art fake news classification models, as well as unique features introduced in this
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work. It should be noted that not all the proposed features were used in the
final accuracy testing of the model. Rather, an assessment of the performance of
the various features was carried out – in relation to the second research question
from Section 1.2. This assessment was conducted in the feature testing phase (see
Subsection 5.2.2) and the subsequent accuracy testing was based on the findings
of this testing.

4.3.1 Pre-processing

For the word counting features, pre-processing was performed on the raw news
article texts. The pre-processing flowchart can be seen in Figure 4.5, where text
copies are colored green and processing operations are colored orange. Copies
of the processed text were saved between each pre-processsing step, as different
features required different degrees of pre-processing. Stanford CoreNLP [Man-
ning et al., 2014] was used for tokenization and lemmatization, while removal
of stop words and unwanted characters was carried out manually. Tokenization
refers to the strategy of dividing the raw text into separate words, as explained
in Section 2.1.8. Whitespaces were used as delimiters. Further, unwanted char-
acters such as ”.”, ”,”, ”(”, ”)” and ”´” was removed from each token, using a list
of unwanted characters. Thereafter, the tokens (words) were lemmatized using

Figure 4.5: The pre-processing of news article text corpus

Stanford CoreNLP. Lemmatization (sometimes referred to as ”word stemming”,
although word stemming often denote a more simplistic and crude approach were
word endings are simply cut off) refers to reducing words to their base (dictio-
nary) form. This process maps different words carrying the same meaning to the
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same word – making subsequent calculations easier and more reliable. For in-
stance the lemmatization of ”am”, ”are” and ”is” is ”be”, and ”walked”, ”walks”
and ”walking” are all lemmatized to ”walk”. It should be noted that lemma-
tization was only used when certain term frequency features were used, as the
computational load of lemmatization was considerable.

Lastly, stop words were removed from the tokenized text, using a lexicon. As
introduced in Section 2.1.8, stop word removal refers to the removal of words car-
rying little symbolic meaning. Examples of such words are ”by”, ”before”, ”it”
and ”the”. As these words may obscure feature extraction, they are removed
from the text samples. The stop word lexicon used was manually checked to
ensure that no words that might be specifically useful for fake news classification
(in relation to the research conducted, see Section 3.2) were removed.

4.3.2 Term Frequency Features

Most of the features extracted in the proposed model are based on calculating
the frequencies of various terms (words). These terms are selected based on the
findings from the literature study in Section 3.2.1. The features are computed on
the tokenized headline and text corpus of the article samples. Lexicons containing
the relevant terms are used as look-up tables, to identify the use of certain words
in the article samples. The term frequency (TF) is then calculated by dividing
the count of matches found (according to the lexicon in question) by the total
number of words in the headline and article text:

TFterm =
count(term)

count(total number of words)

Further, the term count is computed as:

count(term) = 2 ∗ counth(term) + counta(term)

where counth(term) is the number of term matches in the article headline and
counta(term) is the number of term matches in the full article text. It should
be noted that terms appearing in the headline are weighted double. The rea-
soning behind this is the findings of 3HAN [Singhania et al., 2017] (as presented
in Section 3.2.2), where the authors found that the headlines of news articles
generally were more representative of the class of the article, than the remaining
article text. As such, it was decided to assign the headline twice the weight of
the subsequent article text – for the term frequency features.

Additionally, TF was chosen over Term Frequency-Inverse Document Frequency
(TF-IDF) (as introduced in Subsection 2.1.8). The reason for this choice was
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twofold. Firstly, computing TF-IDF instead of TF would increase the computing
time of feature extraction, as two iterations through the dataset samples would
be needed (instead of just one). Additionally, TF-IDF is mostly used on single
terms, while the proposed model uses lexicons of multiple terms for each feature.
As most articles generally include at least one of these words, the extra computa-
tion of the TF-IDF would most likely not change the calculated term frequency
values notably. Secondly, some information regarding the occurrences of certain
terms across all the samples are already provided to each sample, during the Min-
Max normalization. As the feature values are normalized across all the samples,
this information is already used for computing the final feature values.

Half of the term frequency features used in the proposed model were inspired
by the model of Rashkin et al. [Rashkin et al., 2017]. The reason for this was
that the authors provided the lexicons used for their TF computations, as well as
providing information regarding the effectiveness of each feature. This informa-
tion was considered as highly valuable guidance for TF-based features. For these
features (1-8), the lexicons used was those of Rashkin et al., unless otherwise
stated. An overview of the features used in the proposed model, together with
lexicon length and reference(s) can be seen in Table 4.2.
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Feature Description Lexicon
length

Reference

1 Swear words 1383 [Rashkin et al., 2017]
2 First person pronouns 5 [Rashkin et al., 2017]
3 Second person pronouns 5 [Rashkin et al., 2017]
4 Modal adverbs 94 [Rashkin et al., 2017]
5 Action adverbs 15 [Rashkin et al., 2017]
6 Manner adverbs 128 [Rashkin et al., 2017]
7 Superlative forms 2304 [Rashkin et al., 2017]
8 Comparative forms 2118 [Rashkin et al., 2017]
9 Strongly subjective words 8222 [Horne and Adali, 2017]
10 Numbers n/a [Meel and Vishwakarma,

2019]
11 Negations 24 [Gravanis et al., 2019]
12 Negative opinion words 4783 [Hu and Liu, 2004][Gra-

vanis et al., 2019]
13 Positive opinion words 2006 [Hu and Liu, 2004][Gra-

vanis et al., 2019]
14 Exclamation and question marks 8 [Meel and Vishwakarma,

2019]
15 Quotation marks 4 n/a
16 Divisive topics 43 [Meel and Vishwakarma,

2019][Gravanis et al.,
2019]

17 Word count n/a [Gravanis et al., 2019]
18 Flesch-Kincaid Grade Level n/a [Gravanis et al.,

2019][Burgoon et al.,
2003]

19 Flesch-Kincaid Reading Ease n/a [Choudhary and Arora,
2021]

20 Headline text embedding n/a [Nakamura et al., 2020]
21 Head + tail text embedding n/a [Nakamura et al., 2020]
22 Head text embedding n/a [Nakamura et al., 2020]
23 Tail text embedding n/a [Nakamura et al., 2020]
24 Headline sentiment analysis n/a [Bhutani et al., 2019]
25 Head + tail sentiment analysis n/a [Bhutani et al., 2019]

Table 4.2: The features of the proposed model
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Feature 1: Swear Words

Firstly, the term frequencies of swear words were calculated. Although seeming
like a relatively naive feature, Raskin et al. found that the frequency of swear
words was the most effective feature for separating fake and real news articles
(with swear words appearing 7 times as often in fake news articles as in real
ones). The lexicon used for swear words was the union of the list from Rashkin
et al. (compiled from Wiktionary) and the ”Offensive/Profane Word List” from
Luis von Ahn’s Research Group. The reason for using an union of both lists, was
that the list of Rashkin et al. was relatively short by itself.

Feature 2: First Person Pronouns

Rashkin et al. also found that first person singular pronouns appeared twice as
often in fake news articles as in real ones. A short lexicon containing the terms:
”i”, ”me”, ”my”, ”mine” and ”myself”, was used to calculate the term frequency
of first person pronouns.

Feature 3: 2nd Person Pronouns

Rashkin et al. also found that second person pronouns was the second-most
distinctive feature of fake news articles, appearing almost 7 times more often in
fake news articles as real news articles. A short lexicon containing the terms:
”you”, ”your”, ”yours”, ”yourself” and ”yourselves”, was used to calculate the
term frequency of second person pronouns. Similarly to the first person pronouns,
the small size of the lexicon results in this feature having low computational
demands.

Feature 4: Modal Adverbs

The third most distinctive feature found by Rashkin et al. was the usage of modal
adverbs, meaning words that add additional value to verbs. Examples of adverbs
from the lexicon are ”needlessly” and ”noticeably”.

Feature 5: Action Adverbs

A term frequency feature based on the action adverbs was also implemented.
Action adverbs are mostly similar to modal adverbs, but could be described as
more extreme in their symbolism. Rashkin et al. found that action adverbs
generally appear twice as often in fake news articles as in real ones. Examples
of action adverbs from the lexicon are ”freely” and ”immaturely”. It should
be noted that the lexicon used for computing action adverb TFs was relatively

https://www.wiktionary.org/
https://www.cs.cmu.edu/~biglou/resources/
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short, only containing about 15 terms – making the computational demands of
this feature low.

Feature 6: Manner Adverbs

Manner adverbs describe how someone does an action, for instance ”slowly” or
”foolishly”. Rashkin et al. theorize that fake news authors try to enliven news
stories to attract readers, by including such words in their articles. Further, the
authors found that manner adverbs appear almost twice as often in fake news
articles as in real ones.

Feature 7: Superlative Forms

Superlative forms are adjectives which are used to compare on thing with another,
taken to the maximum extent. This means words describing being the best or
worst at some adjective, like ”worst”, ”finest” and ”slowest”. Rashkin et al.
found that fake news generally tend to have higher frequencies of superlatives.
They ground this in fake news authors wanting to imply a greater degree of
dramatization than real news authors.

Feature 8: Comparative Forms

The comparative form lexicon used contain similar words as the superlative form
lexicon, but the adjectives listed don’t identify that the subject is the best or
worst at something – but rather more of something. Examples of words from
the lexicon used for identifying comparative forms are ”sooner”, ”greater” and
”worse”.

Feature 9: Strongly Subjective Words

It was hypothesized that fake news articles use a greater amount of strongly
subjective words than real news articles – as the authors of fake news articles
would like to elicit an emotional response from their readers [Horne and Adali,
2017]. Examples of such words are ”abhorrent”, ”undoubtedly” and ”amazing”.
The lexicon used for computing the term frequency was the MPQA subjectivity
lexicon. It should be noted that only the words denoted as ”strongly subjective”
in the subjectivity lexicon were used.

Feature 10: Numbers

Rashkin et al. also found that the inclusion of numbers was more than half as
likely in fake news articles as in real ones [Rashkin et al., 2017]. This characteristic
was also found in [Meel and Vishwakarma, 2019], where the authors ground this

http://mpqa.cs.pitt.edu/lexicons/
http://mpqa.cs.pitt.edu/lexicons/
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on fake news articles lacking concrete numerical data on which to base the article.
As such, term frequency of numbers were calculated in the news article samples.
A regular expression was used to identify numbers in the article texts.

Feature 11: Negations

Raskin et al. also found that negations appeared more often in fake news arti-
cles than real ones [Rashkin et al., 2017]. The authors used LIWC [Pennebaker
et al., 1999] to identify the negation terms. Additionally, in their fake news
benchmark study, Gravanis et al. also use term frequency of negations in their
best-performing feature set [Gravanis et al., 2019]. To identify the use of nega-
tions in the article samples, a lexicon was manually constructed, containing words
such as ”not”, ”no”, ”none” and ”never”.

Feature 12: Negative Opinion Words

Gravanis et al. also used a ”negative emotions” feature in their best-performing
feature set [Gravanis et al., 2019]. Considering the aforementioned aim of fake
news articles to elicit emotional responses from readers, such a feature is inher-
ently intuitive. As Gravanis’ lexicon isn’t publicly available, the lexicon used to
identify such negative opinion terms was taken from a customer review mining
model [Hu and Liu, 2004] and includes words such as ”absurd”, ”2-faced” and
”disbelieve”.

