
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Martin Rebne Farstad

Understanding the Key Performance
Trends of Optimized Iterative Stencil
Loop Kernels on High-End GPUs

Master’s thesis in Computer Science
Supervisor: Magnus Jahre

June 2021M
as

te
r’s

 th
es

is

Martin Rebne Farstad

Understanding the Key Performance
Trends of Optimized Iterative Stencil
Loop Kernels on High-End GPUs

Master’s thesis in Computer Science
Supervisor: Magnus Jahre
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Problem Description

Iterative Stencil Loops (ISLs) are the performance bottleneck of many problems
within computational science, and the objective of this thesis is to better under-
stand the key performance trends of ISLs on high-end GPUs. The student is hence
expected to conduct an extensive performance analysis of highly optimized ISL
kernels and thereby identify and explain key performance trends. Meeting this
objective will require significant implementation work. First, the student should
implement ISL kernels for both 2D and 3D problem domains. Second, they should
investigate the performance impact of commonly used optimizations such as us-
ing shared memory, thread coarsening, and autotuning. Third, the student should
identify numerous stencil types from a wide range of ISL applications and explore
to what extent performance trends are stencil-dependent. If time permits, the
student should investigate how the implemented code scales on tightly-coupled
multi-GPU systems such as the NVIDIA DGX-2.

iii

Abstract

Iterative Stencil Loops (ISLs) are the main computational kernel of many applic-
ations within computational science. This thesis explores the key performance
trends of ISLs on high-end GPUs through an extensive performance analysis of
individual and combinations of optimizations. The optimizations include utilizing
shared memory, thread coarsening, and autotuning thread block dimensions for
optimizing Reverse Time Migration stencils in 2D and 3D domains. We bench-
mark our ISL application on two modern GPU architectures: Pascal (P100) and
Volta (V100), observing up to 20.3x (12.7x) and 6.07x (3.34x) increased per-
formance for Volta’s shared memory kernel over Pascal’s baseline kernel in 2D
(3D) for 128 MiB and 8 GiB domains, respectively. We crucially find that device
memory write (local memory) throughput bottlenecks our 2D (3D) kernels on
Volta and suggests that cache utilization composes the performance bottleneck
for Pascal. Our optimizations improve the kernels’ performance over the archi-
tectures’ respective baseline kernels by up to 1.47x (1.36x) on Volta and 3.64x
(1.44x) on Pascal in 2D (3D) by improving the bottlenecks. Finally, we extend our
optimization approach by utilizing up to 16 V100 GPUs. Our multi-GPU scheme
achieves near-linear performance scaling by offloading the workload onto more
devices, increasing performance over single-GPU by up to 14.8x.

v

Sammendrag

Iterative stensil-løkker (ISL) er hovedberegningskjernen til mange applikas-
joner innen beregningsvitenskap. Denne masteroppgaven utforsker de viktig-
ste ytelsestrendene for ISL-applikasjoner ved hjelp av spesielt kraftige
grafikkprosessorer ved å gjennomføre en omfattende ytselsesanalyse av individu-
elle og kombinasjoner av optimaliseringer. Optimaliseringene inkluderer bruk av
delt minne, trådforgrovning og autotuning av trådblokkdimensjoner for å optim-
alisere "Reverse Time Migration"-stensiler for to- og tredimensjonale domener.
Vi evaluerer applikasjonen vår på to moderne arkitekturer: Pascal (P100) og
Volta (V100), og observerer ytelsesforbedringer på opp til 20.3x (12.7x) og 6.07x
(3.34x) for Volta’s kjerne med delt minne i forhold til Pascal’s enkleste kjerne
for todimensjonale (tredimensjonale) domener med domenestørrelser henholds-
vis på 128 MiB og 8 GiB. Vi oppdager at skrivehastigheten til hovedminnet (lokalt
minne) er en flaskehals for applikasjonen vår med to (tre) dimensjoner på Volta
og indikerer at hurtigminne utgjør flaskehalsen for Pascal. Optimaliseringene våre
forbedrer kjerneytelsen i forhold til arkitekturenes respektive enkleste kjerner med
opp til 1.47x (1.36x) på Volta og 3.64x (1.44x) på Pascal for todimensjonale (tred-
imensjonale) domener ved å forbedre flaskehalsene. Videre utvider vi optimal-
iseringsmetoden vår til å anvende opp til 16 V100 grafikkprosessorer. Ved å for-
dele arbeidsmengden mellom grafikkprosessorerene klarer vi å oppnå tilnærmet
lineær ytelsesskalering som øker ytelsen i forhold til én grafikkprosessor med opp
til 14.8x.

vii

Preface

The thesis builds upon our previous work [1] for the specialization project per-
formed in Fall 2020 for the TDT4501 course. The project applied the Jacobi
method to approximate the numerical solution of Laplace’s equation in 2D by
iteratively calculating a five-point stencil. The project utilized shared memory,
grid synchronization through Cooperative Groups, autotuned thread block dimen-
sions, multiple GPUs (up to four V100 GPUs in a different system), and a technique
to prevent unnecessary inter-GPU synchronization. However, we configured the
baseline thread block dimensions naively and did not optimize occupancy. Cru-
cially, the previous implementation was considerably more superficial, and the
analysis was shallow and gave limited insights.

Our previous project’s weaknesses motivated our decision to significantly ex-
tend our implementation, perform a more comprehensive performance analysis,
and locate the performance bottlenecks. This thesis is an extensive extension of
the previous work that includes optimizations that improve performance signific-
antly for different stencils in 2D and 3D. Additionally, introducing 3D presents
significant implementation complexities and different application behavior. This
thesis also generalizes the concept of stencil computations from a specific iterative
method to ISLs in general, targeting a broader audience.

As our previous work implemented the Jacobi method on GPUs, certain parts
of the background material are relevant for this thesis. However, we do not ex-
pect the reader to have read our previous work, so we base certain parts of our
background material on our previous work to include all overlapping aspects. This
adaptation is standard practice at NTNU, and we presently present which parts
of our background our thesis bases on and to which degree it overlaps with our
previous work:

• Section 1.1 bases certain parts of the GPU architecture theory on our previ-
ous work.
• Section 2.2 bases certain parts of the execution model and thread synchron-

ization theory on our previous work.
• Section 2.6 bases most parts on our previous work.

ix

Contents

Problem Description . iii
Abstract . v
Sammendrag . vii
Preface . ix
Contents . xi
Figures . xiii
Tables . xv
Code Listings . xvii
1 Introduction . 1

1.1 Motivation . 1
1.2 Assignment Interpretation . 3
1.3 Contributions . 3
1.4 Outline . 4

2 Background . 5
2.1 Iterative Stencil Loops . 5

2.1.1 Stencil Patterns . 5
2.1.2 Spatial and Temporal Blocking 7

2.2 General-Purpose GPU Computing Using CUDA 8
2.2.1 Execution Model . 8
2.2.2 Thread Synchronization . 10

2.3 The GPU Memory Architecture . 10
2.3.1 Registers . 10
2.3.2 Shared Memory . 11
2.3.3 Unified Cache . 12
2.3.4 High Bandwidth Memory . 13

2.4 Desirable GPU Characteristics . 14
2.4.1 Aligned and Coalesced Memory Accesses 14
2.4.2 Effective Resource Utilization 15
2.4.3 Avoiding Branch Divergence . 16

2.5 Single-GPU Optimization Approaches 16
2.5.1 Thread Coarsening . 16
2.5.2 Optimizing Thread Block Dimensions 18

2.6 Utilizing Multiple GPUs . 19
2.6.1 Domain Partitioning . 19
2.6.2 Ghost Zones . 20

xi

xii Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

2.6.3 Handling Inter-GPU Communication 21
3 Implementing Optimized ISL Kernels . 23

3.1 ISL Kernels . 24
3.1.1 The Baseline Kernel . 24
3.1.2 Coarsening the Baseline Kernel 26

3.2 Shared Memory ISL Kernels . 26
3.2.1 The Hybrid Shared Memory Kernel 26
3.2.2 Coarsening the Hybrid Shared Memory Kernel 29
3.2.3 The Padded Shared Memory Kernel 31
3.2.4 Coarsening the Padded Shared Memory Kernel 35

3.3 Launching ISL Kernels . 36
3.3.1 Allocating Resources . 36
3.3.2 Kernel Configuration . 38
3.3.3 Launching Single-GPU Kernels 40
3.3.4 Launching Multi-GPU Kernels 41

4 Experimental Setup . 43
4.1 Hardware Setup . 43
4.2 Measurements . 44

4.2.1 Kernel Timing . 44
4.2.2 Metric Collection . 45
4.2.3 Reporting Measurements . 45

4.3 Execution Configurations . 47
4.3.1 Stencils . 47
4.3.2 Stencil Configurations . 48

5 Results . 49
5.1 Optimizing ISL Kernels on the Volta Architecture 49

5.1.1 Shared Memory . 49
5.1.2 Thread Coarsening . 52
5.1.3 Autotuning . 55

5.2 Optimizing ISL Kernels on the Pascal Architecture 58
5.2.1 Shared Memory . 58
5.2.2 Thread Coarsening . 60

5.3 Multi-GPU . 62
6 Conclusion and Future Work . 65

6.1 Conclusion . 65
6.2 Future Work . 65

6.2.1 Spatial and Temporal Blocking 65
6.2.2 Stencil Patterns . 66
6.2.3 Iteration Patterns . 66
6.2.4 Case Studies . 67
6.2.5 Autotuning . 67
6.2.6 Improving Inter-GPU Communication 67

Bibliography . 69
A Autotuned Thread Block Dimensions . 75

Figures

1.1 An example distribution of a multi-core CPU vs. a many-core GPU . 2

2.1 Calculating a Jacobi iteration of an RTM stencil in 2D and 3D 6
2.2 Spatial blocking in 3D . 8
2.3 CUDA thread execution with different memory spaces 9
2.4 Memory hierarchy diagrams of the Pascal and Volta architectures . 13
2.5 Visualizing memory access pattern characteristics 14
2.6 Branch divergence . 16
2.7 Block-level thread coarsening . 18
2.8 Strip partitioning in 2D and 3D for multi-GPU 20

3.1 Shared memory layouts for the smem kernel in 2D and 3D 27
3.2 Shared memory layouts for the smem_coarsened in 2D and 3D 29
3.3 Increasing shared memory reuse through thread coarsening 31
3.4 Shared memory layout for the smem_padded kernel for 2D and 3D . . 32
3.5 Visualizing smem_padded’s prefetch stage 32
3.6 Shared memory layout for smem_padded_coarsened in 2D and 3D 36

4.1 Single-GPU and multi-GPU measurement distribution 46
4.2 Stencil configurations measured in Chapter 5 47

5.1 Kernel performance and metrics on Volta 50
5.2 Comparing stencil iterations on single-GPU: 8 vs. 1024 51
5.3 Comparing uncoarsened and coarsened kernels 52
5.4 Coarsened kernels with heuristic thread block dimensions in 2D . . 53
5.5 Coarsened kernels with heuristic thread block dimensions in 3D . . 54
5.6 Uncoarsened kernels (heuristic) vs. coarsened kernels (autotuned) 55
5.7 Coarsened kernels with autotuned thread block dimensions in 2D . 56
5.8 Coarsened kernels with autotuned thread block dimensions in 3D . 57
5.9 Comparing uncoarsened kernels (heuristic): Volta vs. Pascal 59
5.10 Uncoarsened vs. coarsened kernels (heuristic) on Pascal 60
5.11 Coarsened kernels (heuristic) in 2D and 3D on Pascal 61
5.12 Comparing multi-GPU domains on Volta: 8 GiB vs. 128 MiB 63
5.13 Comparing stencil iterations on multi-GPU: 8 vs. 1024 64

xiii

Tables

3.1 Constants frequently used in our ISL application 23
3.2 Kernels used in our ISL application . 24

4.1 DGX-2 vs. Idun cluster node . 43
4.2 Comparing the Tesla V100 and Tesla P100 GPUs 44

A.1 Autotuned 2D TB dimensions (blockDim.x, blockDim.y) 76
A.2 Autotuned 3D TB dimensions (blockDim.x, blockDim.y, blockDim.z) . . 76

xv

Code Listings

3.1 The base kernel . 25
3.2 The base stencil . 25
3.3 Global memory stencil accumulators 25
3.4 The base_coarsened kernel . 26
3.5 The smem kernel . 27
3.6 The smem stencil . 28
3.7 Hybrid global/shared memory stencil accumulators 28
3.8 The smem_coarsened kernel . 30
3.9 The smem_coarsened stencil . 30
3.10 The smem_padded kernel . 33
3.11 The smem_padded stencil . 33
3.12 Prefetching values into shared memory for smem_padded 34
3.13 Prefetch functions . 34
3.14 The smem_padded_coarsened kernel 35
3.15 Allocating GPU memory in parallel . 37
3.16 Transferring memory between host and GPUs in parallel 37
3.17 Maximizing dynamic shared memory allocation size 39
3.18 Distributing threads between the thread block dimensions 39
3.19 Configuring shared memory allocation size 39
3.20 Launching single-GPU kernels . 40
3.21 Utility function for configuring shared memory allocation size . . . 40
3.22 Transferring ghost zone elements between neighboring GPUs 41
3.23 Launching multi-GPU kernels . 42

xvii

Chapter 1

Introduction

1.1 Motivation

ISLs are the key computational kernel within a range of compute-intensive applic-
ations, including image processing, data mining, weather- and climate modeling,
as well as physical simulations such as seismic or fluid simulations [2, 3]. ISLs
are among the most important computational kernels of contemporary and fu-
ture applications, residing within the category of structured grids [4]. In a multi-
dimensional discretized grid, the method computes each element as a function of
its neighbors. The number of neighbors calculated depends on the number of di-
mensions at hand and the stencil’s size. This technique often simulates a time-step
(e.g., Conway’s Game of Life [5]) that can converge to a solution (e.g., iterative
methods [6]). Initially, ISLs were studied widely for CPU applications [7–10]. ISLs
often compose large parts of applications’ total execution time (up to 100% for
SPEC 2017’s Lattice Boltzmann Method [3, 11]), motivating the interest for of-
floading such computations onto high-performant accelerators [12].

Although initially proposed as a hardware-accelerator for computing spe-
cialized graphics computations in parallel [13, p. 8], Graphics Processing Units
(GPUs) extended their domain onto general-purpose computing by realizing high
performance through a highly parallel execution model by extensive latency
hiding. Utilizing the vast amount of threads for parallelism, GPUs became the
de facto hardware accelerator for compute-intensive applications within High-
Performance Computing. Meanwhile, energy-constrained environments make of-
floading stencil computations onto FPGAs also widely recognized [3, 14, 15]. Util-
izing GPUs as accelerators for processing ISLs has been studied extensively in the
last decade [2, 16–18]. ISLs’ widespread importance sparks the need for efficient
GPU implementations. However, as we will show later, the applications’ perform-
ance depends on the underlying GPU architecture. Therefore, this thesis studies
ISLs on two GPU architectures: Pascal and Volta.

As presented in Figure 1.1, the GPU differentiates itself from the CPU by al-
locating more on-chip area for execution units as a trade-off for cache and control
flow logic like branch predictors and prefetchers. The GPU’s programming model

1

2 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

Figure 1.1: The figure displays an example distribution of a multi-core CPU vs. a
many-core GPU. More transistors are devoted to computation in GPUs. From [19,
p. 2]. Reprinted with permission from Nvidia.

does not require such resources to find runtime parallelism because this is the pro-
grammer’s task. The GPU architectures emphasize high throughput through many
lower-frequency cores compared to the CPU’s few high-frequency cores. As a res-
ult, the GPU programming model’s weak spot is high latency, making applications
with limited parallelism better suited for CPUs than GPUs.

The GPUs employ an array of Streaming Multiprocessors (SMs) to achieve
extensive hardware parallelism [13, p. 68]. Each row in Figure 1.1’s simplified
GPU architecture layout represents an SM comprising an L1/unified cache, con-
trol units, and numerous execution units. GPUs also achieve significant parallelism
by employing fast context switches and lightweight threads [13, p. 90]. The ISLs’
grid-structured problem domains map elegantly to the many-core GPU architec-
tures. The cores’ incredible parallelism composes a powerful tool to solve ISLs.

The Compute Unified Device Architecture (CUDA) [19] serves as the primary
platform for Nvidia GPUs currently dominating the market, which we focus on in
this work. CUDA enables implementing ISLs on GPUs at a relatively low abstrac-
tion level but enables the programmer more detailed optimizations to prevent re-
dundant memory requests to the device memory (e.g., shared memory or register
caching [20]) or increase the number of in-flight memory requests (e.g., thread
coarsening [21, 22]). Furthermore, optimizing ISLs require significant attention
to memory access patterns to avoid redundant accesses to the device memory
[13, p. 158]. Moreover, using automatic code generation tools to aid optimization
is possible [12, 23]. However, modern GPU architectures improve ISLs’ perform-
ance inconspicuously for the programmer, making naive implementations highly
competitive [24]. Therefore, we wish to investigate the performance gap between
naive and more advanced implementations for contemporary architectures.

Modern domain workloads for ISLs rapidly exceed the capacity of a single

Chapter 1: Introduction 3

GPU, motivating the need to offload computation onto more GPUs. Distributing
workload between multiple GPUs is an excellent optimization for improving per-
formance. Additionally, multi-GPU also improves performance tremendously for
moderate domain sizes, offering a great optimization to combine with one or more
single-GPU optimizations. However, the addition of numerous GPUs comes at a
cost. Operating multiple devices requires creating GPU contexts associated with
each device. Furthermore, the GPUs’ asynchronous execution implies a need for
proper synchronization to ensure program correctness. The synchronization im-
plies an overhead to the application and requires synchronization through the host
or between the devices themselves. Finally, we need to make sure our multi-GPU
scheme is scalable by making the application’s source code handle an arbitrary
number of GPUs. Scalable multi-GPU applications can potentially increase per-
formance linearly with the number of GPUs added.

1.2 Assignment Interpretation

The problem description states that our main objective is to better understand the
key performance trends of ISLs on high-end GPUs through an extensive perform-
ance analysis of highly optimized ISL kernels. To state our interpretation of the
problem description, we define the following tasks:

T1 Implement an ISL application in 2D and 3D and explain the key performance
impacts of moving from 2D to 3D.

T2 Optimize the ISL application’s kernels through utilizing shared memory,
thread coarsening, and autotuning. Identify and explain the optimizations’
key performance-enhancing factor by localizing the application’s perform-
ance bottlenecks on high-end GPUs.

T3 Include numerous stencils from multiple ISL applications and explain to
which extent the performance trends depend on the stencil type.

T4 Compare the ISL application’s performance on different high-end GPUs to
learn whether our results are architecture-dependent.

T5 Implement a scalable multi-GPU scheme by distributing the workload
between more GPUs and analyze its scaling capabilities.

1.3 Contributions

We describe our contributions by highlighting their objective task in parentheses.
This thesis implements an ISL application in 2D and 3D (T1) and contributes a
thorough analysis into utilizing a combination of shared memory, thread coarsen-
ing, and autotuned TB dimensions (T2) for optimizing Reverse Time Migration
(RTM) stencils (T3). Our analysis finds that introducing shared memory achieves
the most stencil-dependent performance improvements (T3). Furthermore, we
propose a simplistic but powerful scheme for choosing thread block (TB) dimen-
sions heuristically. The approach maximizes occupancy, ensures correct execution,

4 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

and provides a baseline to compare against autotuned TB dimensions. Moreover,
we investigate the optimizations’ key performance trends on two modern GPU
architectures: Pascal and Volta, emphasizing the incredible performance improve-
ments achieved by upgrading from Pascal to Volta (T4).

Introducing shared memory kernels improves performance over the architec-
tures’ respective baseline kernels by up to 1.22x (1.01x) in 2D (3D) on Volta and
3.27x (1.43x) on Pascal for an 8 GiB domain. Applying thread coarsening improves
the kernels’ performance over the architectures’ respective baseline kernels by up
to 1.30x (1.10x) on Volta and 3.64x (1.44x) on Pascal in 2D (3D) for an 8 GiB
domain. Autotuning the coarsened kernels’ TB dimensions improves performance
over the baseline kernel by up to 1.47x (1.36x) on Volta. Comparing Volta’s ker-
nels to Pascal’s baseline kernel exhibits an incredible 20.3x (12.7x) performance
improvement for a 128 MiB domain and 6.07x (3.34x) for an 8 GiB domain in 2D
(3D).

