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Abstract

This project was a continuation of the term project in TTK4550, and aimed
to implement parts of a Time Sensitive Networking (TSN) stack in the Zephyr
operating system on an NXP FRDM-K64F board, in order to investigate the po-
tential of using Zephyr to set up a sensor board as a TSN talker node. In this
project the main focus was integrating gPTP (generic Precision Time Protocol)
functionality and implementing a Credit Based Shaper (CBS).

gPTP functionality was successfully integrated after dealing with a bug in
Zephyr’s packet socket library in cooperation with the Zephyr developers. CBS
functionality was also implemented along with other improvements to the sen-
sor node application. In its current state, the application is able to supply a
stream of sensor data with associated timestamps, and its performance looks
promising, but there is still work left until a full TSN stack has been realised.

Sammendrag

Dette prosjektet var en fortsettelse av prosjektoppgaven i TTK4550. Målet var
å implementere deler av en Tids-Sensitiv Nettverks-stabel (TSN) i operativsys-
temet Zephyr på en NXP FRDM-K64F utviklingsplattform, for å undersøke poten-
sialet i å bruke Zephyr til å sette opp et sensorkort som en TSN talenode.
Hovedfokuset i dette prosjektet var å integrere gPTP-funksjonalitet (generisk
Presisjons-Tids-Protokoll) og å implementere en kredittbasert trafikkformer (CBS).

Integrering av gPTP-funksjonalitet var vellykket etter at en programvarefeil i
Zephyrs pakkesocketbibliotek ble korrigert i samarbeid med Zephyr-utviklerne.
CBS-funksjonalitet ble også implementert, i tillegg til andre forbedringer på
sensornodeapplikasjonen. Slik applikasjonen ser ut nå, så er den i stand til å
produsere en strøm av sensordata med tilhørende tidsstempel, og den ser ut
til å kunne gi god ytelse, men det er fortsatt en del arbeid igjen før en full
TSN-stabel har blitt realisert.
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1 Introduction

In modern control systems, sensor units in distributed network environments
should be small and cheap while also keeping time accurately to ensure pre-
cise data acquisition. Time Sensitive Networking (TSN) could possibly provide
a solution to this problem, by ensuring a shared timedomain and predictable
transmit delays in such a network using standard Ethernet equipment.

Zephyr, the relatively new real-time operating system for embedded devices,
offers interesting possibilities for the use of sensor boards with limited hard-
ware as nodes in a Time Sensitive Network. To investigate this potential, a TSN
stack should be implemented in Zephyr and its performance should be tested.
In particular, the accuracy of gPTP clock synchronization and the sensor board’s
ability to reliably send data is of interest.
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2 Theory

In this chapter the basic features of TSN and its standards gPTP, AVTP and CBS
will first be presented. Then an introduction to the Zephyr environment will
follow.

2.1 Time Sensitive Networking

This section is partially quoted from the previous project in TTK4550:
Time Sensitive Networking (TSN) is a set of standards that define techni-

cal requirements for networks where low transmission latency, high availability
and high predictability is necessary. TSN is standardized by the IEEE 802.1
work group, which was first formed in 2004 at IEEE-SA (Institute of Electri-
cal and Electronics Engineers Standards Association). The group was originally
working on the AVB standard (Audio Video Bridging) for sending audio and
video data through standard Ethernet switches with high speed and reliability.
This standard was aimed towards professional AV-purposes such as large scale
concerts or TV broadcasts where a precision of 1 µs is required.

However, this proved an effective way of reliably sending time sensitive data
through standard networking equipment, thus in 2012 the scope of the project
was expanded to encompass any kind of data stream, and not just AV-data
specifically. The project was then renamed to TSN, though the term AVB is still
used in the context of AV-streams.

Figure 1: An AVB network [7]



2 Theory 3

Prior to the AVB standard, Audio/Video transmission was usually done with
either complex analog setups or expensive proprietary ones. AVB aims to re-
place this with an open solution using standard Ethernet equipment. [21] As
there is no concept of time in a typical IT network, AVB defines how to make
use of this equipment in a way that is satisfactory to real-time applications. This
is done by precisely synchronizing the clocks in the network, and by introduc-
ing a stream reservation protocol as well as queuing and forwarding rules that
ensure data arrives on time.

2.1.1 AVB - IEEE 802.1BA

This section is quoted from the previous project in TTK4550:
"The AVB standard defined in IEEE 802.1BA [7] describes the basic archi-

tecture of an AVB network, as well as features, protocols and configurations
necessary for the network to be capable of transporting time sensitive data
streams.

An AVB network consists of end stations and bridges. End stations are classi-
fied as talkers and listeners, where a talker is the source of an AVB stream and a
listener is a destination for such a stream. For example a talker can send audio
data from a microphone to be played on speakers by one or several listeners. In
some cases an end station can be both a talker and a listener. A bridge is a relay
device in the network, such as a network switch forwarding AVB streams from
talkers to listeners.

Figure 2: AVB domains in a network with non-compatible nodes [7]
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An AVB domain is defined as a section of a network in which any talker
would be able to send an AVB stream to any listener, meaning that any bridge
between them must be AVB compatible, and that every device in the domain
has consistent priority definitions.

AVB is based on the IEEE 802 standard for network architectures, but with
added functionality on top. This means that AVB devices can communicate nor-
mally with non AVB devices on the same network. The most important ad-
ditions in the AVB architecture include precise clock synchronization through
gPTP, traffic shaping for media streams, admission control through the Stream
Reservation Protocol (SRP) and identification of non AVB devices."

2.1.2 gPTP - IEEE 802.1AS

The first two paragraphs of this section are quoted from the previous project in
TTK4550:

"gPTP (generic Precision Time Protocol) is a protocol included in the TSN
standard that specifies how to synchronize the clocks of the machines in a TSN
network. [8] The protocol is based on, and is a profile of, PTP (Precision Time
Protocol) defined in IEEE 1588, but with additional specifications for keeping
time in a real-time environment. The most important changes are that all com-
munication must be done via link-layer MAC PDUs and that every node in the
gPTP domain must be using gPTP (aka be time-aware). In gPTP even bridges
that are just forwarding packets are required to be time-aware, which is not the
case in PTP.

