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ABSTRACT  

To guide spatial behavior, the brain must retrieve memories that are appropriately 
associated with different navigational contexts. Contextual memory may be mediated 
by cell ensembles in the hippocampal formation that alter their responses to changes 
in context, processes known as remapping and realignment in the hippocampus and 
entorhinal cortex, respectively. However, whether remapping and realignment guide 
context-dependent spatial behavior is unclear. To address this issue, human 
participants learned object-location associations within two distinct virtual-reality 
environments and subsequently had their memory tested during fMRI scanning. 
Entorhinal grid-like representations showed realignment between the two contexts, 
and coincident changes in fMRI activity patterns consistent with remapping were 
observed in the hippocampus. Critically, in a third ambiguous context, trial-by-trial 
remapping and realignment in the hippocampal-entorhinal network predicted context-
dependent behavior. These results reveal the hippocampal-entorhinal mechanisms 
mediating human contextual memory and suggest that the hippocampal formation 
plays a key role in spatial behavior under uncertainty.   
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INTRODUCTION 
 
Successful spatial behavior requires the ability to separate memories based on the 
environmental context experienced at encoding: “in which room did I leave my 
keys?”; “is that good restaurant in SoHo or Brooklyn?”; “do I turn left in the park or on 
the street?” Examples of this contextual memory process are ubiquitous, and 
impairment of this process is a hallmark of disorders such as Alzheimer’s disease1, 
where patients often fail to appropriately recall the navigational context experienced 
at encoding, thus impairing their overall navigation abilities.  
 

How does the human brain retrieve contextual memories to guide spatial 
behavior? Lesion and patient studies have demonstrated that the hippocampus and 
entorhinal cortex are necessary for context-dependent behavior1,2, and contextual 
memory is a foundational component of many long-standing theories of hippocampal 
function3–11. If the hippocampal formation mediates contextual memory, as such 
theories presuppose, then changes in context representations in the hippocampal 
formation should be related to detectable changes in behavior during spatial memory 
tasks. Despite decades of research on the role of the hippocampal formation in 
contextual memory, no previous studies have interrogated context-specific signals in 
the human hippocampal-entorhinal network during the execution of a spatial memory 
task that unambiguously dissociates contextual memory from nonmnemonic factors.  

 
Spatial context may be represented in the hippocampus through the activity of 

place cells that fire whenever a navigator occupies particular environmental 
locations12. Different place cells fire in different locations, and thus as a population 
are thought to represent a cognitive map of the local spatial context8. When context 
is altered, place cells undergo a process known as remapping, in which all place 
cells shift their relative firing fields to new locations or stop firing altogether, thereby 
forming decorrelated representations of distinct environments13,14. Functional MRI 
(fMRI) studies have likewise found that hippocampal activity patterns reliably change 
across distinct virtual-reality environments, akin to population-level “remapping”15–17. 
Remapping may be driven by entorhinal inputs to the hippocampus18–20. The 
entorhinal cortex contains several types of place-modulated neurons, including grid 
cells that fire whenever a navigator occupies a hexagonal lattice of environmental 
locations21. An fMRI signature of grid cell activity is observed in human entorhinal 
cortex during virtual-reality navigation22. Across different contexts, coincident with 
place cell remapping, grid cells coherently shift and rotate their firing fields, a 
process known as grid realignment20,23. Despite being induced by changes in spatial 
context, whether hippocampal remapping and/or grid realignment mediate contextual 
memory is unclear3,24. 

 
To investigate the link between hippocampal-entorhinal context 

representations and contextual memory, we related fMRI proxies of remapping and 
realignment in humans to context-dependent spatial memory during virtual-reality 
navigation. We trained human participants (n=24) to learn the locations of four target 
objects in two distinct virtual-reality (VR) arenas. On each trial, participants saw a 
word denoting one of the target objects, were teleported into one of the arenas, and 
then indicated the target object’s location for that trial by navigating to it from a 
random start location and making a button-press response (the ‘‘recall” phase; 
Figure 1a). Participants were then teleported to a new random position in the same 
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arena and the target object for that trial appeared in its correct location and was 
collected (the ‘‘feedback’’ phase). One arena was limited by a square boundary wall 
(“Square”) and the other was limited by a circular boundary wall (“Circle”) 
(Figure 1b). Each arena was also surrounded by four unique distal cues that could 
be used for orientation. The identities of the target objects were the same for both 
the Circle and Square. Therefore, to learn the target object locations in each arena, 
participants needed to learn the appropriate location-context associations through 
the feedback provided (Extended Data Figure 1).  
 
 

 
Figure 1. Context-dependent spatial memory task. a, Trial structure (after initial learning of object locations; 
see Methods). On each trial, participants navigated to the remembered location of the target object (‘‘recall’’ 
phase) and, after a 2s delay with a black screen, received feedback (‘‘feedback’’ phase). The top shows a map 
of the virtual trajectory taken by the participant on each phase of a typical trial, and the bottom shows example 
views of the virtual environment from the participant’s perspective. The name of the target object for each trial 
was shown in the center of a black screen prior to the start of the recall phase. b, Participants learned four object 
locations in two arenas (“Square”, “Circle”) over four blocks of training trials per arena. Object identities were 
the same for both arenas, but each of the four objects occupied a different relative location across arenas. 
Following training, object location memory was tested in these two arenas using the recall phase only. Unlike 
training, participants were teleported into a random arena at the start of each trial during testing (with the 
constraint that the same arena could not be tested on more than two consecutive trials). c, Memory for object 
locations was also tested in a third half-square half-circular arena (“Squircle”). Left: schematic of the Squircle. 
Right: example view of the Squircle from the participant’s perspective. 

 
Following behavioral training outside of the MRI scanner, participants 

underwent fMRI scanning while performing the same object location memory task. 
Unlike training, participants did not receive feedback after each trial during scanning 
(i.e., they performed the recall phase only). At the start of each trial during testing, 
participants had their view rotated automatically around 360º once (12s duration) to 
encourage them to identify their current context before they began the recall phase. 
In addition to the Square and Circle (40% of trials per context), memory for object 
locations during scanning was also tested in a third ambiguous half-square half-circle 



 5 

arena (“Squircle” arena; 20% of trials) (Figure 1c). The Squircle was surrounded by 
eight distal orientational cues, four from the Square and four from the Circle. 
Participants were not informed about the Squircle manipulation in advance and were 
instructed to indicate the object’s location wherever they saw fit if they were 
uncertain about the correct object location.  

 
The ambiguous Squircle provides a means of assessing the relationship 

between hippocampal-entorhinal context representations and memory-guided spatial 
behavior. In particular, for each target object, there are two possible “correct” 
locations in the Squircle, one more consistent with the location in the Circle, and one 
more consistent with the location in the Square. Thus, to recall object locations in the 
Squircle, on each Squircle trial participants needed to retrieve either a Square- or 
Circle-consistent contextual memory. If the hippocampal-entorhinal network 
mediates contextual memory, we hypothesized that hippocampal-entorhinal signals 
would be predictive of which contextual memory is retrieved in the Squircle on a trial-
by-trial basis.  
 
RESULTS 
 
Spatial behavior in the ambiguous Squircle context reflects contextual 
memory 
 
All participants reported noticing the Squircle manipulation during debriefing 
following the experiment. Due to ambiguity in target object locations in the Squircle, 
participants exhibited longer response latencies in the Squircle than both the Square 
and Circle (Figure 2a). These longer response latencies were primarily due to 
greater time spent stationary without VR-walking in the Squircle relative to the two 
training contexts, as VR-walking path tortuosity was similar in all contexts (Figure 
2b). For each Squircle trial, to assess the similarity of spatial memory retrieval to the 
Square and Circle, we computed the distance between each recalled object’s 
location in the Squircle and that object’s corresponding location in the Square and in 
the Circle. Participants tended to recall target objects in the Squircle in either the 
Square- or Circle-consistent location but rarely elsewhere (Figure 2c), and at similar 
distances from the closest context-consistent locations as they did from the correct 
locations in the Square and Circle (Figure 2d). Accordingly, the recalled target object 
locations in the Squircle were closer to context-consistent locations than would be 
expected by random chance, both overall (4.6±0.42vm from a context-consistent 
location vs. 10.2vm by random chance; t23=20.12, CI=[5.06-6.22], p=2.11x10-16) and 
in each participant (Kolmogorov–Smirnov tests, α=0.05; Figure 2e). Across 
participants, the distance of recalled locations in the Squircle to the closest context-
consistent location strongly correlated with the average distance of recalled locations 
from the correct locations in the Square and Circle (Figure 2f), even after controlling 
for response latency and path tortuosity in the Square and Circle (partial correlation, 
r=0.78, p=1.58x10-5), suggesting that deviations from context consistency in the 
Squircle may have been driven by spatial memory precision in the Square and Circle 
and not domain general factors. 
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Figure 2. Contextual memory retrieval in the ambiguous Squircle context. a, Response latencies (length 
of recall phase) during testing in the Square (Sq), Circle (Ci), and Squircle (t-tests, two tailed; Squircle vs. Sq: 
t23=4.19, CI=[2.85-8.43], p=0.0004; Squircle vs. Ci: t23=3.05, CI=[1.19-6.20], p=0.006; Sq vs. Ci: t23=3.44, 
CI=[0.77-3.12], p=0.002). b, Path tortuosity in the Sq, Ci, and Squircle during testing (one-way rmANOVA, 
F2,46=1.10, p=0.342). Tortuosity was computed as the observed path length divided by the length of the shortest 
possible path between each trial’s starting location and the recalled location. c, Heat maps depicting the 
difference in Sq- and Ci-consistent recalled locations (% Sq-con - % Ci-con trials) in the Squircle, separately for 
each of the four target objects (see Methods). d, Distance of recalled locations during testing from the correct 
location in Sq and Ci, and from the nearest context-consistent location in the Squircle (one-way rmANOVA, 
F2,46=0.51, p=0.606). e, Cumulative distribution functions of recalled location distances from the nearest context-
consistent location across all Squircle trials for each participant (light purple) and on average (dark purple), 
compared to the distribution of distances from the nearest context-consistent locations expected from random 
behavior (Chance). f, Across participants, the average distance of recalled locations from the nearest context-
consistent location in the Squircle correlated with the average distance of recalled locations from the correct 
locations (distance error) in the Sq and Ci (p=4.51x10-6, two-tailed). Dotted lines denote error expected by 
chance. Chance error is lower in the Squircle than Sq/Ci because each target object had two possible context-
consistent locations in the Squircle (one Sq-con, one Ci-con). g, Histogram of the percentage (%) of total 
Squircle trials during which participants recalled target objects in Ci-con locations (compared to 50% no-bias 
baseline: sign-test, p=0.15, two-tailed). Throughout the figure, error bars indicate ±1 SEM; dots denote individual 
participants (n=24); **p<0.01, ***p<0.001 

 
 Since participants tended to recall target objects in the Squircle as being in 
either the Square or Circle-consistent locations, but not elsewhere, we classified 
each Squircle trial as being either Square-consistent or Circle-consistent based on 
the distance between the recalled target object location and the closest context-
consistent location (i.e., based on whichever training context had a relatively closer 
location to the recalled location for each target object). Across participants, there 
was no overall bias to recall objects more often in either Square- or Circle-consistent 
locations (Figure 2g). Across trials, each participant recalled target objects in both 
Square- and Circle-consistent locations. Follow-up analyses reported in Extended 
Data Figure 2 found that, other than the recalled target object locations, behavior 
was quantitatively indistinguishable between Square- and Circle-consistent Squircle 
trials. Further, as detailed in Extended Data Figure 3, recalled locations in the 
Squircle were not predicted by the relative strength of object-location associations 
learned during training, or a participant’s trial history over the course of testing, or 
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each Squircle trial’s starting location. Participants also did not use a strategy of 
replacing target objects in the Squircle at the location intermediate between the two 
context-consistent locations. However, contextual memory retrieval in the Squircle 
was not random; for each target object, each participant tended to have a unique 
contextual preference for that object. Together, these observations suggest that 
spatial behavior in the Squircle was guided by the retrieval of Square and Circle 
contextual memories. 
 