Our analysis crucially finds that DRAM write (local memory) throughput bot-
tlenecks our 2D (3D) application on Volta (T2), indicating that moving from 2D
to 3D introduces significant register spilling (T1). Unfortunately, we do not have
permission to profile our application on Pascal. However, utilizing shared memory
has a significant impact on Pascal, indicating that cache utilization composes the
performance bottleneck for Pascal instead of DRAM throughput (T2).

Finally, we further improve the performance by partitioning the workload
between multiple GPUs (T5), keeping the domain sizes equal to the single-GPU
analysis. Consequently, the analysis focuses on strong scaling instead of weak scal-
ing, enabling a more direct comparison of multi-GPU against single-GPU optimiza-
tions. Furthermore, the implementation utilizes strip partitioning in 2D and 3D to
distribute the workload between devices, enlarging the partitions with ghost zones
to ensure correct execution. Our multi-GPU scheme’s performance improvements
closely resemble the number of GPUs utilized for most executions (T5), increasing
performance over single-GPU by up to 14.8x.

1.4 Outline

• Chapter 2 introduces the theoretical concepts required to understand the
presented implementation and refers to related work.
• Chapter 3 presents and explains the approach for implementing the optim-

ized ISL application and presents the source code.
• Chapter 4 presents the experimental setup for benchmarking the optimized

ISL application.
• Chapter 5 presents measurements and analyses our optimized ISL applica-

tion.
• Chapter 6 concludes our contributions and presents future work for improv-

ing the presented implementation.
• Appendix A presents the autotuned TB dimensions generated for our kernels

on a single GPU.

Chapter 2

Background

The following chapter introduces ISLs and describes multiple stencil patterns com-
monly used within scientific applications. Subsequently, we propose the motiva-
tion for using general-purpose GPU (GPGPU) computing to accelerate our ISL
application and describe multiple approaches for optimizing the implementation.

2.1 Iterative Stencil Loops

ISLs represent a significant number of compute-intensive applications within
High-Performance Computing [3]. ISLs traverse grids and iteratively update cell
values based upon their neighboring cells multiplied by a set of coefficients. For
every iteration, input cells are read from one buffer and updated in the other be-
fore swapping buffers to prepare for the next iteration. The discretized domains
range from one to three dimensions, representing a line (1D), plane (2D), or
cube (3D). Higher dimensions require calculating more neighboring cells, increas-
ing the GPU’s workload. The distance to neighboring elements within the linear
memory layout increases along with introduced dimensions, constituting offsets
of a line (plane) in 2D (3D) for accessing a value along the last dimension. Addi-
tionally, increasing the number of dimensions decreases each domain dimension’s
size due to limited GPU memory size.

2.1.1 Stencil Patterns

Different stencil patterns exist as a result of the characteristics of widely differ-
ent underlying methods. The vast number of patterns emerges as the number of
underlying methods is extensive. Koraei et al. [3] used three stencil patterns to
analyze ISLs on FPGAs: Jacobi, Gauss-Seidel, and RTM. In 2D (3D), their Jacobi
pattern featured a 3x3(x3) square (cube), while Gauss-Seidel formed an X-shaped
pattern within the same shape. Their RTM pattern featured a cross-shaped pat-
tern within a 5x5(x5) square (cube). This thesis focuses on RTM patterns only,
although we analyze the pattern differently; we utilize the same shape, although

5

6 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

(a) 2D

(b) 3D

Figure 2.1: Calculating a Jacobi iteration of the RTM stencil pattern in 2D and 3D.
The green, blue, and brown elements represent the stencil’s radius-sized neigh-
borhood within the X-, Y-, and Z-dimension, respectively. The red element repres-
ents the value written to the output buffer.

we study more RTM stencil sizes, observing the stencils’ impact on GPU resource
usage.

We define the stencil’s size as the stencil’s radius and define it as the number
of neighboring elements along each dimension from the center. Additionally, we
denote a given stencil with stencil radius r by Rr . Our ISL application uses an
input and output buffer for computing the stencil (Jacobi iterations [25, p. 12]).
Figures 2.1a and 2.1b display the RTM stencil, R4, in 2D and 3D, respectively.
The figures compute a Jacobi iteration using the center and neighboring values
from the input buffer and write an updated center value to the output buffer.
The figures’ colors emphasize the stencil’s properties: green, blue, and brown ele-
ments represent the neighbors read from the input buffer along the X-, Y-, and
Z-dimension, respectively. The red element represents the value written to the
output buffer. This procedure is repeated for all elements within the input buffer’s
domain and represents a single ISL iteration.

Chapter 2: Background 7

2.1.2 Spatial and Temporal Blocking

ISLs show considerable spatial locality utilizable by the GPU architecture’s caches.
Spatial blocking utilizes the caches more efficiently by processing subsets of the
domain that fit well into the caches. This technique reduces the pressure on slower
memory accesses, further increasing the performance. Temporal blocking reuse
input data within the cache before writing to the output buffer. Spatial blocking
and temporal blocking is prevalent for optimizing ISLs on CPUs [8, 26–28], GPUs
[2, 12, 16, 29, 30], and FPGAs [15, 31, 32].

Spatial blocking provides limited reuse opportunities by reusing each grid
point only a few times, depending on the stencil pattern. In general, spatial block-
ing is insufficient to transform memory-bound kernels into compute-bound [16].
Temporal blocking applies in combination with spatial blocking by calculating sub-
sequent iterations within the spatial block before fully computing the first iteration
for the whole domain [15].

Figure 2.2a visualizes the 3D-blocking algorithm, a commonly used technique
for dividing the input into overlapping axis-aligned three-dimensional blocks [16].
The scheme maps effortlessly onto TBs, with each thread handling a single ele-
ment within the block. The argument is similar for 2D-blocking in 2D. Unfortu-
nately, memory bandwidth essentially limits the scheme’s performance. However,
the technique imposes fewer requirements on the cache capacity compared to
more sophisticated approaches. Therefore, this thesis implements 3D-blocking to
ensure compatibility with an arbitrary domain size and proposes more sophistic-
ated blocking algorithms as future work.

Nguyen et al. [16] presented a 3.5D-blocking algorithm for ISLs on CPUs
and GPUs that combined 2.5D-spatial and 1D-temporal blocking using on-chip
memory. Figure 2.2b visualizes their 2.5D-blocking algorithm, which utilizes the
fact that every Z-value required grid values within a stencil radius’ range in Z-
direction to be resident within the cache. The approach performs blocking through
the XY plane and streaming through the third dimension. The authors argued that
streaming removes bandwidth requirements from the Z-direction by preventing
the same elements from being loaded multiple times, leading to substantial per-
formance improvements by achieving near-optimal memory bandwidth utiliza-
tion. However, this approach requires the cache capacity to include the blocked
data.

The authors further argued that temporal blocking is the only way to reduce
bandwidth further after implementing 2.5D blocking and provided thread-level
and data-level parallel algorithms to utilize computing resources fully. Further-
more, the authors argued that their 3.5D blocking scheme made the ISL ap-
plication compute-bound, increasing performance significantly by removing the
memory bandwidth dependency. Moreover, the authors argue that 4D block-
ing (3D-spatial + 1D-temporal) improves performance by reducing bandwidth
through temporal reuse but emphasize that it introduces significant overhead
compared to their 3.5D approach.

8 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

(a) 3D-blocking (b) 2.5D-blocking

Figure 2.2: Spatial blocking in 3D. Based on [16].

2.2 General-Purpose GPU Computing Using CUDA

2.2.1 Execution Model

CUDA is a parallel computing platform developed by Nvidia containing a pro-
gramming model extending multiple programming languages, including the C
programming language [19, p. 2]. The programming model enables programmers
to write kernels, essentially data-parallel functions using CUDA runtime libraries
for procedure calls and GPU device manipulation [19, p. 15]. CUDA utilizes the
Single Instruction Multiple Threads (SIMT) architecture to manage and execute
groups of 32 threads called warps. The architecture differs from the well-known
Single Instruction Multiple Data (SIMD) architecture by allowing multiple threads
in the same warp to execute independently, having a private instruction counter,
register state, and local memory space [13, p. 68-69]. The independent execution
enables multiple threads to issue equal instructions to arbitrary data rather than
a single thread issuing vector instructions across many data elements [33].

From the programmer’s perspective, threads organize into TBs with per-thread
private registers and access to per-block shared memory. The TBs compose an
execution grid with access to a global memory space containing per-SM L1 and
a global L2 cache [34, p. 6]. Figure 2.3 provides an overview of the execution
model, where the programmer decides the TB dimensions and grid dimensions.
When the GPU schedules TBs for execution to an SM, the warp scheduler dynam-
ically groups 32 threads into warps and executes the warps in lockstep across
available SMs. Three execution hierarchies exist from the hardware’s perspective:
Cooperative-Thread-Array (CTA), warp, and SIMD-lane [35]. Launching a ker-
nel maps TBs and threads onto CTAs and SIMD-lanes, respectively. Warp-level
execution remains transparent to the programmer unless the application utilizes
warp-level primitives (e.g., via warp shuffle functions [19, p. 168]).

All active threads within a warp execute the same instruction on different

Chapter 2: Background 9

Figure 2.3: CUDA thread execution with per-thread local, per-block shared, and
per-application global memory spaces. From [34, p. 6]. Reprinted with permission
from Nvidia.

10 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

data elements. The coalescer combines the threads’ memory requests into cache
requests, quickly brought back into an SM’s compute cores. If the request results
in a cache miss, the system allocates one Miss Status Holding Register (MSHR)
[36, 37, p. 2] and continues to search in the lower parts of the cache hierarchy.
The warp scheduler schedules another warp if the active warp’s request misses
the last level cache, hiding the expensive memory operation’s latency through
Thread-Level Parallelism (TLP). However, the cache can maximally serve as many
in-flight misses as the number of MSHRs, exposing the SMs to the total DRAM
access latency should no MSHRs be available [38].

2.2.2 Thread Synchronization

Simultaneous execution of a substantial number of concurrent threads requires
synchronization to prevent race conditions [13, p. 97]. A race condition implies
non-serialized access by concurrently executing threads to the same memory loc-
ation, resulting in unknown access orders. GPUs provide thread synchronization
at different granularities to battle this issue. Threads synchronize either explicitly
through barriers or implicitly when exiting kernels. CUDA 9 introduced Cooperat-
ive Groups (CG) [39] to provide synchronization capabilities at multiple granular-
ities, extending from warps to multiple grids. Previously, TB synchronization was
the only available synchronization method. However, synchronizing threads at a
granularity coarser than TBs using CG generally does not improve performance
[40], explaining our choice for sticking with implicit synchronization.

Li et al. [35] emphasized that current technology trends favor allocating more
lightweight CTAs for processing individual tasks more independently in favor of
fewer heavily-loaded CTAs with significant intra-CTA data reuse. By reducing the
number of threads per TB (CTA) to the warp size, the authors increased per-
formance significantly by replacing inter-warp communication (e.g., via shared
memory), cooperation, and synchronizations (e.g., via bar primitives [41, p. 218])
with more efficient intra-warp communication (e.g., via warp shuffle functions
[19, p. 168]), cooperation (e.g., via warp vote functions [19, p. 165]) and syn-
chronizations (SIMT lockstep execution) across the SIMD-lanes within a warp.

2.3 The GPU Memory Architecture

2.3.1 Registers

Registers reside on the top of the memory hierarchy within GPUs. Each SM con-
tains a register file partitioned among the active warps. Their scope is private to
each thread and contains variables or arrays having compile-time-determined in-
dices referring to it [13, p. 138]. The registers’ lifetime is equal to that of a kernel,
and the number of registers allocated by a kernel can severely limit a kernel’s per-
formance. Modern GPUs limit the number of registers per thread (block) to 255
(65536) [42]. The kernel spills registers over to local memory should the number

Chapter 2: Background 11

of registers surpass the hardware limit. However, local memory resides within
device memory, making accesses have high latency and low bandwidth. Local
memory depends on memory coalescing in the same manner as global memory
accesses with a layout organized as consecutive 32-bit words accessible by con-
secutive threads. Therefore, accesses coalesce as long as a warp’s threads access
the same relative address (e.g., same index in an array variable) [19, p. 118].

Warp-level primitives enable the use of registers as a high-end cache for sten-
cil computations [20]. The warp-shuffle instructions enable threads to exchange
values with other threads within the same warp. Pooling registers from a warp’s
threads creates a small cache with high performance. The number of registers per
thread and the number of threads per warp limits the cache’s size. The incredible
register usage impacts the achieved occupancy but does not necessarily lead to
worse performance [43]. Furthermore, register caching frees up shared memory
usage, enabling using shared memory as a second-level cache [20] or creating
more space for the L1 cache within the unified cache.

Falch and Elster [20] implemented register caching for a 1D 7-point and 2D
5-point stencil. As a single shuffle instruction could replace a shared memory load,
store, and the in-between barrier, the authors argued that their implementation
was best suited for applications reading and writing to shared memory. The au-
thors argued that register caching indicated more redundant computation, more
loads from global memory, and increased branch divergence than shared memory
applications. Their work did not focus on optimizing ISLs particularly but instead
evaluated register caching with a realistic ISL benchmark, showing promising res-
ults that increased performance up to 2.04x on a GTX 680 GPU.

2.3.2 Shared Memory

Shared memory is essentially a software-managed L1 cache (scratchpad) with
much higher bandwidth and lower latency than global memory. The cache is
either stand-alone or combined with the L1 cache into a unified cache. Using
shared memory can hide the performance impact of global memory bandwidth
and latency [13, p. 204-206]. The programmable shared memory differentiates
itself from the L1 cache by controlling what data to store and where. For the L1
cache, the hardware loads and evicts data automatically [13, p. 213]. Every warp
within a TB shares the same shared memory region, indicating the need for TB
synchronization after fetching data into shared memory to ensure program cor-
rectness. Subsequently, each warp can fetch data from shared memory stored by
other warps within the same TB.

Memory banks are physically separate memory modules that handle a sub-
set of the memory address space [44]. Equally-sized shared memory banks allow
shared memory to simultaneously serve multiple memory requests if the requests
map to different banks. The Volta architecture employs 32 4-byte banks per SM,
offering a theoretical bandwidth of 13,800 GiB/s across 80 SMs [45]. However,
bank conflicts can decrease shared memory bandwidth utilization.

12 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

Bank conflicts occur when the addresses of multiple memory requests map to
the same memory bank, requiring serialized access to serve the memory requests.
The hardware splits the memory requests with bank conflicts into separate re-
quests to perform conflict-free requests to the banks. This process can decrease
shared memory throughput by a factor equal to the number of replayed memory
bank accesses [19, p. 119]. However, it is crucial to note that the memory accesses
must come from different threads within the same warp. Bank conflicts do not oc-
cur for threads in different warps or instructions arising from the same thread.
This latter fact indicates that the stencil computation for RTM stencils can safely
access elements along the Y-dimension, even though the offset between each ele-
ment implies accessing the same memory bank. Therefore, bank conflicts are not
a significant issue for RTM stencils.

The amount of shared memory available for each SM is reconfigurable, and
utilizing more than 48 KiB of shared memory per TB is architecture-specific, expli-
citly requiring dynamic shared memory allocations [19, p. 343]. Dynamic shared
memory implies an overhead compared to static allocations and requires passing
the allocation’s size as a parameter to the launched kernel. The TBs cannot al-
locate the entire region of an SM’s shared memory as the system retains a small
allocation for system use. Furthermore, if the available shared memory amount
per CTA is lower than per SM, a single TB can not allocate the whole SM’s avail-
able region by itself. Lastly, as the Volta architecture combines shared memory and
L1 into a unified cache, where configuring more shared memory for the SM is a
trade-off for less L1 cache space available.

2.3.3 Unified Cache

Figure 2.4 presents simplified memory hierarchy diagrams of the Pascal and Volta
architectures, showing the architectures’ different cache configurations. The Volta
architecture provides a unified shared memory/L1/texture cache where up to 96
KiB of the 128 KiB L1 cache storage can be configured dynamically as program-
mable shared memory, whereas the Pascal architecture provides separate L1 and
shared memory. This hardware feature has significant consequences for the per-
formance benefit of utilizing shared memory in ISL applications on Volta vs. Pascal.

Choquette et al. [24] benchmarked a set of applications designed to use shared
memory and remapped their design to utilize the L1 cache instead for both reads
and writes. They argued that Volta’s cache unification caused the L1 cache’s per-
formance characteristics to be much closer to the shared memory’s characteristics.
The authors estimated that their remapped applications exhibited 30% perform-
ance decreases on average on Pascal, while the performance decrease was only
7% on Volta. They further argued that "programmers will be able to get reason-
ably high performance without the additional effort of programming to shared
memory."

Furthermore, Volta’s L1 caches drastically outperform Pascal by increasing the
total size by a factor of 7.7 from 1.3 MiB up to 10 MiB while increasing the L2

Chapter 2: Background 13

(a) Pascal (P100) (b) Volta (V100)

Figure 2.4: The figures present simplified memory hierarchy diagrams of the
Pascal and Volta architectures. The main difference between the architectures
lies in Pascal’s separate shared memory and L1/texture cache versus Volta’s uni-
fied shared memory/L1/texture cache. The diagrams simplify the layout by only
presenting a single SM instead of replicating many SMs. Based on [13, p. 159]

cache from 4 MiB to 6 MiB. Volta’s L1 cache also has four times the bandwidth
of Pascal’s L1 cache. Additionally, Volta introduces a streaming L1 cache [42],
substantially increasing the number of possible cache-misses in flight with a large
number of MSHRs, reducing the severe performance impact of divergent memory
accesses [38] and also making thread coalescing more viable as an optimization
by enabling more in-flight memory requests.

2.3.4 High Bandwidth Memory

Both Pascal and Volta use the High Bandwidth Memory 2 (HBM2) memory system
as their DRAM (device memory). The HBM2 memory system comprises memory
stacks located on the same physical package as the GPU, providing substantial
power and area savings compared to traditional GDDR5 memory designs [42].
Volta utilizes an improved HMB2 reaching up to 900 GB/s peak memory band-
width, compared to 732 GB/s from Pascal’s HBM2 system [46]. Volta’s memory
system also consists of an improved memory controller, which, when combined
with the improved memory system, improves the theoretical memory bandwidth
by 50% over Pascal, and Nvidia reports that the achieved bandwidth efficiency
exceeds 95% bandwidth efficiency for specific workloads [46]. However, to fully
utilize the HBM2’s bandwidth over the GDDR5, more memory accesses must be
kept in flight. In this thesis, we use thread coalescing to increase the number of
in-flight memory requests. Furthermore, the advanced Volta system engages large
numbers of SMs, increasing the number of concurrent threads and, thus, the in-
flight memory requests compared to previous architectures.

14 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

(a) Aligned and coalesced memory access. The memory coalescer coalesces the memory accesses
into a single cache line request. The load/store unit serves all warps’ requests by fetching a single
cache line per warp.

(b) Misaligned memory access. The load/store unit fetches two cache lines per warp.

(c) Uncoalesced memory access. The load/store unit fetches multiple cache lines per warp (up to
32 in the worst-case).

Figure 2.5: The following figures visualize memory access pattern characterist-
ics. Figure 2.5a presents the ideal situation where fetching a single cache line is
sufficient to satisfy a warp’s memory requests. Figure 2.5b displays misaligned
accesses’ unfortunate consequence of requesting twice the number of cache lines
required. Figure 2.5c presents the most severe situation fetching up to 32 cache
lines per warp compared to Figure 2.5a’s single cache line request per warp. Based
on [13, p. 161-162].

2.4 Desirable GPU Characteristics

2.4.1 Aligned and Coalesced Memory Accesses

Memory bandwidth bottlenecks most GPU applications, making maximizing band-
width efficiency crucial [13, p. 158]. Figure 2.5 presents three memory access
patterns: coalesced, misaligned, and divergent, where divergent and misaligned
memory access patterns decrease performance significantly. The GPU’s L1 (L2)
cache consists of 128-byte (32-byte) cache lines. Ideally, a memory request’s first
address should be an even multiple of the cache granularity to prevent fetching
an extra cache line [13, p. 162]. As the cache-line sizes differ, the consequences
for divergent L1 loads are more severe than for divergent L2 loads. Therefore, our
following example focus on divergent L1 access patterns.