Feature 13: Positive Opinion Words

A feature identifying positive emotion terms was also used in the best-performing
feature set of Gravanis et al. The lexicon used by Gravanis et al. is not publicly
available. However, Hu and Liu also include a list of words being associated
with positive opinions, in their model. This list was used to calculate the term
frequency of positive opinion words in the news article samples of the proposed
model. The list includes words such as ”admire”, ”passionate” and ”relish”.

Feature 14: Exclamation and Question Marks

Inspired by the findings of Meel and Vishwakarma in their fake news survey paper
[Meel and Vishwakarma, 2019], a feature computing the frequency of exclamation
and question marks was implemented. Meel and Vishwakarma found that fake
news generally include a larger number of exclamation and question marks and
ground this on the fake news authors’ wish to draw the reader’s attention. To
identify the use of such characters used in combination as well as by themselves, a
regular expression was constructed. This regular expression match combinations
like ”?!”, ”??” and ”!!”, in addition to ”!” and ”?”.
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Feature 15: Quotation Marks

Upon manual inspection of the relevant dataset, it was theorized that fake news
articles may also contain a higher frequency of quotation marks than real news
articles. As such, a feature which computes the frequency of quotation marks (in
various forms) was implemented.

Feature 16: Divisive Topics

Based on the discussions in Gravanis et al.’s benchmark study [Gravanis et al.,
2019], as well as the discussions of Meel and Vishwakarma, it was hypothesized
that fake news articles may generally have a different topic selection than real
news articles. Continuing off of the previously mentioned theory of fake news au-
thors wanting to elicit emotional response in their readers, the fake news articles
may revolve around divisive topics – to a greater extent than real news articles.
Divisive topics refer to topics which tend to cause disagreement between peo-
ple. Based on this theory, a lexicon was manually constructed, containing terms
such as ”vaccine”, ”gun control”, ”gay” and ”climate change”. This lexicon was
subsequently used to compute the term frequency of divisive topics in the news
articles.

4.3.3 Grammatical Features

Features focusing more on the grammatical structures of the news articles were
also implemented. These features use statistical characteristics of the various
news articles to compute feature values.

Feature 17: Word Count

Word count was also used as a feature in the best-performing feature set in
Gravanis et al.’s benchmark study [Gravanis et al., 2019]. It was theorized that
fake news articles might generally be shorter in length than real news articles, due
to having less real-world events to base the article on. Although initially seeming
overly simplistic, the feature was implemented due to the low computational
cost. As the article texts are tokenized anyway, the extra computational effort of
calculating word count is negligible. The implemented feature simply calculates
the total amount of words in the headline and article text of each dataset sample.

Feature 18: Flesch-Kincaid Grade Level

Flesch-Kincaid Grade Level refers to a formula which calculates the equivalent
US grade level of education required to be able to understand a given text. The
formula outputs a number between 0-20, indicating the equivalent grade level. For
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instance, a grade level of 8 is roughly equivalent to the grammatical complexity
of the Harry Potter books, while a grade level of 16 maps to the complexity of
an average academic paper. The grade level is calculated as:

FK Grade Level = 0.39 ∗ total words

total sentences
+ 11.8 ∗ total syllables

total words
− 15.59

Gravanis et al. used Flesch-Kincaid Grade Level in their benchmark study, in-
spired by the linguistic features proposed by Burgoon et al. [Burgoon et al.,
2003]. Based on these results, it was decided to include Flesch-Kincaid Grade
Level as a feature in the proposed model. The reasoning behind this feature is
that the authors of fake news articles may not have as much of a formal journal-
istic education as real news article authors and thus the grammatical complexity
may be lower in fake news articles than in their real counterparts. Additionally,
the targeted audience of fake news articles may be different than for real news
articles and as such the writing style may be simplified.

This feature calculation places an additional computational load on the model,
as the number of sentences and syllables had to be calculated for each dataset
sample. Sentence count was found by using Stanford CoreNLP’s tokenization
tools and syllable count was calculated using a manually constructed algorithm.

Feature 19: Flesch-Kincaid Reading Ease

Flesch-Kincaid Reading Ease works similarly to Flesch-Kincaid Grade Level in
that the formula gives a score based on how difficult an English text is to read.
Although using many of the same core components, the different weighting factors
results in a different measure of the grammatical complexity. Flesch-Kincaid
Reading Ease is calculated as:

FK Reading Ease = 206.835− 1.015 ∗ total words

total sentences
− 84.6 ∗ total syllables

total words

The result will be a score between 0-100, where a low score means that the text
has low readability and vice-versa. In their linguistic-based model for fake news
classification, Choudhary and Arora utilize Flesch-Kincaid Reading Ease as a
linguistic feature – obtaining promising results [Choudhary and Arora, 2021].
As such, the Flesch-Kincaid Reading Ease is used as a feature in the proposed
model, to provide an indication of the relative readability of the news articles. It
is hypothesized that these two Flesch-Kincaid features may somewhat replace the
LIWC-based grammatical features used by Rashkin et al. in their model [Rashkin
et al., 2017]. As LIWC is a paid product, it was not used for extracting features
in the proposed model. Further, as the parameters for calculating the reading
ease are the same as for calculating the grade level, the additional computational
complexity was also low.
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4.3.4 Sentence Embeddings

Sentence embeddings were used as feature values, inspired by the promising re-
sults of Fakeddit [Nakamura et al., 2020] and FakeBERT [Kaliyar et al., 2021].
Google’s BERT model [Devlin et al., 2019] was used to extract fixed-length sen-
tence embeddings, through the use of the bert-as-service tool [Xiao, 2018]. Other
text embedding models were considered as well, but were ultimately discarded.
The reasoning behind this was twofold. Firstly, the authors of FakeBERT tested
text embeddings with GloVe and word2vec in addition to BERT, but the results
obtained were worse than those obtained with BERT. This is most likely due
to the aforementioned bi-directional processing of BERT, where the input text
is processed both from left-to-right and right-to-left. This allows for the extrac-
tion of contextual information, where words are weighted based on the context
in which they appear in – leading to more representative output vectors. Addi-
tionally, BERT is able to take entire sentences as input – not just single words
(like GloVe, ELMo and word2vec). If single word embeddings were to be used,
it would raise the problem of word selection, for each article. Simply taking the
most frequent word(s) from each article as input to the word embedding model
would place a large dependency on the stop word removal, as the most frequent
words of the raw article texts would likely be words like ”a” and ”the”. The
words carrying the most symbolic ”impact” in each article would most likely be
difficult to find without more comprehensive processing. Additionally, if several
word embeddings were to be extracted from each news article, the feature space
would quickly grow too large – as each word embedding typically would consist
of 50-1024 feature values.

A pre-trained BERT model was used for extracting the sentence embeddings,
more precisely the ”BERT-Base, Uncased”-model. Uncased means that the
text has been lowercased before tokenization, when the model was trained (on
Wikipedia text corpus). The reasoning behind selecting the Uncased version was
that the authors of BERT generally recommend this over the Cased version, un-
less one is aware that case information is important to the specific application.
Additionally, the authors of Fakeddit [Nakamura et al., 2020] also used the Un-
cased version of the model. Further, the Base-edition of the model was chosen
over the Large-edition. Due to limited processing power, the extra computational
effort of the Large-model was deemed unnecessary. Additionally, the Large-model
would result in a fixed output vector length of 1024 instead of 768, which would
worsen the aforementioned dimensionality problem.

The aforementioned problem of excessively large feature spaces was still a rel-
evant problem when using BERT for sentence embeddings. The resulting output
vectors were of a fixed length of 768 floating values, regardless of the length of
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the input sentence. This is not an issue for Neural Network-based models like
Fakeddit, but AIS models are generally less robust to large feature spaces due
to the previously mentioned ”curse of dimensionality” [Dudek, 2012][Baug et al.,
2019]. Excessively large feature spaces may result in the feature space being
too large for the antibodies to successfully locate the antigens. In the proposed
model, this problem was somewhat mitigated through the strategies highlighted
in Subsection 4.2.12, but nonetheless the choice was made to use a maximum of
one of the sentence embedding features for the final accuracy testing – to keep
the feature space as small as possible.

Feature 20: Headline Text Embedding

The first sentence embedding feature uses the headline of the news articles as
input to BERT. As most of the news article samples used for training and testing
had single-sentence headlines, it was theorized that using the headlines for text
embedding extraction was a representative way to capture the symbolic meaning
of each news article. Additionally, the authors of Fakeddit [Nakamura et al., 2020]
used Reddit submission titles for their text embeddings, obtaining promising
results. As these Reddit submission titles are similar to the news article headlines
in terms of writing style and grammatical structure, it was theorized that high
accuracies could be obtained using the headlines for text embedding.

Feature 21: Head + Tail Text Embedding

Additionally, to extract contextual information not present in the article head-
lines, a feature based on text embeddings extracted from the article texts was
also implemented. As generating sentence embeddings for the entire article text
corpus was far too computationally extensive and would result in too large fea-
ture spaces (768 feature values for each sentence/512 tokens), it was decided to
only use the first and last sentence of each news article for extraction. This
approach is often referred to as head + tail. Sun et al. found that the head +
tail approach resulted in promising result for classifying news articles [Sun et al.,
2019]. It should be noted that Sun et al. used Chinese news articles and per-
formed classification in terms of theme category (”sports”, ”house”, ”business”
etc.) and not fake/real. Nevertheless, these results support the theory that the
sentiment of news articles could potentially be represented by only using the first
and last sentence of the text corpus – reducing the computation time significantly.

The first and last sentences of each news article were concatenated and the re-
sulting string sent as input to BERT. This concatenation was done in order to
extract a single output vector of 768 feature values. If the two sentences were sent
separately, the result would be two output vectors of 768 values each – worsening



4.3. PRE-PROCESSING AND FEATURE EXTRACTION 79

the aforementioned dimensionality problem. As the maximal text input length
of BERT is 512, the concatenated input string was cut short (from the end) if it
somehow exceeded 512 tokens.

Feature 22: Head Text Embedding

As previously mentioned, the head + tail approach to BERT text embeddings
performed the best in the paper by Sun et al. However, the accuracy results
obtained were only slightly better than using the first and last sentence separately
[Sun et al., 2019]. Due to the lower processing time of only using the first (or
last) sentence for text embedding extraction, it was decided to also test the head
approach. This involves simply using the first sentence of the news article corpus
as input to BERT.

Feature 23: Tail Text Embedding

The tail approach to text embedding was also implemented. This approach
involves simply using the last sentence of the news article corpus as input to
BERT. Similar to the head approach, this feature also ensures that the entire
last sentence is passed to BERT (unless its length exceeds 512 tokens), unlike the
head + tail approach (where the last sentence may be cut short).