A single node in the domain is chosen as the grandmaster (GM) through the
Best Master Clock Algorithm. The gPTP domain will then use the GM’s clock to
synchronize all the clocks in the domain. Every talker in the network must be
GM capable in case the GM should drop out of the network. The GM regularly
shares its clock value with the network, and each node adds its propagation
delay (the time it takes for a message from the GM to reach the node) to this
value to get the current synchronized time. These propagation delays are also
regularly recalculated to account for any changes in the network conditions. In
addition to this, the nodes’ clocks are all syntonized (frequency locked) to the
GM clock by calculating the ratio between the local clock frequency and the GM
clock frequency, so that every node operates with the same time base."

When a clock wants to synchronize with the grandmaster clock, it needs to
calculate the offset between itself and the master, noted as õ. This requires two
data points to calculate, because there is also a second unknown in the system,
the transit delay between the nodes noted as d. The synchronization process
starts with the master sending a Sync message containing timestamp T1. The
clock receiving this message notes the time it is received as T ′

1. It then responds
with a Delay_Req message containing timestamp T2. The master responds to this



2 Theory 5

with a Delay_Resp message that contains T ′
2 which is when the master received

T2. These timestamps can express the unknowns in the system like this:

T ′
1 − T1 = õ+ d and T ′

2 − T2 = −õ+ d (1)

Which means the clock offset can be calculated like this:

õ =
1

2
(T ′

1 − T1 − T ′
2 + T2) (2)

Figure 3: PTP synchronization mechanism [18]

2.1.3 Alternatives to AVB and gPTP

Network Time Protocol (NTP) is the most widely used time synchronization
protocol on the internet [13]. NTP is a pure software protocol which works by
regularly sending packets to an NTP server and then calculating the round-trip
time based on the response time. It is not uncommon that an NTP server used
for this purpose is already several layers down the hierarchy from the origi-
nal clock source. NTP can achieve an accuracy of 1 ms, but propagation errors
between servers downwards in the hierarchy make the typical accuracy lower.
Due to the low accuracy this protocol is not particularly suitable for real-time
IoT applications.

PROFINET, short for Process Field Net, is a real-time Ethernet standard main-
tained and supported by Profibus & Profinet International in Germany [17].
PROFINET does many of the same things as TSN, but is more focused on cover-
ing the needs of communication between technical industry equipment rather
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than TSN’s focus on media streams. PROFINET is also designed as a complete
system to be installed at for example a factory as opposed to TSN’s approach of
only supplying the standard and not necessarily an implementation.

Precision Transparent Clock Protocol (PTCP) is a time synchronization pro-
tocol used by the PROFINET standard. Like gPTP this protocol is based on PTP,
differing mostly from gPTP in its use of what it calls transparent clocks. By this
they mean that not every node in the network is synchronized, but only the
end nodes and the master. This is made possible by making bridges compensate
for their internal forwarding delay by editing the timestamps, which allows for
high synchronization accuracy on a network with many hops.

Synchronous Ethernet (SyncE) also known as ITU-T G.8262 is another real-
time Ethernet protocol [20]. In this protocol the clock signal is transmitted in
the physical layer of the network, and the signal is filtered and regenerated
through a phase-locked loop at each node. This can not be done with standard
Ethernet equipment and requires custom hardware. SyncE can achieve a fre-
quency accuracy of ±4 ppm, meaning the clock frequency will be synced to
within 4 parts per million of the source clock frequency. It does not offer offset
correction, meaning that the protocol won’t keep the clock’s periods in sync.
The clock signal in the network should be traceable to a unique external master
clock, but how the signal is distributed is up to the implementation and can be
done through a tree- or mesh-type network as long as the signal reaches every
node and avoids synchronization loops.

2.1.4 AVTP - IEEE 1722

This section is quoted from the previous project in TTK4550:
"AVTP (Audio Video Transport Protocol) defines the transport protocol and

data encapsulations used in time sensitive audio, video and control applica-
tions that make use of the TSN standard. It is designed to take advantage of
the features of TSN, for instance, most AVTP packets contain a gPTP timestamp
represented in nanoseconds called the AVTP Presentation Time, which lets the
listener know exactly when to use the data it receives. For example it can tell
a listener when to start playing audio data, so the audio can be synced across
multiple speakers.

AVTP packets are encapsulated in an Ethernet frame and adds an additional
header of metadata in the protocol data unit (PDU) before the data payload.
There are several different subtypes of AVTP, each with its own defined header
format. In general these subtypes are divided into the continuous stream for-
mats and the discrete control formats. Examples of some common subtypes are
AVTP Audio Format (AAF), Compressed Video Format (CVF) and Clock Refer-
ence Format (CRF). All subtype formats start with a common header that state
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what subtype is in use, followed by either a common stream header or a com-
mon control header with variations for each subtype. [4]

An Ethernet frame (specified in IEEE 802.3) starts with a 14 byte header,
where the first six bytes specify the destination MAC address, the next six the
source MAC address, and the final two the Ethertype in use. This header is
followed by the packet payload, and the frame is ended with a four byte check
sequence. Because of a collision detection feature in the Ethernet standard,
there must be at least 64 bytes (512 bits) between the start of each packet sent
on the network. This has been solved in the standard by defining a packet as
being minimum 64 bytes in size, which results in the data payload being at
least 46 bytes. If the actual payload happens to be less than 46 bytes, it will be
padded with zeroes before it is sent. The maximum payload size in a standard
Ethernet frame is 1500 bytes. [2]

Figure 4: Structure of an Ethernet frame [2]

In the case of AVTP, the Ethernet frame payload consists of an AVTP PDU
(AVTPDU). If the AVTP subtype in use is a stream format, this PDU starts with
a common stream header (See Figure 5). The common stream header starts
with a byte specifying the subtype in use, followed by a byte containing various
flags, most notably the stream_id valid flag and the timestamp valid flag. These
two flags signify whether the stream_id and timestamp fields in the header
contain valid values. The following byte consists of a sequence number that is
incremented by one for each packet in the stream, to let a listener confirm it
has received every packet in order. Next is a byte containing a data field that
the standard lets each format use as needed, and also the timestamp uncertain
flag. This flag is set if a discontinuity occurs in gPTP time, for instance if the
grandmaster node changes. Then follows an 8 byte stream_id field. This ID is
used to identify what data stream a packet belongs to, where the first six bytes
contain the talker’s MAC address and the remaining two bytes is an ID for
the specific stream. After this comes the 4 byte avtp_timestamp, which should
contain the AVTP Presentation Time. Then comes another four bytes of format
specific data fields, followed by two bytes specifying the length of the stream
data payload (in bytes), and finally another two bytes of format specific data
before the data payload itself. In total the common stream header is 24 bytes
long, which makes the stream data payload minimum 22 bytes. If the actual
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payload is less than this it will be padded with zeroes, in which case the listener
can use the stream data length value in the header to tell the data apart from
the padding."