Hippocampal remapping distinguishes between contexts  
 
As a prerequisite for examining the relationship between hippocampal context 
representations and contextual memory in the Squircle, we first needed to establish 
the existence of an fMRI proxy for hippocampal remapping between the Circle and 
Square. To do so, we trained a correlation-based nearest-neighbor multivariate 
pattern classification algorithm to distinguish between the Square and Circle contexts 
(see Methods), akin to population vector analyses of place cell remapping14. We 
estimated the average bilateral hippocampal activity patterns associated with the 
Square and with the Circle during the recall phase separately for each scan run. 
Leave-one-run-out cross-validated context classification accuracy from the 
hippocampus was significantly higher than expected by chance (71.0% versus 
50.0% in the permutation test, t23=9.90, CI=[0.17-0.25], p=9.24x10-10; t23=9.67, 
CI=[0.17-0.26], p=7.21x10-10 versus 50% theoretical chance baseline; Extended Data 
Figure 4), indicating that hippocampal activity patterns reliably differed between the 
Square and Circle on average. We next applied the same classifier to activity 
patterns elicited during single trials within each held-out run. Context classification 
accuracy from the hippocampus was still significantly higher than expected by 
chance (55.6% versus 49.9% in the permutation test, t23=4.95, CI=[0.03-0.08], 
p=5.24x10-5; t23=4.82, CI=[0.03-0.08], p=7.24x10-5 compared to 50% theoretical 
chance baseline; Figure 3a). There were thus reliably different hippocampal 
activation patterns elicited in the Square and Circle on a trial-by-trial basis. 

 
We subsequently examined the evolution of hippocampal context 

representations during Square and Circle trials. For each volume of fMRI data, we 
computed a Contextual Similarity (CS) Score as the difference in multivariate pattern 
similarity (Fisher-transformed Pearson correlation coefficient) between each 
volume’s hippocampal activation pattern and the average across-run Square and 
Circle activity patterns. CS Scores thus correspond to the extent to which 
hippocampal activity patterns were more like those elicited in the Square or the 
Circle across scan runs. Since the recall phase was self-paced, trials were of 
variable lengths. To average the volume-by-volume CS Scores across different trials, 
each recall phase was resampled to 30 timepoints, such that the start and end of 
each resampled recall phase corresponded to the actual start (offset by 6.12s to 
account for the hemodynamic lag) and end of each trial’s recall phase. Over the 
course of the recall phase, hippocampal activity patterns were on average more 
similar to those elicited in same context across scan runs than the opposite context 
(Figure 3b). These results are consistent with the existence of reliable remapping of 
hippocampal context representations. 
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Figure 3. Hippocampal remapping distinguishes between contexts and predicts memory-guided 
behavior. a, Trial-wise hippocampal (Hipp) context classification accuracy for Square (Sq) and Circle (Ci) trials 
was significantly higher than in a permutation test (Perm) (t-test). The dotted line indicates theoretical chance 
baseline (50%). Note that independent voxel selection limited each participant’s Hipp mask to only contextually-
modulated voxels (Methods; Supplementary Figures 1-2). b, Contextual similarity of hippocampal activity (CS 
Score = zsquare - zcircle) over time, separately for Sq (red) and Ci (blue) trials (average Sq vs Ci recall phase: 
t23=12.32, CI=[0.04-0.06], p=6.53x10–12). Rot corresponds to the pre-trial rotation period during which the 

participant’s VR-facing direction was automatically rotated 360 prior to the recall phase start. CS scores >0 (<0) 
indicate that an activation pattern is more similar to that elicited in the Square (Circle) across scan runs. c, Trial-
wise Hipp Sq- vs Ci-consistent Squircle contextual memory classification accuracy was significantly higher than 
in a permutation test (t-test). Classification accuracy did not differ between the Squircle and Sq/Ci (t23=0.33, 
p=0.746, two-tailed, controlling for Perm baseline differences). d, Hipp CS Scores over time during Sq-con (red) 
and Ci-con (blue) Squircle trials (average Sq-con vs. Ci-con recall phase: t23=1.75, CI=[-0.002-0.02], p=0.047). 
e, Average Hipp CS Scores during the recall phase of Sq- vs. Ci-con Squircle trials in three Hipp subregions 
(anterior, middle, posterior; Supplementary Figure 1) in each hemisphere, computed without voxel selection. CS 
scores differed (n=24; t-test) in right posterior Hipp (p=0.005, pFWE=0.030) and marginally in left posterior Hipp 
(p=0.009, pFWE=0.053), but not elsewhere (pFWE>0.05). In a complementary exploratory analysis of entorhinal 
cortex (EC), EC was divided into two subregions (posterior, anterior) in each hemisphere. CS scores differed 
only in the posterior right EC (p=0.038) but did not survive FWE-correction. f, Hipp CS scores during the recall 
phase of Sq-con and Ci-con Squircle trials for the six HIPP subregions depicted in Figure 3e. Throughout the 
figure, error bars or error bands indicate ±1 SEM; dots denote individual participants (n=24); nsp>0.05, *p<0.05, 
**p<0.01, ***p<0.001. 

 
Hippocampal remapping predicts contextual memory in the ambiguous 
Squircle context 
 
We next tested the relationship between hippocampal remapping and contextual 
memory in the Squircle. The contextual memory retrieved during each Squircle trial 
was classified as being Square- or Circle-consistent based on participant behavior 
as previously described. We then applied the same classification algorithm trained to 
distinguish between the Square and Circle contexts to each Squircle trial’s 
hippocampal activity pattern. Trial-by-trial Squircle contextual memory classification 
accuracy was significantly higher than expected by chance (58.8% versus 52.5% in 
the permutation test, t23=2.45, CI=[0.01-0.12], p=0.011; t23=2.95, CI=[0.03-0.15], 
p=0.004 compared to 50% theoretical chance baseline; Figure 3c). We also 
computed the CS Score for each volume of fMRI data, separately for Square- and 
Circle-consistent Squircle trials. Over the course of the recall phase, hippocampal 
activity patterns were on average more similar to those elicited in the context 
consistent with memory than with the inconsistent context (Figure 3d). Repeating the 
same analysis for three distinct hippocampal subregions (posterior, middle, anterior), 
separately for each hemisphere, we observed that activity patterns in the Squircle 
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were most strongly consistent with contextual memory in the right posterior 
hippocampus (Figure 3e-f). Together, these results suggest that trial-by-trial 
hippocampal remapping supports contextual memory. 
 
Sensitivity and tolerance of hippocampal context representations to 
nonmnemonic factors 
 
If hippocampal activity patterns elicited in the Squircle exclusively reflect contextual 
memory, we would expect such activity patterns to be tolerant to changes in 
nonmnemonic factors, including VR-locomotory behavior, location, visual input, and 
target object identity. We tested hippocampal sensitivity to each of these 
nonmnemonic factors in turn.  
 

To test whether hippocampal context representations were tolerant to 
changes in VR-locomotory behavior, CS Scores were computed separately for VR-
walking and VR-stationary epochs during the recall phase. Unexpectedly, unlike in 
the Square and Circle (Figure 4a), Squircle CS Scores strongly differed between 
Square- and Circle-consistent trials when participants were VR-walking, but not 
when they were VR-stationary (Figure 4b; see also Extended Data Figure 5 for 
behavioral control analyses). We will return to the source of dissociation between 
contextual memory and hippocampal activity during VR-stationary epochs below. 
Importantly, during VR-walking epochs, hippocampal context representations were 
tolerant to changes in the navigator’s VR-walking location within the Squircle (Figure 
4c). This last observation rules out the possibility that context representations were 
an artifact of hippocampal coding of proximal boundary geometry (i.e., a square vs. 
circular corner; Figure 4d).  
 

We next tested whether hippocampal context representations during VR-
walking epochs were tolerant to changes in visual input. Squircle scenes look more 
similar to Square or Circle visual scenes when a participant is VR-facing more in the 
direction of a square or circular boundary segment, respectively. Likewise, Squircle 
scenes look more similar to visual scenes in the Square or Circle when a participant 
is VR-facing more in the direction of a distal cue present in the Square or Circle, 
respectively. However, during VR-walking epochs, hippocampal CS Scores were not 
modulated by the type of boundary segment (Figure 4e) or distal cue (Figure 4f) 
viewed. To further rule out whether these results were due to hippocampal coding of 
visual input, we also repeated the foregoing analyses for an early visual cortex 
(EVC) control region of interest. As detailed in Extended Data Figure 6, EVC showed 
a markedly different pattern during Squircle trials than the hippocampus: there was 
no significant difference between Square- and Circle-consistent EVC activity 
patterns, and CS Scores more strongly differed between Square- and Circle-
consistent trials in the hippocampus than EVC, both on average during the entire 
recall phase (region x contextual memory rmANOVA; F1,23=4.43, p=0.047, partial 
η2=0.161), and especially during VR-walking epochs (F1,23=10.56, p=0.003, partial 
η2=0.315). Thus, hippocampal context representations are better explained by 
contextual memory than visual similarity.  
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Figure 4. Hippocampal context representations in the Squircle are tolerant to changes in location and 
visual input, but not VR-locomotory behavior. a, Hippocampal (Hipp) Square (Sq; red) and Circle (Ci; blue) 
CS scores binned by VR-locomotory behavior (VR-(W)alking vs. VR-(S)tationary) (Context x VR-locomotion 
rmANOVA: VR-locomotion main effect, F1,23=0.04, p=0.845; interaction, F1,23=0.01, p=0.909). CS Scores >0 (<0) 
indicate that an activation pattern is more similar to that elicited in the Square (Circle) across scan runs. b, Hipp 
Sq-consistent (red; Sq-con) and Ci-consistent (blue; Ci-con) Squircle CS scores binned by VR-locomotory 
behavior (rmANOVA: VR-locomotion main effect, F1,23=3.52, p=0.074; interaction, F1,23=10.47, p=0.004, partial 
η2=0.31). c, Hipp Squircle CS scores by VR-walking location. Left: CS scores maps during Sq-con (top) and Ci-
con (bottom) trials. Right: location-wise difference between Sq-con and Ci-con CS score maps. Maps were 
constructed separately for each participant (resolution = 4vm2) and then averaged across participants. Squircle 
locations where <2 participants VR-walked were excluded (green hatches). d-f, Hipp Sq-con and Ci-con Squircle 
CS scores during VR-walking epochs by d, most proximal boundary segment (Sq vs. Ci corner) (rmANOVA: 
proximal boundary segment main effect, F1,23=0.17, p=0.687; interaction, F1,23=0.86, p=0.363), e, boundary 
segment view (Sq vs. Ci corner) (rmANOVA: boundary segment view main effect, F1,23=0.86, p=0.364; 
interaction, F1,23=0.76, p=0.392), f, distal cue view (Sq vs. Ci distal cue) (rmANOVA: distal cue view main effect, 
F1,23=0.91, p=0.350; interaction, F1,23=0.02, p=0.901). g, Hipp Sq-con and Ci-con Squircle CS scores 
recomputed using a target-object-invariant context classifier, binned by VR-locomotory behavior (rmANOVA: 
contextual memory main effect F1,23=1.07, p=0.313, VR-locomotion main effect, F1,23=1.58, p=0.222; interaction, 
F1,23=12.16, p=0.002, partial η2=0.53). CS Scores differed between Sq- and Ci-con trials during VR-walking 
(t23=2.87, CI=[0.02-0.11], p=0.004), but not VR-stationary epochs (t23=-1.69, p=0.947). h-i, Hipp CS scores 
during VR-stationary epochs by h, boundary segment view (rmANOVA: boundary segment main effect, 
F1,23=10.03, p=0.004, partial η2=0.44; interaction, F1,23=0.38, p=0.544), i, distal cue view (rmANOVA: distal cue 
view main effect, F1,23=6.60, p=0.017, partial η2=0.29; interaction, F1,23=0.10, p=0.758). j, Hipp CS scores during 
Squircle VR-stationary epochs: Left: by view direction, averaged across participants; Right: separately for 
boundary-segment-distal-cue combinations that matched those present in the Sq or Ci vs. mismatched 
(rmANOVA: match main effect, F1,23=1.72, p=0.203; interaction, F1,23=12.67, p=0.002, partial η2=0.36). 
Throughout the figure, error bars indicate ±1 SEM; dots denote individual participants (n=24); All post-hoc t-tests 
1-tailed. Uppermost significance markers denote interaction effects in panels a,b,d-g, and main effects in h-i; 
nsp>0.08, †p<0.08, *p<0.05, **p<0.01, ***p<0.001. 
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Finally, recall that for each target object, each participant tended to have a 
unique contextual preference for that object in the Squircle (Extended Data Figure 
3). Trial-by-trial remapping of Squircle hippocampal activity patterns could thus be an 
artifact of coding of target object identity. To address this alternative, we separately 
trained four different context classifiers, each derived using all Square and Circle 
context trials except those from one specific target object each (see Methods). We 
then recomputed Squircle CS Scores by applying the particular classifier to each 
Squircle trial that excluded that trial’s specific target object. Hippocampal activity 
patterns during Squircle VR-walking epochs were still more similar to those elicited in 
the context consistent with memory than with the inconsistent context (Figure 4g; 
see also Extended Data Figure 7 for Squircle contextual memory classification using 
this target-object-invariant context classifier). This observation rules out the 
possibility that trial-by-trial hippocampal remapping was induced by target object.  