4.3.5 Sentiment Analysis

As shown by Meel and Vishwakarma in their benchmark study for fake news
classification, several researchers have found success in using sentiment analysis
to aid fake news classification [Meel and Vishwakarma, 2019]. Bhutani et al. also
found that including sentiment analysis as a feature in their model improved fake
news classification accuracy [Bhutani et al., 2019]. Their model was also tested
on the (notoriously difficult) Liar dataset, which provides additional legitimacy
to their findings. As such, it was decided to use sentiment analysis to predict a
sentiment class, which was then used as a feature value in the proposed model.

The sentiment analysis tool of Stanford CoreNLP was used to extract the news
article sentiments. As CoreNLP was already used for tokenization and pre-
processing, it was the natural choice for the task of sentiment analysis. Fur-
thermore, the sentiment analysis tool of CoreNLP is built on top of a sentiment
treebank (parsed text corpus annotated with semantic word classes, like ”verb” or
”noun”), which allows it to better capture the meaning of longer phrases, as well
as the effects of negations, in a more precise way than traditional approaches
[Socher et al., 2013]. The tool takes an unprocessed sentence/phrase as input
and outputs a score between 0-4 based on the extracted opinion. The opinions
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range from very negative (0) to very positive (4). These sentiment-representative
integers are further normalized and used directly as feature values for classifica-
tion. Additionally, the Shift-Reduce Constituency Parser of CoreNLP was used
to speed up the analysis significantly – making the feature feasible for larger
datasets.

Feature 24: Headline Sentiment Analysis

Similar to the text embeddings, sentiment extraction is computationally heavy
and as such it would be infeasible to use the entire news article corpus as input.
Therefore, it was decided to split the sentiment analysis into headline and head
+ tail features, similar to the text embeddings. For the first of the two sentiment
analysis features, the headline of each news article was used as input to the
sentiment analysis. The resulting sentiment class predicted by CoreNLP was
used as a feature value.

Feature 25: Head + Tail Sentiment Analysis

A head + tail approach was used to predict the sentiment of the news article
corpora. The first and last sentence of each news article was concatenated and
input to the sentiment extraction tool. As CoreNLP doesn’t have a strict input
length limit like BERT, the concatenated string was not cut short.



Chapter 5

Experiments and Results

This chapter aims to explain the experimental setup for testing of the proposed
model, as well as discussing the obtained results.

5.1 Visualization Tools

In order to better understand the functioning of the proposed model, two visual-
ization tools were implemented. These were used as part of the model refinement
testing, to tweak and reason about model parameters – as well as in the main
testing, to better understand the model’s strengths and weaknesses.

5.1.1 2D Solution Visualization

The first visualization tool allows for a 2-dimensional visualization of the solution
provided by the model. An example of a solution plot can be seen in in Figure
5.1, where the model has been run on the Spirals dataset. In the plot, antigens
are illustrated as squares, with their color indicating their class label. Antibodies
are illustrated as partly transparent circles, with radii corresponding to their RR
radius. The antibody classes are illustrated with the same colors as the antigens.
The antigens are plotted on top of the antibody circles, so that their color isn’t
altered even if the antigens are covered by several antibody RRs. Additionally,
the values of relevant model parameters are provided at the side of the plot.

An example of a solution plot can be seen in Figure 5.1. This visualization
tool allowed for debugging and an enhanced understanding of how the antibodies
evolve. Generally, the antibodies form the expected spiral pattern, with the larger
RR radii appearing toward the outskirts – where the distances between antigens
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Figure 5.1: Example solution plot for the Spirals dataset

are large. Towards the middle, where the distances between different-class anti-
gens are much smaller, the antibody RR radii are correspondingly smaller. Upon
close inspection, antibody circles not containing any antigens can be found (two
of these are identified with black arrows) This is to be expected, as the antibodies
are evolved using the training set of antigens. The antigens in the plot are from
the testing set, which the antibodies have never been exposed to. Although these
antibodies have a fitness of zero (due to not connecting to any antigens) for the
testing set, this was not the case for the training set, or the antibody would not
have survived to the final generation. This is closely tied to the issue of overfit-
ting, where the produced solution is too tailored to the training set – sacrificing
general applicability. This issue doesn’t, however, seem to be detrimental for the
produced solutions – as most antibodies cover at least one same-class antigen.
Additionally, having some ”unused” antibodies may boost the robustness of the
model, as these antibodies mark given areas in the feature space as most likely
belonging to some class label – although not necessarily being used for all data
samples.

It is important to note that the main utility of the plotting tool is for 2-dimensional
datasets, i.e. datasets with two features. For datasets with more than 2 features,
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one could still plot a select two of the features – but these would not be expected
to be as easily divided into areas of same-class antigens as the Spirals dataset.
However, the plotting provides a useful tool for testing and comparing extracted
features, as well as reasoning about how different parameters change the solutions
produced.

5.1.2 Accuracy Plotting

Additionally, a tool for visualising the accuracy over time was implemented. This
tool calculates the accuracy of the current antibody set (at some generation), on
either the testing or the training set. The accuracy at each generation is the av-
erage accuracy at that generation, across all k cross validation splits. To prevent
knowledge leakage, a copy of the current antibody set is used to calculate the
testing set accuracy. This way, the antibodies stay ”uncontaminated” with test-
ing set antigens. The accuracy plot provides insight into convergence/divergence
of the model, as well as giving a measure of how well the initialization scheme
(see Section 5.4.1) works.

Figure 5.2: Example accuracy plot for the training sets, using the Iris dataset

In Figure 5.2, the accuracy plot for the training sets can be seen (using the Iris
dataset). As expected, the model converges towards a very high accuracy. This
is expected, as the antibodies are evolved using these data samples (antigens) for
training. Additionally, the plot illustrates the effectiveness of the initialization
scheme – combining two antibody initialization schemes and starting off with
large RR radii. Even when the amount of antibodies are significantly less than
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the total amount of antigens in the training set (the model was run with an
ABratio of 0.7 in this example), the model still has a high accuracy initially –
before any antibody cloning and mutation has been performed. The convergence
happens relatively quickly, which traditionally has been an issue for AIS models.
However, the random initialization scheme contributed to a slower convergence,
indicating that more local search was performed by the antibodies. Plots and
discussions related to the initialization scheme are presented in Subsection 5.2.1.

In Figure 5.3, the accuracy plot for the testing sets can be seen (also using the
Iris dataset). It is important to note that the accuracies plotted are the accura-
cies obtained when performing classification on the current testing set, which the
antibodies have never seen before. As such, the accuracies are both lower and
more volatile (compared to the accuracies obtained from the training set) – due
to not evolving specifically towards classifying these antigens. However, there is
a clear trend to be identified, where the accuracy is increasing (and converging)
over time.

Figure 5.3: Example accuracy plot for the testing sets, using the Iris dataset

5.2 Experimental Plan

The primary goal of the experimental plan was to answer the research questions
put forth in Section 1.2. As such, the testing plan was split into three distinct
phases. The first testing phase was related to the first research question and
sought to answer what design choices may be suited for the underlying AIS. As
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the actual testing on fake news datasets aren’t conducted until phase 2 and 3 of
the testing, the first phase used traditional classification benchmark datasets for
evaluating design decisions.

The second phase was concerned with answering the second research question,
i.e. identify which feature extraction strategies are suitable for an AIS model
adapted for classifying news articles. As a wide variety of features have been
proposed, with varying degrees of computational complexity, it was important to
pick out which features were the most beneficial to the proposed model.

The information obtained from the second testing phase was used to guide the
accuracy testing in phase 3. The third phase sought to answer the third research
question, i.e. how the proposed model performs (in term of classification accu-
racy) compared to other state of the art fake news classification models. As the
main goal of the thesis was to investigate the application of an AIS model to
the task of fake news classification, this performance comparison served as an
important evaluation criteria.

5.2.1 Model Refinement Testing

As mentioned, the proposed model is a product of a continuous and iterative
process of implementing/altering parts of the model and evaluating changes on
the produced results. The aim of the model refinement testing was to identify
which design decisions should be made regarding the underlying AIS – so that it
wouldn’t be a performance bottleneck for the final fake news classification. The
full model refinement testing plan is given in Table 5.1.

RR Radius Initialization (MT-1)

In Section 4.2.5, two different RR radius initialization approaches were presented;
maximizing RR radius without including any different-class antigens in the RR
(AISLFS [Dudek, 2012]) and setting the RR radius to the distance to a random
antigen of the same class as the antibody (VALIS [Karpov et al., 2018]). Testing
was conducted to evaluate the impact of these RR radius initialization schemes
on the results. The solution and accuracy plotting tools were used to inspect the
solutions produced by the model.

Antibody Replacement Ratio Testing (MT-2)

As mentioned in Section 4.2.8, the proposed model uses a dynamic antibody
replacement ratio, ABrr. This allows for experimentation with how many anti-
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ID Test Description Goal

MT-1 Compare the AISLFS and
VALIS RR radius initialization
schemes by utilising the solution
plotting tool

Gain an understanding of the im-
pact of selected RR radius initial-
ization scheme on the produced so-
lutions

MT-2 Run accuracy tests on the un-
derlying AIS, to assess the im-
pact of the antibody replace-
ment parameter

Gain an understanding of the im-
pact of different antibody replace-
ment ratios

MT-3 Run accuracy tests on the un-
derlying AIS, on the Iris, Wine
and Diabetes datasets

Evaluate and compare the ob-
tained results with those obtained
by state of the art AIS models

Table 5.1: The testing plan for model refinement testing

bodies should be replaced each generation. Testing was conducted to evaluate
the effects of running the AIS model with different ABrr values.

Preliminary Accuracy Testing (MT-3)

The aim of the preliminary accuracy testing was to test the performance of the
base of the proposed model. The results of this testing provided an evaluation of
how well the AIS performs on regular (not fake news) benchmark classification
datasets. If only testing on fake news classification datasets was conducted, it
would be difficult to tell if the main bottleneck (in terms of accuracy) was the
feature extraction or the underlying AIS. As such, the aim of the preliminary
testing was not to produce results competitive with state of the art models –
by comprehensive parameter tuning towards each dataset. Rather, the aim was
to test if the underlying AIS performs reasonably well on various benchmark
datasets – such that the subsequent testing may give a precise estimate of the
performance of the feature extraction strategies adapted.

Hypothesis of MT-1

It was theorized that the VALIS approach would generally produce significantly
larger RR radii than the AISLFS, at least initially. This hypothesis was based on
the fact that the AISLFS initialization strategy prevents antibodies from includ-
ing any different-class antigens in their RR (contrarily to the VALIS approach).
Further, the AISLFS approach would likely have higher accuracies initially, as
antibodies don’t include any different-class antigens in their RR. However, it was
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hypothesized that after some generations, the VALIS approach would catch up
to the AISLFS approach – in terms of accuracy. As the VALIS approach allows
for much larger RR radii, the model is given more room to explore – therein
achieving more accurate results.

Hypothesis of MT-2

It was hypothesized that the antibody replacement ratio would have a large
impact on the classification accuracy throughout the generations. When large
parts of the antibody population are replaced every generation, the accuracy
(on both the testing and training sets) were expected to oscillate considerably.
This is due to the chosen approach of replacing the poorest antibodies with new
clones, regardless of whether the fitnesses of the clones exceed the fitnesses of
the antibodies. Further, too low values for the replacement ratio was expected
to result in accuracies which don’t improve throughout the generations – due to
too little exploration being conducted by the antibody population.