For the L1 cache, using 4-byte floats (single-precision) enables an ideal situ-
ation where the coalescer can combine 32 memory loads of a warp into a single
cache request. This situation requires the loads’ offsets to be contiguous within

Chapter 2: Background 15

the 128-byte segment to ensure maximum efficiency. However, strided offsets in-
cur large overheads for the memory system. The worst-case scenario occurs for
128-byte offsets, where the threads’ loads request 32 different cache lines (4096
bytes) to satisfy a single warp’s memory requests for 32 4-byte elements (128
bytes), reaching a meager 3.125% efficiency. Additionally, the requests allocate
32 MSHRs compared to a single MSHR in the coalesced example, and the enorm-
ous amount of memory requests essentially flood the GPU’s Network-on-Chip and
DRAM systems [38].

Vast domains incur large offsets for RTM’s cross-shaped stencil in the Y-
direction (2D) or Z-direction (3D). The last dimension offset for 3D (plane)
quickly outgrows 2D’s offset (line), decreasing the probability that the reques-
ted cache lines reside within the caches. As a result, the memory system allocates
more MSHRs and saturates the NoC and DRAM systems more substantially in 3D
than 2D to satisfy the memory requests, causing severe issues for maintaining TLP.

The streaming executing model of the GPU implies that applications can
be memory-bound or compute-bound [47]. If compute-bound, the performance
scales linearly with the number of occupied SMs, and if memory-bound, perform-
ance is strongly correlated with memory bandwidth. ISL applications are famously
memory-bound [31], but reducing the memory-boundedness is possible through
temporal blocking [15].

2.4.2 Effective Resource Utilization

Occupancy is a metric expressing the ratio of active warps per SM to the total
number of hardware warp-slots per SM [35]. The metric focuses exclusively on
the number of concurrent warps per SM and is, therefore, not the only goal for per-
formance optimization [13, p.97]. Cheng et al. [13, p. 100] provide an excellent
example showing that higher occupancy does not always mean higher perform-
ance. The authors show that increasing occupancy at the expense of decreasing
other vital metrics, such as the efficiency of global memory loads, can decrease
performance. For memory-bound applications, the consequences of decreasing
memory efficiency can be fatal. Therefore, the programmer must be aware of the
metrics’ trade-offs. The metrics can be studied using the performance analysis
tools Nvidia Visual Profiler (NVP) [48] or Nvidia Nsight Compute [49].

Each SM contains a finite set of registers and shared memory partitioned
between the SM’s executing warps. Additionally, the SMs have an upper bound
on the number of warps eligible for simultaneous execution, causing the number
of threads per block to decide how many blocks the GPU can execute simultan-
eously. Occupancy decreases if either resource is exhausted, making it crucial to
adhere to these restrictions for optimizing the kernel’s achieved occupancy. There-
fore, manipulating the TB dimensions can expose sufficient parallelism to saturate
the system resources. The CUDA Occupancy Calculator [50] is an excellent tool
to guide the developer on how to handle these resources effectively.

16 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

Figure 2.6: The figure displays threads’ behavior when branch divergence oc-
curs. The warp’s threads remain active when executing non-divergent code. If a
warp’s threads take different paths when reaching a conditional branch, the warp
executes each path serially, deactivating threads that do not follow the current ex-
ecution path. Based on [13, p. 83].

2.4.3 Avoiding Branch Divergence

Warps execute single instructions at a time, realizing total efficiency only when
all threads within the warp do not have divergent execution paths [19, p. 107].
Each execution path still executes if the path of threads within a warp diverges on
a conditional branch. However, the scheduler disables the threads not following
the executed path. Figure 2.6 presents a situation where branch divergence oc-
curs. Branch divergence occurs within warps only and is therefore independent of
the execution behavior of other warps. Traditionally, warps have had a single ex-
ecution state shared by all threads. The Volta architecture introduced per-thread
execution states, thus allowing independent thread scheduling, although the ex-
ecution model remains SIMT. The feature improves the divergence and reconver-
gence of threads within warps by making them more flexible and efficient [35].
However, branch divergence does not disappear with the added feature as the
hardware still restricts the execution to only a single instruction at a time [51].

2.5 Single-GPU Optimization Approaches

2.5.1 Thread Coarsening

Decomposing a problem into a set of fine-grained tasks distributed between the
GPU’s threads inevitably introduce overheads from different sources varying by
the algorithm or method implemented. The implemented kernel might map un-
favorably to the underlying hardware, causing poor compute resource utilization.
Finer-grained decompositions incur inefficiencies by scheduling and communica-
tion overhead and needing to recalculate light operations in many threads, e.g.,
address offsets for memory requests [22].

Chapter 2: Background 17

Loop unrolling is an optimization technique utilized by the preprocessor to in-
crease the code size and register pressure as a trade-off for increased concurrency
and data reuse [52]. The technique reduces the total number of branches and loop
maintenance instructions for loops by duplicating the loop body instructions mul-
tiple times. Lack of branch prediction mechanisms makes branching expensive for
GPU applications, indicating the available optimization potential. Additionally, the
technique creates more independent instructions to schedule, enabling more in-
flight operations to provide higher instruction and memory bandwidth efficiency
[13, p. 114]. Utilizing the GPU’s exceptionally lightweight warp scheduling en-
ables the opportunity to hide latency by scheduling new warps when others stall
for arithmetic instructions or memory operations. Therefore, more in-flight opera-
tions help the system hide more instruction and memory latency [13, p. 115]. The
compiler provides automatic loop unrolling for loops of limited size with known
loop conditions [19, p. 208].

Thread coarsening [21, 22] takes advantage of loop unrolling by merging code
usually executed by separate threads into a single thread. The procedure effect-
ively de-parallelizes a program, making threads more coarse-grained by increasing
each thread’s workload. The coarsening factor describes the factor by which we
increase the amount of work per thread. Thread coarsening gets similar perform-
ance benefits as loop unrolling, combined with potentially improving problem
decomposition. At some point, the reduced number of threads will limit paral-
lelism and decrease performance. Furthermore, increasing the coarsening factor
increases resource consumption (e.g., registers, shared memory), eventually redu-
cing occupancy. Additionally, some kernels increase pressure on the caches with
an increasing coarsening factor [21]. The performance trade-off motivates the
search for an ideal coarsening factor or deciding that no coarsening should be
applied at all. Exploring the coarsening factor can be explored manually [53, 54]
or automatically through either autotuning [55] or machine-learning [56]. This
thesis explores the ideal coarsening factor manually through benchmarking.

Two thread coarsening strategies remain dominant: thread- and block-level
coarsening [21]. The former combines the threads’ workload within a TB, while
the latter merges multiple TBs’ workload into one. Figure 2.7 visualizes the block-
level coarsening approach utilized to optimize our ISL application. These ap-
proaches have different impacts on memory access patterns as each coarsening
strategy imposes different memory access strides. Magni et al. [53] studied thread-
level and Unkule et al. [55] explored block-level coarsening. Stawinoga and Field
[21] scrutinized both strategies, concluding that block-level outperformed thread-
level coarsening due to practical issues when deciding the memory stride for each
thread, arguing that poor striding breaks memory coalescing. They further em-
phasize that block-level coarsening has no issues regarding memory coalescing.
Furthermore, by utilizing a conservative approach for electing kernels for coarsen-
ing, the authors either increased or kept performance flat in most cases. The au-
thors’ conclusions motivate our inclination for focusing on block-level coarsening
only.

18 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

(a) The figure presents two neigh-
boring TBs executing without thread
coarsening.

(b) The figure displays the effect of
coarsening each TB with C F = 2.

Figure 2.7: The figures present block-level thread coarsening, which combines
multiple blocks’ workload into one TB. The coarsening factor, C F , decides how
many blocks to merge. Figures 2.7a and 2.7b presents an example without (C F =
1) and with (C F = 2) thread coarsening. Furthermore, doubling the coarsening
factor halves the number of scheduled TBs.

The coarsening strategy also impacts TB synchronization performance. As
fewer threads (thread-level coarsening) or blocks (block-level coarsening) par-
ticipate in the block-level synchronization barriers, performance increases for
barrier-sensitive applications. Furthermore, Stawinoga and Field [21] observed
that both strategies have a similar effect on barrier performance. Liu et al.
[57] highlighted the importance of reducing cycles spent in barriers for barrier-
sensitive applications as the number of cycles proliferates even though barriers
employ lightweight hardware support. Therefore, coarsening impacts the per-
formance of the kernels within this thesis that employ TB synchronizations (i.e.,
the kernels utilizing shared memory).

2.5.2 Optimizing Thread Block Dimensions

Section 2.4.2 emphasized the TB dimensions’ importance for effectively using GPU
resources and exposing sufficient parallelism. Choosing TB dimensions using the
CUDA occupancy calculator is often suboptimal, as maximizing occupancy does
not necessarily produce the best performance. However, testing all available TB
dimension combinations is extremely difficult as the number of possible configur-
ations is massive.

An autotuning framework enables TB dimension exploration either by brute-
force or more sophisticated approaches using search algorithms. However, impos-
ing restrictions on the parameters prevent complete domain exploration. Cheng et
al. [13, p. 96] proposed guidelines for choosing grid and block sizes, emphasizing
the importance of keeping the innermost dimension a multiple of the warp size
to keep all threads within each warp active. Additionally, keeping the number of
TBs much greater than the number of SMs generally improves parallelism.

Chapter 2: Background 19

Spencer [58] proposed the Flamingo autotuning framework, providing brute-
force parameter exploration, enabling TB dimension and thread coarsening factor
optimization. The author designed the framework to be very general-purpose,
making few assumptions on user interaction, making it remarkably simple. This
thesis utilizes Flamingo to optimize the TB dimensions for each thread coarsening
factor, exploring more ideal configurations for improved resource consumption.

2.6 Utilizing Multiple GPUs

2.6.1 Domain Partitioning

Extracting the computation power added by utilizing multiple GPUs requires prob-
lem domain partitioning between the GPUs. Spampinato [59] contributed an in-
vestigation of multi-GPU data partitioning in 2D and the communication pattern
required for each iteration in his scheme’s iterative method. He specified the pre-
vailing domains of both strip and block partitioning. If we assume a 2D (3D)
square (cube) domain with equal dimension sizes, strip partitioning subdivides
the grid along the y-axis (z-axis) into horizontal strips (planes). In comparison,
block partitioning partitions the domain evenly into smaller squares (cubes). As-
suming a system containing 4 GPUs, Spampinato argued that strip partitioning
reduces communications by half for the GPUs having partitions with only a single
neighbor. In comparison, block partitioning incurs the same number of commu-
nications for every GPU but needs to transfer fewer bytes per communication.

With differing communication requirements, data partitioning proposes a
trade-off between latency and bandwidth. The optimal structure depends on the
system architecture and the application at hand. Spampinato [59] refers to Wilkin-
son and Allen [60], stating that strip partitioning is better for high-latency com-
munication systems, while block partitioning is better for low-latency communic-
ation. However, Spampinato concluded that this model was too general and not
suited for multi-GPU systems because it does not include the incredible number
of architectural hardware details necessary to provide an accurate model. Fur-
thermore, the author’s results showed that strip partitioning outperformed block
partitioning for its setup containing 4 GPUs. Therefore, we choose to utilize strip
partitioning in our multi-GPU scheme.

Another option not pursued in this thesis is to use frameworks for automatic
problem domain partitioning onto multiple GPUs. Ben-Nun et al. [61] proposed a
multi-GPU framework called MAPS-Multi, providing a programming abstraction
that automatically allocates and distributes the workload among multiple GPUs
and optimizes applications for the given architectures. The framework is also
capable of providing memory transfers implicitly if required by the application.
A host- and device-level API provides this abstraction and includes off-the-shelf
functionality for various architectures containing an arbitrary number of GPUs.
The API significantly reduces code length and achieves near-linear performance
scaling by adding more devices for various applications.

20 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

(a) 2D domain (b) 3D domain

(c) 2D domain partition (d) 3D domain partition

Figure 2.8: The figure shows an example of strip partitioning in 2D and 3D for
multi-GPU. Figures 2.8a and 2.8b display simplified grid layouts by setting each
dimension to 8 elements. Figures 2.8c and 2.8d show each GPUs partition includ-
ing their ghost zones when we utilize 4 GPUs in 2D and 3D, respectively.

2.6.2 Ghost Zones

Partitioning domains between multiple GPUs introduces a problem where sten-
cil calculations along the boundary require elements residing in other devices’
memory. A naive solution for ISL applications is communicating the required ele-
ments when necessary, but this approach implies a significant communication and
synchronization overhead. Therefore, we augment the partitions to include ghost
zones [2], essentially overlapping neighboring partitions causing redundant com-
putations.

Figure 2.8 visualizes a strip partitioning of an 8x8(x8) domain between 4 GPUs
in 2D (3D), including ghost zones applicable for computing the R2 stencil. The
figure’s domains are superficially small for illustrational purposes. Partitioning the
2D (3D) domain between 4 GPUs creates an 8x2 (8x8x2) domain for each GPU
shown in Figure 2.8c (Figure 2.8d), significantly reducing the workload per GPU.
Figures 2.8c and 2.8d enlarge the second and third dimensions with additional

Chapter 2: Background 21

ghost zone elements visualized with blue and brown cells, respectively.
Reducing inter-GPU communication is possible by increasing the computa-

tional workload by enlarging the partitions’ ghost zones. Spampinato [59] argued
that increasing the ghost zone’s depth by a given size, n, reduces the communic-
ation factor by the same value. Thus, each iteration shrinks the ghost zone by
one row (plane) for 2D (3D) until the number of iterations equals n. The au-
thor further argued that the optimal ghost zone size depends on the application
and architecture and is a trade-off between the system’s latency and transmission
time. Therefore, it is beneficial as long as the new transmission overhead does not
exceed the previous overhead. However, the concept belonged originally to com-
pute clusters. At maximum, the author increased performance only by 1.1x for his
setup using 4 GPUs. Our previous work [1] implemented a similar communica-
tion reduction scheme using the same number of GPUs but showed no significant
performance improvements.

2.6.3 Handling Inter-GPU Communication

CUDA streams are sequences of operations executed in the order they are is-
sued and can also provide a valuable mechanism for overlapping communica-
tion with computation [13, p. 268]. Our multi-GPU implementation utilizes a
single stream per GPU to handle communications, enabling direct memory trans-
fers between the devices asynchronously. Using multiple streams can significantly
improve communication performance in some applications by overlapping com-
munication with neighboring GPUs.

As device context switches are independent, host multi-threading allows paral-
lel kernel launches, removing the single-threaded overhead imposed by switching
GPU contexts and launching the kernel. Also, it prevents the main thread from
stalling, as would be the case for only using a single thread. Preventing stalls can
be significant in real-world applications where the thread needs to attend other
tasks [62]. As a result, multi-threading provides improved task-parallelism for the
CPU, resulting in increased system performance.

Sourouri et al. [62] provided an efficient inter-GPU communication scheme,
utilizing multiple OpenMP [63] threads with multiple streams to overlap commu-
nication with computation. The additional streams facilitated inter-GPU commu-
nication, using two streams per neighboring device, each responsible for either
the sending or receiving part of the communication. The authors emphasized the
importance of utilizing lightweight OpenMP threads instead of MPI [64] processes
to maximize performance. As a result, a device can simultaneously communicate
with both neighbors, reducing the communication stages into a single stage, ef-
fectively doubling communication performance. The authors provided an example
requiring half the original number of communications to emphasize the benefit
of utilizing multiple streams. The authors also studied using either PCIe or GPU-
Direct but did not look into the effects of having the novel NVLink, NVSwitch, or
NV-SLI interconnects.

22 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

The main drawback of older multi-GPU implementations is the need to stage
memory transfers through the host, a requirement imposed by PCIe interconnects,
requiring twice the number of memory transfers as direct communication between
the devices on a single node. However, modern multi-GPU systems use different
NVLink, NVSwitch, or NVI-SLI versions, providing alternatives to the typical PCIe
interconnect. This project applies direct P2P communication between the devices
through an NVSwitch system on a single compute node.

Li et al. [65] studied numerous interconnect topologies in multi-GPU systems,
contributing a thorough investigation into the execution behavior altered by the
interconnects. The authors measured latency, bandwidth and studied the emer-
ging performance factors of employing different topologies. The authors made
a crucial observation by discovering that some modern GPU interconnects (e.g.,
NVLink) showed non-uniform memory access effects that increased latency, al-
though previously claiming transparency. However, the NVSwitch interconnect
utilized in this thesis showed no such deficiencies.

Chapter 3

Implementing Optimized ISL
Kernels

The following chapter presents and discusses our ISL application by introducing
multiple kernels. The kernels calculate the RTM stencil for equal inputs, whose
workload can reside within both L1 or shared memory. We present the kernels’
source code in 3D as it is more sophisticated than 2D, although the 2D-equivalent
is similar. However, we visualize the shared memory layout of both 2D and 3D ker-
nels. The kernels correctly execute on different architectures where L1 and shared
memory do not necessarily reside within the same unified cache. Furthermore,
we coarsen the kernels’ threads to increase the workload per thread. Table 3.1
summarizes preprocessor macros used throughout the following sections’ code
listings. Crucially, this chapter presents essential parts of the source code only.
However, the complete source code is available on Github1.

1see https://github.com/mrfarstad/thesis

Table 3.1: Constants frequently used in our ISL application

Variable Description

DIMENSIONS Specifies 2D or 3D kernels and domains
NX, NY, NZ Problem domain dimensions
RADIUS The stencil radius
STENCIL_COEFF The stencil calculation’s coefficient
ITERATIONS The number of stencil iterations
BYTES_PER_GPU Domain partition size per GPU in bytes
COARSEN_X The coarsening factor (in the X-direction)
GHOST_ZONE Number of elements per ghost zone
GHOST_ZONE_BYTES Ghost zone size in bytes
GHOST_ZONE_DEPTH Number of rows (planes) per ghost zone
NGPUS Number of GPUs utilized

23

https://github.com/mrfarstad/thesis

24 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

Table 3.2: Kernels used in our ISL application

Kernel Description

base Baseline RTM kernel using global memory only.
base_coarsened Extends base. Handles C F elements per thread.
smem Extends base by adding TB sized shared memory.
smem_coarsened Extends smem by multiplying the shared memory

allocation by C F . Handles C F elements per
thread.

smem_padded Extends smem by padding the shared memory al-
location by the stencil radius.

smem_padded_coarsened Extends smem_coarsened by padding the shared
memory allocation. Handles C F elements per
thread.

3.1 ISL Kernels

Table 3.2 presents the kernels representing a combination of various shared
memory implementations and thread coarsening. We greatly simplify our discus-
sions throughout the subsequent sections by introducing some abbreviations, de-
noting the coarsening factor for a given kernel by C F and the TB dimensions as
Bx , By , Bz .

3.1.1 The Baseline Kernel

Code listing 3.1 presents the base kernel providing the most straightforward ISL
implementation without any further optimizations. Lines 7 to 11 calculate the
threads’ index within the domain (i.e., the global index). Line 12 checks if the
computed indices fit within the domain dimensions minus (or plus) an offset equal
to the stencil radius. Line 13 computes the stencil by calling a function that fetches
all the elements needed for the stencil calculation directly from global memory.
Code listing 3.2 presents this stencil function as a series of accumulations, sum-
ming the values of all neighbors in each direction of the stencil. Lines 5 to 11
present the functions used to perform this accumulation, consisting of function
calls where all functions essentially call the function defined in Code listing 3.3
with different parameters depending on the accumulation direction.

The global memory is cached, providing excellent reuse capabilities if the
cache capacity can include a TB’s workload. The stencil includes the stencil’s cen-
ter, meaning that the elements in the X-direction are contiguous. Finally, the kernel
multiplies the sum of the neighboring elements with a predefined constant and
subtracts the stencil’s center element. We choose to define the constants using a
preprocessor macro. If the stencil requires different constants, then loading the
values into constant memory maintains satisfactory performance.