 
Why might contextual memory and hippocampal activity dissociate during 

Squircle VR-stationary epochs? Although participants rotated their viewing angle 
(i.e., they VR-turned) during both VR-walking and -stationary epochs, they VR-turned 
more often during VR-stationary epochs (Extended Data Figure 5c). We 
hypothesized that rather than focus on contextual memory during Squircle VR-
stationary epochs, participants attended to the visual scene and rotated their view to 
accumulate visual evidence about where to indicate the target object’s location. If so, 
we might expect hippocampal coding of visual input during VR-stationary epochs. 
This was indeed the case: CS Scores during VR-stationary epochs reflected the type 
of boundary segment (Figure 4h) or distal cue (Figure 4i) viewed, independent of 
contextual memory. The most robust view sensitivity was observed for viewing 
directions associated with Squircle scenes depicting boundary-segment-distal-cue 
combinations also present in the Square or Circle (Figure 4j). These results provide 
a potential explanation for the dissociation between hippocampal activity and 
contextual memory during VR-stationary epochs, as well as demonstrate that our 
inability to detect view sensitivity of hippocampal context representations during VR-
walking epochs was not due to insufficient power to detect effects of view. 
 
Entorhinal grid-like realignment distinguishes between contexts 
 
Having determined that hippocampal remapping predicts context-dependent 
behavior during VR-walking, we next sought to examine the relationship between 
entorhinal grid-like realignment and contextual memory. To do so, we first needed to 
establish the existence of grid-like realignment between the Square and Circle 
contexts. We adapted a split-half analysis previously used to reveal entorhinal grid-
like representations during virtual-reality navigation in single context environments22. 
In the first half of the data, we computed putative grid orientations that maximized 
60° periodic grid-like fMRI signals as a function of VR-walking direction in bilateral 
entorhinal cortex, separately for the Square and Circle (Figure 5a). We then tested 
the reliability of these context-specific grid orientations in the other independent half. 
Grid orientations were compared across contexts relative to the common reference 
frame defined by the distal cues in the Squircle. 

 
We found reliable entorhinal grid-like modulation in the Square and Circle 

(Figure 5b), due to grid-like signals in both the Square and Circle aligned to their 
respective grid orientations (Figure 5c). Yet, grid-like modulation was not observed in 
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either the Square or Circle aligned to the grid orientation from the opposite context 
(Figure 5c). Indeed, across participants, a greater percentage of entorhinal voxels 
shared a similar grid orientation across data halves within the same context than 
across data halves across different contexts (Figure 5d). Conducting the same split-
half analysis for other non-grid rotational symmetries, we found no evidence of 
reliable 90° or 45° periodic signals (Extended Data Figure 8a). As a further control 
we repeated the same split-half analysis for EVC and for the hippocampus but 
observed no reliable grid-like coding in either region (Extended Data Figure 8b-c). 
We also detected no 60°-symmetric biases in VR-walking behavior that could explain 
the presence of context-specific grid-like fMRI signals (Extended Data Figure 8d). 
Finally, grid orientations were differentially aligned to the shape and orientation of 
local space in the Square and Circle, as defined by boundary geometry and the 
distal cues (Extended Data Figure 9), consistent with prior reports25–28. Together, 
these results provide evidence of entorhinal grid-like realignment across the Square 
and Circle. 
 

 
Figure 5. Entorhinal grid-like realignment distinguishes between contexts. a, Grid orientations (φ) that 
maximized 60° periodic grid-like fMRI signals were computed in entorhinal cortex (EC), separately for the Square 
(Sq) and Circle (Ci). EC grid-like modulation aligned to the context-specific φ, but not the φ of the opposite 
context, would be evidence of grid realignment. b, Reliable grid-like modulation was observed in the right EC, 
averaging across the Sq and Ci (t-test, peak voxel Montreal Neurological Institute coordinate: [30, -7, -34]; peak 
t23=4.16, pSVC=0.016; shown unmasked at p<0.005 for display purposes). c, Grid-like modulation (beta weight) 
in the EC subregion exhibiting grid-like modulation on average across contexts (Figure 5b; ROI defined at 
p<0.01) was driven by grid-like modulation in each context aligned to their respective context-specific φ (Sq: 
t23=3.39, CI=[0.07-0.30], p=0.001, Ci: t23=2.76, CI=[0.04-0.27], p=0.006; Sq versus Ci: t23=0.38, p=0.708, two-
tailed). No reliable grid-like modulation was found in either context aligned to the φ of the opposite context (Sq: 
t23=-0.59, p=0.721, Ci: t23=-0.82, p=0.790). d, Histogram of EC voxel percentage that shared a similar φ (within 
±15°; temporal stability) across data halves within the same context (WI) minus the temporal stability across 
data halves between different contexts (BW) (n=24, sign-test, p=0.032, one-tailed). Dotted line denotes group 
mean. Throughout the figure, error bars indicate ±1 SEM; dots denote individual participants (n=24); nsp>0.05, 
*p<0.05, **p<0.01. 

 
Entorhinal grid-like realignment predicts contextual memory in the ambiguous 
Squircle context 
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To test the relationship between grid-like realignment and contextual memory, we 
compared two alternative grid-like models to determine which best characterized the 
entorhinal fMRI signal during Squircle trials (Figure 6a). One model assumed that the 
grid orientation switches on a trial-by-trial basis in a manner consistent with 
contextual memory (“memory-consistent model”), such that the grid orientation was 
either the Square or Circle orientation but rotated across Squircle trials consistent 
with contextual memory retrieval. The other model also assumed the grid orientation 
switches on a trial-by-trial basis but in a manner inconsistent with contextual memory 
(“memory-inconsistent model”), such that grid-like representations had either the 
Square or Circle orientation when contextual memory retrieval was Circle- or 
Square-consistent, respectively.  
 

 
Figure 6. Entorhinal grid-like realignment predicts memory-guided behavior. a, Two grid-like models were 
fit to the bilateral entorhinal cortex (EC) fMRI signal during Squircle trials using a general linear model, one that 
assumed the grid orientation (φ) changed on a trial-by-trial basis consistent with contextual memory (Con; either 
Square or Circle φ, consistent with (B)ehavior) and the other assumed φ changed on a trial-by-trial basis 
inconsistent with contextual memory (Incon; either Square or Circle φ, inconsistent with B). b, Con and Incon 
grid-like modulation (beta weight) in the Squircle, averaged across all EC voxels (Con, t23=2.13, CI=[0.0002-
0.02], p=0.022; Incon, t23=-1.06, p=0.851; Con vs. Incon, Wilcoxon Signed Rank test, p=0.023, one-tailed). c, 
Partial correlation coefficient between EC activity during Squircle trials and the activity predicted by Con or Incon, 
controlling for activity predicted by the alternative model. Left: Only Con yielded a significant partial correlation 
(Con: t23=2.83, CI=[0.003-0.02], p=0.005; Incon: t23=-1.75, p=0.953; Con vs. Incon: t23=2.52, CI=[0.004-0.04], 
p=0.010, one-tailed). Right: Venn diagram depicting results of variance partitioning. Unique (non-overlapping 
diagram portions) and shared (overlapping portions) variances are expressed as percentages of the total 
variance positively explained by both models combined. Total variance explained does not sum to 100% 
because no variance was positively explained (shared or unique) in 4 participants (Methods). d, EC fMRI 
response (A)ligned to φ (within ±15° of a φ axis) and (M)isaligned (more than ±15° from all φ axes), separately 
for Con and Incon models (compared to 0 baseline: Con: A, t23=3.22, CI=[0.02-0.09], p=0.004, M, t23=0.72, 
p=0.481; Incon: A, t23=1.46, p=0.157, M, t23=1.95, p=0.064; A vs. M: Con, t23=2.29, CI=[0.004-0.08], p=0.032, 
Incon, t23=0.13, p=0.892; all two-tailed t-tests). e, EC Squircle contextual memory classification accuracy was 
significantly higher than in a permutation (Perm) test (t-test). f, Heatmap depicting trial-by-trial agreement (% 
same prediction) in decoded Squircle contextual memory between the hippocampus (Figure 3c) and EC (Figure 
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6e) as a function of ranked recalled distance from the location intermediate to the two possible context-con 
locations (Dint) and the nearest context-con location (Dcon). The graph shows decreased agreement with 
decreasing Dint  and increasing Dcon. Logistic regression demonstrates that only an effect of Dint was reliable 
across the dataset (n=517 trials, χ2=8.77, p=0.003; see Methods). Throughout the figure, error bars indicate ±1 
SEM; dots denote individual participants (n=24); nsp>0.05, *p<0.05, **p<0.01. 

 
We observed entorhinal grid-like modulation when we assumed that the grid 

orientation switched on a trial-by-trial basis consistent with contextual memory, but 
not inconsistent (Figure 6b). Similar results were obtained in a variance partitioning 
analysis that tested the unique contribution of each grid-like model to entorhinal 
activity (Figure 6c). Memory-consistent grid-like modulation was driven by greater 
fMRI activation when VR-walking was aligned than misaligned with the three 
memory-consistent grid axes; by contrast, there was no significant difference in 
activation between VR-walking directions aligned or misaligned to memory-
inconsistent grid axes (Figure 6d). Control analyses confirmed that these results 
could not be explained by the presence of a single fixed grid orientation across all 
Squircle trials, or by a difference in 60°-symmetric VR-walking behavior between 
Square- and Circle-consistent Squircle trials (Extended Data Figure 10).  
 

To verify that grid orientations indeed realigned on a trial-by-trial basis in the 
Squircle consistent with contextual memory, we generated two grid-like predictions 
for entorhinal activity during each Squircle trial, one with the Square grid orientation 
and the other with the Circle grid orientation. For each participant, contextual 
memory was then predicted for each Squircle trial based on whichever of the two 
predictors was more similar to entorhinal activity (Spearman rank correlation 
coefficient) during that trial. Squircle contextual memory classification accuracy was 
significantly higher than expected by chance (62.7% versus 51.6% in a permutation 
test, t23=3.42, CI=[0.04-0.18], p=0.001; t23=3.68, CI=[0.06-0.20], p=0.0006 compared 
to 50% theoretical chance baseline; Figure 6e). Notably, across all Squircle trials, 
when grid realignment and hippocampal remapping predicted retrieval of different 
contextual memories, participants recalled target object locations as closer to the 
location intermediate between the two possible context-consistent locations (Figure 
6f), indicating that both hippocampal and entorhinal context representations 
contribute to spatial memory. Together, these results demonstrate that in concert 
with hippocampal remapping, entorhinal cortex represented the Squircle using a 
flexible grid-like code that changed orientation consistent with contextual memory.  