Hypothesis of MT-3

The model was expected to produce accuracies slightly lower than those obtained
by state of the art AIS models, on benchmark (non-fake news) datasets. As these
models are developed specifically with these benchmark datasets in mind, it would
be unrealistic to expect the proposed model to perform on par with these models.
Additionally, these models generally perform specific parameter tuning towards
each dataset. Comparatively, the preliminary accuracy testing of the proposed
model was conducted with the same parameters for all the datasets. This lead
to the assumption that the proposed model would generally achieve accuracies of
1-5% lower than than those obtained by the state of the art AIS models, across
the datasets.

5.2.2 Feature Testing

For the feature testing, the usefulness of the various features was found by per-
forming feature scoring, using the Java-ML library [Abeel et al., 2009]. The fea-
ture scores were found by computing the information gain (mutual information)
ratio between each feature and the class labels, therein evaluating the dependency
between features and class labels. The information gain is calculated as:

IG(fi, C) = H(fi)−H(fi|C)

http://java-ml.sourceforge.net/content/feature-scoring
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Where H(fi) is the entropy of feature fi and H(fi|C) is the entropy of feature
fi, when considering (observing) class Ck. The entropies are calculated as:

H(fi) = −
∑
j∈X

p(xj)log2(p(xj))

H(fi|C) = −
∑
k∈C

p(Ck)
∑
j∈X

p(xj |Ck)log2(p(xj |Ck))

Where X is the data samples set and p(xj) and p(Ck) are the probability distri-
butions of xj and Ck, respectively. p(xj |Ck) is the joint probability distribution
of xj , given Ck. This results in a score for each feature, based on how useful
the feature is for classification (higher scores being better). The feature scores
were calculated after normalization of the feature values. By calculating these
feature scores on all three datasets, an accurate estimate of the various features’
usefulness for classification was obtained. The information found through this
testing scheme was then used for the subsequent accuracy testing.

As the feature scoring strategy could not be applied to the text embedding fea-
tures (as these have multiple feature values each), another feature evaluation
scheme was used. This scheme includes running the algorithm (with specifica-
tions as presented in Section 5.3) using one text embedding feature at a time
(without any other features). The classification accuracies were obtained and
used to rank the text embedding features, internally. These classification accu-
racies were calculated for all the datasets. The obtained feature rankings were
then used to reason about which text embedding feature to use in the subsequent
accuracy testing phase.

Additionally, mutual information between the features was calculated. The
JavaMI toolbox [Pocock, 2012] was used to calculate the mutual information of
each feature pair. By calculating the mutual information between all the features,
on all three datasets, general dependence between the features was identified –
which aided the decision of which features should be used in the subsequent
accuracy testing phase. The mutual information is calculated as:

I(X,Y ) =
∑
y∈Y

∑
x∈X

p(X,Y )(x, y) ∗ log2

(
p(X,Y )(x, y)

pX(x) ∗ pY (y)

)
Where X and Y are the feature value vectors, p(X,Y ) is the joint probability
distribution and pX and pY are the marginal probability distributions. The
probability distributions were estimated using histograms (by JavaMI) and the
resulting mutual information is a number in the range:

[0,min(H(X), H(Y ))]

http://www.cs.man.ac.uk/~pococka4/JavaMI.html
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Where H(X) and H(X) are the entropies of X and Y , calculated as previously
introduced. Additionally, it should be noted that the mutual information was cal-
culated before the feature values were normalized. The reason for this was to gain
a more accurate estimate of the independence between the features. Moreover, as
the text embedding features consist of 768 values each, the mutual information
cannot be calculated the same way as for the other features. As such, the mutual
information between the text embedding features was calculated by finding the
mutual information between each pair of text embedding vectors, for each dataset
sample, and averaging across all the samples.

The mutual information was deemed most important for the text embedding-
and sentiment analysis-based features. As these features are computationally
intensive (and the text embedding features each add a large number of dimen-
sions to the feature space), it was preferred to only use one feature from each
of these categories for the final accuracy testing. This is similar to the Fakeddit
model, which only use a single text embedding feature – although not explicitly
attributing this to feature space minimization [Nakamura et al., 2020]. Further,
the two sentiment analysis features and the four text embedding-based features
were expected to have a high degrees of dependence between them – leading to the
assumption that using more than one of them was not worth the computational
effort. The full feature testing plan is given in Table 5.2.

Hypotheses of FT-1, FT-2 and FT-3

The sentiment analysis-based features were expected to have high feature scores
for all datasets, due to their sophistication compared to the other non-text em-
bedding features. Feature 1 (swear word TF) and feature 17 (word count) were
expected to have low features scores across all the datasets, as these are rela-
tively simplistic and as such may not be able to accurately capture the news
article characteristics. Further, there may be considerable variation of feature
scores (for the same features), on the different datasets. The Kaggle dataset is
generally easier to classify than the two other datasets and as such, some features
may work well on the Kaggle dataset but not on the Liar and FNN datasets. Fea-
tures 9 (strongly subjective words), 12 (TF of negative opinion words), 13 (TF
of positive words) and 14 (exclamation + question marks TF) were expected to
belong to this category of features.

Hypotheses of FT-4, FT-5 and FT-6

Feature 20 (headline text embedding) was expected to perform slightly better
than the other text embedding features, across all three datasets. This expec-
tation was based on the theory that the article headlines serve as summaries
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ID Test Description Goal

FT-1 Perform feature scoring of all
(non-text embedding) features,
on the Kaggle dataset

FT-2 Perform feature scoring of all
(non-text embedding) features,
on the Liar dataset

Score features according to what
value they bring to the task of fake
news classification

FT-3 Perform feature scoring of all
(non-text embedding) features,
on the FakeNewsNet dataset

FT-4 Perform feature ranking of all the
text embedding features, on the
Kaggle dataset

FT-5 Perform feature ranking of all the
text embedding features, on the
Liar dataset

Rank text embedding features ac-
cording to what value they bring to
the task of fake news classification

FT-6 Perform feature ranking of all the
text embedding features, on the
FakeNewsNet dataset

FT-7 Calculate mutual information be-
tween all (non-text embedding)
features, on the Kaggle dataset

FT-8 Calculate mutual information be-
tween all (non-text embedding)
features, on the Liar dataset

Identify features which have high lev-
els of dependence between them

FT-9 Calculate mutual information be-
tween all (non-text embedding)
features, on the FakeNewsNet
dataset

FT-
10

Calculate mutual information be-
tween the text embedding fea-
tures, on the Kaggle dataset

FT-
11

Calculate mutual information be-
tween the text embedding fea-
tures, on the Liar dataset

Identify text embedding features
which have high levels of dependence
between them

FT-
12

Calculate mutual information be-
tween the text embedding fea-
tures, on the FakeNewsNet
dataset

Table 5.2: The testing plan for feature testing
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capturing the writing style and opinions/sentiments of the articles. It was theo-
rized that the first and last sentence of the article texts were less representative
of the article class, both used together (head + tail, feature 21) and separately
(feature 22 and 23).

Hypotheses of FT-7, FT-8 and FT-9

Feature 9 (strongly subjective words) and 12 (negative opinion words) were ex-
pected to have some dependence, as both features reflect a very subjective writing
style. Further, feature 17, 18 and 19 (word count, FK grade level and FK reading
ease) were expected to share some mutual information, as these features are based
on similar parameters. Finally, features 24 and 25 (the two sentiment analysis
features) were expected to have considerable dependence, as the sentiment of the
headline and article text corpus most likely are written in a similar tone.

Hypotheses of FT-10, FT-11 and FT-12

All four text embedding features were expected to have some dependency, as they
are all calculated using BERT. Further, feature 22 (first sentence) and 23 (last
sentence) were expected to have considerable levels of mutual information with
feature 21 (concatenated first and last sentence), as these features share parts of
the input data. Feature 20, which use the article headlines as input, was expected
to have the least amount of mutual information with the other text embedding
features.

5.2.3 Accuracy Testing

For the accuracy testing, accuracy and standard deviation were calculated on
all the datasets. The accuracy testing was performed with subsets of the total
amount of proposed features. The reasoning behind only using a subset of fea-
tures was that several of the features were computationally heavy to extract. If
all the features were to be used in the accuracy testing phase, the amount of
data samples used would have had to be very low – to not exceed the available
computational power.

In addition, no preliminary testing was conducted on the features themselves,
so some of them may be unfit for usage and therein detrimental to the accuracy
of the model. By evaluating the features separately, the worst-performing ones
may be excluded from the subsequent testing. Moreover, using several text em-
bedding features would result in a large feature space, which is sub-optimal for
the AIS model and may thus induce poor results. As such, two feature subsets
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were used for accuracy testing, on each of the three datasets. These feature sub-
sets were determined after reviewing the results of the feature testing phase.

The first feature subset (for a given dataset) simply includes the best-performing
features found on that dataset (in the feature testing phase) – disregarding the
text embedding features. The second feature subset is equal to the first, but also
includes the best-performing text embedding feature (on the particular dataset).
The results obtained with the two feature subsets could then be compared, to
reason about the performance of the text embedding feature and evaluate the
proposed model’s performance on large feature spaces.

Additionally, it was decided to test the model’s performance using two univer-
sal feature subsets, which were kept the same for all the datasets. Similarly to
the dataset-specific feature sets, one of these feature subsets included the best-
performing features (excluding the text embedding features) and one including a
text embedding feature. The reason for testing with universal feature sets was to
test the model’s general applicability, as the overall goal of the thesis is to design
a robust model capable of classifying news articles found ”in the wild”.

The feature subsets were determined upon the completion of the feature testing
phase, so that a balance between minimizing the feature count and at the same
time not discarding valuable features could be found. When deciding the uni-
versal feature subsets, features scoring well across all the datasets were generally
favoured, although very high performance on single datasets was also considered.
The results obtained were then compared to the results of other state of the art
models, in Section 5.4.3. The full accuracy testing plan is given in Table 5.3 and
the respective feature sets are given in Subsection 5.4.2.

