Halvor Groven

Developing a Testbed for VANET
Protocols using Drones

Master’s thesis in Communication Technology
Supervisor: Peter Herrmann
Co-supervisor: Ergys Puka

August 2021

2
4
=
P

°
o
C

c
]

'_

©
C
(8]
[0}
9]
C

o
(&)

(V2]

Y
o

2
(%]
—
[}

2
C

o)
C

ke
Bo
:
o

zZ

258
.59
032
£ cc
[=]
c c O
=
©
o
=
5
o
Q
w
°
c
©
o
<)
c
<
o}
'_
c
S
=]
©
€
_
L
=
[
o
=]
(9]
©
[N

c
S
2
(0]
=
c
3
£
£
(o)
(W)
©
C
(1]
2
—_
3
(W)
()]
wv
c
S
2
[0}
£
—
e
£
Y
o
i
Q.
[
[a)]

@ NTNU

Norwegian University of
Science and Technology

Halvor Groven

Developing a Testbed for VANET
Protocols using Drones

Master’s thesis in Communication Technology
Supervisor: Peter Herrmann

Co-supervisor: Ergys Puka

August 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

@ NTNU

Norwegian University of
Science and Technology

Title: Developing a Testbed for VANET Protocols using Drones

Student: Halvor Groven

Problem description:

In vehicular ad hoc networks (VANETS), an essential aspect of protocols to be
implemented and commercialized is rigorous testing. Simulations are often used in
combination with field tests to accurately predict the behavior and performance of
vehicle-to-vehicle (V2V) protocols in real-life scenarios. However, field tests require
a substantial amount of time and resources to realize, to which researchers and
developers may not have access. This calls for further research into ways of improving
the current situation of testing VANET protocols. Uncrewed aerial vehicles (UAVs),
or drones, are remotely controlled, pilot-less vehicles. Compared to landbased vehicles
that would typically be used in field tests, they are relatively cheap. In addition,
drones are highly programmable and automatable and can be maneuvered relatively
easily through open-source software and with little modification, depending on the
drone. In this thesis, we design and implement a testbed that integrates traffic
simulation software with drone automation to investigate the potential for using
drones in field tests of VANET/V2V protocols.

Date approved: 2021-04-01

Supervisor: Peter Herrmann, NTNU

Abstract

The number of vehicles on our roads is increasing every day. This
results in growing challenges related to road congestion and traffic safety,
and novel technology and solutions must be developed to mitigate these
issues. In the future, Intelligent Transportation Systems (ITS) and Ve-
hicular ad hoc networks (VANET) will play a crucial role in overcoming
these challenges, by making traffic more interconnected, unified, informed,
and safe. Due to the unique properties of VANET, like rapidly changing
network topology, high mobility vehicles and high requirements for re-
liability, new and novel communication protocols need to be developed
specifically for this purpose.

These communication protocols need to be rigorously tested before
commercialization, as correct operation may be vital for the safety of
drivers and passengers. Today, the most widespread way of testing such
protocols is through simulated experiments. However, simulations have
their shortcomings, and real-world experiments should be conducted to
obtain the most accurate and reliable results. Furthermore, conducting
real-world experiments with cars can become very resource-demanding,
time-consuming, and expensive. In this thesis, we have explored a novel
approach to address this, by investigating how Uncrewed Aerial Vehicles
(UAV)s can benefit the domain of testing new communication protocols
designed for VANET. In particular, we approach this by designing and
developing a novel testbed for routing- and data dissemination protocols
created for VANET, by combining the traffic simulator SUMO with
UAV technology. Our solution revolves around simulating vehicles on a
computer, and duplicate their behavior in airborne UAVs. From our work,
we conclude that UAVs can be used instead of cars when conducting
real-world testing of VANET protocols, but that it should not be used as
a replacement for real-world tests with real cars. We also identify other
limitations.

The code developed in this thesis, as well as example files and setup
instructions, has been published on GitHub[Gro21].

Sammendrag

Antallet biler i trafikken gker hver dag. Dette resulterer i voksende ut-
fordringer relatert til gkt trafikkbelastning- og sikkerhet, og ny teknologi
og nye lgsninger ma utvikles for & adressere disse utfordringene. I frem-
tiden kommer Intelligente transportsystemer (ITS) og Vehikuleere ad
hoc-nettverk (VANETS) til & spille en avgjgrende rolle i maten vi handte-
rer disse utfordringene pa, ved & muliggjore et trafikkbilde som er mer
sammenkoblet, enhetlig, informert og trygg. P4 grunn av de unike egen-
skapene til VANET, som raskt skiftende nettopologi, kjoretgyer med hgy
mobilitet og hgye krav til palitelighet, ma nye kommunikasjonsprotokoller
utvikles spesielt for dette domene.

Disse kommunikasjonsprotokollene mé testes grundig for kommersiali-
sering, ettersom korrekt oppfersel kan veere avgjorende for sikkerheten til
sjaforer og passasjerer. I dag er den mest utbredte maten a teste slike pro-
tokoller pa gjennom simulerte eksperimenter. Simuleringer har imidlertid
sine mangler, og eksperimenter i den virkelige verden bgr utfgres for &
fa de mest ngyaktige og palitelige resultatene. Videre kan utfgrelse av
virkelige eksperimenter med biler bli sveert ressurskrevende, tidkrevende
og dyrt. I denne oppgaven har vi utforsket en ny tilnserming for a adres-
sere dette, ved 4 undersgke hvilken nytteverdi droner kan gi ved & brukes
i testing av nye kommunikasjonsprotokoller designet for VANET. Mer
spesifikt tilnszermet vi oss dette ved a designe og utvikle en testbed for
ruting- og dataformidlingsprotokoller, ved & kombinere trafikksimulatoren
SUMO med droneteknologi. Lgsningen var gar ut pa a simulere biler pa
en datamaskin, og duplisere oppfgrselen deres til flyvende droner. Fra
arbeidet vart konkluderer vi med at droner kan brukes istedenfor biler
nar vi utfgrer virkelige tester av VANET-protokoller, men at det ikke
burde brukes som en erstatning for virkelige tester med virkelige biler. Vi
identifiserer ogsa andre begrensninger.

Koden som ble utviklet i ssmmenheng med denne masteroppgaven, i
tillegg til eksempelfiler og installasjonsinstruksjoner, har blitt publisert
pa GitHub[Gro21].

Preface

This thesis concludes my Master of Science education in Communica-
tion Technology at the Norwegian University of Science and Technology
(NTNU) in Trondheim, Norway, and was carried out in in the spring of
2021.

I would like to thank my responsible professor and supervisor Peter
Herrmann and my co-supervisor and PhD candidate Ergys Puka at the
Department of Information Security and Communication Technology for
valuable support and guidance during this thesis. I would also like to
thank P&l Sturla Saether, also at the Department of Information Security
and Communication Technology for assisting with equipment. Finally I
would like to express my gratitude to the several drone pilots at Trondheim
Modellflyklubb for guidance and motivating words at Udduvoll Airfield
outside Trondheim.

Contents

List of Figures xi
List of Tables xiii
List of Acronyms XV
1 Introduction 1
1.1 Motivation L 1
1.2 Related Work 3
1.3 Scope 5
1.4 Outline e 6

2 Methodology 7
2.1 The Engineering- and Design cycle 8
2.1.1 Problem Investigation 8

2.1.2 Treatment Design 9

2.1.3 Treatment Validation 11

2.1.4 Treatment Implementation 11

2.1.5 Treatment Evaluation 12

3 Theoretical Background 13
3.1 ITSand VANET o 13
3.1.1 VANET 13

3.1.2 V2V/V2I Communication 14

3.1.3 VANET Testing 14

3.2 Hardware 16
3.2.1 Drone 16

3.2.2 Telemetry Radio, 16

3.2.3 Flight Controller 17

3.3 Software 17
3.3.1 SUMO e 17

3.3.2 metedit. 18

3.3.3 Traffic Control Interface (TraCI) 19

vii

3.3.4 ArduPilot SITL o .. 19

3.4 Drone Control. 19
3.4.1 Ground Control Station (GCS) 20
3.4.2 Micro Air Vehicle Link (MAVLink) 20
3.4.3 DroneKit-Python o000 20
344 GNSS . . 20
3.4.5 Flight Modes 21

3.5 Time Series 22

3.6 Dynamic Time Warp (DTW) 22

3.7 Haversine Formula 23

3.8 Regulations L 24

Implementation 25

4.1 Architecture 25
4.1.1 Overview 25
4.1.2 Detailed Description 27
4.1.3 Imterface L 29

4.2 Diagrams and Data Flow 30
4.2.1 Activity Diagramo Lo 30

4.3 Behavioral Diagrams L oL oL 32
4.3.1 Imitialization oL 32
4.3.2 Execution L o 34

4.4 Choice of Hardware and Software 36
4.4.1 Mobility Simulator oL 0oL 36
4.4.2 UAV Communication Protocol 36
4.4.3 Autopilot 37
444 Drone e 37
4.4.5 Telemetry Radios 37
4.4.6 Guided Flight Mode 38

4.5 Component Requirements L. 38

4.6 Challenges and Trade-offs 39
4.6.1 Network Georeferencing 39
4.6.2 Speed Control 40

4.7 Limitations 42
4.7.1 'Traffic Scenario Complexity 42
4.7.2 Acceleration Control 43
4.7.3 Signal Propagation 43

4.8 Safety 43

4.9 Treatment Validation. L. 44

Experiments: Setup and Execution 47

5.1 Simulated Experiments. 47

5.1.1 Setup

5.1.2 Executiono
5.2 Real world Experiments 0.
5.2.1 Setup
5.2.2 Executiono
6 Results
6.1 Simulated Experiments.
6.1.1 Travel Time
6.1.2 Path Tracing Accuracy
6.1.3 Multi-vehicle Experiments
6.2 Real World Experiments
6.2.1 Travel time
6.2.2 Path Tracing Accuracy
6.2.3 Packet Loss
7 Discussion & Conclusion
7.1 Experimental Results.
7.1.1 Travel Time
7.1.2 Path Tracing Accuracy
7.1.3 Packet Loss
7.1.4 Multiple Vehicles
7.2 RQL . . . e
7.3 RQ2 . . . e
74 RQ3 . .
7.5 SUMMATY e e
7.6 Conclusion
7.7 Future Work
References
Appendices
A collect.py
A.1 collect.py: Simple data collection script
B Multi Vehicle Simulation

C Real World Multi-vehicle Experiment

Testbed Code

D.1 drone.py
D.2 Handler.py
D.3 traci-script.py

59
59
59
63
65
66
66
68
70

71
71
71
72
72
73
74
76
76
7
78
79

81

87
87

89

91

93
93
97

D.4 drones.conf

2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5

6.6

List of Figures

The Design- and Engineering cycle 9
VANET Environment and Architecture 15
QGroundControl 21
Comparison of distance measure between Euclidean distance and DTW 23
Testbed architecture overview L. 26
Descriptive testbed architecture overview 28
Components in the interface L. 31
Activity diagram for simulated and real life tests 33
Sequence diagram of initialization phase during testing 35
Sequence diagram of execution phase L. 36
osmWebWizard and Netedit 40
Acceptance radius for waypoint 42
Route for Scenario 1 L 48
Route for Scenario 2 Lo 49
Setup for simulated tests. L o o 51
Attachment of telemetry radio 53
Setup for real world experiment 53
Snapshot of accelerometer calibration process 54
Battery position after adjustment 55
Equipment used for multi-vehicle experiment 56

Graphs illustrating the speed of simulated vehicle (SV) and UAV in fully

simulated experiments, Scenario 1 61
Graphs illustrating the speed of SV and UAV in fully simulated experi-

ments, Scenario 2 L. 62
Distance measures for Scenario 1 63
Distance measures for Scenario 2 oL 64
Optimal warping paths for Scenario 1 and Scenario 2, in simulated exper-

iments e 64
Snapshot of multi-vehicle experiment with 10 drones 65

Xi

6.7 Graphs illustrating the speed of SV and UAV in real life experiments . .
6.8 Graphs illustrating the speed of the real drone and the simulated drone

in identical scenarios oo
6.9 Distance measures for Scenario 1
6.10 Distance measures for Scenario 2
6.11 Optimal warping paths for Scenario 1 and Scenario 2, in real world

experiments L L. e

B.1 Architecture for multi-vehicles experiment, two drones
B.2 Scenario 3 - Multi Vehicle Simulation

C.1 Real world multi-vehicle traffic scenario
C.2 Equipment used for multi-vehicle experiment
C.3 Architecture for experiment with two drones

3.1

4.1
4.2

5.1
5.2
5.3

6.1
6.2
6.3
6.4

List of Tables

Characteristics of MANETs and VANETs [KHK] 14
Main role of testbed componetso 27
System component requirements oL 39
Software used for simulated testing 49
Software used for real-life testing 56
Hardware used in real-life testing 56
Time spent to complete route, simulated experiments 60
Results from multi-vehicle experiments 65
Time spent to complete route, real world experiments 66
Packet loss statistics oL 70

xiii

List of Acronyms

APIT Application Programming Interface.
DTW Dynamic Time Warp.
FC Flight Controller.

GBC Ground Based Computer.

GCS Ground Control Station.

GNSS Global Navigation Satellite Systems.
GPS Global Positioning System.

GUI Graphical User Interface.

HIL Hardware-in-the-loop.

ITS Intelligent Transportation Systems.

MAVLink Micro Air Vehicle Link.

NTNU Norwegian University of Science and Technology.
OBU On-Board Unit.

RSUs Road-side Units.

RTL Return To Launch.

SITL software in the loop.
SUMO Simulation of Urban MObility.

SV simulated vehicle.

XV

TraCI Traffic Control Interface.

UAYV Uncrewed Aerial Vehicles.

V2I Vehicle-to-infrastructure.
V2V Vehicle-to-vehicle.

VANET Vehicular ad hoc networks.

Introduction

In this chapter we introduce the motivation for this thesis. In addition we define the
research questions and scope of as well as our approach to answer them.

1.1 Motivation

As the demand for transportation and mobility is increasing in major cities, traditional
means of traffic planning and expansion are becoming insufficient for handling the
issues that arise with the number of vehicles increasing every day. Escalating issues
with congestion followed by a higher risk for accidents and emergency scenarios
call for new approaches for tackling continuously growing challenges. Intelligent
transportation systems (ITS) are a necessary supplement to traditional approaches
to mitigate these issues.[SH18][its]

Intelligent Transportation Systems (ITS) describe systems that incorporate
telecommunications, electronics, and information technology to enhance safety and
mobility in transportation. ITS aims to employ real-time data flows between in-
frastructure and vehicles to create a beneficial situation where every part of the
transportation domain is more interconnected, unified, and informed[GMSG12]. In
2012, a report from the European Commission[Dir] listed ITS as the most important
factor for achieving seamless integration between modes of transportation across
Europe, besides the development of infrastructure.

Vehicular ad hoc networks (VANET) is widely perceived as a promising tech-
nology to realize the future of ITS[EZL14]. VANET facilitates data exchange be-
tween vehicles, either directly through Vehicle-to-vehicle (V2V) communication
or indirectly through roadside infrastructure with Vehicle-to-infrastructure (V2I)
communication[LCQ*18]. The goals of VANET closely resemble that of ITS in that
it aims to provide enhanced safety and comfort for passengers and increase traffic
efficiency. When wide adoption of VANET technology becomes the norm, vehicles
and passengers will have more information about the traffic environment which can

2 1. INTRODUCTION

be crucial for making the correct decisions at the right time. VANETSs have unique
characteristics that spark new challenges. Most notable are the mobility patterns of
vehicles as well as a network topology that changes rapidly[CJPZ14]. Due to these
characteristics, designing and developing communication protocols for routing and
data dissemination in VANETS is challenging.

New applications and technology designed and created for VANET needs to
be rigorously tested before being implemented in the real world. One reason that
testing technology related to VANET-applications is crucial is that ensuring correct
operation of the underlying technology can be vital for drivers and passengers. If
applications receive any data that is too late or erroneous, vehicle behavior that
may put passengers in danger or even cause accidents may be triggered[WSGY19].
Examples of this include wrongful broadcasting of road conditions to surrounding
vehicles, or a safety application that is falsely triggered in a vehicle.

Today, a widespread method of evaluating communication protcols designed
for VANET is through simulated experiments. For simulating a realistic VANET
scenario, mainly two components are needed: A traffic simulator and a network
simulator. Respectively, these are used to simulate vehicle and driver behavior, and
network behavior, including signal propagation and protocol stack[BMM13a]. There
are several challenges related to this way of testing and evaluating the performance
of VANET protocols. Creating realistic simulations to model real world scenarios can
quickly become very complex when including different aspects of VANET, like signal
propagation- and reflection, network protocol stacks, and vehicle mobility[RGFW15].
Simulations are only as good as the underlying mathematical models used for each
simulation layer. Thus, even though both network- and mobility simulators have
grown more accurate over the years, the goal of perfectly reflecting every aspect of
real scenarios is very difficult.

A real-life field experiment should be conducted to obtain the most valuable and ac-
curate results when assessing VANET protocols or applications. However, as pointed
out by many authors, deploying and testing VANET applications and protocols in
real-life experiments are both resource-demanding and expensive WNF21|[CSAZ09]
[WCCT07] [BMM13a][ZHC'10][MSS17]. Renting a location suitable for testing as
well as buying or renting vehicles quickly become very expensive. In addition, ob-
taining, preparing, and installing On-Board Unit (OBU)s, the hardware and software
installed into each vehicle to handle the V2V/V2I communication, can be demanding
in terms of resources and time consumption. These resources may not be available
to researchers and developers designing novel technology for VANET purposes. As a
result, even though simulated tests are not flawless, they are a necessary substitute
to assess the performance of new VANET applications and communication protocols.
This thesis aims to combat this issue by investigating a new approach for executing

1.2. RELATED WORK 3

field experiments of VANET protocols, aiming to reduce the costs and resource
demand involved, using Uncrewed Aerial Vehicles (UAV)s.

UAVs, or drones, are aircrafts that do not have an onboard pilot but can be
controlled either manually with a controller or with different levels of automation
through software. Initially used for military purposes, drones have entered the
consumer market in later years and are now used for multiple applications like aerial
photography, express delivery, and traffic monitoring[WFZ*16]. Other applications
include area mapping, precision agriculture, and search and rescue. In this thesis
we will focus on a specific class of drones, namely multi-copter drones[mul]. We
argue that this drone type, have interesting abilities that may make them suitable for
imitating the movement patterns of cars. For instance, multi-copter drones have the
ability to stay stationary in the air while hovering and making rapid changes to their
direction of flight. In addition, several drones either come with or can be equipped
with sensors for automation purposes, like cameras, systems for localization, and
communication equipment[WCC*07].

There is a call for more research into ways of reducing costs and resource demand
relation to field tests of VANET protocols and applications. In thesis we investigate
the possibility of utilizing drones as a replacement of vehicles in field test by designing
a testbed in which vehicle mobility is simulated in a traffic simulator, but also
duplicated by drones in the real world. We aim to get insight into whether using
drones as a replacement for vehicles for VANET-testing purposes can be a feasible
option to facilitate cheaper, accurate, and rapid testing of VANET-protocols.

1.2 Related Work

There are several examples of initiatives and consortiums that work to accelerate
the adoption of ITS and VANET technology. One of them is C-Roads', a European
initiative that conducts testing and implementation of I'TS services in several countries
in Europe, aiming to accelerate the implementation of ITS systems in our society.
Another example is Virginia Smart Road, which is a state-of-the art, closed test-bed
facility, and is one of the worlds most advanced test facilities for transportation
research[Vir][Han18]. Launched in 2017, the Virginia Smart Road consist of more
than eight kilometers of roadbed that can be used to conduct experiments for a
vast variety of scenarios. Both of these initiatives are state sponsored, having large
financial forces behind them.