 
 

DISCUSSION 
 
A major scientific challenge has been to understand how the brain processes 
contextual information in the service of spatial memory29,30. We found that while 
human participants performed a context-dependent object-location memory task, 
entorhinal grid-like representations realigned between two different navigational 
contexts (the Square and Circle), and coincident changes in fMRI activity patterns 
consistent with remapping were observed in the hippocampus. These results add to 
a growing body of evidence that hippocampal remapping and entorhinal grid 
realignment are key mechanisms by which the human brain distinguishes between 
navigational experiences that occur in different contexts15–17,23. Critically, in an 
ambiguous half-square half-circle context (the Squircle), fMRI proxies for 
hippocampal remapping and entorhinal grid realignment were predictive of 
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contextual memory retrieval on a trial-by-trial basis; that is, when participants 
retrieved Square- or Circle-consistent memories in the Squircle, context 
representations in the hippocampal formation were similar to those elicited in the 
Square or Circle, respectively. Thus, hippocampal remapping and entorhinal grid 
realignment mediate human contextual memory. 
 
Hippocampal remapping and contextual memory 
 
The hippocampus has long been hypothesized to play a central role in representing 
spatial context11, a key implication of which is that context changes should modulate 
hippocampal representations in agreement with spatial memory. Prior studies using 
spatial memory tasks with rodents have found mixed results, with some observing a 
relationship between remapping and memory31,32, others observing remapping but 
no change in memory33, and yet others finding no remapping despite retrieval of 
different memories34. Importantly, such prior studies asked how environmental or 
spatial task changes affect remapping and memory independently, rather than 
whether remapping covaries with memory under the same conditions, making the 
source of potential dissociations between remapping and behavior difficult to 
ascertain. For instance, remapping could be observed without a change in behavior 
if a navigator has the opportunity to learn a new association between that behavior 
and the remapped context representation following environmental change.  
 

Here we created a situation in which navigators were unable to learn new 
context-location associations in the Squircle, but instead had to retrieve one of two 
previously formed contextual memories in the same environment. We then applied a 
stringent test of the relationship between hippocampal activity and contextual 
memory: i) activity patterns must predict contextual memory on a trial-by-trial basis, 
and ii) context-specific activity patterns must be tolerant to changes in nonmnemonic 
factors that could ostensibly covary with contextual memory, such as visual input and 
target object identity. We found that context representations were predictive of 
contextual memory on a trial-by-trial basis and were tolerant to changes in 
nonmnemonic factors during VR-walking epochs. By applying this stringent test, the 
current work complements and extends previous fMRI and intracranial recording 
studies examining the role of the human hippocampus in contextual memory15–17,35. 
Earlier research has shown that hippocampal activity elicited during spatial memory 
encoding is reinstated during recall15,35, akin to the trial-by-trial reinstatement of 
Square and Circle representations in the Squircle, but the sensitivity of such 
reinstated representations to nonmnemonic factors was not tested. Conversely, two 
recent studies reported tolerance of context-specific hippocampal activity patterns to 
changes in visual input16,17, but did not link such activity patterns to contextual 
memory on a trial-by-trial basis. 

 
Unexpectedly, we found that the hippocampus switched between view-

tolerant mnemonic representations and contextual-memory-tolerant view-based 
representations during VR-walking and VR-stationary epochs, respectively. This 
observation reinforces the importance of testing the resilience of hippocampal 
context representations to a range of nonmnemonic factors. It is unclear if the switch 
between mnemonic and view-based coding was caused by changes in VR-
locomotion per se, or changes in cognitive state that likely covary with VR-
locomotory behavior, such as attending to spatial versus visual aspects of the 
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environment36. Nevertheless, our data suggest that although the hippocampus 
supports contextual memory, its mnemonic role is flexibly modulated by behavioral 
or cognitive state37.  

 
Hippocampal sensitivity to visual input during VR-stationary epochs dovetails 

with a recent human fMRI study showing hippocampal coding of allocentric VR-
orientation, which covaried with view, only when participants were VR-stationary38. 
Unlike this study, however, we found that the hippocampus treated different Squircle 
viewing directions as similar according to whether those directions were associated 
with visual scenes that co-occurred in the Square or Circle, respectively. This finding 
is consistent with the spatiotemporal similarity hypothesis of hippocampal function39, 
according to which the hippocampus represents visual scenes as similar according 
to their co-occurrence in space and/or time. Hippocampal tuning to contextual 
memory and the spatiotemporal similarity of visual inputs may both reflect the 
operation of the same pattern completion process40, providing a possible 
mechanistic bridge between mnemonic and higher-order perceptual functions of the 
hippocampus.  

 
Grid realignment and contextual memory 
 
Entorhinal grid cells have long been hypothesized to play a role in spatial memory41. 
Yet, no previous studies have linked the global properties of a particular grid 
representation, such as its orientation, to memory-guided behavior. Complementing 
what was observed in the hippocampus, we found that realignment of entorhinal 
grid-like signals predicted contextual memory retrieval on a trial-by-trial basis, thus 
establishing a role for grid-like representations in context-dependent spatial memory. 

 
The observation that grid-like realignment is predictive of contextual memory 

speaks to an ongoing debate about the function of the grid code in behavior. On the 
one hand, because of the repetitive nature of grid cell firing fields, the primary 
function of grid cells may be to encode the output of a path integration computation 
that confers a spatial metric to the brain’s navigation system42. In this scenario, grid 
representations are context invariant, and changes to context only affect grid 
representations insofar as they alter the metric properties of the environment, such 
as changes to the shape or orientation of local space20,43. In this case, we would 
have expected grid-like representations to realign between the Squircle and both the 
Square and Circle, since the spatial layout differed between all three arenas. On the 
other hand, the grid code may serve as a high-capacity spatial representation 
capable of taking into account a navigator’s memory for space beyond the perceived 
shape of the environment44,45. By demonstrating that the entorhinal grid code reflects 
contextual memory beyond the metric properties of the world when context is 
behaviorally relevant, our results are less consistent with the former theory. Note 
however that this conclusion should not be taken to imply that metric environmental 
properties do not anchor grid representations to the external world, as we also found 
that grid-like representations were oriented by the shape and orientation of local 
space in the Square and Circle25–28. A potential parsimonious explanation is that the 
grid system is deployed for path integration only after the global properties of a 
particular grid representation (e.g., its orientation) are established via a contextual 
memory retrieval process.  
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Network dynamics in entorhinal cortex are hypothesized to be a possible 
determinant of hippocampal remapping46,47, and breakdown of entorhinal grid 
representations in a mouse model of Alzheimer’s disease accompany impaired 
remapping and contextual memory48. Yet, remapping is observed in rodents even 
following complete lesions to the entorhinal grid system49, challenging the role of 
hippocampal-entorhinal interactions, and entorhinal cortex more broadly, in 
contextual memory separation. We found that when grid realignment and 
hippocampal remapping predicted retrieval of different contextual memories in the 
Squircle, participants recalled target objects as being located closer to the location 
intermediate between the two possible context-consistent locations. This suggests 
that when the hippocampus and entorhinal cortex encode different context 
representations, rather than retrieve a single contextual memory, participants may 
have been more likely to adopt a navigational strategy whereby information from 
both the Square and Circle are combined to recall target object location50. 
Coherence between hippocampal and entorhinal context representations is thus 
critical for retrieval of context-specific memories: either because there is a 
constructive interaction between the two brain regions or because incoherence can 
cause interference between signals arising from the two brain regions. 

 
 
Conclusions 

 
In sum, we found that while human participants performed a context-dependent 
spatial memory task, fMRI proxies for hippocampal remapping and entorhinal grid-
like realignment predicted contextual memory retrieval on a trial-by-trial basis. These 
results help to close the gap between rodent and human studies of contextual 
memory and validate the long-held theory that a critical function of the hippocampal 
formation is to represent the contextual information that guides spatial behavior.  
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METHODS 
 
Participants 
 
24 participants (14 female) took part in this experiment (mean age: 26; range: 20-
34). All participants gave written consent and were paid for participating with a 
standardized financial incentive (120 NOK/hour), in compliance with procedures 
approved by the regional committees for medical and health research ethics (REK 
sør-øst; protocol reference: 2017/1900). All had normal vision and reported to be in 
good health with no history of neurological disease. Data from two additional 
participants were collected but discarded before analysis of fMRI data, one due to 
chance-level performance during testing and one due to technical errors during fMRI 
data acquisition. A further two participants were excluded from the study prior to 
fMRI scanning due to an inability to learn the behavioral task during training. The 
study was a within-subject design and thus there was no randomization of groups or 
treatments; further, because the study was a within-participant design with no 
treatment, data collection and analysis were not performed blind to the conditions of 
the experiments. 
 
Behavioral task 
 
Virtual Environment. We used Python to construct a virtual-reality environment that 
was rendered and displayed from the first person-perspective using the Vizard VR 
toolkit 3.0. The virtual environment consisted of three separate arenas, one square 
(“Square”), one circular (“Circle”), and one half-square half-circle (“Squircle”). In each 
arena, the boundary wall was 2.34 virtual meters (vm) in height relative to a 
simulated eye-level of 1.82 vm. The diameter of the Circle was 29 vm and the length 
of one wall in the Square was 29 vm. The Square and Circle were each surrounded 
by four distal cues, offset from each other within a context by 90°. The identities of 
the distal cues were counterbalanced across contexts across participants. The 
Squircle arena was surrounded by all eight distal cues, four from the Square and four 
from the Circle. Relative to the Squircle reference frame, Square and Circle distal 
cues were rotated relative to each other 54°, which allowed us to differentially test 
whether entorhinal grid-like orientations were aligned to the distal cues in the Square 
and Circle, and to the boundaries in the Square (see Grid-like analyses below). 
During the task, a participant’s location and facing direction (relative to an arbitrary 
east direction, which was the same for the Circle and Square relative to the distal 
cues in the Squircle reference frame) was recorded at 20 Hz.  
 
Training procedure. During behavioral training prior to the fMRI experiment and 
outside of the MR environment, participants navigated through the arena using their 
left hand to operate keys to move forward and turn left or right. At the start of 
behavioral training, participants were instructed that they would learn object locations 
in two different arenas, one square and one circle. They were then briefly exposed to 
both the Square and Circle during a free exploration period in each context. 
Following free exploration, training involved learning the locations of four everyday 
target objects (pumpkin, potted plant, lamp, and traffic cone) within the Circle and 
Square. The object identities were the same in the Circle and Square but occupied 
different locations (x- and y-coordinates relative to [0,0] center: Circle=[-4,9; 2,5; -7,-
4; 10,-5]; Square=[4,9; -2,5; 7,-4; -10,-5]). The positions of the target objects were 
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the same for each participant and were mirror symmetric across the two contexts. No 
participant reported noticing this mirror symmetry during debriefing following the 
experiment. Each trial began with the display of a word denoting one of the test 
objects. Participants then navigated to the remembered location of that object from a 
random starting point (the “recall” phase). When they reached their goal, they made 
a button press response. Participants were given feedback, and after a 2s delay, the 
target object for that trial appeared at its correct location and was collected (the 
“feedback” phase). Feedback ranged continuously from strongly negative (red frown 
face) if a participant recalled the object’s location greater than 8vm from the correct 
location, to strongly positive (green smile face) if the recalled object location was less 
than 3vm from the correct location. A set of 16 trials (four per experimental object) 
composed a block, and memory for object locations was trained in each arena in a 
separate block of trials. The order in which the arenas were trained across blocks 
was counterbalanced across participants.  

 
Prior to the start of the first recall phase during training block 1 for each 

context, but not subsequent blocks, participants collected each object in 
pseudorandom order twice (i.e., performed the feedback phase twice per test object) 
to initially learn the locations of the objects. Within a block, memory for the object 
locations was assessed in pseudorandom order, with the constraint that memory for 
the same object location could not be tested until all other objects had been tested 
once. Each participant was trained for four training blocks per context, with three 
training blocks per context occurring approximately five days before fMRI scanning, 
and one top-up training block per context occurring immediately before fMRI 
scanning. 