Hypotheses of AT-1, AT-2 and AT-3

The proposed model was expected to produce stable (low standard deviation)
accuracy results which may compete with current state of the art results, on all
three datasets. As the feature sets for these tests didn’t include any text embed-
ding features, the resulting feature space was much smaller than for AT-4, -5 and
-6. It was theorized that this may result in lower accuracy upon initialization (as
valuable text embedding information was not used), but that the model would
have an easier time improving accuracy throughout the generations. As such, the
results were expected to be more stable than the results from AT-4, AT-5 and
AT-6.
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ID Description Goal

AT-1 Calculate binary classification accu-
racy and standard deviation on the
Kaggle dataset, using feature set 1

Obtain an estimate of accu-
racy, which may be compared
to other state of the art results

AT-2 Calculate 6-class classification accu-
racy and standard deviation on the
Liar dataset, using feature set 3

AT-3 Calculate binary classification accu-
racy and standard deviation on the
FakeNewsNet dataset, using fea-
ture set 5

AT-4 Calculate binary classification accu-
racy and standard deviation on the
Kaggle dataset, using feature set 2

Obtain an estimate of
accuracy, which may be
compared to other state of the
art results + investigate the
effects of large feature spaces
on the accuracy results

AT-5 Calculate 6-class classification accu-
racy and standard deviation on the
Liar dataset, using feature set 4

AT-6 Calculate binary classification accu-
racy and standard deviation on the
FakeNewsNet dataset, using fea-
ture set 6

AT-7 Calculate classification accuracy and
standard deviation on the Kaggle,
Liar and FakeNewsNet datasets,
using (the universal) feature set 7

Obtain an estimate of the
model’s robustness to feature
subset selection

AT-8 Calculate classification accuracy and
standard deviation on the Kaggle,
Liar and FakeNewsNet datasets,
using (the universal) feature set 8

Obtain an estimate of the
model’s robustness to feature
subset selection + investigate
the effects of large feature
spaces on the accuracy results

Table 5.3: The testing plan for accuracy testing
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Hypotheses of AT-4, AT-5 and AT-6

The proposed model was expected to produce good accuracy results, on all three
datasets. Further, some uncertainty was prevalent when it came to the inclusion
of the text embedding feature. It was theorized that the feature would be highly
valuable for classification, but that the large amount of feature values would be
problematic. The model refinement testing did not include testing on datasets
with more than 13 features, so the model’s ability to handle large feature spaces,
which the text embedding features produce, was not known. The local feature
selection scheme was expected to mitigate the dimensionality problem, but the
effectiveness of the scheme was not clear. As large feature spaces generally have
been a problem for AIS models, it was theorized that the model might have
problems improving the accuracy after initialization – leading to static accuracies
throughout the generations.

Hypotheses of AT-7 and AT-8

Due to the proposed model’s local feature selection scheme, it was theorized
that the accuracy results obtained from the universal feature sets would only
be slightly worse than the ones obtained with the dataset-specific feature sets.
This theory was based on the assumption that the local feature selection scheme
would discard the features which weren’t valuable for classifying the given dataset
– therein reducing the problem of feature set selection.

5.3 Experimental Setup

5.3.1 Model Refinement Testing

MT-1 and MT-2 were run with varying parameter values, as the goal of these
tests was to investigate the impact of AIS design choices. The parameters used for
obtaining the results shown in the solution plots are presented in the respective
figures. Further, the benchmark datasets used for preliminary accuracy testing
are presented in Table 5.4. The selection of datasets was based on their regular
use as benchmark datasets for classification models and as such, the accuracy
results could easily be compared to those of state of the art AIS classification
models. Additionally, the datasets contain a varying amount of samples, features
and classes – testing the robustness of the proposed model.
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Dataset Samples Number of
classes

Number of
features

Reference

Iris 150 3 4 [Dua and Graff,
2017]

Wine 178 3 13 [Dua and Graff,
2017]

Diabetes 768 2 8 [Dua and Graff,
2017]

Table 5.4: The benchmark datasets used for preliminary accuracy testing

The parameter values used for the preliminary accuracy testing are presented in
Table 5.5. These values were kept the same for all the datasets. nf is the length
of the feature vector, i.e. the amount of features for the respective dataset.

Parameter Value
Cross validation split (k) 5

Generations (G) 200
Antibody ratio (ABratio) 1.0

Antibody initialization split (ABinit−split) 0.5/0.5
Antibody replacement ratio (ABrr) 0.1

Feature vector mutation probability (pfv) 1/nf

RR radius mutation probability (pr) 1/nf

Antibody clones (ABc) 10
Antibody removal threshold (ABrt) 0.01

Number of runs 5

Table 5.5: The parameter values used for preliminary testing

5.3.2 Feature and Accuracy Testing

The fake news classification datasets used for accuracy and feature testing are
given in Table 5.6, together with their respective characteristics.
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Dataset Total
training
samples

Number
of
classes

Reference

Liar 15052 6 [Wang, 2017]
Kaggle 20387 2 [Kaliyar et al., 2021]
FakeNewsNet 15212 2 [Shu et al., 2018]

Table 5.6: The datasets used for feature and accuracy testing

The model parameters used for the feature and accuracy testing are given in Table
5.7. Preliminary testing showed that the model had trouble evolving the antibody
population in a constructive way, on the FakeNewsNet (FNN) dataset. As such,
it was chosen to adapt slighly different parameters for the tests which used the
FNN dataset (AT-3, AT-6 and the FNN runs of AT-7 and AT-8). Finally, the

Parameter Tests using
FNN dataset

Remaining
tests

Cross validation split (k) 4 4
Generations (G) 100 100
Antibody ratio (ABratio) 1.0 1.0
Antibody initialization split (ABinit−split) 0.5/0.5 0.9/0.1
Antibody replacement ratio (ABrr) 0.1 0.05
Feature vector mutation probability (pfv) 1/nf 1/nf

RR radius mutation probability (pr) 1/nf 1/nf

Antibody clones (ABc) 10 10
Antibody removal threshold (ABrt) 0.01 0.01

Table 5.7: Parameter values used for feature and accuracy testing

feature sets used for the accuracy testing were determined upon the completion
of the feature testing. These feature sets can be found in Subsection .

5.3.3 Samples Used and Number of Runs

Due to limited available computational power during testing, all the dataset sam-
ples could not be used for testing. As such, a subset of samples was used for the
different tests. These samples were randomly selected out of the total of sample
amount (randomized for each model run). Due to difference in computational
complexity, some tests could be run with more samples than others. The number
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of samples used for each test can be seen in Table 5.8.

Test ID Number of samples
MT-1, -2, -3 All available samples
FT-1, -2, -3 1000
FT-4, -5, -6 500
FT-7, -8, -9 1000

FT-10, -11, -12 300
AT-1, -2, -3 1200
AT-4, -5, -6 800

AT-7 1200
AT-8 800

Table 5.8: Samples sizes used for testing

A varying number of runs were used for the various tests conducted in the feature
and accuracy testing phases. The reason for this was two-fold. Firstly, most of
the tests in the feature testing phase did not need to be run multiple times – as
they are relatively deterministic. For feature test 1-9, the only difference between
runs would be the samples used (as these are selected at random). However, it
was decided that the large sample sizes used would make this variety of samples
insignificant. The number of runs used for each test in the feature and accuracy
testing are given in Table 5.9.

Test ID Number of runs
FT-1, -2, -3, -4, -5, -6, -7, -8, -9 1

FT-10, -11, -12 3
AT-1, -2, -3, -7 5
AT-4, -5, -6, -8 3

Table 5.9: The number of runs for feature and accuracy testing
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5.4 Experimental Results

5.4.1 Model Refinement Testing Results

RR Radius Initialization (MT-1)

The difference in overall RR radii sizes can be seen clearly when studying Figure
5.4. Every parameter except for the RR radius initialization approach was kept
the same for both runs. As expected, the VALIS approach results in significantly
larger RR radii than the AISLFS approach, as shown by the intense colors in
the VALIS plot. Interestingly, the RR radii stay larger even after the antibodies
are given significant time to mutate (the plots are from generation 200). As
the RR radii are larger with the VALIS approach, the coverage of the feature
space is likely also greater with this approach [Baug et al., 2019]. This increased
coverage might lead to improved performance on high-dimensional data, which
is significant for the proposed model.

[a] [b]

Figure 5.4: RR radius initialisation using AISFLS [a] and VALIS [b] (MT-1)
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The training set accuracy plots for the two RR radius initialization schemes are
shown in Figure 5.5 and Figure 5.6. These are the average of 5 runs with each
initialization scheme. The plots highlight the impact of the scheme selection. As

Figure 5.5: Using AISLFS’ RR radius initialization approach (MT-1)

expected, the AISLFS initialization approach (Figure 5.5) resulted in very high
accuracies from the very first generation. Half of the antibodies are initialized
with the training set antigens’ feature values and the RR radii are initialized to
not contain any different class antigens. Thus, it was expected that the accuracy
would be high from the start. The initial decrease in accuracy is due to the
replacement of the poorest performing antibodies, regardless of whether their
replacements have higher fitness values. The RR radii are being initialized as
large as possible, without including any different class antigens. As such, a small
mutation to the RR radius (making it larger) or to the feature values (moving the
antibody towards its closest different-class antigen) will lead to the inclusion of
a different-class antigen into the antibody’s RR – therein reducing the weighted
accuracy and thus the fitness score. Thus, antibodies which had high fitness
scores just one generation before might be replaced the next generation. It takes
some time for the antibodies to assess their local feature space and therefore the
upward trend is slower than than the initial drop.



100 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.6: Using VALIS’ RR radius initialization approach (MT-1)

Comparatively, the VALIS initialization approach (Figure 5.6) produced lower ac-
curacies initially – but efficiently increasing through the first generations, before
converging. Although the AISLFS approach generally achieved higher accuracies
on the training set than the VALIS approach, the accuracies on the testing sets
were generally worse, as can be seen from Table 5.10. These values were calcu-
lated from 5 runs with each initialization scheme, on the Wine dataset. The fact

RR initialization approach Training set Testing set
AISLFS 0.965 (0.004) 0.922 (0.022)
VALIS 0.958 (0.004) 0.936 (0.006)

Table 5.10: Accuracies (STD) on the training and testing sets (using Wine
dataset)

that the AISLFS approach scores higher on the training sets, but not the testing
sets, is probably due to some degree of overfitting to the training set samples,
as the RR radii are initialized to not include any antigens of a different class –
therein being much smaller. This allows for less exploration and less robustness
to unseen antigen samples. It should also be noted that the testing set standard
deviation is larger for AISLFS than for VALIS. This is attributed to the overfit-
ting problem.
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Overall, the VALIS approach was deemed the most suited for the proposed model.
This was both due to the generally higher and more stable results on the testing
set and the larger RR radii. Having large RR radii was deemed desirable, as
the proposed model had to handle high-dimensional data during the fake news
testing.

Antibody Replacement Ratio (MT-2)

As can be seen from comparing Figure 5.7 and Figure 5.8, the antibody replace-
ment ratio (ABrr) parameter has a significant impact on the model accuracy. In

Figure 5.7: Using a antibody replacement ratio of 0.3 (MT-2)

Figure 5.7, where an antibody replacement ratio of 0.3 have been used, the test-
ing set accuracy fluctuates wildly the first 50 generations. This is due to almost
half the antibodies being replaced by mutated clones during the first generations.
Although still ending up at a decent accuracy, the graph has fallen to this ac-
curacy and the trend is strictly downwards. Furthermore, the fluctuation is not
optimal as the model is inherently less stable and more dependent on randomly
discovering favourable mutations (leading to more variable runs). The reason
for testing such large values for the antibody replacement ratio was that VALIS
[Karpov et al., 2018] uses a static value of 0.5 for the ratio, as mentioned in
Subsection 4.2.8.
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Figure 5.8: Using an antibody replacement ratio of 0.1 (MT-2)

An antibody replacement ratio of 0.1 produces more stable results, as can be seen
in Figure 5.8. The accuracy increases quickly the first generations and converges
after around 50 generations. The trend is also generally upwards, toward a higher
accuracy. It could be argued that such a low replacement ratio doesn’t provide
enough exploration, as only a maximum of 10% of the antibodies are replaced –
declining throughout the generations. However, each antibody selected for repro-
duction each produces multiple clones with random mutations to feature values,
RR radius and feature subset selection. This heuristic introduces considerable
diversity into the population, even though relatively few antibodies are replaced.