Figure 5: AVTPDU common stream header [4]

2.1.5 CBS - IEEE 802.1Qav

The credit-based shaper (CBS) is an algorithm defined in IEEE 802.1Qav [5], a
standard dealing with forwarding and queuing methods in TSN. CBS is what’s
called a traffic shaping algorithm, meant to distribute high priority network
traffic evenly and predictably onto a network. Operating without this type of
scheduling in a system with multiple priority classes on the same network will
tend to clog up the network with bursts of high priority traffic, making the net-
work availability unpredictable for lower priority traffic. In order to make all
priority classes deterministic, CBS makes high priority tasks build up credit be-
fore they are allowed to transmit data. How quickly this credit is accumulated is
determined by the idle slope which is calculated based on how much bandwidth
the high priority task needs to operate:

idleSlope = portTransmitRate × bandWidthFraction

Here portTransmitRate is the data transmit rate that the network interface is
able to deliver given in bits per second, and bandWidthFraction is the fraction of
this bandwidth that TSN is allowed to use, which can be at most 75%. The credit
value will increase at this rate as long as the task is idle and the current credit
value is negative, or while the task is ready to send but waiting for the network
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interface to be available. While the high priority task is using bandwidth to
transmit data, the credit value shall decrease at a rate determined by the send
slope value:

sendSlope = idleSlope - portTransmitRate

As soon as the credit value is non-negative and the network is available, the
task is allowed to transmit data.

interfering
traffic

Queue
Depth

Credit

Transmitted
Data

0
1

2
3

2
1

0

Time

1

sendSlope

idleS
lope

three AVB packets 
are queued

credit positive, AVB 
packets launched as 
soon as interfering 
traffic is finished credit negative, 3rd 

AVB packet held

credit positve, 3rd 
AVB packet launched

credit positve, 3rd 
AVB packet launched

4th AVB packet 
is queued

0

Figure 6: Credit-based shaper operation [22]

When discussing the performance of a traffic shaper like this, one often in-
vestigates the bandwidth use in what is called the measurement interval, which
is the smallest time interval in which TSN should still use less bandwidth than
the desired bandWidthFraction. This time interval is given by the idle slope, the
maximum interference size and the maximum frame size for the TSN stream. The
maximum interference size is the largest amount of traffic a high priority task
might have to wait for when it is ready to transmit data. For the highest pri-
ority task, the largest interference is a maximum size standard Ethernet frame.
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For the highest priority class in TSN, the maximum frame size for a packet in
the TSN stream is defined to be 75% of the bits that can be transmitted in 125
µs. For 100 Mb/s LAN, this makes the maximum frame size 9368 bits, or 1171
bytes. Using this and the properties of the CBS, the maximum burst size could
then be calculated, which is the amount of bits the task would be able to send
after waiting through a maximum interference, until it runs out of credits. The
measurement interval would then be this burst size multiplied by 100/75. For
the second highest priority task, the largest interference would be the maxi-
mum size Ethernet frame plus the highest priority task’s maximum burst size,
which could then be used to calculate the second highest priority task’s maxi-
mum burst size, and so on.

There are other traffic shaping algorithms defined in the TSN standards.
One of them is the time-aware shaper (TAS) defined in IEEE 802.1Qbv [6].
TAS divides the available network time into repeating cycles of fixed length,
where time slices within these cycles can be assigned to one or more specific
network priority. This way a specific task can have a periodic time slot with
exclusive access to data transmission. This shaper will in most use cases give
shorter delays than CBS, but it is also much more complex to implement.

2.2 Zephyr

This section is quoted from the previous project in TTK4550:
"Zephyr is a lightweight open source real-time operating system designed

for embedded systems, developed by the Linux Foundation and first released
in 2016. Zephyr is marketed towards IoT applications (Internet of Things) and
was quickly adopted by industry giants such as Intel, NXP, Texas Instruments
and Nordic Semiconductor. [34]

Zephyr aims to provide the necessary tools to develop applications for resource-
constrained embedded systems. This includes a small kernel, support for several
communication protocol stacks, and a flexible kernel configuration system that
ensures only needed resources are included at compile-time. The Zephyr kernel
is monolithic, with a single address space, and has support for several schedul-
ing algorithms and both symmetric and asymmetric multiprocessing. [31] The
Zephyr source code is written in C, and its kernel configuration systems are in-
herited from the Linux kernel, but written in Python to make it more portable.
Its build system is based on CMake, which means applications can be built on
Linux, macOS and Windows."

2.2.1 Zephyr’s Build Environment

This section is quoted from the previous project in TTK4550:
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"In order to create an application for Zephyr, the source code must be placed
in an application directory together with necessary configuration files for the
project, and can then be compiled using Zephyr’s own command line tool west.
[25] The simplest Zephyr projects need two of these configuration files, called
CMakeLists.txt and prj.conf. CMakeLists.txt links the application directory with
the build system, providing basic build options such as board-specific config-
urations. In prj.conf, application-specific kernel options are specified, such as
activating the I2C or Ethernet interface, enabling floating point operations, or
setting an IP address. It is very important to remember setting the right options
here, as applications will still compile even if crucial kernel options are not set,
which can lead to undefined behaviour and crashes in run-time."

2.2.2 Zephyr’s Devicetree

This section is quoted from the previous project in TTK4550, but the example
code has been updated to reflect the currently used Zephyr version:

"Accessing hardware interfaces in a Zephyr application is done through Zephyr’s
own devicetree structure. [27] In Linux the devicetree is stored as a binary file
that is parsed in run-time. However, the memory available on many of the em-
bedded devices supported by Zephyr is very limited. In order to save memory
the devicetree is implemented as a C header file abstracted behind a macro API,
so that only the relevant parts of the tree are included when the project is com-
piled.

