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Project description

Implementations of Fourier ptychographic microscopes are slowed primarily by
image acquisition time, memory movement, and image processing time. A goal in
Fourier ptychographic imaging is real time operation. To achieve this, all of these
aspects must be accelerated. In this thesis, both the use of reduced precision par-
allel algorithms for the image processing aspect, and compression and streaming
techniques for the memory movement aspect are explored and implemented in an
integrated Fourier microscopy system. Other related algorithms and techniques be
also be considered.
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Abstract

Microscopy allows us to see details too small for the naked eye, but the area of
images are strongly limited by the magnification level. In fields such as medical
imaging and materials science, however, both high magnification levels and larger
images are desired. Increasing both resolution and image size in a conventional
microscope requires either more expensive optical components, or large and com-
plex setups. In the last decades, using computing rather than more expensive op-
tical setups to improve imaging systems, so called "computational imaging" has
become popular. A recent technique in this field is Fourier Ptychographic Micro-
scopy (FPM). In FPM, an object is illuminated from different angles and imaged
through a regular light microscope. The obtained set of images are combined into
a single higher resolution result image by solving a phase recovery problem. How-
ever, this recovery problem is very computationally intensive, prohibiting real time
operation.

In this thesis, we present a modified iterative solver for phase recovery in the
context of FPM that permits concurrent execution of sub-iterations, detecting and
exploiting task dynamic parallelism using a priority queue containing a depend-
ency graph and a cost function. This speeds up both the recovery, and exposes
more data parallelism in the FPM recovery. Our novel implementation obtains
a speedup of x5 on a 16 core CPU even without exploiting any available data
parallelism, and at only a small reduction in reconstruction quality compared to a
single threaded baseline. As many phase recovery algorithms in both FPM and pty-
chography have similar structures, this method shows promise as a more broadly
applicable tool. Suggestions for future work are also included.
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Sammendrag

Mikroskopi lar oss se detaljer som vanligvis er for små til å se med det blotte
øye, men størrelsen på området som avbildes begrenses av forstørrelsesgraden.
Innenfor fagfelt som medisinsk bildeforskning og materialvitenskap ønsker man
bilder som både er høyoppløste, men som også dekker en stor del av prøven. Å øke
både størrelsen og oppløsningen i et konvensjonelt mikroskop krever enten dyrere
optiske komponenter, eller store og kompliserte oppsett. I løpet av de siste tiårene
har det å bruke datamaskiner til å forbedre bildesystemer, såkalt "computational
imaging", blitt stadig mer populært. En ny teknikk innen dette feltet er fourierp-
tychografisk mikroskopi (FPM). I FPM blir en prøve belyst med lys fra ulike vink-
ler og avbildet i et konvensjonelt lysmikroskop. Resultatbildene blir deretter slått
sammen til ett enkelt høyoppløst bilde ved å løse et fasegjenfinningsproblem. Å
løse dette fasegjenfinningsproblemet krever imidlertid mye regnekraft, noe som
forhindrer FPM-mikroskopet fra å kunne operere i sanntid.

I denne avhandlingen presenterer vi en modifisert iterativ løser for fasegjen-
finning som brukt i FPM som tillater samtidig utførelse av deliterasjoner. Den
modifiserte løseren avdekker og utnytter oppgaveparalellitet mellom de ulike de-
literasjonene ved hjelp av en prioritetskø som bruker en avhengighetsgraf og en
kostnadsfunksjon. Dette reduserer kjøretiden, og eksponerer mer dataparalellitet
i FPM-rekonstrussjonsprosessen. Implementasjonen vår kjører ca 5 ganger raskere
på en CPU med 16 tråder enn en tilsvarende entrådet versjon av algoritmen, selv
uten å utnytte dataparalellitet i problemet, og ved kun en svært liten reduksjon i
rekonstruksjonskvalitet. Ettersom mange fasegjenfinningsalgoritmer i både FPM
og ptychografi har lignende struktur er det gode muligheter for at denne metoden
kan anvendes som et paralelliseringsverktøy på et bredere plan. Forslag til videre
arbeid er også inkludert.
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Chapter 1

Introduction

Microscopes that create images that cover large sample areas with high resolu-
tion[1] are desirable in fields such as medical imaging and materials. A conven-
tional microscope must trade field of view (FoV) for higher resolution. Increasing
both the resolution and the sampling area requires either the size of the aperture
be increased, the wavelength of the illumination reduced. Increasing the lens size
makes the lens more difficult and expensive to manufacture, and decreasing the
wavelength of the illumination can in some case damage the sample. It is possible
to increase the resolution to the desired level by trading FoV for magnification
and then cover the whole sample by mechanically scanning the microscope over
the sample and merge the resulting images. This requires precise and expensive
equipment however.

A relatively new technique called Fourier Ptychographic Microscopy (FPM)[2]
provides an alternative to the scanning method. In FPM, multiple images taken
with varying illumination rather than varying translation are used to reconstruct
an image with higher resolution over a larger sample area than the optical system
used normally would be able to achieve. FPM uses a mathematical model of the
imaging system to relate the illumination angle of a given image to the inform-
ation it provides about the sample. This model then allows for a computational
reconstruction process that merges the info from all the images and produces a
single result image that covers a large area of the sample at a high resolution.
In addition, FPM reconstructs both phase and amplitude of the object, revealing
details about the sample not visible in a normal intensity image.

However, FPM reconstruction can be a time consuming process, however, when
using a microscope, near real-time or real-time operation is desirable. There are
two main approaches for speeding it up. An inherently faster reconstruction pro-
cess can be used, but the trend in the literature has been towards more advanced
recovery schemes that are more computationally expensive, as can be seen in re-
views like[3]. The alternative is to try and implement the chosen method in a
more efficient manner, for instance by exploiting task- and data parallelism to run

1
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as many of the sub-calculations of the iterative process as possible in parallel.

Performing the iterations on a highly data parallel machine like a GPU has
been shown to drastically reduce the reconstruction time[4]. However, the inher-
ent parallelism between different iteration steps even in iterative FPM algorithms
could potentially also be exploited. As parallelism at the iteration step level can
be exploited not only by massively data parallel machines like GPUs, but also by
multi-core CPUs, a task parallel implementation can achieve speedups also on ma-
chines without co-processors, making FPM more accessible. In addition, unlocking
task parallelism between iteration steps would unlock even more data parallelism,
as the identified independent tasks can be accelerated by data parallel machines
like GPUs as well.

To uncover task parallelism, the structure of the recovery problem, in which
an initial guess is fitted to a large collection of constraints in the form of images
captured with varying illumination angle, is examined. By mapping out depend-
encies between the constraints, it is possible to identify constraints that can be
fitted in parallel without interfering

1.1 Goals and Contributions

The high level goal of this thesis is to create a method of dynamically identifying
independent iteration steps in the recovery algorithm and use it to run them in
parallel on either multi-core CPUs or GPUs in a way that both reduces recovery
time and keeps reconstruction quality high.

This goal can be split up into the following sub-goals:

• Evaluate to what degree performing iteration steps in parallel can speed up
the computational recovery process in FPM while preserving the quality of
the reconstruction.

• Implement a Fresnel propagation based FPM recovery algorithm that can
run multiple iteration steps in parallel

• Evaluate the performance of this implementation on a multi-core CPU
• Evaluate the effect of relaxing the order of iteration steps and frequency of

pupil recovery on both processing time and recovery quality
• Discuss the implemented method in context of related methods such as pty-

chographic solvers and alternating projections methods, and evaluate its
broader applicability

The main contributions from this thesis are:

• A novel method to find and distribute independent iteration steps for iter-
ative FPM schemes.

• A task-parallel software implementation of iterative FPM that integrates this
method and runs the independent iteration steps in parallel on a multi-core
CPU.
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• A general method for identifying and exploiting task parallelism in FPM,
ptychography and other related algorithms

Our method for handling and distributing the iteration steps includes a de-
pendency graph and a priority queue structure to keep track of which iteration
steps are currently being worked on, which are locked by dependent iteration
steps, which are complete and which are available. In addition, an extra heur-
istic we’ve named "deviation tolerance" is built into the queue as an adjustable
parameter. This parameter lets us control how out of order sub-iterations in the
algorithm will be executed with respect to the single threaded baseline, an aspect
that is shown to be crucial both for the quality of the reconstruction, and the speed
of execution.

Our task-parallel solution then utilizes this priority queue to dynamically dis-
tribute independent work to the desired number of threads, while not significantly
reducing the quality of the output compared to a single threaded implementation.
The preservation of quality is achieved by adding a problem specific cost function
to the priority queue, tweaking the priority queue scheduler to work better in this
specific case.

We have also worked on a CUDA-based version that allows for GPU parallel-
isation, but due to time-constraints, this work has not been fully completed and
has not been included in the tests. However, data parallel acceleration on GPU
has been shown in the master thesis of Anders Treland[4] to be an efficient way
to reduce the running time of FPM reconstruction, and fully combining the task
parallel techniques from this thesis and data parallel acceleration looks like the
natural next step. As the task parallelism and data parallelism in FPM is inde-
pendent, it is possible to make use of both types of parallelism to further increase
performance and utilisation.

1.2 Thesis Outline

The rest of the thesis consists of the following chapters:

• Chapter 2: Background – Image system modeling – Description of the
image system model used, and how to use it to perform FPM recovery

• Chapter 3: Background – Parallel Computers – An introduction to paral-
lel computing, including CPU threading and CUDA

• Chapter 4: Related work – An overview of parallelisation and optimisation
efforts within Fourier ptychography and the related field of ptychography,
as well as other algorithms related on a more genreal level
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• Chapter 5: Implementation – Details and considerations around the im-
plementation in this thesis. This chapter highlights a number of practical
implementation aspects that usually are not described in the literature

• Chapter 6: Methodology – How the implementation is tested with multiple
parameters and data set to gain insights into to reconstruction quality and
speed

• Chapter 7: Results – Performance and reconstruction quality

• Chapter 8: Discussion – Evaluation of all experiments, and discussion of
the broader applicability of the priority queue method in the context of other
parallel phase recovery implementation.

• Chapter 9: Conclusions and future work
• Appendix A: Code listings

• Appendix B: Extra results

• Appendix C: Poster



Chapter 2

Background - Image system
modeling

The correctness of Fourier ptychographic microscopy (FPM) as an imaging tech-
nique is ensured through the correct use of a mathematical model of the image
system. In the development of this model, some assumptions and simplifications
are made to make FPM possible. There are a number of different image system
models and multiple formulations of the recovery problem, each suited to differ-
ent circumstances and with different properties. The choice of model and prob-
lem formulation constrains the implementation of the algorithm, and the physical
characteristics of the microscope. After choosing a model and problem formula-
tion, it is important to not violate these constraints in the implementation. On
the other hand, a chosen model also comes with its own opportunities for paralel-
lisation and efficient implementations. A somewhat thorough walk-through of the
image formation model is thus necessary to discuss the implementation of the al-
gorithm, and will be provided in this chapter

2.1 Image System Modelling

To be able to recombine the images produced by a Fourier ptychographic micro-
scope, the original object and the images taken must be related through a mathem-
atical model of image formation. To create a useful and reasonably simple model,
some assumptions and simplifications about the light source, optical system and
the propagation of light must be made. These assumptions and simplifications
gives the model properties that enables Fourier ptychography, but also impose
some restrictions on where and when it is valid. The development of this model
is sketched below, based on the description found in Introduction to Fourier Op-
tics[5] and in Fourier Ptychographic Imaging[6], as well as the extensions found
in the PhD thesis of Pavan Chandra Konda[1]

5
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At its most basic, the imaging model considers the microscope to be a math-
ematical system that takes some input function and returns some output function.
In the case of an imaging system, the input function is the object to be imaged il-
luminated by a plane wave and the output is the resulting image. The system is
assumed to be linear, meaning that any input function can be decomposed into
a sum of individual sub-functions where processing these functions individually
and recombining them yields the same result as processing the original full image
as a unit.

The two types of elementary functions relevant in Fourier ptychography are
impulse functions and complex exponentials. When decomposing the input into
impulses(through the use of delta functions and their sifting property) the ima-
ging system can be modelled, under certain assumptions, as the following 2D
convolution

i(x , y) = o(x , y)⊗ h(x , y) (2.1)

Here i(x , y) denotes the output image, o(x , y) the input object, h(x , y) the
impulse response function of the system, often referred to as the point spread
function(PSF), and ⊗ the 2D convolution operation(2.2).

o(x , y)⊗ h(x , y) =

∫∫ ∞

−∞
o(ξ,η) ∗ h(x − ξ, y −η)δξδη (2.2)

This model of image assumes that our light source is coherent and that the
system is invariant in space and time. Also, it considers the light field to be a field
of scalars rather than vectors, ignoring the polarisation of the light. Finally, it as-
sumes that the sample is thin. For thicker, three dimensional samples, different
models must be used[7]

2.1.1 Coherent illumination

The Fourier ptychographic imaging model assumes that the light illuminating the
sample behaves like a coherent light source. Coherence means that all the phases
of the light waves hitting the object vary in unison, and it allows us to model the
imaging system as a convolution of the objects amplitude and an amplitude trans-
fer function, as illustrated in equation (2.1)

In practice, any microscope illumination will be only partially coherent. This
partial coherence can both be in time and in space. Coherence in time shows how
well coherence is preserved at a single point at different times, while coherence
in space measures how well two points are correlated at a given point in time.
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When a partially coherent light source illuminates an object in an imaging
system, it can only be treated as coherent for points that are sufficiently close at
the object. The area for which a collection of points can be considered coherently
illuminated relative to each other is given by the area of coherence. The width of
the area of coherence at the sample for an illuminating LED can be expressed as
a function of λ, w and z. Here λ is the wavelength produced by the LED, w the
width of the LED and z the distance from the LED to the sample[1].

Ic = 1.22 ∗
λz
w

(2.3)

A different expression for the area of coherence is given in Schnells master
thesis[8] as equation (2.4), where Ac is the area of coherence, l is the distance
between the observation plane and the source, λ is the average wavelength radi-
ating from the source and As is the area of the emitting source. It is assumed that
the source and observation plane are parallel.

Ac ≈
l2λ

2

As
(2.4)

In their review article[3], Konda et al. provides a similar equation to (2.3), but
with the scaling constant 1.22 removed. Chung[9] gives the area of coherence by
formula (2.5), where a is the light source radius, λ the wavelength of the emitted
light and z the distance from LED to object.

L = 0.61
λz
a

(2.5)

All these formulas are based on the van Cittert-Zernike theorem, and yield
similar results.

2.1.2 Space and time invariance

In an idealised optical system the PSF does not vary with space or time. In practice,
while the time invariance property will hold, the space invariance will not. Luckily,
the PSF will in most cases change quite slowly with space, meaning that if one
looks at a limited area of the input field, the point spread function will stay mostly
constant[5].

2.1.3 Model of light propagation

The image system model given by equation (2.2) requires some impulse response
function h(x , y) or optical transfer function H(kx , ky) = F{h(x , y)}to be com-
plete. Light propagating in free space between two perpendicular planes separ-
ated by a distance z can be modeled in multiple ways. The three main methods
applied in Fourier ptychography is the angular spectrum method, Fresnel propaga-
tion and Fraunhofer propagation[8]. The methods differ in what approximations
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are made to derive them, and under which circumstances they are correct. Gen-
erally, a more approximate solution is faster to compute. The method used should
thus be chosen based on which of them is the cheapest that still yields accur-
ate results for a given working distance. All the models assume a monochromatic
source, meaning the illumination only contains one wavelength.

The angular spectrum method can be derived from the Rayleigh-Sommerfeld
equation without approximation and is thus a precise model of light propagation
in a scalar model. The fact that this method works equally well under all work-
ing distances z, means that it can be used in algorithms and models were lights
is propagated over very short distances, for instance in the propagation between
object slices in 3D Fourier ptychography[7]. It can be formulated as follows:

O2(x , y) = F−1{F{O1(x , y)} ∗HAS( fx , f y)} (2.6)

Here O2 is the plane propagated onto, O1 the source plane F{} the 2D Fourier
transform, ∗ pointwise multiplication and HAS the optical transfer function of free
space by the angular spectrum method.

HAS( fx , f y) = ex p(ikz
Æ

1− (λ fx)2 − (λ fx)
2) (2.7)

In the above expression, i is the imaginary unit, z distance between the planes
and k the wavenumber (spatial frequency) of the light.

When the distance between the planes z is large enough to satisfy the in-
equality in (2.8), it is possible to use Fresnel propagation to model the free space
propagation without significant loss in precision. To do this, the optical transfer
function is set to be the function shown in equation (2.9). The same propagation
can also be written using equation (2.10). Here, the constant phase factor of eikz

iλz
is ignored. ξ and η are the coordinates in the source plane, while x and y are the
coordinates in the target plane.

z3�
π

4λ
[(x − ξ)2 + (y −η)2]max (2.8)

HF res( fx , f y) = ex p(ikz) ∗ ex p(iπλz( f 2
x + f 2

y )) (2.9)
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O2(x , y) = ex p(i
k
2z
(x2 + y2)) ∗ F{O1(ξ,η) ∗ ex p(i

k
2z
(ξ2 +η2))} (2.10)

For even larger z, where the criterion in (2.11) is satisfied, computation time
can be reduced further by using Fraunhofer propagation without significantly re-
ducing precision. The Fraunhofer propagated input plane is proportional to its
own Fourier transform. In implementations, the proportionality constant is often
ignored[6]. This turns the propagation into a simple Fourier transform.

z�
k
2
[ξ2 +η2]max (2.11)

Propagation distances where Fraunhofer propagation is a correct model are
said to be far field, while propagation distances where Fresnel propagation is
correct are called near field

2.1.4 Resolution limit

The resolution limit of an optical system in absence of any image system aberra-
tions can be defined by the Rayleigh resolution limit given by formula (2.12)[8]

δr =
0.61λ
NAob j

(2.12)

NAob j is the numerical aperture (NA) of the imaging system, λ the wavelength
of the illuminating light and δr is the minimum distance between two features in
the object that can be distinguished between in the output image. If the two fea-
tures are any closer, they become indistinguishable in the output image. In other
words, δr defines the resolution of the image.

The resolution is thus determined by illumination and NA. NA is defined to
be the refractive index of the medium n multiplied by the sine of angle between
the point where the optical axis and object intersect, and the edge of the objective
as shown in Figure (2.1). As n ≈ 1 in air, the formula simplifies to NA = sin(θ )
when the sample is imaged in air.
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Figure 2.1: The numerical aperture of a microscope is defined to be refractive
index n multiplied with the angle between the object at the optical axis and the
edge of the lens

2.1.5 Space-Bandwidth Product

In general, increasing the NA of an objective lens yields an increase in the resol-
ution, but decreases the field of view (FoV)[10]. The total amount of information
transmitted through the imaging system remains constant. A quantitative meas-
ure of this information throughput is the space-bandwidth product (SPB), which
can be expressed as the product of image size and bandwidth[11]. In the case of
a 2D image, with dimensions X and Y in image space and Fx and Fy in frequency
space, the SBP can be written using the following equation.