Additionally, it should be noted that the plots are based on the accuracies ob-
tained on the testing sets, which the model doesn’t use for training. A copy of
the antibody population is used at each generation to compute the testing set ac-
curacy, in order to prevent knowledge leakage. As such, the antibody population
evolves without ”seeing” the antigens which the accuracy plots are calculated
from. The occasional dips in accuracy are therefore to be expected.

Preliminary Accuracy Testing (MT-3)

The results of the preliminary accuracy testing are presented in Table 5.11. The
accuracy results are averaged over the 5 runs, for each dataset, with the standard
deviations enclosed in parentheses. For the AISLFS accuracy scores, the results
obtained using the second affinity measure (similar to the one used by the pro-
posed model) and the Euclidean distance metric was used [Dudek, 2012]. As two
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of the affinity measures in AISLFS scored roughly the same, the one most similar
to the proposed model was chosen.

Dataset Proposed model VALIS MAIM AISLFS AIRS
Iris 0.959 0.956 0.965 0.954 0.960

(0.005) (0.006) (0.006) (0.005) (0.019)
Wine 0.944 0.972 0.967 0.974 n/a

(0.005) (0.05) (0.03) (0.05)
Diabetes 0.702 n/a 0.757 0.740 0.742

(0.006) (0.006) (0.009) (0.044)

Table 5.11: Accuracy results (STD) for preliminary accuracy testing

As expected, the obtained results generally aren’t quite on par with the other
state of the art AIS models in pure classification accuracy. This was to be ex-
pected as the model has neither been designed nor parameter tuned towards
these datasets specifically. Notably, the model performs best on the Iris dataset,
scoring slightly better than both VALIS and AISLFS – which served as consid-
erable inspiration for the implementation of the model. The high performance
on the Iris dataset might be due to the low amount of features for this dataset,
compared to the two other datasets. The accuracy results on the Iris dataset
also indicate that the relatively small amount of samples is not a problem for the
model. Conversely, the model’s poorest results (compared to the other models)
are on the Diabetes dataset, which have about 5 times as many data samples as
the Iris and Wine datasets. However, the Diabetes dataset is notorious for being
difficult to perform classification on – so there’s no clear correlation between in-
creasing amounts of data samples and decreasing classification accuracy for the
proposed model. Additionally, the low standard deviations for all the datasets
provide additional weight for the obtained results – indicating stable runs and a
robust model.

Although not performing quite on par with the other models on the Wine and
Diabetes datasets, the accuracy results of the proposed model are well within
the acceptable range. The model performs reasonably well on all datasets, which
shows robustness to varying numbers of samples, classes and features. As the
general applicability was the most important aspect to evaluate in the prelimi-
nary accuracy testing, the overall performance of the model was acceptable. Poor
accuracy results on fake news classification would likely be caused by the feature
extraction/selection and not the underlying model itself.
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5.4.2 Feature Testing Results

FT-1, FT-2 and FT-3

The results of the feature scoring of the non-text embedding features are given
in Figure 5.9. The respective feature scores are presented column-wise, with one
column per dataset. Additionally, the average score for each feature, across all
three datasets, are presented in the rightmost column. To improve readability,
color grading has been applied to the values, ranging from green (highest 10%
in column), through yellow, to red (lowest 10% in column). It should be noted
that this coloring is relative to each column, not across all the columns. The

Figure 5.9: The feature scores of the non-text embedding features (FT-1, -2, -3)

averaged feature scores in Figure 5.9 provide insight into the performance of the
various (non-text embedding) features. The scores are generally quite low, which
was expected due to the difficulty of fake news classification compared to using
benchmark classification datasets (where feature values aren’t extracted). For
comparison, the scores of the features from the Iris dataset generally span the
0.15-0.5 range, i.e. being roughly 10 times more valuable for classification than
the best extracted features. Notably, the performance of the features vary sig-
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nificantly between the three datasets – illustrating the importance of testing on
several datasets. The feature scores vary less between the Liar and FNN datasets,
which was expected as these are harder to classify than the Kaggle dataset. Thus,
features like sentiment analysis, which only outputs 4 different values, are inef-
ficient on these datasets. Surprisingly, none of the features that were expected
to perform better on the Kaggle dataset (feature 9, 12, 13 and 14) actually met
their expectation. In fact, feature 9 and 12 actually scored better on the Liar
and FNN datasets than on the Kaggle dataset. It is unclear why this is the case,
though it may be due to the Kaggle fake news articles having limited vocabularies
– thus not matching with the relatively advanced terms of these lexicons.

The sentiment analysis feature using head + tail scored better than the one us-
ing the article headlines. In fact, the headline sentiment analysis feature scored
the worst of all the features tested. This hints that the article headlines are less
representative of the article content than theorized. Further, the high averaged
score of the head + tail sentiment analysis feature is mostly attributed to the
high performance on the Kaggle dataset (the highest achieved score of all the
features), which pulls the average score up significantly. This difference in per-
formance across the datasets is most likely due to the varying difficulties of the
datasets. As the sentiment analysis features produce relatively coarse-grained
feature values (integers in the [0,4] range, before normalization), articles with-
out extreme sentiments (i.e. relatively neutral) result in very similar values. It
was theorized that the news articles in the Kaggle datasets are generally more
extreme in their expressed opinion and as such sentiment analysis works better
on this dataset.

Feature 1 (swear word TF) scored relatively poorly (as expected), but notably
several other features scored worse. Among the features scoring worse were two
of the TF features which Rashkin et al. found to be very representative of arti-
cle class – further highlighting the importance of evaluating feature performance
across multiple datasets. Surprisingly, feature 17 (word count) achieved the third
best average score. Upon further investigation, it was discovered that the word
count ratio was the inverse of the theorized ratio – with the average fake news
article being almost twice as long as the average real news article (in the Kaggle
dataset).

Additionally, the two novel features 15 (quotation mark TF) and 16 (divisive
topics) perform well across all the dataset. These results highlight the need for
creativity when researching applicable features for fake news classification.
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FT-4, FT-5 and FT-6

The obtained classification accuracies using the four text embedding features
(individually) are presented in Figure 5.10. The accuracies obtained from the
various datasets are given column-wise, including the average accuracy for each
feature. Additionally, the ranking of each text embedding feature is given in the
rightmost column, based on the average classification accuracy. Contrarily to the

Figure 5.10: The feature evaluations of the text embedding features (FT-4, -5, -6)

hypotheses of FT-4, FT-5 and FT-6, the headline text embedding feature did not
outperform the other text embedding features. This supports the findings from
the testing of the sentiment analysis features (in FT-1, FT-2 and FT-3) – where
it was found that the news article headlines generally were less representative of
article class labels than expected. Surprisingly, the tail approach (where only the
last sentence is used) scored better than all the other text embedding approaches,
on all three datasets. This is notable and may be used in future research into
fake news classification. It is hypothesized that this might be due to the nature
of fake news articles specifically, where the authors wish to end the articles by
pushing a narrative or stating a drastic opinion. Unfortunately, the sentiment
analysis features did not employ the separate head and tail approaches, only the
fused approach where the head and tail are concatenated. As such, it couldn’t
be determined if the separate tail approach would perform better for sentiment
analysis as well.

FT-7, FT-8 and FT-9

The mutual information matrices for the Kaggle, Liar and FNN datasets are
given in Figure 5.11, 5.12 and 5.13, respectively. It should be noted that the
matrices are symmetrical, i.e. MI(X,Y ) = MI(Y,X). Further, the varying
values found on the diagonals are attributed to the varying representativeness of
the features extracted (MI of two similar, constant values are 0) and the fact that
the probability distributions are estimated using only parts of the total amount
of dataset samples. The values are color graded inversely of the feature scores,
with the lowest values colored green and the largest colored red. This is due to
high levels of mutual information being inherently negative in this setting.
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Figure 5.11: The MI matrix for the Kaggle dataset (FT-7)

Figure 5.12: The MI matrix for the Liar dataset (FT-8)

The differences of mutual information between the features are clear when com-
paring the three tables. For the Kaggle dataset (Figure 5.11), there are slight
dependencies found for most of the features. Comparatively, there is very lit-
tle dependency to be found for the Liar (Figure 5.12) and FNN (Figure 5.13)
datasets. The differences in mutual information are attributed to the varying de-
grees of classification difficulties of the three datasets – which result in differences
in feature representativeness.
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Figure 5.13: The MI matrix for the FakeNewsNet dataset (FT-9)

As hypothesized, feature 9 (strongly subjective words) and 12 (negative opin-
ion words) have some dependency, for the Kaggle dataset. However, both fea-
tures have higher levels of mutual information with feature 16 (divisive topics),
17 (word count), 18 (FK grade level) and 19 (FK reading ease) than they have
between them. This reflects both the difficulty of predicting feature usefulness
before testing and the potential of the Flesch-Kincaid features for identifying
subjective and simplistic writing styles.

Interestingly, for all the datasets, most of the dependencies were found between
the last five features. It was expected that feature 17, 18 and 19 would have
some mutual information – as the word count is used for all of these features.
However, the expected dependence between the two sentiment analysis features
was not found. The mutual information between these features are generally low
across all the datasets. Coupled with the results from the feature scoring, this
finding further supports the theory that the headlines of the news articles are
generally not very representative of the class labels.

FT-10, FT-11 and FT-12

The mutual information (MI) matrices for the text embedding features, on all
three datasets, can be seen in Figure 5.14 and 5.15. As mentioned in the feature
testing plan, these values were calculated for each pair of features at a time,
averaging the MI between each pair of the 768 feature values. In Figure 5.15 [b],
the MI matrix has been averaged across all the datasets, in order to get a sense
of dependency between the text embedding features. The color grading is set up
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[a] [b]

Figure 5.14: The MI matrix for the text embedding features, for the Kaggle [a]
and Liar [b] dataset (FT-10, -11)

[a] [b]

Figure 5.15: The MI matrix for the text embedding features, for the FNN dataset
[a] and the averaged MI matrix [b] (FT-12)

similar to the non-text embedding matrices, with larger values colored red and
smaller values colored green. However, the color grading is based on the entire
table, not each individual column.

The results mostly match the expectations, with the headline approach generally
sharing the least mutual information with the other text embedding features.
However, the tail approach is also generally independent of the other features.
This might explain why the tail feature performed better than all the other text
embedding features during the feature ranking. Also, the fact that the headline
feature scored second-best on all the datasets during the feature ranking suggests
that there is some correlation between independence and classification usefulness
for the text embedding features.

Feature Testing Assessment

The features used for the accuracy testing were selected based on their feature
scores/ranks on the individual datasets. Generally, the top five features for each
datasets was used, although this depended on the relative feature scores. Mutual
information was also considered when deciding the feature sets. Using two or
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more features with high levels of mutual information would unnecessarily increase
the run time of the model, as these don’t provide any new information. For the
universal feature sets (sets 7 and 8), features scoring well across all three datasets
were preferred. The feature sets used for the accuracy testing are given in Table
5.12.