As long as the devicetree is well defined, it is fairly simple to access the hard-
ware through the devicetree API. For example an I2C interface can be bound to
a device struct like this:

const struct device *i2c_dev;

i2c_dev = device_get_binding(DT_LABEL(DT_NODELABEL(i2c)));

Where DT_NODELABEL( ) returns the node id of a node in the devicetree with
the given nodelabel value, and DT_LABEL( ) returns the label property of the
node with the given node id. [28] This label property is then used in the function
that binds the device."
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Figure 7: Example of a Zephyr devicetree [27]

2.2.3 Zephyr’s Socket Implementation

This section is quoted from the previous project in TTK4550:
"Zephyr contains a partial implementation of the BSD socket API from the

POSIX standard. [26] This means that simple network applications can be im-
plemented very similarly to how they would be implemented on a Linux sys-
tem. The socket implementation is namespaced with a prefix by default to
avoid name conflicts with other Zephyr modules, so bind( ) can be accessed
as zsock_bind( ) and so forth."

2.2.4 Threads

One of Zephyr’s main appeals is its easily configurable multi-threaded envi-
ronment for microcontrollers. Zephyr’s kernel runs a priority-based scheduler
which allows multiple running threads to share the CPU (or CPUs if the plat-
form has multiple cores). The scheduler chooses the highest priority thread
to be the current thread at any time, if there are multiple threads with the
same priority the scheduler chooses the one that has been waiting the longest.



2 Theory 13

There are several options for implementations of the queue of threads ready to
be executed, tailored to different needs and restrictions. For most applications
with only a small amount of threads, the simple unordered list called the dumb
scheduler will be sufficient, but there are more scalable options available such
as the red/black tree queue that can handle thousands of threads. The only limit
to how many threads can be defined in an application is the amount of RAM
available on the system. Being an OS, Zephyr will usually run several threads
in the background in addition to the threads defined by the application. These
threads will spawn automatically based on specifications in the project config-
uration files. For instance if the project is configured to have basic IP function-
ality, Zephyr will spawn threads to set this up at boot, and will run threads in
the background to do things like answer pings in parallel with the application
code. This provides a powerful abstraction for embedded developers, as they
can focus on their application while the kernel takes care of the underlying
functionality.

2.2.5 Semaphores and mutexes

When dealing with multiple threads in an application, Zephyr has the expected
tools to ensure proper handling of information and communication between
threads. Among these tools are semaphores and mutexes, which are imple-
mented as kernel objects in Zephyr, meaning they can’t be accessed directly
by user threads but are available through Zephyr’s APIs. A semaphore may be
given by one thread and taken by another to signal to the thread waiting to
take the semaphore that it may go on with its task. A mutex is typically used to
ensure only one thread may access a shared variable at a time. [19]

2.3 Other RTOS

FreeRTOS is an open source real-time operating system in development since
2003, which was acquired by Amazon in 2017. [3] It is written mainly in C, and
is designed to be small, portable and maintainable. The OS has been ported
to 35 different microcontroller platforms, and contains all the basic features
expected to be found in a RTOS such as threads, mutexes, semaphores and
timers. FreeRTOS is considered to be the most widely deployed RTOS today.
[12] Where it differs from Zephyr the most is that FreeRTOS only supplies
these basic features and not the more advanced OS features such as drivers, file
systems, network stacks etc. This is because FreeRTOS focuses on compactness
and speed, so any additional features must be added from other sources.

VxWorks is a proprietary real-time operating system designed for embedded
systems, with support for Intel, ARM, POWER and RISC-V architectures. [24] It
is based on a simple early RTOS called VRTX (Versatile Real-Time Executive),
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and has been developed and maintained by Wind River Systems since 1987.
VxWorks was among the most popular embedded operating systems for a long
time, as it was among the first to include a networking stack in the 90s. It has
been widely used in several markets, including aerospace, robotics and con-
sumer electronics. Before Zephyr became a Linux Foundation project in 2016,
it was actually being developed by Wind River Systems under the name Rocket
[34]. The main difference between Rocket and VxWorks was that Rocket aimed
to have a much smaller memory footprint, focusing on the growing market of
limited hardware sensor boards and single-function IoT devices.

INTEGRITY is a proprietary real-rime operating system for embedded sys-
tems, developed and maintained by Green Hills Software. [9] One version of
this OS, called INTEGRITY-178 because it adheres to the DO-178B/C aviation
guidelines [10], offers hard real-time, meaning its kernel guarantees bounded
computing times. This has been done by eliminating some of the more unpre-
dictable OS features, such as dynamic memory allocation. INTEGRITY is widely
used in the aviation industry, both in military jets and commercial aircrafts.

Nucleus is a proprietary real-time operating system for embedded systems,
developed by Mentor Graphics under Siemens, first released in 1993. [14] It
quickly became one of the most widely used RTOSs for embedded systems and
stayed among them for several years. Some of its success can be attributed
to early support for networking, graphics and file systems, and also that its
source code was provided on purchase making it easier to debug than many
of its competitors while there still weren’t many open source RTOSs to choose
from. Nucleus has been used in all types of embedded systems, such as medical,
industrial, aerospace and IoT applications.
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3 Proposed Solution

The setup from the previous project in TTK4550 was used and expanded upon
in this project. The overarching goal of these projects was to investigate the
potential of using Zephyr to set up a TSN talker node on a sensor board with
limited hardware capabilities.

The NXP FRDM-K64F development board was chosen as the development
platform for this project because it appears to be well supported in Zephyr, and
is listed as having hardware support for gPTP.

First of all the newest version of Zephyr should be downloaded to investigate
whether it is easier to get gPTP and the gpio interrupt operational, because this
would majorly impact the project. Then other features of the TSN stack should
be implemented (traffic shaping, SRP), and the performance of the talker node
should be tested.

3.1 Testing Setup

For a simple testing setup to investigate basic talker performance, the K64F
should be connected directly to the desktop computer by an Ethernet cable.
With a desktop computer that also supports TSN some basic tests could then be
performed:

1. Running a gPTP daemon on the computer to see if gPTP is able to syn-
chronize the clocks of the device and the computer.