SBP = X Y Fx Fy (2.13)

2.2 Fourier Ptychography

Fourier ptychography is a super-resolution technique that uses multiple images
of an object taken with illumination from different angles to construct an image
with a higher space-bandwidth product than the optical system would normally
permit. To construct the high-resolution image, the information from the input
images must be merged to produce both the phase and the amplitude of the com-
plex object. However, image sensors can only record the intensity of incoming
light. To reconstruct the phase of the imaged object, a phase recovery method
must be used. Different formulations of this problem along with different solvers
exist in the literature[12, 13].
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2.2.1 The Optimisation Problem

All FPM algorithms takes as inputs a number of images representing different il-
lumination angles and an initial guess. The goal is to use the input images to
reconstruct a high resolution image of the object. To define a method, two aspects
must be determined: how to measure the error of the current estimate with re-
spect to the imaging model, and how to numerically reduce this error. It has been
shown that minimising the error of the image estimate amplitude is a robust ap-
proach in FPM[12]

The amplitude error is defined to be the difference between the sum of squares
of the measured value and the value predicted by the current object estimate when
is applied to the forward image model along with the correct Fourier shifts(2.19).
Mathematically this can be formulated as the following equation[12].

Ea(O(u)) =
∑

l

∑

r

|
Æ

Il(r)− |F−1{P(u)O(u− ul)}||2 (2.14)

Here O is the Fourier transform of the high resolution object transmittance
function, P the pupil function and Il the measured intensity from the current
low-resolution image indexed by l. r is a coordinate in image space. A small dif-
ference between the measurements and the model yields a small sum in(2.14).
Minimising this equation will thus lead to an optimal reconstruction of the high-
resolution image.

The approach originally used in the context of Fourier ptychographic micro-
scopy is taken from the related field of ptychography and is based on the method
of alternating projections[2]. In this technique, the working estimate is transferred
between the Fourier domain and the image domain in an iterative fashion. Each
time the domain is changed, a constraint is applied to project the current estim-
ate onto the space of legal solutions in the current domain. an illustration of the
general procedure is given in Figure (2.2)
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Figure 2.2: The general procedure of an the alternating projections algorithm

The Gerchberg-Saxton Algorithm[14] is an example of an alternating projec-
tions algorithm. Here the projection step in both domains consist of enforcing
known constraints. When adapted for Fourier Ptychography by Zheng in 2013[2],
the update formula in image space was given by enforcing the measured intensity
while keeping the estimated phase (2.15) and the update in Fourier space was
performed by reverse transforming the new image estimate, and overwriting the
old estimate in Fourier space.

Iupd = |Imeasured |
Iest

|Iest |
(2.15)

A problem with this approach is that the method of alternating projections only
guarantees an optimum if the sets involved are convex. This property does not
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hold in the FPM amplitude optimisation problem. As a consequence, the method
of alternating projections can only guarantee convergence towards a local op-
timum[15].

A more robust but also more computationally expensive method is the Gauss-
Newton method. This method replaces the update step in Fourier space, and has
stronger convergence guarantees than Gerchberg-Saxton[12]. It also permits sim-
ultaneous updates of the object and pupil function. Konda[1] implements this up-
date step as the following equation (2.16). Here the second derivative (the Hes-
sian) is not calculated exactly, but instead estimated. This is therefore an example
of a Quasi-Newton method.

Oupd(k− ki) = O(k− ki) +α
|P|
|P|max

P̃(Oi_upd(k− ki)−Oi(k− ki))

|P|2 +δ
(2.16)

2.2.2 Free Space Propagation Model

During the iterative recovery process used in Fourier ptychography, the current
estimate is transferred between different planes. In the Fraunhofer propagation
model, the light field is transferred between the object plane, the Fourier plane,
and the detector plane. In Fresnel propagation, the light field is transferred between
the object plane, the lens plane, and the detector plane.

In the Fraunhofer propagation based model, the lens is assumed to be posi-
tioned in the Fourier plane. The Fourier plane contains the far-field diffraction pat-
tern of the object, which is the Fourier transform of the object scaled by some pro-
portionality constant. The aperture of the lens functions as a low pass filter, only
letting the central low frequency parts of the object Fourier transform through.
The radius of this aperture in the Fourier plane is given by the product of the
numerical aperture of the lens, and the wavenumber (spatial frequency) of the il-
lumination in radians[6], as show in equation (2.17). The refraction through the
lens and subsequent propagation to the detective plane is then modelled as an in-
verse Fourier transform of the low pass filtered diffraction pattern. An illustration
of this process is provided in 2.3

radiusaper ture = NA∗
2π
λ

(2.17)
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Figure 2.3: The three planes of the imaging system in a Fraunhofer model, and
the propagations between them

In this Figure, propagation (1) and (3) are Fourier transforms, and propaga-
tion (2) and (4) inverse Fourier transforms. Following Zheng[2], all proportion-
ality constants are ignored.

When using Fresnel propagation, the model changes in two main ways. First,
the central plane is renamed to the lens plane, as it now represents the physical
plane at the lens. The second is that two complex multiplications are added to the
propagatation step. The first one before the Fourier transform, the second after.
These complex multiplications account for changing phase across the wavefront,
making it curved. This gives the model better accuracy when propagating over
short distances.

Under Fresnel propagation, the pixel size changes between planes. The size
change is given by equation (2.18), where λ is the wavelength of the light, z the
distance between the planes and W the width of the source plane[1]. In an actual
implementation however, most of the extra complex factors cancel each other, and
the resulting method only differs in the calculation of pupil shift and the propaga-
tion between object and lens plane, as Konda shows[1].
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psizenew =
λz
W

(2.18)

The angular spectrum method is used in 3D FPM, to propagate the light field
between the slices of the 3D sample, as the distances between these are too
short for Fresnel propagation. However, in 2D FPM, the distances between the
planes are long enough that Fresnel propagation provides precise results at a
lower computational cost. Also, since the pixel size is constant between planes
when propagating with the angular spectrum method, the fact that the lens plane
in FPM is much larger than the object plane becomes a problem. To sample the
full aperture of the lens plane, an equally large area of the object plane must be
samples, further increasing computational costs. With Fresnel propagation how-
ever, the pixel size changes with the planes in a way that ensures that if the entire
object is sampled with pixels at the object plane, the entire propagated object will
be sampled at the lens plane, as discussed in Kondas PhD thesis[1]

Angled Illumination

The intensity image formation process for a given image can be modelled using
Fraunhofer propagation as the following forward model[1].

I(x , y) = |F−1{P(kx , ky) ∗O(kx , ky)}|2 (2.19)

Here, I(x , y) denotes the image, F−1 the inverse Fourier transform operator,
O(kx , ky) the object Fourier transform, P(kx , ky) the pupil function/optical trans-
fer function of the imaging system and |.| the pointwise modulus (absolute value)
of the complex image.

The pupil function acts as a low pass filter. This means that only a portion of
the frequency spectrum of the object can pass through the optical system. Chan-
ging the angle of illumination shifts the spectrum, changing what part of it is let
through. Mathematically this shift is performed by multiplying the object field
with a complex exponential representing the incoming plane wave. The shift the-
orem(2.20), shows how this change in illumination angle leads to a shift in the
Fourier spectrum of the object. For a thin lens, and with light propagation modeled
according to Fraunhofer propagation, the equation (2.20) holds for all angles.

F{o(x , y) ∗ eiax+i b y}= O(kx − a, ky − b) (2.20)
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However, if the light field is propagated between planes according to Fresnel
propagation, a different equation relate illumination angle and pupil shift more
precisely. Konda[1] formulates it as (2.21).

Saper ture =
PFoV − Lshi f t

Ldist
u+ PFoV (2.21)

Here Saper ture is the shift of the pupil at the lens plane, PFoV the image seg-
ment offset, Lshi f t the offset of the currently lit LED from the central LED, Ldist
the distance between the LED matrix and the object plane, and u the distance
between the object and lens plane. In the above formula, the unit used is meters.
To translate into pixels, Saper ture must be divided by the pixel size in the real space
lens plane. This pixel size is then valid in both the real space lens plane, and the
frequency space at the lens plane.
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Figure 2.4: An image with a selected segment, and the offset between segment
center and image center

Pupil Recovery

The pupil function of the imaging system is also recoverable with a Gauss-Newton
approach. The formula for this is shown in equation (2.22). The ideal pupil is
represented by a function that is zero outside of the lens aperture and one within,
and is used as an initial guess.

Pupd = P +α
|O|
|O|max

Õ(Oi_upd(k− ki)−Oi(k− ki))

|O|2 +δ
(2.22)

2.2.3 Noise Reduction

To improve the reconstruction quality, several implementations of FPM perform
some extra pre-processing steps on the input images. It is common to perform a
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threshold-based noise reduction step on the input images[16]. Several advanced
noise-reduction schemes have been proposed that try to minimise the amount of
data lost in the denoising process[17, 18].

2.2.4 Reconstruction Process

The reconstruction process iterates over all images, applying equation (2.15) at
the detector plane and (2.16) and equation (2.22) at the lens plane. Fresnel
propagation is used to propagate the fields. The pupil shifts ensures that only the
section of the lens plane corresponding to the pupil size and illumination angle
is updated. It has been shown that the order of iteration should be close to de-
creasing image intensity for the best convergence[1]. Once information from all
illumination angles have been incorporated into the lens plane estimate, the full
iteration process is repeated until acceptable convergence.



Chapter 3

Background - Parallel computers

The second aspect important to the implementation of the recovery algorithm is
the underlying implementation platform. In this work both multi core CPUs and
GPUs will be examined. This chapter is a brief discussion the properties and prin-
ciples of programming on these devices, and the systems incorporating them

3.1 History of parallel computers

In the first several decades of microprocessor development, the number of tran-
sistors on single integrated circuit increased exponentially, doubling every second
year. This trend was predicted by Moore in 1965[19], and has been dubbed "Moores
law". Borkar[20] identifies three main driving factors for this development. The
first is the fact that when transistor size was reduced, such that more transistors
can fit on the same area, the supply voltage could be scaled down enough that the
power required to drive the chip remained constant. This is called Dennard scal-
ing. The second is the development of more advanced microarcitectures, and the
third is the use of caches to reduce the delay of memory access. However, in the
90s, as transistors got smaller and smaller, Dennard scaling stopped applying[21].
This meant that an exponential increase in transistors would from there on would
lead to an exponential increase in power consumption.

The development of traditional single-core processors thus hit a power wall.
Increasing performance through smaller transistors and higher clock frequencies
like before quickly lead to unacceptable levels of power consumption. It was still
possible to increase the number of transistors, but not to run them all at full fre-
quency at the same time. A lot of the chip at any given time would be dark sil-
icon[22]. This development lead to two major shifts in hardware development:
from single-core to multi-core, and from homogeneous general processing units
into heterogeneous, more specialised units.

19
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This shift was dramatic not only for hardware manufacturers, but also soft-
ware developers. To fully utilise a heterogeneous and parallel system, algorithms
and code must be written in a different way than for a single-core machine[23].
Parallelism inherent in computational problems must be identified and exploited
by multiple, often heterogeneous compute units. The reward, however, is increased
performance at a lower time and energy budget.

3.2 Terminology

In this thesis, the terms processing unit, program, and process is defined as fol-
lows: A processing unit is a computer that can execute instructions. A collection
of instructions is called a program. When a program is scheduled by the oper-
ating system to run, it is said to be executing. A program in execution is called
a process. A process can be ready for execution, running on a processing unit,
or waiting for resources. The terms thread and process are used interchangeably
unless otherwise noted.

3.3 Concurrency and parallelism

A concurrent computer system is a system where multiple processes can be execut-
ing simultaneously. Even a single processor can be used for concurrent execution
by sharing processor time between all the current processes. However, since only
one process is actually being run on a processing unit at the processor at any given
point in time, there is no actual parallelism. For there to be parallelism, there must
be multiple physical processing units running different programs at the same point
in time.

Concurrency provides performance benefits when processes have to wait for
external resources such as different computing units or memory. As long as there
is another process ready to be run anytime the current process has to wait, the
shared processing unit can switch to it and avoid a situation where the processor
sits idle. This increases utilisation and throughput. However, if the executing pro-
cesses do not spend a lot of time waiting for resources, concurrency by itself does
not increase throughput by much.

The performance increase offered by concurrency is limited by the amount of
waiting time each process needs. By adding more processing units to the computer
system, it is possible to increase the throughput without having to wait for the cur-
rently running process(es). This, however, only works if there are processes ready
to run. If all non-running processes are waiting for external resources, adding ex-
tra processing units will not help. Additional processors increase performance if
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the lack of processing power is the bottleneck at a given moment, but not neces-
sarily otherwise.

3.4 Task parallelism

Task parallelism is possible for problems where multiple streams of instructions
(threads) can be executed independently. A task parallel workload maps well to a
collection of independent processing units, as each unit can receive its own task to
be performed. Sometimes the tasks require coordination. In this case some sort of
communication mechanism must exist to allow the threads to synchronise. A web
server is an example of a task parallel system, as the connections to the clients are
independent and can be processed independently.

3.5 Data parallelism

Data parallel problems are problems where the same operation is performed across
a large number of independent data items. These sorts of computations are effi-
ciently mapped to sets of processing units that can perform the same operation
on multiple data items at once. As all of these processors are executing the same
operation, they can share control logic. This simplifies the design and makes them
more energy efficient. Vector addition is an example of a data parallel operation,
as it consists of a large number of identical and independent operations across
different data.

3.6 Multiprocessor memory layout

Modern multiprocessor systems can be split into two types: shared memory sys-
tems and distributed memory systems. In a shared memory system, the different
processing units work on the same memory, while in a distributed memory sys-
tem each processing unit has its own private memory. A modern multiprocessor
CPU by itself is an example of a shared memory system, with multiple cores hav-
ing equal access to the same main memory. A heterogeneous computing platform
consisting of a CPU and a GPU on the other hand is an example of a distributed
memory system, with both the GPU and CPU having its own private memory.

Whether a system uses shared memory or distributed memory has consequences
for how different processes and threads in the system cooperate. Communication
between processes on distributed processing units must happen over some sort
of network or connecting bus. This introduces topology dependent latencies and
memory bandwidth limitations when transferring data between the local memor-
ies. A goal in in distributed processing is therefore to minimise memory movement
between the different processing units.
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3.7 Concurrent Programming

To program concurrent programs, the underlying system must provide access to
programming abstractions such as threads, locks and other synchronisation prim-
itives, and a way to start, stop and wait for threads. On more specialised machines
like GPUs, domain specific programming abstractions like thread blocks and grids
are used. In this work, threading on the CPU is programmed with the Linux thread
library pthreads, while concurrent programming on the GPU is programmed with
CUDA.

3.7.1 Pthreads

Pthreads is an interface for thread programming available on the Linux operating
system. The interface exposes functions for creating, destroying and waiting for
threads. In addition, it contains synchronisation primitives such as as mutexes,
semaphores and condition variables[24].

3.7.2 Strong and weak scaling

This sub-section is in large part from the pre-project.

When given a program where some fraction p of the execution time can be
arbitrarily parallelised, while the other fraction 1 − p must be run serially, the
amount of possible speedup S for a given amount of input data run on N pro-
cessors is given by equation 3.1

S =
1

(1− p) + p
N

(3.1)

This equation is known as Amdahl’s law, and was presented in[25]. By letting
the number of processors N approach infinity, it is clear that the given speedup of a
problem with some fixed input size is proportional 1

1−p , that is, the serial fraction.
If for instance 25% of a program is strictly serial, then the maximum attainable
speedup is 1

1−0.75 =
1

0.25 = 4.

However, this analysis assumes that the size of the input data remains con-
stant. Gustafson claims in [26] that this measure is misleading. Rather than as-
sume constant data size, Gustafson argues that it is more realistic to assume con-
stant run time. An outline of the argument for this is can be seen by looking at an
example. Let Ri be some run time on a computer with Ni cores for a data set of
size Di . If the number of cores are doubled, the running time of the problem might
not be reduced by much for the same set Di of data. However, many problems in
scientific computing have the property that if you double both Di and Ni , then the
total running time stays constant. This means that problem sizes can be effectively
scaled with the number of processors, even though the run time of a fixed problem
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might not be. Gustafson formulates this result in equation 3.2, where s denotes
the serial portion 1− p.

Sscaled = s+ pN (3.2)

If the running time for a program with input of constant size decreases lin-
early with the number of processors, as modelled by Amdahl’s law, it is said to
exhibit strong scaling. If instead the running time can remain constant while the
number of processors and input size increases, as Gustafson describes, it exhibits
weak scaling.

3.7.3 Load balancing

When distributing computation across different processing units, it is important
for performance to distribute the work such that all involved processing units need
an equal amount of time to complete their share of work. If for instance four equal
CPU cores are assigned some amount of work, but the share given to the first core
is much larger than the share given to the others, the first core must work for much
longer than three three others, which end up finishing their work and then wait
for the first. If instead all the CPU cores are given the same amount of work, no
core has to wait for the others, and the total execution time is reduced, as shown
in Figure3.1.

Figure 3.1: The execution time of an unevenly vs an evenly distributed workload
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SIMD-processors

From pre-project

A data parallel algorithm often contains cases of the same operation being
performed on multiple data elements. This makes it easy to map data parallel
workloads onto processors that support performing the same operation on mul-
tiple data elements. These Single Instruction, Multiple Data (SIMD) processors
have operations that takes vectors of data, and perform element wise operations
on them. The SIMD processor accomplishes this by using collections of single data
processors, where the input vector elements each get assigned as input to a single
processor. A single processor in this vector configuration is referred to as a SIMD
processor lane. All the processors in a SIMD core perform the same instruction at
a given cycle. As only a single instruction is needed for multiple data elements,
this approach saves power and bandwidth compared to a processor that fetches
an instruction for every data element[23]. A common extension of this architec-
ture is to allow a given single data processor to opt out of the instruction currently
being performed on the SIMD processor.

3.8 General programming on GPUs

This section is large part from the pre-project

As the performance of single core computers have stagnated, further gains in
compute power must come from parallel and specialised hardware[27][23]. One
of the new types of hardware that have emerged over the last decade as an at-
tractive computation platform is the GPU. GPUs use a large number of individually
weak processors to create a cost- and power efficient computation unit capable of
high throughput[28]. Overall, the microarchitecture of a GPU differs significantly
from the microarchitecture found in CPUs. This means that programmers must
approach GPUs in a different way than CPUs, and be mindful of its strengths and
weaknesses to use it effectively. The terminology used to describe the concepts
and microarchitectural components of a GPU varies between vendors. In this sec-
tion, vendor independent descriptive names are used (inspired by the approach
in[23]), unless otherwise noted.