Chapter 3: Implementing Optimized ISL Kernels 25

Code listing 3.1: The base kernel

1 __global__ void base_3d(
2 float* __restrict__ d_in,
3 float* __restrict__ d_out,
4 unsigned int kstart,
5 unsigned int kend)
6 {
7 unsigned int i, j, k, idx;
8 i = threadIdx.x + blockIdx.x*blockDim.x;
9 j = threadIdx.y + blockIdx.y*blockDim.y;

10 k = threadIdx.z + blockIdx.z*blockDim.z;
11 idx = i + j*NX + k*NX*NY;
12 if (check_stencil_border_3d(i, j, k, kstart, kend))
13 stencil(d_in, d_out, idx);
14 }

Code listing 3.2: The base stencil

1 __device__ __host__ __inline__ void stencil(
2 float *in, float *out, unsigned int idx)
3 {
4 float sum = 0.0f;
5 accumulate_global_i_prev(&sum, in, idx);
6 accumulate_global_i_next(&sum, in, idx);
7 accumulate_global_j_prev(&sum, in, idx);
8 accumulate_global_j_next(&sum, in, idx);
9 #if DIMENSIONS>2

10 accumulate_global_k_prev(&sum, in, idx);
11 accumulate_global_k_next(&sum, in, idx);
12 #endif
13 out[idx] = sum / STENCIL_COEFF - in[idx];
14 }

Code listing 3.3: Global memory stencil accumulators

1 __device__ __host__ __inline__
2 void accumulate_prev(float *sum, float *in, unsigned int idx, int offset)
3 {
4 #pragma unroll
5 for (unsigned int d=RADIUS; d>=1; d--)
6 *sum += in[idx-d*offset];
7 }
8
9 __device__ __host__ __inline__

10 void accumulate_next(float *u, float *in, unsigned int idx, int offset)
11 {
12 #pragma unroll
13 for (unsigned int d=1; d<=RADIUS; d++)
14 *sum += in[idx+d*offset];
15 }

26 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

Code listing 3.4: The base_coarsened kernel

1 __global__ void base_coarsened_3d(
2 float* __restrict__ d_in,
3 float* __restrict__ d_out,
4 unsigned int kstart,
5 unsigned int kend)
6 {
7 unsigned int i, j, k, i_off, idx, lidx;
8 i = threadIdx.x + blockIdx.x*blockDim.x*COARSEN_X;
9 j = threadIdx.y + blockIdx.y*blockDim.y;

10 k = threadIdx.z + blockIdx.z*blockDim.z;
11 #pragma unroll
12 for (lidx=0; lidx<COARSEN_X; lidx++) {
13 i_off = i + lidx*blockDim.x;
14 idx = i_off + j*NX + k*NX*NY;
15 if (check_stencil_border_3d(i_off, j, k, kstart, kend))
16 stencil(d_in, d_out, idx);
17 }
18 }

3.1.2 Coarsening the Baseline Kernel

Code listing 3.4 presents the base_coarsened kernel, providing a direct extension
of base by applying thread coarsening. Lines 12 to 17 show the kernel’s for-loop
that handles multiple data elements per thread. Line 11 forces the compiler to
unroll the loop to expose more independent instructions. Before launching the
kernel, dividing the total number of TBs in the grid by C F is essential for high
performance as we need fewer threads to perform the calculation.

3.2 Shared Memory ISL Kernels

3.2.1 The Hybrid Shared Memory Kernel

The smem kernel shown in Code listing 3.5 is a naive shared memory imple-
mentation utilizing both shared and global memory when computing the sten-
cil. The hybrid version employs the shared memory layout shown in Figures 3.1a
and 3.1b for 2D and 3D, respectively. The kernel differentiates itself by its sim-
plicity and without the need for intricacy: If an element does not reside within
shared memory, fetch it from global memory. However, this scheme introduces
thread-dependent control logic into the kernel, which implies branch divergence.

The kernel consists of two phases: the prefetching phase and the stencil cal-
culation stage. The prefetching phase is straightforward and consists only of each
thread fetching a single element from the global memory with the global in-
dex (i.e., Lines 16 and 17) into shared memory with the TB index calculated in
Lines 13 to 15. The kernel allocates one shared memory entry per thread, causing
the shared memory allocation to be the same size as the TB. TB synchronization
separates the phases, synchronizing all threads within the TB.

Chapter 3: Implementing Optimized ISL Kernels 27

(a) 2D (b) 3D

Figure 3.1: The figures show the shared memory layouts for the smem kernel in
2D and 3D. The layout is equal to the TB dimensions, and each thread within the
TB fetches a single element into shared memory.

Code listing 3.6 presents the last stage that fetches the neighboring elements
and calculates the stencil. Note that this shared memory layout does not contain all
required elements for the stencil within the shared memory. Therefore the kernel
fetches the elements outside the border from global memory instead, making it
a hybrid using two memory types when calculating the stencil. Code listing 3.7
displays the hybrid accumulation procedure, which checks whether the stencil
elements reside within shared memory in Lines 11 and 25.

Code listing 3.5: The smem kernel

1 __global__ void smem_3d(
2 float* __restrict__ d_in,
3 float* __restrict__ d_out,
4 unsigned int kstart,
5 unsigned int kend)
6 {
7 unsigned int i, j, k, idx, sidx;
8 extern __shared__ float smem[];
9 i = threadIdx.x + blockIdx.x*blockDim.x;

10 j = threadIdx.y + blockIdx.y*blockDim.y;
11 k = threadIdx.z + blockIdx.z*blockDim.z;
12 idx = i + j*NX + k*NX*NY;
13 sidx = threadIdx.x
14 + threadIdx.y*blockDim.x*COARSEN_X
15 + threadIdx.z*blockDim.x*COARSEN_X*blockDim.y;
16 if (check_domain_border_3d(i, j, k, kstart, kend))
17 smem[sidx] = d_in[idx];
18 this_thread_block().sync();
19 if (check_stencil_border_3d(i, j, k, kstart, kend))
20 smem_stencil(smem, d_in, d_out, sidx, idx);
21 }

28 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

Code listing 3.6: The smem stencil

1 __device__ __inline__ void smem_stencil(
2 float* smem, float* in, float* out, unsigned int sidx, unsigned int idx)
3 {
4 float sum = 0.0f;
5 accumulate_hybrid_i_prev(&sum, smem, in, sidx, idx);
6 accumulate_hybrid_i_next(&sum, smem, in, sidx, idx);
7 accumulate_hybrid_j_prev(&sum, smem, in, sidx, idx);
8 accumulate_hybrid_j_next(&sum, smem, in, sidx, idx);
9 #if DIMENSIONS>2

10 accumulate_hybrid_k_prev(&sum, smem, in, sidx, idx);
11 accumulate_hybrid_k_next(&sum, smem, in, sidx, idx);
12 #endif
13 out[idx] = sum / STENCIL_COEFF - smem[sidx];
14 }

Code listing 3.7: Hybrid global/shared memory stencil accumulators

1 __device__ __inline__
2 void accumulate_hybrid_prev(
3 float *sum, float *smem, float *in,
4 unsigned int sidx,
5 unsigned int idx,
6 unsigned int tidx,
7 int soffset, int offset)
8 {
9 #pragma unroll

10 for (unsigned int d=RADIUS; d>=1; d--)
11 *sum += (tidx >= d) ? smem[sidx-d*soffset] : in[idx-d*offset];
12 }
13
14 __device__ __inline__
15 void accumulate_hybrid_next(
16 float *u, float *smem, float *in,
17 unsigned int sidx,
18 unsigned int idx,
19 unsigned int tidx,
20 unsigned int tb_limit,
21 int soffset, int offset)
22 {
23 #pragma unroll
24 for (unsigned int d=1; d<=RADIUS; d++)
25 *sum += (tidx+d < tb_limit) ? smem[sidx+d*soffset] : in[idx+d*offset];
26 }

Chapter 3: Implementing Optimized ISL Kernels 29

(a) 2D (b) 3D

Figure 3.2: The figures show the shared memory layouts for the smem_coarsened
kernel for C F = 2 in 2D and 3D. The coarsening factor multiplies the shared
region’s X-dimension.

3.2.2 Coarsening the Hybrid Shared Memory Kernel

The smem_coarsened kernel shown in Code listing 3.8 extends the previously pro-
posed smem kernel, applying thread coarsening to handle more elements per thread.
Thread coarsening expands the shared memory region in the X-dimension by a
factor equal to C F . Therefore, the kernel’s first phase consists of more global
memory requests per TB compared to smem. Figures 3.2a and 3.2b display the ex-
panded shared memory region with C F = 2 in 2D and 3D, respectively.

Increasing the shared memory usage per TB enables more shared memory
reuse in the X-dimension for the elements near the center of the allocated re-
gion. After the synchronization stage, each thread calculates the stencil for C F
elements using the hybrid global/shared memory stencil (i.e., Code listing 3.9).
When combining TBs’ work using thread coarsening, C F > 2 implies that some
TBs’ stencil computations in the X-direction can be performed entirely by fetching
from shared memory. Therefore, Code listing 3.9 differs from Code listing 3.6 by
checking whether the workload resides at the endpoints through the loop index in
Lines 8 to 11. Figure 3.3 visualizes this circumstance by differentiating between
green and yellow cubes. The green cubes represent the endpoints where comput-
ing the stencil along the X-dimension includes both global and shared memory
values. The yellow cubes represent the in-between workloads that benefit from the
expanded shared memory region by computing the X-dimension through fetching
elements from shared memory only.

30 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

Code listing 3.8: The smem_coarsened kernel

1 __global__ void smem_coarsened_3d(
2 float* __restrict__ d_in,
3 float* __restrict__ d_out,
4 unsigned int kstart,
5 unsigned int kend)
6 {
7 extern __shared__ float smem[];
8 unsigned int i, j, k, idx, sidx, lidx, i_off;
9 i = threadIdx.x + blockIdx.x*blockDim.x*COARSEN_X;

10 j = threadIdx.y + blockIdx.y*blockDim.y;
11 k = threadIdx.z + blockIdx.z*blockDim.z;
12 #pragma unroll
13 for (lidx=0; lidx<COARSEN_X; lidx++) {
14 i_off = lidx*blockDim.x;
15 idx = i+i_off + j*NX + k*NX*NY;
16 sidx = threadIdx.x+i_off
17 + threadIdx.y*blockDim.x*COARSEN_X
18 + threadIdx.z*blockDim.x*COARSEN_X*blockDim.y;
19 if (check_domain_border_3d(i+i_off, j, k, kstart, kend))
20 smem[sidx] = d_in[idx];
21 }
22 this_thread_block().sync();
23 #pragma unroll
24 for (lidx=0; lidx<COARSEN_X; lidx++) {
25 i_off = lidx*blockDim.x;
26 idx = i+i_off + j*NX + k*NX*NY;
27 sidx = threadIdx.x+i_off
28 + threadIdx.y*blockDim.x*COARSEN_X
29 + threadIdx.z*blockDim.x*COARSEN_X*blockDim.y;
30 if (check_stencil_border_3d(i+i_off, j, k, kstart, kend))
31 smem_coarseneded_stencil(d_in, d_out, smem, lidx, idx, sidx);
32 }
33 }

Code listing 3.9: The smem_coarsened stencil

1 __device__ __inline__ void smem_coarseneded_stencil(
2 float *in, float *out, float *smem,
3 unsigned int lidx,
4 unsigned int idx,
5 unsigned int sidx)
6 {
7 float sum = 0.0f;
8 if (lidx>0) accumulate_smem_i_prev(&u, smem, sidx);
9 else accumulate_hybrid_i_prev(&u, smem, in, sidx, idx);

10 if (lidx+1<COARSEN_X) accumulate_smem_i_next(&u, smem, sidx);
11 else accumulate_hybrid_i_next(&u, smem, in, sidx, idx);
12 accumulate_hybrid_j_prev(&sum, smem, in, sidx, idx);
13 accumulate_hybrid_j_next(&sum, smem, in, sidx, idx);
14 #if DIMENSIONS>2
15 accumulate_hybrid_k_prev(&sum, smem, in, sidx, idx);
16 accumulate_hybrid_k_next(&sum, smem, in, sidx, idx);
17 #endif
18 out[idx] = sum / STENCIL_COEFF - smem[sidx];
19 }

Chapter 3: Implementing Optimized ISL Kernels 31

Figure 3.3: Thread coarsening increases the shared memory size, enabling stencil
computations in some instances to reuse all neighboring values in the X-direction
directly from shared memory without using the hybrid accumulation function.

3.2.3 The Padded Shared Memory Kernel

The smem_padded kernel shown in Code listing 3.10 extends the previously proposed
smem kernel, differentiating itself by increasing the size of the shared memory re-
gion. The kernel adds a padding of elements around the shared memory region.
Figures 3.4a and 3.4b visualizes this padding in 2D and 3D, respectively, where
the stencil radius decides the padding size.

The kernel consists of two phases: the prefetching phase and the stencil com-
putation stage. The main difference in this approach versus the smem kernel lies in
these phases. The kernel requires every value within a stencil radius’ offset outside
the TBs’ borders for the second phase to prevent global loads in the stencil calcula-
tion. Therefore, the threads that reside close to the TBs borders fetch an extra ele-
ment per border. However, to execute this technique correctly, the TB dimensions
must be larger than the stencil radius (Bx , By , Bz ≥ RADIUS). Code listings 3.12
and 3.13 present the source code for this behavior in 3D, and Figure 3.5 visual-
izes this phase by showing a simplified example where the TB size is 4x4 in 2D.
The procedure maps similarly to 3D but is harder to visualize. The yellow squares
indicate the shared memory region directly mapped to the threads’ indices, while
the green and blue areas show the padding in the X- and Y-dimension, respectively.
The figure presents the elements that each thread fetches into shared memory. In
this simplified example, each thread fetches four elements, but the workload per
thread declines with larger domains. With a larger 2D domain, most threads near
the borders fetch two elements, and near the corners fetch three elements.

Finally, after the synchronization, the last phase has been dramatically simpli-
fied. The final stage fetches the neighboring elements from shared memory only
and calculates the stencil.

32 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

(a) 2D (b) 3D

Figure 3.4: The figures show the shared memory layout for the smem_padded kernel
for 2D and 3D. The regions include paddings with the same number of elements
as the stencil radius in each dimension. The padding allows the kernel to apply
the stencil using values from shared memory only.

Figure 3.5: The figure presents a simplified example that visualizes smem_padded’s
prefetch stage by showing the elements each thread fetches into shared memory
by arranging the threads by their X- and Y-index within the TB.

Chapter 3: Implementing Optimized ISL Kernels 33

Code listing 3.10: The smem_padded kernel

1 __global__ void smem_padded_3d(
2 float* __restrict__ d_in,
3 float* __restrict__ d_out,
4 unsigned int kstart,
5 unsigned int kend)
6 {
7 extern __shared__ float smem[];
8 unsigned int i, j, k, idx, sidx, smem_p_x, smem_p_y;
9 i = threadIdx.x + blockIdx.x*blockDim.x*COARSEN_X;

10 j = threadIdx.y + blockIdx.y*blockDim.y;
11 k = threadIdx.z + blockIdx.z*blockDim.z;
12 idx = i + j*NX + k*NX*NY;
13 smem_p_x = blockDim.x*COARSEN_X+2*RADIUS;
14 smem_p_y = blockDim.y+2*RADIUS;
15 sidx = (threadIdx.x + RADIUS)
16 + (threadIdx.y + RADIUS)*smem_p_x
17 + (threadIdx.z + RADIUS)*smem_p_x*smem_p_y;
18 if (check_domain_border_3d(i, j, k, kstart, kend))
19 prefetch_3d(smem, d_in, i, j, k, 0, idx, sidx, kstart, kend);
20 this_thread_block().sync();
21 if (check_stencil_border_3d(i, j, k, kstart, kend))
22 smem_padded_stencil(smem, d_out, idx, sidx);
23 }

Code listing 3.11: The smem_padded stencil

1 __device__ __inline__ void smem_padded_stencil(
2 float *smem,
3 float *out,
4 unsigned int idx,
5 unsigned int sidx)
6 {
7 float sum = 0.0f;
8 accumulate_smem_i_prev(&sum, smem, sidx);
9 accumulate_smem_i_next(&sum, smem, sidx);

10 accumulate_smem_j_prev(&sum, smem, sidx);
11 accumulate_smem_j_next(&sum, smem, sidx);
12 #if DIMENSIONS>2
13 accumulate_smem_k_prev(&sum, smem, sidx);
14 accumulate_smem_k_next(&sum, smem, sidx);
15 #endif
16 out[idx] = sum / STENCIL_COEFF - smem[sidx];
17 }

34 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

Code listing 3.12: Prefetching values into shared memory for smem_padded

1 __device__ void prefetch_3d(
2 float *smem, float *d_in,
3 unsigned int i, unsigned int j, unsigned int k,
4 unsigned int lidx, unsigned int idx, unsigned int sidx,
5 unsigned int kstart, unsigned int kend)
6 {
7 if(lidx==0) prefetch_i_prev(smem, d_in, sidx, idx, i);
8 if(lidx==COARSEN_X-1) prefetch_i_next(smem, d_in, sidx, idx, i);
9 prefetch_j_prev(smem, d_in, sidx, idx, j, 0);

10 prefetch_j_next(smem, d_in, sidx, idx, j, NY-1);
11 prefetch_k_prev(smem, d_in, sidx, idx, k, kstart);
12 prefetch_k_next(smem, d_in, sidx, idx, k, kend);
13 smem[sidx] = d_in[idx];
14 }

Code listing 3.13: Prefetch functions

1 __device__ void prefetch_prev(
2 float *smem,
3 float *d_in,
4 unsigned int sidx,
5 unsigned int idx,
6 unsigned int thread_id,
7 unsigned int domain_idx,
8 unsigned int domain_idx_limit,
9 unsigned int soffset,

10 unsigned int offset)
11 {
12 if (thread_id < RADIUS && domain_idx >= domain_idx_limit)
13 {
14 smem[sidx-RADIUS*soffset] = d_in[idx-RADIUS*offset];
15 }
16 }
17
18 __device__ void prefetch_next(
19 float *smem,
20 float *d_in,
21 unsigned int sidx,
22 unsigned int idx,
23 unsigned int thread_id,
24 unsigned int thread_id_limit,
25 unsigned int domain_idx,
26 unsigned int domain_idx_limit,
27 unsigned int soffset,
28 unsigned int offset)
29 {
30 if (thread_id >= thread_id_limit && domain_idx <= domain_idx_limit)
31 {
32 smem[sidx+RADIUS*soffset] = d_in[idx+RADIUS*offset];
33 }
34 }

Chapter 3: Implementing Optimized ISL Kernels 35

3.2.4 Coarsening the Padded Shared Memory Kernel

The smem_padded kernel shown in Code listing 3.14 combines the smem_coarsened

and smem_padded features into a single kernel. This kernel has the most significant
shared memory region by increasing its size and padding the allocation with ex-
tra elements to handle the stencil radius. Figures 3.6a and 3.6b visualizes the
shared memory allocations for C F = 2 in 2D and 3D, respectively. This ker-
nel’s substantial shared memory size enables the most considerable potential for
shared memory reuse for stencil calculations. The prefetching and stencil calcula-
tion stages utilize a combination of the methods described for smem_coarsened and
smem_padded.

Code listing 3.14: The smem_padded_coarsened kernel

1 __global__ void smem_padded_coarsened_3d(
2 float* __restrict__ d_in,
3 float* __restrict__ d_out,
4 unsigned int kstart,
5 unsigned int kend)
6 {
7 extern __shared__ float smem[];
8 unsigned int i, j, k, si, sj, sk, i_off, si_off, lidx, idx, sidx,
9 smem_p_x, smem_p_y;

10 i = threadIdx.x + blockIdx.x*blockDim.x*COARSEN_X;
11 j = threadIdx.y + blockIdx.y*blockDim.y;
12 k = threadIdx.z + blockIdx.z*blockDim.z;
13 si = threadIdx.x + RADIUS;
14 sj = threadIdx.y + RADIUS;
15 sk = threadIdx.z + RADIUS;
16 smem_p_x = blockDim.x*COARSEN_X+2*RADIUS;
17 smem_p_y = blockDim.y+2*RADIUS;
18 #pragma unroll
19 for (lidx=0; lidx<COARSEN_X; lidx++) {
20 i_off = i+lidx*blockDim.x;
21 si_off = si+lidx*blockDim.x;
22 idx = i_off+j*NX+k*NX*NY;
23 sidx = si_off + sj*smem_p_x + sk*smem_p_x*smem_p_y;
24 if (check_domain_border_3d(i_off, j, k, kstart, kend))
25 prefetch_3d(smem, d_in, i_off, j, k, lidx, idx, sidx, kstart, kend);
26 }
27 this_thread_block().sync();
28 #pragma unroll
29 for (lidx=0; lidx<COARSEN_X; lidx++) {
30 i_off = i+lidx*blockDim.x;
31 idx = i_off+j*NX+k*NX*NY;
32 si_off = si+lidx*blockDim.x;
33 sidx = si_off + sj*smem_p_x + sk*smem_p_x*smem_p_y;
34 if (check_stencil_border_3d(i_off, j, k, kstart, kend))
35 smem_padded_stencil(smem, d_out, idx, sidx);
36 }
37 }

36 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

(a) 2D (b) 3D

Figure 3.6: The figures show the shared memory layout for the
smem_padded_coarsened kernel for 2D and 3D for C F = 2. Thread coarsen-
ing increases the shared region’s X-dimension significantly. Similar to Figure 3.4,
the regions include paddings with the same number of elements as the stencil
radius in each dimension. The padding allows the kernel to apply the stencil
using values from shared memory only.