2. Sending sensor data from the talker node, and capture it on the desktop
computer.

3. Observing timestamps of packets to investigate the performance of a traf-
fic shaper.

4. The same tests as above, but stress testing with a network traffic genera-
tor.

At the SINTEF robotics lab, once a TSN stack is set up, the performance of the
device could be investigated further in a distributed network of TSN compatible
devices, and used to control a robotic arm’s end effector.
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4 Method

This chapter starts by listing the hardware and software used in the project.
Then follows a description of what was done in the project and how solutions
were implemented.

4.1 Hardware

4.1.1 NXP FRDM-K64F

The NXP FRDM-K64F is a development board from NXP, featuring a Kinetic
K64F MCU with an ARM Cortex-M4 core. [15] The CPU can run at up to 120
MHz, and has 1 MB of flash memory and 256 kB RAM. It is a low-cost develop-
ment platform with several peripherals and interfaces, including Ethernet and
Arduino compatible extension headers. Zephyr compatibility is under active de-
velopment, making it a good candidate for developing in that environment.

The development kit also came with a FRDM-STBC-AGM01 sensor shield,
featuring a FXAS21002C angular rate gyroscope and a FXOS8700C accelerom-
eter/magnetometer. [16]

4.1.2 Intel I210-T1 Ethernet Adapter

This is a network interface controller from Intel that is compatible with gPTP.
It was mounted in the desktop computer used in the project, and was used for
Ethernet communication with the FRDM-K64F.

Figure 8: NXP FRDM-K64F connected to the computer via Ethernet
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4.2 Software

4.2.1 Wireshark

Wireshark is a network protocol analyzer, used to monitor the network traffic
on a computer’s network interface. In this project Wireshark has been used to
monitor the network traffic between the FRDM-K64F and the desktop computer,
capturing packets sent between them.

4.2.2 Ubuntu

The desktop computer used for application development and network analysis
was running Ubuntu 20.04.2 LTS. [23]

4.2.3 Zephyr

The Zephyr source code was downloaded using West. The version used in this
project was Zephyr 2.5.99. All documentation accessed through Zephyr’s web-
sites was related to v.2.5.99, and was accessed in the period from April 2021 to
August 2021.

4.2.4 West

West is Zephyr’s own multi purpose command line tool, which is used both for
downloading the Zephyr source code and for compiling Zephyr applications.
[33] The newest version at the time, West v0.8.0, was downloaded through
pip, Python’s package installer.

4.2.5 Libavtp

Libavtp is an open source implementation of AVTP developed by Intel, now
hosted by the AVnu Alliance [1], which is an industry organization that pro-
motes AVB/TSN and provides certification of projects that use the standards.
Source code from version 0.1.0 was used in this project, found in the commit
posted on GitHub in September 2020.
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4.3 Method Description and Implementation

4.3.1 Setup from previous project

Here is a summary of what was set up in the previous project, that is also used
in this project:

The Zephyr toolchain was installed on Ubuntu so that projects can be built
using west:

west build -p -b frdm_k64f samples/hello_world/

And then flashed to the NXP FRDM-K64F board connected via USB:

west flash

The board’s output could then be read through a serial terminal using screen
on Linux:

screen /dev/ttyACM0 115200

• Zephyr’s implementation of the BSD socket library was used to set up a
socket in order to send AVTP packets.

• AVTP packets were created via the open source library libavtp, which was
ported to Zephyr as part of the previous project.

• Gyro data from a FRDM-STBC-AGM01 sensor shield mounted on the
FRDM-K64F board was accessed through I2C in order to supply the AVTP
packets with some real data.

• Zephyr’s timer API was used to set up a regular timer interrupt, which
would trigger reading gyro data and sending a packet.

4.3.2 Gpio-interrupt

In the previous project, there was an attempt to set up a hardware interrupt
from the gyroscope each time new data was ready, to use that as a trigger to
read gyro data. However this turned out to be more complicated than expected
at the time, because there was no easy way to access the interrupt pin through
Zephyr’s devicetree. In this project, after getting more familiar with the device-
tree structure, the interrupt pin was manually added as its own node in the
devicetree. In order to do this, these lines were added to
/boards/arm/frdm_k64f/frdm_k64f.dts:
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gpio_keys {

[...]

ptc12_interrupt: interrupt_pin {

label = "MYPTC12LABEL";

gpios = <&gpioc 12 (GPIO_ACTIVE_HIGH | GPIO_PULL_DOWN)>;

};

};

And this line was added to /boards/arm/frdm_k64f/pinmux.c:

pinmux_pin_set(portc, 12, PORT_PCR_MUX(kPORT_MuxAsGpio));

This adds the interrupt pin as an active high gpio input with pull-down, very
similarly to how the user-switches on the board are set up in the devicetree.
With this setup, the interrupt pin could be accessed in the project code, and an
interrupt routine was set up using Zephyr’s callback API:

#define PTC12_LABEL DT_GPIO_LABEL(DT_NODELABEL(ptc12_interrupt),gpios)

#define PTC12_PIN DT_GPIO_PIN(DT_NODELABEL(ptc12_interrupt),gpios)

#define GYRO_INT_FLAGS (GPIO_INPUT|DT_GPIO_FLAGS(DT_NODELABEL(ptc12),gpios))

static struct gpio_callback gyro_cb_data;

void gyro_interrupt(const struct device *dev,

struct gpio_callback *cb, uint32_t pins)

{

k_sem_give(&gyro_data_rdy);

}

const struct device *int_port;

int_port = device_get_binding(PTC12_LABEL);

gpio_pin_configure(int_port, PTC12_PIN, GYRO_INT_FLAGS);

gpio_pin_interrupt_configure(int_port, PTC12_PIN, GPIO_INT_EDGE_TO_ACTIVE);

gpio_init_callback(&gyro_cb_data, gyro_interrupt, BIT(PTC12_PIN));

gpio_add_callback(int_port, &gyro_cb_data);

