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ABSTRACT

Objective: To determine the effects of using unstructured clinical text in machine learning (ML) for prediction,

early detection, and identification of sepsis.

Materials and methods: PubMed, Scopus, ACM DL, dblp, and IEEE Xplore databases were searched. Articles

utilizing clinical text for ML or natural language processing (NLP) to detect, identify, recognize, diagnose, or pre-

dict the onset, development, progress, or prognosis of systemic inflammatory response syndrome, sepsis, se-

vere sepsis, or septic shock were included. Sepsis definition, dataset, types of data, ML models, NLP techni-

ques, and evaluation metrics were extracted.

Results: The clinical text used in models include narrative notes written by nurses, physicians, and specialists in

varying situations. This is often combined with common structured data such as demographics, vital signs, lab-

oratory data, and medications. Area under the receiver operating characteristic curve (AUC) comparison of ML

methods showed that utilizing both text and structured data predicts sepsis earlier and more accurately than

structured data alone. No meta-analysis was performed because of incomparable measurements among the 9

included studies.

Discussion: Studies focused on sepsis identification or early detection before onset; no studies used patient his-

tories beyond the current episode of care to predict sepsis. Sepsis definition affects reporting methods, out-

comes, and results. Many methods rely on continuous vital sign measurements in intensive care, making them

not easily transferable to general ward units.

Conclusions: Approaches were heterogeneous, but studies showed that utilizing both unstructured text and

structured data in ML can improve identification and early detection of sepsis.
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INTRODUCTION

Sepsis is a life-threatening illness caused by the body’s immune re-

sponse to an infection that leads to multi-organ failure.1 Annually,

there are 31.5 million sepsis cases, 19.4 million severe sepsis cases,

and 5.3 million sepsis deaths estimated in high-income countries.2

Studies have shown that early identification of sepsis following rapid

initiation of antibiotic treatment improves patient outcomes,3 and 6

h of treatment delay is shown to increase the mortality risk by

7.6%.4 Unfortunately, sepsis is commonly misdiagnosed and mis-

treated because deterioration with organ failure is also common in
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other diseases.5–8 The heterogeneity in infection source, immune

responses, and pathophysiological changes make identification and

therefore sepsis treatment difficult. Additionally, the diversity in

age, gender, and comorbidities affect the symptoms and outcome of

septic patients.7

Machine learning (ML) has been employed to improve sepsis

outcomes through early detection. ML can utilize structured and un-

structured data from electronic health records (EHRs).9–14 Struc-

tured clinical data come in a fixed format, such as age, vital signs,

and laboratory data, which make data preprocessing easier. In con-

trast, clinical notes are in unstructured free-text form, such as prog-

ress notes, nursing notes, chief complaints, or discharge summaries.

Clinical notes contain abbreviations, grammatical errors, and mis-

spellings. Using clinical text is a complex, time-consuming process

because it requires using natural language processing (NLP) to ex-

tract features that transform text into a machine-understandable

representation.15–22 This usually requires assistance from clinical

experts to convert text into machine-interpretable representations

that capture clinical knowledge for specific clinical domains. The ef-

fort required to utilize unstructured clinical text can deter research-

ers; however, unstructured clinical text contains valuable

information.16,22–25 Multiple studies and a review25 have shown

that using unstructured clinical text has increased model perfor-

mance to detect or predict colorectal surgical complications,26 post-

operative acute respiratory failure,27 breast cancer,28 pancreatic

cancer,29 fatty liver disease,30 pneumonia,31 inflammatory bowel

disease,32,33 rheumatoid arthritis,34–36 multiple sclerosis,37 and

acute respiratory infection.38,39

Prior reviews related to sepsis detection and prediction include:

sepsis detection using Systemic Inflammatory Response Syndrome

(SIRS) screening tools,40 sepsis detection using SIRS and organ dys-

function criteria with EHR vital signs and laboratory data,41 clinical

perspectives on the use of ML for early detection of sepsis in daily

practice,14 ML for diagnosis and early detection of sepsis patients,9–

13 infectious disease clinical decision support,42 and healthcare-

associated infections mentioning sepsis.43–45 However, to the best of

our knowledge, no reviews focus on the effect of utilizing unstruc-

tured clinical text for sepsis prediction, early detection, or identifica-

tion; this makes it challenging to assess and utilize text in future ML

and NLP sepsis research.

OBJECTIVE

The review aims to gain an overview of studies utilizing clinical text

in ML for sepsis prediction, early detection, or identification.

MATERIALS AND METHODS

This systematic review follows the Preferred Reporting Items for

Systematic review and Meta-Analyses guidelines.46

Search strategy
Relevant articles were identified from 2 clinical databases (PubMed

and Scopus) and 3 computer science databases (ACM DL, dblp, and

IEEE Xplore) using defined search terms. The 3 sets of search terms

included: (1) “sepsis,” “septic shock,” or “systemic inflammatory

response syndrome”; (2) “natural language processing,” “machine

learning,” “artificial intelligence,” “unstructured data,”

“unstructured text,” “clinical note,” “clinical notes,” “clinical

text,” “free-text,” “free text,” “record text,” “narrative,” or

“narratives”; and (3) detect, identify, recognize, diagnosis, predict,

prognosis, progress, develop, or onset. Searches on clinical databases

were performed using all 3 sets of search terms and excluded

animal-related terms. Whereas searches on computer science data-

bases only used the first set of search terms. No additional search

restrictions, such as date, language, and publication status, were in-

cluded. Additional articles were identified from relevant review

articles or backward reference and forward citation searches of eligi-

ble articles. Complete search strategies are in Supplementary Table

S1.

The search was initially conducted using only computer science

databases on December 10, 2019 and was updated to include clinical

databases on December 14, 2020. The first search found that 4 of 454

articles met inclusion criteria,47–50 and the second search uncovered 2

more articles that met inclusion criteria (6 of 1335 articles).51,52 Those

2 searches did not contain the search terms: “systemic inflammatory

response syndrome,” “artificial intelligence,” identify, recognize, diag-

nosis, prognosis, progress, develop, and onset. Hence, a search on

May 15, 2021, including those terms, found 2 additional articles.53,54

To ensure inclusion of other relevant articles, a broader search was

conducted on September 3, 2021 to include the following terms:

“unstructured data,” “unstructured text,” “clinical note,” “clinical

notes,” “clinical text,” “free-text,” “free text,” “record text,”

“narrative,” or “narratives.” This resulted in 1 additional article.55

Study selection
Titles, abstracts, and keywords were screened using Zotero

v5.0.96.3 (Corporation for Digital Scholarship, Vienna, VA) and

Paperpile (Paperpile LLC, Cambridge, MA). Screening removed

duplicates and articles that did not contain the following terms: (1)

text, (2) notes, or (3) unstructured. Full-text articles were evaluated

to determine if the study used unstructured clinical text for the iden-

tification, early detection, or prediction of sepsis onset in ML. Thus,

selected articles had to rely on methods that automatically improve

based on what they learn and not rely solely on human-curated

rules. Additionally, articles solely focusing on predicting sepsis mor-

tality were excluded as these articles are based on already estab-

lished sepsis cases. Reviews, abstract-only articles, and presentations

were removed. Additionally, a backward and forward search was

performed on eligible full-text articles.