  
Testing procedure. Following behavioral training outside of the MRI scanner, 
participants performed the recall phase in the three testing arenas (Square, Circle, 
Squircle) while undergoing fMRI scanning. There was a pseudorandom 2-5s intertrial 
interval, during which a word denoting the test object for the subsequent trial was 
displayed. At the start of each trial, participants were teleported to a pseudo-random 
position in the arena, with the constraint that teleport locations in each arena were 
restricted to the boundaries of the Circle (i.e., in the Square and Squircle, 
participants never began a trial near the square corners). This teleportation 
restriction was included to maximize the likelihood that sampling of arena locations 
was similar in each context. Immediately following teleportation at the start of each 
trial, participants were automatically rotated fully around once (360º; 12s duration), 
so that they had an initial opportunity to identify their context and to minimize the 
possibility that they would fail to identify that they were in the Squircle on Squircle 
trials. Following this rotation period, participants navigated through the arena using a 
button-box to move forward and turn left or right. The order in which arenas were 
tested during scanning across trials was pseudo-random with the constraint that both 
the Square and Circle were tested twice each, and the Squircle tested once, every 
five trials. Memory for the target object locations in each testing arena was examined 
in pseudo-random order, with the constraint that each target object was tested once 
every four trials. Testing was divided into eight 8.075 minute (475 acquisitions) scan 
runs. Due to technical issues with the stimulus display computer, two participants 
completed only 7 total scan runs. Since testing was self-paced, the number of trials 
completed per context differed across participants (means=[51, 50, 24], 
medians=[51, 51, 24]; ranges=[31-72, 29-71, 13-32]; standard 
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deviations=[7.77,7.40,3.13] completed trials in the Square, Circle, and Squircle, 
respectively). However, since each scan run had a fixed length, the number of fMRI 
acquisitions for each context per scan run was highly similar across participants 
(standard deviations in the number of fMRI acquisitions per run expressed as a 
percentage of the total scan run length: [2.4,3.3,2.9] in the Square, Circle, and 
Squircle, respectively). 
 

Unlike training, no feedback was provided following each test trial. However, 
to maintain participant attention during scanning, feedback was provided at the end 
of each scan run based on the average performance in the Square and Circle during 
that run. If 475 fMRI volumes were acquired prior to completion of the last trial of a 
given scan run, participants completed that last trial and received performance 
feedback prior to the start of the subsequent scan run.  
 
(f)MRI data acquisition 
 
Scanning was performed at St. Olavs Hospital at the Neuro Center (Nevrosenteret) 
using a 3-Tesla Siemens Skyra scanner equipped with a 32-channel head coil. High-
resolution T1-weighted images for anatomical localization were acquired at the start 
of each scan session using a 3-dimensional magnetization-prepared rapid-
acquisition gradient-echo pulse sequence (repetition time [TR], 1900 ms; echo time 
[TE], 3.16 ms; inversion time, 900 ms; flip angle 9°; voxel size, 1x1x1 mm; matrix 
size, 256x256x192). T2*-weighted images sensitive to blood oxygenation level-
dependent (BOLD) contrasts were acquired using a gradient-echo echoplanar pulse 
sequence (TR, 1020 ms; TE, 34.6 ms; flip angle 55°; voxel size, 2.02x2.02x2 mm; 
matrix size, 104x104x66; multiband acceleration factor of 6). Functional image slices 
were aligned approximately parallel to the long axis of hippocampus. To correct 
susceptibility induced distortions, after completion of all experimental scan runs for 
22/24 participants, a single T2*-weighted image sensitive to BOLD contrasts was 
also acquired using an identical gradient-echo echoplanar pulse sequence as the 
main experimental runs (TR, 1020 ms; TE, 34.6 ms; flip angle 55°; voxel size, 
2.02x2.02x2 mm; matrix size, 104x104x66; multiband acceleration factor of 6), but 
with an inversed phase encoding direction. The VR environment was displayed at a 
rear bore face screen. Participants viewed the stimulus through a mirror attached to 
the head coil. Behavioral responses were collected using a fiber-optic button box.  
 
Behavioral data analysis 
 
Behavioral performance was measured in terms of the Euclidean distance between 
each target object’s recalled location and the actual target object location (“distance 
error”). To determine the distance error expected by chance in the Square and 
Circle, we computed the mean distance between 1,000 evenly spaced locations in 
the Square (Circle) and the four actual target locations in the Square (Circle). The 
chance distance errors thus computed served as a baseline relative to which we 
compared observed distance error. To classify Squircle trials as either Square- or 
Circle-consistent we computed the distance between each Squircle trial’s recalled 
location and the corresponding location of that trial’s target object in the Square and 
Circle, respectively, and classified each Squircle trial as either Square- or Circle-
consistent based on whichever context had the smaller distance error. To compute 
distance error expected by chance in the Squircle, for each target object, we 
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computed the distance between 1,000 evenly spaced locations in Squircle and the 
minimum distance of those locations to the Square- or Circle-consistent location, 
whichever context-consistent location had a smaller distance error. 
 

To compute maps of the difference in recalled location density between 
Square- and Circle-consistent Squircle trials (Figure 2c), for each participant and 
target object, we constructed a map of Squircle recalled locations (map resolution: 
0.5vm; % total trials per object), separately for Sq- and Ci-consistent trials. For each 
target object, we then took the difference between Sq- and Ci-consistent maps, 
smoothed the difference maps with a Gaussian kernel (σ=2vm), and averaged each 
object’s map across participants. 

 
 We also tested whether VR-walking trajectories reliably differed in shape 
between contexts (procedure depicted schematically in Extended Data Figure 2i). 
For each participant, for each possible pair of VR-walking trajectories T1 and T2, we 
first interpolated T2 using a spline fit so that it contained the same number of points 
as T1. To account for differences in each trajectory’s starting and ending location, T2 
was translated so as to have the same starting location as T1 and then a Procrustes 
transformation was performed to maximally align T2 to T1. Finally, we computed the 
discrete Fréchet distance51 between T1 and T2, which corresponds to a measure of 
similarity between the two trajectories that takes into account both the location and 
ordering of the points along the trajectories.   
 
fMRI data analysis 
 
FMRI data analyses were performed on the Abel Cluster, owned by the University of 
Oslo and Uninett/Sigma2, and operated by the Department for Research Computing 
at USIT, the University of Oslo IT-department (www.hpc.uio.no).  
 
Preprocessing. All imaging data were preprocessed using software tools 
developed and distributed by FreeSurfer (v6.0.0; surfer.nmr.mgh.harvard.edu) and 
FMRIB's Software Library (FSL; v5.0.11; fsl.fmrib.ox.ac.uk/fsl). Cortical surface 
gray-white matter volumetric segmentation of the high-resolution anatomical image 
was performed using the ‘recon-all’ utility in the FreeSurfer analysis suite. 
Segmented T1 data were used to define ROIs for use in subsequent analyses, as 
described below. Functional data were motion corrected using the FSL tool 
MCFLIRT, a final sinc interpolation stage, and 6 degrees of freedom. Slow drifts in 
the functional data were removed using highpass temporal filtering (Gaussian-
weighted least-squares straight line fitting, with sigma=50.0s). Susceptibility 
distortions were removed using the FSL tool Topup. Non-brain was then removed 
from the first volume of every functional run using FSL’s BET, and brain-extracted 
volumes were registered to the segmented anatomical image. Transformation 
matrices for registration were generated using FreeSurfer’s manual and boundary-
based registration tools. These matrices were then used to transform each four-
dimensional functional volume using FSL FLIRT, such that all cross-run data from 
a single participant were in the same space. For univariate analyses, functional 
data were spatially smoothed using a Gaussian kernel of 5mm FWHM. Spatial 
smoothing procedures for multivariate analyses are described below. For second-
level group analyses, functional data were normalized into standard space (MNI305) 
with FreeSurfer using non-linear registration. 

http://www.hpc.uio.no/
https://surfer.nmr.mgh.harvard.edu/
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Regions of interest. Anatomical regions of interest (ROI) were defined uniquely for 
each participant based on the automatic cortical and subcortical parcellations 
derived from FreeSurfer structural reconstruction. These ROIs included the bilateral 
hippocampus (HIPP), bilateral entorhinal cortex (EC), and bilateral pericalcarine 
cortex (which we refer to here as early visual cortex—EVC), all drawn from the 
Desikan-Killiany atlas52. Example hippocampal and entorhinal ROIs are depicted in 
Supplementary Figure 1a. To determine the anatomical locus of multivariate context 
representations, we also divided each participant’s hippocampal ROI into three 
subregions of interest53 along its posterior-anterior extent (posterior, middle, 
anterior), separately for each hemisphere, such that each subregion had the same 
length in the posterior-anterior dimension. For multivariate context decoding only, we 
also divided each participant’s EC ROI into two parts along its poster-anterior extent 
(posterior, anterior), separately for each hemisphere (Supplementary Figure 1b).  
 
Multivariate context decoding. Multivariate analyses were performed using FSL 
(v5.0.11) and Matlab (v2017b). We reasoned that if remapping causes different 
hippocampal populations to be active in the Square and Circle there would be 
reliably different fMRI activity patterns elicited during navigation episodes in each 
context. Note that this claim does not require information about a navigator’s spatial 
location within a context to be decodable from the multivariate hippocampal fMRI 
signal, which may not be feasible given the spatial resolution limitations of fMRI54. 
For each scan run, we used a general linear model (GLM) to estimate the response 
of each voxel to the recall phase separately for each context. Run-wise GLMs 
consisted of two binary boxcar regressors: one for the recall phase in the Square 
and one for the Circle. Also included in each GLM were six nuisance parametric 
modulators (PMs) to account for head motion-related artifacts and their temporal 
derivatives. All regressors were convolved with double gamma hemodynamic 
response function (HRF) and filtered by the same high pass filter as the fMRI data 
before entry into the GLM. GLMs were performed in FSL using FILM with local 
autocorrelation correction. Run-wise parameter estimates thus obtained were 
spatially smoothed using a Gaussian kernel of 4 mm FWHM.  
 

For Square versus Circle context decoding (Figure 3a), we then created run-
wise activity patterns for the Square and Circle contexts by concatenating response 
values across all hippocampal voxels. For each run, patterns were Z-scored across 
voxels. Context classification accuracy was determined using leave-one-run-out 
cross validation. Specifically, we first performed voxel selection to identify 
hippocampal voxels modulated by context, such that only voxels exhibiting a 
response difference between the Square and Circle contexts (liberal threshold p<0.1, 
uncorrected) were included in these concatenated patterns. To avoid statistical 
dependence between this voxel selection procedure and subsequent classifier-
based analyses, voxel selection was performed in a leave-one-run-out fashion. That 
is, for each participant, a held-out run’s hippocampal mask was constructed solely on 
the basis of context-related activations from the remaining scan runs (Supplementary 
Figure 2). For each run-wise partition of the data, we then averaged the patterns 
across the non-held-out data across runs, separately for the Square and Circle, and 
compared these patterns to each volume of fMRI data in the held-out run. Functional 
data in the held-out run were smoothed using a Gaussian kernel of 4mm FWHM, 
and signal amplitude timeseries were normalized via Z-scoring across time for 
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each voxel, and then across voxels in an ROI for each volume. Each fMRI volume 
in each held-out run was then classified as Square or Circle based on whichever 
context yielded higher pattern similarity (Fischer-transformed Pearson correlation 
coefficient) to the average Square and Circle training data activity patterns, and each 
individual trial was classified as either Square or Circle based on the modal 
prediction across all fMRI volumes during each trial’s recall phase. To account for 
the hemodynamic lag, the actual recall phase onset of each trial was shifted by 6 
fMRI volumes (6.12 s), but the end of the recall phase was not offset. For Squircle 
contextual memory decoding (Figure 3c), we performed the same leave-one-run-out 
analysis, except compared the Squircle activity patterns in the held-out run to the 
Square and Circle context patterns in the training data. To assess classification 
accuracy expected by chance, we re-ran the same analysis permuting context labels 
across trials (k=500). 
 