4.3.3 Integrating gPTP functionality

Since working on the previous project, Zephyr had released a big update, going
from version 2.4 to version 2.5. This update included a lot of different bug fixes,
a few of them related to gPTP. This seems to have affected gPTP performance
on the FRDM_K64F, as gPTP is now able to run in parallel with IP applications
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on the board with no issue, which was not the case in the previous project. This
was verified by running a basic IPv4 application where gPTP functionality was
simply included in the prj.conf file. This then communicated with a gPTP dae-
mon running on the Linux host computer, which was set up following Zephyr’s
guide [30]. The packages being sent between the K64F board and the Linux
host were then observed in Wireshark, and verified to function as expected,
demonstrated in Chapter 5.1

With gPTP being functional, accurate PTP timestamps could then be added
to the packets of gyro data being sent in the main application, following this
workflow:

uint64_t avtptime;

struct net_ptp_time ptp_ts;

bool gm_present;

gptp_event_capture(&ptp_ts, &gm_present);

avtptime=((ptp_ts.second*NSEC_PER_SEC)+ptp_ts.nanosecond)%(1ULL<<32);

avtp_stream_pdu_set(pdu,AVTP_STREAM_FIELD_TIMESTAMP, avtptime);

4.3.4 Debugging Zephyr’s packet socket library

However, when attempting to add gPTP functionality to the main application,
additional difficulties were encountered. It became apparent that it was not
straightforward to make the gPTP library cooperate with the NET_SOCKETS_PACKET
library, which is used in the application to set up a simple packet socket. The
issue was isolated into a test setup where the main file was empty, so only
Zephyr’s background processes were running. With a simple setup that only
initialized IP and gPTP functionality, everything seemed to work as expected
and the system replied to both gPTP and ping requests. Then, simply by adding
the lines below to the prj.conf file, the system would no longer reply to either
type of request:

CONFIG_NET_SOCKETS=y

CONFIG_NET_SOCKETS_PACKET=y

After contacting the Zephyr developers about this on GitHub, it was discov-
ered that while this packet socket module was activated every incoming packet
would be sent to this module, and would never arrive at the module they were
meant for, which explains the observed behaviour. The developers then pro-
vided a branch to work on where Zephyr would look for other L2 network
handlers such as gPTP in the system before dropping a packet.
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This solved the isolated case described above, but when returning to the
main application other issues appeared. After a socket had been created, the
board would stop responding to gPTP and ping requests after a few seconds,
and this error message would be printed for each incoming packet afterwards:

net_conn: pkt cloning failed, pkt <packet pointer> dropped

This means that the board is running out of packet buffers, and increasing
the size of the available buffer only increased the number of seconds it took
until the error occurred, pointing to a probable buffer leak. The buffer leak
was verified by observing the buffer usage in Zephyr’s net shell using the net
mem and net allocs commands, which revealed that as soon as there was an
initialized packet socket present, all incoming packets would stay in the packet
buffer indefinitely. No packets seemed to get dereferenced even though all re-
quests were handled correctly until this buffer was full. The explanation for this
turned out to be that Zephyr would send every incoming packet to this initial-
ized socket, and then copy them to other available network handlers where they
would be handled properly. The packets arriving at the socket would then have
to be handled manually to keep the buffer from overflowing, for instance by
calling the recv( ) function. As of right now, there is no way in Zephyr to create
a "send-only" packet socket or a packet socket that filters out received packets
by protocol, even though protocol is specified when the socket is created. This is
unfortunate, as it should not be necessary for an application to spend process-
ing power and time on clearing a buffer that is not meant to receive anything.
In the project application this issue was dealt with by creating a thread that
would regularly call the recv( ) function in order to keep the rx buffer clean.
The thread was implemented in Zephyr like this:

void buffer_cleaner(void){

char packet_drain[128];

while(1){

zsock_recv(s,packet_drain,128,ZSOCK_MSG_DONTWAIT);

k_sleep(K_MSEC(25));

}

}

K_THREAD_DEFINE(BUFFER_CLEANER,1024,buffer_cleaner,NULL,NULL,NULL,7,0,8000);
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Figure 9: Diagram showing the threads in the application and how they interact

4.3.5 CBS, threading and Zephyr timers

Up until this point, collecting and sending data was triggered by the same inter-
rupt. But with the hardware interrupt from the gyro being available these two
processes could be split up into two threads and handled separately. Now one
thread could wait for the gyro interrupt and collect its data together with an
associated gPTP timestamp, while a different thread would get the responsibil-
ity of sending AVTP packets with gyro data at a regular pace. This pace would
be set by a traffic shaper, which would run in an additional thread of its own.

One of the goals of this project was to implement a Credit Based Shaper
following the definition in IEEE Std. 802.1Qav [5]. This was done by creating
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a thread that increments a credit value based on regular timer interrupts, that
will signal the packet sending thread once the credit value gets high enough.
For such a thread to function, a source for a reliable timer interrupt on the
FRDM-K64F board in Zephyr is required. Zephyr has a few different APIs for
generating timer interrupts, the most relevant ones being timer and counter.
The counter API takes a hardware clock from the devicetree as a clock source,
which is probably the best option for this project, but there aren’t a lot of clocks
available in the devicetree as is. One of the few that’s there is the RTC, but this
clock only gives one tick per second. There are other HW-clocks on the device
that could be added to the devicetree manually, but doing this would require a
lot of knowledge about the NXP timer structure and the Zephyr devicetree struc-
ture, which in a way defeats the purpose of using an environment like Zephyr.
The timer API uses the kernel clock as its clock source. A lot of time was spent
digging through Zephyr’s source code and both NXP and Zephyr documenta-
tion in order to try to figure out how to set what clock to use as the kernel
clock source. NXP microcontrollers have several options for this documented in
their data sheets, but it was not obvious how to apply this information in the
Zephyr environment. In the end the clock_init function was located in soc/ar-
m/nxp_kinetis/k6x/soc.c, where the clock is set to run in PLL Engaged External
(PEE) mode to generate the maximum 120 MHz system clock by default, which
was also the desired clock configuration.