We found that most testbeds developed for VANET purposes are designed as
fully simulated testbeds. However, we found some testbeds that were created to
integrate real world aspects with simulated aspects.

Thttps://www.c-roads.eu/platform.html

4 1. INTRODUCTION

in [SVB18], the authors presented a Hardware-in-the-loop (HIL) testbed for co-
operative applications related to V2V /V2I communication. The solution revolves
around assigning real-life communication hardware to simulated vehicles and control-
ling their interactions with a developed software called an orchestrator. This enables
not only testing of applications, but also real hardware used for communication. The
downside is that the traffic environment is fully simulated.

In [BSK 18], the authors proposed an approach to couple real-time HIL-components
used in VANET with simulated vehicles. It aims to bridge the world between discrete
simulations and real-time systems from the real world. To do this, they created an
interface be called the Ego Vehicle Interface (EVI). Even though this approach does
not directly deal with testing communication protocols in VANET, it revolves around
connecting discrete vehicle simulation with real world hardware, which is what we
will do in this thesis. However, in this proposed approach, vehicle mobility is also
fully simulated.

As mentioned, most of the testbeds we found for VANET purposes was fully
simulated testbeds, combining different types of simulators to include several aspects
related to VANET. In [CMM™16], the authors combined the traffic simulator VISSIM
and the network simulator NS-3 to create a integrated simulation environment for
V2V /V2I communication. The authors in [KKK™14], developed V2XREF (V2X
runtime emulation framework), a framework designed for simulated V2V /V2I testing.
They altered the models for network simulation to fit the specifications of VANET.
Finally [ALJN19] designed and developed a simulation framework to test different
aspects of cooperative intelligent transportation systems. However, it mainly aimed
to test platooning, i.e., to have a group of cars drive themselves simultaneously, by
cooperating.

[WNF21] present a comprehensive review of several widespread simulation tools
that can be used for evaluating novel technologies and communication protocols
designed for VANET. The authors point out that with emerging technologies such as
5G, SDN and edge computing, there has been a new wave of research conducted on
VANET and surrounding technologies to enable the future of autonomous vehicles.
However, they also point out that many of these simulators designed for VANET
purposes are outdated and lack the capability of modeling several aspects of real
world scenarios.

From our literature review, we found limited research into new ways of testing
communication protocols designed for VANET in a real world environment with
real moving vehicles, at a lower cost. However one approach have been proposed
by the authors in [BMM13b]. Their approach involves swapping standard VANET
communication terminals with smart phones, acting as VANET nodes. The solution

1.3. SCOPE 5

involves a central server which relays messages between these VANET-nodes, utilizing
already existing cellular infrastructure. The downside of this is that no direct V2V
communication is performed, and real cars are still needed to perform tests. This
idea was not implemented but the authors listed it for future work. The idea of using
smart phones as VANET terminals is somewhat adapted in this thesis.

We also found limited research surrounding the utilization of drones in relation
to VANET. However, it is not unheard of. For instance, in [WFZ*16], the authors
devised a infrastructure-less, UAV assisted VANET system called VDNet in which
vehicles are equipped with on-board drones that assist the dissemination of data in
the V2V network. The solution showed promising results in relation to end-to-end
delay and message delivery. The authors utilized quad-copter drones in their solution.
Although we will used drones in a different way than here, this shows that UAVs
already have some usecase in relation to VANET.

We identify that there is a lack of research into ways of performing assessment
of communication protocols designed for VANET in a real world environment, at a
lower cost. We see it as an open challenge to design a testbed that simultaneously
lowers costs, resource consumption and time consumption, while also being available
and easy to use.

1.3 Scope

We first present the research question that will guide the work of this thesis. Then,
we define the our scope.

RQ1: How can assessment of VANET protocols benefit from replacing vehicles
with UAVs?

RQ2: How can mobility simulators be used to project vehicle trajectories in
the real world using UAVs?

RQ3: How can drones be integrated with simulation software to create a testbed
for routing- and data dissemination protocols in VANET?

To emphasize, the overall goal of this thesis is to utilize software for traffic
simulation combined with platforms and software communicating with UAVs to
investigate the potential for using drones in testing of VANET protocols. In particular,
we approach this by designing and implementing a testbed for VANET protocols,
aimed towards researchers and developers designing novel data dissemination schemes
and routing protocols in need of a relatively low-cost solution. We limit the scope of
the testbed to support data dissemination- and routing protocols. Reactive protocols,
meaning protocols that influence the vehicle- or driver behavior, is not supported
by the testbed. This is because of the large layers of complexity added if including

6 1. INTRODUCTION

this category of protocols. For the same reason, the testbed is intended for protocols
designed for V2V communication only. Still, we argue that we can obtain good
results and present a valuable discussion revolving the research questions.

1.4 Outline

The structure of this master thesis is as follows:

— Chapter 2: A description of the methodology used.
— Chapter 3: Background theory on related concepts, tools and hardware.

— Chapter 4: Overview and detailed architecture description of the implemented
testbed.

— Chapter 5: Description of experimental setup and how experiments were
executed.

— Chapter 6: Presentation of the the data collected from the experiments.

— Chapter 7: Discussion. Results are discussed in light of the research questions
and answers to them are presented.

Methodology

To be able to conduct research in a manner that is fruitful, it is important to provide
a baseline as to why the research is being conducted, how it was conducted, and to
what extent the end results coincide with the reason the research was conducted.
Even though this is an oversimplification of a research method, it describes the overall
idea of utilizing predefined methods when conducting research in any field. A main
goal for any scientific research is to obtain new knowledge about the area of interest.
This applies to every field where research is conducted, although the ways of getting
there may vary based on the domain in which the research is conducted.

Research methodology is a systematic way to solve a problem. It is a science of
studying how research is to be carried out. Essentially, the procedures by which
researchers go about their work of describing, explaining and predicting phenomena
are called research methodology. It is also defined as the study of methods by which
knowledge is gained. Its aim is to give the work plan of research[RPV06].

Research methodologies aim to act as a framework to conduct research that is
useful in some way, by helping the researcher ask the right questions before and while
going through the research. There exist several methodologies and frameworks for
this. In this thesis we have been taking use of the Design Science methodology[Wiel4]
in order to guide us during the course of the project.

Even though design science share similarities with the scientific method, design
science is adapted to support fields like computer science, where a solution to problem
may revolve designing and creating software or hardware to solve it. While natural
sciences often aim to understand the world around us without changing it, areas like
communication technology and computer science often involve addressing challenges
by designing and implementing software applications or hardware appliances. Using
the scientific method in such scenarios does not seem like a good fit because the
premise of the research is fundamentally different. As the nature of this thesis

7

8 2. METHODOLOGY

involves a change in the real world by designing a and implementing a testbed to
answer the presented research questions, it seems to be a better fit to utilize design
science.

In the following sections, the engineering- and design cycle will be presented.
How this approach was executed in relation to this thesis and testing will also be
described. The theory behind this methodology is drawn from [Wiel4].

2.1 The Engineering- and Design cycle

A design science project aims to first identify a problem, design a solution and then
investigate how the solution can contribute to solving the identified problem[Wiel4].
We define such a solution as a conjunction between an artifact and treatment. A
treatment is the appliance of a created artifact to a given problem context. In the
case of this thesis, the problem context is assessment of VANET protocols. The
created artifact is a testbed that when applied to this context, aim to provide a
treatment addressing the challenge of expensive and resource demanding field tests.

The design cycle mainly deals with problem investigation, design of a treatment,
and validating the treatment. The process of validating a treatment involves predict-
ing how the artifact would behave in its given context. In this thesis, this prediction
is made through conducting simulated experiments of the testbed. To include the
aspect of evaluation for the treatment in the real world, some additional steps are
needed, namely implementation and evaluation. The engineering cycle is a larger
cycle, which encompasses the steps of the design cycle, as well as these additional
steps for evaluating the treatment. Presented in the next sections are descriptions
of the steps in the engineering cycle and how they were performed in relation to
this thesis. The illustration in Figure 2.1, taken from [Wiel4] shows the steps of the
design- and engineering cycles.

2.1.1 Problem Investigation

The problem investigation is the initial phase of any design science project and aims
to identify a problem to be addressed in a certain context, without having designed
any artifact or outlined requirements. This phase demands collecting information
from the real world in order to substantiate the motivation for the treatment to
be designed. In this thesis the problem investigation was done by first studying
already published literature on the general domain of ITS and VANET. Then, we
conducted a limited literature review on the topic of testing communication protocols
for VANET, and identified the main challenges. The result of this process is presented
in chapter 1.

2.1. THE ENGINEERING- AND DESIGN CYCLE 9

Implementation evaluation /

Treatment implementation Problem investigation

. Stakeholders? Goals?

. Conceptual problem framework?

B Phenomena? Causes, mechanisms, reasons?
. Effects? Contribution to Goals?

Treatment validation Treatment design

. Artifact X Context produces Effects? . Specify requirements!

. Trade-offs for different artifacts? . Requirements contribute to Goals?
- Sensitivity for different contexts? . Available treatments?

. Effects satisfy Requirements? . Design new ones!

Figure 2.1: The design- and engineering cycle [Wiel4]

We found that the amount of research around the general field of VANET is
large and easily accessible. This also applies to the domain of testing protocols and
applications for VANET protocols. However, we did not find many studies focusing
on alternative ways to perform field tests. Therefore, we argue that the work done in
this thesis is of a novel nature.

2.1.2 Treatment Design

A treatment in the context of design science is another, more precise formulation
of a solution[Wiel4]. The word ¢reatment implies that there exists a problem that
needs some form of solution. To successfully design an artifact that can be applied
as a treatment to a problem, design science calls for specification of requirements.

List of Requirements

We define non-functional requirements for our testbed. When defining these require-
ments we take into account the properties of VANETSs, UAVs, and the important
aspects of cost- and resource reduction as identified in the problem investigation.

Firstly, VANETSs may have a large number of vehicles connected at the same time.
Thus, a testbed for VANET purposes needs to designed with scalability in mind,
supporting a varying number of vehicles. In addition, we argue that an adaptable
solution that supports different hardware and software for V2V communication is
beneficial. With this, developers and researchers may implement their protocol in
a way that they see fit. Even though there are few contenders with regards to the
communication technology that will be adapted for V2V communication in the future,
researchers may want to implement their protocol on other platforms for testing
purposes. For simulated testing for instance, developers and researchers often need
to implement their protocol specifically for the simulator that is used. Finally, since

10 2. METHODOLOGY

there are airborne UAVs involved in the proposed testbed, an important requirement
is with regards to safety, that the solution is safe for people and property both
involved and not involved in the testing.

On the basis of this we define a list nonfunctional requirements for the testbed:

— REQ1: The testbed must be scalable to varying number of vehicles.

— REQ2: The testbed should be adaptable to support protocol implementation
on different types of hardware and software.

— REQ3: The testbed should be flexible in a way that facilitates further extension
in the future to support aspects of VANET that were not included.

— REQ4: The testbed should be safe for people and property involved in the test
as well as anyone not involved with testing.

— REQ5: The behavior of the testbed must be correct and predictable to avoid
unwanted incidents.

— REQG6: The testbed should be relatively cheap and facilitate rapid setup and
execution.

A testbed using real UAVs as well as simulated vehicles was designed based in
these requirements. A detailed description of the design is presented in chapter 4.
The design involves simulating vehicles in software, and duplicating their movement
patterns in airborne UAVs in the real world. The testbed does not directly concern
the communication done by the protocol under test, as hardware and software
implementing the protocol should be attached to the drones.

To design the testbed, several aspects had to be addressed. First, we investigated
different traffic simulators to be used for simulating vehicles. We ended up using
SUMO [LBBW™18|, a well established discrete, time driven mobility simulator.
SUMO also supports an Application Programming Interface (API) for interacting
with simulations, called TraCI, which was used to obtain information about the
simulated vehicles.

We also had to choose which autopilot platform to install and utilize on the
drones. The choice of autopilot affects the aerial behavior of the drone as well as
capabilities and limitations. We ended up using ArduPilot as our autopilot of choice
as it provides needed capabilities for our UAVs as well as relatively well documented
Python-libraries for interacting with them.

2.1. THE ENGINEERING- AND DESIGN CYCLE 11

Investigation into how to communicate with the drones while airborne was also
conducted. We quickly realized that communication over telemetry, or radio, was the
the only feasible option. A telemetry radio can be directly attached to our drones,
and provide the needed range. Additionally, the Python-library used for interacting
with the drones, DroneKit-py, supports telemetry link connections right out of the
box. We ended up using 455Mhz telemetry radios for communication with the drones
over the widely adopted MAVLink protocol.

Putting it all together, we designed a functional testbed capable of duplicating
the movement of simulated vehicles in drones flying in the real world.

2.1.3 Treatment Validation

In the treatment validation phase, the goal is to be able to justify that the designed
artifact will be able to treat the problem derived from the problem description[Wiel4].
We use simulations as our validation model[Wiel4].

To validate the performance of the testbed related to the requirements, a prototype
was developed and tested through simulations. The setup and execution of the
experiments are described in Chapter 5. The performance of the testbed is measured
by looking at to what degree the requirements are fulfilled, and how well the drones
were able to duplicate the behavior of simulated vehicles.

The actual treatment validation is presented in section 4.9. We iterate the
requirements specified in section 2.1.2 and present our perspective on how the
implemented testbed fulfill them. Out of specific approaches used in the validation
we want to highlight Dynamic Time Warp (DTW), used to calculate the similarity
between the trajectories of the simulated vehicles and the real life drones. DTW is
presented in section 3.6. The results from the simulated experiments used as part
of the validation are presented in chapter 6. The prototype was built using the the
programming language Python 3.6.

2.1.4 Treatment Implementation

In design science terms, the implementation revolves transferring the the treatment
to the original problem context[Wiel4]. In this case the problem context is using
drones for protocol testing in VANET.

Due to time constraints, we did not conduct a full treatment implementation of
the testbed. In other words, we only conducted real life experiments to assess the
performance of our testbed and not a routing- and data dissemination protocol for
VANET. We did this by testing the same scenarios as in the simulated tests, but
with real drones instead of simulated ones.

12 2. METHODOLOGY

To be able to test a routing- or data dissemination protocol, we would have needed
hardware on which a a protocol was implemented, and attached it to our drones. We
were not able to obtain this. However, as will be explained in chapter 4, the step of
attaching hardware that runs such a protocol is not a part of the implementation of
the testbed itself, and we argue that this step is not crucial for evaluating performance
in relation to the problem context.

The results gathered from the real world experiments are used to evaluate the
performance of the testbed in real life scenarios. How these experiments were
conducted and their results is presented in chapter 5 and chapter 6 respectively.

2.1.5 Treatment Evaluation

The treatment evaluation phase involves investigating how the implemented solution
interact with the real-world problem context[Wiel4].

After the implementation phase, we analyze the data gathered from the real
world experiment and compare it to the simulated experiments done in the treatment
validation phase. The evaluation step is integrated as a part of the discussion, in
chapter 7. Here, we view the results in light of the problem context. In other words,
we use these results to evaluate how we believe the testbed will perform in real life
scenarios for testing VANET protocols. We also use these results to answer our
research questions defined in section 1.3.

Theoretical Background

This chapter aims to provide some background on different aspects related to this
thesis. First, some more background on ITS, VANET and VANET-testing is provided.
Then, we describe the hardware and software used in the development of the testbed,
as well as some theory in relation to our methods used for data analysis.

3.1 ITS and VANET

3.1.1 VANET

An ad hoc network in general terms is made up of equal nodes communicating with
each other in a decentralized manner. MANETS describe ad hoc networks where the
nodes are mobile and communicate over wireless links. Characteristics of MANETS
include dynamic network topology, higher loss rates than wired ad hoc networks, as
well as the need for energy reservation due to nodes often running on batteries or
other exhaustible energy supplies. [Sto02]

VANETs are a special category of MANETS. Instead of mobile phones, tablets
or laptops, vehicles make up the nodes in the network. Even though VANETSs and
MANETS have some similar characteristics, there are some important differences. A
summary of these differences are listed in Table 3.1, adapted from [KHK].

Due to these, and other notable differences between the two technologies, they
also have different challenges and issues that need to be addressed. For instance, due
to limited energy supply, a prominent challenge in MANETS is energy conservation
of nodes [JJ11]. This issue is not as prominent in VANET as the energy supply is
not limited to a battery or another exhaustible energy resource. Another example
is the different characteristics of network topology in MANET and VANET. As
the topology in VANETS changes more frequently and more rapidly compared to
traditional MANETS, other challenges related to routing and data dissemination
arise.[SA14]

13

14 3. THEORETICAL BACKGROUND

Table 3.1 Characteristics of MANETs and VANETs [KHK]

Category MANET VANET

Mobility Low(Walking speed) High (Up to 200km/h)

Production cost Cheap Expensive

Change of network topol- || Slow Fast and frequent

ogy

Node life-span Dependent of power re- | Not dependent on power
source resource

Reliability Medium Very high

Node movement pattern Random Systematic

Since the difference in characteristics between MANETs and VANETs are not
considered in protocols designed for traditional MANETS, they cannot be directly
applied to the VANET domain[KHK]. Consequently, new protocols and applications
need to be designed and developed specifically for VANET. Figure 3.1, taken from
[SMR*19], illustrates the VANET environment, including the two different types of
communication.

3.1.2 V2V/V2I Communication

Two types of communication are defined in VANET networks; Vehicle-to-vehicle
(V2V) and Vehicle-to-infrastructure (V2I)[MBOH14]. V2V communication describes
direct, inter-vehicle communication in an ad-hoc way, through single- or multi-hop
manner. V2V communication enables vehicles to directly exchange important data
like traffic conditions and emergency messages among themselves without the need
for any network infrastructure. V2I communication, on the other hand, describes the
communication between vehicles and the roadside infrastructure. With this, vehicles
can avail of the the already existing infrastructure to exchange messages with other
vehicles over longer distances. V2I communication also facilitate connection to the
internet. An On-Board Unit (OBU) is the name of the equipment that is installed in
every vehicle and performs the actual VANET communication. The infrastructure
nodes, usually fixed along the road are called Road-side Units (RSUs)[Ak12]. OBU
especially, will be frequently referred to in the rest of this thesis.

3.1.3 VANET Testing

As mentioned in section 1.1 There are mainly two methods of assessing performance
of applications and protocols developed for VANET, namely simulated experiments
and field tests[LLZ%15]. To execute simulated experiments, two core modules are
required, a traffic mobility simulator and a network simulator. The mobility simulator
deals with realistic simulation of vehicle mobility. One of the more notable traffic

3.1. ITS AND VANET 15

Figure 3.1: VANET Environment and Architecture[SMR*19].

simulators is Eclipse SUMO[LBBW*18]. In addition, to incorporate realistic signal
propagation and network behavior, a network simulator is needed. In this domain,
notable mentions are OMNet++[Var10], ns-2[ns2] and NS-3[ns3]. Combining these
two types of simulators constitutes the main method of assessing VANET applications
through a fully simulated environment.

Even though simulators over the years have become more and more realistic in
terms of accurately representing environments in the real world, large scale field
experiments with real vehicles still stand out as the most superior way of assessing
performance of VANET applications and protocolsf WSGY19]. In a field test, vehicles
may be rented or bought. Each vehicle is then equipped with an OBU necessary to
perform the communication in a VANET. Additionally, the vehicles are transported
to a dedicated test site where experiments can be conducted. Since field tests
incorporate real vehicles and standard V2V communication equipment, it is the most
realistic form of VANET-protocol testing.