Data extraction
One author independently extracted data, which a second author

verified. Any discrepancies were resolved either through discussion

with the third author by assessing and comparing data to evidence

from the studies or by directly communicating with authors from in-

cluded articles. The following information was extracted: (1) general

study information including authors and publication year, (2) data

source, (3) sample size, (4) clinical setting, (5) sepsis infection defini-

tion, (6) task and objective, (7) characteristics of structured and un-

structured data, (8) underlying ML and NLP techniques, and (9)

evaluation metrics.

RESULTS

Selection process
The initial search identified 2268 articles from 5 databases and 5 ad-

ditional articles56–60 from 2 relevant review articles (Figure 1).43,44

From the 1817 unique articles, 1620 articles were excluded based

on eligibility criteria described in the methods. After assessing the
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remaining 197 articles, most studies (189 of 197, ie, 96%) were ex-

cluded because they had not used or attempted to use unstructured

clinical text in their ML models to identify, detect, or predict sepsis

onset. For instance, there were sepsis-related studies that used text

but for other purposes such as mortality prediction,61–65 phenotyp-

ing,66 visualization,67 exploratory data analysis,68 and manual chart

review.69–71 Additionally, 6 articles about infection detection,60 cen-

tral venous catheter adverse events,58 postoperative sepsis adverse

events,72–74 and septic shock identification75 were excluded because

they used manually human-curated rules instead of ML methods

that automatically learn from data. The remaining 8 eligible articles

were used to perform backward and forward searches,47–50,52–55

which led to the inclusion of 1 additional article.51 This resulted in 9

articles for synthesis.

Study characteristics
Of the 9 identified articles, 2 studies aimed at identifying infection,47,48 6

studies focused on early detection of sepsis,51,53,55 severe sepsis,49 or sep-

tic shock,50,54 and 1 study considered both identification and early detec-

tion for a combination of sepsis, severe sepsis, and septic shock.52 Most

studies focused on intensive care unit (ICU)48,50,52–55 or emergency de-

partment (ED)47,51 data; only 1 used inpatient care data.49 Four studies

utilized data from hospitals,47,49,51,52 1 utilized MIMIC-II54 and 4 uti-

lized MIMIC-III.48,50,53,55 MIMIC-II and MIMIC-III are publicly avail-

able ICU datasets created from Boston’s Beth Israel Deaconess Medical

Center; MIMIC-II contains data from 2001–200776 and MIMIC-III con-

tains data from 2001–2012.77 Eight studies used data from the United

States47–51,53–55 and 1 study used data from Singapore.52 Sample sizes

varied greatly in terms of the number of patients or notes used. To select

patient cohorts or notes associated with sepsis, 3 studies used Interna-

tional Statistical Classification of Diseases and Related Health Problems

(ICD) codes,47,49,52 5 applied sepsis definition criteria,49–51,53,55 1 uti-

lized descriptions of antibiotics usage,48 and another54 applied criteria

from Henry et al78 that include ICD codes, sepsis criteria, and notes

mentioning sepsis or septic shock. Table 1 summarizes the study charac-

teristics and additional details are in Supplementary Table S2 (for Culli-

ton et al,49 the 8 structured variables for the Modified Baystate clinical

definition of severe sepsis and 29 structured variables used in models

were provided through personal communications with the correspond-

ing author of Culliton et al,49 Steve Gallant, on June 4, 2021).

Clinical text used in models
The 9 studies utilized narrative notes written by nurses,47–50,53–55

physicians,49–53,55 or specialists49–51,54,55 to document symptoms,

Figure 1. PRISMA (Preferred Reporting Items for Systemic reviews and Meta-Analyses) flowchart for study selection.
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Table 1. Study characteristics

Study (year) Clinical setting and data

source

Sample sizea Cohort criteria infection

definition

Task and objective

Horng et al.47 (2017) • ED
• Beth Israel Deaconess

(Boston, MA, United

States)
• Dec 17, 2008—Feb 17,

2013

230 936 patient visits
• Infection: 32 103 P;

14%
• No infection: 198 833

P; 86%

Train : 147 799 P; 64%

Validation: 46 187 P; 20%

Test: 36 950 P; 16%

Angus Sepsis ICD-9-CM

abstraction criteria79

Identify patients with sus-

pected infection to dem-

onstrate benefits of using

clinical text with struc-

tured data for detecting

ED patients with sus-

pected infection.

Apostolova and Velez48

(2017)

• ICU
• MIMIC-III
• 2001–2012

634 369 nursing notes
• Infection presence:

186 158 N; 29%
• Possible infection: 3262

N; 1%
• No infection: 448 211

N; 70%

Train: 70%

Test: 30%

Notes describing patient

taking or being pre-

scribed antibiotics for

treating infection

Identify notes with sus-

pected or presence of in-

fection to develop a

system for detecting in-

fection signs and symp-

toms in free-text nursing

notes.

Culliton et al.49 (2017) • Inpatient care
• Baystate hospitals

(Springfield, MA,

United States)
• 2012–2016

203 000 adult inpatient ad-

mission encounters
• Used 68 482 E
• Severe sepsis: 1427 E;

2.1%

3-fold cross validation:

only text data

Model construction:

2012–2015 data

Test set: 2016 data:
• Used 13 603 E
• Severe sepsis: 425 P;

3.1%

Modified Baystate clinical

definition of severe sepsis

(8 structured variables)

and severe sepsis ICD

codes

Predict severe sepsis 4, 8,

and 24 h before the earli-

est time structured varia-

bles meet the severe

sepsis definition to com-

pare accuracy of predict-

ing patients that will

meet the clinical defini-

tion of sepsis when using

unstructured data only,

structured data only, or

both types.

Delahanty et al.51 (2019) • ED
• Tenet Healthcare Hos-

pitals (Nashville, TN,

United States)
• January 1, 2016—Octo-

ber 31, 2017

2 759 529 patient encoun-

ters
• Sepsis: 54 661 E; 2%
• No Sepsis: 2 704 868 E;

98%

Train: 1 839 503 E;

66.7%
• Sepsis: 36 458 E; 2%
• No sepsis: 1 803 045 E;

98%

Test: 920 026 E; 33.3%
• Sepsis: 18 203 E; 2%
• No sepsis: 901 823 E;

98%

Rhee’s modified Sepsis-3

definition80

Predict sepsis risk in

patients 1, 3, 6, 12, and

24 h after the first vital

sign or laboratory result

is recorded in the EHR to

develop a new sepsis

screening tool compara-

ble to benchmark screen-

ing tools.