3.3 Launching ISL Kernels

3.3.1 Allocating Resources

Creating a high-performance ISL application supporting more than a single GPU
requires defining a single CUDA stream per GPU context. The streams enable asyn-
chronous memory transfers between the CPU and GPU and between the GPUs.
The memory transfers would otherwise be serialized, incurring significant per-
formance penalties. To allocate streams for a specific GPU, the host must expli-
citly switch GPU contexts. The cudaSetDevice CUDA API [66, p. 45] switches GPU
context before invoking GPU-specific commands.

Pinning (page-locking) the pageable host memory ensures adequate perform-
ance for an arbitrary number of GPUs in our application. Pinning ensures excellent
performance for asynchronous memory transfers between the host and device by
preventing the OS from moving the allocated data [13, p. 148]. However, pinning
can impact the performance of other processes on the same system by leaving less
pageable memory available for other processes.

Before initializing any kernels, we allocate the input and output buffers in
the GPUs’ memory space. Independent context switches make spawning a new
host thread per GPU advantageous. This process removes the overhead of single-
threaded context switches and kernel launches [62]. Our implementation utilizes
shared memory multi-threading on the host through the OpenMP API, and Code
listing 3.15 shows the process of allocating the buffers on multiple GPUs.

Allocating the domain buffers on the devices enable memory transfers
between the host and devices. Code listing 3.16 shows the memory transfers be-

Chapter 3: Implementing Optimized ISL Kernels 37

fore (Lines 4 to 8) and after (Lines 26 to 30) dispatching the kernels. Notice that
we do not include the memory transfers when timing the kernels, as Lines 10 to 14
and Lines 19 to 24 surround the kernel launches only. Finally, Line 32 synchronizes
the execution before proceeding to free the allocated resources.

Code listing 3.15: Allocating GPU memory in parallel

1 unsigned long size = BYTES_PER_GPU;
2 if (NGPUS>1) size += 2*GHOST_ZONE_BYTES;
3 #pragma omp parallel for num_threads(NGPUS)
4 for (int i = 0; i < NGPUS; i++) {
5 cudaSetDevice(i);
6 CU(cudaMalloc((void **)&d_in[i], size));
7 CU(cudaMalloc((void **)&d_out[i], size));
8 }

Code listing 3.16: Host multi-threading for handling memory transfers between
host and GPUs.

1 int offset;
2 if (NGPUS==1) offset=0;
3 else offset=GHOST_ZONE;
4 #pragma omp parallel for num_threads(NGPUS)
5 for (int i = 0; i < NGPUS; i++) {
6 cudaSetDevice(i);
7 CU(cudaMemcpyAsync(&d_in[i][offset], &d_ref[i * OFFSET], BYTES_PER_GPU,

cudaMemcpyHostToDevice, streams[i]));
8 }
9

10 cudaSetDevice(0);
11 cudaEvent_t start, stop;
12 CU(cudaEventCreate(&start));
13 CU(cudaEventCreate(&stop));
14 CU(cudaEventRecord(start));
15
16 if(NGPUS==1) dispatch_kernels(d_in[0], d_out[0]);
17 else dispatch_multi_gpu_kernels(d_in, d_out, streams);
18
19 cudaSetDevice(0);
20 cudaEventRecord(stop);
21 cudaEventSynchronize(stop);
22 cudaEventElapsedTime(&milli, start, stop);
23 cudaEventDestroy(start);
24 cudaEventDestroy(stop);
25
26 #pragma omp parallel for num_threads(NGPUS)
27 for (int i = 0; i < NGPUS; i++) {
28 cudaSetDevice(i);
29 CU(cudaMemcpyAsync(&d_ref[i * OFFSET], &d_in[i][offset], BYTES_PER_GPU,

cudaMemcpyDeviceToHost, streams[i]));
30 }
31
32 for (int s=0; s<NGPUS; s++) CU(cudaStreamSynchronize(streams[s]));

38 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

3.3.2 Kernel Configuration

Shared Memory

The amount of shared memory available for each CTA is crucial for optimizing oc-
cupancy and ensuring correct execution behavior for our proposed shared memory
kernels. The shared memory amount utilized within the kernels is reconfigurable
through the cudaFuncAttributeMaxDynamicSharedMemorySize attribute, configurable by
the cudaFuncSetAttribute CUDA API [66, p. 103]. Allocating more than 48 KiB
shared memory per CTA on the Volta GPUs requires dynamic shared memory alloc-
ations. Code listing 3.17 presents the source code for maximizing shared memory
per CTA.

Configuring the amount of shared memory available per SM impacts the ideal
number of threads to include in each TB. Naively setting the amount to the closest
value of each TB prevents the SMs from issuing multiple TBs in parallel. We max-
imize the amount available for all kernels utilizing shared memory as we believe
our shared memory kernels benefit more from extra shared memory than L1 cache
space. The smem kernel could potentially benefit from a more even ratio of shared
memory and L1 cache, as the kernel calculates the stencil from shared and global
memory. However, introducing different shared memory capacities per SM would
make the analysis harder, and therefore, we avoid this intricacy.

Thread Block Dimensions

Choosing a default configuration is essential for later evaluating the impact of
autotuning TB dimensions. The default configuration selects the TB dimensions
using a heuristic approach. Predetermining the TB dimensions is a simple ap-
proach and gives satisfactory performance for many configurations in 2D. How-
ever, the approach imposes problems for performance and ensuring correctness in
3D as smem_padded requires Bx , By , Bz ≥ RADIUS, and the shared memory alloca-
tions grow more rapidly than in 2D, motivating the need for a more sophisticated
approach.

The cudaOccupancyMaxPotentialBlockSizeVariableSMem CUDA API [66, p. 443] re-
turns the ideal number of threads per TB for maximizing occupancy given the
register and shared memory usage of a kernel. For 2D, we naively set Bx = 32
and divide the total thread count by this value. For 3D, the process is more intric-
ate, and only some configurations ensure good performance. We observed that
the kernels with By , Bz ∈ [2,8] generally performed well. Therefore, Code list-
ing 3.18 proposes the following heuristic approach to distribute the number of
threads between the dimensions in 3D. Ideally, we try to keep the value Bx = 32,
but Lines 6 and 7 halve the value for smem_padded should the Bx , By , Bz ≥ RADIUS
restriction enforce it. Line 10 sorts the dimensions in ascending order, setting Bx
as the highest value to maximize memory coalescing should Bx decrease below
By or Bz .

Chapter 3: Implementing Optimized ISL Kernels 39

Code listing 3.17: Maximizing dynamic shared memory allocation size for the
Volta and Pascal architectures

1 void set_max_dynamic_shared_memory_size() {
2 if (SMEM) {
3 const char* arch = STR(ARCH);
4 if (strcmp(arch, "volta")==0)
5 cudaFuncSetAttribute(
6 get_kernel(), cudaFuncAttributeMaxDynamicSharedMemorySize, 98304);
7 else if (strcmp(arch, "pascal")==0)
8 cudaFuncSetAttribute(
9 get_kernel(), cudaFuncAttributeMaxDynamicSharedMemorySize, 49152);

10 }
11 }

Code listing 3.18: Heuristically distributing the number of threads between the
TB dimensions to maximize occupancy

1 __host__ __device__ void set_max_occupancy_block_dimensions(
2 int *bx, int *by, int *bz, int threads)
3 {
4 if (DIMENSIONS==3) {
5 int b0 = 32;
6 while (SMEM && PADDED && threads / (b0*RADIUS*RADIUS) == 0 && b0 > 1)
7 b0 = b0/2;
8 int b1 = MIN(MAX(2, RADIUS), 8);
9 int b2 = threads/(b0*b1);

10 sort3_desc(&b0, &b1, &b2);
11 *bx = b0, *by = b1, *bz = b2;
12 } else
13 *bx = 32, *by = threads/32, *bz=1;
14 }

Code listing 3.19: Configuring shared memory allocation size

1 void set_smem(
2 unsigned int *smem,
3 unsigned int bx,
4 unsigned int by,
5 unsigned int bz)
6 {
7 if (!SMEM) {*smem = 0; return;}
8 unsigned int smem_x = bx*COARSEN_X;
9 unsigned int smem_p_x = smem_x + 2*RADIUS;

10 unsigned int smem_p_y = by + 2*RADIUS;
11 unsigned int smem_p_z = bz + 2*RADIUS;
12 if (DIMENSIONS == 3) {
13 if (PADDED) *smem = smem_p_x*smem_p_y*smem_p_z*sizeof(float);
14 else *smem = smem_x*by*bz*sizeof(float);
15 } else {
16 if (PADDED) *smem = smem_p_x*smem_p_y*sizeof(float);
17 else *smem = smem_x*by*sizeof(float);
18 }
19 }

40 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

3.3.3 Launching Single-GPU Kernels

Dispatching CUDA kernels involves the two preceding steps: shared memory and
TB dimension configuration. Code listing 3.20 presents the source code for launch-
ing kernels, which performs both steps and launches the kernels for a certain
number of iterations. All threads within the execution grid implicitly synchronize
when exiting the kernels, ensuring that every TB has finished executing the itera-
tion step before proceeding onto the next iteration. Line 2 defines a utility function
needed by cudaOccupancyMaxPotentialBlockSizeVariableSMem for calculating each ker-
nel’s shared memory usage, and Code listing 3.21 presents its implementation,
which uses the functions in Code listings 3.18 and 3.19. Line 12 exits the applica-
tion if any block dimension is smaller than the stencil radius for the smem_padded ker-
nel. Furthermore, Line 14 ensures that fewer TBs execute when applying thread
coarsening to the kernels.

Code listing 3.20: Launching single-GPU kernels

1 void dispatch_kernels(float *d_in, float *d_out) {
2 calculate_smem calc_smem;
3 int g, b, bx, by, bz;
4 unsigned int smem;
5 if (SMEM) set_max_dynamic_shared_memory_size();
6 if (HEURISTIC)
7 cudaOccupancyMaxPotentialBlockSizeVariableSMem(
8 &g, &b, get_kernel(), calc_smem
9);

10 set_block_dims(&bx, &by, &bz, b);
11 print_program_info(bx, by, bz);
12 check_early_exit(bx, by, bz);
13 dim3 block(bx, by, bz);
14 dim3 grid((1+(NX-1)/bx)/COARSEN_X);
15 if (DIMENSIONS>1) grid.y = 1+(NY-1)/by;
16 if (DIMENSIONS>2) grid.z = 1+(NZ-1)/bz;
17 float *d_tmp;
18 set_smem(&smem, bx, by, bz);
19 for (int i=0; i<ITERATIONS; i++) {
20 get_kernel()<<<grid, block, smem>>>(d_in, d_out, 0, NZ-1);
21 getLastCudaError("kernel execution failed\n");
22 d_tmp = d_in; d_in = d_out; d_out = d_tmp; // swap input and output buffers
23 }
24 }

Code listing 3.21: Utility function for configuring shared memory allocation size

1 struct calculate_smem: std::unary_function<int, int> {
2 __host__ __device__ int operator()(int threads) const {
3 if (!SMEM) return 0;
4 int bx, by, bz;
5 set_max_occupancy_block_dimensions(&bx, &by, &bz, threads);
6 unsigned int smem;
7 set_smem(&smem, bx, by, bz);
8 return smem;
9 }

10 };

Chapter 3: Implementing Optimized ISL Kernels 41

3.3.4 Launching Multi-GPU Kernels

Dispatching multi-GPU kernels is a more sophisticated procedure than for single-
GPU kernels. Code listing 3.23 presents the approach for launching 2D and 3D
kernels on multiple GPUs, where the main difference from single-GPU lies within
the iterative loop of Lines 23 to 40. The procedure requires switching GPU con-
texts before launching a kernel onto a specific GPU. Furthermore, each iteration
requires communication between the GPUs for transferring ghost zone elements.

Lines 24 and 25 present the communication pattern for strip partitioning
where each GPU communicates their borders onto their neighbors’ ghost zone
and vice versa. Code listing 3.22 presents the communication source code, utiliz-
ing indices for the internal region and ghost zone. The cudaMemcpyPeerAsync CUDA
API [66, p. 179] handles P2P communication between the GPUs. The function
operates asynchronously with respect to the host and the other streams running
on the same GPU, enabling simultaneous transfers between all participants. Fi-
nally, Line 39 synchronizes the GPUs before performing the next iteration using
the cudaStreamSynchronize CUDA API [66, p. 75].

Code listing 3.22: Transferring ghost zone elements between neighboring GPUs

1 void send_upper_ghost_zone(
2 float **d_u1, unsigned int device, cudaStream_t* streams)
3 {
4 CU(cudaMemcpyPeerAsync(
5 d_u1[device+1],
6 device+1,
7 d_u1[device] + (INTERNAL_END-GHOST_ZONE_DEPTH) * BORDER_SIZE,
8 dev,
9 GHOST_ZONE_BYTES,

10 streams[device]));
11 }
12
13 void send_lower_ghost_zone(
14 float **d_u1, unsigned int device, cudaStream_t* streams)
15 {
16 CU(cudaMemcpyPeerAsync(
17 d_u1[device-1] + INTERNAL_END * BORDER_SIZE,
18 device-1,
19 d_u1[device] + INTERNAL_START * BORDER_SIZE,
20 device,
21 GHOST_ZONE_BYTES,
22 streams[device]));
23 }

42 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

Code listing 3.23: Launching multi-GPU kernels

1 void dispatch_multi_gpu_kernels(
2 float **d_u1, float **d_u2, cudaStream_t *streams)
3 {
4 calculate_smem calc_smem;
5 float **d_tmp;
6 int g, b, bx, by, bz, s;
7 unsigned int i, kstart, kend, smem;
8 if (SMEM) set_max_dynamic_shared_memory_size();
9 if (HEURISTIC)

10 cudaOccupancyMaxPotentialBlockSizeVariableSMem(
11 &g, &b, get_kernel(), calc_smem
12);
13 set_block_dims(&bx, &by, &bz, b);
14 print_program_info(bx, by, bz);
15 dim3 block(bx, by, bz);
16 dim3 grid((1+(NX-1)/bx)/COARSEN_X);
17 if (DIMENSIONS==2) grid.y = 1+(NY/NGPUS+2*GHOST_ZONE_DEPTH-1)/by;
18 else if (DIMENSIONS==3) {
19 grid.y = 1+(NY-1)/by;
20 grid.z = 1+(NZ/NGPUS+2*GHOST_ZONE_DEPTH-1)/bz;
21 }
22 set_smem(&smem, bx, by, bz);
23 for (i=0; i<ITERATIONS; i++) {
24 for (s=0; s<NGPUS-1; s++) send_upper_ghost_zone(d_u1, s, streams);
25 for (s=1; s<NGPUS; s++) send_lower_ghost_zone(d_u1, s, streams);
26 for (s=0; s<NGPUS; s++) CU(cudaStreamSynchronize(streams[s]));
27 for (s=0; s<NGPUS; s++) {
28 CU(cudaSetDevice(s));
29 kstart = 0;
30 kend = INTERNAL_END-1+GHOST_ZONE_DEPTH;
31 if (s==0) kstart = INTERNAL_START;
32 else if (s==NGPUS-1) kend = INTERNAL_END-1;
33 get_kernel()<<<grid, block, smem, streams[s]>>>(
34 d_u1[s], d_u2[s], kstart, kend
35);
36 getLastCudaError("kernel execution failed\n");
37 }
38 d_tmp = d_u1; d_u1 = d_u2; d_u2 = d_tmp; // swap d_u1 and d_u2
39 for (s=0; s<NGPUS; s++) CU(cudaStreamSynchronize(streams[s]));
40 }
41 }

Chapter 4

Experimental Setup

The following chapter presents our approach for generating the results discussed
in the next chapter. Furthermore, we discuss the physical hardware and technical
decisions taken throughout the project to ensure the reader understands our ap-
proach for generating the measurements.

4.1 Hardware Setup

We conducted the experiments on two different systems, a DGX-2 [67] and a node
within the Idun cluster [68] at NTNU. Table 4.1 presents the specifications for both
systems and provides a side-by-side comparison. The DGX-2 was the primary sys-
tem where we gathered measurements for all optimizations on the Volta architec-
ture, while the Idun cluster provided measurements for the shared memory and
thread coarsening optimizations on the Pascal architecture. Table 4.2 compares
the Volta and Pascal GPUs used in our experiments.

The DGX-2 utilizes the modern NVSwitch interconnect topology, capable of
handling 16 GPUs executing simultaneously. The interconnect is essentially a
fully connected non-blocking crossbar, enabling all simultaneous communication
between the devices at full NVLink bandwidth. The system connects two base-
boards, each supporting 8 GPUs. The baseboards’ GPUs can communicate with
one another at full 300 GB/s GPU-to-GPU bandwidth. Furthermore, each GPU

Table 4.1: DGX-2 vs. Idun cluster node. Based on [67, 68].

DGX-2 Idun cluster node
GPUs 16x NVIDIA Tesla V100 2x NVIDIA Tesla P100
CPU Dual Intel Xeon Platinum 8168 2x Intel Xeon E5-2650 v4

2.7 GHz, 24-cores 2.2 GHz, 24-cores
CUDA CUDA 11.1 CUDA 10.1
Software NVIDIA DGX Server 4.8.0 CentOS Linux 8 (Core)
Interconnect NVSwitch PCIe

43

44 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

Table 4.2: Comparing the Tesla V100 and Tesla P100 GPUs. Based on [35, 42].

Tesla V100 Tesla P100
No. SMs 80 56
FP32 Cores per SM 64 64
FP32 Cores per GPU 5120 3584
Peak FP32 TFLOPS 15.7 10.6
GPU Memory Size 16 GiB 16 GiB
Unified Cache Shared Memory/L1/Texture L1/Texture
Unified Cache Size 128 KiB 24 KiB
L2 Cache Size 6 MiB 4 MiB
Shared Memory Size per CTA Up to 96 KiB 48 KiB
Shared Memory Size per SM Up to 96 KiB 64 KiB
Register File Size per SM 256 KiB 256 KiB
Register File Size per GPU 20480 KiB 14336 KiB
Memory system HBM2 HBM2

can communicate with any GPU on the opposite baseboard, although at half the
bandwidth as the communication requires two NVSwitch traversals [69].

Various challenges appeared with each system as they were different. The
DGX-2 system restricted CUDA applications to NVIDIA Docker, contrary to Idun,
where we had direct access to the NVIDIA CUDA Compiler. Additionally, Idun em-
ployed Slurm [70], a job scheduling manager for collaboratory executing jobs.
Meanwhile, the collaborators of the DGX-2 did not use Slurm and instead relied
on mutual trust in not interfering with each other’s scripts. Combined with the
fact that all scripts shared the same CPU, these deficiencies impose potentially
unwanted contention causing slowdowns when gathering results. The CPU con-
tention partly motivated our decision to time the program’s part where the GPU
is active only. As a response, the following section provides a density plot to legit-
imize our results.

4.2 Measurements

4.2.1 Kernel Timing

To evaluate the performance of the proposed kernel optimizations, multiple pos-
sibilities for timing the kernels appear. Evaluating the whole applications’ perform-
ance from end to end seems like the natural choice but does not provide sufficient
insights into the application’s behavior. For example, our previous work [1] did
not increase performance for the simple stencil application when applying mul-
tiple GPUs, even with a substantial domain size. Furthermore, our previous work
failed to investigate the reasons behind this deficiency.