In addition to the above mentioned methodologies, another form of testing, a
hybrid testing scheme may also be used. A hybrid testing scheme includes both

16 3. THEORETICAL BACKGROUND

simulated and real life aspects, and combines them into providing performance tests
that aim to be closer to real life than pure simulations, but still lack the complete
representation of real life environments like field experiments. Hardware-in-the-loop
(HIL) testing is a way of performing hybrid testing of a VANET application, in which
real hardware is integrated with simulated aspects.

The testbed designed in this thesis is of a hybrid nature in that the vehicle
behavior is simulated. However, the vehicle behavior is also performed in the real
world, but by drones instead of cars.

3.2 Hardware

3.2.1 Drone

Drones, or Uncrewed Aerial Vehicles (UAV)s, are aerial vehicles designed to be flown
without a pilot onboard the aircraft. Originally designed for military purposes, drones
have today found their way into the consumer market and are used for multiple
purposes like aerial photography, mapping and area surveying[WFZ*16].

There are several types of drones[KJT21]. The most notable difference is that of
fixed-wing drones and single- or multi-rotor drones. Fixed wing drones are similar to
airplanes in that they are able to ride across the air without using energy, however
they are not able to maintain a stationary position. Single- or multi-rotor drones
however, can hold a stationary position, but uses energy to stay afloat in the air.

Drones usually contain some form of embedded hardware to control its motion, a
Flight Controller (FC)[KJT21]. In addition, drones may have a companion computer
attached. A companion computer is usually a small computer able to run more
complex code or even operating systems. This enables them to have on board
intelligence that can be used to achieve higher levels of automation without control
from a pilot or Ground Control Station (GCS). For the rest of this thesis, we will
use the terms drone and UAV interchangably. The drones used for experiments with
the testbed created for this thesis are multi-copter type UAVs, specifically the Intel
Aero RTF. Full specifications for this drone can be found on Intel’s websites!

3.2.2 Telemetry Radio

In this project, we utilize transceiver telemetry radios for drone communication.
These are small and inexpensive, and are capable of communication for ranges up to
300m. The specific brand of telemetry radio used in this thesis operate at 433Mhz?,

Intel Aero RTF drone specifications: https://www.intel.com/content/www /us/en/support/articles/000023271/dron
drones.html
2Telemetry radios: http://www.holybro.com/product/transceiver-telemetry-radio-v3-915mhz/

3.3. SOFTWARE 17

and are designed specifically to perform well using the MAVLink?® protocol, presented
later.

3.2.3 Flight Controller

The flight controller (FC) is an essential part of any drone. The FC is an embedded
computer that takes various sensor data as input, and adapts motors accordingly.
Examples of such sensors are Global Positioning System (GPS), accelerometer,
gyroscope as well as pilot input through a wireless transmitter or telemetry radio.
The FC gathers the data generated from these sources and adapts the power level of
each rotor accordingly[KJT21].

In this thesis, a proprietary FC that comes with the Intel Aero RTF from the
factory is used. This particular FC support installation of two popular autopilot
softwares, ArduPilot and PX4.

3.3 Software

3.3.1 SUMO

Simulation of Urban MObility (SUMO)[LBBW 18] is a well established, time-driven
and time discrete mobility simulator. The open source project is often used to
simulate traffic scenarios in a multitude of applications, including testing of VANET
applications and protocols. SUMO is also a microscopic simulator, which means that
all simulated vehicles are controller separately. Each vehicle have their own physical
properties and destination, and abide by defined traffic rules when interacting with
other vehicles. The speed of each vehicles is determined by the individual properties
of each vehicle as well as the traffic rules, i.e., the traffic model, that is implemented.

A simulation run in SUMO is time-driven, meaning that properties of each vehicle
is calculated in timesteps. At each timestep, calculations for determining speed,
position and other properties is made for each individual vehicle. A very useful
property of SUMO is that it allows for granular access to information about each
simulated vehicle after each timestep, through a Python interface called TraClI,
presented later.

In addition to this, SUMO comes with many other tools for different purposes.
One of these tools is called netedit. Together, netedit and SUMO can can be used to
design, create and run a large variety of traffic simulations. Additionally, combining
SUMO with a network simulator, like OMNeT++ or NS-2, creates a powerful
combination of tools to mimic the mobility of vehicles and network behavior of

3MAVLink documentation: https://mavlink.io/

18 3. THEORETICAL BACKGROUND

VANET. In the testbed developed in this thesis, SUMO is used to simulate cars in
virtual traffic scenarios.

3.3.2 netedit

As mentioned, netedit is part of the SUMO library and is a visual program for
creating virtual traffic network files, meaning file formats describing traffic scenarios.
These can either be created manually from scratch, or imported and exported using
the OpenStreetMap[Opel7] format, an open, standard format for describing traffic
networks. netedit also support the addition of vehicles, traffic signs, crosswalks and
other aspects of traffic into these files, which is taken into account by simulated
vehicles when the traffic scenario simulated in for instance SUMO. netedit is flexible
and supports multiple aspects of traffic, including varying driver behavior and
different vehicle types. In this thesis, netedit is used to create traffic scenarios for
our experiments.

To give a better understanding of later diagrams and descriptions, we provide a
list of definitions related to traffic- and vehicle simulation, and network files. Some
of these terms are used later in this thesis. Definitions marked with * can be found
at SUMOs glossary page?. The rest are created by us.

*edge: A single-directed street connection between two points (junctions/nodes).
An edge contains at least one lane.

*junction: The place an edge begins or ends at (same as node)

*node: A node (junction) is a single point were at least one edge (road) starts
or ends

* (street) network: In our terms, a network is the combination of junctions
(nodes) and edges (streets)

network file: a network stored in a file format readable by SUMO to be used
for simulations

network geolocating: This describes the process of projecting a network file based
on cartesian coordinates into a georeferenced network, where each cartesian
point is converted into coordinates based on the WGS84 ellipsoid, which is
the projection used in this thesis. In simpler, more informal terms, network
gelocating can be described as converting a network file based on cartesian
coordinates into a network file based on GPS-coordinates.

4SUMO glossary: https://sumo.dlr.de/docs/Other/Glossary.html

3.4. DRONE CONTROL 19

demand elements: These elements describe the virtual vehicles added to a
network file, and their behavioral model.

mobility traces: A term for describing the movement of vehicles. mobility traces
describe the location of a vehicle at a given time.

3.3.3 Traffic Control Interface (TraCI)

TraCI® is included in the SUMO package, and is a Python-interface that provides
access to simulations run in SUMO. TraClI enables a flexible and dynamic simulation
environment and can be used to modify different parts of a simulation while it is run-
ning. In this project, TraCl is used as part of an interface between simulated vehicles
and drones, collecting mobility traces from the simulated vehicles and controlling
airborne UAVs. TraCl provides granular information retrieval and modification for
each simulated vehicle as well as for the simulation environment as a whole.

3.3.4 ArduPilot SITL

ArduPilot[ard] is a open autopilot software for drones and other autonomous systems,
and is the autopilot of choice in this thesis.

ArduPilot provides a platform for simulating fully operational drones, and includes
support for both fixed-wing and single- and multicopter drones, called ArduPilot
SITLS. A Flight Dynamic Model (FDM) is used to simulate the physics involved in
the movement of a drone”. The combination of the FDM and simulation of ArduPilot
firmware is referred to as software in the loop (SITL) and provides a powerful
solution for testing application and solutions in a simulated scenario before executing
real world tests. Performing tests with simulated drones played an important part
when implementing the testbed created in this thesis and was used to verify correct
operation and to reduce the risks of crashes in the real world.

3.4 Drone Control

There are several aspects involved in controlling airborne UAVs. Drones can be con-
trolled in a variety of ways. These include manual control with handheld transmitters,
over Wi-Fi or over telemetry using telemetry radios. We present the technologies
and solutions used in this thesis for drone control and monitoring.

5TraCI: https://sumo.dlr.de/docs/TraCI.html
6 ArduPilot SITL: https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
"Flight Dynamics Model: https://ardupilot.org/dev/docs/simulation-2.html

20 3. THEORETICAL BACKGROUND

3.4.1 Ground Control Station (GCS)

A GCS enables remote control of aerial vehicles from a computer on the ground.
Usually a software application, a GCS enable bidirectional communication with a
UAYV while it is flying. This communication link can be used both for monitoring
purposes, as well as for issuing commands. GCSs may also include failsafes and other
safety features. Figure 3.2 illustrates the look and feel of QGroundControl, the GCS
used in this thesis. QGroundControl is used mainly to monitor drone mobility, like
speed, location and altitude, but also as a safety measure.

3.4.2 MAVLink

MAVLink is a widespread protocol for bidirectional communication between drones
and GCS. MAVLink can also be used for communication between internal components
inside the UAV itself. As MAVLink is a protocol standard, several libraries have
been created to implement it, in multiple programming languages. In this project,
a MAVLink Python-library called DroneKit-Python is used for the communication
between drones and the software developed for our testbed. DroneKit-Py is built on
top of pymavlink, which is a low level library for communicating with MAVLink.

3.4.3 DroneKit-Python

DroneKit is a wrapper for a low level MAVLink library called pymavlink. We found
that in our opinion, DroneKit have better documentation compared to pymavlink.
DroneKit provides a Python API towards the MAVLink protocol called DroneKit-
Python which provides a relatively simple way of communication with drones over
MAVLink, through a number of channels, inlcuding Wi-Fi, USB, and telemetry radio.
For our testbed, DroneKit is utilized to control the speed, motion and position of
drones while airborne.

3.4.4 GNSS

Global Navigation Satellite Systems (GNSS) is a collective term used to describe
navigation and position systems that utilize satellites. To be able to navigate based
on Geographic Coordinate Systems, drones need to be equipped with hardware that
supports GNSS technology. There are four major players in the GNSS domain. These
are GPS, GLONASS, BeiDu and Galileo. The testbed created in this thesis, requires
the drones to be equipped with such a that allows for easy access to coordinates as
well as being able to navigate based on WGS84 coordinate system, a mathematical
representation of the earth used for navigation purposes. In this thesis, the drones
used in the experiments are equipped with GPS that is used for localization and
navigation purposes. For experiments with simulated drones, each drone has a virtual
GPS-module.

3.4. DRONE CONTROL 21

@ Fiying W Guided x.0 ARDUP“—OT

| A 25m .

+10.0m -0.0'm/:
arspeed 3,7 m/s aecel10.0 m

Figure 3.2: QGroundControl connected to a single airborne UAV

3.4.5 Flight Modes

Flight modes play an important role in controlling drones. Depending on what flight
mode is currently enabled on a drone, the FC and autopilot software may adapt
the behavior of the UAV. Flight modes can provide the pilot with assisted control
in a variety of ways. Pilot input can come from either a handheld RC-transmitter
or a GCS. In other words, a pilot is not necessarily a person manually controlling
the drones, but can also be automatic commands issued programmatically through
scripts, or a GCS such as QGroundControl. Flight modes can also be changed
dynamically, meaning that a pilot can swap flight modes at any time while the drone
is airborne.

Below is a list that describes some of the important flight modes that were used in
the course of this project, together with their functionalities. Different FC software
support different flight modes. As mentioned earlier, in this thesis we are using the
FC software and autopilot system called ArduPilot.

— Return To Launch (RTL): When a drone enters this mode, it will return
to the home location, and land. the home location is defined as the location
where the drone was last armed to fly.

— Auto: When in Auto mode, the drone will execute a predefined mission that
is uploaded to the drone before flight. A predefined mission may contain

22 3. THEORETICAL BACKGROUND

navigation commands to fly to a specific waypoint, or other commands that
does not affect the location of the vehicles i.e the camera shutter to take images.

— Guided: Guided mode is not a traditional flight mode and is specific to
ArduPilot. This mode is designed to be used by a GCS to dynamically specify
a target location over telemetry radio. Once a target location is reached, the
drone will hover until the next waypoint is sent received from the GCS.

— Loiter: In Loiter mode, the drone will attempt to maintain the current speed,
heading and altitude, leaving only the drone movement in the X/Y plane to be
controlled by a pilot.

— Brake: When a drone is instructed to enter brake mode, it will attempt to
stop movement and hold position in the air. As no pilot input is accepted in
this mode, the flight mode needs to be changed after entering Brake mode to
resume flying. Brake mode relies on a functional Global Navigation Satellite
Systems (GNSS).

In the testbed created in this thesis, we have utilized Guided mode as our main
mode of control. Compared to Auto, Guided mode allows for more interactive and
dynamic control of a multi-copter. Manual intervention using Brake mode and Loiter
mode was included as a backup in case of emergency. These flight modes were also
used while practicing to fly the drones manually with a handheld transmitter.

3.5 Time Series

A time-series data set consist of a sequence of observations measured over time, and is
the simplest form of temporal data[HKP12][GDO01]. The frequency of measurements
can be for instance every minute, hour, day, month or even decades. A time series can
be expressed on the form z;(¢);[¢ = 1,--- ,n;t =1,--- ,m] [YS04]. Here, 7 denotes
the index or indices of observation(s) at time step t. It is called a univariate time
series when n is equal to 1 and a multivariate time series when n > 1[YS04]. In
this thesis we collect multivariate time series and perform similarity measurments
between them. Each measurement, done at regular time intervals, contains location
data on the coordinate form (latitude,longitude), i.e., n = 2.

3.6 Dynamic Time Warp (DTW)

To perform similarity measurements between multivariate time-series data sets in this
thesis, we will utilize DTW. DTW is a spatio-temporal, nonmetric similarity measure
for time series data]MSMEB15]. DTW is also a popular choice for measuring
similarity between trajectories[TD15]. A strength of DTW is the ability to do

3.7. HAVERSINE FORMULA 23

Euclidean distance Drynamic Time Warping

Figure 3.3: Comparison of distance measure between Euclidean distance and DTW.
The two time series have similar measurements but are not aligned on the time axis.
The illustration can be found in [Tav].

temporal alignment of time series. This means that it allows stretching a shrinking
of time series in the time axis to create a better alignment, which can be used for
measuring similarity. Figure 3.3, taken from [Tav], shows an example in which two
timeseries have similar measurements but are shifted in the time axis. Regular
euclidean distance fails to take these shifts into account.

Having two time-series P and Q of length m and k, a distance function is used to
construct a m z k matrix where the (7, 7) element represent the distance between
points P; ad ;. Using this matrix, the optimal alignment, i.e., optimal warping
path, can be constructed by minimizing the total distance between all points. The
DTW measure is the total of all distance measures contained in this path[TD15].

In the case of this thesis, we will use DTW as a way of measuring the similarity
between trajectories. Specifically, how well a drone is able to duplicate the path of a
simulated vehicle using our testbed. In our case, each point P; and @); in our time
series data is a geographical coordinate, a tuple on the form (longitude, latitude).
Using regular euclidean distance between geographical coordinates does not work and
will result in incorrect distance measurements. We therefore use the Haversine formula
as the distance function when calculating the distances between measurements in
the time series.

3.7 Haversine Formula

The Haversine formula is used to calculate the great-circle distance between two
geographical points on (longitude, latitude) format[Nic13]. The formula can be

24 3. THEORETICAL BACKGROUND

expressed as shown in Equation 3.1.

d = 2rsin™* <\/sin2 (@;%) + cos(¢1) cos(¢z) sin? <¢25w1)> (3.1)

d is the distance between two geographical points, 7 is the radius of the earth.
¢, and v, respectively represent the longitude and latitude of the two points.

3.8 Regulations

Rules and regulations are an important aspects to consider when flying drones.
Regulations for automatic and autonomous drone flight may vary from location to
location. the 1st of January 2021, new laws and regulations were passed in Europe,
clarifying and regulating different aspect of drone flight®. Laws and regulation may
impact the legality of executing experiments with the testbed presented in this thesis.
For the experiments conducted in this project, the author obtained online training
and a certificate from the Norwegian Civil Aviation Authority.

8New European drone laws: https://luftfartstilsynet.no/droner/nytt-eu-regelverk/

Implementation

In this chapter we first present the design for the created testbed. Then, we attempt
to validate the design in relation to the problem context.

4.1 Architecture

4.1.1 Overview

We will now first present a broad overview of the testbed before describing some
aspects in more detail.

At the highest level, the functionality of the testbed can be summarized into
two segments. Vehicles are simulated using SUMO and data from this simulation is
sent to a software interface. After performing necessary calculations, this interface
uses the retrieved data to control airborne UAVs to duplicate the movement of the
simulated vehicles. When executing real world experiments, this interface and the
SUMO-simulation run on a computer that is situated on the ground at the flight-area.
From now on we will refer to this computer as the Ground Based Computer (GBC).
Figure 4.1 illustrate a high level overview of the architecture.

Since drones are also vehicles, we clarify the important distinction between real
drones and the simulated vehicles in SUMO. From now on will will refer to simulated
vehicles (SVs), and drones or UAVs. We emphasize that we will also mention drones
that are fully simulated, that are used for testing purposes.

The interface, depicted yellow in Figure 4.1, is a Python-program that performs
the necessary logic and communication to duplicate the movement of SVs in air-
borne drones. It integrates TraCl and the Dronekit-py library to facilitate indirect
communication between the SUMO-simulation, depicted blue in the figure, and the
airborne UAVs, depicted red. TraCl is used to retrieve relevant information about
each SV, like location, speed, and direction. DroneKit is used to retrieve information

25

26 4. IMPLEMENTATION

UAVS el oBU

Interface

SUMO-simulation

Figure 4.1: Overview of testbed architecture

and send navigation commands to each airborne UAV, based on the data collected
from SUMO.

An important note is that the testbed created in this thesis, does not directly con-
cern the aspects revolving V2V communication. The V2V communication component
is left to the people assessing the performance of a VANET-protocol to implement.
This allows for flexibility in choice of hardware and software when implementing a
protocol to be tested. In other words, the OBU is not fixed and can be implemented
as researchers see fit. The OBU (described in subsection 3.1.2) that is implementing
the protocol under test should be attached to each individual UAV while running
a test, depicted by the dashed lines in Figure 4.1. For instance, a routing- or data
dissemination protocol can be implemented on smart phones that can be attached to
the drones and communicate between each other.

Fach component depicted in Figure 4.1 has a main role to fulfill to conduct a
protocol assessment. These roles are summarized below, in Table 4.1.

4.1. ARCHITECTURE 27

Table 4.1 Main role of testbed componets

Component H Role

SUMO Simulate mobility of vehicles, taking a network file as input

Interface Query SUMO simulation for vehicle information. Use this infor-
mation to control UAVs. The interface can also be used for data
collection.

OBU Attached to each drone, responsible for executing communication
for protocol under test, as well as data collection for the protocol
under test.

UAV Receive and follow navigation commands from the interface.

4.1.2 Detailed Description

In this section we describe the tasks of each component in greater detail, and further
break down the structure to give a better description of the architecture. Illustrated
in Figure 4.2 is a more granular description of the testbed architecture.

(1) Ground based computer:

While conducting a test, a GBC runs the vehicle simulation in SUMO as well as
the interface that connects the simulation with the UAVs. In case of a tests where
the drones also are simulated, the GBC may also run the drone simulation software.
In the case of a real world test, the ground computer is situated on the ground at the
flight location, within communication range of the drones, using telemetry radios.