3.8.1 Overall Architecture of a GPU

A single core in a GPU runs at a slower frequency than a core in a CPU, but since
they are simpler and less power hungry it is possible to combine many more on the
same chip. The cores, are organised into multiprocessors that behaves like SIMD-
processors, meaning that all cores in a multiprocessor must perform the same
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operation. As is common, the GPU SIMD processor also allows cores in the multi-
processor to opt out of a SIMD-instruction. What makes the GPU model different
is that considers a sequence of single data instructions performed on a single lane
as its own logical thread. This abstraction turns the GPU into a processor more
similar to the general data parallel processor described in[29], especially since
each of these virtual threads each get their own private register memory. In mod-
ern GPUs, the SIMD processors are often multi-threaded, allowing several SIMD
threads to execute in parallel. To organise the SIMD threads, groups of SIMD
threads are assigned to a single SIMD processor.

3.8.2 The GPU memory model

GPUs have a different memory organisation than CPUs[30]. Where CPUs handle
the gap in processor and memory latency primarily through transparent, hardware
controlled caches, GPUs have several levels of programmer controllable cache to
fill this purpose. GPUs usually function as co-processors, meaning that their op-
eration has to be orchestrated from the CPU. Any memory a program wants to
modify on the GPU must be especially copied there over to the GPU via the bus
(usually PCIe) connecting the CPU, the GPU and the main memory, and the oper-
ation must be initiated by the CPU. This operation has high latency, and demands
significant bandwidth from the bus. To write an efficient GPU program, the num-
ber of times this operation is performed should be minimised, as the overhead
incurred severely reduces the overall gain of using the GPU. The ideal situation
is therefore to be able to fit the entire working set of an algorithm on the GPU.
The following sections discuss the memory layout in NVIDIA GPUs, but the overall
organisation is similar to AMD GPUs, as can be seen in for instance[31].

In addition to the programmer controllable caches, a GPU can hide latency by
having enough SIMD threads scheduled that whenever one SIMD thread has to
wait for memory, another SIMD thread that is ready to run can be swapped in.

Global Memory

The largest memory on the GPU is called global memory in the NVIDIA termin-
ology. This memory comes in the form of DRAM soldered on the GPU itself, and
functions as the main memory of the GPU. It is large but, compared to the other
memories on the GPU, also quite slow as it is placed of chip. It is therefore usually
cached[23]. When data is initially moved to the GPU, it is put in this memory. To
minimise the latency of fetching data from the global memory, the GPU tries to
coalesce the memory requests, by combining several requests to adjacent memory.
To be able to do this, the memory requests must satisfy certain requirements in
memory alignment, type size and relative location in memory. The specifics of
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these requirements vary between GPUs.

The reason coalescing is effective is the way DRAM is organised. When a
memory request is made to a bank of DRAM, the address specifies both a row
and a column. The row is a contiguous block of memory, and the column specifies
what part of this memory block should be fetched. As soon as a row is requested, it
is put in a buffer, meaning that successive accesses to this row can query the buffer
rather than the full bank, decreasing latency. To make the most of this fact, mod-
ern DRAM supports burst mode, where a memory request to the row can return as
much of the row buffer as the bus can handle every cycle. This makes larger, con-
tiguous accesses to DRAM much more efficient than spread-out accesses[23][p.
87], and motivates memory coalescing as an optimisation technique.

The fact that global memory is cached means that the usual cache aware op-
timisations, such as blocking for matrix multiplication, still apply for accesses to
global memory.

Local memory

Called shared memory in NVIDIA terminology, this memory is local to each SIMD
processor. As such, it is available to all the threads in a SIMD thread block that
is assigned to the SIMD processor. Each thread block is allotted its own share
of local memory however, so different thread blocks running on the same SIMD
processor do not share memory. Local memory is placed on-chip, and has low
latency and bandwidth. However, it is rather small. Since it it shared between
all SIMD threads in a thread block, it can be used for synchronisation between
threads and as a common work memory.

Register Memory and Private Memory

Private to each logical thread is a set of registers. Similar to the way local memory
is shared between all the SIMD threads assigned to a SIMD processor, the register
memory is shared between all logical threads across all SIMD threads assigned
to a SIMD processor. This means that the more logical threads a programmer
assigns to a SIMD processor, the less register memory each logical thread will
receive. The register memory is fast and on-chip. If a logical thread uses more
memory than it is assigned, it is allotted space in a section of off-chip memory
called private memory. As private memory is off-chip, it has higher access latency.
This means that keeping logical thread memory within the register memory limit
is an important optimisation goal. As the register memory is shared across all
logical threads in a thread block, reducing the number of logical threads per block
to increase the amount of memory each is given can a necessary optimisation.
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3.8.3 CUDA

Concurrent programs are, in general, much harder to program than sequential
programs, necessitating effective programming models and abstractions[32] To
make programming their GPUs reasonable, NVIDIAs provides the GPU program-
ming platform CUDA. CUDA is available to programmers as a software abstraction
layer that gives access to the GPU as a general processing unit. Any general pro-
gramming on an NVIDIA GPU must use this platform. CUDA provides most of the
abstractions discussed in the previous sections, but by different names. A quick
naming reference is given in Table 3.1

Table 3.1: CUDA terms

Descriptive term CUDA term
Multithreaded SIMD processor Streaming Multiprocessor(SM)
SIMD thread Warp
Logical thread CUDA thread
GPU memory Global memory
SIMD processor local memory Shared memory
Logical thread private memory Local memory
Logial thread register memory Thread processor register memory

Threads and Warps

CUDA calls their SIMD-threads warps, and each warp consists of some number of
logical GPU threads, called CUDA threads. The number of CUDA threads in a warp
is commonly 32, but can vary between architectures. The CUDA threads within a
given warp can opt out of the current instruction, essentially allowing each CUDA
thread to behave as an independent thread. To be able to differentiate between
threads during code execution, each CUDA thread is assigned its own ID. The GPU
uses the thread IDs to group the threads into warps in a predictable way, where
each warp consists of consecutive thread IDs. In Volta and later architectures, each
CUDA thread has its own program counter(PC), and can be run independent of
what warp it belongs to. This is different from earlier architectures, where all
threads in a warp were guaranteed to be run on a SM simultaneously. To guarantee
synchronous warp execution, the barrier __synchwarp() must be used

Thread blocks and the grid

A thread block is a collection of CUDA threads specified by the programmer. The
CUDA platform guarantees that all the CUDA threads in a thread block will be
executed on the same Streaming Multiprocessor. This allows the CUDA threads of
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a single thread block to use the shared memory for communication and coordin-
ation. The grid is the structure organising the thread blocks. Within a grid, each
thread block has its own unique ID, in one, two or three dimensions.
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Related Work

Since the introduction of the Fourier ptychographic technique in 2013, much ef-
fort has been made to improve image acquisition rates and quality through vari-
ous experimental setups. In addition, several formulations of the phase recovery
optimization problem have been proposed, leading to different iterative recov-
ery methods. In the related field of ptychography, several parallel and GPU-based
algorithms and frameworks have been proposed

4.1 Denoising

During the image acquisition process in FPM, the images pick up noise from vari-
ous sources. The background noise of a given input image can be estimated by
taking an average of the image intensity and check if it is below a pre-defined
threshold. If it is below the threshold, this average is assumed to be background
illumination and subtracted from the image[16]. This method however is not able
to distinguish signal from noise, meaning that details from the imaged object are
removed together with the noise when the background is subtracted[17].

To improve the denoising process such that it removes as much noise and as
little signal as possible, an adaptive denoising scheme is proposed in Fan[17]. This
scheme works by adding a noise factor to the projection step in the image plane,
and estimates noise pixel by pixel for each iteration step. Pixels that are assumed
to be noise can be then be ignored in the projection.

Another recent approach is a denoising step that, like the threshold denoising,
happens as a pre-processing step on the input images. It does, however, not use an
uniform average estimate as a threshold on the input images. Instead, the image
is decomposed into different details by wavelet decomposition. Then a threshold
is applied to each of the detail images, before the detail images are reverse trans-
formed back to an intensity image[18].

29



30 Øystein Krogstie@NTNU: Dynamic task parallel FPM

4.2 Recovery algorithms

In addition to the iterative Gerchberg-Saxton-Fienup and iterative Quasi New-
ton methods for phase recovery, other methods are also used in the literature.
Yeh[12] reviews a number of phase recovery algorithms both iterative and single-
step global based on multiple formulations of the FPM optimisation problem. They
conclude that the iterative Quasi-Newton method in general is the most robust and
practical.

4.2.1 Parallel Ptychography

Within the field of Ptychography, where a recovery problem similar to FPM must
be solved, certain parallel implementations make use of different recovery al-
gorithms more suited to parallelisation. The Difference Map(DM) algorithm is
parallel and has been successfully implemented for ptychography[33]. Dong[34]
presents a parallel implementation at the sub-iteration level using the difference
map algorithm where the sub-iterations are divided into contiguous groups that
are each assigned its own GPU. However, a disadvantage of this method is the
increased memory footprint[35], and the object update itself is not parallelised.

The extended Ptychographic Engine(ePIE) is an iterative method for solving
the phase recovery problem in Ptychography. However, by dividing the workload
into disjoint image areas, Nashed et.al[35] have created a parallel implementa-
tion where each disjoint image area is given its own GPU for processing. They also
present techniques to combine the disjoint image areas in a way that removes ar-
tifacts. Nashed also presents a more communication heavy parallel version, where
neighbouring image areas exchange edge information to reduce the edge artifacts
during computation. Both these approaches might be used in FPM, but instead of
partitioning the image, the Fourier spectrum of the object is partitioned. A sim-
ilar approach called SHARP also exists[36], with different methods to handle to
overlapping regions.

4.2.2 Parallel Fourier Ptychography

Due to the partial coherence of the illumination in FPM, an image of a large
sample has to be processed in sub-images. These sub-images can be processed
independently. Within the processing of these sub-images, it is possible to lever-
age the inherent data parallelism to reduce running times by using for instance
GPUs[4]. Sub-iteration task parallelism like the schemes shown in[35] seem much
more rare. Some projects using parallel image acquisition with multiple cameras
combine it with parallel writing and partitioning into sub-images[37]. Xiu[38]
presents a parallel algorithm where the different sub iterations are grouped into
overlapping partitions that are processed independently. The claim is that the in-
dividual images produced by these can be more easily be combined than a tradi-
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tional object plane partitioning, where edge artifacts between the segmenst are a
known problem. The article does not detail how this is done however.

4.3 Multiplexed Image Acquisition

It is possible to reduce the number of the input images by lighting multiple LEDs
at once[16]. This reduces acquisition time by a factor equal to the number of lit
LEDs per image. Each iteration step in the algorithm is extended to incorporate all
the information from the lit LEDs at once. This does not significantly reduce the
number of computations however, as the information from each illumination angle
still has to be applied one by one. This version of the algorithm thus primarily
reduces image acquisition time, not reconstruction computation time.

4.4 Segment tiling

The coherence requirement in FPM reconstruction means that large images must
be subdivided into segment small enough for the pixels to be illuminated with
mutually coherent illumination. These segment must necessarily be processed in-
dependently, and are thus a clear and often exploited target for task parallelism.
However, due to the periodic nature of the discrete Fourier transform, the hard
cutoff at the segment edges leads to edge artifacts. There are techniques to even
out the edge artifacts and average the intensity, such as reconstructing segments
with some overlap and then average like Treland[4], or using alpha blending as in
Zheng[2]. Zheng especially uses quite small segments of 150px by 150px, and a
relatively large overlap of 50px between each segment. Treland on the other hand
uses segments of up to 2048px by 2048px in timing experiments, but 512px by
512px in actual reconstruction.

4.5 Other applications of alternate projections

An example of an alternating projections using the DM method in a different non-
convex domain is the DM based implementation of a Sudoku solver presented by
Schaad[39]. This implementation enforces the constraints of sudoku by projecting
onto the space of legal columns, legal rows and legal squares. As long as two con-
straint enforcing steps do not overlap in the working estimate, they exhibit some
of the same basic behaviour as the iteration steps in FPM and ptychography phase
retrieval. The paper also describes a solver for N-queens that works by the same
principle. Despite the non-convexity of the sets involved in both these problems,
convergence is demonstrated.
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Implementation

A full implementation of a Fourier ptychographic recovery algorithm usually con-
sists of a pre-processing step and an iterative recovery step. The implementations
used in this thesis primarily focus on speeding up the iterative recovery step. All
implementations use a Fresnel based light propagation model. Implementations
are partitioned into single-threaded and multi-threaded. This distinction refers to
the amount of processor threads working concurrently. A single-threaded applic-
ation using one GPU is a single-threaded application by this definition.

The algorithm consists of iterations that in turn consist of iteration steps.
Each iteration contains a one iteration step for every input image. Both full iter-
ations and iteration steps are traditionally run in sequence, but with some relax-
ations to the pupil recovery scheme, it is possible to run certain iteration steps
in parallel while staying close to sequentially consistent with the baseline imple-
mentation. A high-level overview of the algorithm is seen in Figure 5.1
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Figure 5.1: Overview of the full algorithm

5.1 Matlab baseline

The implementation used as a starting point and baseline in this thesis is de-
veloped by Professor Muhammad Nadeem Akram at the Universisty of South-
Eastern Norway, and is based on the Fresnel propagation algorithm described in
Kondas PhD thesis[1]. It first performs denoising and intensity adjustment of the
input images, then it applies the algorithm to both recover the pupil of the ima-
ging system and the input object. The pupil recovery uses the EPRY method[40]
and is based on similar principles as the object recovery. The algorithm baseline
is implemented in Matlab. It uses a single processor thread. The built in Matlab
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functions used exploits some data parallelism.

5.2 Baseline in c++

To more freely be able to work with different frameworks and hardware, the first
implementation step was to create a c++-version that uses the same algorithm as
the baseline. This required setting up a framework for buffer manipulation, simple
image loading and writing, noise removal, complex arithmetic, and application of
the 2D Fourier transform.

5.2.1 Image load and store

All implementations in this thesis assume 16-bit grayscale tif images, and loads
them into buffers of data type double. The loading is performed by wrapping
the imread function provided by OpenCV, and transferring the images from the
OpenCV matrix data type to linear arrays of double precision floating point num-
bers (double). These arrays represent 2D buffers stored row by row (row major
order).

5.2.2 Configuration by file

To more easily change algorithm and microscope parameters and design test suites
for experiments, the executable is built to accept two configuration files as launch
parameters. The first file specifies the microscope settings such as physical dimen-
sions and the number and position of lit LEDs. The second file specifies algorithm
settings such as input and output folders, upscale factor, segment location and
other constants. The configuration file grammar is simple: each line is either a
key-value pair, empty or a comment. Comment lines start with a ’#’, key-value
pairs are written with a ’:’ as separator and whitespace other than newline is ig-
nored. Invalid lines are ignored with a warning. Parameters not specified by the
provided configuration files default to hard-coded values.

5.2.3 Noise removal

Following the baseline implementation, the noise removal (denoising) is imple-
mented by a thresholding scheme. The goal of this scheme is to remove back-
ground illumination from the images. Background illumination is estimated for
each image based on the average value in the 100 by 100 pixel square at the top
left and bottom right corner. The estimated average value is stored for all images.
When selecting segments from the images, the estimated background value for
the image the segment is copied from is subtracted from all pixels in the segment,
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if it is below the threshold of 1600. If the average is above 1600, it is assumed to
be signal and is not removed.

5.2.4 Complex numbers

Complex numbers are stored in arrays of type double, with components packed
as shown in Figure 5.2. This is the format several libraries, such as CUDA and GSL
expect. Array access is simplified through macros that compute the actual array
index for real and imaginary components based on the logical address of the com-
plex number. The complex values not wrapped in their own data type to allow for
full control over data layout and implementation, and keep the representation of
all buffer object explicit. This does, however, require the programmer to remem-
ber which buffers contain complex numbers and which buffers contain only reals.
In future implementation, using types and structs to wrap the buffers and make
them easier to work with would probably be worthwhile.

Figure 5.2: Data layout of real and complex buffers, and index calculation
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5.2.5 Buffer manipulation

A goal throughout development has been to abstract the reconstruction process
into manipulation of two-dimensional data buffers. The buffers contain either real
or complex values. All buffer manipulation happens through buffer manipulation
functions. These functions are specifically written to perform a (logically) single
operation, and could thus be unit tested for correctness during development. The
implementation contains separate buffer manipulation functions for real and com-
plex buffers. The four main types of buffer operations are:

• Operations that copies a buffer; whole or in part
• Operations across all elements of a buffer
• Operations that transform the buffer, like DFTs
• Operations that combine two buffers

5.2.6 Propagation steps

The basic propagation operation under Fresnel propagation takes a buffer as in-
put, multiplies it with a phase factor, Fourier transforms it, and multiplies it with
a final phase factor. It is illustrated in Figure 5.3. The dot in a circle indicates
element-wise multiplication.

In the FPM algorith, when propagating between object plane and lens plane
only step 1. and 2. are applied. When propagating between lens and detector only
step 2. is used, as the detector plane projection does not modify the phase. Also,
the pupil of the imaging system low-pass filters the lens plane estimate before it
is propagated to the detector plane. The propagation steps of the full algorithm is
illustrated in Figure 5.4
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(a) Forwards propagation

(b) Backwards propagation

Figure 5.3: Free space Fresnel propagation of buffer between planes as a series
of buffer operations
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Figure 5.4: The buffer operations required for propagation in the algorithm. The
circled dot represents element-wise multiplication

5.2.7 Pixel sizes and magnification

All the three planes of the imaging system (object, lens, detector) are sampled by
a grid of pixels in the algorithm. The pixel grid at the detector plane is the size
of the input low-resolution images, the pixel grids at the lens and object plane
have the same dimensions as the result high-resolution image. These three pixel
grids are used to store the light field as it is propagated between the planes in the
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recovery algorithm. All the planes have different pixel sizes, caused both by the
nature of Fresnel propagation, the magnification of the imaging system and the
upscaling effect of the reconstruction. The different pixel sizes are calculated as
part of the algorithm setup. As an example, the pixel sizes of the imaging system
used to capture the open FPM data set from Tian Labs[41] are now derived and
presented in Table 5.1 and Figure 5.5

Assume the input image size in pixels is 512 by 512. This is the dimensions of
the low resolution pixel grids at the detector plane. Choosing an upscale factor of
4 in each dimension yields high resolution pixel grids of 2048 by 2048 pixels at
the lens and object plane. The imaging system has a magnification of M = 8.1485,
and a camera with a sample pixel size of pd = 6.5 ∗ 10−6m. The magnification,
upscale factor and detector plane pixel size gives the object plane high-res pixel
size po =

pd
M∗4 = 2.0 ∗ 10−7m.

To find the pixel size in the lens plane, equation (2.18) is multiplied with the
low resolution pixel size at the object plane. The distance from object plane to
lens plane is dol = 0.0422 ∗ 10−3m and the wavelength of the illumination is λ=
6.292∗10−7m. The extent of the object plane W = 2048∗0.19∗10−3 = 0.41∗10−3

is the object plane pixel size times the number of pixels in a given dimension. The
resulting pixel size in the lens plane is 65 ∗ 10−6m, an order of magnitude larger
than the pixels in the object plane.