Liu et al.50 (2019) • ICU
• MIMIC-III
• 2001–2012

38 645 adult patients

Train: 70% P

Test: 30% P

Applied model to:

15 930 P with suspected in-

fection and at least 1

physiological EHR data

Sepsis-3 definition1 Predict septic shock in sep-

sis patients before the

earliest time septic shock

criteria are met to dem-

onstrate an approach us-

ing NLP features for

septic shock prediction.

Amrollahi et al.53 (2020) • ICU
• MIMIC-III
• 2001–2012

40 175 adult patients
• Sepsis: 2805 P; �7%

Train 80% P

Test 20% P

Sepsis-3 definition1 Predict sepsis onset hours in

advance using a deep

learning approach to

show a pre-trained neu-

ral language representa-

tion model can improve

early sepsis detection.

(continued)
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signs, diagnoses, treatment plans, care provided, laboratory test

results, or reports. EHRs contain various types of clinical notes. A

note covers an implicit time period or activity and describes events,

hypotheses, interventions, and observations within the health care

provider’s responsibilities. The note’s form depends on its function:

an order, a plan, a prescription, an investigation or analysis report, a

narrative or log of events, information for the next shifts, or a re-

quirement for legal, medical, or administrative purposes. An episode

of care begins when a patient is admitted to the hospital and ends

when the patient is discharged. Throughout a patient’s hospital stay,

documentation can include chief complaints, history-and-physical

notes, progress notes, reports, descriptions of various laboratory

tests, procedures, or treatments, and a discharge summary. Chief

complaints are the symptoms or complaints provided by a patient

for why they are seeking care.82 History-and-physical notes can in-

clude history about the current illness, medical history, social his-

tory, family history, a physical examination, a chief complaint,

probable diagnosis, and a treatment plan.83 Progress notes docu-

ment care provided and a description of the patient’s condition to

convey events to other clinicians.84 Free-text reports can include

interpretations of echocardiograms, electrocardiograms (ECGs), or

imaging results such as X-rays, computerized tomography scans,

magnetic resonance imaging scans, and ultrasounds. At discharge,

the health care personnel write a discharge summary note comprised

of patient details, hospital admittance reason, diagnosis, conditions,

history, progress, interventions, prescribed medications, and follow-

up plans.85–87 The discharge summary letter is a formal document

used to transfer patient care to another provider for further treat-

ment and follow-up care.88–90

Studies have shown that nursing documentation differs from

physician documentation.91,92 Nurses document more about a

patient’s functional abilities than physicians,91 and the information

from notes used and the frequency of viewing and documenting dif-

fers between health care personnel.92 Additionally, documentation

varies between hospitals,93,94 hospitals have different resources and

practices,95–97 and communicative behavior differs among profes-

sions in different wards.98 Hence, the type of notes used, who wrote

the notes, and purpose of the note will play a role in how the docu-

mentation is interpreted.99

Table 2 provides information regarding documentation types,

author of the note, time content of the data, time latency between

documentation and availability in records, and the documentation

frequency. In Figure 2, the relationship between hospital events and

longitudinal data used to train models is shown. As sepsis develops

in a patient over time, it shows there are typically delays between a

patient’s actual state, clinical observations, and recorded documen-

tation, such as ICU vital signs, narrative notes, and ICD codes.

The included studies utilized the following types of notes: 6 stud-

ies used unstructured nursing-related documentation,47,48,50,53–55 4

used physician notes,50,52,53,55 3 used radiology reports,50,54,55 3

used respiratory therapist progress notes,50,54,55 2 used ED chief

complaints,47,51 2 used ECG interpretations,50,54 2 used pharmacy

reports,50,54 2 used consultation notes,50,52 1 used discharge summa-

ries,50 1 included mostly progress notes and history-and-physical

notes,49 and 3 used additional unspecified notes.49,50,54 Not all

notes used are listed. Liu et al50 used all MIMIC-III notes to build a

vocabulary of unique words, and discharge summaries were likely

not used in predictions because they are unlikely to occur before

Table 1. continued

Study (year) Clinical setting and data

source

Sample sizea Cohort criteria infection

definition

Task and objective

Hammoud et al.54 (2020) • ICU
• MIMIC-II
• 2001–2007

17 763 patients
• Sepsis: 6097 P
• Severe sepsis: 3962 P
• Septic shock : 1469 P

5-fold cross validation

Sepsis definition based on

what Henry et al78 used

Predict early septic shock in

ICU patients using a

model that can be opti-

mized based on user pref-

erence or performance

metrics.

Goh et al.52 (2021) • ICU
• Singapore government-

based hospital (Singa-

pore, Singapore)
• Apr 2, 2015—Dec 31,

2017

5317 patients (114 602

notes)

Train and validation: 3722

P (80 162 N)
• Sepsis: 6.45%
• No sepsis: 93.55%

Test: 1595 P (34 440 N)
• Sepsis: 5.45%
• No sepsis: 94.55%

ICU admission with an

ICD-10 code for sepsis,

severe sepsis, or sepsis

shock

Identify if a patient has sep-

sis at consultation time

or predict sepsis 4, 6, 12,

24, and 48 h after con-

sultation to develop an

algorithm that uses struc-

tured and unstructured

data to diagnose and pre-

dict sepsis.

Qin et al.55 (2021) • ICU
• MIMIC-III
• 2001–2012

49 168 patients

Train: 33 434 P
• Sepsis: 1353 P
• No Sepsis: 32 081 P

Validation: 8358 P
• Sepsis: 338 P
• No Sepsis: 8020 P

Test: 7376 P
• Sepsis: 229 P
• No Sepsis: 7077 P

PhysioNet Challenge re-

strictive Sepsis-3 defini-

tion81

Predict if a patient will de-

velop sepsis to explore

how numerical and tex-

tual features can be used

to build a predictive

model for early sepsis

prediction.

ED: emergency department; ICU: intensive care unit; ICD: International Classification of Diseases; ICD-9 CM: ICD Clinical Modification, 9th revision; ICD-

10: ICD 10th revision; MIMIC-II: Multiparameter Intelligent Monitoring in Intensive Care II database; MIMIC-III: Medical Information Mart for Intensive Care

dataset.
aSample size unit abbreviations: P: patients; N: notes; E: encounters.
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observations. Additionally, Hammoud et al54 used all MIMIC-II

notes except discharge summaries.