(2) SUMO

As described in Section 3.3.1, SUMO is a mobility simulator used to simulate
vehicles and driver behavior in a virtual environment. In this testbed, SUMO takes
a georeferenced network file as input and generates mobility traces for vehicles inside
it. As SUMO is time driven, it operates in time steps. At each time step during the
simulation, SUMO generates data about the current state of the simulation as well
as for each individual vehicle, like position, speed and heading. Between every time
step, this data can be accessed through TraCl, which is utilized in the interface (3)
to obtain relevant data.

(3) Interface

The code developed in this thesis resides in the interface. This is the core
component of the testbed and has several functions. As stated in Table 4.1, the main
role of the interface is to control the UAVs so that they duplicate the movement of SVs.
To do this, it gathers data from a simulation, processes it, does necessary calculations,

28 4. IMPLEMENTATION

MAVLink

a

e

8

=

gl

8 Interface (3)
©

w

@

=

=

=i

3

=

o TCP

SUMO (2)

sy

Figure 4.2: Descriptive architecture overview

and passes navigation commands to each UAV based on this data. Regarding
communication with the UAVs, the interface utilizes DroneKit-Py, as described in
subsection 3.4.3. The link used for UAV-communication can be seamlessly changed.
This allows the interface to support among other things, communication with real
drones over telemetry radio, as well as simulated drones through a network interface.

To present the functionality and inner workings of the interface, a more granular
description of this component will be presented in the next section.

(4) UAVs

The UAVs receive control commands from the interface and passes them to the FC,

4.1. ARCHITECTURE 29

which in turn adapts the throttle of each rotor to fulfill the command. An example
of a control commands can be to tell the UAVs to travel to a certain geographical
location.

For real world tests of a VANET-protocol, OBUs performing the communication
with the protocol need to be attached to the drones.

Not depicted in this figure is the part that is used to monitor the state of the
drones. This is done using QGroundControl which continuously queries the drones
for information like location, speed, altitude and battery level. As this a is convenient,
but optional and not part of the testbed itself, it is not included in the figure.

4.1.3 Interface

As the interface is the most central part of the testbed, we present its most important
building blocks.

traci-script: The script that runs the vehicle simulation is adapted from the
starting-examples provided by SUMO!. Its only task is to increment the simulation
step and pass the data generated by SUMO for the current timestep to the Handler.
At each simulation time step, SUMO calculates among other things the position,
speed and direction of each SV. The TraCl-script passes all of this information to
the Handler. The choice of separating this script and the rest of the interface, was to
make this script easily modifiable. Developers can edit this script to modify vehicles
behavior during simulation without interfering with the core logic of the testbed.
The barebones TraCl-script used in the experiments conducted in this thesis can be
found in appendix D.3.

Handler: The Handler keeps track of the SVs and drones that are active, in
other words SVs that are still running in SUMO and drones that are still flying. In
addition, the Handler is responsible for creating pairings between a UAV and a SV
in a 1-to-1 relationship. Finally, the Handler uses information gathered from the
SVs to queue navigation commands for the UAV they are paired with. The Handler
is initialized by the TraCl-script and is provided with knowledge of a traci-object.
The traci-object contains all information about the current state of the simulation,
and the Handler receives updated information at each simulation time step. The
Handler queries this object to extract the needed information about the simulation
environment as well as for each individual SV. The code for the Handler-class can be
found in appendix D.2.

Vehicle: Each instantiation of the Vehicle-class represents a pairing between a
UAV and a SV. The paring is a 1-to-1 relationship, so each SV is only paired with

ITraCI examples: https://sumo.dlr.de/docs/TraCI html

30 4. IMPLEMENTATION

one drone. Vehicle-objects are instantiated by the Handler whenever a new SV begins
its journey in SUMO. Every Vehicle-object contains a queue that represents positions
that the corresponding SV has visited in SUMO. A Vehicle-object uses this queue to
send sequential navigation commands to its drone, so that when there are no more
elements in the queue, the drone has visited the same positions as the corresponding
SV. The Handler is responsible for queuing correct positions for each Vehicle-object.
The code for the Vehicle-class can be found in appendix D.1.

The Vehicle-objects have a bidirectional communication link with their respective
drone and uses this link to send navigation commands as well as querying the UAV
for necessary information. When a SV finishes its route in SUMO, the Vehicle-object
responsible for that particular SV makes sure that the corresponding UAV finishes
its route and commands it to enter RTL-mode, before concluding execution.

Figure 4.3 illustrates an example of a state of the interface where three vehicles
are simulated in SUMO. For every vehicle, the Handler creates a Vehicle-object that
represents the pairing between each of these vehicles with a UAV. The uni- and
bidirectional arrows represent the direction in which the internal information flows
inside the interface.

4.2 Diagrams and Data Flow

To further illustrate some of the behavior of the testbed, we present some flow
diagrams. First we present an activity diagram showing how a typical protocol
test would be conducted with the testbed. Then we present two sequence diagrams
showing the behavior of the interface.

4.2.1 Activity Diagram

For using the testbed, some preliminary steps are needed. Presented in Figure 4.4
is an activity diagram that shows the main steps in order to perform a test. The
diagram presents the different steps needed for simulated tests and for real life
executions, and are explained in the next paragraphs.

A user starts by designing relevant traffic scenarios for the protocol under test,
for instance by using netedit, presented in subsection 3.3.2. Relevant traffic scenarios
may vary depending on what protocol is tested. For instance, for data dissemination
protocols designed for rural areas, high speeds and few vehicles may be a important
aspect of a traffic scenario. For urban areas and in big cities, the opposite may be
the case.

After designing relevant traffic scenarios, they need to be transferred to a SUMO
network file, which SUMO uses to execute simulations. Several tools can be used

4.2. DIAGRAMS AND DATA FLOW 31

Interface

N\ [owm] /)

Object: Vehicle Object: Vehicle

T » Object: Handler

raCl-script »

N /

SUMO
L J

Figure 4.3: Components and communication flow in the interface.

for this, as long as a SUMO network file is generated in the end. SUMO provides
a tool called netconvert? which has the ability to convert a number of file types
used for representing road networks to the correct SUMO-network format. The
network file also has to be georeferenced in order to be used in the testbed. To the
best of our knowledge, there is no simple way of georeferencing networks files for
SUMO that are created manually. For this reason, we have adapted and extended
the functionality of a script included in SUMO that is originally used for fetching
background images of an already georeferenced network file, called tileGet.py>. We
extended the functionality of this script to include the ability of georeferencing a
network file by only taking a origin coordinate and the UTM zone* as parameters. We
named this script geoLocate.py. Additional details are presented in subsection 4.6.1.

2https://sumo.dlr.de/docs/netconvert.html
3https://sumo.dlr.de/docs/Tools/Misc.htmltilegetpy
4https://en.wikipedia.org/wiki/Universal _Transverse_Mercator_ coordinatesystem

32 4. IMPLEMENTATION

The decision revolving what kind of test should be executed affects the activity flow
drastically. The main argument for conducting simulated testing before performing
real life tests is that it can be used as a security measure to reveal any discrepancies in
the behavior of the UAVs before conducting real world test. For real life tests, some
additional steps are needed. Worth mentioning is the calibration of UAV sensors like
GNSS, compass, gyroscope, accelerometer and other attached sensors.

Attaching OBUs to UAVs is illustrated as an optional step. Even though the
intention of the testbed is to test protocols implemented on an OBU, it may also be
useful to only test the movement of the drones, as a preparation step for instance.
For that reason, the possibility to omit the step of attaching OBUs is included.

Finally, UAV parameters must be set. The testbed provides a configuration file
called drones.conf, where a user must specify the altitude for each drone, as well as
how the interface will connect to each drone. When these parameters are set, the
testbed can be executed. An example of this configuration file is found in appendix
D.4

4.3 Behavioral Diagrams

To highlight the most important behavior of the testbed, we present some behavioral
diagrams from different phases of the execution. First we present the initialization
phase were vehicles and drones are paired and initialized. We then present the main
phase of the execution which includes the interface controlling the drones based on
the data from the SVs. This phase also includes the finalizing and landing all drones
back on the ground.

4.3.1 Initialization

We define the initialization phase as preliminary steps done by the testbed before and
up until the point where UAVs starts to duplicate the path of their corresponding
SV. This includes starting the SUMO-simulation, creating pairings between UAVs
and SVs as well as UAV takeoff and navigation to their respective starting points.
No drone start to duplicate the path of their SV until all active UAVs have arrived
at their starting point, assuming all vehicles are started at the same simulation step.

A sequence diagram was choosen for illustrating the behavior of the interface
during the initialization step. This diagram is presented in Figure 4.5. Despite being
a simplified diagram, it includes the most important aspects of the general program
flow. The example in the diagram is that of a scenario with two SVs and two drones.

The entire initialization phase occurs between the first and second simulation
time steps. For simplicity and space constraits, the script running TraCI and the

4.3. BEHAVIORAL DIAGRAMS

Design test]
._’(scenario(s))—b@eatenemrorkme@

Simulation eal life test

Start simulation Travel to flight area
Calibrate UAV(s)

Mobility test

Protocol test

Attach OBU(s)

Set UAV parameters

Execute test

Figure 4.4: Activity diagram for simulated and real life tests

33

34 4. IMPLEMENTATION

instantiation of the Handler is not included in the diagram. The black circle depicting
the entry point, illustrates the point where the TraCl-script sends the traci-object
to the Handler. As a reminder, the traci-object acts like a snapshot of the SUMO
simulation at every timestep, and encompasses as mentioned earlier, information
about every SV as well as the state of the simulation as a whole. The Handler
identifies that two SVs were added in SUMO and instantiates a Vehicle-object for
each SV. The Vehicle-objects are instantiated with a connection to a drone as well
as knowledge about which simulated vehicle it corresponds to. Each Vehicle-object
contains a FIFO-queue to which the Handler can add waypoints, reflecting the
location of the vehicles in SUMO.

When instantiated, the Vehicle-objects immediately starts an interal thread which
continuously monitors this queue for new waypoints. In the initialization phase, each
thread only waits for the first element to be added to its queue, at which the threads
will command their respective drone to go to the first location, the starting point.
When all drones have reached their starting points, we move on to the main part of
the execution.

4.3.2 Execution

After the initialization phase, and all UAVs have reached their starting point, the
main execution begins. During this phase, the drones actively duplicate the movement
of their respective SVs. To execute this, two processes run in parallel. The first
process involves the Handler and the Vehicle-objects; At each simulation time step,
the Handler is passed the traci-object containing the current state of the simulated
scenario. The Handler extracts position information about each SV and sends it
to their respective Vehicle-object. Each Vehicle-object stores these positions in the
earlier mentioned queue, which is used by the process running in parallel.

As each Vehicle-object instantiates one thread running in the background, we
specify that this second, parallel process includes the execution of all threads spawned
by Vehicle-objects. They all run independently of each other and each thread is
connected to a single Vehicle-object. The task of these threads is to continuously get
the next element in their position-queue, create a MAVLink packet and send it to
the UAV as a navigation command. After sending the command, a thread will wait
for confirmation that the drone has reached the point. Then, it will get the next
position from the queue and send it to the UAV. This happens continuously during
the execution phase. Figure 4.6 show the overall data flow during this phase. Not all
waypoits are sent to the drones during execution. Why this is and how it was done
is described in subsection 4.6.2.

When a thread has no more positions in the queue, and the SUMO-simulation
is finished, it will issue a command to put its drone in RTL mode, which tells the

4.3. BEHAVIORAL DIAGRAMS

35

h:Handler UAV1 | |UAV2
traci:traci :
P — -~
[»
loop / connect()
»
R ,)‘vl:\lenlc\e
sat) o
connect()
e_._.--------.-.-.-..--)‘vZ.Vehicle
[for each new vehicle]
start() |
“ tl:Thread
---m------ 32 Thread
par /
loop /
_send_Position()
_send_Position{)
»>
DI I I T TR R (N R
................... FE T T e e
loop / loop /
[while queus.empty(] self Quese.get) Jiwhite: queve. emptyi]] I seff Queue.get()
(goto_starting_location()
»
goto_starting_location()

Figure 4.5: Simplified sequence diagram of initialization phase

h:Handler

36 4. IMPLEMENTATION

TraCl-script
3 v1:Vehicle| | tl:Thread v2:Vehicle| |t2:Thread UAV1 UAV2
hd i H L i ' :
par_/ H H
loop / sim_step(traci)
{while Isimulation finished|
loop /

[for each new vehicle]

loop] [while lqueue empty()] W [while Iqueue empty(]
L self.Queue.get() L self.Queue.get()

Figure 4.6: Simplified sequence diagram of the execution phase

drone to navigate to and land at takeoff location. This concludes the execution of
the testbed.

4.4 Choice of Hardware and Software

4.4.1 Mobility Simulator

We chose SUMO to be used as our mobility simulator. SUMO is a well established,
free and open-source traffic simulator with large capabilities. SUMO has granular
data retrieval on both simulated vehicles and the simulated scenario as a whole.
SUMO is heavily used as a mobility simulator in research by researchers in the
field of VANET. Multiple well renowned VANET-simulators use SUMO as as the
main mobility simulator, including Traffic and Network Simulation Environment
(TraNS)[PRL108], Veins [SGD11], and MOVE [Lan]. SUMO also provides a Python-
API for interacting with simulations. Finally, SUMO comes with many tools and
scripts that can be used for a variety of purposes.

4.4.2 UAV Communication Protocol

As presented earlier, the protocol used for drone communication in this testbed is
MAVLink®. MAVLink is lightweight, open-source and is used for communication
between GCSs and UAVS[KJBN20]. MAVLink is widely adopted and is the most

Shttps://mavlink.io/en/

4.4. CHOICE OF HARDWARE AND SOFTWARE 37

popular choice among the alternatives for drone communication. MAVLink also
makes up the core of communication implemented by ArduPilot® and PX4[MHP15],
both very common autopilot systems[KAAT19]. Although the choice of MAVLink
came with the choice of the autopilot, ArduPilot, we still want to emphasize that
MAVLink is widely adopted and thus empirically tested.

4.4.3 Autopilot

The autopilot is a collective term describing the solution used to control the drones,
everything from the FC firmware, to the operating system facilitating automation.
In this thesis, we chose ArduPilot as our autopilot platform.

We chose ArduPilot because of it having properties that fit very well with the
way our testbed is operating. We also considered PX4 as our underlying autopilot,
another widely used autopilot system. However, there are couple of reasons we did
not choose this. Firstly, communication with a drones installed with PX4 through
Python is less supported. DroneKit is currently working on getting full integration
with PX4, but as of now, the integration is still limited. Additionally, PX4 does
not support the Guided flight mode, or similar. Therefore, ArduPilot became the
autopilot of choice. With better support to be used with Python, and having the
Guided flight mode, ArduPilot has the necessary properties to be used for the drones
in our testbed.

4.4.4 Drone

As stated in chapter 3, the drones used for the experiments in this thesis are the Intel
Aero RTF. The primary reason these drones were chosen was that they were readily
available from our faculty at NTNU, and had the features necessary to be used with
the testbed. One of the most appealing feature of the Intel Aero RTF is that the
drone is pre-buildt and ready to fly out of the box. Also, the FC that comes with
Intel Aero RTF is flexible in terms of autopilot firmware and supports installation of
both ArduPilot and PX4. However, we would ideally have used cheaper drones as
the Intel Aero RTF is relatively expensive. Finally, as will be described in chapter 5,
we had issues with one of our two drones and was not able to make it behave reliably.

4.4.5 Telemetry Radios

The telemetry radios used for UAV communication was decided to be the Transceiver
Telemetry Radio V8 433MHz from HolyBro’. These radios are said to provide a
range of 300m out of the box and are to the best of our knowledge, widely used in
the drone milieu. It also has good support for the MAVLink protocol. However, as

Shttps://ardupilot.org/
"HolyBro telemetry radios: http://www.holybro.com/product/transceiver-telemetry-radio-v3,/

38 4. IMPLEMENTATION

will be presented later, we were not able to obtain more than 50m of range with
these radios. This may be due to the placement of the radios or other disturbances.
We would also like to emphasize that to control many drones at the same time, we
believe a multi-point radio should be used instead. However, in the experiments
conducted in this thesis only two drone were flown simultaneously, and thus, basic
telemetry radios like these were sufficient.

4.4.6 Guided Flight Mode

The flight mode of choice for the UAVs was decided to be the Guided flight mode,
described in subsection 3.4.5. The Guided flight mode was also part of the reason
ArduPilot was chosen as the FC firmware. The Auto flight mode was considered
as a candidate for quite some time. Auto mode lets a drone pilot create predefined
mission, upload them to a small computer attached to a UAV, and instruct it to
simply execute the mission. The benefit of Auto mode is that it minimizes the
potential for packet loss. As the companion computer that stores the mission is
connected through serial communication directly to the FC, the communication link
does is not dependent on wireless signal strength or interference. The downside is
that it does not allow for dynamic, continuous control in real time by a pilot through
a GCS or other software.

Guided mode however, allows a pilot to continuously send navigation commands
from a GCS or other software to the UAV. The benefit of this is that the UAV can
be controlled in real time, giving a pilot the ability to change the movement of the
vehicle based on events from external sources, such as SUMO running on a GBC.
In addition, it facilitates indirect communication between each UAV, through the
GCS. In the testbed implemented in this thesis, this is used for synchronization
in the initialization phase (described in subsection 4.3.1). When all drones have
reached their starting point, the GBC signals all UAVs to start duplicating the path
of their respective, simulated vehicle. A downside with Guided mode is that the
communication link depends on wireless signal strength and interference. Although
the MAVLink protocol supports up to 255 simultaneous network nodes®, signal
interference may become an issue if many UAVs are airborne at the same time.

4.5 Component Requirements

The way the testbed was designed, raises some requirements to the drones to be
used with the testbed. Table 4.2 summarizes the requirements to drones and related
equipment to be used in a real world test.

8https://mavlink.io/en/about /faq.html

4.6. CHALLENGES AND TRADE-OFFS 39

Table 4.2 System component requirements

’ Component H Requirement

UAV(s) Multi-copter frame

UAV(s) Have ArduPilot autopilot installed

UAV(s) Ability to perform MAVLink communication
UAV(s) Equipped with telemetry radio

UAV(s) Equipped with GNSS

FC Support installation of ArduPilot

There are remarks to some of these requirements. First of all, the testbed was
developed and tested using multi-frame UAVs, installed with ArduPilot. Without
running test on several drone types, we cannot guarantee the same functionality
for every multi-copter drone running ArduPilot. ArduPilot becomes a requirement
due to the Guided flight mode. As this mode is not a standard flight mode, we
cannot insure interoperability with other autopilot- or FC software. There exists
other widely used FC software, like PX4 for instance, which do not support Guided
mode or similar modes.

4.6 Challenges and Trade-offs

The creation of this testbed did not go without challenges. For the drones to
duplicate the movement of the SVs, our interface collects mobility traces on each SV
from SUMO and performs calculations and operations on the data, before sending
navigation commands to the drones. We quickly realized that the mobility traces of
the SVs could not be sent directly to the UAVs for several reason and thus had to
mitigate this issue. We highlight two of main challenges during development and
testing.

4.6.1 Network Georeferencing

To the best of our knowledge, there is no simple way of georeferencing a manually
created SUMO network file. SUMO provides a full solution called osmWebWizard.py,
which lets one export georeferenced traffic scenarios from a world map. This approach
is feasible if someone would want to generate network files based on real roads and
areas. However, when designing network files manually, we did not find a simple
solution for georeferencing. This is needed in our case because the network files need
to be georeferenced to the flight area.