Table 5.1: Size of the grids from the Tian labs example

location pixel dimension pixel width plane width
Object plane 2048 * 2048 0.19 ∗ 10−6m 0.41 ∗ 10−3m
Lens plane 2048 * 2048 65 ∗ 10−6m 133 ∗ 10−3m

Detector plane 512 * 512 6.5 ∗ 10−6m 3.33 ∗ 10−3m
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Figure 5.5: The three pixel grids used for the three planes in the algorithm. With
Fresnel propagation, the pixel size varies between planes

5.2.8 Calculating offsets

Each iteration step is associated with a single selection of the lens plane recovery
estimate, which is the starting point of the iteration, as well as the target for the
updated segment. The offsets are determined both by the angle of illumination
provided by the associated LED, as well as the offset of the center of the patch
currently under reconstruction. It is important to know whether the images in the
current data set are flipped or not. A single lens imaging system flips the image of
the object, meaning that a segment offset of (x , y) at the result image corresponds
to a shift at the object plane of (−x ,−y). However, some data sets have this flip
corrected, in which case the segment offset coordinates must not be flipped. If the
flip/lack of flip is not properly accounted for, the result is artifacts in the recon-
struction like those shown in Figure 5.6. It is thus important to check if any given
input data set is flipped or not, so the shift calculations can be updated accordingly

The offsets is determined by equation (2.21), and the pupil size is determined
by the physical size of the lens aperture. Both the shift and pupil diameter is
divided by the lens plane pixel size so that it is sampled by the same grid as the lens
plane estimate. The final pattern for the open data set provided by Tian labs[41]
is shown in Figure 5.7.
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(a) Offsets based on correct segment center
(b) Offsets based on incorrect segment cen-
ter

Figure 5.6: A comparison between the result of correct pupil offsets (left) and
incorrect pupil offsets (right)

Figure 5.7: The sampling pattern of the Tian labs data

5.2.9 The 2D Fourier transform

As the recovery process requires two discrete Fourier transforms to propagate the
estimate for each iteration step, it is important that it uses a fast implementation
to avoid becoming a major bottleneck. For the C++ baseline, the implementation
provided by GSL was deemed fast enough, as it yielded similar single-core running
time to the Matlab implementation. The transform is normalised in the backwards
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direction, that is, when transforming from a spectral to a spatial representation.

When low-pass filtering the lens plane estimate for propagation to the detector
plane, the pupil function filter assumes that the lens plane is Fourier shifted. A
Fourier shift of a spectrum exploits the fact that the discrete Fourier transform is
periodic to move the location of the zero frequency of the 2D spectrum from the
upper left corner to the center. This reinterprets all frequencies above the Nyquist
limit as negative frequencies, by using the fact that given a sample rate SR and
any integer k, any sine wave at a frequency of F is indistinguishable from (or
"aliased by") a sine wave at a frequency of F + (k ∗ SR) [42]. A the effect on a 1D
signal with sampling rate of 6 is shown in Figure 5.8, while a 2D example from
the algorithm is shown in Figure 5.9.

The convention used in this implementation is to shift the Nyquist and all
higher frequencies to the negative side, following the behaviour of the matlab
functions fftshift and ifftshift. The Fourier transform functions and most
buffer operations expect the zero frequency to be in the upper left, and the filter-
ing operations expects the zero frequency to be in the center.

Figure 5.8: one dimensional shift. Nyquist frequency and above are shifted into
closest negative aliases. 4hz to -2hz, 5hz to -1hz and so on

When working with DFTs, it is important to keep in mind where the results
are normalised. In GSL, the forward transform multiplies all output pixels up by
N*M, where N is the number of rows and M the number of columns, and the
reverse transform divides all the pixels with N*M. If a sub section of a buffer
that has been forward transformed by this DFT implementation is to be reverse
transformed, the ratio between pixels in the full buffer and pixles in the the sub-
buffer must be included in the energy adjustment performed in the inverse DFT.
An illustration of the required scaling is provided in Figure 5.10
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Figure 5.9: Non-shifted and shifted versions of the lens plane estimate

Figure 5.10: Difference in scaling when reverse transforming sub sections of a
previously transformed buffer. Illustration not to scale

5.2.10 Iteration Step Sequence

The sequence of iteration steps should ideally follow be sorted by the intensity
of the input images associated with each iteration step. A common heuristic to
achieve this without actually measuring the intensity of every single input image
is to assume that the input image illuminated by the central LED has the highest
intensity. This is because the central LED illuminates the sample at no or only a
very slight angle. As a consequence, the part of the spectrum that is let through
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(a) LED sequence
(b) Images corresponding to LEDs from the
Tian labs data set

Figure 5.11: Iteration step sequence from LED positions. Initial LED is the one
illuminating the image at the smallest angle. The image intensity drops quickly
as the iteration progresses away from the center

the low pass filter of the lens contains the low frequency information of the ori-
ginal image. Usually, it is the low frequencies that contain the most intensity [6].

Since smaller illumination angles lets the low frequencies pass, and large
angles lets high frequencies pass, the illumination angle and intensity of the im-
ages will be related. This means that if a sequence of images is constructed,
ordered by the angle of the illumination, an order close to descending intensity
order is acquired. A common way of doing this is to start at the image illuminated
by the central LED, and spiral outwards as illustrated in Figure 5.11.

In the implementation, an illuminating LED and its associated input image can
be identified by one of 3 indices. The LED index runs row by row from the top left
LED. The image index also runs row by row from the top left, but only counts lit
LEDs. Finally, the sequence index follows the location of the image/LED in the
iteration sequence. They are all 0-indexed. To indicate not applicable values, for
instance the sequence index of an image not in the sequence, the index -1 is used.
A small example is shown in Figure 5.12, illustrating the three indices.
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Figure 5.12: An example of a 4 by 4 LED grid with some lit LEDs (in bright red)
and an iteration sequence. The indices are written at the top left of each LED, and
each LED corresponds to one image

5.2.11 Initial guess

The recovery algorithm needs a starting point for the lens plane estimate. The
most common method is to upscale the low resolution input image illuminated by
the central LED, but a simpler alternative is to initialise the lens plane estimate to
be 1+0i at every pixel. In the c++ baseline version, the lens plane is initialised as
1+ 0i, as it works better than a very naive implementation attempt of an image
upscale. One major problem with the implemented upscaling is that is introduces
impossible frequencies in the Fourier spectrum of the lens plane estimate that
significantly reduces output quality, as shown in Figure 5.13. Note that the spectra
are shifted to show the zero frequency in the middle rather than to the left. This
could probably be improved by using an image library for better upscaling and
removing the impossible frequencies, but initialising with 1 works well enough
that other initialisation is left as future work.
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Figure 5.13: Result amplitude in object and lens plane for the same algorithm
parameters under different initial guesses. The red circle indicates roughly the
area of the lens spectrum where legal values can show up. Any values outside are
artifacts of the reconstruction process

5.2.12 The recovery process

The c++ baseline performs the following buffer operations in a single iteration
step:

1. Find location of segment selection corresponding to illumination shift and
copy it.

2. Low pass filter this selection with the pupil function.
3. Reverse Fourier shift to move zero frequency to the top left
4. Reverse Fourier transform to propagate the selection to the detector plane
5. Project low resolution image onto selection, by replacing the amplitude from

the estimate with the amplitude (square root of intensity) from the image
as shown in equation (2.15)

6. Fourier transform to propagate adjusted selection to the lens plane
7. Use the old selection and the image adjusted selection together with the

pupil function to create an updated version of the selection through a quasi
Gauss-Newton method as shown in equation 2.16

8. Subtract the part of the lens plane within the shifted pupil
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9. Replace the subtracted part of the lens plane with the updated selection
10. Use the old selection and the image adjusted selection as well as the old pu-

pil estimate to update the pupil estimate. This is performed using equation
(2.22)

5.3 Multi-threaded

When creating a multi-threaded implementation of the iteration step in Fourier
ptychography, the main challenge is how to safely decouple the iterations of the
algorithm. For a given image segment, the two factors introducing dependencies
is the overlap in Fourier spectrum information between images from different illu-
mination angles, and the iterative estimation of the pupil function. Coordination
between threads can be organised in a centralised or distributed manner. The
centralised approach is realised using a main thread controlling a team of worker
threads fetching from a priority queue. The distributed approach partitions the in-
put, and relies on border exchanges to ensure consistency in overlapping regions.
In this work, the centralised approach is used.

5.3.1 Iteration step overlap

For each iteration step in the linear version of algorithm, a single image and corres-
ponding area of the high-resolution lens plane is used. To parallelise the algorithm
on a iteration step level, the steps must be distributed across multiple threads. To
ensure good convergence even in the presence of noise and aberrations, the over-
lap between the lens plane areas of the images should be 60-80% of the area[12,
43]. This requirement does, however, introduce dependencies between iteration
steps that access the same parts of Fourier space. If the algorithm works in parallel
on dependent iteration steps, race conditions may occur.

The race conditions happen in the overlapping pixels of the segments associ-
ated with the concurrently executed iteration steps. The lens plane estimate is only
read and written once for each iteration step. Intermediate calculations happens in
work buffers private to each thread, and do not themselves contain any race con-
ditions. The most likely form of race condition is thus that the thread that finishes
its iteration step last gets to overwrite all other pixels in the overlapping region
with its own result. This reduces the data redundancy of the overlapping pixels,
and might lead to slower convergence. To at all be able to solve the phase recovery
problem, each pixel must be adjusted at least two times for each full iteration with
data from at least two images[1]. However, the more times a given pixel is iter-
ated over in the lens plane estimate, the more robust the reconstruction process
becomes to noise and microscope miscalibration[12]. Permitting some overlap in
the execution may thus increase the number of full iterations needed to get a good
reconstruction. The more errors in the imaging system, the more pronounced this
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effect might get

The precise overlap varies between datasets and is dependent on the specific
physical characteristics of the microscope that captured the images as well as the
layout of the illuminating LEDs. As an example, one of the freely available data
sets from Tian labs that shows a histology slide[41] gives images with an area
overlap of circa 70% in Fourier space. This means that each image in this data set
in general overlaps with 42 others. However, many of the overlaps are very small.
Permitting some overlapping concurrent work on the different iteration steps can
significantly increase the available concurrency without introducing a significant
amount of race conditions. The difference in number of iteration steps depending
on the central iteration step considering 100% and 70% of the pupil radius is il-
lustrated in Figure 5.14.

Figure 5.14: The difference in dependent iteration steps when considering 100%
of the pupil radius vs 70% of the pupil radius

To create a mechanism that makes sure no dependent iterations are computed
concurrently, a graph where each image is a node and each edge indicates a de-
pendency/overlap is set up. An example graph for a synthetic data set with much
lower degree of overlap than found in the Tian labs data sets is shown in Fig-
ure5.15. Using this graph, it is possible to create a thread safe priority queue
containing all the images that only lets an image be taken out if no dependent
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images are currently being worked on.

Figure 5.15: An example of a dependency graph from a synthetic data set. In real
data sets, the nodes are generally connected to more neighbours

Multi-threaded spiral

The first method is to use the single-threaded queue and distribute a set of itera-
tion steps for the current thread group to run. The distribution process follows the
spiral order, but respects the overlaps. The more threads, the more this sequence
must deviate from the original. The closer to the center, the greater the effect, as
iteration steps corresponding to high intensity input images are fewer in number
and overlap more than the steps corresponding to low intensity images.
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Multi-threaded spiral with deviation tolerance

To avoid the effect where the early, high intensity iteration steps get performed
far out of order, a tolerance parameter can be added to the priority queue. This
parameter can the be used to make sure the queue only lets the work threads
fetch iteration steps to work on if is not to far out of order with respect to the
single-threaded sequence. This tolerance is implemented by counting the number
of complete predecessors an iteration step has in the baseline order, and dividing
this by how many of them are complete. This ratio is compared with a deviation
threshold. This deviation metric is stricter for iteration steps early in the order,
which might be an advantage, as much of the intensity and information resides in
the initial, central iteration steps. The first element is defined to have a ratio of 1.

5.3.2 Pupil Function Estimation Relaxation

In the ideal case the pupil function of the optical system is a simple low-pass filter.
However, no imaging system is perfect. Applying the phase recovery algorithm
on a data set from a real microscope with the assumption of an ideal pupil will
thus lead to errors in the reconstruction. Correct recovery requires that the coher-
ent transfer function of the pupil model used in the recovery procedure models
the aberrations of the real system. If the aberrations are known a priori, a suit-
able mathematical model can be applied to the coherent transfer function during
setup[6]. However, in this work the pupil function is estimated iteratively as the
algorithm progresses according to the principles from[40].

The baseline implementation includes an update of the pupil estimate every
iteration step. This introduces a common dependency between all iterations that
prohibits any concurrent iteration step execution.

To decouple the iteration steps, the pupil estimate update regime must be re-
laxed. This can be achieved by pre-computing the pupil and reusing it for later
image reconstructions, or by reducing the frequency of pupil estimate updates
such that only some iteration steps update it. A third option is to fully estimate
the pupil function for certain tiles and reusing this pupil function in neighbour-
ing tiles under the assumption that the pupil aberrations vary very slowly with
space[9]. A fourth option is to partition Fourier space and estimate a different pu-
pil function for each partition, analogous to the asynchronous parallel approach
described in Nashed et al.[35],

All of these options will reduce the quality of the pupil reconstruction, but
without them, the algorithm is strictly iterative. Striking the right balance between
pupil estimation accuracy and parallelism is important. In this implementation,
the pupil update frequency is reduced. [According to Dag, this is reasonable, as
the pupil still gets plenty of updates. How to cite the conversation?]
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5.3.3 Work Distribution by Priority Queue

To run multiple iterations steps concurrently, a data structure is required that can
provide an independent set of iterative steps from the dependency graph. In this
implementation this structure is realised as C++ class that both creates the de-
pendency graph and provides methods for checking out, prioritising and complet-
ing iteration steps. The checkout method returns an iteration step that is guar-
anteed to be independent from all other iterations steps that are currently being
executed. If an independent iteration step is requested and none are available, the
index -1 is returned. A queue working on a synthetic dataset is illustrated in Figure
5.16. Here the base single threaded order is a spiral running from the centered,
with nodes numbered in this order. Four threads are currently working on node
1, 10, 11 and 12. This has locked most other nodes in the graph, but node 16
through 20 are still available if another thread request work.

Figure 5.16: An example of a priority queue working on a synthetic data set

The priority queue is able to serve independent iteration steps by using both
the dependency graph and an array of locks. The locks are integers, one for each
iteration step, that counts how many currently executing iteration steps that de-
pend on a given iteration step. When a thread requests a new independent itera-
tion stuff to work on, the priority queue finds an iteration step with lock counter
value of zero, increases the lock counter of the selected iteration step and all de-
pendent iteration steps with 1 and returns the independent iteration step. Once a
thread is done with an iteration step, it can call a method on the queue to unlock
all its dependencies. The completed item, however, is not unlocked. This ensures
each item is only operated on once until the queue is reset.

The work queue can provide as many independent iteration steps as reques-
ted. In the implementation, this is used to identify and run batches of concurrent
iteration steps. For a given dependency graph, the number of independent nodes
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will be limited. This puts a hard limit on how many iteration steps can be pro-
cessed concurrently. To increase this limit, the priority queue can be instructed
to create a dependency graph that permits some overlap and thus increasing the
number of independent nodes. The downside of this is that the overlapping pixels
will get fewer iterations. Disregarding the overlap might also lead to race condi-
tions when different iteration steps work concurrently on overlapping lens plane
estimate regions.

5.3.4 Thread coordination

Threads are launched in synchronised batches. Each batch consists of a fixed num-
ber of threads which are all provided with independent iteration steps to execute.
The iteration step independence is important, as all the threads update the same
lens estimate memory buffer. Once all threads in a batch are done, a pupil update
is performed using the work buffers of the thread with the lowest ID in the batch
(this choice is arbitrary, any thread will do). As a consequence, using more threads
per batch will reduce the update frequency of the pupil.

5.3.5 Changing the Iteration Step Order

Running independent iteration steps concurrently changes the order of execution.
Where a single threaded implementation processes neighbouring iteration steps
one by one, two concurrently executing iteration steps cannot be next to each
other without introducing large overlaps and potential race conditions. However,
a strictly enforced no-overlap policy makes the concurrent iteration step order de-
viate quite a bit from the original order for just a few threads, and significantly for
a larger number of threads. This can severely affect the quality of reconstruction.
To ensure good reconstruction quality, a balance between strict enough overlap
management and the number of concurrent threads must be struck to keep both
the reconstruction quality and the available parallelism high.

5.4 GPU acceleration

As GPU acceleration and other exploitation of the inherent data parallelism in the
buffer operations can be applied independently of the task parallel methods used
in this implementation, the original plan was to implement both for even greater
speedups. However, as the task parallel implementation was the main focus and
time was limited, the GPU functionality was not fully implemented, and is not
part of the experiments performed.
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Methodology

The purpose of the experiments is to validate that the multi threaded FMP im-
plementation produces correct results, and how much speedup can be attained
without significantly reducing image quality. A higher concurrent iteration step
count will lead to greater deviation from the optimal intensity order. Different
strategies to minimise this effect are tested.

6.1 Optimising the baseline

The baseline single threaded version was optimised by iteratively using perf to
identify the most computationally intensive functions in the code, and speeding
them up. Running time was measured using the bash utility time. The optimisa-
tion continued until the processor running time was similar to that of the Matlab
baseline for 5 iterations on the same data set (1̃ minute and 30 seconds). The
Matlab implementation was still faster in wall clock time, but this was due to
data parallel processing. As data parallel processing was not the main focus of
this thesis, the equal processor running time was considered more important than
the unequal wall clock time. For this thesis, the attainable speedups without data
parallel processing was the main focus.

6.2 The computer

The computer used in this experiment is a LAB computer at the NTNU HPC lab.
Specifications are given in Table 6.1.

6.3 Reconstruction quality

The reconstruction quality of a given experiment can be evaluated qualitatively
through determining the smallest resolvable feature in a USAF resolution target,
or quantitatively through model match, mean square error(MSE) and structural

55
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Table 6.1: Computer specification

Part Name Details
CPU AMD Ryzen 7 5800X 8 cores 16 threads
RAM DDR4 2667MHz 2x8GiB
GPU GTX 1080 Ti x 2 11 GB GDDR5X memory

Operating System Ubuntu 20.04.2
Secondary memory 500GB M.2 SSD

similarity index (SSIM) relative to some ground truth. A single threaded, 20 iter-
ation run of the baseline algorithm is used as a ground truth in this thesis. Model
match is implemented as part of the algorithm in C++. MSE and SSIM meth-
ods are implemented in python. The python code and installation instructions are
provided as snippets in the appendices.

6.3.1 Result representation

Final and intermediary results from experiments are written to 16-bit tif images for
storage. Each solution is represented by two images, one representing amplitude,
the other representing phase. Amplitude and phase are chosen as they show more
information about the sample than real and imaginary rectangular coordinates.
The amplitude images are scaled by a configurable constant (200 unless otherwise
noted). This is to make the amplitude images visible when viewed in an image
viewer. The absolute value of the phase is scaled to [0,65535] when written to
file. This destroys information about whether the offset from 0 phase is positive
or negative, but yields more useful images, as shown in Figure 6.1 and is in line
with the rendering process used in the Matlab baseline. When using these images
as input to other algorithms, these conversions must be reversed to recover the
original image.