However, in this thesis’s early stage, the error soon became evident: creating
and destroying multiple streams and execution contexts for each device composes

Chapter 4: Experimental Setup 45

substantial startup and shutdown overheads for multi-GPU applications. Never-
theless, these overheads only have to be counted once in real-world applications,
as the applications can idle while waiting for kernels to execute on-demand. Fur-
thermore, memory transfers occupy a significant part of the application. Mean-
while, most of our optimizations target kernels instead of memory transfers, mak-
ing it more convenient to time the kernels only for observing the optimizations’
impact. Therefore, we choose to time the kernels only, leaving the resource alloc-
ation and memory transfers outside our measurements.

4.2.2 Metric Collection

We used the nvprof command-line tool for gathering metrics and events for each
kernel executed in the application on the Volta architecture. Executing nvprof --

metrics all --events all generated detailed metrics regarding the kernels’ execu-
tion behavior. Each ISL iteration incurred a kernel launch outputting varying met-
rics for each run. nvprof outputted the minimum, maximum and average value of
the metrics observed for all kernels launched. For events, the output included the
total number of times the event occurred. Our analysis extracted the average met-
ric values and total event count to benchmark the kernel’s general performance.

We utilized three approaches for analyzing the metrics. Firstly, executing nvprof

--analysis-metrics enables profiling with NVP. NVP guides the analysis by showing
charts with the metrics generated by nvprof, giving thorough insights into the ap-
plication. Secondly, we utilized a Python script to create a table that compares
the raw metric data. This approach is much less time-consuming than the first
approach for quick comparisons. Finally, when we found a metric of interest, we
plotted the metric using the Seaborn [71] statistical data visualization tool. We
noticed if the execution time had a similar pattern as the metric to detect if the
metric constituted a computational bottleneck.

We did not have permission to gather metrics for our application on the Idun
cluster. This deficiency limited our analysis of the Pascal architecture. The Idun
cluster also introduced significant contention from other students and employees
of NTNU, causing substantial queueing delays. Therefore, we limited our analysis
of Pascal to executing the kernels on a single GPU with thread coarsening but
omit the time-intensive autotuning. However, executing the kernels with thread
coarsening covers essential aspects for comparing Volta and Pascal’s caches.

4.2.3 Reporting Measurements

Hoefler and Belli [72] emphasized twelve rules for reporting performance results
after investigating 120 papers across three top conferences. One rule stated the
importance of emphasizing if the baseline is a serial or parallel process and re-
porting the baseline’s absolute execution performance. We report the base kernel
using our heuristic approach for choosing TB dimensions and no thread coarsen-
ing as the baseline kernel in all measurements. Furthermore, we add the absolute

46 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

2 1 0 1 2 3 4
Time [ms]

0.0

0.1

0.2

0.3

0.4

0.5

0.6
De

ns
ity

Mean
Median

(a) Single-GPU measurement distribution

2 1 0 1 2 3 4
Time [ms]

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

Mean
Median

(b) Multi-GPU measurement distribution

Figure 4.1: The graphs display the distribution of our single-GPU and multi-GPU
measurements through a z-score normalized density plot, representing the stand-
ard score of our measurements. The x-axis represents the number of standard
deviations by which the measurements’ values differ from the mean of all meas-
urements. The graph differentiates itself from a Gaussian distribution, indicating
that we can not assume a normal distribution in our measurements. As a result,
the median resides closer to the densest density region than the mean, as visual-
ized by the graph’s red and blue bars.

execution performance of our measurements before reporting performance im-
provements relative to the baseline.

Runtime variance in contemporary supercomputers convolutes performance
evaluation [73]. Seemingly identical runs might output noticeably different res-
ults, making it harder to determine if minor optimizations indeed boost perform-
ance. Therefore, Hoefler and Belli [72] presented another rule highlighting the
need for reporting that measurements are either deterministic or nondetermin-
istic. As we gathered the measurements using two of NTNU’s supercomputers,
the measurements in the following chapter are nondeterministic. We explain our
measurements’ variance by providing a density plot.

Figure 4.1 visualizes the distribution of our measurements by plotting their
density. As the graph differs significantly from a Gaussian distribution, we can not
assume normality in our analysis. Therefore, using the mean is suboptimal, as the
mean does not represent our measurements’ densest part. The mean includes too
many outliers, moving its value away from the densest region, while the median
provides a value that resides closer to the densest region, improving the quality
of our analysis. Therefore, we include the median in our analysis instead of the
mean. Moreover, we choose to present the next chapter’s measurements in bar
plots over box plots as our measurements’ variance is slight.

Chapter 4: Experimental Setup 47

(a) R1 (b) R2 (c) R4 (d) R8 (e) R16

(f) R1 (g) R2 (h) R4 (i) R8 (j) R16

Figure 4.2: The figures show each RTM stencil configurations measured in
Chapter 5, denoting each RTM stencil with radius r by Rr . The color character-
istics is equal to Figure 2.1.

4.3 Execution Configurations

4.3.1 Stencils

To evaluate the key performance trends of our application, we emphasize five 2D
stencils and five 3D stencils. The stencils follow the RTM stencil pattern with dif-
ferent radiuses. Figures 4.2a to 4.2e and Figures 4.2f to 4.2j present the setup
covering 2D and 3D stencils, respectively. Technically, R1 does not relate to the
concept of RTM, but we include it as it is a critical stencil for iterative methods.
These stencils cover a range of computational demands for the GPU. Additionally,
they also cover various amounts of redundant work with differing shared memory
allocation sizes and multi-GPU ghost zone sizes. Consequently, we expect the sten-
cil’s size to have impacts for both single-GPU and multi-GPU.

The domain size is an essential aspect of the experiments. For simplicity, we
keep each dimension equal. To simplify the comparison between 2D and 3D, we
choose dimensions that compose equal total domain buffer sizes. The application
uses an input and output buffer for computing the stencil, doubling the storage
requirement. We wish to evaluate the application with both a small and a large
domain. We evaluate a small domain by setting each dimension NX = NY = 4096
(2D) and NX = NY = N Z = 256 (3D), composing a total device buffer size of
128 MiB. Furthermore, we evaluate a large domain by setting NX = NY = 32768
(2D) and NX = NY = N Z = 1024 (3D), composing a total buffer size of 8 GiB.

48 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

4.3.2 Stencil Configurations

The following subsection explains the configurations for all the optimizations
presented in the next chapter. All of the presented optimizations include the me-
dian of 30 executions to ensure credible results. Additionally, all measurements
run the ISL application with eight stencil iterations unless otherwise specified.
Furthermore, all performance improvements are relative to the given dimension’s
baseline kernel, normalized by the respective stencil radius.

Firstly, we evaluate the base, smem, and smem_padded kernels on Volta utilizing our
heuristic approach for choosing TB dimensions. Our evaluation presents side-by-
side measurements for 2D and 3D, displaying their absolute performance. Follow-
ingly, we augment the analysis for Volta by performing thread coarsening within
each kernel and autotuning the TB dimensions to expose sufficient parallelism.
We evaluate the optimizations for C F ∈ {1,2,4, 8} as further coarsening decreases
performance for our setup. Furthermore, we compare the runtime performance
with the metric our analysis described as the most likely performance bottleneck.
We present the measurements as performance and metric improvements to reveal
the relationship between performance and bottleneck metrics.

The autotuning includes all TB dimension permutations, Bx , By , Bz ∈ {2x | x ∈
[0,10]}, with the added restrictions Bx ≥ By ≥ Bz and Bx ∗ By ∗ Bz ∈ [32,1024]
after realizing that most satisfactory configurations followed this pattern. The
autotuning framework executed each configuration 30 times for extracting the
ideal TB dimensions. It is crucial to note that this set does not cover the whole
TB dimension space, potentially leading to sub-optimal TB dimensions. As the
Flamingo autotuning framework applies brute-force search in this space, the num-
ber of tested configurations grows large. This set took the system several days to
run, even when executing the kernels in parallel.

Subsequently, we evaluate the kernels on Pascal using thread coarsening be-
fore concluding our analysis for single-GPU optimizations by comparing Pascal’s
performance to Volta. In this manner, we evaluate Volta’s improved caches and
gain insights into the implications of combining the L1 and shared memory into
a unified cache for our ISL application.

Finally, we amplify the analysis by utilizing multiple GPUs to study our applic-
ation’s scaling capabilities. Our goal is to scale performance linearly with added
devices, keeping the domain size fixed to indicate strong scaling. Therefore, we
present the performance improvements achieved when offloading computations
onto more GPUs using equal domain dimensions as the single-GPU measurements.
By evaluating the application’s strong scaling capabilities, we can easily compare
the results to the single-GPU optimizations.

Chapter 5

Results

The following chapter explores the performance characteristics of our ISL applic-
ation. We present runtime performance charts and metrics explaining our obser-
vations. To simplify our discussions, we introduce abbreviations for domain size,
e.g., D = 8 GiB, and the number of GPUs utilized, e.g., G = 16. Additionally, we
denote a kernel’s TB dimension strategy in parentheses after the kernel name,
e.g., smem (heuristic).

5.1 Optimizing ISL Kernels on the Volta Architecture

5.1.1 Shared Memory

Figure 5.1a presents the measured results from executing the kernels on a single
V100 GPU on the DGX-2. Figure 5.1b displays the kernels’ performance im-
provement relative to the given dimension’s baseline kernel. Introducing shared
memory kernels improves performance over the baseline kernel by up to 1.22x
(1.01x) in 2D (3D) on Volta. In 2D, base outperforms smem and smem_padded for R1,
R2, and R4. However, smem_padded becomes slightly superior for R8 and is signific-
antly better for R16.

In contrast to 2D, base’s performance in 3D is remarkable compared to smem

and smem_padded. Interestingly, base strictly dominates the other kernels in 3D in all
cases except for R4. At this point, smem_padded matches base’s incredible perform-
ance. However, smem_padded’s performance soon drops as the 3D TB dimensions
cause troubles for smem_padded’s Bx , By , Bz ≥ RADIUS restriction. This restriction
forces smem_padded’s Bx value below 32 for R8, which causes troubles for coales-
cing memory accesses. There exists no available TB dimensions adhering to this
restriction for R16, causing our application to exit execution.

Figure 5.1c displays the kernels’ DRAM write throughput and local memory
throughput for 2D and 3D, respectively. The metrics closely resemble Figure 5.1a’s
performance measurements, indicating that DRAM write (local memory) through-
put limits our kernels in 2D (3D). This exciting result indicates that optimizing
DRAM write throughput is more critical than increasing shared memory reuse in

49

50 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

R1 R2 R4 R8 R16
Stencil Radius

0.0000

0.0025

0.0050

0.0075

0.0100

Pe
rfo

rm
an

ce
[1

/m
s]

2D

R1 R2 R4 R8 R16
Stencil Radius

3D

Kernel
base smem smem_padded

(a) The kernels’ performance

R1 R2 R4 R8 R16
Stencil Radius

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

Pe
rfo

rm
an

ce
[x

]

2D

R1 R2 R4 R8 R16
Stencil Radius

3D

(b) Comparing each kernel’s performance improvement relative to the given dimension’s baseline
kernel, normalized by the stencil radius

R1 R2 R4 R8 R16
Stencil Radius

0
50

100
150
200
250
300
350

DR
AM

 W
rit

e
Th

ro
ug

hp
ut

[G
B/

s]

2D

R1 R2 R4 R8 R16
Stencil Radius

0
100
200
300
400
500
600
700
800
900

Lo
ca

l M
em

or
y

Th
ro

ug
hp

ut
[G

B/
s]

3D

(c) DRAM write throughput and local memory throughput as a function of the stencil radius

Figure 5.1: The figures present the kernels’ performance, performance improve-
ment over the given dimension’s baseline kernel normalized by the stencil radius,
DRAM write throughput, and local memory throughput as a function of stencil
radius for the Volta architecture (D = 8 GiB). The kernels utilize heuristic TB
dimensions.

Chapter 5: Results 51

R1 R2 R4 R8 R16
Stencil Radius

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

Pe
rfo

rm
an

ce
[x

]

8 Iterations

R1 R2 R4 R8 R16
Stencil Radius

1024 Iterations

Kernel
base smem smem_padded

(a) 2D

R1 R2 R4 R8 R16
Stencil Radius

0.6

0.7

0.8

0.9

1.0

1.1

Pe
rfo

rm
an

ce
[x

]

8 Iterations

R1 R2 R4 R8 R16
Stencil Radius

1024 Iterations

(b) 3D

Figure 5.2: The graphs compare the kernels’ performance improvement over the
respective baseline kernel normalized by the stencil radius for 8 and 1024 itera-
tions in 2D and 3D. The similar improvements indicate that the number of itera-
tions does not impact the kernels’ performance relationships. The kernels utilize
heuristic TB dimensions.

2D on the Volta architecture. In contrast to 2D, register spilling strongly limits the
3D kernels. Therefore, optimizing the 3D kernels will depend on register usage
over bandwidth utilization.

We include a brief sensitivity analysis showing the kernels’ sensitivity to the
number of iterations calculated in the ISL application. Figures 5.2a and 5.2b dis-
play the kernels’ performance improvements over the respective baseline kernel
for 8 and 1024 iterations in 2D and 3D, respectively. The columns’ similarity indic-
ate that the kernels’ performance improvements are independent of the number of
stencil iterations used in the computation. As a result, we can justify that sticking
to 8 iterations is sufficient to display our ISL application’s behavior for single-GPU
kernels.

52 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

R1 R2 R4 R8 R16
Stencil Radius

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

Pe
rfo

rm
an

ce
[x

]

2D

R1 R2 R4 R8 R16
Stencil Radius

3D

Kernel
base
base (coarsened)

smem
smem (coarsened)

smem_padded
smem_padded (coarsened)

Figure 5.3: The graphs compare the performance improvements of uncoarsened
kernels against kernels having the best observed coarsening factor relative to the
given dimension’s baseline kernel normalized by the stencil radius. The kernels
utilize heuristic TB dimensions.

5.1.2 Thread Coarsening

Figure 5.3 presents our results for optimizing the kernels with thread coarsen-
ing and selecting the best-performing coarsening factor. The figure compares un-
coarsened kernels to coarsened kernels. Applying thread coarsening improves the
kernels’ performance by up to 1.30x (1.10x) over the baseline kernel in 2D (3D),
indicating that coarsening impacts performance on Volta for heuristic TB dimen-
sions.

Figures 5.4 and 5.5 present more detailed graphs for thread coarsening
in 2D and 3D, respectively. The graphs display the performance and DRAM
write throughput (2D) or local memory throughput (3D) improvements of the
coarsened kernels relative to the baseline kernel normalized by the stencil radius.
The throughput improvements are exceedingly similar to the performance im-
provements, indicating that thread coarsening improves performance by expos-
ing more parallel memory operations per thread for 2D kernels and decreasing
register usage for 3D kernels.

Thread coarsening has a significant impact on the underperforming smem ker-
nel in 2D, making it competitive to the other kernels and outperforming them for
R4. It is tempting to credit the significantly increased shared memory size that
comes with coarsening as it enables more reuse. For this example, the shared
memory load throughput increases from 3526 GB/s to 5672 GB/s and shared
memory store throughput from 187.1 GB/s to 276.9 GB/s. However, since Fig-
ure 5.5 shows that DRAM write throughput improvement closely resembles the
performance improvement, the critical performance-enhancement factor is expos-
ing more parallel I/O per thread.

Chapter 5: Results 53

R1 R2 R4 R8 R16
Stencil Radius

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

Pe
rfo

rm
an

ce
[x

]

base

R1 R2 R4 R8 R16
Stencil Radius

smem

R1 R2 R4 R8 R16
Stencil Radius

smem_padded

R1 R2 R4 R8 R16
Stencil Radius

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

DR
AM

 W
rit

e
Th

ro
ug

hp
ut

[x
]

R1 R2 R4 R8 R16
Stencil Radius

R1 R2 R4 R8 R16
Stencil Radius

Coarsening Factor
1 2 4 8

Figure 5.4: The graph displays coarsened kernels (heuristic) in 2D. The rows
show performance and DRAM write throughput improvement as a function
of stencil radius, displaying each coarsened kernel’s metric relative to the 2D
baseline kernel normalized by the stencil radius. The DRAM write throughput
improvement closely resembles the performance improvement for all configura-
tions, implying that thread coarsening improves performance by increasing this
throughput.

54 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

R1 R2 R4 R8 R16
Stencil Radius

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Pe
rfo

rm
an

ce
[x

]

base

R1 R2 R4 R8 R16
Stencil Radius

smem

R1 R2 R4 R8
Stencil Radius

smem_padded

R1 R2 R4 R8 R16
Stencil Radius

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Lo
ca

l M
em

or
y

Th
ro

ug
hp

ut
[x

]

R1 R2 R4 R8 R16
Stencil Radius

R1 R2 R4 R8
Stencil Radius

Coarsening Factor
1 2 4 8

Figure 5.5: The graph displays coarsened kernels (heuristic) in 3D. The rows
show performance and local memory throughput improvement as a function
of stencil radius, displaying each coarsened kernel’s metric relative to the 3D
baseline kernel normalized by the stencil radius. The local memory throughput
improvement closely resembles the performance improvement for all configura-
tions, suggesting that thread coarsening improves performance by reducing re-
gister spilling.

Chapter 5: Results 55

R1 R2 R4 R8 R16
Stencil Radius

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Pe
rfo

rm
an

ce
[x

]

2D

R1 R2 R4 R8 R16
Stencil Radius

3D

Kernel
base
base (optimized)

smem
smem (optimized)

smem_padded
smem_padded (optimized)

Figure 5.6: The graph compares uncoarsened kernels (heuristic) against the
coarsened kernels (autotuned) on Volta by calculating their performance im-
provement relative to the given dimension’s baseline kernel normalized by the
stencil radius.

5.1.3 Autotuning

Figure 5.6 presents the measured performance improvements by coarsening the
kernels with the best-performing coarsening factor and autotuning TB dimen-
sions. Autotuning the coarsened kernels’ TB dimensions improve performance by
up to 1.47x (1.36x) over the baseline kernel in 2D (3D). The autotuning scheme
covers many values, but the set does not cover all heuristic combinations. There-
fore, although the autotuning scheme outperforms the heuristic approach in most
cases, this outcome does not always happen.

Figures 5.7 and 5.8 present more detailed graphs for autotuning in 2D and
3D, respectively. The graphs display the kernels’ performance and DRAM write
throughput (2D) or local memory throughput (3D) improvements with autot-
uned TB dimensions relative to the baseline kernel. In the same fashion as thread
coarsening, the metrics are exceedingly similar to the performance improvement,
indicating that autotuning TB dimensions improves performance by exposing
more parallel memory operations per thread for 2D kernels and decreasing re-
gister usage for 3D kernels.

Interestingly, although thread coarsening worked best for the smem kernel, auto-
tuning the TB dimensions improves performance significantly for all the kernels
in most cases in 2D and R2 in 3D. By comparing Figure 5.7 to Figure 5.4, we no-
tice that autotuning is excellent for uncoarsened kernels in 2D, particularly for
the smem kernel. However, this event does not occur for 3D. We observe that auto-
tuning works better in general for 2D compared to 3D, except for smem for R8 and
R16 with C F = 4. In Figure 5.5, these configurations underperform significantly,
decreasing performance by more than 40% compared to the baseline. By com-
paring Figure 5.8 to Figure 5.5, we observe that for smem, autotuning increases
performance significantly by 1.45x and 1.40x for R8 and R16, respectively.

56 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

R1 R2 R4 R8 R16
Stencil Radius

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Pe
rfo

rm
an

ce
[x

]

base

R1 R2 R4 R8 R16
Stencil Radius

smem

R1 R2 R4 R8 R16
Stencil Radius

smem_padded

R1 R2 R4 R8 R16
Stencil Radius

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

DR
AM

 W
rit

e
Th

ro
ug

hp
ut

[x
]

R1 R2 R4 R8 R16
Stencil Radius

R1 R2 R4 R8 R16
Stencil Radius

Coarsening Factor
1 2 4 8

Figure 5.7: The graph displays coarsened kernels (autotuned) in 2D on Volta. The
rows show performance and DRAM write throughput improvement as a function
of stencil radius, displaying each improvement relative to the given dimension’s
baseline kernel normalized by the stencil radius. The DRAM write throughput
improvement closely resembles the performance improvement for all configura-
tions, implying that autotuning improves performance by increasing this through-
put.