The simplest way we found was to use osmWebWizard.py to export a full scenario
of the flight area, open the generated file, copy the projection information and paste it

40 4. IMPLEMENTATION

i k

(a) osmWebWizard web interface (b) Exported georeferenced network, as
seen in the netedit GUI

Figure 4.7: osmWebWizard and Netedit

into our manually created network file. As this is a cumbersome and time consuming
solution, we created a script that georeferences a network file only based on an origin
coordinate and UTM-zone. As mentioned earlier, we extended an already existing
script that is used by osmWebWizard, called tileGet.py. This script is used to fetch
map images of an already georeferenced network file. With our modification, one can
georeference a network file and at the same time, download the background images
corresponding to the mapping. This made it quicker to create traffic scenarios in
netedit and make them ready to be used with out testbed. The script created for
this can be found on the GitHub repository that complements this thesis [Gro21].

4.6.2 Speed Control

The greatest issue we had while developing the testbed relates to the behavior of
the ArduPilot autopilot. We quickly discovered that the default behavior when a
UAV running ArduPilot in Guided mode receives a MAVLink navigation command
e.g., Command: Go to waypoint (longitude,latitude), was that the drone accelerated
toward this waypoint until approximately halfway. Then, it would decelerate until it
had reached the waypoint, coming to full stop. Additionally, MAVLink commands
are non-blocking in the sense that if a UAV receives such a command while already
navigating towards another waypoint, the new command overrides the original one
and the drone will immediately start obeying the most recent command received.

From this, a challenge arise. Lets say that we want a UAV to follow the same
path in the real world as a vehicle simulated in SUMO. Lets also say that for each
simulation time step, we obtain the location of the SV and directly send it to the
drone as a waypoint to visit. For this to be successful, the SV in the simulation must
be at the exactly same place on the path as the drone at any given time. If the drone
starts falling behind the SV on the route, the drone will start to cut corners as it will

4.6. CHALLENGES AND TRADE-OFFS 41

not have time to complete commands before new commands are received, overriding
the current one. The result of this will be that, when finished, the drone will not
have visited every point on the path of the SV. Additionally, a drone can never be in
front of an SV on a path, because the path of the SV determines where the drone
will fly. We deemed it infeasible to solve the challenge of having the drones and SV
at the same location at all times, but we came up with another solution.

Our first thought was to solve this by utilizing a simple queue-like data structure.
As the SV travels along a path in SUMO, we extract the location of the vehicle at
every time step and add it to a queue. When a drone reaches the current waypoint,
the next waypoint in the queue can be sent to the drone. The drone can then, at its
own pace, grab the next element in queue and navigate to that location. This ensures
that when the drone is finished, and the queue is empty, it has visited the same
points as the SV. However, due to the mentioned default drone behavior in Guided
mode, this solution resulted in the drone coming to a full stop at every waypoint,
which does not coincide with the behavior of the SV, which acts as a continuously
moving car, maintaining speed on straight roads and reducing speed while turning.

After several different attempts, we ended up creating a solution that largely
enhanced the performance of the drones both in terms of speed and how well it
duplicated the path of the SV, albeit more optimization can be done. Even though
there are several details to the solution, we present the overall idea of the solution
in two steps. The first step involves reducing the number of waypoints sent to the
drone as much as possible, while also attempting to guarantee that the drone follow
the correct path. The second step involves creating an acceptance radius, presented
later.

To reduce the number of waypoints sent to the drone, we only force the drone to
navigate to waypoints where the heading, i.e., the compass direction, changes. The
waypoint W7 in Figure 4.8 is an example of such a waypoint. At each simulation
time step, we extract the location information for an SV. If the SV has changed its
heading since the last timestep, the waypoint is put in the queue and marked as
a crucial waypoint. If the heading is the same as the last waypoint, it means that
the SV is moving in a straight line, and the waypoint is generally not queued. We
say generally because some of the waypoints along a straight line is queued, but not
marked as crucial. For simplicity we will not go into detail, but it has to do with
ensuring that the drone follows the correct path in case of a packet loss of a crucial
point.

The second step involves the mentioned acceptance radius, illustrated in Figure 4.8.
In this figure, W, denotes waypoints that a drone should visit in its journey to
duplicate the path of an SV. The solid line with arrows denotes the ideal path for

42 4. IMPLEMENTATION

Figure 4.8: Acceptance radius for waypoint

the drone, i.e, the path of the SV, and the dotted line illustrates the actual flying
path. A drone is traveling towards a crucial point Wi. Instead of waiting to reach
W7 before continuing to Wy, the next waypoint in the queue, Wy, will be sent to
the drone as soon as it reaches the acceptance radius of Wj. As mentioned, the
default behavior of the drone is to decelerate and come to a full stop when reaching
a waypoint. With an acceptance radius enabled, we reduce this issue by allowing the
drone to start accelerating towards Ws before coming to a full stop at W;. Increasing
the acceptance radius for waypoints will allow the drone to maintain a higher speed,
but also increase how much corners are cut. Decreasing this radius has the opposite
effect. A lot of testing was done to find a good balance between these two properties.

We determined that the drones ability to follow the path of the SV was of higher
importance than maintaining the correct speed while turning. From our results in
chapter 6, one can see the effects of this decision. The drones are able to accurately
duplicate the path of the SVs, but struggle to maintain speed when turning.

4.7 Limitations

4.7.1 Traffic Scenario Complexity

The mitigation for issues related to speed control presented above, in subsection 4.6.2,
limits the complexity of the traffic scenarios that can be successfully executed by
the testbed. The most significant limitation is that the testbed does not support
rapid fluctuations in speed. If we introduce for instance crosswalks or stop signs into
the traffic scenarios, drones will not behave the same as the SVs. Even though an
SV may stop for a pedestrian crossing the road in SUMO, the real life drone will

4.8. SAFETY 43

not. This is because the drones are only forced to travel to crucial points and will
skip any speed reductions along a straight road. To overcome this limitation,more
complex logic would need to added to how the drones are controlled.

4.7.2 Acceleration Control

The acceleration rate of the drones is different than for the simulated vehicles. For
the drones, this rate is controlled by the FC firmware, in our case ArduPilot, to
ensure stability. Through simulations, presented later in chapter 6, we observe that
the acceleration rate is generally lower for the drones compared to the SVs, resulting
in the UAVs flying at generally lower speeds compared to the SVs. The acceleration
parameters can be changed, but not through the DroneKit-py library used in our
interface. Additionally, changing the acceleration rate for the UAVs may lead to
instability while airborne.

4.7.3 Signal Propagation

Another limitation has to do with signal blockage. A part of testing protocols to be
used in VANET, is to determine how they will behave in scenarios when vehicles,
other than the ones communication, is either blocking or interfering with the signal.
In our testbed, this functionality becomes severely limited. As drones have smaller
chassis, are relatively small, and flies in the air, emulating blockage that normal
vehicles would have is not possible.

4.8 Safety

In our nonfunctional requirements in chapter 2 we have defined safety as an area of
focus. We quickly understood that there are several things that can go wrong when
flying drones, especially when automation is involved. This was learned the hard way
after multiple crashes and broken propellers. Failsafes to mitigate this is important.

We started by creating some failsafes ourselves and implementing them in the
testbed. The first failsafe was about how a drone should react if low on battery. The
other failsafe was how the drone should respond if it was instructed to fly outside a
geographical flight boundary. If a drone flew beyond a predefined radius from the
take-off location, it would return and land at the launch site.

After implementing these failsafes we decided to depart from this approach and
let a GCS handle it instead, being empirically tested over a longer period of time and
much less prone to coding errors and software bugs. GCS’s like QGroundControl,
have several failsafes that can be easily configured before each flight. As such, when
conducting experiments, in addition to connecting to drones through our interface,
we also connected to each drone through QGroundControl. QGroundControl was

44 4. IMPLEMENTATION

used to monitor each drone and adapt their behavior in case something went wrong.
Included in QGroundControl, failsafes in response to low battery, GPS glitching,
EKF variance, maximum altitude and flight boundry radius are included. When
any of these failsafes trigger, QGroundControl is able to override our testbed and
instruct the drones to react accordingly. How this was set up and used is described
in chapter 5.

4.9 Treatment Validation

We will now describe the design of our artifact in relation to the context of testing
VANET protocols, and explain how the testbed correspond to the requirements
specified in 2.1.2.

For REQ1, we designed the testbed to support a varying number of UAVs and
SVs. As each pairing between a UAV and a SV is instatiated in their own thread, they
can be instantiated and stopped without affecting the rest of the execution. REQ2
is accomplished by separating the hardware and software implementing the protocol
under test from the rest of the testbed. Researchers and developers stand free to
choose the OBU to be attached to the drones, as well as the software running on the
OBUs. In relation to REQ3, concerning flexibility for further extension, we highlight
a few different aspects. The core of this testbed is designed so it can be imported into
a program running a SUMO simulation using the TraCI Python-interface, and it will
take of care of duplicating the movement of SVs in UAVs. With this, as well as being
open-source, the testbed facilitate modification and extension by anyone that wants
to use it. REQA4 revolves around the safety of execution. even though the testbed in
it self does not implement any safety features, we found that a more feasible solution
was to connect a separate GCS of choice to the drones to take care of safety and
failsafes. Further, for REQS5, we can not guarantee that the testbed will behave
correctly in every scenario. However, when conducting simulated testing during
and after development, we tested several different traffic scenarios, georeferenced to
several different locations, together with a variety of number of vehicles. We revealed
some software bugs arising from edge-case scenarios and fixed them. None of the
bugs affected the safety of the testbed. After fixing these bugs, we found the testbed
to behave predictably in further tests. Finally, in relation to REQG6, we believe that
our testbed can facilitate rapid testing of VANET-protocols, and reduce the resources
necessary to peform them. Drones are usually cheaper and lighter than cars, and
more easily transported to the testing field. In addition, after setting up the testbed,
initial calibration of drone sensors, and attachment of OBUs, it should be as simple
as placing the drones on the ground, and start our interface.

For validating the performance of the testbed, we conducted fully simulated tests.
Drones were simulated with ArduPilot SITL, and thus no OBUs were included. How

4.9. TREATMENT VALIDATION 45

the experiments were set up and executed, as well as the results from these tests
can be found respectively in chapter 5 and chapter 6. The drones demonstrated
good accuracy in duplicating the path of their SV at the costs of not being able to
maintain speed in traffic scenarios involving frequent turning. However, in scenarios
with longer distances and more straight roads, we were able to achieve relatively
higher speeds as well as a high accuracy for the path tracing. Yet, the acceleration
of the simulated drones were considerably lower than the SVs.

In the initial phase of this thesis, the problem investigation, we identified that
a great issue with traditional field testing of VANET-protocols is that they are
expensive and resource demanding. From our simulated testing, it seems like the
design of our artifact can help addressing this issue. Even though our testbed is
more of a hybrid nature, both vehicle mobility and communication is realized in the
real world. Since drones are usually cheaper than vehicles traditionally used in field
testing of VANET-protocols, we believe that our proposed design using drones can
significantly reduce the costs involved with conducting tests that are fairly close to
reality, even though real cars are used.

Additionally, we argue that the resources needed to conduct testing can be
significantly reduced with the proposed solution. Due to drones being relatively
small and lightweight, they can be transported more easily to the test location.
Additionally, if the UAVs used in the test are configured correctly and ready to fly,
one would only have to attach OBUs, turn them on and run the testbed. We argue
that in addition to reducing resources needed, this also facilitates rapid testing.

With this, we predict that our design will succeed in treating the main issues
that we aim to address, to a certain degree.

Experiments: Setup and Execution

This chapter present the experimental setup and execution for simulated scenarios
and real world scenarios. We begin by describing the aspects of the simulated
experiments, then we present the details for the real world experiments. Experiments
with simulated drones were conducted as part of the treatment validation, as well as
to collect and analyze data regarding to what degree drones succeeded in duplicating
the behavior of SVs. The real world experiments were conducted to observe the
behavior of the testbed in the real world, and is part of the treatment implementation.
Scenario 1 and Scenario 2, presented in the next section, were executed in simulated
and real life environments for comparison purposes. The results are used in the
validation and evaluation of the testbed.

The results gathered from the experiments are also used a baseline for answering
our research questions.

5.1 Simulated Experiments

5.1.1 Setup

To conduct simulated experiments, we design two different traffic scenarios. As we
would like to compare simulated results to real life tests, we design traffic scenarios
that can be used for both experiments. Therefore, these scenarios are based on the
limitation of the flight area, Udduvoll Airfield in Trondheim, which is why the traffic
scenarios are not very large in size.

Scenario 1, shown in Figure 5.1, is a two-lane road that goes in a straight line,
before curving at each end. The shape of the road in Scenario 2, shown in Figure 5.2,
is an irregular circle. The yellow car in each figure illustrate the starting point for
the SV and the drone. Both of these scenarios only involve one vehicle each. The
illustrations are screenshots from the netedit Graphical User Interface (GUI). In the
bottom left of each figure is a scale to give an impression of the size of the traffic

47

48 5. EXPERIMENTS: SETUP AND EXECUTION

Figure 5.1: Scenario 1

scenarios. In both scenarios, the SV simulated in SUMO is moving in a continuous
fashion, without stopping. The speed is regulated my a max speed indicator. This is
set to an equal value for drones and simulated vehicles in each test. For each scenario
we execute three tests with different maximum speeds.

In addition to these two main scenarios, we design one more to verify the scalability
of the testbed. In this traffic scenario we conducted four experiments, increasing the
number of vehicles in each one. The number of SVs and UAV used for these tests
were 1, 3, 5 and 10. In the Appendix B.2 illustrate this scenario and the starting
points for each vehicle.

5.1. SIMULATED EXPERIMENTS 49

Figure 5.2: Scenario 2

Table 5.1 Software used for simulated testing

’ Tool H Version Role

ArduPilot 3.6 UAV SITL simulation

SUMO 1.8.0 Vehicle simulation

QGroundControl 4.1 UAV monitoring and
safety measures

netedit 1.8.0 Creation of network files

geoLocate.py - Georeferencing network
files

collect.py - Data collection from UAV

Table 5.1 summarizes the tools and scripts utilized to execute the simulated
experiments and to collect data. collect.py has not been mentioned before, and is
a simple script we made which connects to a UAV and queries data on speed and
location at a specified time interval.

QGroundControl is used to get a visual overview of UAVs. In addition, it lets
us monitor the location of drones on a map, as well as their speed and altitude.
However, the most important aspect QGroundControl is used for, is its built in safety

50 5. EXPERIMENTS: SETUP AND EXECUTION

features and failsafes. Even though these failsafes are not as crucial in simulated
environments, we wanted to conduct simulated experiments as close to reality as
possible.

5.1.2 Execution

For Scenario 1 and Scenario 2, we iterated the steps in the activity diagram from
Figure 4.4 for conducting simulated experiments. First, we conducted the preliminary
steps of creating the traffic scenarios in netedit, and using geoLocate.py to georeference
the network files to our wanted location, in this case, Uddevoll Airfield in Trondheim.
Next, we initialized the UAV with ArduPilot SITL. When simulating a drone through
ArduPiot SITL a program called MAVProxy is automatically started. MAVProxy is
used to merge outgoing MAVLink datastreams into one, and allows us to connect
to simulated drones through multiple data streams simultaneously. Finally, we
connected QgroundControl and collect.py to the simulated drone before configuring
and initializing our implemented interface.

In our interface we added some code to collect position- and speed data from the
SV. We gathered data from the SV at each simulation timestep. To obtain granular
data, we specified a small simulation time step length of 0.1 seconds. collect.py
was set to querying the drone for data at the same interval of 0.1 seconds. When
decreasing this interval more, we experienced a lot of duplicate position data when
querying the drones. With longer intervals, we observed the captured data was not
detailed enough and did not capture important data points from the SVs or the
UAVs. This would make the results from DTW difficult to interpret.

We conducted three experiments for Scenario 1 and three experiments for Scenario
2, changing the max speed for the drones and SV each time. We tested each scenario
at max speeds of 5m/s, 10m/s and 15m/s. After each experiment, we had obtained
multivariate time-series data from the SV and drone, with the same sample frequency.
A simple illustration of the experimental setup is shown in Figure 5.3. The interface,
depicted yellow is the only component actively controlling the movement of the drone.
QGroundControl does not actively control the drones, but is able to take control
if a safety-event is triggered. After executing the tests, we formatted the collected
data to CSV-format to perform further analysis. To compare the trajectories of the
simulated vehicles and the drones, we utilized DTW with some modifications to fit
our data. The results from conducting the experiments as well as data analysis can
be found in chapter 6

After conducting experiments for Scenario 1 and Scenario 2, we conducted
four multi-vehicle experiments in a new traffic scenario. As mentioned, these four
experiments were conducted with 1, 3, 5 and 10 vehicles. For each experiment, we
initialized the same number of simulated drones with ArduPilot SITL as the number of

5.1. SIMULATED EXPERIMENTS 51

ArduPilot SITL

MAVProxy
TCP TCP
8100 8877

I/i"\
SUMO 6 0 Interface QGroundControl| collect.py

Figure 5.3: Setup for single-vehicles experiments. The numbers indicate TCP ports.

SVs. We again connected QGroundControl to the drones and configured our interface
with the correct parameters to be able to communicate with all drones simultaneously.
We did not collect data from these experiments as they were only intended to test
the scalability of the testbed. A simple illustration of the experimental setup with
multiple vehicles in a simulated environment can be found in Appendix B.1. This
figure shows the architectural setup when conduction simulated experiments with
two drones. However it is easily extended to more drones by just starting more
instances of ArduPilot SITL and MAVProxy and connecting QGroundControl and
out interface to them.

52 5. EXPERIMENTS: SETUP AND EXECUTION

5.2 Real world Experiments

To iterate the implementation phase of the engineering cycle, we executed real life
tests using our testbed. We did not conduct testing with OBUs attached to drones,
as we were no able to obtain any VANET-protocols to test. Even though this means
that the real world experiments were not conducted completely in the context of
VANET protocol testing, we argue that the results are still sufficient concerning our
research questions.

5.2.1 Setup

Three experiments were conducted in a real world environment. First, we conducted
experiments with Scenario 1 and Scenario 2, one experiment for each scenario. We
then attempted a multi-vehicle experiement, although we only had access to two
drones.

Compared to the simulated tests presented in the last section, some architectural
changes were needed. First of all, we swapped the drones originally simulated with
ArduPilot SITL with real, Intel Aero RTF drones. In doing this, we also had to swap
the communication link between the GBC and the drones. In the simulated scenario,
our interface communicated with the drones over a link-local TCP connection. For
the real life experiments, this communication was done over telemetry instead. For
this, our Intel Aero RTF drones and the GBC were equipped with telemetry radios.
On the drones, the telemetry radio was connected through a serial port, directly
communicating with the FC and attached with adhesive tape on the top of the drone
body, shown in Figure 5.4 . To the GBC they were connected through USB. On the
GBC, the telemetry radio was connected through a USB port. Figure 5.5 illustrates
the architecture for the real life tests for the single-vehicle scenarios, Scenario 1 and
Scenario 2. The box colored in gray illustrates a handheld RC transmitter that was
used as a backup link to regain to control of the drone in case of communication
failure between it and the GBC.

For data collection in the experiments with Scenario 1 and Scenario 2 in the real
world, the same approach that was used in the simulated experiments was utilized,
with one additional step of monitoring packet loss. This additional step was done by
keeping track of how many commands were sent from the interface and comparing it
to how many commands were received by the UAV. To obtain the number of sent
packets, we added some code in the interface that accumulated the number of packets
sent. To obtain the number of received packets, we extracted the logs stored locally
on the drones after each flight.