Feature
number

Feature de-
scription

Set
1

Set
2

Set
3

Set
4

Set
5

Set
6

Set
7

Set
8

3 2nd person pro-
nouns

x x x x x x

5 Action adverbs x x x x x x
7 Superlatives x x
9 Strongly subjec-

tive words
x x

10 Numbers x x x x x x
11 Negations x x x x x x
15 Quotation marks x x x x x x
16 Divisive topics x x x x x x
17 Word count x x x x
23 BERT text em-

bedding (tail)
x x x x

25 Sentiment analy-
sis (head + tail)

x x

Table 5.12: The feature sets used for accuracy testing (x indicates the feature
being used)
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5.4.3 Accuracy Testing Results

AT-1, AT-2 and AT-3

The results obtained in AT-1, -2 and -3 can be seen in Table 5.13. The standard
deviations are added in parentheses. Generally, the proposed model achieved
good accuracy results across all the datasets. Additionally, the standard devia-
tions are low for all three datasets – indicating stable runs. The accuracy plots

Test Feature set Dataset Accuracy
AT-1 1 Kaggle 0.872 (0.002)
AT-2 3 Liar 0.227 (0.004)
AT-3 5 FNN 0.580 (0.005)

Table 5.13: The results of AT-1, AT-2 and AT-3, standard deviation in paren-
theses

for AT-1, AT-2 and AT-3 runs are given in Figure 5.16 and 5.17. It should be
noted that these plots don’t include information from all the runs on each test,
rather they serve as an example of a typical run for each test. Although pro-

[a] [b]

Figure 5.16: Accuracy plot of AT-1 [a] and AT-2 [b]

ducing competitive accuracy results, it is clear from the accuracy plots that the
model struggles with increasing the accuracy. This is likely due to the model
having trouble with evolving the antibody population in a favourable way, as the
antigens are difficult to differentiate – rendering the fitness evaluation (and thus
antibody selection) ineffective. For AT-1 (Figure 5.16 [a]), the accuracy is almost
completely static, although antibodies are continuously replaced. For the plots
of AT-2 (Figure 5.16 [b]) and AT-3 (Figure 5.17), the accuracy is evolving, but
not in a functional way. In the test hypotheses section, it was hypothesized that
the model would have difficulties with improving accuracy when the text embed-
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Figure 5.17: Accuracy plot of AT-3

ding features were used (due to the large number of features) but not without
them. Given that the model didn’t struggle with this during the preliminary ac-
curacy testing, it was theorized that the extracted features were responsible for
this lack of accuracy improvement. As the features used are extracted from raw
news articles, they are not unequivocally representative of class labels. This was
indicated through the low feature scores found in Subsection 5.4.2, compared to
the features of a benchmark classification dataset like Iris. Thus, it was theorized
that the lack of accuracy improvement was due to the antibodies struggling with
separating different-class antigens in the feature space.

Although struggling with evolving the antibody population, the proposed model
still produced results comparable with state of the art models. This is likely due
to the initialization scheme which introduces parts of the antibodies randomly
– therein covering the feature space to a sufficient degree. The voting scheme
should likely also be credited, as antigen class labels are determined according to
affinities, as well as the antibodies’ feature selection vectors. It could therefore
be argued that AISs might not be a bad choice for fake news classification, espe-
cially if more efficient feature extraction strategies are found. Further, it should
be considered that the model was run with only a fraction of the total amount of
samples for each dataset (see Table 5.8). With increased available computational
power, the number of samples could also be increased. This would likely result
in better accuracies, as the model would get a better overview of the data.

AT-4, AT-5 and AT-6

The accuracies obtained in AT-4, -5 and -6 are presented in Table 5.14.
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Test Feature set Dataset Accuracy
AT-4 2 Kaggle 0.917 (0.019)
AT-5 4 Liar 0.198 (0.004)
AT-6 6 FNN 0.513 (0.018)

Table 5.14: The results of AT-4, AT-5 and AT-6, standard deviation in paren-
theses

In the hypotheses of Subsection 5.2.3, there was considerable uncertainty tied
to how the proposed model would handle large feature spaces. Further, it was
theorized that the model might struggle with evolving the antibody population
and that this would result in less stable runs than those of AT-1, -2 and -3.
Interestingly, the model responds differently to the addition of text embedding
features for the different datasets. The accuracy on the Kaggle dataset was
improved, while those obtained on the Liar and FNN datasets were worsened.
As the Kaggle dataset is objectively easier to classify than the other two datasets,
there might be a correlation between difficulty of classification and effectiveness of
text embeddings. This might also be compatible with the finding from the feature
testing phase, where the sentiment analysis feature scored far better on the Kaggle
dataset than on the other two datasets. As such, the sentiment analysis and text
embedding features might be inherently too general for a specific task like fake
news classification – leading to less effectiveness on difficult datasets which don’t
have clear negative/positive content. The standard deviations were also notably
higher when the text embedding features were used. This indicates more volatile
runs, as theorized in the hypotheses of Subsection 5.2.3.
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[a] [b]

Figure 5.18: Accuracy plot of AT-4 [a] and AT-5 [b]

The accuracy plots of AT-4, AT-5 and AT-6 are presented in Figure 5.18 and
5.19. As for AT-1, -2 and -3, these plots don’t use information from all the tests
run, but rather they serve as examples of typical test runs. The plotted accuracy
is the average accuracy at each generation, averaged for the k testing sets, for a
single run. From the accuracy plots, it is clear that the model struggles similarly

Figure 5.19: Accuracy plot of AT-6

to the non-text embedding runs (although improving slightly in AT-4). It was
theorized that this was both due to the large feature space and the feature values
themselves. Upon further investigation, it was found that many of the (training
set) antigens only were covered by a single antibody – in the final generation.
Additionally, considerable amounts of antibodies were deleted during the apopto-
sis process. This suggests that the antibodies struggle with locating the antigens
in the high-dimensional feature space (leading to very low fitnesses). Although
the antibodies are utilizing local feature selection, the chance of disregarding a
large portion of the features is relatively low. If antibodies were to disregard all
the text embedding-based feature values, they would have to randomly mutate
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so that only 7 out of 775 features are used. Even with a significant number of
clones per antibody and many generations in which to mutate in, it is unlikely
that the antibodies would evolve this way for the average run of the model. This
means that the antibodies still have to handle large amounts of dimensions.

Finally, it should be noted that the run times were significantly increased when
text embeddings were used. This extra processing time was due to both the
feature extraction itself (handling requests through bert-as-service [Xiao, 2018])
and the extra processing time of evolving the antibody population with large
amounts of features. As each antibody selected for reproduction produces a
number of clones and each of these will mutate their feature values and feature
selection vector – the computational effort increases drastically with increased
number of features.

AT-7 and AT-8

The accuracies obtained using the universal feature sets are given in Table 5.15.
As hypothesized, the accuracies are only slightly worse than those obtained with
the dataset-specific feature sets (see Table 5.13 and 5.14). This suggests that the
local feature selection scheme works as intended and antibodies disregard features
which aren’t useful for classifying a given dataset. This finding indicates that the
model is robust to less effective features, when these these don’t make up the vast
majority of the features, i.e. when text embeddings are used. The accuracy plots

Test Feature set Dataset Accuracy
AT-7 7 Kaggle 0.863 (0.004)
AT-7 7 Liar 0.226 (0.002)
AT-7 7 FNN 0.570 (0.021)
AT-8 8 Kaggle 0.882 (0.021)
AT-8 8 Liar 0.187 (0.011)
AT-8 8 FNN 0.511 (0.023)

Table 5.15: The results of AT-7 and AT-8, standard deviation in parentheses

of AT-7 and AT-8 are provided in the Appendix (Section 6.3.4). Considering the
findings from AT-1 - AT-6, these were mostly as expected – although the model
was able to improve the accuracy slightly on the Liar dataset in AT-8.
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Accuracy Testing Assessment

In Table 5.16, the proposed model’s highest achieved accuracy on the Kaggle
dataset is compared with accuracies obtained by other state of the art models.
The results obtained by the proposed model are overall competitive with most of

Kaggle dataset
Model Accuracy
Proposed model 0.917 (0.019)
Kaliyar et al. [2021] 0.989
O’Brien et al. [2018] 0.935 (0.002)
Liu and Wu [2018] 0.921
Ahmed et al. [2017] 0.920
Ruchansky et al. [2017] 0.892
Mandical et al. [2020] 0.870

Table 5.16: Accuracy (STD) comparisons for the Kaggle dataset, standard devi-
ation in parentheses (where available)

the models, notably beating the scores of both Ruchansky et al. and Mandical et
al. Conversely, the achieved accuracy was notably worse than that of FakeBERT
[Kaliyar et al., 2021]. However, it should be noted that the authors of FakeBERT
conducted testing and training solely on the Kaggle dataset, while the proposed
model has been an attempt at generalization across several datasets. It was thus
expected that the results obtained by the proposed model would be lower on each
individual dataset.
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In Table 5.17, the model’s achieved accuracy on the Liar dataset is compared to
the results obtained by several state of the art models. Several results obtained
by Bhutani et al. are included in the table, as these represent state of the art
results using various model approaches [Bhutani et al., 2019]. It should be noted

Liar dataset
Model Accuracy
Proposed model 0.227 (0.004)
Wang [2017] 0.270
Bhutani et al. [2019], with Random Forest 0.351
Bhutani et al. [2019], with CNN 0.248
Bhutani et al. [2019], with M-Naive Bayes 0.236
Rashkin et al. [2017] 0.220

Table 5.17: Accuracy (STD) comparisons for the Liar dataset, standard deviation
in parentheses (where available)

that only results obtained using the base version of the dataset (without meta-
data like party affiliation, history and context) were considered, as this was the
dataset used for testing and training the proposed model. Further, the results
achieved by Ozbay and Alatas were not considered [Altunbey Ozbay and Alatas,
2019]. This is due to the authors not specifying how they treated the dataset.
As this dataset consists of six different classes, differentiation between them is
notoriously difficult [Wang, 2017]. Ozbay and Alatas state accuracy results of
up to 0.965. This drastic improvement (when comparing to the accuracy scores
in Table 5.17) suggests that Ozbay and Alatas altered the dataset, for instance
converting the six classes into two and performing binary classification. These
results are not comparable to those in Table 5.17 and are thus excluded.

The achieved accuracy on the Liar dataset is competitive with most state of
the art results, although Bhutani et al. obtained better results with their Ran-
dom Forest classifier. Notably, the proposed model beats the model of Rashkin
et al., which many of the features in the proposed model were based on. This
accomplishment is attributed to both the other proposed features and the effec-
tiveness of using an AIS for the fake news classification.

When comparing the obtained results on the FakeNewsNet dataset to those of
state of the art models, it was discovered that most researchers use another ver-
sion of the dataset. As mentioned, the dataset is sampled from PolitiFact and
GossipCop and in the dataset used for training and testing the proposed model,
these samples were mixed together and not source-labelled. However, most pa-
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pers use a split version of the dataset, where classification is conducted on the
PolitiFact and GossipCop parts separately. This made the obtained accuracy
results unfit for comparison. Nevertheless, the FakeNewsNet dataset served as a
valuable evaluation tool for the feature testing phase.