To examine the evolution of the context representations for each volume of 
fMRI data in each held-out scan run (Figure 3b and d), we computed a Contextual 
Similarity (CS) Score corresponding to the difference in pattern similarity strength 
(Fischer-transformed Pearson correlation coefficient) between each volume’s activity 
pattern and the average patterns elicited in the Square minus the Circle across runs. 
Since different trials could be of different length, CS Scores for each trial were 
resampled to 30 timepoints using the resample function in Matlab. To account for the 
hemodynamic lag, the actual recall phase onset of each trial was shifted by 6 fMRI 
volumes (6.12 s), but the end of the recall phase was not offset. CS Scores were 
separately computed for the pre-recall phase rotation period and consisted of the 12 
fMRI volumes prior to the recall phase. The start and end of the rotation period were 
both offset by 6 fMRI volumes, such that the end of the rotation period corresponded 
to the fMRI volume immediately prior to the start of the recall phase. As a control, we 
also repeated the same analyses for the EVC ROI. To determine the anatomical 
locus of these effects, we also performed the same analyses in the hippocampal and 
entorhinal subregion ROIs without voxel selection (Figure 3e and f). 
 

We then tested the sensitivity and tolerance of Squircle hippocampal context 
representations to nonmnemonic factors:  

 
VR-locomotory behavior (Figure 4a-b). Each CS Score timeseries was binned into 
VR-walking and VR-stationary epochs. Each fMRI volume during which the mean 
VR-walking velocity 6 fMRI volumes (6.12 s) earlier was greater than 1.65 vm/s were 
included in VR-walking epochs, and all other fMRI volumes were included in VR-
stationary epochs. This VR-walking velocity cutoff was used to ensure that 
participants were VR-walking for the majority of each fMRI volume included in VR-
walking epochs (3.3 vm/s is full speed).  
 
VR-walking location (Figure 4c-d). The Squircle environment was divided into a map 
of 49 equally spaced locations. This map resolution (8.3 vm2 area bins) was selected 
because each location bin corresponds to the approximate maximum distance that 
could be VR-traversed during a single fMRI acquisition. Mean CS Scores were then 
computed separately for each location based on the participant’s VR-walking 
location 6 fMRI volumes (6.12 s) earlier. Individual participant CS Score maps were 
Gaussian smoothed (σ=8vm) before averaging across participants. We also tested 
whether context representations were tolerant to proximity to square vs. circular 
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boundary segments in the same manner as we did for VR-locomotion by binning CS 
Score timeseries based on the most proximal boundary segment type (square or 
circular corner) 6 fMRI volumes (6.12 s) earlier.    

 
viewing direction (Figure 4e-j). For each fMRI acquisition, we computed the circular 
mean viewing direction during that acquisition, and CS Scores were then binned 
according to whether the participant’s viewing angle 6 fMRI volumes (6.12 s) earlier 
was more centered on a square or circular boundary segment (Figure 4e and 4g), or 
a Square or Circle distal cue (Figure 4f and 4h).  

 
Target object identity (Figure 4 & Extended Data Figure 7). We recomputed Squircle 
CS Scores using an alternate target-object-invariant context classifier. For each scan 
run, we used four separate GLMs to estimate the responses of each voxel to the 
Square and Circle recall phases. These GLMs were conducted in an identical 
fashion as the original context classifier, except that each run-wise GLM consisted of 
two binary boxcar regressors (one for the Square and one for the Circle) that each 
excluded all trials from one of the four target objects. Thus, four sets of run-wise 
parameter estimates were obtained for the Square and Circle, each derived using all 
trials except for those from one specific target object each (i.e., exclude-pumpkin, 
exclude-plant, exclude-lamp, and exclude-cone). Parameter estimates thus obtained 
were spatially smoothed using a Gaussian kernel of 4 mm FWHM. We then 
recomputed CS Score timeseries for each Squircle trial by applying the particular 
classifier that excluded that Squircle trial’s target object. For instance, if the target 
object for a given Squircle trial was the pumpkin, target-object-invariant CS Scores 
were computed for that trial using the exclude-pumpkin parameter estimates.  

 
Grid-like analyses. Grid-like analyses were performed using FSL (v5.0.11) and 
Matlab (v2017b). We first performed a split-half quadrature filter analysis to estimate 
the context-specific orientations of the grid code during periods of VR-walking in the 
Square and Circle (Figure 5), following now-standard procedures22. In brief, for each 
scan run, we identified the context-specific angular orientation of the putative grid 
axes in each participant’s entorhinal cortex (EC). Data were then split into halves by 
run (runs [1,3,5,7] and [2,4,6,8] for n=22 participants, and runs [1,3,5,7] and [2,4,6] 
for n=2 participants missing the 8th scan run), and for each half, we computed the 
circular average grid-like orientation separately for the Square and Circle contexts. 
The grid-like orientations thus obtained were then subsequently used to predict a 
grid-like signal during the other independent half of the runs. For all grid-like 
analyses described below, in addition to the PMs of interest, GLMs also included six 
nuisance PMs to account for head motion-related artifacts, as well as two binary 
boxcar regressors of no interest corresponding to the Circle- and Square-consistent 
Squircle recall phases. All regressors were convolved with a double gamma HRF 
and filtered by the same high pass filter as the fMRI data before entry into the GLM. 
GLMs were performed in FSL using FILM with local autocorrelation correction. 

 
To fit the orientation of the 6-fold VR-walking direction-modulated signal within 

EC, we constructed a GLM with four parametric modulators (PMs) for periods. These 
four PMs were cos(6*ϴ(t)square), cos(6*ϴ(t)circle) and sin(6*ϴ(t)square), sin(6*ϴ(t)circle), 
where ϴ(t)C is the VR-walking direction sampled at time t in context C. The weights 
(b1–b4, respectively) on these four PMs were fitted to the fMRI time series for each 
voxel within the bilateral entorhinal ROI. Since our primary goal was to test the 
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relationship between grid-like realignment and contextual memory in the Squircle, we 
sought to limit the influence of voxels with relatively weak fMRI signal from this grid 
orientation computation. For each participant, we thus identified the 80% of EC 
voxels that showed the highest magnitude of 6-fold periodic modulation in the 
Square and Circle averaged across scan runs, independent of grid orientation 
reliability across scan runs or realignment between contexts. This 80% cutoff was 
chosen because the bottom 20% of EC voxels had a comparatively low tSNR in all 
participants (Supplementary Figure 3). Note that our test of grid-like modulation 
(split-half reliability) was not biased by this voxel-selection procedure, nor was our 
test of Square and Circle grid realignment, nor were any Squircle analyses. We then 
used these sub-selected voxels to calculate the mean context-specific orientations of 
the 6-fold symmetric VR-walking direction-modulation from the mean weights as 
φsquare=[arctan(b3/b1)]/6 and φcircle=[arctan(b2/b4)]/6, separately for each scan run, 
where arctan was mapped into 360° space. Finally, we computed the circular 
average grid orientation for each context for each separate half of the data.  

 
Rather than use voxel selection to limit the influence of weakly modulated EC 

voxels, some prior studies have used an EC ROI consisting only of the posterior 
portion of EC (pEC)55. Since the anatomical specificity of the link between contextual 
memory and grid realignment, insofar as it exists, is not known a priori, we focused 
analyses on the entire bilateral EC, only excluding voxels with weak grid-like signal 
overall independent of anatomical location. Nevertheless, to confirm that our results 
would be similar if we instead used the pEC without voxel selection, we recomputed 
grid orientations using all voxels in bilateral pEC. Across participants, grid 
orientations in the pEC, circularly averaged across voxels and scan runs, were highly 
similar to grid orientations computed with voxel selection (circular correlation, n=24, 
φsquare: c=0.607, p=0.006; φcircle: c=0.606, p=0.006). Further, across participants, a 
greater percentage of pEC voxels shared a similar grid orientation (within ±15°) 

across data halves within the same context than across data halves across different 
contexts (n=24, sign-test, p=0.032), confirming that grid realignment did not depend 
on our voxel selection procedure.  
 
 To test whether the fit orientations predicted analogous 6-fold periodic signals 
in the other independent half of the data (Figure 5b-c), we constructed a GLM with 
two PMs modeling the effect of VR-walking direction on the fMRI signal, one for the 
Square and one for the Circle. The values of these PMs at each timepoint was the 
cosine of VR-walking direction at that timepoint aligned to the context-specific 
orientation predicted by the first half of the data: cos(6*(ϴ(t)square- φsquare)) and 
cos(6*(ϴ(t)circle-φcircle)). Each beta from this analysis reflects the extent of split-half 
reliable context-specific φ-oriented 6-fold VR-walking direction-modulated fMRI 
signal (which we term “grid-like modulation”). The beta weights for these PMs were 
averaged across all scan runs within each participant. The group-level test of the 
significance of these weights averaged across contexts was small-volume FWE-
corrected (SVC) within a group-level bilateral EC ROI, defined as the union of all 
individual-participant bilateral EC ROIs projected into MNI space. To test for grid-like 
realignment between the Square and Circle contexts, we separately performed an 
analogous GLM in which VR-walking directions at each timepoint were aligned to the 
orientation from the opposite context, as cos(6*(ϴ(t)square- φcircle)) and cos(6*(ϴ(t)circle-
φsquare)). To confirm that the VR-walking direction-modulated signal in EC exhibited a 
specifically 60° periodicity, we conducted this same split-half analysis for 90° (i.e., 4-
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fold) and 45° (i.e., 8-fold) periodicities (Extended Data Figure 8a). We also 
performed the same split-half analysis on the hippocampus and EVC ROIs 
(Extended Data Figure 8b-c). 
 

To test whether grid orientations consistently cluster across participants 
around an offset of ±7.5° from the cardinal axes of the boundaries of the Square 
arena (Extended Data Figure 9), we computed the circular average of the Square 
grid orientations across all EC voxels and runs within each participant. We then 
folded the grid orientations of all participants by φ mod 15°, which would align all 
hypothesis-consistent alignments to 7.5° in a circular 0°-15° space in the Square. 
Next, we performed a V-test for nonuniformity centered around 7.5°. To test whether 
grid orientations were consistently aligned relative to the distal cues across 
participants in either the Square or Circle—either directly aligned 0° or maximally 
offset 45° relative to a distal cue—we performed an analogous analysis, but 
performed the V-test centered around 12° for Square grid orientations, and 3° for 
Circle grid orientations, after folding grid orientations of all participants by φ mod 15°. 
 

To test whether grid-like representations realign on a trial-by-trial basis 
consistent with contextual memory in the Squircle (Figure 6b and d), we compared 
two grid-like models of EC activity during Squircle trials (memory-consistent vs. 
memory-inconsistent). Both models consisted of a single PM: cos(6*(ϴ(t)squircle – 
φ(in)consistent)), where ϴ(t) squircle corresponds to the VR-walking direction at each time 
point t, and φ(in)consistent corresponds to the Square or Circle grid orientation, 
whichever was consistent or inconsistent with contextual memory retrieval for each 
Squircle trial, respectively. For this analysis, grid orientations were computed as the 
circular average of grid orientations across all scan runs within each participant, 
separately for the Square and Circle. Each model was fit to the fMRI data in a 
separate GLM. The beta weights thus obtained were averaged across all scan runs 
for each voxel for each participant, and then across all voxels in bilateral EC within 
each participant. 
 

Since predictions of the memory-consistent and -inconsistent grid-like models 
were positively correlated in some participants (mean: r=0.07, range: r=-0.89-0.99), 
we performed a variance partitioning analysis to determine the unique contribution of 
each model to EC activity (Figure 6c). For each participant and scan run, we first 
conducted a GLM to remove nuisance variance associated with head motion-related 
artifacts from the EC timeseries. For each participant, we then extracted the mean 
EC timeseries over the course of the experiment by averaging the residuals from this 
GLM across all voxels in bilateral EC for each fMRI volume in each scan run. Finally, 
we computed the partial correlation between the memory-(in)consistent PM and the 
mean EC timeseries during Squircle trials, controlling for variance associated with 
the other PM. Both PMs were convolved with double gamma HRFs before 
computing the partial correlation. We also computed the amount of EC variance 
explained by each model uniquely (squared partial correlation coefficient – R2), as 
well as the amount of EC variance explained jointly by both models together. Note 
that if grid orientations realign 30° across the Square and Circle, both the memory-
consistent and -inconsistent models would explain equal amounts of EC variance 
(R2) for the same Squircle trial, but the unsquared correlation coefficients would be 
of opposite sign. However, only positive correlations between a given model’s PM 
and the EC timeseries are meaningful, as negative correlations imply systematic 
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misalignment of the grid orientation relative to the VR-walking direction. Therefore, 
for each participant, we computed the percentage of total variance explained by 
positive correlations only by setting each negative correlation coefficient to zero.   
 