These 9 studies utilized clinical notes differently. For the unit of

analysis, 6 studies used a single note,47,48,50,52–54 1 used a set of

many notes from a patient encounter,49 1 used a set of many notes

within a specific hour of consideration,55 and 1 used keywords from

notes.51 To identify infection signs, Horng et al47 and Apostolova

and Velez48 processed individual notes. While Goh et al52 used notes

at each patient consultation instance to identify sepsis patients. For

early detection, 5 studies defined onset time as the earliest time

when definition criteria are met49,50,53–55 and 1 defined sepsis onset

time as ICU ward admission time.52 Studies for early detection used

varying windows with different durations. A window decides how

and where to obtain longitudinal data, and duration is the length of

Table 2. Clinical documentation from electronic health records

Documentation types Author Description Temporal perspective Record latencya Frequency

Chief complaints • Physician
• Nurse
• Specialist

Symptoms or com-

plaints provided by

a patient at start of

care for why they

are seeking care.

Current Seconds to days One per episode

History-and-physical

notes

• Physician
• Nurse

Past medical history,

family history, de-

velopmental history

of present illness,

problems about

present illness, past

medications or

immunizations, al-

lergies, or habits.

Retrospective Immediately One per episode

Progress notes • Physician
• Nurse
• Specialist (eg, re-

spiratory thera-

pist)

Observations of pa-

tient status and care

provided to docu-

ment progress and

response to treat-

ment plans.

For physician, it

includes determining

diagnosis, prescrip-

tions, and labora-

tory orders.

• Retrospective
• Prospective

4–8 h One per shift

Reports Specialist Radiologist results

and cardiology

results.

Retrospective Days One to many per episode

Discharge summary

notes

Health care personnel Episode of care sum-

mary and follow-up

plans.

• Retrospective
• Prospective

At discharge or days

after

One per episode

Discharge summary

letter

Physician Formal required letter

containing follow-

up treatment plans.

• Retrospective
• Prospective

Days to months after

episode

One per episode

Laboratory results Laboratory technician Laboratory test analy-

sis results from pro-

vided samples (eg,

blood, urine, skin,

and device) based

on the physician’s

order.

Retrospective Days One to many per episode

ICD codes • Physician
• Professional ICD

coder
• ICD data aggrega-

tor organization

Diagnosis classifica-

tion for billing.

Retrospective Days to months One per episode

Administrative • Administration Patient information

such as name, age,

gender, address,

contact informa-

tion, and occupa-

tion.

• Retrospective
• Current

Immediately One per episode

aRecord latency is defined as time between measurement/observation and the availability of the results in electronic health records.
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time. As shown in Figure 3, studies can use windows differently,

such as a window with the duration of the whole encounter, a win-

dow with a duration of hours before onset, non-overlapping sliding

windows with a fixed duration until onset, or overlapping sliding

windows with a fixed duration until onset. Culliton et al49 used a 4-,

8-, or 24-h duration window before severe sepsis, and concatenated

all text within a window. Goh et al52 used a 4-, 6-, 12-, 24-, or 48-

h duration window of before sepsis, severe sepsis, or septic shock

onset. Liu et al50 used 10 data points within a 1-h duration window

spanning 2 h before septic shock, and used the most recently entered

note for a data point to predict septic shock. Hammoud et al54

binned data in 15-minute duration non-overlapping sliding windows

to update septic shock predictions every 15 minutes, and used the

last note within the window. Amrollahi et al53 binned data into 1-

h duration non-overlapping sliding windows to provide hourly sep-

sis predictions, and used sentences within a note to capture the se-

mantic meanings. Qin et al55 used 6-h duration overlapping sliding

windows with 6 data points to predict sepsis; a data point was gen-

erated from each hour within the window and all clinical notes

within the hour were concatenated in random-order. Delahanty et

al51 used a 1-, 3-, 6-, 12-, or 24-h duration window after the first

vial sign or laboratory result was documented in the EHR to identify

patients at risk for sepsis, and utilized keywords.

First 2 columns in Table 3 show the type of text and unit of

analysis used. Additional details about variables and specific notes

used are listed in Supplementary Table S3 (the types of notes and us-

age for Liu et al50 was confirmed through personal communications

with Ran Liu on June 2, 2021, for Hammoud et al54 by Ibrahim

Hammoud on May 29, 2021, and for Qin et al55 by Fred Qin on

September 9, 2021. Additionally, the structured variables used in

models for Culliton et al49 were provided through personal commu-

nications with Steve Gallant on June 4, 2021). In Figure 4, single

notes or a set of many notes are preprocessed and represented to ex-

tract features, whereas keywords are used as is. Then structured

data can be added, and the data are used to train ML models.

As shown in Figures 3 and 4 and listed in Tables 1 and 3 and

Supplementary Tables S2 and S3, although all studies are related to

sepsis, there are varying sample sizes, data types, inclusion criteria,

and objectives. This heterogeneity makes it challenging to compare

results for a meta-analysis.

Natural language processing and machine learning

study outcomes
To utilize text in ML, it must be transformed into a representation

understandable by computers. In order to do that, Bag-of-words

(BoW),100 n-gram, term frequency-inverse document frequency (tf-

idf), and paragraph vectors (PV)101 representations can be used.

These representations can be improved using additional NLP techni-

ques, such as stop word removal, lemmatization, and stemming. In

addition, other useful features can be extracted from text using part-

of-speech (POS) tagging, named entity recognition, or Latent Dirich-

let Allocation (LDA) topic modeling.102 In recent years, neural net-

works (NNs) have shown high predictive performance. As a result,

many state-of-the-art results have been achieved using NNs to learn

Figure 2. Overview of data from a patient timeline used to create models. The proximity of events toward a patient’s actual state and the actual documentation

recorded in the electronic health records typically has delays. Green represents patient states as sepsis develops in a patient. Yellow are observations made by

clinicians. Documentation includes ICU vital signsa in pink, narrative notes in blue, and ICD codes in orange. ICU vital signa documentation can be instantaneous,

narrative notes can be written after observations are made, and ICD codes are typically registered after a patient is discharged. PIVC: peripheral intravenous cath-

eter. aVital signs include temperature, pulse, blood pressure, respiratory rate, oxygen saturation, and level of consciousness and awareness.