Chapter 5: Results 57

R1 R2 R4 R8 R16
Stencil Radius

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

Pe
rfo

rm
an

ce
[x

]

base

R1 R2 R4 R8 R16
Stencil Radius

smem

R1 R2 R4 R8
Stencil Radius

smem_padded

R1 R2 R4 R8 R16
Stencil Radius

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

Lo
ca

l M
em

or
y

Th
ro

ug
hp

ut
[x

]

R1 R2 R4 R8 R16
Stencil Radius

R1 R2 R4 R8
Stencil Radius

Coarsening Factor
1 2 4 8

Figure 5.8: The graph displays coarsened kernels (autotuned) in 3D on Volta.
The rows show performance and local memory throughput improvement as a
function of stencil radius, displaying each coarsened kernel’s metric relative to
the given dimension’s baseline kernel normalized by the stencil radius. The local
memory throughput improvement closely resembles the performance improve-
ment for all configurations, implying that autotuning improves performance by
reducing register spilling.

58 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

5.2 Optimizing ISL Kernels on the Pascal Architecture

5.2.1 Shared Memory

Figure 5.9 presents the measurements for executing the kernels on the Pascal ar-
chitecture in 2D and 3D and compares the results against executing on Volta.
Figure 5.9a display that smem_padded outperforms the other kernels significantly on
Pascal for D = 8 GiB when R> 1 in 2D and R> 2 in 3D, showing that its perform-
ance improvement over base proliferates with increasing stencil radius up to 3.27x
(1.43x) for R16 (R4) in 2D (3D). However, this radius’ performance improvement
shrinks to 2.20x (1.00x) for R16 (R4) in 2D (3D) for a D = 128 MiB domain.

The uncoarsened smem_padded kernel’s dominance over the uncoarsened base

kernel on Pascal contrasts Volta’s results, where smem_padded struggled to compete
with base due to the DRAM write throughput bottleneck. In contrast to Volta, Pas-
cal’s dominant smem_padded kernel implies that the kernel benefits significantly from
increased shared memory reuse, indicating that cache utilization composes the
performance bottleneck for Pascal. The performance difference between D = 8
GiB and D = 128 MiB implies that increasing shared memory reuse has signific-
antly less impact for smaller domains.

By comparing the columns of Figure 5.9a, we explore that utilizing shared
memory within the kernels in 2D is slightly superior to 3D, increasing performance
by up to 1.78x (R4) for smem_padded over base in 2D compared to 1.43x (R4) for 3D.
The advantage decreases for a smaller domain in Figure 5.9b, where the perform-
ance improvement is 1.09x and 1.00x for 2D and 3D, respectively. smem_padded’s
shared memory allocation per TB increases significantly from 2D to 3D to include
the required elements from the third dimension. The Pascal architecture restricts
shared memory allocations to 48 KiB per CTA, severely limiting occupancy when
each TB requires large allocations. Additionally, the shared memory per CTA limit
causes the application to exit for R8 in 3D on Pascal, as the allocation requires 90
KiB.

Furthermore, Figure 5.9 shows that Volta significantly outperforms Pascal with
a performance gap increasing proportionally with the stencil radius, indicating
that Pascal’s caches do not have sufficient capacity to handle the ISL application’s
demanding workload. Volta achieves remarkable performance improvements over
Pascal, increasing performance by up to 20.3x (12.7x) for D = 128 MiB and 6.07x
(3.34x) for D = 8 GiB for Volta’s smem_padded kernel compared to Pascal’s base ker-
nel. These results indicate that the unified cache’s improved capacity, bandwidth,
number of MSHRs, and shared memory per CTA/SM impact performance signi-
ficantly.

Chapter 5: Results 59

R1 R2 R4 R8 R16
Stencil Radius

0
1
2
3
4
5
6

Pe
rfo

rm
an

ce
[x

]

2D

R1 R2 R4 R8 R16
Stencil Radius

3D

Kernel
base (Pascal)
base (Volta)

smem (Pascal)
smem (Volta)

smem_padded (Pascal)
smem_padded (Volta)

(a) D = 8 GiB

R1 R2 R4 R8 R16
Stencil Radius

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Pe
rfo

rm
an

ce
[x

]

2D

R1 R2 R4 R8 R16
Stencil Radius

3D

(b) D = 128 MiB

Figure 5.9: The graphs display the performance improvement of Volta and Pascal
kernels relative to the given dimension’s baseline kernel on Pascal normalized by
the stencil radius baseline kernel. By comparing the figures, we recognize Volta’s
massive advantage over Pascal for different domain sizes. Furthermore, the fig-
ures show that the benefit increases with larger stencil radiuses.

60 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

R1 R2 R4 R8 R16
Stencil Radius

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Pe
rfo

rm
an

ce
[x

]

2D

R1 R2 R4 R8 R16
Stencil Radius

3D

Kernel
base
base (coarsened)

smem
smem (coarsened)

smem_padded
smem_padded (coarsened)

Figure 5.10: The graph compares the performance improvement of uncoarsened
kernels (heuristic) against the coarsened kernels with the best observed coarsen-
ing factor on Pascal relative to the given dimension’s baseline kernel normalized
by the stencil radius.

5.2.2 Thread Coarsening

Figure 5.10 presents our results for optimizing the kernels with thread coarsening
and selecting the best-performing coarsening factor on Pascal. The figure com-
pares uncoarsened kernels to coarsened kernels. Applying thread coarsening im-
proves the kernels’ performance by up to 3.64x (1.44x) over the baseline kernel
in 2D (3D), indicating that coarsening impacts performance significantly on Pas-
cal for heuristic TB dimensions. Pascal’s shared memory per CTA limit prevents
further performance improvements in 3D as R4 is the largest applicable stencil.

In contrast to Volta, thread coarsening has a limited impact on performance
for the base kernel on Pascal, except for R1 and R2 in 3D. If DRAM utilization bot-
tlenecked Pascal’s performance, we would see performance improvements for all
the kernels, as thread coarsening would expose more parallel memory operations
per thread. Therefore, this result indicates that the performance improvement
comes from the large shared memory allocation by enabling more reuse. As we
do not have permission to profile the application on Pascal, we can not present
the shared load and store throughput. However, by looking at Volta’s incredible
shared memory throughput through larger allocations, we hypothesize that this
is the crucial performance-enhancing factor.

Figures 5.11a and 5.11b present a more detailed graph for thread coarsen-
ing on Pascal in 2D and 3D, respectively. In general, coarsening the kernels with
C F = 2 and C F = 4 gives the best performance, and the performance drops
for C F = 8. As the previous discussion indicated that shared memory reuse was
crucial for increasing performance, we believe that C F = 8 introduces too large
shared memory allocations that map unfavorably to the total amount available,
decreasing the performance by reducing occupancy.

Chapter 5: Results 61

R1 R2 R4 R8 R16
Stencil Radius

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Pe
rfo

rm
an

ce
[x

]

base

R1 R2 R4 R8 R16
Stencil Radius

smem

R1 R2 R4 R8 R16
Stencil Radius

smem_padded

Coarsening Factor
1 2 4 8

(a) 2D

R1 R2 R4 R8 R16
Stencil Radius

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Pe
rfo

rm
an

ce
[x

]

base

R1 R2 R4 R8 R16
Stencil Radius

smem

R1 R2 R4
Stencil Radius

smem_padded

(b) 3D

Figure 5.11: The graphs present coarsened kernels (heuristic) in 2D and 3D on
Pascal. The rows show performance improvement as a function of stencil ra-
dius, displaying each coarsened kernel’s performance improvement relative to
the given dimension’s baseline kernel normalized by the stencil radius.

62 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

5.3 Multi-GPU

Figures 5.12a and 5.12b present the measured performance improvements for
utilizing up to 16 V100 GPUs on the DGX-2 to offload our ISL application’s calcu-
lations in 2D and 3D for D = 8 GiB and D = 128 MiB, respectively. Figure 5.12a
signifies significant scaling in 2D and 3D for D = 8 GiB by achieving perform-
ance improvements similar to the number of GPUs utilized except for G = 16.
Nonetheless, the performance improvements reach an incredible 13.3x (13.2x)
for R16 (R2) in 2D (3D). Arguing that G = 16 increases variance does not work
as G = 16’s variance closely resembles the other multi-GPU executions’ variance.
This deficiency is most likely due to the communication between the GPUs with
index 7 and 8 in the strip partitioning approach, as this communication needs to
travel between the NVSwitch’s two baseboards at half throughput.

Furthermore, the performance declines slightly by 9.4% from R1 to R16 for
G = 8 in 3D. The performance declines more substantially by 14% from R2 to R16
for G = 16. The stencil radius impacts the number of bytes transferred between
GPUs by increasing the ghost zone size, indicating that communication becomes
a bottleneck in 3D. We do not observe this effect in 2D, most likely because the
inter-GPU communication requirements are less severe. The bottleneck increases
from G = 8 to G = 16 as we introduce communication between baseboards and
increase the number of GPUs participating in the communication.

Figure 5.12b shows that our application requires a sufficient domain size to
improve performance substantially by utilizing more GPUs. When the D = 512
MiB, the performance improvements already diminishes when G = 2, indicating
that the domain is too small to expose sufficient parallelism from each GPU. Fur-
thermore, the performance peaks for either G = 4 or G = 8 before rapidly declin-
ing. The rate of decline is faster for smaller stencil radiuses. Therefore, multi-GPU
requires sufficient domain sizes to offload computation efficiently.

Figures 5.13a and 5.13b compare our ISL application with 8 and 1024 stencil
iterations for determining whether the number of stencil iterations affects multi-
GPU’s scaling capabilities. Both figures show significantly similar measurements
in most cases except for G = 16. The most significant difference occurs for R16
in 2D, where the performance improvements compared to single-GPU are 13.3x
and 14.8x for 8 and 1024 iterations, respectively. The difference amounts to 10%,
indicating that G = 16 is somewhat sensitive to the number of iterations.

Chapter 5: Results 63

R1 R2 R4 R8 R16
Stencil Radius

12
34
56
78
91011121314

Pe
rfo

rm
an

ce
[x

]

2D

R1 R2 R4 R8 R16
Stencil Radius

3D

Number of GPUs
1 2 4 8 16

(a) D = 8 GiB

R1 R2 R4 R8 R16
Stencil Radius

1.0

1.5

2.0

2.5

3.0

Pe
rfo

rm
an

ce
[x

]

2D

R1 R2 R4 R8 R16
Stencil Radius

3D

(b) D = 128 MiB

Figure 5.12: The figures display the performance improvements by utilizing mul-
tiple GPUs relative to a single GPU for the base kernel normalized by the stencil
radius in 2D and 3D for D = 8 GiB and D = 128 MiB on the DGX-2.

64 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

R1 R2 R4 R8 R16
Stencil Radius

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Pe
rfo

rm
an

ce
[x

]

8 Iterations

R1 R2 R4 R8 R16
Stencil Radius

1024 Iterations

Number of GPUs
1 2 4 8 16

(a) 2D

R1 R2 R4 R8 R16
Stencil Radius

12
34
56
78
91011121314

Pe
rfo

rm
an

ce
[x

]

8 Iterations

R1 R2 R4 R8 R16
Stencil Radius

1024 Iterations

(b) 3D

Figure 5.13: The figures display the performance improvements by utilizing mul-
tiple GPUs relative to a single GPU for the base kernel normalized by the stencil
radius in 2D and 3D for 8 and 1024 stencil iterations on the DGX-2.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We conclude our contributions by highlighting their objective task from Chapter 1
in parentheses. This thesis implemented an ISL application in 2D and 3D (T1)
and contributed a comprehensive analysis into utilizing a combination of shared
memory, thread coarsening, and autotuning TB dimensions (T2) for optimizing
RTM stencils with various stencil radiuses for 2D and 3D domains (T3). We found
that introducing shared memory achieves the most stencil-dependent perform-
ance improvements (T3). Furthermore, we discovered the optimizations’ key per-
formance bottlenecks by discovering that DRAM write (local memory) throughput
bottlenecks performance in 2D (3D) on Volta (T2), indicating that moving from
2D to 3D introduces significant register spilling (T1). Additionally, we argued that
utilizing shared memory has a significant impact on Pascal, indicating that cache
utilization composes this architecture’s performance bottleneck instead of DRAM
throughput (T2). Moreover, we observed immensely increased performance for
our ISL application by upgrading the GPU architecture from Pascal to Volta (T4).
Finally, offloading workload onto more GPUs incurred tremendous performance
improvements closely resembling the number of GPUs utilized (T5).

6.2 Future Work

The thesis has given a great introduction to the topic of ISLs on GPUs. However,
there are many aspects of ISLs on GPUs we have not covered. Therefore, we wish
to mention specific ways to continue our work.

6.2.1 Spatial and Temporal Blocking

Chapter 2 compared our ISL application’s 3D blocking scheme to Nguyen et al.’s
[16] 3.5D scheme combining 2.5D spatial blocking and 1D temporal blocking.
We argued that 3D blocking is more flexible than 2.5D blocking by not imposing
restrictions on the cache capacity for achieving good performance. However, the

65

66 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

authors’ hardware (Nvidia GTX 285) is aged, and extending our ISL application
with 2.5D blocking would be interesting for experimenting with V100’s enormous
cache capacities.

Furthermore, our ISL application can potentially benefit from introducing tem-
poral blocking techniques to transform our memory-bound kernels into compute-
bound. However, this technique is feasible only if we keep all redundant elements
cached for extracting substantial performance, which can be intricate for larger
RTM stencils. The implementation can either utilize shared memory or even re-
gister caching, although using shared memory would be the most straightforward
approach. However, reducing the number of threads per CTA to the warp size to
use warp-level instruction instead of block-level instructions in combination with
register caching could remove much of the overhead associated with block-level
instructions. Therefore, we argue that utilizing both shared memory or register
schemes for temporal blocking is an exciting continuation of our implementation.

6.2.2 Stencil Patterns

Our ISL application emphasizes an RTM stencil pattern for various stencil radiuses
in 2D and 3D. Chapter 2 covered two other approaches: square-shaped (cube-
shaped) Jacobi patterns and X-shaped Gauss-Seidel patterns. Implementing ker-
nels following such patterns would incur different results as their memory access
patterns differ from the RTM pattern. The Jacobi pattern includes a significantly
more considerable amount of neighboring values when calculating the stencil,
putting more pressure on the GPU’s resources.

Furthermore, the Jacobi pattern would cause bank conflicts in shared memory
as the threads’ access to shared memory would overlap across banks. Solving the
issue would require bank conflict mitigation approaches (e.g., shared memory
padding [13, p. 211]).

6.2.3 Iteration Patterns

Our ISL application utilized Jacobi iterations for computing the stencil, doubling
the storage requirements for the domain by including an input and output buf-
fer. The incredible domain size demands of modern workloads motivate using a
different iteration pattern. Utilizing Gauss-Seidel iterations or Gauss-Seidel Red-
Black iterations halves the storage requirement for the domain by using a single
buffer [25, 59, 74].

The Gauss-Seidel iteration pattern improves the convergence rate for specific
applications, requiring fewer iterations to complete. However, the Gauss-Seidel
approach is less parallelizable and is therefore not attractive for GPUs. This de-
ficiency is due to dependencies between the simultaneously calculated values,
as the method emphasizes the current iteration over previous iterations. Gauss-
Seidel Red-Black iterations improve Gauss-Seidel’s parallelism issues by dividing
the grid into red and black nodes. The method performs the iterative refinement

Chapter 6: Conclusion and Future Work 67

for one of the colors first, followed by computing the other color. However, the
pattern only works for R1 stencils as neighboring nodes require a different color.

6.2.4 Case Studies

Koraei et al. [3] highlighted that ISLs often compose large parts of applications’
total execution time and mentions SPEC 2017’s Lattice Boltzmann Method as a
particular application spending 100% of the execution time calculating ISLs. How-
ever, the authors emphasized numerous applications with differing amounts of
time spent calculating ISLs and mention other SPEC 2017 applications like the
Parallel Ocean Program that only spends 26% of the execution time calculating
ISLs. Therefore, future work should focus not only on including specific stencil
and iteration patterns but also on implementing real-world applications that use
specific stencil configurations to provide broader practical insights.

6.2.5 Autotuning

Our autotuning approach utilized brute-force search to explore a set of possible
TB dimension configurations on Volta. This set was a subset of all possible config-
urations, creating a significant potential for sub-optimal configurations. However,
enlarging the set incurs massive time requirements for executing the application,
which is unfavorable when using a shared system. Meanwhile, we believe we have
covered a crucial part of the configuration space for improving bandwidth utiliz-
ation. Therefore, further search should not incur massive performance improve-
ments but can give interesting results. Nonetheless, if we were to implement our
kernels in a real-world application with time limits but substantial performance
demands, we would expand our configuration set and utilize an improved auto-
tuner that uses more effective search algorithms as brute-force search becomes
intractable for large configuration sets.

6.2.6 Improving Inter-GPU Communication

Chapter 5 concluded that communication was an issue when offloading computa-
tions onto all GPUs within the DGX-2. The NVSwitch interconnect system’s charac-
teristics halved the throughput between a pair of GPUs when utilizing more than
8 GPUs and strip partitioning. Therefore, we argue that improving inter-GPU com-
munications should improve performance when utilizing more than 8 GPUs.

Chapter 2 covered two approaches for improving inter-GPU communication:
Reducing communication by enlarging the partitions’ ghost zones and utilizing
multiple OpenMP threads with multiple CUDA streams to overlap communication
with computation. These techniques might improve our issue with utilizing more
than 8 GPUs on the DGX-2. Therefore, we propose combining both approaches as
an exciting approach to continue our work.

Bibliography

[1] M. R. Farstad and A. C. Elster, ‘Using Modern Optimization Techniques to
Study Iterative Methods on GPUs,’ unpublished.

[2] J. Meng and K. Skadron, ‘A Performance Study for Iterative Stencil Loops
on GPUs with Ghost Zone Optimizations,’ International Journal of Parallel
Programming, no. 1, pp. 115–142, 2011.

[3] M. Koraei, O. Fatemi and M. Jahre, ‘DCMI: A Scalable Strategy for Accel-
erating Iterative Stencil Loops on FPGAs,’ ACM Trans. Archit. Code Optim.,
vol. 16, no. 36, 2019.

[4] K. Asanovi, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams and K. A. Yelick, ‘The
Landscape of Parallel Computing Research: A View from Berkeley,’ EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2006-183, 2006.

[5] M. Gardner, ‘Mathematical Games - The Fantastic Combinations of John
Conway’s New Solitaire Game "life",’ en, Natural Science, vol. 6, no. 13,
pp. 120–123, 1970.

[6] M. R. Rodriguez, B. Philip, Z. Wang and M. A. Berrill, ‘Block-Relaxation
Methods for 3D Constant-Coefficient Stencils on GPUs and Multicore CPUs,’
CoRR, 2018. arXiv: 1208.1975 [cs.DC].

[7] Z. Li and Y. Song, ‘Automatic Tiling of Iterative Stencil Loops,’ ACM Trans.
Program. Lang. Syst., no. 6, pp. 975–1028, 2004.

[8] R. Strzodka, M. Shaheen, D. Pajak and H.-P. Seidel, ‘Cache Oblivious Paral-
lelograms in Iterative Stencil Computations,’ in Proceedings of the 24th ACM
International Conference on Supercomputing, ser. ICS ’10, 2010, pp. 49–59.

[9] H. Stengel, J. Treibig, G. Hager and G. Wellein, ‘Quantifying Performance
Bottlenecks of Stencil Computations Using the Execution-Cache-Memory
Model,’ in Proceedings of the 29th ACM on International Conference on Su-
percomputing, ser. ICS ’15, 2015, pp. 207–216.

[10] K. Datta, S. Williams, V. Volkov, J. Carter, L. Oliker, J. Shalf and K. Yelick,
‘Auto-Tuning the 27-point Stencil for Multicore,’ in In Proc. iWAPT2009: The
Fourth International Workshop on Automatic Performance Tuning, 2009.

69

https://arxiv.org/abs/1208.1975

70 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

[11] SPEC, SPEC CPU 2017, 2017. [Online]. Available: https://www.spec.org/
cpu2017/.

[12] J. Holewinski, L.-N. Pouchet and P. Sadayappan, ‘High-Performance Code
Generation for Stencil Computations on GPU Architectures,’ in Proceedings
of the 26th ACM International Conference on Supercomputing, ser. ICS ’12,
2012, pp. 311–320.

[13] J. Cheng, M. Grossman and T. McKercher, Professional CUDA C Program-
ming, 1st. Wrox Press Ltd., 2014, ISBN: 1118739329.