6.3.2 Model Match

Using the calculated estimate with the forward model 2.19 and comparing the res-
ult with the recorded images makes it possible to quantify how close the current
estimate and forward model fits the recorded images data. This can be calculated
during (at a significant computational cost) or after execution to measure conver-
gence and reconstruction quality. This is done by taking the absolute difference
between the amplitude of the recorded images and the predicted images accord-
ing to the lens plane estimate, as in equation (2.14). The difference is divided by
number of images and number of pixels to show the average pixel error across all
input images.
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(a) Absolute value of [−π,π] (b) 0 to 2π

Figure 6.1: Different renderings of phase from recovered images

6.3.3 Similarity indexes

To compare obtained results to some ground truth, both Mean Squared Error(MSE)
and Structural SIMilarity index (SSIM) are used. Both metrics are normalised to a
range of [0,1]. MSE is implemented in python and uses the squared magnitude of
the difference between two complex images. The implementation of SSIM is also
in python, but uses a library implementation from scikit-image[44]. SSIM is used
on phase and amplitude separately, as they can be seen to converge at different
rates.

6.4 Algorithm parameters

The main parameters of interest in this thesis are the number of threads, degree
of overlap relaxation and iteration step order. The parameters used in the Gauss-
Newton iterative method follows the Matlab baseline. Image parameters such as
size, upscale factor, segment size and segment location are fixed across all exper-
iments using the same data set.

6.4.1 Sequence difference

As the behaviour of the algorithm is influenced by the order of iteration steps, a
metric for the difference between two different sequences can be used to compare
the difference in reconstruction quality to the difference in iteration step order.
The metric used in this work is the ratio between possible completed predecessors
in the base iteration order and actually completed predecessors. This gives a met-
ric between 0 and 1 that measures how out of order the selected iteration actually
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is. The first element has no possible predecessors, and is assigned an order metric
of 1.

6.5 Datsets and setup

The data sets used are from Tian labs. They image a dog stomach and a USAF
target respectively. Both data sets are obtained using the same microscope, and
contain the same amount of images of the same size. The parameters are shown
in Table 6.2

Table 6.2: Tian labs data parameters

Parameter Tian labs
Flipped yes

Dimensions 2560px * 2160px

6.5.1 Microscope setup

The microscope parameters are obtained from the same repository as the data sets.
As the open data sets were published with Fraunhofer propagation based recovery
in mind, they do not contain information about the distances between object, lens
and detector. It is, however, possible to recover these numbers by using the other
parameters. The final numbers used in the algorithm are the derived parameters
used in the baseline matlab code provided by Muhammad Nadeem Akram. The
microscope settings are shown in Table 6.3.

Table 6.3: Microscope parameters

Microscope parameters Tian labs

LED matrix 32 x 32
LED pattern circle

LED pattern diameter 19
Center LED(row, col) (13, 14)

LED separation 4mm
Magnification x8.1485

Numerical Aperture(NA) 0.1
Illumination wavelength 629.2nm

LED to object 67.53mm
Object to lens 42.2mm

Lens to detector 343.9mm
Detector pixel size 6.5µm
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6.5.2 Segment size

The segment size used is determined by the coherence width as given by the for-
mulas in Section 2.1.1. For the Tian labs microscope, the values obtained for the
parameters is given by Table 6.4. The most difficult parameter is the width or area
of the LED. Schnell[8] use red LEDs (625nm) with an area of 130µm ∗ 130µm.
As all data sets in this thesis are taken using red light LEDs, we assume the LED
dimensions are comparable. The segment size is set to be 512 pixels in each di-
mension. This is a little above the coherence lengths obtained, but the images
produced show little to no artifacts.

Table 6.4: The max number of pixels in each dimension that maintain mutual
coherence

Source Expression Tian labs result
Konda 2018 Ic = 1.22 ∗ λz

w 500px
Konda 2020 Ic =

λz
w 409px

Schnell 2019 Ac ≈
l2λ

2

As
409px

Chung 2019 L = 0.61λz
a 500px

6.6 Experiments

The experiments are run in different suites. The suites are "baseline", "multi threaded
with strict overlap handling", "multi threaded with relaxed overlap handling",
"multi threaded with stricter reordering limits", "consistency" and "performance".
All test suites are run with 20 iterations, except "performance", which is run with
10. All experiments are run over all data sets unless otherwise noted.

6.6.1 Baseline

Two baselines are created, one using a USAF target data set, the other using an
open source stained histology data set. Both data sets are from Tian labs and ac-
quired with the microscope described in the Tian labs columnt of Table 6.3. The
baseline reconstructions are preformed by a single thread, to represent a conven-
tional Fresnel based recovery algorithm. At each full iteration, the image produced
by the current estimate is saved. The algorithm settings for the baseline is shown
in Table 6.5.

6.6.2 Multi-threaded

The main way to alter the multi threaded algorithm is to vary the number of
threads and the distribution of iteration steps. Altering either of these will
change the order of iteration steps. This may have a significant effect on algorithm
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Table 6.5: Baseline algorithm parameters

Algorithm parameters Baseline

Full image 2560px x 2160px
Input image format 16-bit grayscale tif

Segment 512px x 512px
Upscale factor 4

Segment upper left(x,y) (800, 824)
Threads on CPU 1

Iterations 20
Lens projection method Gauss Newton

Iteration order anticlockwise spiral
Noise threshold 1600

gnNumStability constant 1
gnStepFactor 0.1

Significant overlap 100%
Sequence deviation tolerance 100%

convergence and thus reconstruction quality.

Strict queue, no deviation penalty

These experiments are run with the same parameters as the baseline, with the
exception of the number of threads. Work items are distributed in a way that
respects the overlap between iteration steps, with no penalty for reordering the
original sequence. The setup is shown in Table 6.6.

Table 6.6: Parameters for the strict queue experiments

Experiment Significant Deviation
name Threads Iterations overlap tolerance

strictQueue 1 2 20 100% 100%
strictQueue 2 4 20 100% 100%
strictQueue 3 8 20 100% 100%
strictQueue 4 16 20 100% 100%

Non-strict queue, no deviation penalty

The introduction of a significant overlap parameter permits a priority queue that
can yield iteration steps that tolerate some overlap with other concurrently ex-
ecuting iterations steps. This parameter is in the range [1,0], where 1 represents
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full respect for overlap and 0 no respect for overlap. Adjusting this parameter to-
wards 0 permits the execution of iterations closer in the lens plane, at the cost of
reduced redundancy. The reduced redundancy is a result of the race conditions in
the overlapping pixels between concurrently executing iteration steps. Only one
of the overlapping iteration steps will get to perform the final write to a given
overlapping pixel.

The reduced overlap is a potential disadvantage, but reducing the deviation
from the preferred single-threaded order should be an advantage, as it has been
shown that the spiral, approximately intensity order that the single threaded im-
plementation follows provides better results than for instance a random order-
ing[6]. The purpose of the experiments in this section is to investigate how this
trade-off affects the convergence and quality of the reconstructions. The paramet-
ers for these experiments are given in Table 6.7.

The experiments were run in two iterations, with the experiments prefixed
with "2-" being the follow ups to investigate the effect of increasing overlap toler-
ance further when running 16 threads. As the overlap percentage refers to over-
lapping radius and not overlapping area, it is expected to behave non-linearly in
terms of area overlap. For instance, changing "significant overlap" from 0.5 to 0.4
is a greater change than changing it from 0.6 to 0.5.

Table 6.7: Parameters for experiments with overlap tolerance

Experiment Significant Deviation
name Threads Iterations overlap tolerance

lessStrictQueue 1 2 20 75% 100%
lessStrictQueue 2 2 20 50% 100%
lessStrictQueue 3 4 20 75% 100%
lessStrictQueue 4 4 20 50% 100%
lessStrictQueue 5 8 20 75% 100%
lessStrictQueue 6 8 20 50% 100%
lessStrictQueue 7 16 20 75% 100%
lessStrictQueue 8 16 20 50% 100%

lessStrictQueue 2-1 (9) 16 20 25% 100%
lessStrictQueue 2-2 (10) 16 20 0% 100%

Non-strict queue, deviation penalty

To get more control of how far the execution order deviates from the single-
threaded order during a multi-threaded execution, a new parameter called "Devi-
ation tolerance" is introduced. Where the "significant overlap"-parameter adjusts
what iterations are available to choose from for the priority queue, the "deviation
tolerance" adjusts what available iteration step the priority queue chooses on the
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basis of how out of order it would be with respect to the single-thread order. Redu-
cing the deviation tolerance should improve reconstruction quality, as it enforces
a better iteration order, but it also reduces the available concurrency. The extreme
case is when the deviation tolerance is set to 0. In this case, the algorithm degen-
erates back into the single threaded algorithm. The experiments are performed
with a number of threads and a "significant overlap" parameter that has shown
diverging behaviour in the previous experiments, to see if the new "deviation tol-
erance" parameter can help improve their convergence. The tested parameters are
shown in Table 6.8

Table 6.8: Parameters for deviation tolerance experiments

Experiment Significant Deviation
name Threads Iterations overlap tolerance

deviation 1 8 20 100% 75%
deviation 2 8 20 100% 50%
deviation 3 8 20 100% 25%
deviation 4 8 20 75% 75%
deviation 5 8 20 75% 50%
deviation 6 8 20 75% 25%
deviation 7 8 20 50% 75%
deviation 8 8 20 50% 50%
deviation 9 8 20 50% 25%

deviation 10 16 20 100% 75%
deviation 11 16 20 100% 50%
deviation 12 16 20 100% 25%
deviation 13 16 20 75% 75%
deviation 14 16 20 75% 50%
deviation 15 16 20 75% 25%
deviation 16 16 20 50% 75%
deviation 17 16 20 50% 50%
deviation 18 16 20 50% 25%

6.6.3 Consistency

As long as no overlap is permitted, the same parameter combination should yield
the same result image. However, when overlap is permitted, race conditions between
overlapping concurrent dictate the final result. To get an impression of how much
variation this causes, "lessStrictQueue8" and "lessStrictQueue2-1" are each run 4
times for the Tian USAF target data. These two configurations are chosen since
they both use 16 threads with a high tolerance for overlap (50% and 25% respect-
ively). Then their convergence graphs relative to the baseline will be presented
and compared. For comparison, "strictQueue4" is also run four times on the Tian
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USAF data set and presented the same way. This experiments has the same number
of threads, but 100% "significant overlap". This experiment should have no race
conditions, and is expected to behave deterministically with equal convergence
graphs.

6.6.4 Convergence and quality

The convergence metrics are based on similarity to a baseline. However, the pre-
cise mapping between convergence metric and quality is not obvious. To get some
quantitative measurement of these, phase images of the Tian labs USAF target
with SSIM in specific ranges are collected and displayed for visual inspection. The
images are cropped to only show the smallest group of the resolution target. The
goal is to find images with phase SSIM in the ranges [95, 100], [90, 95], [85, 90],
[80, 85], 75 and below, with 2 images per group.

6.6.5 Running time and utilisation

When running the convergence experiments above and obtaining the convergence
results, it can be seen that some experiments converge smoothly and close to the
baseline, while others converge in a jerky and random fashion to optima further
away from the baseline. We dub the convergence of the first group well behaved.
When testing running time and utilisation, only the experiments with well be-
haved convergence are used. Selecting experiments that are well behaved for all
data sets with a final minimum SSIM compared to baseline of 0.85 yield the exper-
iments shown in Table 6.9. Each experiment is run 3 times with 10 iterations on
the Tian USAF data set. This number of iteration is set based on the observation
that most of the result convergence has already happened at this point. To better
be able to compare this to the baseline, an experiment with the baseline settings
at 10 iterations is run and presented for comparison. The linux utility time is used,
and the results are the average values of real and user respectively. The results
are presented with thread utilisation, running time and final convergence quality
metrics.

To isolate the performance effect of reducing the number of pupil updates,
two baseline experiments are run with 10 iterations, and pupil updated every
8th and 16th batch respectively. These experiments are named "baseline-8" and
"baseline-16"
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Table 6.9: Parameters for the performance experiments

Experiment Significant Deviation
name Threads Iterations overlap tolerance

strictQueue 1 2 10 100% 100%
strictQueue 2 4 10 100% 100%

lessStrictQueue 1 2 10 75% 100%
lessStrictQueue 2 2 10 50% 100%
lessStrictQueue 3 4 10 75% 100%
lessStrictQueue 4 4 10 50% 100%

deviation 1 8 10 100% 75%
deviation 2 8 10 100% 50%
deviation 3 8 10 100% 25%
deviation 5 8 10 75% 50%
deviation 6 8 10 75% 25%
deviation 9 8 10 50% 25%

deviation 11 16 10 100% 50%
deviation 12 16 10 100% 25%
deviation 14 16 10 75% 50%
deviation 15 16 10 75% 25%
deviation 17 16 10 50% 50%
deviation 18 16 10 50% 25%

baseline 1 10 100% 100%
baseline-8 1 10 100% 100%

baseline-16 1 10 100% 100%
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Results

The results are presented first with the convergence and image quality of the
different methods. This is followed by collections of reconstructions using the
same parameters and data. Finally a comparison in running time and utilisation
is provided.

7.1 Reconstruction quality

This section contains the results of the convergence experiments. Both result im-
ages and convergence graphs are acquired for each experiment. In sections with
many experiments, only a selection of the result data is provided. In general, con-
vergence plot data is prioritised over image results.

7.1.1 The baselines

Figure 7.1 shows a sub selection of the full baseline image of an USAF 1951 target,
reconstructed with data from Tian labs. In this thesis in general, the selections of
USAF target images cover an area of around 320 by 320 pixels after upscaling,
or around 60µm according to the pixel sizes from Table 5.1. All the lines in the
sample are clearly separated. The smallest lines are approximately 4 pixels wide,
indicating a resolution of at least 0.8µm. Phase and amplitude images are shown
separately The dog stomach sample is shown in full in Figure 7.2.

The convergence of both baselines is shown in Figure 7.4. The plot curves
show convergence towards final result for the phase image measured by SSIM
(green), for the amplitude image measured by SSIM (orange), and for the amp-
litude image measured by normalised MSE (blue). The MSE plot is displayed as
1 - MSE, to make it more easy to compare to the SSIM measurement.

65
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Figure 7.1: The single threaded baseline at 1, 10 and 20 iterations. Selection of
Tian labs USAF target

Figure 7.2: The single threaded baseline at 1, 10 and 20 iterations. Tian labs dog
stomach

Figure 7.3 compares the reconstruction at 10 and 20 iterations of the same
selection of the USAF resolution target shown in Figure 7.1 to one of the low
resolution images in the corresponding input data set. Note that the intensity of
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the amplitude image has been increased to be better visible. In reality the intensity
of the input image is approximately the square of the amplitude image.

Figure 7.3: Resolution before and after reconstruction

(a) USAF 1951 resolution target (b) Dog stomach

Figure 7.4: Convergence to result for baseline algorithm settings

7.1.2 Multi threaded

The following experiments were all performed using multiple threads. All conver-
gence graphs are labeled with the experiment they originated from. The blue curve
plots (1 - MSE) of the amplitude image relative to the baseline amplitude image.
The orange curve plots the SSIM of the baseline and experiment amplitude image.
The green curve plots the SSIM of the baseline and experiment phase image.

Strict queue

Phase and amplitude images from the strict queue experiments are shown in this
section. Figures 7.5 and 7.6 shows the results for the USAF and dog stomac data
sets. Figure 7.8 shows convergence graphs from the dog stomach data set, Figure
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7.7 convergence graphs from the USAF data set. The colors in the plots are read as
follows: green is SSIM of phase image, orange is SSIM of amplitude image, blue is
(1 - MSE) of amplitude image. All plots are relative to the baseline of the relevant
data set.

Figure 7.5: The "strictQueue" experiment results for the Tian labs USAF 1951
data at 2 and 4 threads
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Figure 7.6: The "strictQueue" experiment results for the Tian labs USAF 1951
data at 8 and 16 threads
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Figure 7.7: Convergence toward baseline for all "strictQueue" experiments on the
Tian labs USAF 1951 data set
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Figure 7.8: Convergence towards baseline for all "strictQueue" experiments on
the Tian labs dog stomach data set

Non-strict queue, no deviation penalty

This experiment suite ("lessStrictQueue") contains a large amount of experiments.
Therefore, only a selection of the convergence graphs are presented, with the full
set of plots available in appendix B. The selected plots are shown in Figure 7.9, and
illustrates the difference in convergence between experiment "lessStrictQueue 1"
and "lessStrictQueue 8".

Non-strict queue, deviation penalty

This experiment suite ("deviation"), like the "lessStrictQueue" suite, contains a
large amount of experiments. The full collection of convergence graphs are avail-
able in appendix B. To illustrate the change in convergence behaviour caused by
the "deviation tolerance" parameter, the convergence graph of "deviation 16" and
"deviation 17" as run on the USAF data are selected from the full data and dis-
played in Figure 7.10. These two experiments have the same settings as "lessStrictQueue
8" except for the values of the "deviation tolerance" parameter.



72 Øystein Krogstie@NTNU: Dynamic task parallel FPM

(a) lessStrictQueue 1 showing good conver-
gence

(b) lessStrictQueue 8 showing poor conver-
gence

Figure 7.9: Example of good and poor convergence in the lessStrictQueue exper-
iment suite

(a) deviation 16 showing poor convergence
at 75% deviation tolerance

(b) deviation 17 showing poor convergence
at 50% deviation tolerance

Figure 7.10: Examples to illustrate the effect of the "deviation tolerance" para-
meter. "Deviation tolerance" parameter set to 100%

7.2 Consistency

When overlapping iteration steps are performed concurrently, race conditions oc-
cur. These experiments were run to see what effect these race conditions have on
the consistency of the convergence, that is, how much the convergence plots differ
for the same algorithm settings across multiple runs. All experiments in this sec-
tion had 16 threads and 100% deviation tolerance. The results for an experiment
with 25% significant overlap is shown in Figure 7.11. The results for an exper-
iment with 50% overlap is shown in Figure 7.12. The results of an experiment
with 100% significant overlap, and thus ideally no race conditions, are shown in
Figure 7.13. The colors in the plots are read as follows: green is SSIM of phase
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image, orange is SSIM of amplitude image, blue is (1 - MSE) of amplitude image.

Figure 7.11: Convergence of 4 runs with 25% significant overlap
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Figure 7.12: Convergence of 4 runs with 50% significant overlap
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Figure 7.13: Convergence of 4 runs with 100% significant overlap

7.2.1 Convergence and quality

To get a better idea of how resolution, perceived quality and the image quality
metrics (SSIM and MSE) compare, a selection of USAF target phase images were
selected from the data produced by the experiments above, and sorted according
to SSIM. Sample phase images with SSIM in the interval [90, 100] are shown in
Figure 7.14. Phase images with SSIM of 90 and below are shown in Figure 7.15.