Before using the drones, we had to update their firmware. We followed a compre-

5.2. REAL WORLD EXPERIMENTS 53

Figure 5.4: Telemetry radio is attached on top of a drone

elemet
Radio

MAVProxy

QGroundControl | collect.py

AN

Figure 5.5: Setup for single-vehicle experiments in the real world. The numbers
indicate TCP port numbers

54 5. EXPERIMENTS: SETUP AND EXECUTION

Figure 5.6: Snapshot of accelerometer calibration process in QGroundControl

hensive guide by Intel' for the initial installation of ArduPilot on the Intel Aero RTF.
After flashing the BIOS and FPGA with the correct firmware and installing ArduPi-
lot, we did an initial calibration of different sensors like compass, accelerometer, and
gyroscope using QGroundControl. Figure 5.6 shows a snapshot of the calibration
process for the accelerometer. After calibration, we performed tests to verify correct
operation of both drones. We did this by conducting test flights, both manually
controlled with the RC transmitter and programatically with Guided flight mode.
This did unfortunately not go as planned.

While conducting test flights, we found that only one of the drones was working as
expected. The second drone had frequent, irregular failures in the GNSS-system and
the magnetometer, i.e,. the compass. This resulted in aggressive behavior, fly-aways
and several crashes. After some investigation and studying logs, we believe the most
likely cause is due to hardware failure or compatibility issues. Several attempts
were made to remove the seemingly arbitrary sensor failures. Among these were
re-calibration, software re-installation and changing software used for calibration and
many hours of debugging. We were not able to isolate the culprit causing the issues.

A lot of time was spent getting comfortable with flying the functioning drone
manually in different flight modes. This was so that we would be able to retake
manual control should something go wrong while flying.

We also had to adjust the center of gravity on the drones. The Intel Aero RTF
drone has a open compartment in the middle of the chassis that is meant to hold the
LiPo battery that powers it. The 3S LiPo battery used in our experiment was too
long to keep the center of gravity balanced enough when inserted. This lead to the

Installing ArduPilot on the Intel Aero RTF: https://github.com/intel-aero/meta-intel-
aero/wiki/02-Initial-setup

5.2. REAL WORLD EXPERIMENTS 55

Figure 5.7: Battery position after adjustment

drones being imbalanced and not unable to keep a stable enough position. To adjust
for this, we removed one of the pillars used to separate the upper and the lower part
of the chassis. After this adjustment, the drones were able to maintain a more stable
position while airborne. The result from this adjustment is shown in Figure 5.7.

Even though we only had one fully operation drone, we decided to attempt a
multi-vehicle experiment using our testbed. For this, some additional setup was
needed. We first designed a new traffic scenario in netedit, involving two vehicles. We
also had to configure each drone and and the telemetry radios to correctly address
traffic between the GBC and the drones. For configuring the drones, we changed the
a system parameter called SYS_MAVID. No drones participating in a multi-vehicle
test should have this parameter set to the same value. Additionally, each pair of
telemetry radios were given a common Net ID to separate data streams. These
configurations were done using a GCS called Mission Planner?, due to lack of support
from QGroundControl.

The architectural setup and traffic scenario for this experiment can be found
in Appendix C. Most of the equipment used for this experiment can be seen in
Figure 5.8.

2Description of Mission Planner: https://ardupilot.org/planner/

56 5. EXPERIMENTS: SETUP AND EXECUTION

Figure 5.8: Equipment used for multi-vehicle experiment

Table 5.2 Software used for real-life testing

Tool Version Role

MAVProxy 1.8.32 Merge and split telemetry
data

ArduPilot 3.6 UAV software

SUMO 1.8.0 Vehicle simulation

QGroundControl 4.1 Manual UAV monitoring

netedit 1.8.0 Creation of network files

geoLocate.py - Georeferencing the net-
work file

collect.py - Data collection from UAV

Table 5.3 Hardware used in real-life testing

Tool

Role

Intel Aero Compute board

Linux board running ArduPilot

STM32 Microcontroller

FC running ArduPilot

Intel Aero RTF

UAV

HolyBro Tranceiver telemetry radio
433MHz

Telemetry Communication

Spektrum DXe RC Controller

Backup control link

3S 5000mAh LiPo battery

Power supply for UAVs

Laptop computer

GBC

5.2. REAL WORLD EXPERIMENTS 57

5.2.2 Execution

After the initial steps of updating drones, getting comfortable flying manually, as well
as making the architectural changes needed for drone communication, we were ready
to perform real world experiments. Again, we iterated the steps from the activity
diagram in Figure 4.4. We travelled to Udduvoll Airfield in Trondheim, a airfield
for model airplanes, and calibrated the sensors on the drones again. To calibrate all
sensors should not be necessary, but the compass should be re-calibrated each time
the flight location is changed to account for variations in magnetic field. Even though
the intention of the testbed is to attach OBUs to the drones, we did as mentioned
not have access to any potential VANET-protocols implemented on OBUs that were
small enough to be attached to our drones such as a smart phone. Therefore, no
OBUs were included in these experiments.

First we performed one real world test with Scenario 1 and Scenario 2. For each
test, the maximum speed of the SV and the drone was set to 5m/s.

We placed the drone on the airfield and continued by starting MAVProxy manually.
Then, we connected QGroundControl and collect.py to the drone through MAVProxy.
After starting these processes we configured the testbed to also connect to the drone
through MAVProxy. Finally we started our interface and closely monitored the drone
as well as the SV in SUMO.

A couple of tries was needed to conduct a successful experiment. In the beginning,
we experienced issues with the airborne drone suddenly stopping and returning to the
launch site. With some investigation it was discovered the telemetry radio did not
deliver the 300 meters range of communication as first thought. We were only able
to reach a maximum range of approximately 50 meters. When the drone experienced
loss of radio signal, QGroundControl would activate a safety measure where the
default behavior is enter RTL flight mode. By keeping the telemetry radio connected
to the GBC up in the air, we were able to extend the range a little but, but not
nearly enough. We also tried changing the placement of the radio on the drone, with
little success. In the end, although not an optimal solution, this issue was mitigated
by walking after the flying drone while carrying the GBC, to keep it within range.
With this, the tests were executed successfully, from launch to landing. The results
from these experiments can be found in chapter 6.

Finally, we attempted the multi-vehicle experiment. We experienced both drones
taking off successfully, going to their correct starting points and flying along the path
of their respective SV. However, after a while, the unstable drone had a malfunction
in the magnetometer and started to rapidly descend while flying away. We did not
manage to regain manual control in time to avoid a crash. However, the drone did
not suffer major damage. The fully functioning drone completed its route and landed

58 5. EXPERIMENTS: SETUP AND EXECUTION

safely back at the launch site. Even though this experiments was not fully successful,
our testbed controlled both drones successfully until the malfunction. For safety
reason, we did not conduct any more multi-vehicle experiments after this.

Results

In this chapter we present results from our experiments. This includes results from
fully simulated and real world tests. We first present the results from the simulated
experiments. Then, the results from the real world tests are presented.

6.1 Simulated Experiments

The simulated experiments were mainly executed as part of the validation step of
the design science cycle, and to predict the behavior of the drones in real life. In
addition to the experiments mentioned here, simulated testing was conducted several
times throughout development to verify correct operation and uncover bugs and
other issues. We present the results from the single-vehicle experiments first. Then,
in subsection 6.1.3 we present the results from the multi-vehicle experiments.

6.1.1 Travel Time

To compare the temporal similarity between movement of the SV and the UAV in
Scenario 1 and Scenario 2, we recorded total travel time. Concerning the SV, the
time was recorded from the timestep it was added to the simulation, until it finished
its route. For the UAV, we recorded the time from when it had reached its starting
point and until it entered the RTL flight mode. The times are listed in Table 6.1.

59

60 6. RESULTS

Table 6.1 Time spent to complete route, simulated experiments

Scenario H speed SV UAV
Scenario 1 5 mps 87.7 seconds | 123.3 seconds
Scenario 1 10 mps 52.9 seconds | 98.2 seconds
Scenario 1 15 mps 42.5 seconds | 95.2 seconds
Scenario 2 5 mps 57.4 seconds | 99.8 seconds
Scenario 2 10 mps 30.1 seconds | 99.2 seconds
Scenario 2 15 mps 22.5 seconds | 95.5 seconds

The collected data shows that the UAV spent more time than the SV to completing
its route in all experiments. To determine what caused this, we plot the speed for
both the SV and the UAV for every test. Figure 6.1 and Figure 6.2 illustrates the
speed the SV and UAV for Scenario 1 and Scenario 2 respectively. The graphs colored
red depict the speed of the SV in the given scenario. The graph colored blue depict
the speed of the UAV.

Several observations can be made from these figures. The first observation is
that in almost all scenarios, the SV reaches the maximum speed while the UAV
does not. The exception to this is Scenario 1 with a maximum speed of 5m/s
(Figure 6.1a), where the drone is able to reach the max speed twice while travelling
on the straight segments of the route. The second observation is that the drone
generally exhibits lower acceleration than the SV. The third observation is that the
differences in behavior between the SV and UAV is most prominent while turning.
This can especially be observed in the graphs related to Scenario 2 (Figure 6.2). In
these experiments, the SV accelerates and maintains the max speed throughout the
whole experiment, while the speed of the drone is more unstable and generally lower
than the SV. The final observation is that when the maximum speed is decreased,
the difference between the speed of the SV and the UAV also decreases, resulting in
a lower difference in travel time.

To summarize, these graphs show that the drone generally obtain lower speeds
than the SV and thus spend more time completing a route. However, as the maximum
speed is decreased, the drone gets closer to keep up with the speed of the SV. These
observations will be further discussed in the next chapter.

6.1. SIMULATED EXPERIMENTS 61

speed inm/s

0O 250 500 750 1000 1250

(a) 5 m/s maximum speed

10

speed in m/s

0 200 400 600 800 1000

(b) 10 m/s maximum speed

15

10

speed in mjs

0O 200 400 600 800

(c) 15 m/s maximum speed

Figure 6.1: Graphs illustrating the speed of SV (red) and UAV (blue) in fully
simulated experiments, Scenario 1.

62 6. RESULTS

+

speed in mfs

N

0O 200 400 600 800 1000

(a) 5 m/s maximum speed

10

speed in m/s

0O 200 400 600 800 1000

(b) 10 m/s maximum speed

15

10

speed in mys

O 200 400 600 800

(c) 15 m/s maximum speed

Figure 6.2: Graphs illustrating the speed of SV (red) and UAV (blue) for fully

simulated experiments, Scenario 2

6.1. SIMULATED EXPERIMENTS 63

6.1.2 Path Tracing Accuracy

For measuring the spatial similarly between the trajectory of the SV and the UAV
we utilize DT'W, presented in section 3.6, with the Haversine formula (described in
section 3.7) as the distance function for constructing distance matrices. Similarity
measurements for the path of the UAV and SV are only presented for the experiments
conducted at a maximum speed of 5m/s. This is because we will compare the results
with the experiments conducted in real world, which were conducted in at a maximum
speed of 5m/s.

Figure 6.3 and Figure 6.4 illustrate the results from DTW for Scenario 1 and
Scenario 2 respectively. The red line illustrate the path of the SV in SUMO. The red
dot illustrate the starting point for the drone and the SV. The plotted line with color
mapping illustrate the path of the drone. The colormapping indicate the distance in
meters between the path of the UAV and the SV at any given geographical location,
according to the optimal warping path. The x-axis depict the longitude of a point,
and the y-axis depict the latitude.

From these figures it can be observed that the drone in general follow the path of
the simulated vehicle accurately. We see however, some segments, where the distance
between trajectories exceeds 2 metres in Scenario 1 and 1.4 metres in Scenario 2.

2.5
63.3200
63.3198 2.0
63.3196

1.5
63.3194

1.0
63.3192

0.5
63.3190

10.2710 10.2715 10.2720 10.2725 10.2730 10.2735 10.2740

Figure 6.3: Distance measures for scenario 1

64 6. RESULTS

63.3201 1.6
63.3200 1.4
63.3199 1.2
63.3198 1.0

0.8
63.3197

0.6
63.3196

0.4
63.3195

0.2
63.3194

10.2720 10.2725 10.2730 10.2735

Figure 6.4: Distance measures for scenario 2

800
700
600

500
400
300
200
100

00 200 400 600 800 1000 1200 200 400 600 800

(a) Scenario 1 (b) Scenario 2

Figure 6.5: Optimal warping paths for Scenario 1 and Scenario 2, in simulated
experiments

Figure 6.5 illustrates the distance matrices between the trajectories of the SV and
the drone, in both scenarios. The red line depict the optimal warping path between
the trajectories. The warping generally follows the diagonal, illustrating that there
is generally good spatial alignment between the trajectories in both scenarios, even

6.1. SIMULATED EXPERIMENTS 65

though they do not alight in time.

6.1.3 Multi-vehicle Experiments

As mentioned, experiments with multiple vehicles was conducted to test the scalability
of the testbed. In all experiments, the testbed behaved as intended. First, all drones
ascended to the correct height and travelled to their respective starting points.
When all drones had reached their starting points, they all started duplicating the
route of their respective SV. Every drone entered RTL mode when finished with its
route, returned to the home location, and landed. Table 6.2 summarize the results.
Figure 6.6 shows a snapshot from QGroundControl while the experiment with 10
drones was running. The red line shows the mobility trace for one of the UAVs.

Table 6.2 Results from multi-vehicle experiments

Number of vehicles Success ‘ Remarks

1 Yes Experiment executed successfully
3 Yes Experiment executed successfully
5 Yes Experiment executed successfully
10 Yes Experiment executed successfully

ARDUPILOT

Osrare

Figure 6.6: Snapshot of multi-vehicle experiment with 10 drones

66 6. RESULTS

6.2 Real World Experiments

The real world experiments were conducted as part of the implementation phase of
the design science cycle, to evaluate the behavior of the testbed in a real world context.
Due to time limitations, we did not conduct testing of an actual VANET-protocol,
and thus did not attach OBUs do the drones.

In subsection 5.2.2, we described how the real world experiment with multiple
drones unfolded. As it was not fully successful, and no valuable data beyond that
was obtained, we will only present the results from the single-vehicle experiments.

6.2.1 Travel time

As with the simulated experiments, we also gathered data on travel time in the real
world experiments. The results were gathered in the same way as in the simulated
experiments. Table 6.3 shows the travel time of the SV and UAV in Scenario 1 and
Scenario 2.

Table 6.3 Time spent to complete route, real world experiments

Scenario H speed SV UAV
Scenario 1 5 m/s 87.7 seconds | 111.3 seconds
Scenario 2 5m/s 57.4 seconds | 83.4 seconds

As expected, in both scenarios, the SV spends the same amount of time on its
route as in the simulated experiments. Again, the drones spend more time completing
their route. We plot the speed of the drone and the SV in both scenarios, shown in
Figure 6.7.

Most of the observations we saw from the simulated experiments can also be seen
here. In both scenarios, the SV maintains the maximum speed during most of the
experiment, while the drones do not. Again, we see the the biggest speed difference
between the SVs and the drones happens in the turns. Also, again, the acceleration
of the drones is lower than for the SV.

In Figure 6.8, we have plotted the speed of the drones in the real world experiment,
and the speed for the simulated drones in the same scenario, to illustrate the
similarities. Although shifted in time, the graphs have a similar patterns in both
scenarios. For Scenario 1, there is an anomaly between around 60 and 80 seconds in
to the experiment, where the real drone experienced a rapid drop in speed which the
simulated drone did not. This was caused by a sudden loss of altitude, in which the
drone recovered its altitude before continuing its path.

6.2. REAL WORLD EXPERIMENTS 67

speed in m/s

0 250 500 750 1000

(a) Scenario 1: 5m/s maximum speed

speed in mfs

0 200 400 600 800
(b) Scenario 2: 5m/s maximum speed

Figure 6.7: Graphs illustrating the speed of SV (red) and UAV (blue) in real life
experiments

68 6. RESULTS

4 W
; | M

o 200 400 6(50 800 1000 1200
Sample time in deciseconds

w

speed in m/s

(¥

(a) Scenario 1: 5m/s maximum speed

Lt =
_
—
—
B—

speed in m/s

(¥

0 200 00 800 800 1000
Sample time in deciseconds

(b) Scenario 2: 5m/s maximum speed

Figure 6.8: Graphs illustrating the speed of the real drone (purple) and the simulated
drone (orange) in identical scenarios

6.2.2 Path Tracing Accuracy

We use the same approach for calculating spatial similarity between the UAV and
the SV, using DTW with the Haversine formula as the distance function.

Figure 6.9 and Figure 6.10 show the result of this operation for Scenario 1 and
Scenario 2 respectively. Again, we observe that the drone generally follows the path
of the SV well. However, as in the experiment with simulated drones , the distance
between the trajectories in some segments are larger than in others. Furthermore,
we observe that these are the same segments as in the simulated experiments.

6.2. REAL WORLD EXPERIMENTS 69

63.3200

63.3198

63.3196

63.3194

63.3192

63.3190

10.2710 10.2715 10.2720 10.2725 10.2730 10.2735 10.2740

63.3201

63.3200

63.3199

63.3198

63.3197

63.3196

63.3195

63.3194

Figure 6.9: Distance measures for scenario 1

.

10.2720 10.2725 10.2730 10.2735

Figure 6.10: Distance measures for scenario 2

2.5

2.0

1.5

1.0

0.5

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

70 6. RESULTS

-_

200 400 600 800 1000 100 200 300 400 500 600 700 800

(a) Scenario 1 (b) Scenario 2

Figure 6.11: Optimal warping paths for Scenario 1 and Scenario 2, in real world
experiments

Tllustrated in Figure 6.11 are the distance matrices and optimal warping paths for
the real world experiments. Again, we note that the optimal warping path lies along
the diagonal of the distance matrix, indicating a generally good spatial alignment.

6.2.3 Packet Loss

As mentioned, for the real life experiments, we collected data on packets sent to
the drone and packets received by and executed by the drone. We only counted
packets containing navigation commands, that were generated by the interface in our
testbed. Table 6.4 Show the packets sent and the packets received for each scenario.
We experienced no packet loss for Scenario 1, and 3 lost packets for Scenario 2.

Table 6.4 Packet loss statistics

Scenario Packets sent by | Packets received by
GBC UAV

Scenario 1 116 116

Scenario 2 91 88

Discussion & Conclusion

In this chapter we present our discussion, conclusion and proposal for future work.
We begin by elaborating on the results obtained from the conducted experiments.
Next, we relate the result to VANET and our research questions, and provide answers
to them.

7.1 Experimental Results

7.1.1 Travel Time

From our experiments, we see that the drones spend more time completing a route
compared to the SVs, in both simulated and real experiments. As explained in
subsection 4.6.2, we had to make a trade off between speed and a drones’ ability to
accurately duplicate the path of the SV. This trade-of is mostly visible while turning,
as the drones tend to slow down very much to be able to follow the correct path.
However, we emphasize that without our solution presented in subsection 4.6.2, the
performance would have been much more limited. By tuning the acceptance radius of
each waypoint, we believe that we could have achieved higher speeds for the drones
in all scenarios. However, this would be at the expense of how accurate they would
duplicate the path of the SVs.

Another factor that affected the travel time of the vehicles has to do with
acceleration. The SVs in SUMO has a higher acceleration than the drones. To make
a drone accelerate at the same rate as an SV, we believe a modification of acceleration
parameters in the drone would be sufficient. This can be done pre-flight, through a
GCS that is connected to the drone. However, it may affect a drones ability to stay
stable in the air.