Since data was now written to and read from by different threads, mutexes
were introduced to the project to ensure thread safe data handling. In Zephyr
a mutex can be defined and used like this:

K_MUTEX_DEFINE(data_access);

k_mutex_lock(&data_access,K_FOREVER);

<read or write here>

k_mutex_unlock(&data_access);

Semaphores were also introduced to the project at this point, to commu-
nicate between threads. A semaphore can be created and used in Zephyr like
this:

K_SEM_DEFINE(transmitAllowed,0,1);

//thread 1 waiting for signal from thread 2:

k_sem_take(&transmitAllowed, K_FOREVER);

//thread 2 signalling to thread 1:

k_sem_give(&transmitAllowed);
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5 Results and observations

In this chapter it is shown that gPTP was able to synchronize the clocks of the
K64F board and the desktop computer, and that the application is able to send
real gyro data in AVTP packets. Then the timing performance of the system with
a traffic shaper is observed.

5.1 gPTP packets captured in Wireshark

Figure 10 shows a few gPTP packets captured in Wireshark, and the contents of
an announce message. These announce messages are sent from the GM each
second once a gPTP domain has been established, and contain information
about the current synchronization status.

Also visible in this screenshot are the packets calculating the propagation de-
lay between the K64F and the desktop computer, as described in 2.1.2. Specif-
ically the packet labeled 308 is a Delay Request message from the K64F to the
GM, and 309 is the GM answering this request with a Delay Response message.

Figure 10: Wireshark screenshot of a gPTP Announce Message
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5.2 Plot of gyro data from AVTP packets

Figure 11 shows a plot of raw gyro data extracted from AVTP packets sent from
the K64F board. This demonstrates that the application in its current form is
able to supply a stream of sensor data.
While collecting this data set, the board was first rotated around the x-, y- and
z-axis individually for a few seconds each, then it was rotated around every axis
chaotically before it was placed back on the table.

Figure 11: Plot of gyro data extracted from captured AVTP packets

5.3 Timing performance of traffic shaper

Some tests were run to see how well the implemented traffic shaper was able
to queue packet transmissions at regular intervals. For these tests the goal was
to send an AVTP packet every 250 ms. Below, plots of two different data sets
are presented, created by collecting timestamps of incoming AVTP packets in
Wireshark. After collecting series 1 it was observed that the average interval
between packets was very slightly above 250 ms, so the send slope of the traffic
shaper was made a tiny bit less steep in an attempt to fine-tune the shaper.
Other than this, the code was identical while creating the two data sets. Figures
12 and 14 show the time since the previous AVTP packet arrived for each packet
in these series, which was within ±1 ms of 250 ms for 99.8% of the packets.
Series 1 had a mean value of 250.028 ms and a standard deviation of 0.22 ms,
while series 2 had a mean value of 250.004 ms and a standard deviation of
0.18 ms.
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Figures 13 and 15 show how precisely each packet arrives compared to if
one packet had arrived at exactly every 250 ms. What becomes apparent from
these plots is that in a few short time intervals, bursts of slightly delayed packets
cause the packet arrival times to gradually drift away from the ideal behaviour.

Figure 12: Plot of packet arrival intervals in series 1

Figure 13: Plot of deviation from ideal packet arrival interval over time in series 1
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Figure 14: Plot of packet arrival intervals in series 2

Figure 15: Plot of deviation from ideal packet arrival interval over time in series 2
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It was also attempted to send packets at a 1kHz frequency, to see if the
system would behave the same way at higher frequencies. In this case the mean
interval was 1.008 ms and the standard deviation was 0.104 ms. See Figure 16
for a plot of this data set.

Figure 16: Plot of packet arrival intervals in series 3

mean max min std dev
4 Hz, #1 250.028 ms 251.149 ms 248.946 ms 0.22 ms
4 Hz, #2 250.004 ms 250.979 ms 248.992 ms 0.18 ms
1 kHz 1.008 ms 1.888 ms 0.127 ms 0.104 ms

Table 1: Table showing characteristics of plotted data sets
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6 Discussion

6.1 Observations on the performance of the traffic shaper

The performance of a traffic shaper is usually investigated by observing the
measurement interval, and whether the TSN stream stays below its permitted
bandwidth use within this interval. This involves having a closer look at the
stream’s bandwidth use and potential burst size. In order to send a TSN stream
of 1 kHz with the current frame size of 60 bytes, the needed bandwidth would
be 480 kb/s. This is approximately 0.5% of the available data transmit rate on
the network interface, which is 100 Mb/s, so even if packets were sent at for
instance 4 kHz that would still only take up 2% of the available bandwidth.
With an idleSlope of 2 Mb/s (2% of the bandwidth), the maximum interfer-
ence of the biggest possible Ethernet frame would let the traffic shaper build up
enough credit to send just a single packet, meaning the maximum burst would
be a single packet of 60 bytes. It would then follow that the measurement in-
terval would be the period of the target frequency, because practically what the
measurement interval describes is how big packet bursts are allowed in a TSN
stream. Based on this information, it might seem like the Time Aware Shaper
could be a better fit for low bandwidth streams, since the flexibility of the Credit
Based Shaper might not matter as much for such a stream.

At a few time intervals in the low frequency data sets, specifically around
the 10, 120 and 170 second marks in series 1 and the 60, 150 and 210 second
marks in series 2, there are grouped bursts of delayed packets. As can be seen
in Figures 13 and 15, these bursts cause the packet arrival times to drift by a
few milliseconds. With a credit based traffic shaper some variation in packet
arrival can be expected, but there would be expected to be an equal amount of
late and early packets as the credit system evens out the packet delays. What is
observed instead is a periodic burst-wise increasing delay in packet arrival. This
should not be caused by interfering traffic on the network device, as the traffic
shaper as it is implemented will keep amassing credit based on interrupts from
the kernel timer. It could be that this behaviour is caused by irregularities in the
timer module, in which case it would advised to set up the counter API instead.
Either way it would be interesting to investigate the cause of this behaviour
further.

In Figure 16 the effect of the CBS can be seen clearly, in that delayed packets
are followed by early packets, since the shaper has accumulated credit while
waiting for the delayed packets to be sent. This effect is visible in the plot as
mirrored bands in the upper and lower reaches of the plot. What’s unexpected
about this plot is how big some of the delays of the outliers are, up to almost 0.9
ms. In theory, the maximum interference on the network device should cause
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a delay of around 0.15 ms. It’s possible that gPTP traffic is assigned a higher
priority than the AVTP packets, which could force the application to wait for a
burst of gPTP packets to be sent. Another possible explanation is that the packet
sender thread has to wait for the gyro data mutex before it can load gyro data
into a packet and send it. If this is the case, then it would be a good idea to load
the data into the packet beforehand. This would require some restructuring of
the code, but could be worth it.