7.3 Running time and utilisation

This section shows running times and utilisation (threads per iteration step batch)
for all the performance experiments. Table 6.9 shows all timing, utilisation and
phase SSIMs for all performance experiments. Figure 7.16 shows the central se-
lections of the phase image recovered from the performance experiment with
the best and with the worst SSIM relative to baseline, together with the SSIM of
the baseline experiments using 10 iterations and 20 iterations (the 20 iterations
baseline is the baseline used for all experiment, and thus has a SSIM of 1).
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(a) SSIM in the range [0.95, 1.00] (Only result
fitting criteria)

(b) SSIM in the range [0.90, 0.95]

Figure 7.14: Examples of phase images with SSIM within [0.90, 1.00]
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(a) SSIM in the range [0.85, 0.90]

(b) SSIM in the range [0.80, 0.85]

(c) SSIM below 80

Figure 7.15: Examples of phase images with SSIM below 0.90
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Table 7.1: Results for the performance experiments, sorted by descending wall
clock time.

Experiment Wall clock Processor Max Avg. SSIM
name time time threads threads phase

devitaion 17 30.56 288.21 16 11.27 0.85
devitaion 14 34.04 255.97 16 8.88 0.84
devitaion 18 34.79 277.50 16 6.98 0.85
deviation 15 39.51 230.43 16 6.98 0.87
deviation 5 40.81 179.48 8 6.37 0.85
deviation 11 41.68 197.81 16 6.23 0.85
deviation 12 41.70 197.69 16 6.23 0.85
deviation 9 42.85 182.58 8 6.10 0.86
deviation 1 42.92 183.33 8 6.10 0.83
deviation 2 44.91 180.59 8 5.64 0.85
deviation 6 44.94 182.30 8 5.63 0.86
deviation 3 50.10 180.58 8 4.80 0.87

lessStrictQueue 3 54.15 166.08 4 3.96 0.83
lessStrictQueue 4 54.22 166.37 4 3.96 0.82

strictQueue 2 54.71 165.04 4 3.90 0.81
lessStrictQueue 2 99.55 175.47 2 1.99 0.86

strictQueue 1 103.42 175.27 2 1.98 0.85
lessStrictQueue 1 103.67 175.90 2 1.99 0.86

baseline 203.33 203.33 1 1 0.89
baseline-8 159.51 159.18 1 1 0.89
baseline-16 154.26 153.89 1 1 0.89
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Figure 7.16: Selection of phase results from strictQueue 2 (left) and deviation
15 (right) at 10 iterations. Baseline at 10 and 20 iterations shown below





Chapter 8

Discussion

In this chapter, the experimental results are discussed experiment by experiment,
with each discussion relating the current experiment to the previously discussed
experiments.

8.1 Baseline

Looking at the baseline results, it is clear that 20 iterations of the algorithm with
a single thread produces good results. Both MSE and SSIM show that the amp-
litude does not converge by much after around 5 iterations. The phase, however,
follows a flatter curve that benefits from the fact that a full 20 iterations were per-
formed, though the difference between 10 and 20 iterations is quite small. The
USAF resolution target from the Tian labs data is quite clearly resolved down to
the smallest target already at 10 iterations, though the smallest phase details are
somewhat clearer at 20 than at 10 iterations.

8.2 Multi-threaded

As soon as concurrent execution is introduced, the order of iteration steps changes,
as the original sequence contains only neighbouring iteration steps. Unless we per-
mit large overlap between concurrent iteration steps, two neighbouring iteration
steps will never be run in parallel. Concurrent steps are run in batches with a
number of threads given as algorithm parameter. It is important to note that if
there are fewer threads than valid iteration steps in a batch, some threads will
stay idle during batch execution. The stricter the queue is with respect to overlap
between iteration steps and deviation from the single threaded iteration step or-
der, the fewer iteration steps will be available for processing in a given batch on
average. Also, only one pupil update is performed per thread batch, meaning that
a higher number of concurrent threads reduces the pupil update frequency. This
might be a significant drawback for systems with large aberrations, but seemingly
not for the two data sets from the Tian labs microscope used in this thesis.

81
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8.2.1 Strict queue

The initial implementation of the queue ensures no overlapping iteration steps
can be executed concurrently. This round of experiments examines what increas-
ing the number of threads does to quality and reconstruction speed. It is clear from
the convergence graphs that a higher amount of threads lead to worse results. This
is likely due to the fact that finding a large amount of independent iterations will
result in iteration steps from many different locations in the dependency graph,
which leads to iterations being performed far out of order with respect to the
single-threaded version. This effect is most pronounced in the central iteration
steps. These steps are both high in intensity, containing a lot of information about
the full image, and close together. With strict respect to overlap, very few of these
central steps will be performed in parallel. Instead, they are spread across mul-
tiple thread batches, leading to a large deviation from single-threaded order in
the central iteration steps.

This proportionality between how much the iteration steps are out of order,
and how many threads are run per batch is clearly visible in the quality of the
reconstructions. Two or four threads per batch does not alter the order by much,
and the result converges close to the baseline. When 8 or 16 threads are run, the
reconstruction quality is reduced, especially in the phase image. It can be seen
on the convergence graphs that in these cases, while the amplitude still seem to
converge close to the baseline, the phase does not. It is worth noting that this
behaviour is similar in both data sets from the Tian labs microscope.

8.2.2 Less strict queue

The purpose of these experiments were to see what effect reducing the strictness
of the dependency graph had on the reconstruction quality. Like with the 100%
experiment from Section 8.2.1, the convergence towards baseline end up at much
lower similarity and becomes much more erratic when the number of threads are
set to 8 or 16. The 2 and 4 thread experiments, on the other hand, maintain the
smooth convergence in all cases, and converges close to baseline

In the case of 8 iterations, the reduced overlap strictness seems to improve the
image of the dog stomach when looking at strictQueue 3 alongside lessStrictQueue
5 and lessStrictQueue 6 for the dog stomach data. The Tian labs USAF data also
shows some improvement, at least in the 50% overlap experiment lessStrictQueue
6, which shows a relativly smooth converence in the direction of the baseline,
with the exception of the jump between 12 and 13 iterations. The 16 iteration
experiments have been run with 100, 75, 50, 25 and 0 percent overlap strictness.
However, it does not seem to help, as the phase keeps converging to other optima
than the baseline.

The 2 and 4 thread experiments show that the algorithm works well in its
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basic form with few threads. The focus of the experiments in Section 8.2.3 were
thus to investigate what a stricter policy on how much the order of iteration steps
can deviate from the single thread order can do to improve the convergence even
when many concurrent threads are used.

8.2.3 Deviation tolerance

The main observation from this group of experiments is that enforcing an itera-
tion step order closer to the single threaded baseline does improve quality, and
can turn parameter combinations that previously led to ill-behaved convergence
into well-behaved convergence. An example is "lessStrictQueue 8" with a phase
SSIM ending up at around 0.40 vs "deviation 18" with a phase SSIM relative to
baseline of 0.90. Both experiments have 16 threads and "significant overlap" of
50%, but "deviation 18" has 25% deviation tolerance, while "lessStrictQueue 8"
has 100% deviation tolerance. "Deviation 17" has 50% deviation tolerance, which
also gives a reconstruction with phase SSIM of 0.85. However "deviation 16" with
75% deviation tolerance is ill behaved, and ends up with a phase SSIM of 0.72.
This indicates that the iteration step order produced by the priority queue when
the deviation tolerance is 75% or higher produces iteration steps that are signific-
antly out of order and greatly reduces reconstruction quality. However, as soon as
these are removed, further restrictions in iteration step order have less effect on
the reconstruction quality.

One explanation for this behaviour is that reordering iteration steps early in
an iteration damages convergence more than reordering later. In the spiral order
used as a base in all experiments starts at the center of the lens plane and works
its way outwards in an anticlockwise spiral. Iterations early in this sequence use
high intensity input images that have a large effect on the reconstruction relative
to the low intensity images associated with iterations further from the center of
the lens plane. Following the findings in previous works, the iteration step order
should go from high intensity images to low intensity images. However, forcing
the task-parallel algorithm to run a batch of for instance 8 iterations at once while
respecting the overlap between iteration steps will lead to the first thread getting
the center iteration, but following threads will get iteration steps much further out
from the center than the spiral order suggests. This is because all predecessors of
that center iteration step get locked when the first iteration step is marked as pro-
cessing. This leads to the central, early iteration being separated by many, out of
order iteration steps in the created order.

Thus, forcing the priority queue to serve null-operations when an iteration
step would be too out of order leads to the central iterations being performed one
by one. This increases reconstruction quality. However, as the iteration step order
progresses to lower intensity images, the queue allows for concurrent iteration
steps that are more out of order to increase available parallelism. The reason this



84 Øystein Krogstie@NTNU: Dynamic task parallel FPM

does not reduce reconstruction quality in the same way as reordering early itera-
tion steps most likely has to do with both the lower intensity, and way the spiral
order achieves the ideal of an order of descending intensity images.

The intensity of the input images tend to be proportional to the angle of illu-
mination, with direct illumination as the most intense, and illumination at great
angles the least. This means that the intensity will be roughly equal for iterations
corresponding to pupil shifts of the same magnitude. The spiral order exploits this
by first traversing the center, then the LEDs in a square around the center, then the
LEDs around that square and so on, until all iteration steps are performed. The es-
timation inherent in traversing in squares rather than circles does not seem to be
significant, as it has been shown in previous work[2] to match the true intensity
order well in terms of reconstruction quality. The main observation is: since the ob-
jective is to perform iteration steps in intensity order, iteration steps in the same
square can be reordered. This means that reordering late iterations from large
squares of similar intensity should not matter in terms of reconstruction quality. As
large squares span a large amount of iteration step sequence indices, late indexes
in a spiral sequence can be more freely reordered. As they more seldom overlap,
they can also be performed concurrently to a larger degree.

8.3 Consistency

It can actually be seen that even the experiments with 16 threads and no overlap
show different convergence between runs. Both the trajectory of convergence and
the end results differ. It makes sense that the experiments with many threads and
many race conditions in overlapping lens plane pixels differ, but the difference in
four runs of "strictQueue 4" are harder to explain. This means that interpreting
data from individual experiments must be done with some care, however when
running experiments on two data sets, the overall behaviour of both (ill vs well
behaved) seems to usually be equal across the two data sets. Execution time seems
to be more stable, only varying with a few seconds between equal experiments.
Thread utilisation seems constant for a given experimental setup.

8.4 Convergence and quality

Inspecting the selected Tian labs USAF target phase results shows that the smallest
resolvable lines and numbers does seem to follow SSIM relative to baseline, but
SSIM does not exactly correspond to exactly what numbers and lines are clearly
resolved. Clear quality loss is apparent when SSIM gets lower than 80, but even
in the case of "strictQueue 3", with a SSIM of 0.65, all lines are still somewhat
visible. It is important to keep in mind that these examples are sub-segments of
the full experiment result images. Some of the difference in terms of SSIM might
stem from low-frequency details or details not visible in the sub-segments. Overall
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though, it seems using SSIM to compare a baseline and other experiments does
give a usable indication of the resolution of the experimental results.

8.5 Running time and utilisation

When looking at the performance results, two things are apparent. The first is
that the wall clock time seems to be proportional to the average number of active
threads per batch in the algorithm. The second is that the reconstruction quality
(represented by the SSIM of the phase image relative to to baseline at 20 itera-
tions), stays within a fairly narrow range across the selected experiments. Slacking
the "deviation tolerance" parameter from 25% to 50% is seen to improve the run-
ning time at low or no cost to convergence. This holds when comparing "deviation
17" and "deviation 18", as well as when comparing "deviation 14" and "deviation
15" or "deviation 11" and "deviation 10". This can be explained by the principles
discussed in Section 8.2.3. As the primary job of the deviation tolerance metric is
to hinder large reorderings of early iteration steps, it needs to be set strict enough
to deny early large reorderings. Setting the deviation tolerance any stricter, how-
ever, primarily reduces available parallelism in later iteration steps, where the
reordering matters less. As the metric for "out of order" is relative to the base
sequence order of the iteration step under consideration, even a low deviation
tolerance will permit some concurrent execution of iteration steps late in the base
order. The tipping point for the Tian labs microscope and the Tian labs USAF tar-
get data seems to be be between 50% "deviation tolerance" and 75% "deviation
tolerance".

When interpreting the speedups, it is important to note that the pupil adjust-
ment, which is an expensive operation, is performed only once per thread batch.
If an experiment runs at on average 8 threads per batch, then the pupil is updated
8 times less than a single threaded version. This will further reduce running time,
and potentially also quality, compared to a single threaded experiment. Compar-
ing "baseline-1" with "baseline-8" and "baseline-16", it is clear that reducing the
pupil update frequency does reduce the running time. As "deviation 17" on aver-
age updates the pupil every 11.27 iteration steps, and "baseline-16" updates the
pupil every 16 iteration steps, comparing these experiment over-compensates for
the reduced computation time associated with the pupil estimation. Still, compar-
ing "baseline-16" and "deviation 17" does reveal a speedup of about 5 times.

8.6 Contributions to state of the art

The current state of the art of FPM reconstruction does contain both methods to
exploit data parallelism between independent sub segments of large input images,
and the data parallelism available at the iteration step level. However, little work
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exists on exploiting task parallelism at the iteration step level in FPM, even though
there exists multiple parallel solvers at this level for ptychography. This Section
will compare the priority queue based solver in this thesis to other parallel solv-
ers, especially in the parallel ptychography literature, and highlight similarities
and differences, as well as discuss the applicability of the priority queue parallel-
isation in a broader context.

8.6.1 Expanding the FPM priority queue

Comparing the priority queue approach with the independent path-approach de-
scribed in Xiu[38], one advantage of the queue is that maintaining a single recov-
ery object ensures that the phase remains constant across the full recovery object,
as recovering independent recovery object segments can lead to arbitrary constant
phase shifts. The results presented in Xiu do not include phase images for the FPM
reconstructions. Another advantage of the priority queue is that it can control the
overall iteration order, while the different paths in the independent-path approach
can progress in arbitrarily different orders relative to intensity, and is thus most
likely a method that works better in ptychography than FPM. A third advantage of
the priority queue is that is handles overlap in a controllable way that preserves a
configurable amount of redundancy, while the independent path-algorithm parti-
tions the iteration steps such that the redundancy in the border regions disappears.

Another example of a solver for the phase recovery problem that is parallel
at the sub-iteration level has been demonstrated in ptychography using the dif-
ference map method as base by Dong[34], it is not entirely parallel at the object
update step precisely because the implementation divides the sub-iterations into
partitions that are unaware of the overlaps. In the case of ptychography, a prior-
ity queue aware of the overlap constraint could dynamically distribute iterations
that could be written to the object safely, for both distributed and non distributed
implementations. FPM is in this case an even more restrictive case, as it contains
iteration step order as a constraint as well as overlap.

Broader applicability

However, while the priority queue based approach as it is described in this thesis
requires a shared memory, many of the related methods do not. This allows them
to be more easily parallelisable across a distributed system. However, while the
priority queue and thus iteration step control is centralised, it does not mean that
memory has to be. Using a batch based method such as in this thesis would allow
for a synchronisation step where each threads, instead of writing to the shared
memory, performs a write to the memories of all other nodes. As the overlap con-
straint is maintained, this write can be set to be as race condition free as desired.
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It does thus seem that the concept of a dynamic, central structure that can
accommodate multiple constraints and cost functions to distribute and manage
multi threaded solvers of iterative phase recovery has potential both in FPM and
ptychography, providing a new tool for parallelising algorithms in this family. The
ability of the priority queue to monitor the overall state of the executing algorithm
permits cost functions that can respect multiple constraints. In the case of ptycho-
graphy, it can respect the overlap between iteration steps. In FPM, the addition
of a cost function for out-of-order execution improves recovery quality while still
allowing exploitation of task parallelism.

The overall structure of the phase retrieval problem in ptychography and FPM,
with multiple inputs in different domains that all constrain the solution to be re-
covered, stems from the origins of the technique, which is the Gerchberg-Saxton
algrorithm [45]. This algorithm was further generalised by Fienup[14], and shown
to be related (equivalent in the case of a single intensity measurement) to a steep-
est descent method. What makes it parallelisable in the case of phase retrieval is
the fact that the search direction gradient is only computed for a sub region of the
recovery object: in the case of FPM, this sub region is defined by the shifted pu-
pil. As long as the search gradient of two different iteration steps do not overlap,
they can both be applied to the lens plane estimate at the same time. No strict
dependency between iterations arise before one iteration must read or write to
an overlapping region in the lens plane. As has been shown in the experiments,
when performing phase recovery in FPM, the order of iterations also matters.

However, as the fundamental structure of the alternating projections method
underlying both FPM and ptychography is what allows the priority queue method
presented in this thesis to work, any other algorithms based on the same prin-
ciples will be potential candidates for parallelisation using this method. Not all
algorithms in this family will be parallelisable however, a counterexample is the
algorithm for pupil estimation, where all constraints are used to update the whole
of the pupil, and thus are all dependent. To work around it in the context of FPM
with pupil recovery, the pupil update algorithm had to be changed to update the
pupil less. In our data sets this did not reduce quality by any significant amount,
according to the performance experiments. However, this might be a more expens-
ive trade-off when reconstructing an object imaged by a more aberrated imaging
system.





Chapter 9

Conclusion and future work

In this thesis, a new task-parallel approach to solving the phase recovery problem
in Fourier Ptychography has been presented, developed and validated. It has been
shown that task parallelism at the sub-iteration level can be exploited in iterat-
ive FPM recovery schemes, albeit within certain constraints. A task parallel FPM
implementation must contain a way of distributing work. If this method respects
the overlaps between sub-iterations, it is shown to introduce a reordering of the
sub-iterations when compared to the single threaded baseline. As the order of
iterations are important, this can cause visual artefacts and reduced reconstruc-
tion quality. By restricting how far out of order sub-iterations are allowed to be
performed, the balance between reconstruction quality and available concurrency
can be adjusted. Experiments performed shows that concurrency can be combined
with only a small reduction in reconstruction quality.

The fact that it is possible to parallelise the iterative FPM algorithm illustrates
that even though the mathematical formulation of an algorithm does not permit
concurrency, it might still exist upon more careful inspection of the problem. This
concurrency might come at a price in terms of the quality of the output. In some
cases, this quality degradation might cause the parallelised algorithm to become
unusable. However, by identifying what factors in the concurrent implementation
causes result degradation compared to the iterative one, they can be managed
and balanced to the point where the attained speedup is more beneficial than the
reduced quality. For instance, in the experiments in this thesis, a speedup of 6.65
was attained when running the algorithm with 16 threads rather than 1, and the
difference in SSIM relative to baseline between the 16 thread version and the 1
thread version was only 0.04.