Next, to make the drone be able to maintain the same speed as the SV while
turning, we believe that there are two ways this can be achieved. The first one is
a modification of our implementation of speed control. This may require complex

71

72 7. DISCUSSION & CONCLUSION

changes and fine tuning for each experiment. Another way to go could to adapt the
autopilot-software itself, to better mimic the behavior of cars. However this could
also become rather complex.

Even though there is a notable difference in travel time and speed when comparing
drones with SV, simulated and real drones behave quite similarly. The value of this
is that a user of our testbed can get an accurate representation of how a real world
experiment would unfold by running a simulated experiment first. However, the
simulations does not account for unexpected incidents, like we saw in the real world
experiment of Scenario 1. The unexpected drop in speed was caused by the drone
losing a lot of altitude, and therefore reduced its speed. Instability or sensors faults
may have been the cause of the altitude drop.

7.1.2 Path Tracing Accuracy

For the most part, the drones in the experiments are able to accurately duplicate
the path of the SV. Having said that, in our experiments we observed a couple of
segments where the drone drifted away from the path of the SV. These segments
coincide in the real life tests and the simulated tests.

If we did not conduct simulated experiments, we would mention external factors
like wind or GPS disturbance as a possible cause for this drift in the real world
experiments. However, as the drones in the simulated scenario experienced drift in
the same road segments, we consider this to be unlikely.

Another potential cause we investigated was the precision of the GPS-modules for
the drones and mobility traces in SUMO. If the precision would have been low, this
could be considered as a likely cause for these drifts. For the SV, the GPS-coordinates
in the mobility traces was accurate to less than a millimeter. Furthermore, for the
drones, both simulated and real ones, the GPS-measurements was accurate to around
lem. Thus, we also consider this as an unlikely cause for the drifts.

We believe that it is more likely that some part of the logic we implemented in
the testbed caused the drift in these road segments.

7.1.3 Packet Loss

As presented in chapter 6, we experienced a small packet loss during the real life test
of Scenario 2. We believe there may be two potential causes for this.

Firstly, it may have been caused by poor signal in the telemetry link between
the GBC and UAV. Possible reasons for this include sub-optimal antenna placement

7.1. EXPERIMENTAL RESULTS 73

on the drone, signal blockage by the drone chassis, or signal disturbance from
transmitters used by other pilots in the area.

As described in subsection 5.2.2, we only experienced a maximum range of
approximately 50m when using the radios, and mitigated this by walking after the
drone while flying. This also includes the possibility that the drone temporarily flew
out of range sometime during execution, and lost packets that way.

Although we had a limited number of real world experiments, we experienced
little packet loss. However, we only logged lost packets for single-vehicle experiments.
For multi-vehicle experiments, there may be more disturbance in the radio spectrum
and may lead to more packet loss. We cannot say this for sure as we did not have
the opportunity to test it, but consider it likely.

7.1.4 Multiple Vehicles

We were able to conduct a real world experiment with two drones, albeit it was only a
partial success. However, in simulation, we conducted several experiments with up to
10 simultaneous drones, and did not encounter any issues. We argue that if we would
have had more functioning drones, we would have been able to conduct successful,
multi-vehicle experiments in the real world as well, because we experienced that the
behavior of the drones in our simulated experiments generally coincided with drones
in the real world experiments. Also, we also believe that the real world experiment
with two drones would have executed successfully if the one drone did not encounter
hardware errors.

In theory, our testbed should be able to support 255 simultaneous vehicles, limited
by the specifications of the MAVLink protocol. In practice however, increasing the
number of drones may lead to issues. In one of our real life experiments for instance,
the drone experienced a unintended, rapid altitude drop. When controlling several
drones at the same time, issues like this may lead to collisions and decreased the
reliability of the testbed. Thus, we argue that in general, to conduct real world
assessments of VANET protocols with several UAVs, with low risk of accidents and
collisions, they need to be highly reliable and unlikely to encounter unforeseen events
similar to the one we experienced.

On a final note we would like to emphasize that real world multi-vehicle exper-
iments will not scale well when using the telemetry radios we used in this thesis.
This is because two radios is needed for every drone, on attached the drone, and one
plugged into the GBC. Therefore, we propose to use a multi-point antenna for large
scale, real world experiments. In this way, all drones still need one radio each, but
only one radio needs to be plugged in to the GBC.

74 7. DISCUSSION & CONCLUSION

In short, even though we have conducted successful experiments with several
drones in a simulated scenario, we believe in that practice, improvements to our
solution needs to be made to conduct safe and successful experiments at a large scale.

7.2 RQ1

To discuss how drones can benefit different areas surrounding testing of VANET
protocols, we clarify a few things. Firsty, multi-copter drones come in all shapes and
sizes, with varying capabilities. Drones can be cheap, expensive, small and large.
Also, the quality of sensors and other hardware will also vary, depending on price.
We do not believe that all drones are feasible in terms of replacing cars in field tests
of VANET protocols. The drones used in our experiments are relatively large and
quite slow. However we believe that with the correct type of drone, for the right
price, they can be utilized to benefit testing of VANET-protocols in several ways.

We argue that drones can be used to reduce the costs of performing assessment of
VANET-protocols in a real world environment. As ordinary field tests using cars may
be expensive, currently, simulations are the most widely used method of perform such
assessments. By utilizing drones, we have proposed a way for researchers developing
novel rouing- and data dissemination protocols for VANET to perform assessments of
them in an environment that is closer to reality than simulations, requiring relatively
little equipment, and at a relatively low cost.

We also argue that drones can facilitate rapid testing. Drones being small in
size and relatively light, they can be easily transported. Further, in theory, using
a solution like our testbed, conducting a protocol assessment can be performed by
few people and with little interaction during the execution. Still, preparation like
installing firmware to drones, attaching OBUs and designing traffic scenarios can be
a time consuming process.

Finally, drones can operate in three dimensions, enabling several opportunities.
This can be utilized for collision avoidance by having each drone partaking in an
experiment flying at different heights. It can also be used to emulate changes in road
topology in the vertical space, which facilitates testing a range of different traffic
scenarios. However, this property is not only positive. Adding this extra dimension
means added complexity. It also introduces reliance on each drone, depending on
them to maintain the correct height at all times. For tests with several drones, this
may become a challenge.

However, there are also drawbacks related to using drones instead of cars for
testing VANET protocols.

Firstly, the OBUs used in real field can be large and contain relatively heavy

72. RQ1 75

equipment. To lift heavy equipment, larger drones and larger batteries will be needed.
This may drastically increase their price, making them infeasible to use. Using
drones instead of cars heavily limits the maximum size of the OBU implementing a
protocol to be tested. We believe that, as of today, using drones to test protocols
with standard V2V communication equipment, drones may not be a feasible option.
However for testing purposes, a protocol can be implemented on smaller equipment,
like smart phones, to act like OBUs.

The second drawback is concerning flight time. The drones used for the exper-
iments in this thesis had around 8 to 10 minutes of air time with a fully charged,
4000mAh LiPo battery, without any payload. This means that for long or repetitive
experiments, the batteries would have to be charged or changed frequently. This
may be both cumbersome and time consuming. Compared to cars, which are only
limited by the size of a gas tank, drones have a long way to go in this area.

Finally in relation to safety. When flying drones with any form of automation,
great care has to be taken in relation to safety. If a drone malfunctions, manual
intervention may be needed to land it safely back on the ground. However, if a pilot
is too slow to react, or several drones malfunction at the same time, there is little
one can do to prevent hard landings, crashes or fly-aways. Not only can equipment
be damaged or destroyed, but it can be dangerous to people and property that is not
involved in the test. Also, if a drone is simply turned off during flight, it will fall and
crash on the ground. For ground-based vehicles, simply shutting down the engine in
case of malfunction will only cause the vehicles to come to a stop.

We argue that drones have the ability to mimic the behavior of vehicles. Many
can travel at high speeds, rapidly turn and hover in the air while standing still.
they are also relatively cheap and lightweight. These traits make them suitable
for mimicking the behavior of cars and thus, be used for assessment of VANET-
protocols in a real world environment. However, not being able to carry the weight
of heavy equipment limits their ability to partake in tests with standard hardware
used for communication in VANET. Also, batteries restrict the time that a drone
can be airborne, limiting the duration of any performed test. Despite this, we argue
that in this thesis, we have shown that drones can indeed be utilized as a mean
of realizing simple traffic scenarios at a low costs and little intervention and that
attaching OBUs turns our implementation into a testbed for VANET-protocols. We
do, however, not believe that utilizing drones should, or can, replace ordinary field
tests for conducting rigorous testing that is needed before commercialization of novel
VANET communication protocols. Still, we believe that testbeds using drones can
fill the gap between these field tests and simulated assessments, providing a more
real environment than simulations while requiring less resources than ordinary field
tests.

76 7. DISCUSSION & CONCLUSION

7.3 RQ2

In this thesis we have designed a testbed that projects trajectories from simulated
vehicles in the real world using drones. Several ways of doing this was investigated
while designing the testbed, however all candidates had three common properties.

Firstly, we argue that the mobility simulator needs to be time-discrete, time
driven simulator and microscopic. time-drive and time-discrete, so we can obtain
information from the simulation frequently, and microscopic, so that we can obtain
granular mobility traces and other necessary data from each individual vehicle. For
our testbed, necessary data include information on speed, position and direction of
all simulated vehicles. Being able to extract this information from a simulation is
from our experience enough to project their trajectories to drones in the real world.

The second common factor is that the drones used to project a trajectory of a
simulated vehicle needs to support some level of automation. It does not need to
be fully autonomous, but automatic, in the sense that it should support navigation
commands from a software, and be able to execute them. We believe that apart from
sensors needed to maintain balance, such as a gyroscope and accelerometer, some
system for localization, like for instance GNSS, and sensors to measure altitude, like
a barometer, is needed. GNSS can also provide altitude measurements, although it
is less accurate.

The third and final common factor to the designs we came up with in the initial
design process is that there needs to be some kind of middle-ware between the mobility
simulator and drones. This is needed for mainly two tasks, the first one being to
convert mobility traces into a format that can be interpreted by the drones. The
second task is to control the drones and facilitate indirect communication between
them. One approach for such middle-ware is the interface in our testbed.

We believe that as of now, these three factors are needed to project trajectories
from simulated vehicles to the real world using drones. Our testbed show one
approach using these three properties.

7.4 RQ3

Above, we discussed an overall approach for projecting the trajectories of simulated
vehicles in the real life using drones. Now we will present and discuss how this
integration can be realized in practice, using the design of our testbed as the example.

In the testbed created in this thesis, SUMO is used as the mobility simulator
and TraCl provides easy access to information about each simulated vehicle. The
Intel Aero RTF drones used for our experiment support a high degree of automation

7.5. SUMMARY 77

and can be relatively easily controlled by software. We also created a middle-ware
that extracts data from the simulated environment in SUMO and uses this data to
control the drones.

Because of time constraints, we did not evaluate the potential for other mobility
simulators compared to SUMO. For the drones, the combination of Intel Aero RTF
drones and the ArduPilot autopilot provide a relatively simple way of controlling and
monitoring drones, and thus this combination was used in the experiments. Swapping
the autopilot software and drone brand may lead to different results than ours.

We saw that due to the default behavior or the Intel Aero RTF drone with
ArduPilot, we had to create logic in our interface, presented in subsection 4.6.2, to
make the drones more accurately mimic the behavior of simulated vehicles. We see
this as a workaround and not something that should be a sought after solution. We
argue that a more viable, although complex, approach for handling this problem would
be to create autopilot software for drones that better mimic the behavioral models
of simulated vehicles. Since this changes how a drone maneuvers and accelerates,
we also argue that this cannot be created at the expense of the stability of a drone
while airborne.

To summarize, the testbed designed in this thesis serves as an example on how
to integrate mobility simulators with drone technology to project the trajectories of
simulated vehicles in the real world. Even though we argue that our testbed meets
the requirements to be used for testing routing- and data dissemination protocols for
VANET, we also believe that other variations of this testbed or whole new approaches
can be proposed to largely enhance our results. Variations can include using another
mobility simulator, other drones, or even implement a whole new middle-ware.

7.5 Summary

We argue that through our experimental results, we have shown that drones have
the potential to facilitate a reduction in costs, resources and time for testing novel
protocols designed for VANET and V2V communication. In our experiments, we
have shown that through relatively simple software, we are able to control drones
to mimic the behavior of simulated vehicles, to a certain degree. Our results show
that with our solution, the drones perform well in duplicating the path of simulated
vehicles, but not so well with regards to maintaining correct speed.

We have also shown that our testbed can be used to control multiple drones at
the same time, an important feature of VANET. Although this was only performed
successfully in a simulated environment, we believe that our real world experiment
with two drones would have been successful, if none of the drones had malfunctioned.

78 7. DISCUSSION & CONCLUSION

Next, due to time constraints, we did not conduct any experiments with an
OBU attached to drones, to assess the performance of an actual VANET protocol.
However, we believe that it should not cause issues if the OBUs are small enough to
be carried by the drones.

Finally, we argue that instead of relying on logic implemented in the middle-ware
to adapt the behavior of drones to mimic cars, a more long term solution may be
to create autopilot software for drones specifically designed to mimic the behavior
of vehicles. This should not be at the expense of safety and drone stability while
airborne.

7.6 Conclusion

In this thesis we have proposed and created a testbed for routing- and data dissemi-
nation protocols created for VANET. The solution integrates the mobility simulator
SUMO and real drones to create a testbed where researchers can implement a protocol
on an OBU of choice, attach them to drones, and test its performance in a variety of
traffic scenarios, in a real world environment.

For RQ1, we believe that drones have the potential to be used as a replacement
for cars when testing new routing- and data dissemination protocols for VANET in
the real world, although with several limitations. we do not believe that drones have
the potential to substitute field tests with standard equipment and procedures as a
whole, but that they can be used as a complement to fully simulated testing, in a
more realistic scenario and at a relatively low cost.

Concerning RQ2, we identified three elements that we believe are needed for
projecting trajectories of simulated vehicles in the real world using drones. The
first element is a time-driven traffic simulator with the ability to generate granular
mobility traces of simulated vehicles. The second element is that the drones that are
used are capable of automatic control from some middle-ware sitting between the
drones and mobility simulator, which is the third element.

Finally, for RQ3, the testbed developed in this thesis shows one approach for
realizing the three elements defined in the answer to RQ2. We believe that even
though our integration using SUMO as a mobility simulator with drones running the
ArduPilot autopilot software fulfilled our specified requirements, solutions involving
other mobility simulators, other drones or another way of implementing the middle-
ware could lead to better results.

7.7. FUTURE WORK 79

7.7 Future Work

Several potential areas have been left open for future research. Future work could
concern implementing a routing- or data dissemination protocol for VANET on an
OBU, and perform experiments with the testbed. Then, fully simulated experiments
using a mobility simulator like SUMO and a network simulator like ns-2 could be
performed with the same protocol, and their results compared and analyzed. This
can give insight into how well simulated experiment coincide with experiments in a
real world environment.

Additionally, investigation into different approaches to make drones better mimic
the speed of simulated vehicles can be of value to future expansions of our testbed,
or completely new implementations. This can include deeper analysis into how drone
firmware can be created or manipulated to accomplish this or how it can be done
better in the middle-ware.

Unfortunately, as one of our drones malfunctioned and with no access to more
dromes, a real world test with multiple drones was not fully successful. Additionally,
the short range of our telemetry radios limited the maximum speed on our drones.
Performing real world experiments with multiple vehicles, involving higher speeds
and several drones could provide even more insight into the feasibility of using drones
for testing VANET-protocols in larger scenarios.

Finally, we would have liked to expand the functionality of the testbed to include
support for reactive VANET-protcols. For this to be possible, OBUs would need to
communicate with the drones, and the drones would have to be able to react to the
input from the OBUs.

[Ak12]

[ALJN19]

[BMM13b)]

[BSK*18]

[CIPZ14]

[CMM*16]

[CSAZ09]

References

Mohammed Saeed Al-kahtani. Survey on security attacks in vehicular ad hoc
networks (VANETS). In 2012 6th International Conference on Signal Processing
and Communication Systems. IEEE, dec 2012.

Maytheewat Aramrattana, Tony Larsson, Jonas Jansson, and Arne Nabo. A
simulation framework for cooperative intelligent transport systems testing and
evaluation. Transportation Research Part F: Traffic Psychology and Behaviour,
61:268-280, 2019. Special TRF issue: Driving simulation.

Ardupilot. https://ardupilot.org/ardupilot /index.html. (Accessed on
08/01/2021).

Josip Balen, Josip Matijas, and Goran Martinovic. Simulation and testing of
vanet protocols. 33rd Conference on Transportation Systems with International
Participation Autiomation in transportation 2013, page 4, 01 2013.

Josip Balen, Josip Matijas, and Goran Martinovic. Simulation and testing of
vanet protocols. 33rd Conference on Transportation Systems with International
Participation Autiomation in transportation 2013, page 4, 01 2013.

Dominik S. Buse, Max Schettler, Nils Kothe, Peter Reinold, Christoph Sommer,
and Falko Dressler. Bridging worlds: Integrating hardware-in-the-loop testing
with large-scale vanet simulation. In 2018 14th Annual Conference on Wireless
On-demand Network Systems and Services (WONS), pages 33-36, 2018.

Chen Chen, Yanan Jin, Qingqi Pei, and Ning Zhang. A connectivity-aware
intersection-based routing in VANETs. FURASIP Journal on Wireless Commu-
nications and Networking, 2014(1), mar 2014.

Apratim Choudhury, Tomasz Maszczyk, Chetan B. Math, Hong Li, and Justin
Dauwels. An integrated simulation environment for testing v2x protocols and
applications. Procedia Computer Science, 80:2042-2052, 2016. International
Conference on Computational Science 2016, ICCS 2016, 6-8 June 2016, San Diego,
California, USA.

R. Costa, S. Sargento, R. Aguiar, and W. Zhang. Development of a hybrid
simulation and emulation testbed for vanets. 2009.

81

https://ardupilot.org/ardupilot/index.html

82 REFERENCES

[Dir]

[EZL14]

[GDO1]

[GMSG12]

[Gro21]
[Han18]

[HKP12]

[its]

[JJ11]

[KAA*19)

[KHK]

[KJBN20]

[KJT21]

Directive 2010/40/eu of the european parliament and of the council of 7 july 2010
on the framework for the deployment of intelligent transport systems in the field
of road transport and for interfaces with other modes of transporttext with eea
relevance. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=0J:L:2010:
207:0001:0013:EN:PDF. (Accessed on 06/03/2021).

Elias C. Eze, Sijing Zhang, and Enjie Liu. Vehicular ad hoc networks (vanets):
Current state, challenges, potentials and way forward. In 2014 20th International
Conference on Automation and Computing, pages 176-181, 2014.

Dimitrios Gunopulos and Gautam Das. Time series similarity measures and time
series indexing (abstract only). ACM SIGMOD Record, 30(2):624, jun 2001.

George Giannopoulos, Evangelos Mitsakis, and Josep Maria Salanova Grau.
Overview of intelligent transport systems (its) developments in and across trans-
port modes. JRC Scientific and Policy Reports, 01 2012.

Halvor Groven. Master thesis VANET testbed. https://github.com/halvisg/
Master__thesis_ VANET_ testbed, 2021. (Accessed on 08/01/2021).

Ole Andreas Hansen. Developing a testbed for intelligent transportation systems.
6 2018.