6.2 Thoughts on developing in Zephyr

It is clear after working on this project that Zephyr is still a work in progress.
Many features are yet to be implemented or need major reworks to really func-
tion properly. This was most noticeable when dealing with the packet socket
library in this project, which didn’t behave as expected when combined with
other libraries. In the developers’ own words, "the packet socket code is a bit
convoluted and would need an overhaul in order to avoid these weird issues".
Zephyr is under constant development though, and issues like this are being
dealt with all the time. As the developers also mentioned, not very long ago en-
abling the packet socket library meant IP functionality wouldn’t be available at
all. Zephyr already released two big updates this year, v2.5 in February and v2.6
in June, which both added and changed hundreds of features. This is in no way
an unusual development process for free open source software (FOSS), espe-
cially when it supports several different platforms like Zephyr does. So clearly
there are some compromises to be made between the reliability of proprietary
software and the freedom of open source software, with regards to ease of de-
velopment and variety of features supported.

Another issue that often came up was the varying degree of documentation
available for Zephyr’s APIs and features. In particular it is often unclear what
has to be included in an application’s prj.conf file in order for it to function
properly. If this file isn’t configured correctly, the project will still build suc-
cessfully, but the application might crash or behave unexpectedly in run-time,
which leads to a lot of confusion while debugging.

That said, when Zephyr works it’s proven to be an indispensable tool in
developing multi threaded applications for embedded systems. It provides an
incredibly useful abstraction layer for the developer in these kinds of projects,
as long as the individual pieces are cooperating properly.

6.3 Progress towards a full TSN stack

With gPTP functional and running on the board, the packets being sent by the
FRDM K64F are one step closer to being full fledged AVTP packets, meaning
the packet stream is also closer to being a valid TSN stream. The packets now
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contain both real sensor data and a precise timestamp indicating when the data
was collected. This is all the packets really need to contain in order to be useful.
What can still be done in order to make better use of the AVTP format is to send
additional information about the data in the format specific data fields in the
AVTP header. For example, the header could give information about what type
of data the packet contains, or how the data is formatted.

Another significant milestone for this project was having the gpio inter-
rupt operational, which meant the functionality for collecting data and sending
packets could be separated into different threads operating independently. This
is important for several reasons. Measuring the gyro on a gpio interrupt from
the gyro itself means that the timestamp associated with the data is guaranteed
to be as accurate as possible, as opposed to when the data was measured on a
timer interrupt. Keeping the sending of packets separate from the collection of
data enables the application to time the packet sending much more accurately,
making the traffic shaper a lot more effective.

There are still some pieces missing before a full TSN stack has been imple-
mented. The CBS implementation in this project is not a general CBS implemen-
tation, but only implements traffic shaping for this application in particular. It
would also be interesting to implement a Time Aware Shaper to compare the
performance of the two shapers. The stream reservation protocol has not been
implemented either, and will be necessary once the system will be tested in an
actual TSN network.
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7 Conclusion

In this project several steps were made towards implementing a TSN talker
node in Zephyr. gPTP functionality was integrated into the project, allowing
accurate synchronization of clocks in the network and timestamped data. The
gpio interrupt from the gyro was set up, allowing the application to be split
into independent threads. Traffic shaping was introduced to the application by
implementing a credit based shaper. In its current form the application is able
to supply a stream of sensor data with associated gPTP timestamps.

While working on integrating gPTP into the project, a bug was discovered
that made gPTP nonfunctional while Zephyr’s packet socket library was acti-
vated. This was successfully dealt with in cooperation with the Zephyr develop-
ers.

There is still a good amount of work left until a complete TSN stack is
achieved. The CBS implementation in this project only implements traffic shap-
ing functionality for this specific application, and isn’t a general CBS implemen-
tation, which is definitely something that could be of interest. It could also be
of interest to implement a Time Aware Shaper, and compare the performance
of the different traffic shapers. The stream reservation protocol (SRP) has not
been implemented either, and will be necessary once the system is ready to be
tested in an actual network, which does not seem so far away with the progress
that has been made in this project. Overall Zephyr seems like a promising envi-
ronment for developing this kind of real-time embedded application.
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8 Suggestions for future work

Topic 1 Add HW timers to the devicetree to use with Zephyr’s counter API

Topic 2 Complete the Credit Based Shaper implementation

Topic 3 Implement the Time Aware Shaper (TAS)

Topic 4 Implement the Stream Reservation Protocol (SRP)

Topic 5 Utilize the format specific data fields in the AVTP header

Topic 6 Investigate timing performance further

Topic 7 Test a full TSN stack in a distributed network
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Appendix A Source code

Here is a list of the files included in the appendix, and the functions that are
found within them:

- tsn_stream

- CMakeLists.txt

- prj.conf

- src

- main.c
void cbs_timeout(struct k_timer *timer_id)
void gyro_interrupt(const struct device *dev, struct gpio_callback
*cb, uint32_t pins)
static int init_pdu(struct avtp_stream_pdu *pdu)
void packet_sender_thread(void)
void credit_based_shaper(void)
void data_collector_thread(void)
void buffer_cleaner(void)

- avtp.c/h
int avtp_pdu_get(const struct avtp_common_pdu *pdu, enum
avtp_field field, uint32_t *val)
int avtp_pdu_set(struct avtp_common_pdu *pdu, enum avtp_field
field, uint32_t val)

- avtp_stream.c/h
int avtp_stream_pdu_get(const struct avtp_stream_pdu *pdu,
enum avtp_stream_field field, uint64_t *val)
int avtp_stream_pdu_set(struct avtp_stream_pdu *pdu, enum
avtp_stream_field field, uint64_t val)
int avtp_stream_pdu_init(struct avtp_stream_pdu *pdu)

- gyro.c/h
void gyro_init(const struct device *i2c_dev)
void gyro_read(const struct device *i2c_dev, int16_t * g_data)

- util.h
static inline uint32_t get_unaligned_be32(const void *p)
static inline void put_unaligned_be32(uint32_t val, void *p)
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- gptp_test

- CMakeLists.txt

- prj.conf

- src

- main.c
void main(void)
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