To examine whether trial-by-trial grid-like realignment in the Squircle was 
sufficient to decode contextual memory (Figure 6e), we constructed two alternative 
PMs to describe EC activity during each Squircle trial, one with the Square grid 
orientation [cos(6*(ϴ(t)squircle- φsquare)] and one with the Circle grid orientation 
[cos(6*(ϴ(t)squircle- φcircle)]. Each PM was convolved with a double gamma HRF. For 
each Squircle trial’s recall phase, the similarity between each PM and the de-noised 
average EC timeseries was computed using Spearman Rank correlation. We then 
classified each Squircle trial as either Square- or Circle-consistent based on 
whichever PM yielded a higher correlation coefficient. To assess contextual memory 
classification accuracy expected by chance, we re-ran this same decoding analysis 
permuting the contextual memory labels across Squircle trials (k=500). 

 
To characterize whether trial-by-trial Squircle spatial memory precision was 

affected by whether the EC and hippocampus shared similar contextual 
representations (Figure 6f), we concatenated all Squircle trials across all 
participants. For each Squircle trial, we determined whether the contextual memory 
decoded in EC and the hippocampus was the same or different (i.e., either both 
Square or Circle, or different; PEC-HIPP), independent of contextual memory. Trial-by-
trial spatial memory precision was measured in terms of i) distance of the recalled 
target object location to the nearest context-consistent location (Dcon), and ii) 
distance of the recalled target object location to the location intermediate between 
the two possible context-consistent locations (Dint). To account for general behavioral 
differences across participants and target objects, Dcon and Dint were separately 
mean-centered within participant, and then mean-centered within target object 
independent of participant. We performed binomial logistic regression to test the 
relationship between PEC-HIPP, Dcon, and Dint. Since Dcon and Dint were strongly 

correlated across trials (r=0.70, p0), logistic regressions modeling PEC-HIPP as a 
function of Dcon and Dint were performed separately as: 

 
𝑃𝐸𝐶−𝐻𝐼𝑃𝑃 = {1 +⁡ exp⁡(−𝛽0 − 𝛽1𝑫)}

−1 
 
where D corresponds to either Dcon or Dint. Dcon did not significantly characterize PEC-

HIPP (χ2=1.71, p=0.190). The heatmap in Figure 6f was formed by separately binning 
Dcon and Dint into quartiles and computing the average PEC-HIPP for each bin.  
 
General statistics. No statistical methods were used to pre-determine sample size 
since our spatial learning paradigm was developed to fit participant-specific memory 
biases that could not be known in advance, but our sample size was similar to those 
reported in previous publications using similar procedures16,26. Parametric t-tests, 
Pearson correlations, repeated-measures analysis of variance (rmANOVA), logistic 
regression, and non-parametric sign-tests, KS-tests, V-tests and permutation tests 
were used throughout the paper. For parametric tests, if data values failed to meet 
normality assumptions (Lilliefors test, p>0.05), non-parametric tests are reported. All 
t-tests were one-tailed in the direction of the stated hypothesis, unless otherwise 
indicated. Note that for paired and one-sample t-tests, we do not report estimates of 
effect size (Cohen’s d) because it would be redundant with the reported t-statistic 
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(𝑑 = 𝑡/√𝑛). 95% confidence intervals (CI) are reported for significant effects 
(p<0.05). A Life Sciences Reporting Summary is available. 
 
Code availability 
 
Task code is publicly available: github.com/jbjulian/squircle_task. FMRI analyses 
were performed using publicly available software packages FSL and FreeSurfer. 
Matlab code for other analyses are available from the corresponding authors upon 
request. 
 
Data availability 
 
The unthresholded group-level statistical brain map depicted in Figure 5b is available 
on NeuroVault (collection: VABINDPD). Source data for the remaining figures are 
available at Mendeley Data (doi:10.17632/jvm3fhpjwn.1). Raw data contained in this 
manuscript (Figures 2-6 and Extended Data) are available from the corresponding 
authors upon request. 

  

https://neurovault.org/collections/VABINDPD/
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Extended Data Figure 1. Behavioral performance in the Square and Circle contexts. Performance was measured as the mean 
distance error in object replacement in virtual meters (vm), separately for the Square (Sq) and Circle (Ci). Performance improved 
across training and did not differ between the Sq and Ci at the end of training (Student’s paired t-test, t23=1.18, p=0.250) or during 
testing (t23=0.95, p=0.352). Note that because the Sq had a larger walkable ground plane than the Ci, performance error expected by 
random chance was lower in the Ci (11.25 vm) than the Sq (13.78 vm). However, there was still no significant difference between Sq 
and Ci performance by training block 4 (t23=1.72, p=0.098) or during testing (t23=1.92, p=0.068) after normalizing distance error by the 
context-specific chance baseline. Error bars indicate ±1 SEM (n=24). All t-tests two-tailed. 
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Extended Data Figure 2. No systematic behavioral differences between Square- and Circle-consistent Squircle trials. a-h, 
Comparison of behavioral measures between Square-consistent (Sq-con) and Circle-consistent (Ci-con) Squircle trials: a, response 
latency (Sq-con vs Ci-con: t23=0.30, p=0.767), b, path tortuosity (t23=0.87, p=0.393), c, distance of replaced objects from the context-
consistent location (t23=0.76, p=0.456), d, mean absolute angular difference in allocentric VR-facing direction between successive 
fMRI volumes, which reflects tendency to rotate VR-heading (t23=1.01, p=0.325), e, percentage (%) of time spent in locations proximal 
to Sq (vs. Ci) boundary segments (t23=0.697, p=0.394), f, % time viewing distal cues present in the Sq (vs. Ci) (t23=0.77, p=0.448), g, 
% time spent viewing square (vs. circular) boundary segments (t23=1.58, p=0.127), and h, % time spent VR-walking (vs. VR-stationary) 
(t23=0.06, p=0.956). i, Comparison between the shapes of Squircle VR-walking path trajectories across trials. For each pair of 
trajectories (T1 and T2), i) T2 was interpolated to have the same number of samples as T1 using a spline fit, ii) a Procrustes 
transformation maximally aligned T1 to T2, and iii) the distance between T1 and T2 was computed using a Fréchet distance metric 
(see Methods). j, The shape of VR-walking path trajectories did not reliably differ between Sq- and Ci-con Squircle trials: the average 
Frèchet distance between trajectories from trials sharing the same contextual memory (Same) did not differ from those with different 
contextual memories (Diff) (t23=0.39, p=0.704). k, The Frèchet distance was computed between each Squircle trajectory and 
trajectories in the Sq and Ci. The difference between Squircle-Sq minus Squircle-Ci Frèchet distances were then computed, separately 
for Sq- and Ci-con Squircle trials. Positive (negative) values thus indicate that Squircle trajectories were more like those in the Sq (Ci). 
Squircle trajectories were more similar in shape to Sq trajectories, during both Sq-con (t23=2.56, p=0.018) and Ci-con (t23=2.24, 
p=0.035) trials. Critically, trajectory shapes did not differ in their similarity to the Sq or Ci across Sq- and Ci-con Squircle trials (t23=0.12, 
p=0.902). l, Percentage of time occupying different locations in the Squircle during Sq-con (left) and Ci-con (right) trials, averaged 
across participants. Only 2% (1/49) of local Squircle regions showed differential sampling between Sq- and Ci-con trials (t-test, p<0.05, 
uncorrected for multiple comparisons). Throughout the figure, error bars indicate ±1 SEM. All t-test two-tailed. Dots denote individual 
participants (n=24).  nsp>0.05, *p<0.05. 
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Extended Data Figure 3. Behavioral determinants of Squircle contextual memory retrieval. a, We examined five different possible 
determinants of trial-by-trial contextual memory retrieval in the Squircle. For each possible determinant, we tested whether that 
determinant predicted contextual memory retrieval on each Squircle trial (i.e., a Square- or Circle-consistent replace location) and 
computed classification accuracy across all trials for each participant (% correct, compared to 50% theoretical chance baseline dotted 
line). The five determinants included: i) The modal Square (Sq) or Circle (Ci) context during the N odd testing trials prior to each 
individual Squircle trial. Although trial order was balanced across all Squircle trials, for each individual trial, participants were tested 
more often in either the Sq or Ci every odd number of prior Sq and Ci trials, which may bias contextual memory. For example, for a 
given Squircle trial, if the three preceding trials were two Sq and one Ci, a participant may be more likely to retrieve a Sq-consistent 
memory. We thus tested whether Squircle memory retrieval on each individual Squircle trial was predicted by the modal context of the 
N=1, 3, 5 prior Sq and Ci trials. However, replace locations in the Squircle were not predicted by the previous trials’ modal context 
(t23=0.98, 1.04, 1.75, pFWE=0.508, 0.462, 0.140 for lags 1,3, and 5, respectively). ii) Distance error during training. Although distance 
error during training was matched on average between the Sq and Ci, for each target object each participant had numerically lower 
distance error for that object in one of the two training contexts. For each participant, we tested whether Squircle contextual memory 
was determined by whichever training context had the lowest distance error for each object. Classification accuracy was not 
significantly higher than expected by chance (t23= 0.985, p=0.335). iii) Squircle trial start location. Each Squircle trial started a random 
arena location, which may have biased contextual memory. For each Squircle trial, we tested whether contextual memory retrieval 
was predicted by whichever context-consistent location was nearest to that trial’s starting location. Prediction accuracy was not 
significantly higher than expected by chance (t23=1.41, p=0.175). iv) Contextual memory stability (Mem Stability) across Squircle trials 
within (WI) the same participant. For each target object, did each participant retrieve the same contextual memory for that object across 
all Squircle trials? For each Squircle trial, we tested whether memory was predicted by the modal contextual memory retrieved on all 
other Squircle trials for the same target object. We repeated this separately for each participant. For each target object, participants 
tended to retrieve the same contextual memory for that object across Squircle trials (t23= 5.28, p=2.34x10-5). v) Mem Stability across 
Squircle trials between (BW) participants. For each target object, did each participant retrieve the same contextual memory for that 
object as the other participants? For each Squircle trial, we tested whether memory was predicted by the modal contextual memory 
retrieved for that trial’s target object by a different participant across all Squircle trials, jackknifed across all participants. For each target 
object, participants tended to retrieve the same contextual memory as other participants (t23=9.58, 1.70x10-9). However, choice stability 
was lower across participants than within the same participant (t23=4.73, p=9.22x10-5), indicating that although there was some choice 
stability between participants, each participant tended to have a unique contextual preference. b) Participants replaced target objects 
in the Squircle closer to a context-consistent location than to the location intermediate between the two context-consistent locations 
(t=10.86, p=1.57x10-10), and this was the case in 23/24 (96%) individual participants, providing further evidence that participants 
retrieved either the Square or Circle-consistent contextual memories in the Squircle. Throughout the figure, error bars indicate ±1 SEM; 
All t-test two-tailed; Dots denote individual participants (n=24).  nsp>0.05, ***p<0.001. 