[14] Y. Chi and J. Cong, ‘Exploiting Computation Reuse for Stencil Accelerators,’
in Proceedings of the 57th ACM/EDAC/IEEE Design Automation Conference,
ser. DAC ’20, 2020.

[15] H. R. Zohouri, A. Podobas and S. Matsuoka, ‘Combined Spatial and Tem-
poral Blocking for High-Performance Stencil Computation on FPGAs Using
OpenCL,’ Proceedings of the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2018.

[16] A. Nguyen, N. Satish, J. Chhugani, C. Kim and P. Dubey, ‘3.5-D Blocking
Optimization for Stencil Computations on Modern CPUs and GPUs,’ in SC
’10: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, 2010, pp. 1–13.

[17] P. Micikevicius, ‘3D Finite Difference Computation on GPUs Using CUDA,’
in Proceedings of 2nd Workshop on General Purpose Processing on Graphics
Processing Units, ser. GPGPU-2, 2009, pp. 79–84.

[18] S. Tabik, M. Peemen, N. Guil and H. Corporaal, ‘Demystifying the 16 x
16 Thread-Block for Stencils on the GPU,’ Concurrency and Computation:
Practice and Experience, vol. 27, no. 18, pp. 5557–5573, 2015.

[19] Nvidia, CUDA C++ Programming Guide, 2021. [Online]. Available: https:
//docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

[20] T. L. Falch and A. C. Elster, ‘Register Caching for Stencil Computations on
GPUs,’ in 2014 16th International Symposium on Symbolic and Numeric Al-
gorithms for Scientific Computing, 2014, pp. 479–486.

[21] N. Stawinoga and T. Field, ‘Predictable Thread Coarsening,’ ACM Trans.
Archit. Code Optim., vol. 15, no. 2, 2018.

[22] J. A. Stratton, N. Anssari, C. Rodrigues, I.-J. Sung, N. Obeid, L. Chang,
G. D. Liu and W.-m. Hwu, ‘Optimization and Architecture Effects on GPU
Computing Workload Performance,’ in 2012 Innovative Parallel Computing
(InPar), 2012, pp. 1–10.

[23] B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gorlatch and C. Dubach, ‘High
Performance Stencil Code Generation with Lift,’ in Proceedings of the 2018
International Symposium on Code Generation and Optimization, ser. CGO
2018, 2018, pp. 100–112.

https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

Bibliography 71

[24] J. Choquette, O. Giroux and D. Foley, ‘Volta: Performance and Program-
mability,’ IEEE Micro, vol. 38, no. 2, pp. 42–52, 2018.

[25] K. Datta, ‘Auto-Tuning Stencil Codes for Cache-Based Multicore Platforms,’
Ph.D. dissertation, University of California at Berkeley, 2009.

[26] D. Wonnacott, ‘Achieving Scalable Locality With Time Skewing,’ Interna-
tional Journal of Parallel Programming, vol. 30, Mar. 1999.

[27] R. Strzodka, M. Shaheen, D. Pajak and H.-P. Seidel, ‘Cache Accurate Time
Skewing in Iterative Stencil Computations,’ in 2011 International Confer-
ence on Parallel Processing, 2011, pp. 571–581.

[28] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam, A. Roun-
tev and P. Sadayappan, ‘Effective Automatic Parallelization of Stencil Com-
putations,’ in Proceedings of the 28th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, ser. PLDI ’07, 2007, pp. 235–
244.

[29] K. Matsumura, H. R. Zohouri, M. Wahib, T. Endo and S. Matsuoka, ‘AN5D:
Automated Stencil Framework for High-Degree Temporal Blocking on
GPUs,’ in Proceedings of the 18th ACM/IEEE International Symposium on
Code Generation and Optimization, ser. CGO 2020, 2020, pp. 199–211.

[30] P. S. Rawat, C. Hong, M. Ravishankar, V. Grover, L.-N. Pouchet and P.
Sadayappan, ‘Effective Resource Management for Enhancing Performance
of 2D and 3D Stencils on GPUs,’ in Proceedings of the 9th Annual Workshop
on General Purpose Processing Using Graphics Processing Unit, ser. GPGPU
’16, 2016, pp. 92–102.

[31] R. Cattaneo, G. Natale, C. Sicignano, D. Sciuto and M. D. Santambrogio,
‘On How to Accelerate Iterative Stencil Loops: A Scalable Streaming-Based
Approach,’ ACM Trans. Archit. Code Optim., vol. 12, no. 4, 2015.

[32] V. Rana, I. Beretta, F. Bruschi, A. A. Nacci, D. Atienza and D. Sciuto, ‘Ef-
ficient Hardware Design of Iterative Stencil Loops,’ IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, no. 12, pp. 2018–
2031, 2016.

[33] Y. Lin and V. Grover, Using CUDA Warp-Level Primitives, 2018. [Online].
Available: https://developer.nvidia.com/blog/using-cuda-warp-
level-primitives/.

[34] Nvidia, NVIDIAs Next Generation CUDA Compute Architecture: Fermi, 2009.
[Online]. Available: https://www.nvidia.com/content/PDF/fermi_
white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf.

[35] A. Li, W. Liu, L. Wang, K. Barker and S. L. Song, ‘Warp-Consolidation: A
Novel Execution Model for GPUs,’ in Proceedings of the 2018 International
Conference on Supercomputing, ser. ICS ’18, 2018, pp. 53–64.

https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

72 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

[36] D. Kroft, ‘Lockup-Free Instruction Fetch/Prefetch Cache Organization,’
in Proceedings of the 8th Annual Symposium on Computer Architecture,
ser. ISCA ’81, 1981, pp. 81–87.

[37] M. Jahre and L. Natvig, ‘A High Performance Adaptive Miss Handling Ar-
chitecture for Chip Multiprocessors,’ in Transactions on High-Performance
Embedded Architectures and Compilers IV, P. Stenström, Ed. 2011, p. 2.

[38] L. Wang, M. Jahre, A. Adileho and L. Eeckhout, ‘MDM: The GPU Memory
Divergence Model,’ in 2020 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), 2020, pp. 1009–1021.

[39] M. Harris, CUDA 9 Features Revealed: Volta, Cooperative Groups and More,
2017. [Online]. Available: https://developer.nvidia.com/blog/cuda-
9-features-revealed/.

[40] L. Zhang, M. Wahib, H. Zhang and S. Matsuoka, ‘A Study of Single and
Multi-Device Synchronization Methods in Nvidia GPUs,’ in 2020 IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS), 2020,
pp. 483–493.

[41] Nvidia, ‘Parallel Thread Execution ISA,’ 2021. [Online]. Available: https:
//docs.nvidia.com/cuda/pdf/ptx_isa_7.3.pdf.

[42] Nvidia, NVIDIA TESLA v100 GPU ARCHITECTURE, 2017. [Online]. Avail-
able: https://images.nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf.

[43] V. Volkov, ‘Better Performance at Lower Occupancy,’ 2010. [Online]. Avail-
able: https://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.
pdf.

[44] Y. Liu, X. Zhao, M. Jahre, Z. Wang, X. Wang, Y. Luo and L. Eeckhout, ‘Get
out of the Valley: Power-Efficient Address Mapping for GPUs,’ in Proceed-
ings of the 45th Annual International Symposium on Computer Architecture,
ser. ISCA ’18, 2018, pp. 166–179.

[45] Z. Jia, M. Maggioni, B. Staiger and D. P. Scarpazza, ‘Dissecting the NVIDIA
Volta GPU Architecture via Microbenchmarking,’ CoRR, 2018. arXiv: 1804.
06826.

[46] Nvidia, Volta Tuning Guide :: CUDA Toolkit Documentation, 2021. [Online].
Available: https://docs.nvidia.com/cuda/pdf/Volta_Tuning_Guide.
pdf.

[47] X. Zhao, M. Jahre and L. Eeckhout, ‘HSM: A Hybrid Slowdown Model for
Multitasking GPUs,’ in Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’20, 2020, pp. 1371–1385.

[48] Nvidia, NVIDIA Profiler User’s Guide, 2021. [Online]. Available: https://
docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf.

https://developer.nvidia.com/blog/cuda-9-features-revealed/
https://developer.nvidia.com/blog/cuda-9-features-revealed/
https://docs.nvidia.com/cuda/pdf/ptx_isa_7.3.pdf
https://docs.nvidia.com/cuda/pdf/ptx_isa_7.3.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf
https://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf
https://arxiv.org/abs/1804.06826
https://arxiv.org/abs/1804.06826
https://docs.nvidia.com/cuda/pdf/Volta_Tuning_Guide.pdf
https://docs.nvidia.com/cuda/pdf/Volta_Tuning_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf

Bibliography 73

[49] Nvidia, NVIDIA Nsight Compute User Manual, 2021. [Online]. Available:
https://docs.nvidia.com/nsight-compute/pdf/NsightCompute.pdf.

[50] Nvidia, ‘CUDA Occupancy Calculator,’ 2021. [Online]. Available: https:
//docs.nvidia.com/cuda/pdf/CUDA-Occupancy-Calculator.pdf.

[51] H. Lin, C.-L. Wang and H. Liu, ‘On-GPU Thread-Data Remapping for Branch
Divergence Reduction,’ ACM Trans. Archit. Code Optim., vol. 15, no. 3,
2018.

[52] P. S. Rawat, F. Rastello, A. Sukumaran-Rajam, L.-N. Pouchet, A. Rountev
and P. Sadayappan, ‘Register Optimizations for Stencils on GPUs,’ SIGPLAN
Not., no. 1, pp. 168–182, 2018.

[53] A. Magni, C. Dubach and M. F. P. O’Boyle, ‘A Large-Scale Cross-Architecture
Evaluation of Thread-Coarsening,’ in Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis,
ser. SC ’13, 2013.

[54] A. Magni, C. Dubach and M. O’Boyle, ‘Automatic Optimization of Thread-
Coarsening for Graphics Processors,’ in Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation, ser. PACT ’14, 2014,
pp. 455–466.

[55] S. Unkule, C. Shaltz and A. Qasem, ‘Automatic Restructuring of GPU Ker-
nels for Exploiting Inter-thread Data Locality,’ in Compiler Construction, M.
O’Boyle, Ed., 2012, pp. 21–40.

[56] V. Volkov and J. W. Demmel, ‘Benchmarking GPUs to Tune Dense Linear Al-
gebra,’ in Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
ser. SC ’08, 2008.

[57] Y. Liu, Z. Yu, L. Eeckhout, V. J. Reddi, Y. Luo, X. Wang, Z. Wang and C. Xu,
‘Barrier-Aware Warp Scheduling for Throughput Processors,’ in Proceedings
of the 2016 International Conference on Supercomputing, ser. ICS ’16, 2016.

[58] B. Spencer, ‘A General Auto-tuning Framework for Software Performance
Optimisation,’ Balliol College, University of Oxford, 2011.

[59] D. Spampinato, ‘Modeling Communication on Multi-GPU Systems,’ M.S.
thesis, NTNU, Department of Computer Science, 2009.

[60] B. Wilkinson and M. Allen, Parallel Programming: Techniques and Applica-
tions Using Networked Workstations and Parallel Computers (2nd Edition).
Prentice-Hall, Inc., 2004, ISBN: 0131405632.

[61] T. Ben-Nun, E. Levy, A. Barak and E. Rubin, ‘Memory Access Patterns: the
Missing Piece of the Multi-GPU Puzzle,’ in SC ’15: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage
and Analysis, 2015, pp. 1–12.

https://docs.nvidia.com/nsight-compute/pdf/NsightCompute.pdf
https://docs.nvidia.com/cuda/pdf/CUDA-Occupancy-Calculator.pdf
https://docs.nvidia.com/cuda/pdf/CUDA-Occupancy-Calculator.pdf

74 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

[62] M. Sourouri, T. Gillberg, S. B. Baden and X. Cai, ‘Effective Multi-GPU Com-
munication Using Multiple CUDA Streams and Threads,’ in 2014 20th
IEEE International Conference on Parallel and Distributed Systems (ICPADS),
2014, pp. 981–986.

[63] L. Dagum and R. Menon, ‘OpenMP: An Industry-Standard API for Shared-
Memory Programming,’ IEEE Computational Science and Engineering, no. 1,
pp. 46–55, 1998.

[64] L. Clarke, I. Glendinning and R. Hempel, ‘The MPI Message Passing Inter-
face Standard,’ Int. J. Supercomput. Appl., vol. 8, 1996.

[65] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent and K. J. Barker, ‘Evaluat-
ing Modern GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch and GPU-
Direct,’ IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 1,
pp. 94–110, 2020.

[66] Nvidia, CUDA Runtime API :: CUDA Toolkit Documentation, 2021. [Online].
Available: https://docs.nvidia.com/cuda/pdf/CUDA_Runtime_API.pdf.

[67] Nvidia, NVIDIA DGX-2: The Worlds Most Powerful Deep Learning System for
the Most Complex AI Challenges, 2019. [Online]. Available: https://www.
nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-
2-datasheet-us-nvidia-955420-r2-web-new.pdf.

[68] M. Själander, M. Jahre, G. Tufte and N. Reissmann, EPIC: An Energy-
Efficient, High-Performance GPGPU Computing Research Infrastructure,
2019. arXiv: 1912.05848 [cs.DC].

[69] Nvidia, ‘NVIDIA NVSwitch: The World’s Highest-Bandwidth On-Node
Switch,’ 2018. [Online]. Available: https : / / images . nvidia . com /
content/pdf/nvswitch-technical-overview.pdf.

[70] SchedMD, Slurm Workload Manager - Quick Start User Guide. [Online].
Available: https://slurm.schedmd.com/quickstart.html.

[71] Seaborn, Statistical Data Visualization seaborn 0.11.1 documentation. [On-
line]. Available: https://seaborn.pydata.org/.

[72] T. Hoefler and R. Belli, ‘Scientific Benchmarking of Parallel Computing Sys-
tems: Twelve Ways to Tell the Masses When Reporting Performance Res-
ults,’ in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’15, 2015.

[73] N. Wright, S. Smallen, C. Olschanowsky, J. Hayes and A. Snavely, ‘Measur-
ing and Understanding Variation in Benchmark Performance,’ HPCMP Users
Group Conference, pp. 438–443, 2009.

[74] D. Evans, ‘Parallel S.O.R. Iterative Methods,’ Parallel Computing, no. 1,
pp. 3–18, 1984.

https://docs.nvidia.com/cuda/pdf/CUDA_Runtime_API.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf
https://arxiv.org/abs/1912.05848
https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
https://slurm.schedmd.com/quickstart.html
https://seaborn.pydata.org/

Appendix A

Autotuned Thread Block
Dimensions

Tables A.1 and A.2 present the autotuned TB dimensions for each kernel configura-
tion, showing that the kernels generally prefer a larger X-dimension. Furthermore,
the tables adhere to the Bx , By , Bz ≥ RADIUS requirement for the smem_padded ker-
nel, outputting "N/A" for configurations that exit early.

75

76 Martin Rebne Farstad: TDT4900 - Computer Science, Master’s Thesis

Table A.1: Autotuned 2D TB dimensions (blockDim.x, blockDim.y) for every com-
bination of kernel, stencil radius, and coarsening factor when applying eight sten-
cil iterations on a single V100 GPU.

Kernel Radius CF=1 CF=2 CF=4 CF=8

base 1 (256, 1) (128, 8) (64, 1) (32, 1)
base 2 (256, 1) (128, 8) (64, 8) (128, 4)
base 4 (256, 4) (128, 8) (128, 8) (128, 8)
base 8 (64, 8) (128, 8) (64, 8) (64, 8)
base 16 (256, 4) (256, 4) (128, 8) (128, 8)
smem 1 (256, 1) (128, 1) (64, 8) (32, 16)
smem 2 (256, 1) (256, 1) (64, 8) (32, 16)
smem 4 (256, 1) (64, 8) (64, 2) (64, 16)
smem 8 (256, 1) (32, 16) (32, 16) (32, 16)
smem 16 (256, 2) (64, 4) (32, 32) (32, 16)
smem_padded 1 (256, 1) (128, 1) (64, 8) (64, 8)
smem_padded 2 (256, 2) (128, 2) (128, 4) (32, 8)
smem_padded 4 (128, 4) (128, 4) (64, 4) (32, 32)
smem_padded 8 (64, 8) (32, 8) (32, 8) (16, 16)
smem_padded 16 (32, 16) (32, 16) (32, 32) (32, 32)

Table A.2: Autotuned 3D TB dimensions (blockDim.x, blockDim.y, blockDim.z) for
every combination of kernel, stencil radius, and coarsening factor when applying
eight stencil iterations on a single V100 GPU.

Kernel Radius CF=1 CF=2 CF=4 CF=8

base 1 (32, 4, 4) (32, 4, 4) (64, 4, 4) (64, 4, 4)
base 2 (32, 4, 4) (32, 4, 4) (64, 4, 4) (64, 4, 4)
base 4 (32, 4, 4) (32, 8, 4) (64, 4, 4) (64, 4, 4)
base 8 (16, 8, 8) (16, 8, 8) (32, 8, 4) (32, 8, 4)
base 16 (16, 8, 8) (16, 8, 8) (32, 8, 4) (32, 8, 4)
smem 1 (64, 2, 2) (64, 2, 2) (64, 2, 2) (32, 8, 4)
smem 2 (32, 4, 4) (32, 4, 4) (32, 4, 4) (32, 8, 4)
smem 4 (32, 4, 4) (32, 4, 4) (32, 4, 4) (32, 8, 4)
smem 8 (32, 4, 4) (32, 4, 4) (16, 8, 8) (64, 4, 4)
smem 16 (16, 8, 8) (32, 4, 4) (16, 8, 8) (64, 4, 4)
smem_padded 1 (64, 2, 2) (32, 4, 2) (32, 4, 4) (32, 4, 4)
smem_padded 2 (32, 4, 4) (32, 4, 4) (16, 8, 4) (16, 8, 8)
smem_padded 4 (32, 8, 4) (32, 4, 4) (16, 8, 8) (16, 4, 4)
smem_padded 8 (16, 8, 8) N/A N/A N/A
smem_padded 16 N/A N/A N/A N/A

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Martin Rebne Farstad

Understanding the Key Performance
Trends of Optimized Iterative Stencil
Loop Kernels on High-End GPUs

Master’s thesis in Computer Science
Supervisor: Magnus Jahre

June 2021M
as

te
r’s

 th
es

is

	Problem Description
	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Motivation
	Assignment Interpretation
	Contributions
	Outline

	Background
	Iterative Stencil Loops
	Stencil Patterns
	Spatial and Temporal Blocking

	General-Purpose GPU Computing Using CUDA
	Execution Model
	Thread Synchronization

	The GPU Memory Architecture
	Registers
	Shared Memory
	Unified Cache
	High Bandwidth Memory

	Desirable GPU Characteristics
	Aligned and Coalesced Memory Accesses
	Effective Resource Utilization
	Avoiding Branch Divergence

	Single-GPU Optimization Approaches
	Thread Coarsening
	Optimizing Thread Block Dimensions

	Utilizing Multiple GPUs
	Domain Partitioning
	Ghost Zones
	Handling Inter-GPU Communication

	Implementing Optimized ISL Kernels
	ISL Kernels
	The Baseline Kernel
	Coarsening the Baseline Kernel

	Shared Memory ISL Kernels
	The Hybrid Shared Memory Kernel
	Coarsening the Hybrid Shared Memory Kernel
	The Padded Shared Memory Kernel
	Coarsening the Padded Shared Memory Kernel

	Launching ISL Kernels
	Allocating Resources
	Kernel Configuration
	Launching Single-GPU Kernels
	Launching Multi-GPU Kernels

	Experimental Setup
	Hardware Setup
	Measurements
	Kernel Timing
	Metric Collection
	Reporting Measurements

	Execution Configurations
	Stencils
	Stencil Configurations

	Results
	Optimizing ISL Kernels on the Volta Architecture
	Shared Memory
	Thread Coarsening
	Autotuning

	Optimizing ISL Kernels on the Pascal Architecture
	Shared Memory
	Thread Coarsening

	Multi-GPU

	Conclusion and Future Work
	Conclusion
	Future Work
	Spatial and Temporal Blocking
	Stencil Patterns
	Iteration Patterns
	Case Studies
	Autotuning
	Improving Inter-GPU Communication

	Bibliography
	Autotuned Thread Block Dimensions