When considering iterative algorithms however, this trade-off must be com-
pared to the speedup/quality trade-off associated with running more/less itera-
tions. For instance, to get a speedup of 5, one could also reduce the number of
run iterations down by a fifth. However, as the number of iterations in our timing
experiments are 10, this would mean running only one or two iterations. Looking
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at the shape of the convergence graphs, it is clear that the low starting point and
initial rapid convergence per iteration makes this trade-off compare unfavourably
in this case

Another advantage of identifying new ways of parallelise iterative algorithms
at the task level is that it applies to a wider range of computers than just data par-
allel machines. This thesis has only examined a task-parallelised version of FPM
recovery, and the shown speedups at a low computational cost are obtained not
on a GPU, but on a multi core CPU. However, this does not mean that the task-
parallel implementation doesn’t benefit GPUs. Rather, it serves as another source
of parallelism that is orthogonal to the more commonly exploited data parallelism.
This means that both forms of parallelism can be exploited at the same time. In
the case of FPM, the amount of data parallel work that can be offloaded is limited
by the size of the segments. With more threads, and more in-flight segments, the
amount of available work for the GPU grows, making it more likely that the GPU
can be run at capacity.

There are many ways to implement FPM recovery algorithms. There are mul-
tiple different iterative methods, imaging system models, aberration correction
and denoising schemes. The work load can be divided between compute units in
by different strategies, both at segment level and iteration level. This thesis is a
contribution to the toolbox of techniques that can be used to implement efficient,
high quality FPM reconstruction, and hopefully a step on the path towards a true
near real-time or real-time FPM microscope system.

9.1 Future work

A disadvantage of the implementation presented in the thesis is that require a lot
of reading and writing into a common buffer (the lens plane estimate). This works
well on a single GPU or a single CPU, but if the computations are distributed, the
latency of moving memory from the central buffers to the distributed processors
might introduce considerable overhead. Finding a way of allocating batches of
sub-iterations to different processors such that each batch only needs to read and
write to the main buffer once would reduce the memory overhead, and make the
algorithm more suited for distributed systems. Also, investigating the role the pu-
pil recovery plays, and the effect of reducing the frequency of pupil updates should
be a priority. This has not been a focus in this work, even though all multi threaded
experiments reduce the pupil update frequency to increase available parallelism.

Seeing how essential the order of sub-iterations are for the quality of the final
reconstruction, an investigation of different recovery step orders, with focus on
developing schemes that are parallelisable might yield more efficient scheduling
schemes that permit more concurrency at a lower quality cost.
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Another future goal is to combine the GPU acceleration techniques demon-
strated in Trelands master[4] and the task parallel methods used in this thesis, to
benefit from the speedups for both of them. Furthermore, a method of segmenta-
tion and recombination of large input images due to coherence requirements and
reconstruction quality considerations should be part of the implementation.

As subdividing the main image into segments unlocks task parallelism, an in-
vestigation into the parallelism/result quality trade-off in aggressively subdividing
the input into a large, task parallel collection of small segments would also be in-
teresting to research. How small can the segments be made before serious edge
effects or other problems arise?.

Also, as mentioned in chapter 4, several more inherently parallel formulations
of the phase recovery problem exist and are used in Ptychography. Implementing
these for FPM and examining ways to exploit the parallelism inherent in them in
the context of Fourier ptychography should also be considered.

To help evaluate and validate future work on FPM recovery algorithms, it
would be useful to have a benchmark suite with validation experiments using
data from multiple microscopes, exact ground truths and multiple quality met-
rics. As is, any work presenting a new version of FPM recovery must contain its
own test suites, making it harder to compare the quality of experiments and the
quality of the results. A suite like this could also be a useful reference for different
methods both FPM image acquisition and FPM image recovery.

9.1.1 Framework for optimising and parallelising ptychographic re-
constructions

To lift method up to a more broadly applicable level, it would be valuable to
try and formulate priority queues for the iterations in other ptychographic and
Fourier ptychographic algorithms, as well as investigating whether the structure
other iterative algorithms based on enforcing multiple constraints in one or more
domains like for instance tomography can be mapped and exploited by similar
techniques. Taking the sudoku solver described in Schaad [39] as an example, the
method for parallelising with the priority queue method looks as follows:

1. Identify the domain we are reconstructing. In the sudoku case, it is a 9 by
9 grid each containing a column with nine spaces.

2. Identify in what domains the constraints are enforced. In FPM this is the
lens/Fourier plane and the image planes, in the sudoku solver all constraints
are placed in the sudoku domain

3. Now the overlaps between constraint adjustments must found. In the FPM
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case this is derivable from the pupil size in the lens plane and the shifts
between each iteration step. In the sudoku case, the dependencies are de-
termined by which row/column/3by3 group overlaps.

4. With the overlaps in place, other cost functions related to the desired iter-
ation order can be introduced. In FPM this is the order metric, while the
sudoku solver does not have any obvious order requirements. During the
implementation process, however, factors that should be included in a cost
function might become apparent.

5. With the priority queue set up with overlaps and cost function, the next
step is to decide on in what manner threads should be assigned work from
it. There are several options:

• Launch threads in batches with a fixed target number of threads, then
synchronise the updates. This is how the FPM implantation in this
thesis is set up

• Make the queue thread safe and set up a pool of worker threads that
can check out and check in work items in a distributed fashion. This
requires a stricter control of the common recovery object.

• Divide work items and recovery object across multiple compute units,
with synchronisation directed by the centralised priority queue. Care
must be taken to load balance the different compute units, and the
partition should be such that as little synchronisation as possible is
necessary.

Once all this is in place, the implementation can be performed on any suit-
able parallel machine or framework.
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Appendix A

Appendix A – Code listings

Selected sub-segments of the full implementation are provided in this section. For
access to the full code, contact anne dot elster at gmail dot com.

A.1 The priority queue

Code listing A.1: Generating the dependency graph

// create the dependency graph
void PriorityQueue::createDependencyGraph() {

// Decimal pixels
// lens radius scaled by how much of it we want to take into
// account when determining overlap
double lensDiameterPixelsSquared =

pow((this->params->lensDiameter / this->params->lensPixelSize) *
significantOverlap
, 2);

double curDistanceSquared = 0;

unsigned int curEdgeListStartIndex = 0;

unsigned int LEDindexStart = 0;
unsigned int LEDindexEnd = 0;

// For each node, check all others for overlap
for(unsigned int startNode = 0; startNode < this->seqLength; startNode++) {

this->indexList[startNode] = curEdgeListStartIndex;
LEDindexStart = baseSequence[startNode];
for(unsigned int endNode = 0; endNode < this->seqLength; endNode++) {

// To find LED index: translate from sequence index
// to image index to LED index
LEDindexEnd = baseSequence[endNode];

curDistanceSquared =
pow(this->offsetsX[LEDindexStart] - this->offsetsX[LEDindexEnd], 2) +
pow(this->offsetsY[LEDindexStart] - this->offsetsY[LEDindexEnd], 2);

if(curDistanceSquared < lensDiameterPixelsSquared
&& startNode != endNode) {
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this->neighbourLists.push_back(endNode);
curEdgeListStartIndex += 1;

}
}

}
}

Code listing A.2: Selecting an available node for work

// Returns sequence index of first free non-completed
// item in the queue. Returns -1 if none are available
// Locks all dependencies
int PriorityQueue::checkoutItem() {
// if no valid item is found, return -1 to indicate a noop
int resultNode = -1;
double orderMetric = 0;

// Linear search of the node list
for(unsigned int searchIndex = 0;

searchIndex < this->seqLength;
searchIndex++) {

// Found an unlocked item
if(lockList[searchIndex] == 0) {
orderMetric = getOrderMetric(searchIndex);

// Only check out if the order metric is within tolerance.
// Note that a tolerance of 1 makes this if statement
// always true
if(orderMetric >= (1 - this->seqDeviationTolerance)) {

lockDependencies(searchIndex);
resultNode = searchIndex;

this->numNotStarted -= 1;
this->numProcessing += 1;

break;
}

// Exhaust the list, just in case. Keeps looping either until
// a valid work item is found, or the list is empty

}
}

return resultNode;
}

Code listing A.3: Calculate the order metric

// For a given node, calculate how out of order processing it now would be
double PriorityQueue::getOrderMetric(unsigned int node) {
// Count finished up to but not including node
int numFinished = 0;

for(int nodeI = 0; nodeI < node; nodeI++) {
// completeList is 0 for unfinished and 1 for finished
numFinished += this->completeList[nodeI];
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}

// First node cannot have any completed predecessors
if(node == 0) {
return 1;

}
double result = 0;
result = (double)numFinished / (double)(node);
return result;

}

A.2 Iteration step

Code listing A.4: A full iteration step, without pupil estimate update

void performIterationStepCPU(int imgSeqI, iterationInfo *iterInfo,
iterationBuffers *workBuffers, double **grids) {

// First, we must fetch and copy the current part of the high
// res spectrum. For this we use a helper function that
// needs the offset at the top left corner, as well as the size
int LEDindex = iterInfo->iterationSequence[imgSeqI];
int imageIndex = iterInfo->LEDiToIMGi[LEDindex];

experimentParams *params = iterInfo->params;

// Offsets are relative to the center of the lens plane
// We explisitly round, as the pupilOffset arrays contains deciaml pixel offset
int cornerX;
int cornerY;
cornerX = ceil
(iterInfo->pupilOffsetsX[LEDindex] -
(double)(params->segmentWidthLowRes/2));

cornerY = ceil
(iterInfo->pupilOffsetsY[LEDindex] -
(double)(params->segmentHeightLowRes/2));

// High res segment has same number of pixels across planes
int lensPlaneCenterX = params->segmentWidthHighRes / 2;
int lensPlaneCenterY = params->segmentHeightHighRes / 2;

// These coordinates refer to the pixel position in image pixels
// (origin in top left corner)
cornerX += lensPlaneCenterX;
cornerY += lensPlaneCenterY;

// Copy the area of intrest into the work buffer estSelection
copySubBufferSquare(workBuffers->workingEstimate,

params->segmentHeightHighRes,
params->segmentWidthHighRes,
workBuffers->estSelection,
params->segmentHeightLowRes,
params->segmentWidthLowRes,
cornerX, cornerY);
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// With the buffer copied, we need to apply the pupil
multiplyBuffers(workBuffers->estSelection,

workBuffers->pupilEstimate,
workBuffers->estSelection,
params->segmentHeightLowRes, params->segmentWidthLowRes);

// Before propagating, we store a copy of the selection to use
// in the lens plane projection
copySubBufferSquare(workBuffers->estSelection,

params->segmentHeightLowRes,
params->segmentWidthLowRes,
workBuffers->estSelectionOld,
params->segmentHeightLowRes,
params->segmentWidthLowRes,
0, 0);

// Then we can propagate it to the detector plane
propagateField(workBuffers->estSelection,

workBuffers->estSelection, grids, LtoD,
params->segmentWidthLowRes, params->segmentHeightLowRes,
params);

double *curSegmentPointer =
iterInfo->allImageSegments +
imageIndex * params->segmentWidthLowRes * params->segmentHeightLowRes;

// Once propagated, we apply the first projection. This updates
// the estimate amplitude to match the amplitude from the image,
// while leaving phase unchanged

projectOntoImage(workBuffers->estSelection, curSegmentPointer, params);

// Then back
propagateField(workBuffers->estSelection,

workBuffers->estSelection, grids, DtoL,
params->segmentWidthLowRes, params->segmentHeightLowRes,
params);

// Store the image adjusted pupil
copySubBufferSquare(workBuffers->estSelection,

params->segmentHeightLowRes,
params->segmentWidthLowRes,
workBuffers->estSelectionImageAdjusted,
params->segmentHeightLowRes,
params->segmentWidthLowRes,
0, 0);

// Then we use the result to adjust the lens plane estimate
projectOntoLensPlane(workBuffers->workingEstimate,

workBuffers->pupilEstimate,
workBuffers->estSelection,
workBuffers->estSelectionOld,
cornerX, cornerY, params);

}
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A.3 Propagation and projection

Code listing A.5: Propagate light field between planes

// Caller must supply output buffer
// Can be performed in-place
void propagateField(double *planeBufferIn, double* planeBufferOut,

double **grids, propDir direction,
int width, int height,
experimentParams *params) {

double k0 = params->k0; // Illumination wavenumber (spatial period)
double dObjectLens = params->dObjectLens;
int flatIndex = 0;

double realIn; double imagIn;
double xOffset; double yOffset;

// Different final formulas for different planes
// They are all following the Fresnel model,
// but some have been simplified following Konda 2018

if(direction == LtoD) {
// first we copy the input over to the output
copySubBufferSquare(planeBufferIn, height, width,

planeBufferOut, height, width,
0, 0);

ifft2shift(planeBufferOut, height, width);
ifft2(planeBufferOut, height, width);

}

else if(direction == DtoL) {
// first we copy the input over to the output
copySubBufferSquare(planeBufferIn, height, width,

planeBufferOut, height, width,
0, 0);

fft2(planeBufferOut, height, width);
fft2shift(planeBufferOut, height, width);

}

else if(direction == OtoL){
std::cout << "propagate␣from␣object␣plane␣to␣lens␣plane\n";
// Calculate for each destination pixel
// L(z,w) = fft{O(x,y) * e^(k/2u * (x^2 + y^2))}

for(int row = 0; row < height; row++) {
for(int col = 0; col < width; col++) {
// For now: perform in rectangular coordinates
// Exponential function written with eulers identity
flatIndex = row*width + col;
realIn = REAL(planeBufferIn, flatIndex);
imagIn = IMAG(planeBufferIn, flatIndex);

// The object coordinates are first in the grid array
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xOffset = grids[0][flatIndex];
yOffset = grids[1][flatIndex];

// Setup phasor (phase factor)
// i* k/2u * (x^2 + y^2)
double phaseFactor =
(k0 / (2*dObjectLens)) *
(xOffset*xOffset + yOffset*yOffset);

double phasorReal = cRectRe(1.0, phaseFactor);
double phasorImag = cRectIm(1.0, phaseFactor);

// Then we multiply the phasor(magnitude = 1)
double resultReal = cMultRe(realIn, imagIn,

phasorReal, phasorImag);
double resultImag = cMultIm(realIn, imagIn,

phasorReal, phasorImag);

REAL(planeBufferOut, flatIndex) = resultReal;
IMAG(planeBufferOut, flatIndex) = resultImag;

}
}
// Then a fourier transform
fft2(planeBufferOut, height, width);

// And a shift
fft2shift(planeBufferOut, height, width);

}

else if(direction == LtoO) {

// first we copy the input over to the output
copySubBufferSquare(planeBufferIn, height, width,

planeBufferOut, height, width,
0, 0);

// Then we can ifftshift the output to make it reverse
// Fourier transformable
ifft2shift(planeBufferOut, height, width);
ifft2(planeBufferOut, height, width);

//TODO phase looks weird in end result.
// Comment out until resolved

// Then we multiply the inverse of the initial phase factor
for(int row = 0; row < height; row++) {
for(int col = 0; col < width; col++) {
// For now: perform in rectangular coordinates
// Exponential function written with eulers identity
flatIndex = row*width + col;
realIn = REAL(planeBufferOut, flatIndex);
imagIn = IMAG(planeBufferOut, flatIndex);

// The object coordinates are first in the grid array
xOffset = grids[0][flatIndex];
yOffset = grids[1][flatIndex];
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// Setup phasor (phase factor)
// -i * k/2u * (x^2 + y^2)
double phaseFactor =
-1 *
(k0 / (2*dObjectLens)) *
(xOffset*xOffset + yOffset*yOffset);

// DEBUG: testing phaseFactor
phaseFactor *= 1;

double phasorReal = cRectRe(1.0, phaseFactor);
double phasorImag = cRectIm(1.0, phaseFactor);

// Then we multiply the phasor(magnitude = 1)
double resultReal = cMultRe(realIn, imagIn,

phasorReal, phasorImag);
double resultImag = cMultIm(realIn, imagIn,

phasorReal, phasorImag);

REAL(planeBufferOut, flatIndex) = resultReal;
IMAG(planeBufferOut, flatIndex) = resultImag;

}
}

}
}

Code listing A.6: Projecting the current estimate onto the space of solutions con-
sistent with a given input image

// Store results back into buffer "estimate"
void projectOntoImage(double *estimate, double *measurement,

experimentParams *params) {

unsigned int rows = params->segmentHeightLowRes;
unsigned int cols = params->segmentWidthLowRes;
unsigned int flatIndex = 0;

// Use the standard atan convention: -pi < angle < pi
double estimatePhase = 0;
double estimateAmp = 0; // for debugging
double measuredAmp = 0;

double newRe = 0;
double newIm = 0;

// NOTE: measurement is real, estimate is complex
for(int row = 0; row < rows; row++) {
for(int col = 0; col < cols; col++) {
flatIndex = row*cols + col;

// Find phase and amp from estimate and recorded low
// res image respectively
estimatePhase =
cArg(REAL(estimate, flatIndex), IMAG(estimate, flatIndex));

estimateAmp =
cMag(REAL(estimate, flatIndex), IMAG(estimate, flatIndex));
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measuredAmp = measurement[flatIndex];

// Energy adjustment
// (due to difference in scaling constant size between
// low resolution segment and high resolution estimate:
// all coefficients have been scaled by upscaleFactor^2
// more in the high resolution transform than the low
// resolution one)
measuredAmp *= (params->upscaleFactor *

params->upscaleFactor);

newRe = cRectRe(measuredAmp, estimatePhase);
newIm = cRectIm(measuredAmp, estimatePhase);

// Translate back into rectangular coordinates and store
REAL(estimate, flatIndex) = newRe;
IMAG(estimate, flatIndex) = newIm;

}
}

}

Code listing A.7: Uses the image projection to create a search direction for the
lens plane estimate. Several methods for calculating step length is provided, but
the quasi Gauss-Newton is the one used in this thesis

// Stores result in the newEstimate buffer
// Makes no assumptions about pupil size,
// iterates over all pixels
void projectOntoLensPlane(double *workingEstimate, double *pupilEstimate,

double *curSelection, double *curSelectionOld,
int cornerX, int cornerY, experimentParams *params) {

unsigned int rows = params->segmentHeightLowRes;
unsigned int cols = params->segmentWidthLowRes;
unsigned int flatIndex = 0;

// Simplest scheme, just replace the old segment with the new
// only guarantees local convergence, but hey, it’s something
if(params->lensProjectionMethod == PROJECTION_COPY) {
// Simply pupil filter the result of the projection
multiplyBuffers(curSelection, pupilEstimate, curSelection,

params->segmentHeightLowRes, params->segmentWidthLowRes);

}

// GSF. If pupil is non-ideal, this will provide a better step size (?)
// If the pupil is ideal, this reduces to PROJECTION_COPY
else if(params->lensProjectionMethod == PROJECTION_GSF) {
// O_upd = O_old + (conj(P) / max(abs(P))^2) * (O_img - O_old)

double pupilAbsMax = findAbsMaxBuffer(pupilEstimate, rows, cols);
double pupilAbsMaxSquareInverse = 1/(pupilAbsMax * pupilAbsMax);
double diffRe = 0;
double diffIm = 0;

double pupilConjRe = 0;
double pupilConjIm = 0;
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double scaledDiffRe = 0;
double scaledDiffIm = 0;