 39 

 
Extended Data Figure 4. Across-run hippocampal Square and Circle context decoding. A single estimate of the average bilateral 
hippocampal (HIPP) activation pattern for the Square (Sq) and Circle (Ci) was computed for each scan run. Across-run HIPP context 
classification accuracy for the Sq and Ci was significantly higher than in a permutation test (PERM). The dotted line indicates theoretical 
chance baseline (50%). Error bars indicate ±1 SEM. Dots denote individual participants (n=24). ***p<0.001. 
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Extended Data Figure 5. Behavioral control analyses in the Squircle. a, To unambiguously compute CS Scores for each 
nonmnemonic behavioral factor given the fMRI signal’s hemodynamic lag, each factor must be temporally autocorrelated during 
Squircle trials within and across fMRI volumes. To determine the temporal autocorrelation within fMRI volume (TR), we computed the 
percentage of timepoints during which nonmnemonic factors were the same between timepoint t and t+N, where N corresponds to 19 
lags from 51-969 msec from t (i.e., at the behavioral sampling rate—20Hz), within a single TR during Squircle trials. Nonmnemonic 
factors include VR-locomotion (VR-walking or -stationary), location (most proximal boundary segment, either Square or Circle), 
boundary view (toward Square or Circle boundary segment), distal cue view (toward Square or Circle distal cue). To control for potential 
nonuniform sampling within each nonmnemonic factor, percentages were converted to z-scores by randomly shuffling each 
nonmnemonic factor across timepoints separately for each participant (k=500). Each nonmnemonic factor was more similar across 
successive timepoints within TRs at all lags than expected by chance (color bars denote p-values from one-sample t-tests compared 
to 0 baseline; all t23>9.82, p<10-8). Light gray lines denote individual participants (n=24), black line denotes group mean. b, Same as 
in (a) but between successive TRs (lags 1-10 TRs) during Squircle trials. Red dotted lines denote the lag N at which a given 
nonmnemonic factor was no more likely to be the same at time t than t+N (t-test, p>0.05, uncorrected for multiple comparisons), if at 
all. Participants tended to occupy the same behavioral state for multiple TRs. c, Percentage of time during Squircle trials that 
participants VR-turned (mean angular velocity >0 deg/sec) between successive TRs during VR-walking and -stationary epochs. 
Participants VR-turned more often during VR-stationary than -walking epochs (t23=17.28, p=1.13x10-14). This result also implies that 
both boundary view and distal cue view were more similar across successive TRs during VR-walking than VR-stationary epochs. Error 
bars indicate ±1 SEM. Dots denote individual participants (n=24). Throughout the figure, all t-tests two-tailed. ***p<0.001. 
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Extended Data Figure 6. Early visual cortex context decoding. a, Leave-one-run-out cross-validated trial-by-trial context 
classification accuracy from the EVC was higher than chance (57.1% versus 49.9% in the permutation test, t23=2.31, p=0.015; t23=2.24, 
p=0.018 compared to 50% theoretical chance baseline). Though fewer participants had numerically greater context classification 
accuracy than expected in the permutation test in EVC than the hippocampus (n=24, McNemar Χ2 test with Yates’ correction, Χ2=4.03, 
p=0.045, two-tailed), this result nonetheless indicates that there tended to be different EVC activation patterns elicited in the Square 
and Circle, as expected given that the two contexts were visually distinct. b, Contextual similarity of EVC activity over time during Sq 
(red) and Ci (blue) trials. c, EVC CS Scores over time during Sq-con and Ci-con Squircle trials (Sq-con vs Ci-con replace phase: t23=-
1.63, p=0.942, t-test, one-tailed). d, EVC Sq-con and Ci-con Squircle CS Scores binned by VR-locomotory behavior (contextual 
memory x VR-locomotion rmANOVA: VR-locomotion main effect, F1,23=1.69, p=0.207; interaction, F1,23=0.25, p=0.624). Throughout 
the figure, error bars or error bands indicate ±1 SEM. Dots denote individual participants (n=24). Post-hoc t-tests were 1-tailed. 
nsp>0.05, *p<0.05, **p<0.01, ***p<0.001. 
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Extended Data Figure 7. Target-object-invariant CS Scores in the Squircle. Trial-by-trial hippocampal Squircle contextual memory 
classification accuracy from the target-object-invariant context classifier, using data from VR-walking epochs, was significantly higher 
than expected by chance (61.6% versus 58.0% in the permutation test, t23=1.98, p=0.030; t23=6.34, p=9.0x10-7 compared to 50% 
theoretical chance baseline). Thus, hippocampal context representations during VR-walking epochs were tolerant to changes in target 
object. Error bars indicate ±1 SEM; Dots denote individual participants (n=24). *p<0.05. 
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Extended Data Figure 8. Entorhinal grid-like realignment control analyses. a, The strength of reliable periodic modulation (beta 
weight) as a function of VR-walking direction in the entorhinal (EC) subregion of interest from Figure 4A for 90° (4-fold) and 45° (8-
fold) periodicities. These control periodicities were tested in particular because a recent study using human intracranial recordings 
found a large proportion of EC neurons had spatially periodic firing fields with 90° or 45° rotational symmetry23. Neither 90° nor 45° 
showed significant reliable periodic modulation aligned to their respective orientations in either the Square (Sq) or Circle (Ci) (90°: Sq, 
t-test t23=0.28, p=0.779, sign-test p=0.541; Ci, t test, t23=0.94, p=0.359, sign-test p=0.839; 45°: Sq, t-test t23=1.26, p=0.110, sign-test 
p=0.308; Ci, t23=-0.419, p=0.661). Note that these null effects were not specific to the entorhinal subregion based on the 60° periodicity 
analysis, as we saw no effect for 90° or 45° in any voxels in the entire entorhinal cortex at pSVC<0.05. b, The strength of grid-like 
modulation in the early visual cortex (EVC) region of interest. There was no significant reliable grid-like modulation in EVC in either the 
Sq (t23=0.94, p=0.180) or Ci (t23=0.498, p=0.312). These null effects were not due to averaging over all voxels in EVC, as there was 
also no grid-like modulation observed in the entire EVC at pSVC<0.05. c, The strength of grid-like modulation in the hippocampus (Hipp) 
region of interest. There was no significant reliable grid-like modulation in Hipp in either the Sq (t23=0.12, p=0.454) or Ci (t23=1.01, 
p=0.161). These null effects were not due to averaging over all voxels in Hipp, as there was also no grid-like modulation observed in 
the entire Hipp ROI at pSVC<0.05. d, Difference in the percentage of VR-walking directions modulo 90°, 60°, and 45° across the Sq and 
Ci. To align VR-walking directions across the Sq and Ci, for each periodicity (90°, 60°, and 45°), 0° corresponds to the orientation that 
maximized entorhinal periodic modulation for that periodicity, separately for the Sq and Ci. Black lines denote means across all 
participants, and grey lines denote individual participants. There were no differences in periodic VR-walking direction bias (t-test against 

zero, =0.05, FWE-corrected) between the Sq and Ci that would be confounded with the presence of context-specific 60° periodic 

fMRI signal dependent on VR-walking direction Throughout the figure, error bars indicate ±1 SEM. Dots denote individual participants 
(n=24). nsp>0.05. 
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Extended Data Figure 9. Local environmental anchoring of entorhinal grid-like orientations in the Square and Circle. a, Grid 
orientations (φ) can only be compared across contexts relative to some common reference frame. Here, we used the Squircle as the 
common reference frame; however, this reference frame choice may have been arbitrary, particularly because participants were not 
exposed to the Squircle until after having already learned the location-context associations in the Square and Circle. To provide further 
evidence for grid realignment, we therefore tested whether φs were differentially aligned to local orientational cues in the Square and 
Circle. In square environments, φ has been found to be offset 7.5° from the boundaries26,27. Since φ ranges between 0°-60°, we tested 
whether Sq φ clustered around four possible angles, each 7.5° from one of the two cardinal axes of the square boundaries. To do so, 
we folded the grid orientations of all participants by φ mod 15°, which would align all hypothesis-consistent alignments to 7.5° in a 
circular 0° to 15° space. b, We also tested whether φ was reliably aligned to the Sq or Ci distal cues, either directly (0° offset from a 
distal cue) or maximally offset between distal cues (45° offset from a distal cue, since distal cues were offset from each other by 90° 
in each context). In addition to 0° offset, a 45° offset was tested because a prior report suggests that in sparse circular VR-environments 
with only distal orienting cues, φ is maximally offset from the cues (rather than aligned) (Schroeder, T. N. et al. (2018) Entorhinal cortex 
minimises uncertainty for optimal behaviour. BioRxiv 166306). Since φ ranges between 0°-60°, we thus tested whether φ clustered 
around four possible angles in each context. To do so, we folded the grid orientations of all participants by φ mod 15°, which would 
align all hypothesis-consistent alignments to 12° in the Sq and 3° in the Circle, in a circular 0° to 15° space. c, Boundary and distal cue 
φ alignment. Middle: average φ in each participant (n=24) in the Sq (red squares, top) and Ci (blue circles, bottom). Left and right: 
histograms of average φ across participants, modulo 15°. In the Sq (left), φ clustered around 7.5° (V-test, V=5.96, p=0.043), consistent 
with alignment to the square boundaries, but not around 12° (V=-4.077, p=0.880) which would have been consistent with alignment to 
the distal cues. In the Ci (right), φ clustered around 3° (V=8.63, p=0.006), consistent with reliable distal cue alignment. Since grid 
orientations aligned to different local cues in each context, this provides further support for the existence of grid-like realignment 
between the two training contexts. 
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Extended Data Figure 10. Entorhinal grid-like modulation in the ambiguous Squircle context control analyses. a, Grid-like 
modulation (beta weight) in entorhinal cortex (EC), averaged over all EC voxels, aligned to a single Squircle-specific grid orientation 
(φ) across all Squircle trials independent of contextual memory. To compute the Squircle-specific φ we performed the same split-half 
analysis as for the Square (Sq) and Circle (Ci) contexts (e.g., Figure 6), but limited the analysis only to Squircle trials. No significant 
grid-like modulation (beta weight) was observed when we assumed there was a single Squircle-specific φ (t23=1.06, p=0.149; sign-test 
p=0.271, one-tailed). b, Left: Grid-like modulation in EC, averaged over all EC voxels, aligned to either the Sq φ or the Ci φ across all 
Squircle trials. No significant grid-like modulation was observed (Sq, t- test t23=0.50, p=0.312; Ci, t test, t23=0.39, p=0.350). Right: An 
alternative possibility is that EC grid representations have a single fixed φ (either Sq φ or Ci φ) across all Squircle trials, but whether 
the Squircle φ was the Sq or Ci φ differed across participants. To address this alternative, for each participant, we computed the 
maximum grid-like modulation observed by a single fixed φ (either the Sq φ or Ci φ, whichever yielded stronger grid-like modulation). 
We then compared the strength of grid-like modulation aligned to this fixed φ to the maximum grid-like modulation observed if φ 
realigned across trials (Realign; Figure 6b), independent of contextual memory. Stronger grid-like modulation was observed in the 
Squircle in the majority of participants (75%; 19/24) if φ realigned on a trial-by-trial basis than if we assumed that there was a fixed φ 
across all Squircle trials (sign-test, p=0.005, one-tailed; t-test t23=1.92, p=0.034). c, Difference in the percentage of VR-walking 
directions modulo 60° between Sq- and Ci-consistent Squircle trials. There was no difference in periodic VR-walking direction bias 
between Sq- and Ci-consistent trials that would be confounded with the presence of contextual-memory-specific 60° periodic fMRI 
signals dependent on VR-walking direction. Throughout the figure, error bars indicate ±1 SEM. Dots denote individual participants 
(n=24). **p<0.01, nsp>0.05. 
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Supplementary Figure 1.  
 
Hippocampal and entorhinal regions of interest. Regions of interest for three representative participants shown overlaid on 
functional data.  
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Supplementary Figure 2. 
 
Voxel-selected hippocampal masks.  

a, Isosurface of voxel-selected hippocampal mask in each participant (n=24). Masks were constructed for each participant as the 
union of masks across scan (mean number of 1 mm3 isotropic voxels per mask per participant: 1120.9; median across participants: 
1034; range across participants: 633-2484; standard deviation across participants: 420.3).  

b, Voxel-wise overlap of voxel-selected hippocampal masks across all participants. Across participants, voxel-selected hippocampal 
masks spanned the hippocampal extent. 
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Supplementary Figure 3.  
 
Voxel-wise entorhinal grid-like response magnitude and entorhinal fMRI signal quality. 
 
Comparison of grid-like the response magnitude during Square and Circle trials, averaged across all scan runs and both contexts, and 
temporal signal to noise ratio (tSNR) across all voxels in entorhinal cortex (EC). Each dot denotes a single EC voxel from a single 
participant; gray dots denote those voxels with a relatively low grid-like signal and tSNR that were excluded from grid orientation 
calculations. Both response magnitude and tSNR were Z-scored within participant.  
 
 

 
 