Figure 3. Different types of windows were used to obtain longitudinal data. Each gray box represents a single window, which can vary in duration (length of time)

depending on the study. One window with the whole encounter means the study used a single window containing data with a duration of the whole encounter

from admittance until discharge. One window before onset signifies data from a window with a duration of time before sepsis, severe sepsis, or septic shock on-

set. Sliding windows are consecutive windows until before sepsis, severe sepsis, or septic shock onset; this includes non-overlapping and overlapping sliding

windows. Non-overlapping sliding windows indicate that data within one window of a fixed duration does not contain data in the next window. In contrast, over-

lapping sliding windows indicate windows of a fixed duration overlap, and data within one window will be partially in the next window.
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Table 3. Text used in studies

Study (year) Free-text document type Unit of analysis Text processing

Horng et al.47 (2017) • ED chief complaints
• Nursing triage assessments

One note Representation:
• Bi-gram
• BoW (15 240-word vocabulary)
• LDA topic modeling (500

topics)

Techniques:
• Convert to lowercase
• Remove rare tokens and punc-

tuation
• Negation

Apostolova and Velez48

(2017)

Nursing notes One note Representation:
• BoW
• CBOW (200 vector size with

window size of 7 ¼ 441-term

vocabulary of antibiotics usage

and rules for negation and spec-

ulations)
• tf-idf
• PV (600 vector size for docu-

ment-level representation)

Techniques:
• Convert to lowercase
• Remove frequent tokens and

non-alphanumeric characters
• Negation

Culliton et al.49 (2017) Clinical notes (mostly progress

notes and history-and-physical

notes)

One patient encounter

¼ many notes

Representation:
• GloVe (300-dimensional vec-

tor) þ summing word vectors

Techniques:
• Concatenated all notes for an

encounter into a single text

block

Delahanty et al.51 (2019) ED chief complaints Keywords Other:
• Keywords extracted by experts

Liu et al.50 (2019) All MIMIC-III clinical notes, such

as but not limited to:
• Nursing notes
• Physician notes

One note Representation:
• BoW (8907 unique term vocab-

ulary and 832 predictive terms)
• GloVe (300-dimensional vector

for each unique term)

Techniques:
• Convert to lowercase
• Remove rare tokens, frequent

tokens, and non-alphanumeric

characters

Amrollahi et al.53 (2020) • Nursing notes
• Physician notes

One note Representation:
• tf-idf (2227 vector size features

¼ 2187 text features þ 40

structured features)
• ClinicalBERT (808 vector size

features ¼ 768 text features þ
40 structured features)

Techniques:
• Remove rare tokens, frequent

tokens, stop words, dates, and

special characters

Hammoud et al.54 (2020) All MIMIC-II notes except dis-

charge summaries, such as but

not limited to:
• Nursing progress notes
• Respiratory therapist progress

notes

One note Representation:
• BoW
• tf-idf

Techniques:
• Remove rare and frequent

tokens

(continued)
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a suitable representation of texts, often known as embeddings.103

Embedding techniques include Global Vectors for Word Representa-

tion (GloVe),104 Word2Vec as a continuous bag-of-words (CBOW)

model or skip-gram model,105 Bidirectional Encoder Representa-

tions from Transformers (BERT),106 and ClinicalBERT.107 The ad-

vantage of using embeddings is that it retains the sequential

information lost in a BoW representation and does feature extrac-

tion automatically.103

Utilized text processing operations are in Table 3. One study used

keyword extraction instead of text processing operations.51 Six stud-

ies used tokenization of words for word-level representation,47–

50,52,54 1 also tried PV for document-level representation,48 and an-

other used the first 40 tokens in a sentence to get sentence-level repre-

sentation and averaged sentence-level representations to provide

document-level representation.53 The most common technique for

improving representation was token removal, such as removing rare

tokens,47,50,52–54 frequent tokens,48,50,53,54 punctuation or special

characters,47,48,50,52,53 and stop words.52,53 The most frequently used

representation was tf-idf,48,52–55 followed by BoW,47,48,50,54

LDA,47,52 GloVe,49,50 ClinicalBERT,53,55 bi-gram,47 CBOW,48 and

PV.48 Three studies created a vocabulary of unique terms using

BoW,50 CBOW,48 and tf-idf.53 Apostolova and Velez48 found that us-

ing structured data was inadequate for identifying infection in nursing

notes, so they used antibiotic usage and word embeddings to create a

labeled dataset of notes with infection, suspected infection, and no in-

fection. Additionally, Horng et al47 and Liu et al50 listed predictive

terms in their models, and Goh et al52 provided a list of categories

used to classify the top 100 terms. Examples of predictive features

Table 3. continued

Study (year) Free-text document type Unit of analysis Text processing

Goh et al.52 (2021) Physician notes:
• Admission notes
• Progress notes
• ICU consultations
• Pharmacy notes
• Allied health notes

One note Representation:
• tf-idf
• LDA topic modeling (100

topics)

Techniques:
• Remove rare tokens, punctua-

tion, and stop words
• Lemmatization
• POS tagging
• Manual classification of topics

into categories

Qin et al.55(2021) • Nursing notes
• Physician notes
• Radiology notes
• Respiratory notes

Many notes Representation:
• tf-idf (1000 vector size ¼ 1000

most common term vocabu-

lary)
• ClinicalBERT (768 vector size

featuresa ¼ either by

concatenating all text first as in-

put or using individual notes as

input and concatenating output

of individual notes)

Techniques:
• Random-order concatenation

of all clinical notes within the

hour of consideration.a

• Named entity recognition

BoW: Bag-of-words; CBOW: Continuous bag-of-words; ClinicalBERT: Clinical Bidirectional Encoder Representations from Transformers; ED: emergency de-

partment; GloVe: Global Vectors for Word Representation; ICU: intensive care unit; LDA: Latent Dirichlet Allocation; POS tagging: Part-of-speech tagging; PV:

paragraph vectors; tf-idf: term frequency-inverse document frequency.
aRepresentation and technique details for Qin et al55 were provided through personal communications (with Fred Qin on September 7, 2021).

Figure 4. The unit of analysis used to train machine learning models for the included studies was either (1) a single note, (2) a set of many notes, or (3) keywords.

In general, text was preprocessed and represented as features interpretable by a computer, then structured data were added, and the data were used to fit ma-

chine learning models.
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are: (1) For sepsis, severe sepsis, or septic shock, Goh et al52 classified

the top 100-topics into 7 categories: clinical condition or diagnosis,

communication between staff, laboratory test order or results, non-

clinical condition updates, social relationship information, symptoms,

and treatments or medication. (2) Liu et al’s50 most predictive NLP

terms for the pre-shock versus non-shock state include “tube,” “crrt,”

“ards,” “vasopressin,” “portable,” “failure,” “shock,” “sepsis,” and

“dl.” (3) Horng et al’s47 most predictive terms or topics for having

an infection in the ED include “cellulitis,” “sore_throat,” “abscess,”

“uti,” “dysuria,” “pneumonia,” “redness_swelling,” “erythema,”

“swelling,” “redness, celluititis, left, leg, swelling, area, rle, arm, lle,

increased, erythema,” “abcess, buttock, area, drainage, axilla, groin,

painful, thigh, left, hx, abcesses, red, boil,” and “cellulitis, abx, pt, iv,

infection, po, keflex, antibiotics, leg, treated, started, yesterday.”