// Go pixel by pixel
for(int row = 0; row < rows; row++) {
for(int col = 0; col < cols; col++) {

flatIndex = row*cols + col;

//Difference between image-projected estimate and old estimate
// (O_img - O_old). This is the direction vector of the recovery

diffRe =
REAL(curSelection, flatIndex) -
REAL(curSelectionOld, flatIndex);

diffIm =
IMAG(curSelection, flatIndex) -
IMAG(curSelectionOld, flatIndex);

// Conjucate of pupil for scaling
// conj(P)
pupilConjRe = REAL(pupilEstimate, flatIndex);
pupilConjIm = -IMAG(pupilEstimate, flatIndex);

// Scale difference by conjugate pupil
// conj(P) * (O_img - O_old)
scaledDiffRe = cMultRe(pupilConjRe, pupilConjIm, diffRe, diffIm);
scaledDiffIm = cMultIm(pupilConjRe, pupilConjIm, diffRe, diffIm);

// Scale further by inverse of squared absolute pupil
// (conj(P) / max(abs(P))^2) * (O_img - O_old)
scaledDiffRe *= pupilAbsMaxSquareInverse;
scaledDiffIm *= pupilAbsMaxSquareInverse;

// Write updated version
// O_upd = O_old + (conj(P) / max(abs(P))^2) * (O_img - O_old)
REAL(curSelection, flatIndex) =
REAL(curSelectionOld, flatIndex) + scaledDiffRe;

IMAG(curSelection, flatIndex) =
IMAG(curSelectionOld, flatIndex) + scaledDiffIm;

}
}

}

// Estimation of gauss newton method for non-linear optimisation
// Good balance between computation time and reconstruction quality,
// robust to noise and system errors
else if(params->lensProjectionMethod == PROJECTION_GAUSS_NEWTON) {
// O_new = O_old +
// alpha * (abs(P)/max(abs(P))) * conj(P) * 1/(abs(P)^2 + delta) *
// (O_img - O_old)

double pupilAbsMax = findAbsMaxBuffer(pupilEstimate, rows, cols);
double pupilAbsCur = 0;
double pupilConjRe = 0;
double pupilConjIm = 0;

double diffRe = 0;
double diffIm = 0;

double scaledDiffRe = 0;
double scaledDiffIm = 0;
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for(int row = 0; row < rows; row++) {
for(int col = 0; col < cols; col++) {
flatIndex = row*cols + col;

// Difference between image-projected estimate and old estimate
// (O_img - O_old)
diffRe =
REAL(curSelection, flatIndex) - REAL(curSelectionOld, flatIndex);

diffIm =
IMAG(curSelection, flatIndex) - IMAG(curSelectionOld, flatIndex);

// Abs(P)
pupilAbsCur = cMag(REAL(pupilEstimate, flatIndex),

IMAG(pupilEstimate, flatIndex));

// Pupil conjugate at this pixel
// conj(P)
pupilConjRe = REAL(pupilEstimate, flatIndex);
pupilConjIm = -IMAG(pupilEstimate, flatIndex);

// Scale difference by conjugate pupil
// conj(P) * (O_img - O_old)
scaledDiffRe = cMultRe(pupilConjRe, pupilConjIm, diffRe, diffIm);
scaledDiffIm = cMultIm(pupilConjRe, pupilConjIm, diffRe, diffIm);

// Scale difference by alpha
scaledDiffRe *= params->gnStepFactor;
scaledDiffIm *= params->gnStepFactor;

// Scale by abs(P)/max(abs(P))
scaledDiffRe *= (pupilAbsCur/pupilAbsMax);
scaledDiffIm *= (pupilAbsCur/pupilAbsMax);

// Scale by 1/(abs(P)^2 + delta)
scaledDiffRe *= 1/(pupilAbsCur*pupilAbsCur + params->gnNumStabilityConst);
scaledDiffIm *= 1/(pupilAbsCur*pupilAbsCur + params->gnNumStabilityConst);

// Write updated version
REAL(curSelection, flatIndex) =
REAL(curSelectionOld, flatIndex) + scaledDiffRe;

IMAG(curSelection, flatIndex) =
IMAG(curSelectionOld, flatIndex) + scaledDiffIm;

}
}

}

/*
// Make sure it’s properly pupil filtered
multiplyBuffers(curSelection, pupilEstimate, curSelection,

params->segmentHeightLowRes, params->segmentWidthLowRes);
*/

// After projection, replace old section with new
// Subract the old selection
subtractSubBufferSquare(curSelectionOld,

params->segmentHeightLowRes,



Chapter A: Appendix A – Code listings 107

params->segmentWidthLowRes,
workingEstimate,
params->segmentHeightHighRes,
params->segmentWidthHighRes,
cornerX, cornerY);

// Add the new
addSubBufferSquare(curSelection,

params->segmentHeightLowRes,
params->segmentWidthLowRes,
workingEstimate,
params->segmentHeightHighRes,
params->segmentWidthHighRes,
cornerX, cornerY);

}

Code listing A.8: Uses the image projection to create a search direction for the
pupil plane estimate, and a quasi Gauss-Newton method for step length

void updatePupilEstimate(double *pupilEstimate,
double *workingEstimate,
double *curSelectionOld,
double *curSelectionImageAdjusted,
experimentParams *params) {

int rows = params->segmentHeightLowRes;
int cols = params->segmentWidthLowRes;
unsigned int flatIndex = 0;

double alpha = params->gnStepFactor;
double delta = params->gnNumStabilityConst;

// Direction of recovery
double dirVecRe = 0; double dirVecIm = 0;

// Scaling factors from lens plane function
double lensAbs = 0;
double lensAbsMax =
findAbsMaxBuffer(workingEstimate,

params->segmentHeightHighRes,
params->segmentWidthHighRes);

// abs(L) / max(abs(L))
double lensAbsOverMax = 0;
// 1/(abs(P)^2 + delta)
double inverseLensSquarePlusDelta = 0;

double lensConjRe = 0;
double lensConjIm = 0;

for(int row = 0; row < rows; row++) {
for(int col = 0; col < cols; col++) {
flatIndex = row*cols + col;

// Setup direction vector
dirVecRe =
REAL(curSelectionImageAdjusted, flatIndex) -
REAL(curSelectionOld, flatIndex);
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dirVecIm =
IMAG(curSelectionImageAdjusted, flatIndex) -
IMAG(curSelectionOld, flatIndex);

// Mulitply the difference by the lens plane conjugate
lensConjRe = REAL(workingEstimate, flatIndex);
lensConjIm = -IMAG(workingEstimate, flatIndex);

dirVecRe = cMultRe(dirVecRe, dirVecIm, lensConjRe, lensConjIm);
dirVecIm = cMultIm(dirVecRe, dirVecIm, lensConjRe, lensConjIm);

// Then the scalars
dirVecRe *= alpha;
dirVecIm *= alpha;

lensAbs = cMag(REAL(workingEstimate, flatIndex),
IMAG(workingEstimate, flatIndex));

lensAbsOverMax = lensAbs/lensAbsMax;
dirVecRe *= lensAbsOverMax;
dirVecIm *= lensAbsOverMax;

inverseLensSquarePlusDelta = 1/(lensAbs*lensAbs + delta);
dirVecRe *= inverseLensSquarePlusDelta;
dirVecIm *= inverseLensSquarePlusDelta;

// Write result
REAL(pupilEstimate, flatIndex) =

REAL(pupilEstimate, flatIndex) + dirVecRe;
IMAG(pupilEstimate, flatIndex) =
IMAG(pupilEstimate, flatIndex) + dirVecIm;

}
}

}

A.4 Setup and experiments
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Code listing A.9: Configuration file for the microscope used in the deviationTol-
erance 13 experiment

# Microscope configuration for the Tian labs dataset
LEDgap: 0.004

numLEDx: 32
numLEDy: 32

LEDcenterX: 14
LEDcenterY: 13

# All LEDs in a circle WITHIN a diameter 19 LEDs are lit
diaLED: 19

illLambda: 0.0000006292
magnification: 8.1485
NA: 0.1

# Meters
dLEDobject: 0.06753
dObjectLens: 0.0422

focalLength: 0.045

# camera pixels, 6.5 micrometers
detectorPixelSize: 0.0000065;
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Code listing A.10: Configuration file for the algorithm settings used in the devi-
ationTolerance 13 experiment

outputDir: experiments/deviationTolerance/USAF/13/images
inputDir: ../img/tianUSAF

imageFlipped: true
# perform model fit test during execution
meassureConvergence: true
# save the image for each iteration
saveAllIterations: true

resultAmpScaleFactor: 200

inputFullWidth: 2560
inputFullHeight: 2160

segmentWidthLowRes: 512
segmentHeightLowRes: 512

upscaleFactor: 4

# Place segment in center
segmentXstart: 800
segmentYstart: 824

bgNoiseThreshold: 1600
gnNumStabilityConst: 1
gnStepFactor: 0.1

lensProjectionMethod: PROJECTION_GAUSS_NEWTON
baseIterationOrder: SPIRAL_ANTICLOCKWISE

significantOverlap: 0.75
seqDeviationTolerance: 0.75
numThreadsCPU: 16
numThreadsGPU: 0
numIter: 20
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Code listing A.11: Master script for the deviationTolerance experiment suite

echo "Run␣the␣deviationTolerance␣experiments"
echo "Working␣directory" $(pwd)
echo "Running␣tian␣USAF␣target␣data"
NUM_EXP=18
echo "Running" $NUM_EXP "experiments␣over␣2␣datasets"
for i in $(seq 1 $(($NUM_EXP)))
do

CUR_DIR=./experiments/deviationTolerance/USAF/$i
echo "Running␣recovery..."
$CUR_DIR/runExperiment.sh

echo "Calculating␣convergence..."
./utilScripts/calcConvergence.sh $CUR_DIR/images \

experiments/baseline/images \
20 \
> $CUR_DIR/convergence.txt

echo "Generating␣plots..."
python3 ./utilScripts/plotConvergence.py \

$CUR_DIR/convergence.txt \
$CUR_DIR/convPlot.png

done

echo "running␣tian␣dog␣stomach␣data"
for i in $(seq 1 $(($NUM_EXP)))
do

CUR_DIR=./experiments/deviationTolerance/dog/$i
echo "Running␣recovery..."
$CUR_DIR/runExperiment.sh

echo "Calculating␣convergence..."
./utilScripts/calcConvergence.sh $CUR_DIR/images \

experiments/baselineDog/images \
20 \
> $CUR_DIR/convergence.txt

echo "Generating␣plots..."
python3 ./utilScripts/plotConvergence.py \

$CUR_DIR/convergence.txt \
$CUR_DIR/convPlot.png

done

echo "Experiment␣deviationTolerance␣complete!"
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A.5 FFTshifts

Code listing A.12: FFTshift, shifts positive frequencies above or at nyquist fre-
quency to closest negative alias

void fft2shift(double* data, int numRows, int numCols) {
// first reshuffle rows, then cols.
// inital implementaion: row by row, col by col, with buffer

// Swap columns
double* rowBuffer = (double*) malloc(sizeof(double)*2 * numCols);
double* colBuffer = (double*) malloc(sizeof(double)*2 * numRows);
int row, col, rowOffset, colOffset;

int realFreqsRow = floor(numCols/2) + (numCols%2);
int negFreqsRow = numCols - realFreqsRow;
int realFreqsCol = floor(numRows/2) + (numRows%2);
int negFreqsCol = numRows - realFreqsCol;

// Swap columns, row by row
for(row = 0; row < numRows; row++) {
rowOffset = row*numCols;

for(col = 0; col < negFreqsRow; col++) { // The negative freqs in front
REAL(rowBuffer, col) = REAL(data+(rowOffset*2), (col+realFreqsRow));
IMAG(rowBuffer, col) = IMAG(data+(rowOffset*2), (col+realFreqsRow));

}
for(col = negFreqsRow; col < numCols; col++) { // Then constant + positive
REAL(rowBuffer, col) = REAL(data+(rowOffset*2), (col-negFreqsRow));
IMAG(rowBuffer, col) = IMAG(data+(rowOffset*2), (col-negFreqsRow));

}
for(col = 0; col < numCols; col++) {// Copy back. Inefficient?
REAL(data+(rowOffset*2), col) = REAL(rowBuffer, col);
IMAG(data+(rowOffset*2), col) = IMAG(rowBuffer, col);

}
}

// Swap rows, column by colums
for(col = 0; col < numCols; col++) {
for(row = 0; row < negFreqsCol; row++) { // The negative freqs in front
colOffset = col;
REAL(colBuffer, row) =
REAL(data+(colOffset*2), ((row + realFreqsCol) * numCols));

IMAG(colBuffer, row) =
IMAG(data+(colOffset*2), ((row + realFreqsCol) * numCols));

}
for(row = negFreqsCol; row < numRows; row++) { // Constant + positive follows
REAL(colBuffer, row) =
REAL(data+(colOffset*2), ((row - negFreqsCol) * numCols));

IMAG(colBuffer, row) =
IMAG(data+(colOffset*2), ((row - negFreqsCol) * numCols));

}
for(row = 0; row < numRows; row++) {// Copy back. Inefficient?
REAL(data+(colOffset*2), row*numCols) = REAL(colBuffer, row);
IMAG(data+(colOffset*2), row*numCols) = IMAG(colBuffer, row);

}
}
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free(rowBuffer);
free(colBuffer);

}

Code listing A.13: inverse FFTshift, shifts negative frequencies to closest positive
aliases

void ifft2shift(double* data, int numRows, int numCols) {
// first reshuffle rows, then cols.

// inital implementaion: row by row, col by col, with buffer

// Swap columns
double* rowBuffer = (double*) malloc(sizeof(double)*2 * numCols);
double* colBuffer = (double*) malloc(sizeof(double)*2 * numRows);
int row, col, rowOffset, colOffset;

int realFreqsRow = floor(numCols/2) + (numCols%2);
int negFreqsRow = numCols - realFreqsRow;
int realFreqsCol = floor(numRows/2) + (numRows%2);
int negFreqsCol = numRows - realFreqsCol;

// Swap columns, row by row
for(row = 0; row < numRows; row++) {
rowOffset = row*numCols;

for(col = 0; col < realFreqsRow; col++) { // put the positive to the front
REAL(rowBuffer, col) = REAL(data+(rowOffset*2), (col+negFreqsRow));
IMAG(rowBuffer, col) = IMAG(data+(rowOffset*2), (col+negFreqsRow));

}
// Then then the negative to the back
for(col = realFreqsRow; col < numCols; col++) {
REAL(rowBuffer, col) = REAL(data+(rowOffset*2), (col-realFreqsRow));
IMAG(rowBuffer, col) = IMAG(data+(rowOffset*2), (col-realFreqsRow));

}
for(col = 0; col < numCols; col++) {// Copy back. Inefficient?
REAL(data+(rowOffset*2), col) = REAL(rowBuffer, col);
IMAG(data+(rowOffset*2), col) = IMAG(rowBuffer, col);

}
}

// Swap rows, column by colums
for(col = 0; col < numCols; col++) {
// Positive back in front
for(row = 0; row < realFreqsCol; row++) {
colOffset = col;
REAL(colBuffer, row) =
REAL(data+(colOffset*2), ((row + negFreqsCol) * numCols));

IMAG(colBuffer, row) =
IMAG(data+(colOffset*2), ((row + negFreqsCol) * numCols));

}
// Negative to the back
for(row = realFreqsCol; row < numRows; row++) {
REAL(colBuffer, row) =
REAL(data+(colOffset*2), ((row - realFreqsCol) * numCols));

IMAG(colBuffer, row) =
IMAG(data+(colOffset*2), ((row - realFreqsCol) * numCols));
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}
for(row = 0; row < numRows; row++) {// Copy back. Inefficient?
REAL(data+(colOffset*2), row*numCols) = REAL(colBuffer, row);
IMAG(data+(colOffset*2), row*numCols) = IMAG(colBuffer, row);

}
}

free(rowBuffer);
free(colBuffer);

}



Appendix B

Appendix B – Convergence data

This appendix contains the full set of convergence graphs from the "lessStrictQueue"
experiments and the "deviation" experiments.

B.1 "lessStrictQueue" experiment suite results

The graphs presented in this sections shows convergence for the relaxedQueue
experiments. The colors in the plots are read as follows: green is SSIM of phase
image, orange is SSIM of amplitude image, blue is (1 - MSE) of amplitude image.
All the image metric plots are relative to the baseline in Section 6.6.1 of the rel-
evant data set. Figure B.1, figure B.2 and Figure B.3 contain data from both USAF
and dog stomach data sets. Figure B.4 contains only dog data, Figure B.5 contains
only USAF.
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Figure B.1: Convergence of lessStrictQueue 1 and 2 for the two data sets
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Figure B.2: Convergence of lessStrictQueue 3 and 4 for the two data sets
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Figure B.3: Convergence of lessStrictQueue 5 and 6 for the two data sets
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Figure B.4: Convergence of lessStrictQueue 7 through 10 for the dog stomach
data
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Figure B.5: Convergence of lessStrictQueue 7 through 10 for the Tian USAF target

B.2 "deviation" experiment suite results

This section contains the convergence graphs of the deviationTolerance experi-
ments. Figures B.6-B.10 contain the convergence plots for the dog stomach data
set. Figures B.11-B.15 contain the convergence plots for the USAF data set. The
colors in the plots are read as follows: green is SSIM of phase image, orange is
SSIM of amplitude image, blue is (1 - MSE) of amplitude image. All the plotted
image quality metrics are relative to the relevant baseline in Section 6.6.1.
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(a) deviation 1 (b) deviation 2

(c) deviation 3 (d) deviation 4

Figure B.6: Convergence of deviation 1-4 on the dog stomach data set
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(a) deviation 5 (b) deviation 6

(c) deviation 7 (d) deviation 8

Figure B.7: Convergence of deviation 5-8 on the dog stomach data set
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(a) deviation 9 (b) deviation 10

(c) deviation 11 (d) deviation 12

Figure B.8: Convergence of deviation 9-12 on the dog stomach data set
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(a) deviation 13 (b) deviation 14

(c) deviation 15 (d) deviation 16

Figure B.9: Convergence of deviation 13-16 on the dog stomach data set

(a) deviation 17 (b) deviation 18

Figure B.10: Convergence of deviation 17-18 on the dog stomach data set
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(a) deviation 1 (b) deviation 2

(c) deviation 3 (d) deviation 4

Figure B.11: Convergence of deviation 1-4 on the USAF data set
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(a) deviation 5 (b) deviation 6

(c) deviation 7 (d) deviation 8

Figure B.12: Convergence of deviation 5-8 on the USAF data set
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(a) deviation 9 (b) deviation 10

(c) deviation 11 (d) deviation 12

Figure B.13: Convergence of deviation 9-12 on the USAF data set
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(a) deviation 13 (b) deviation 14

(c) deviation 15 (d) deviation 16

Figure B.14: Convergence of deviation 13-16 on the USAF data set

(a) deviation17

Figure B.15: Convergence of deviation 17-18 on the USAF data set
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Appendix C

Appendix C – Project poster
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