Overall, the proposed model produced competitive results on both the Kaggle
and the Liar datasets, beating multiple state of the art models. It should also
be considered that only a fraction of the total amount of samples were used, for
all the datasets. A larger number of samples might also help mitigate the prob-
lem of separating different-class antigens which lie close together in the feature
space. This is due to the feature values being normalized. More dataset samples
would thus help ”calibrate” the feature values through normalization, so that
the values would be more representative of class labels. The fact that the model
was trained and tested on three distinct datasets should also further strengthen
the weighting of the obtained results, considering that most researchers only test
their models on single datasets. Consequently, the obtained results indicate that
there is considerable potential in using Artificial Immune Systems for fake news
classification.



Chapter 6

Evaluation and Conclusion

This chapter aims to present an overall assessment and discussion of the pro-
posed model and the obtained results. Further, the contributions to the research
community are presented and possibilities for future work within the research field
are identified.

6.1 Conclusion and Goal Evaluation

The overall goal of this thesis was to investigate the applicability of an Artifi-
cial Immune System for the classification of fake news articles. This goal was
subsequently divided into three separate research questions, aimed at addressing
three different sides of the overall goal. The findings obtained from testing the
proposed model are subsequently discussed, in light of these research questions.

Research question 1 How should the traditional design of an Artificial Im-
mune system be adapted to enable fake news classification?

The underlying AIS base of the proposed model has been designed from scratch,
taking inspiration from several state of the art AIS models. Architectural design
choices were continuously made to tailor the AIS to the task of fake news clas-
sification. One of these choices was the local feature selection, which allows the
antibodies to discard features which aren’t useful for classification. The feature
selection approach was based on that of AISLFS[Dudek, 2012], but was altered
in that mutation was conducted on the feature values and RR radii, in addition
to the feature selection vector. This feature selection scheme makes the model
robust to features of varying effectiveness and also helps mitigate the ”curse of
dimensionality”. The result of these choices was an AIS that produces high ac-
curacies on both benchmark classification datasets and fake news datasets.

119
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The testing results indicate that the model has trouble evolving the antibody
population in a way that increased classification accuracy over time, on the fake
news datasets. As this was only a problem on the fake news datasets, this was
likely related to the feature extraction and not the AIS architecture. In fact, the
model achieved accuracies competitive with state of the art models, even with
the problem of antibody evolution. This suggests that the decisions made for
antibody initialization and class prediction indeed were suitable for the task of
fake news classification.

It should also be noted that the parameter values were mostly selected on the
basis of regular (non-fake news) classification. As such, more experimental pa-
rameter tuning specifically towards fake news and the extracted features might
help mitigate the problem of antibody evolution. The sample sizes used for fake
news testing is also a notable side to this. Contrarily to the models which the
accuracy results were compared to, the proposed model only used a fraction of
the available samples for all three fake news datasets (see Table 5.8). Increased
sample counts might result in greater coverage of the feature space, as well as
enhanced fine-grained distinction between antigens, due to more data being used
for normalization of feature values. Further, it is unknown how the state of the
art models would perform with a similar fraction of the available samples. Addi-
tional strategies which might mitigate the problem of accuracy improvement are
presented in Section 6.3.

Research question 2 Which feature extraction strategies are suitable for an
AIS adopted for the classification of fake and real news articles?

A significant part of this thesis has been the investigation into which feature
extraction strategies may be suitable for an AIS. As such, several noteworthy
findings has been identified in the feature and accuracy testing phases. Firstly,
it was shown that the effectiveness of features vary greatly for different datasets.
Features like the sentiment analysis using the first and last sentence of each news
article proved very valuable for the Kaggle dataset, but not on the other datasets.
Further, it was shown that the two novel features of calculating term frequencies
of divisive topics and quotation marks proved highly useful, both being amongst
the top 5 features (amongst 25 features in total), when averaged across all the
datasets. This highlights the need for more research into sophisticated feature
extraction strategies for fake news classification.

It was found that using only headlines for feature extraction was generally less
effective than hypothesized. This was the case both for the sentiment analysis
and the text embedding features, where the approaches which used the article
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corpora scored better than those using headlines. The fact that the features were
tested on three distinct datasets provide additional weight to these findings. Most
state of the art models test their models and features on single datasets, which
provide little information related to generality. As the main goal of most fake
news classification models is to formulate a general model capable of classifying
news articles found ”in the wild”, such generality is important.

Research question 3 How does the proposed model perform, in terms of accu-
racy, compared to other fake news classification methods?

The accuracy results obtained by the proposed model were generally competi-
tive with those obtained by most relevant models, although falling short of one
model for each of the two datasets used for comparison ([Kaliyar et al., 2021] and
[Bhutani et al., 2019]). However, the obtained accuracies on the Kaggle and Liar
datasets exceed those of multiple state of the art models, including the model
by Rashkin et al., which served as the main inspiration for the term frequency-
based features [Rashkin et al., 2017]. These findings highlight the potential of
using AISs for fake news classification.

6.2 Contributions

Throughout the implementation and testing of the proposed model, several valu-
able contributions to the field were made. The main contribution was the inves-
tigation into adapting an AIS for the task of fake news classification. As this was
a completely novel application area for AISs and also a novel approach to fake
news classification, there was significant uncertainty tied to both model design
and classification effectiveness. The achieved results indicate that there is poten-
tial in this application, although more research should be conducted into feature
extraction and architectural decisions for the AIS model.

Two novel features were proposed, including divisive topic and quotation mark
term frequencies. These were shown to perform well across all three datasets
tested, contrarily to the vast majority of features tested. These features may be
used in future research into fake news classification, regardless of the base model
being an AIS or not.

The feature testing phase considered a significant amount of features and eval-
uated these in an objective manner, across three distinct datasets. These eval-
uations may serve as an assessment of feature effectiveness, valuable for future
research into feature extraction. Most existing papers only test their features on
single datasets, which they often produce themselves. Thus, the findings in these
papers regarding feature effectiveness are generally less reliable than those found
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in this thesis.

Finally, it was found that news article headlines are generally less representa-
tive of the nature of the article, than theorized. For the sentiment analysis,
the head + tail approach worked better than that using the article headlines as
input. Similarly, for the text embedding features, the tail approach worked sig-
nificantly better than the headline approach, across all the datasets. It was also
notable that the text embedding feature which used the tail approach was found
to outperform all the other text embedding features, for all the datasets. These
findings serve as contributions to the research area of fake news classification
using sentiment mining and text embeddings.

6.3 Future Work

Due to the broadness of the topic of this thesis, several potential extensions had
to be discarded due to time and resource limitations. These potential extensions
may serve as inspiration for further research.

6.3.1 Increased Sample Sizes

A simple extension of the work conducted in this thesis would be to investigate
the model’s performance using larger sample sizes. The datasets used for testing
contain thousands of article samples and the full potential of this data was not
used in the proposed model – due to computational restrictions. Using larger
sample sizes would likely enhance the classification accuracy of the model, but
it’s uncertain to which degree. However, larger sample sizes would also reduce the
efficiency of the model. As such, a trade-off between performance and efficiency
should likely be the goal of future research.

6.3.2 Alternative AIS Design Decisions

Throughout the design of the underlying AIS, several design decisions were made
to accommodate an AIS which would work well for news article classification.
However, several assumptions had to be made for this design process, due to the
novelty of using an AIS for this purpose. As such, future work could investigate
alternative architectural decisions for the AIS. Such alternative decisions could
include investigating the impact of using crossover, using different antibody se-
lection schemes, testing other fitness calculation methods or employing negative
selection.
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6.3.3 Alternative Features

The field of feature extraction for fake news classification is rapidly evolving and
the results found in this thesis could be used to formulate more efficient features,
in future works. Firstly, it would be interesting to investigate if separate tail and
head approaches for sentiment analysis would yield similar results to those of the
text embedding features, i.e. if the tail approach would outperform the other
approaches for sentiment analysis as well. Further, the effects of using TF-IDF
instead of TF could be investigated. This investigation could be combined with
using TF-IDF to identify words which appear more often in fake news articles
than real ones, instead of using lexicons. More extensive pre-processing of sam-
ples could also be implemented, for instance the removal of outlier samples before
normalization.

The lexicons used did not exclusively contain words in their lemmatized form.
Using a tool like Stanford CoreNLP to lemmatize the lexicon terms and then
comparing them to the tokenenized and lemmatized news articles might boost
the effectiveness of the features which use lexicons. However, it should be noted
that the computational load of lemmatization is considerable.

Another feature idea which wasn’t implemented was word frequency analysis
of the news articles, to gain an estimate of the vocabulary of the author. This
feature would not use a lexicon, but rather count the appearances of words in a
given article corpus. If a relatively small subset of words are used very frequently,
this might suggest that the vocabulary of the author is somewhat limited – fur-
ther indicating that the news article is labelled as fake. Such a feature should
be calculated on text corpus where stop words have been removed, as words like
”a” and ”the” would appear frequently for all news articles.

Finally, the semantic-based approach could be extended to include other ap-
proaches like source- and propagation-based strategies. Several datasets include
meta-data which thus could be utilized by the model. During the feature formu-
lation phase of the model, it was experimented with using the Google Fact Check
API to aid classification, through sending GET requests. Although this feature
was discarded due to being deemed as ”cheating” and not being semantic based,
it may serve as inspiration for further research into feature extraction.

6.3.4 Alternative BERT Models

The BERT model used to generate text embeddings was the pre-trained BERT-
Base Cased model. Future work could include investigating the effects of using
alternative models, like BERT-Large (although this would result in 1024-length
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output vectors, instead of 768). The effects of using uncased vs cased versions
could also be investigated. Furthermore, a BERT model could be trained from
scratch, instead of using a pre-trained version trained on Wikipedia corpus. By
training the model on explicit real and fake news articles, the performance of text
embedding features might be improved.
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Association for Computing Machinery.

Idris, I. and Selamat, A. (2011). Negative selection algorithm in artificial im-
mune system for spam detection. In 2011 Malaysian Conference in Software
Engineering, pages 379–382.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). Statistical Learning,
pages 15–57. Springer New York, New York, NY.

Jamieson, K. and Cappella, J. (2008). Echo Chamber: Rush Limbaugh and the
Conservative Media Establishment. JSTOR.

Ji, Z. and Dasgupta, D. (2004). Real-valued negative selection algorithm with
variable-sized detectors. In Deb, K., editor, Genetic and Evolutionary Com-
putation – GECCO 2004, pages 287–298, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Ji, Z. and Dasgupta, D. (2007). Revisiting negative selection algorithms. Evolu-
tionary Computation, 15(2):223–251. PMID: 17535140.

Kaliyar, R. K., Goswami, A., and Narang, P. (2021). Fakebert: Fake news
detection in social media with a bert-based deep learning approach. Multimedia
tools and applications, page 1â24.
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Figure 6.1: Accuracy plot of AT-7 (Kaggle)
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Figure 6.2: Accuracy plot of AT-7 (Liar)

Figure 6.3: Accuracy plot of AT-7 (FNN)
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Figure 6.4: Accuracy plot of AT-8 (Kaggle)

Figure 6.5: Accuracy plot of AT-8 (Liar)
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Figure 6.6: Accuracy plot of AT-8 (FNN)
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