Whereas the least predictive terms or topics for not having an infec-

tion include “motor vehicle crash,” “laceration,” “epistaxis,”

“pancreatitis”, “etoh”(ethanol for drunkenness), “etoh, found, vom-

iting, apparently, drunk, drinking, denies, friends, trauma_neg, tri-

age,” and “watching, tv, sitting, sudden_onset, movie, television,

smoked, couch, pt, pot, 5pm, theater.”

ML methods for detecting sepsis using clinical text included:

ridge regression,49 lasso regression,54 logistic regression,47,48,52 Na-

ı̈ve Bayes (NB),47 support vector machines (SVMs),47,48 K-nearest

neighbors (KNNs),48 random forest (RF),47,52 gradient boosted trees

(GBTs),50–52,55 gated recurrent unit (GRU),50 and long short-term

memory (LSTM).53 Although the methods are listed separately, 2

studies combined different ML methods48,52 (see Supplementary Ta-

ble S4 for details). Ridge and lasso regression are linear regression

methods that constrain the model parameters. A linear regression

model is represented as by ¼ b1xþ b0, where by is the predicted value,

x is the input variable and b1 and b0 are model parameters. Model

parameters are estimated by minimizing
PN

i¼1 yi � byið Þ2, where yi

is the label and N is the number of training samples. In ridge

and lasso regression,
PN

i¼1 yi � byið Þ2 þ k
P2

j¼1 f ðbjÞ is minimized in-

stead, where k is a hyperparameter that trades-off between fitting

the data and model complexity, and f ðzÞ ¼ z2 for ridge regression or

f ðzÞ ¼ jzj for lasso regression. Logistic regression is a classification

method that models P yjxð Þ, which is the probability of a class y

given the feature x. The logistic regression model is defined as

f xð Þ ¼ 1

1þe� b1xþb0ð Þ. NB is a Bayesian network that eases computation

by assuming all input variables are independent given the out-

come.108 SVM is an extension of a support vector classifier that sep-

arates training data points into 2 class regions using a linear decision

boundary and classifies new data points based on which region they

belong to. To accommodate for non-linearity in the data, SVM

enlarges the feature space by applying kernels.109 KNNs assume

similar data points are close together and use similarity measures to

classify new data based on “proximity” to points in the training

data.110 RF and GBT are ensemble models that use a collection of

decision trees to improve the predictive performance of the models.

RF classification takes the majority vote of a collection of trees to re-

duce the decision tree variance.111 GBT trains decision trees sequen-

tially so that each tree trains based on information from previously

trained trees.112,113 To avoid overfitting, each tree is scaled by a

hyperparameter k, often known as the shrinkage parameter or learn-

ing rate that controls the rate the model learns. Recurrent neural

networks (RNNs) are a type of NN with recurrent connections and

assume that the input data have an ordering, for example, words in

a sentence.114–116 RNN can be seen as a feed-forward NN with a

connection from output to input.115 GRU117 and LSTM118 are im-

proved variations of RNN with gating mechanisms to combat the

vanishing gradient problem. The improvements help the models to

better model long-term temporal dependencies. To tune hyperpara-

meters, grid-search and Bayesian optimization were used in the stud-

ies.47,48,50,53,54 The grid-search method iterates exhaustively

through all hyperparameter values within a pre-defined set of values

to find the optimal hyperparameter with respect to a validation set.

In contrast, the Bayesian optimization method makes informed

choices on which values to evaluate using the Bayes formula. The

goal of using Bayesian optimization for hyperparameter tuning is to

minimize the number of values to evaluate.

All studies reported evaluation results for different algorithms

or data types and almost all reported area under the receiver oper-

ating characteristic curve (AUC) values except 1.48 Figure 5 shows

differences in AUC values for infection (Figure 5A), sepsis

(Figure 5B), septic shock (Figure 5C), and severe sepsis

(Figure 5E) when using structured data only, text data only, or a

combination of structured and text data. Studies that compared

their methods for different hours prior to onset are also included

(Figure 5D and F), the lines connecting the points are to visually

separate the methods and do not indicate changing AUC values

over time. This figure compares data type usage and model perfor-

mance within an individual study; it should not be used to compare

AUC values between subfigures and studies because the studies

used different cohorts, sepsis definitions, and hours before onset.

Additionally, sepsis, severe sepsis, and septic shock have different

manifestations.119,120 Table 4 summarizes the best and worst AUC

values for each study; a full table with additional evaluation met-

rics is available in Supplementary Table S4 (number of hours be-

fore onset for Amrollahi et al53 was confirmed through personal

communications with Shamim Nemati on May 27, 2021 and Fate-

meh Amrollahi on June 13, 2021). GBT was the most widely used

ML method,50–52,55 followed by logistic regression,47,48,52

SVMs,47,48 RF,47,52 ridge regression,49 lasso regression,54 NB,47

KNNs,48 GRU,50 and LSTM.53 For hyperparameter tuning, 3 stud-

ies used the grid-search method47,48,54 and 2 used the Bayesian op-

timization method50,53 (hyperparameter tuning was provided by

personal communication with Ran Liu on September 7, 2021 and

Fatemeh Amrollahi on September 7, 2021). Delahanty et al,51

Hammoud et al,54 Goh et al,52 and Qin et al55 compared their al-

gorithm to scoring systems used in clinical practice, such as

SIRS,121 sequential organ failure assessment (SOFA),122 quick

SOFA (qSOFA),123 modified early warning system (MEWS),124 or

a targeted real-time early warning score (TREWScore).78 In addi-

tion, Apostolova and Velez48 evaluated their model on a ground

truth set with 200 nursing notes that were manually reviewed by a

qualified professional, and Goh et al52 compared their model with

the Rhodes et al125 sepsis guidelines used by physicians. Further-

more, Horng et al47 performed additional tests on different patient

cohorts for error analysis. Although results are difficult to compare

directly because of study heterogeneity, most results suggest that

utilizing both structured data and text generally results in better

performance for sepsis identification and early detection.

DISCUSSION

Identification, early detection, prediction, and method

transferability
Nine studies utilized clinical text for sepsis identification, early de-

tection, or prediction. As all identified studies focus on the identifica-

tion or early detection of sepsis within a fixed time frame, this
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Figure 5. Overview of area under the curve (AUC) values for identification or early detection of infection, sepsis, septic shock, and severe sepsis using different

data types (structured data and text, structured data only, and text only).* Each figure contains the study and year, machine learning model,a and natural lan-

guage processing techniqueb. (A) AUC values for infection identification. Horng et al47 2017: SVM (BoW) has 2 AUC values; 0.86 when using chief complaints and

nursing notes and 0.83 when using only chief complaints. (B) AUC values for early sepsis detection. Amrollahi et al53 AUC values are from detecting 4 h before

sepsis onset, and Qin et al55 AUC values are the average from detecting 0 to 6 h before sepsis onset. (C) AUC values for early septic shock detection. Hammoud

et al54 AUC values are from detecting 30.64 h before septic shock onset, and Liu et al50 AUC values are from detecting 6.0 to 7.3 h before septic shock onset. (D)

AUC values for early sepsis, severe sepsis, or septic shock detection and sepsis identification in Goh et al.52 Different symbols separate data types. (E) AUC values

for early septic shock detection for Culliton et al49 using results from the test set. (F) AUC values for early septic shock detection for Culliton et al49 using results

from 3-fold validation. *Disclaimer: AUC values should not be directly compared between studies and different figures for infection, sepsis, severe sepsis, and

septic shock. Additionally, the lines connecting points do not indicate AUC values changing over time (Figure 5D and 5F); lines only separate the different meth-

ods visually. aMachine learning models: dag: dagging (partition data into disjoint subgroups); GBT: gradient boosted trees; GRU: gated recurrent unit; LSTM:

long short-term memory; NB: Naı̈ve Bayes; RF: random forest; SVM: support vector machines. bNatural language processing techniques: BoW: Bag-of-words;

ClinicalBERT: Clinical Bidirectional Encoder Representations from Transformers; ClinicalBERT-m: ClinicalBERT from merging all textual features to get embed-

dings; ClinicalBERT-sf; finetuned ClinicalBERT from concatenating individual embeddings of each textual feature; CM: Amazon Comprehend Medical service for

named entity recognition; GloVe: Global Vectors for Word Representation; LDA: Latent Dirichlet Allocation; tf-idf: term frequency-inverse document frequency.
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indicates much work is still needed before sepsis prediction can use

text from complete patient histories. Studies from this review focus

mainly on the ICU and ED, and the addition of continuous measure-

ments of vital signs for sepsis makes generalizability to the ward

units limited. However, Culliton et al49 was successful in detecting

sepsis early utilizing only the text from EHR clinical notes, which is

a promising approach for all inpatients. Additionally, Horng et al47

showed that their ML model performed on subsets of specific patient

cohorts like pneumonia or urinary tract infection. The different ML

methods and NLP techniques from each study may be applicable for

different retrospective cohort or case–control studies. Though the

studies have varying sepsis definitions, cohorts, ML methods, and

NLP techniques, overall, they show that using clinical text and struc-

tured data can improve sepsis identification and early detection. Un-

structured clinical text predicts sepsis 48–12 h before onset, while

structured data predicts sepsis closer to onset (<12 h before).

Sepsis definition impact
In ML, many studies rely heavily on sepsis definitions and ICD-

codes to identify patient cohort datasets for sepsis studies.9,11,13

Table 4. Study outcome overview of best and worst area under the curve values

Study (year) Hoursa Data typesb Modelsd (NLP)e AUCf

DVLMC Tc

Horng et al.47 (2017) Identify DV- - - CC þ NN RF (BoW) 0.87

DV- - - – NB 0.65

Apostolova and Velez48 (2017) Identify - - - - - NN SVM (BoW þ tf-idf) –

- - - - - NN Logistic regression þ KNN þ SVM (PV) –

Culliton et al.49 (2017) �4 - - - - - CN Ridge regression (GloVe) 0.64

�8 - - - - - CN Ridge regression (GloVe) 0.66

�24 - - - - - CN Ridge regression (GloVe) 0.73

�24g -V- -C CN Ridge regression (GloVe) 0.85

-V- -C – Ridge regression (GloVe) 0.80

Delahanty et al.51 (2019) þ1 -VL- - – GBT 0.93

þ3 -VL- - – GBT 0.95

þ6 -VL- - – GBT 0.96

þ12 -VL- - – GBT 0.97

þ24 -VL- - – GBT 0.97

Liu et al.50 (2019) �7 -VLM- CN GRU (GloVe) 0.92

�7.3 -VLM- CN GBT (BoW) 0.91

�6 -VLM- – GBT 0.85

Amrollahi et al.53 (2020) �4h -VL- - PN þ NN LSTM (ClinicalBERT) 0.84

- - - - - PN þ NN LSTM (ClinicalBERT) 0.74

Hammoud et al.54 (2020) �30.6 DVL- - CN Lasso regression (BoW þ tf-idf) 0.89

Goh et al.52 (2021) Identify DVLM- PN Logistic regression þ RF (LDA) 0.94

DVLM- PN dag þ Logistic regression (LDA) 0.92

�4 DVLM- – Logistic regression þ RF 0.93

DVLM- PN dag þ Logistic regression (LDA) 0.85

�6 DVLM- PN Logistic regression þ RF (LDA) 0.92

DVLM- PN dag þ Logistic regression (LDA) 0.89

�12 DVLM- PN Logistic regression þ RF (LDA) 0.94

DVLM- – Logistic regression þ RF 0.79

�24 DVLM- PN Logistic regression þ RF (LDA) 0.90

DVLM- – Logistic regression þ RF 0.78

�48 DVLM- PN Logistic regression þ RF (LDA) 0.87

DVLM- – Logistic regression þ RF 0.77

Qin et al.55 (2021) �6 to 0i -VL- - CN GBT (ClinicalBERT-sf) 0.89i

-VL- - – GBT (ClinicalBERT-m) 0.86i

aHours: Identify: not detecting hours before or after; –: hours before; þ: hours after an event.
bData types: D: demographics; V: vitals; L: laboratory; M: medications; C: codes; T: text; -‘s position in DVLMC indicates which is not used.
cText data types: CC: chief complaints; CN: various types of clinical notes; NN: nursing notes; PN: physician notes; –: no notes.
dMachine learning models: dag: dagging (partition data into disjoint subgroups); GBT: gradient boosted trees; GRU: gated recurrent unit; KNN: K-nearest

neighbors; LSTM: long short-term memory; NB: Naı̈ve Bayes; RF: random forest; SVM: support vector machines.
eNatural language processing (NLP) techniques: BoW: Bag-of-words; ClinicalBERT: Clinical Bidirectional Encoder Representations from Transformers; Clini-

calBERT-m: ClinicalBERT from merging all textual features to get embeddings; ClinicalBERT-sf: finetuned ClinicalBERT from concatenating individual embed-

dings of each textual feature; GloVe: Global Vectors for Word Representation; LDA: Latent Dirichlet Allocation; PV: paragraph vectors; tf-idf: term frequency-

inverse document frequency.
fArea under the curve (AUC). Apostolova and Velez48 did not provide metrics for AUC.
gCulliton et al49 performed 2 experiments, these results are from using a test set instead of 3-fold validation.
hNumber of hours before onset for Amrollahi et al53 was confirmed through personal communications (with Shamim Nemati on May 27, 2021 and Fatemeh

Amrollahi on June 13, 2021).
iQin et al55 AUC values are an average from 0 to 6 h before sepsis, not the specified hours.

12 Journal of the American Medical Informatics Association, 2021, Vol. 00, No. 0



Among changing sepsis definitions over time are the 2001 Angus

Sepsis ICD-9 abstraction criteria,79 2012 Surviving Sepsis Campaign

Guidelines,126 2016 Sepsis-3 consensus definition,1 and 2017 Rhee’s

modified Sepsis-3 definition.80 Although a consensus sepsis defini-

tion exists,1 not all definition elements will be present in a sepsis pa-

tient because sepsis is a very heterogeneous syndrome127 and the

infection site is difficult to identify correctly.128 Many patients with

sepsis are often misdiagnosed with other diseases such as respiratory

failure129 and pneumonia.129,130 In practice, hospitals also have

varying sepsis coding methods.131–135 As the sepsis definitions

change, studies also tend to use the most current definition in their

study. A recent study that used different sepsis definitions to gener-

ate patient cohorts found significant heterogeneous characteristics

and clinical outcomes between cohorts.136 Similarly, previous work

by Liu et al137 demonstrated that using different infection criteria

resulted in a different number of patients and slightly different out-

comes. Similar to how changes in the definition and varying coding

methods can affect sepsis mortality outcomes,138 the sepsis defini-

tion and codes used in ML studies will likely change the outcome,

results, and reporting methods. Thus, future studies should ac-

knowledge that sepsis is a syndrome and clearly characterize each

sign of sepsis to reflect the heterogeneity in the definition.

Suggestions for future studies
Predicting sepsis earlier than 12 h prior to sepsis onset can reduce

treatment delays and improve patient outcomes.3,4 Because predic-

tions 48–12 h before sepsis onset appear to rely more on clinical text

than structured data, additional NLP techniques should be consid-

ered for future ML studies. Additionally, since the sepsis definition

used will change the cohort, this indicates opportunities to expand

the cohort. Like Apostolova and Velez,48 who determined their co-

hort by finding notes describing the use of antibiotics. It should be

possible to determine cohorts by using notes describing infection

signs (eg, fever, hypotension, or deterioration in mental status), indi-

cators of diseases that sepsis is misdiagnosed with (eg, pulmonary

embolism, adrenal insufficiency, diabetic ketoacidosis, pancreatitis,

anaphylaxis, bowel obstruction, hypovolemia, colitis, or vasculitis),

or medication effect and toxin ingestion, overdose, or with-

drawal.139 NLP methods from infectious diseases known to trigger

sepsis can be incorporated to extract infection signs and symptoms

from the text for determining potential sepsis signs, patient groups,

and risk factors. For instance, many sepsis patients are often admit-

ted with pneumonia, and there are several studies about identifying

pneumonia from radiology reports using NLP.23,140,141 Addition-

ally, heterogeneous sepsis signs or symptoms might be identified by

utilizing NLP features for detecting healthcare-associated infections

risk patterns59 or infectious symptoms.142 Information from other

NLP related reviews about using clinical notes can also be applied,

such as: challenges to consider,16 clinical information extraction

tools and methods,18 methods to overcome the need for annotated

data,22 different embedding techniques,143,144 sources of labeled

corpora,143 transferability of methods,145 and processing and ana-

lyzing symptoms.146 Moreover, heterogeneous or infectious dis-

eases, with overlapping signs and symptoms of other diseases, can

utilize similar sepsis ML and NLP methods to improve detection.

The identified studies did not utilize complete patient history data.

Thus, future research utilizing complete patient history data can

study if sepsis risk can be predicted earlier than 48 h by incorporat-

ing sepsis risk factors, such as comorbidities,7 chronic diseases,147

patient trajectories,148 or prior infection incidents.149

Limitations
This review has several limitations. The narrow scope of including

only studies about utilizing clinical text for sepsis detection or pre-

diction could have missed studies that use other types of text for sep-

sis detection or prediction. For example, search terms did not

include “early warning system,” “feature extraction,” and “topic

modeling.” Additionally, search terms did not include possible sour-

ces of infection for sepsis, such as bloodstream infection, catheter-

associated infection, pneumonia, and postoperative surgical compli-

cations. Further, the sensitivity to detect sepsis in text, structured

data, or the combined data from these will depend on the time-

stamps these data recordings have in the EHR. These timestamps

may vary depending on the data used to inform the study or the dif-

ferent systems implemented at different hospitals. The articles iden-

tified in this review had a homogenous choice of structured data (ie,

demographics, vital signs, and laboratory measurements). Of those,

laboratory test results have the largest time lag, around 1–2 h to ob-

tain the blood test results.150 Thus, the good performance of text to

detect sepsis in these articles are unlikely explained fully by the time

lag between measurement and recording of the structured data. This

review thus shows that it is possible to detect sepsis early using text,

with or without the addition of structured data.

CONCLUSION

Many studies about sepsis detection exist, but very few studies uti-

lize clinical text. Heterogeneous study characteristics made it diffi-

cult to compare results; however, the consensus from most studies

was that combining structured data with clinical text improves iden-

tification and early detection of sepsis. There is a need to utilize the

unstructured text in EHR data to create early detection models for

sepsis. The lack of utilizing the complete patient history in early pre-

diction models for sepsis is an opportunity for future ML and NLP

studies.

FUNDING

Financial support for this study was provided by the Computational

Sepsis Mining and Modelling project through the Norwegian Uni-

versity of Science and Technology Health Strategic Area.

AUTHOR CONTRIBUTIONS

MYY and ØN conceptualized the study and design with substantial

clinical insight from LTG. MYY conducted the literature search and

initial analysis, LTG verified results, and ØN resolved discrepancies.

All authors participated in data analysis and interpretation. MYY

drafted the manuscript, which LTG and ØN critically revised.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.

ACKNOWLEDGMENTS

We thank those from the Gemini Center for Sepsis Research group

for valuable discussions and recommendations related to clinical

databases, missing search terms, and presenting results. Specifically,

Journal of the American Medical Informatics Association, 2021, Vol. 00, No. 0 13

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocab236#supplementary-data


Ms Lise Husby Høvik (RN), Dr Erik Solligård, Dr Jan Kristian
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