Jiawei Han, Micheline Kamber, and Jian Pei. 13 - data mining trends and research
frontiers. In Jiawei Han, Micheline Kamber, and Jian Pei, editors, Data Mining
(Third Edition), The Morgan Kaufmann Series in Data Management Systems,
pages 585—631. Morgan Kaufmann, Boston, third edition edition, 2012.

its-strat-2010.pdf. https://www.regjeringen.no/globalassets/upload/sd/vedlegg/
rapporter__og_ planer/its-strat-2010.pdf?id=2113950. (Accessed on 06/03/2021).

Nivedita N. Joshi and R. Joshi. Energy conservation in manet using variable
range location aided routing protocol. International Journal of Wireless Mobile
Networks, 3:261-276, 2011.

Anis Koubéa, Azza Allouch, Maram Alajlan, Yasir Javed, Abdelfettah Belghith,
and Mohamed Khalgui. Micro air vehicle link (mavlink) in a nutshell: A survey.
IEEE Access, 7:87658-87680, 2019.

Tae-Hwan Kim, Won-Kee Hong, and Hie-Cheol Kim. An effective multi-hop
broadcast in vehicular ad-hoc network. In Lecture Notes in Computer Science,
pages 112-125. Springer Berlin Heidelberg.

Navid Ali Khan, Noor Zaman Jhanjhi, Sarfraz Nawaz Brohi, and Anand Nayyar.
Emerging use of UAV’s: secure communication protocol issues and challenges. In
Drones in Smart-Cities, pages 37-55. Elsevier, 2020.

Vemema Kangunde, Rodrigo S. Jamisola, and Emmanuel K. Theophilus. A review
on drones controlled in real-time. International Journal of Dynamics and Control,
jan 2021.

https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:207:0001:0013:EN:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:207:0001:0013:EN:PDF
https://github.com/halvisg/Master_thesis_VANET_testbed
https://github.com/halvisg/Master_thesis_VANET_testbed
https://www.regjeringen.no/globalassets/upload/sd/vedlegg/rapporter_og_planer/its-strat-2010.pdf?id=2113950
https://www.regjeringen.no/globalassets/upload/sd/vedlegg/rapporter_og_planer/its-strat-2010.pdf?id=2113950

[KKK*+14]

[Lan]

[LBBW+18]

[LCQ*18]

[LLZ*15]

[MBOH14]

[MHP15]

[MSMEB15]

[MSS17]

[mul]

[Nic13]

[ns2]

REFERENCES 83

Hyunmyung Kim, Taewon Kim, Seongjae Kang, Chongsei Yoon, and Jaeil Jung.
Design of v2x runtime emulation framework for evaluation of vehicle safety appli-
cations. In 2014 4th IEEFE International Conference on Network Infrastructure
and Digital Content, pages 262—268, 2014.

Kun-Chan Lan. MOVE. In Telematics Communication Technologies and Vehicular
Networks, pages 355-368. IGI Global.

Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann,
Yun-Pang Flotterod, Robert Hilbrich, Leonhard Liicken, Johannes Rummel, Peter
Wagner, and Evamarie Wiefiner. Microscopic traffic simulation using sumo. In

The 21st IEEFE International Conference on Intelligent Transportation Systems.
IEEE, 2018.

Lei Liu, Chen Chen, Tie Qiu, Mengyuan Zhang, Siyu Li, and Bin Zhou. A data
dissemination scheme based on clustering and probabilistic broadcasting in vanets.
Vehicular Communications, 13:78-88, 2018.

Wenshuang Liang, Zhuorong Li, Hongyang Zhang, Shenling Wang, and Rongfang
Bie. Vehicular ad hoc networks: Architectures, research issues, methodologies,
challenges, and trends. International Journal of Distributed Sensor Networks,
11(8):745303, aug 2015.

Mohamed Nidhal Mejri, Jalel Ben-Othman, and Mohamed Hamdi. Survey
on vanet security challenges and possible cryptographic solutions. Vehicular
Communications, 1(2):53-66, 2014.

Lorenz Meier, Dominik Honegger, and Marc Pollefeys. Px4: A node-based
multithreaded open source robotics framework for deeply embedded platforms.
In 2015 IEEFE International Conference on Robotics and Automation (ICRA),
pages 6235-6240, 2015.

Nehal Magdy, Mahmoud A. Sakr, Tamer Mostafa, and Khaled El-Bahnasy.
Review on trajectory similarity measures. In 2015 IEEFE Seventh International
Conference on Intelligent Computing and Information Systems (ICICIS), pages
613-619, 2015.

Barakat Pravin Maratha, T. Sheltami, and K. Salah. Performance study of

manet routing protocols in vanet. Arabian Journal for Science and Engineering,
42:3115-3126, 2017.

What is a multicopter and how does it work? https://ardupilot.org/copter/docs/
what-is-a-multicopter-and-how-does-it-work.html. (Accessed on 08/01/2021).

Mangesh Nichat. Landmark based shortest path detection by using a* algorithm
and haversine formula. 04 2013.

The network simulator - ns-2. https://www.isi.edu/nsnam/ns/. (Accessed on
08/01/2021).

https://ardupilot.org/copter/docs/what-is-a-multicopter-and-how-does-it-work.html
https://ardupilot.org/copter/docs/what-is-a-multicopter-and-how-does-it-work.html
https://www.isi.edu/nsnam/ns/

84 REFERENCES

[ns3]

[Opel7]

[PRL*08]

[RGFW15]

[RPVO6]

[SA14]

[SGD11]

[SH1S]

[SMR+19]

[Sto02]

[SVB18]

[Tav]
[TD15]

[Var10]

The network simulator - ns-2. https://www.nsnam.org/. (Accessed on
08/01/2021).

OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org
. https://www.openstreetmap.org, 2017.

Michal Piorkowski, M. Raya, A. Lugo, Panos Papadimitratos, M. Grossglauser,
and J. Hubaux. Trans: realistic joint traffic and network simulator for vanets.
ACM SIGMOBILE Mob. Comput. Commun. Rev., 12:31-33, 2008.

Raphael Riebl, Hendrik-Jérn Giinther, Christian Facchi, and Lars Wolf. Artery:
Extending veins for vanet applications. In 2015 International Conference on
Models and Technologies for Intelligent Transportation Systems (MT-ITS), pages
450-456, 2015.

S. Rajasekar, Philomi nathan Pitchai, and Chinnathambi Veerapadran. Research
methodology. 01 2006.

Surmukh Singh and Sunil Agrawal. Vanet routing protocols: Issues and challenges.
In 2014 Recent Advances in Engineering and Computational Sciences (RAECS),
pages 1-5, 2014.

Christoph Sommer, Reinhard German, and Falko Dressler. Bidirectionally Cou-
pled Network and Road Traffic Simulation for Improved IVC Analysis. IEEE
Transactions on Mobile Computing (TMC), 10(1):3-15, January 2011.

Agachai Sumalee and Hung Wai Ho. Smarter and more connected: Future
intelligent transportation system. IATSS Research, 42(2):67-71, 2018.

Syed Sarmad Shah, Asad Waqar Malik, Anis U. Rahman, Sohail Igbal, and
Samee U. Khan. Time barrier-based emergency message dissemination in vehicular
ad-hoc networks. IFEFE Access, 7:16494-16503, 2019.

Ivan Stojmenovié, editor. Handbook of Wireless Networks and Mobile Computing.
John Wiley & Sons, Inc., feb 2002.

Zsolt Szendrei, Norbert Varga, and Laszl6 Bokor. A sumo-based hardware-in-the-
loop v2x simulation framework for testing and rapid prototyping of cooperative
vehicular applications. In Karoly Jarmai and Betti Bolld, editors, Vehicle and
Automotive Engineering 2, pages 426440, Cham, 2018. Springer International
Publishing.

Romain Tavenard.

Kevin Toohey and Matt Duckham. Trajectory similarity measures. SIGSPATIAL
Special, 7(1):43-50, May 2015.

Andras Varga. OMNeT. In Modeling and Tools for Network Simulation, pages
35-59. Springer Berlin Heidelberg, 2010.

https://www.nsnam.org/
 https://www.openstreetmap.org

[Vir]

[WCC+07]

[WFZ*16]

[Wie14]

[WNF21]

[WSGY19)

[YS04]

[ZHC+10]

REFERENCES 85

Virginia smart roads | virginia tech transportation institute. https://www.vtti.vt.
edu/facilities/virginia-smart-roads.html. (Accessed on 08/28/2021).

S. Y. Wang, C. L. Chou, Y. H. Chiu, Y. S. Tzeng, M. S. Hsu, Y. W. Cheng, W. L.
Liu, and T. W. Ho. Nctuns 4.0: An integrated simulation platform for vehicular
traffic, communication, and network researches. In 2007 IEEE 66th Vehicular
Technology Conference, pages 2081-2085, 2007.

Xiong Wang, Luoyi Fu, Yang Zhang, Xiaoying Gan, and Xinbing Wang. Vdnet:
An infrastructure-less uav-assisted sparse vanet system with vehicle location
prediction. Wireless Communications and Mobile Computing, 16, 12 2016.

Roelf J. Wieringa. Design science methodology for information systems and
software engineering. Springer, Netherlands, 2014. 10.1007/978-3-662-43839-8.

Julia Silva Weber, Miguel Neves, and Tiago Ferreto. VANET simulators: an
updated review. Journal of the Brazilian Computer Society, 27(1), may 2021.

Jian Wang, Yameng Shao, Yuming Ge, and Rundong Yu. A survey of vehicle to
everything (v2x) testing. Sensors, 19(2):334, jan 2019.

Kiyoung Yang and Cyrus Shahabi. A PCA-based similarity measure for multi-
variate time series. In Proceedings of the 2nd ACM international workshop on
Multimedia databases - MMDB '04. ACM Press, 2004.

Sherali Zeadally, Ray Hunt, Yuh-Shyan Chen, Angela Irwin, and Aamir Hassan.
Vehicular ad hoc networks (VANETS): status, results, and challenges. Telecom-
munication Systems, 50(4):217-241, dec 2010.

https://www.vtti.vt.edu/facilities/virginia-smart-roads.html
https://www.vtti.vt.edu/facilities/virginia-smart-roads.html

collect.py

This document contains the code for collect.py, the script used to collect data from a
drone. This script can also be found in the GitHub repository that is complementary
to this thesis, at [Gro21].

A.1 collect.py: Simple data collection script

from dronekit import connect, VehicleMode, LocationGlobalRelative
import time

import datetime

import time

import os

veh = connect ("udp:<drone_IP>:<drone_port>", wait_ready=True)
while not os.path.isfile('/tmp/start_collect'):

time.sleep (0.2)
past_date = datetime.datetime.now ()

while os.path.isfile('/tmp/start_collect'):

loc = veh.location.global_frame
speed = veh.groundspeed

future_date = datetime.datetime.now()
difference = (future_date - past_date)
total_seconds = difference.total_seconds ()

print (str(loc) + "," + str(speed) + "," + str(total_seconds))

time.sleep(<interval_in_seconds>)

87

Multi Vehicle Simulation

This document contains illustration related to simulated multi-vehicle experiments.
Figure B.1 depict the architectural setup for the testbed when conducting experiments
with two drones. This can easily be extended to several drones, by starting more
instances of ArduPilot SITL. Then, connect QGroundControl and our interface to the
MAVProxy instance that is automatically started and paired with the new ArduPilot
SITL instance. Figure B.2 illustrate the traffic scenario we used when conducting
simulated experiments with up to ten drones. The figure in this example illustrate a
scenario with ten simulated vehicles. Each car is represented by a yellow car-shaped
object.

ArduPilt SITL ArduPilot SITL
UAV 1 UAY 2
TCP b TCP
MAVProxy UAV 1 MAVPrOXY UAV 2

‘QGroundControl @ 4

Figure B.1: Architecture for multi-vehicles experiment, two drones

89

90 B. MULTI VEHICLE SIMULATION

Figure B.2: Scenario 3 - Traffic scenario with 10 vehicles.

Real World Multi-vehicle
Experiment

This document contains illustrations and images related to the real world experiment
with two drones. Figure C.1 depict shows the traffic network projected onto a map of
the flight area in the real world. Figure C.2 gives an overview of the equipement needed
to conduct a multi-vehicle experiment with two drones, in the real world. Finally,
Figure C.3 illustrate the architecture of the testbed when conducting experiments
with two drones. Worth mentioning is that this architecture can be extended to more
vehicles by starting more instances of MAVProxy and open more connections from
QGroundControl, the interface, and collect.py to it.

Figure C.1: Real world multi-vehicle traffic scenario

91

92 C. REAL WORLD MULTI-VEHICLE EXPERIMENT

Figure C.2: Equipment used for multi-vehicle experiment

UAV 1 UAV 2

Telem Telem

\
-+

7

MAVProxy UAV 1 MAVProxy UAV 2

‘QGroundControl

collect.py

Interface

Figure C.3: Architecture for real world, multi-vehicle experiment with two drones

O S

w

Testbed Code

This document includes the code we developed for this thesis. The same code, but
including documented methods, as well as installation instructions and example files
to perform simulated tests with two drones have been published on GitHub and can
be found on [Gro21].

D.1 drone.py

Below is the code for the Vehicle class in the testbed. The filename differs from the
class name to avoid conflicts with libraries included in SUMO.

import math

import os

import queue

import threading

from dronekit import VehicleMode
import time

class Vehicle:

def __init__(self, name, pairing):
self .name = name
self .pairing = pairing
self.locationQueue = queue.Queue(maxsize=0)
self .next_step = True
self .prev_location = []
self.set_prev_bearing = 0
self.current_bearing = None
self.drone_turning = False

self .drone_default_alt = 0
self.drone_straight_cycle = 0
self .prev_bearing = 0

def start(self, handler):

93

94 D. TESTBED CODE

thread = threading.Thread(target=self._runLocationQueue,
args=(self.pairing, self.name,
self.drone_default_alt, handler))
handler.drone_threads.append(thread)
thread.start ()

def _runLocationQueue(self, vehicle_obj, vehicle_id, alt, handler):

num_packets_sent = 0

start_point_reached = False
self._armAndTakeoff (vehicle_obj, int(alt))
starting_point = self.locationQueue.get () [0]

print ("Going to start")
self . _gotoStartingPoint (vehicle_obj, starting_point)

handler .update_start_point_reached ()
while not handler.get_start_points_reached_indicator ():
time.sleep(0.1)

start_point_reached = True
vehicle_obj.airspeed = 10

while not handler.simulation_end:
if self.locationQueue.empty():
pass

else:
if not start_point_reached:
starting_point = self.locationQueue.get () [0]
self._gotoStartingPoint (vehicle_obj,
starting_point)
num_packets_sent += 1

start_point_reached = True
prev = self.locationQueue.get ()
prev_a = prev[1]
prev_loc = prev[0]
if prev_a == 1:

vehicle_obj.simple_goto (prev_loc)
num_packets_sent += 1

a =1
while a == 1 and handler.simulation_end is False:
cur = self.locationQueue.get ()
a = cur[1]
loc = cur [0]
if a == 1:

vehicle_obj.simple_goto (loc)
num_packets_sent += 1

82

83

D.1. DRONE.PY

else:
self._leash(vehicle_obj, prev_loc)
num_packets_sent += 1
prev_loc = loc
time.sleep (0.1)
else:
self._leash(vehicle_obj, loc)
num_packets_sent += 1

time.sleep (0.1)

while not self.locationQueue.empty():
prev = self.locationQueue.get ()
prev_a = prev[1]
prev_loc = prev[0]
if prev_a == 1:
vehicle_obj.simple_goto(prev_loc)
num_packets_sent += 1

a =1
while a == 1 and not self.locationQueue.empty():
cur = self.locationQueue.get ()
a = cur[1]
loc = cur [0]
if a == 1:
vehicle_obj.simple_goto(loc)
num_packets_sent += 1
else:

self._leash(vehicle_obj, prev_loc)
num_packets_sent += 1
prev_loc = loc
time.sleep (0.1)
else:
self._leash(vehicle_obj, prev_loc)
num_packets_sent += 1
time.sleep(0.1)

self._leash(vehicle_obj, prev_loc)
num_packets_sent += 1

print ("Number of packets sent:" + str(num_packets_sent))
while not vehicle_obj.mode == VehicleMode ("RTL"):
vehicle_obj.mode = VehicleMode ("RTL")
def _armAndTakeoff (self, vehicle_obj, aTargetAltitude):
print ("Basic pre-arm checks")
while not vehicle_obj.is_armable:

print (" Waiting for vehicle to initialise...")
time.sleep (2)

95

96 D. TESTBED CODE

128

129 print ("Arming motors")

130

131 while not vehicle_obj.armed:

132 print (" Waiting for arming...")

133 vehicle_obj.mode = VehicleMode ("GUIDED")

134 vehicle_obj.armed = True

135 time.sleep(3)

13¢

137 print ("Taking off!")

138

139 vehicle_obj.simple_takeoff (aTargetAltitude)

140

141 while True:

142 print (" Altitude: ",
vehicle_obj.location.global_relative_frame.alt)

143 if vehicle_obj.location.global_relative_frame.alt >=
aTargetAltitude * 0.95:

144 print ("Reached target altitude")

145 break

146 time.sleep (1)

147

148

149 def _gotoStartingPoint (self, vehicle_obj, target):

150

151 current_location = vehicle_obj.location.global_relative_frame

152 target_distance = self._get_distance_metres(current_location,
target)

153 vehicle_obj.simple_goto(target)

154

155 while vehicle_obj.mode.name == "GUIDED":

156 remaining_distance =
self. _get_distance_metres(vehicle_obj.location.global_frame,
target)

157 if remaining_distance <= 1:

158 print (vehicle_obj.airspeed)

159 break

160 time.sleep(0.1)

161

162

163 def _leash(self, vehicle_obj, target):

164

165 current_location = vehicle_obj.location.global_relative_frame

166 target_distance = self._get_distance_metres(current_location,
target)

167 vehicle_obj.simple_goto(target)

168

169 while vehicle_obj.mode.name == "GUIDED":

170 remaining_distance =
self._get_distance_metres (vehicle_obj.location.global_frame,
target)

171 if remaining_distance <= 5:

[

w

D.2. HANDLER.PY 97

break
time.sleep (0.1)

def _get_distance_metres(self, aLocationl, alocation2):

dlat = alLocation2.lat - alLocationl.lat

dlong = alocation2.lon - alLocationl.lon

return math.sqrt((dlat * dlat) + (dlong * dlong)) * 1.113195e5
def _straigth_run(self, vehicle_obj, handler):

prev = self.locationQueue.get ()

prev_a = prev[1]
prev_loc = prev[0]

if prev_a == 1:

vehicle_obj.simple_goto(prev_loc)

a =1

while a == 1 and handler.simulation_end is False:
cur = self.locationQueue.get ()
a = cur[1]
loc = cur[0]
if a == 1:

vehicle_obj.simple_goto(loc)

else:

self. _leash(vehicle_obj, prev_loc)
prev_loc = loc
time.sleep(0.1)

self._leash(vehicle_obj, loc)

D.2 Handler.py

The code for the Handler is presented below.

import math

import queue

from dronekit import connect, LocationGlobalRelative
from numpy import arctan2

import drone

class Handler:

start_points_reached = 0

drones_list = queue.Queue (maxsize=0)
sync_edges = []

step_length = 1

send_interval = 2

98 D. TESTBED CODE

vehicle_list = []

drone_threads = []

simulation_end = False

step_length = -1

drones_list_altitude = queue.Queue(maxsize=0)
available_drones = 0

def __init__(self, step_length, traci):

self.traci = traci
self.step_length = step_length

self.start_points_reached = 0
self.all_startpoints_reached = False
with open('drones.conf', 'r') as drone_conf:

for line in drone_conf:
connection_string, altitude = line.split(" ")
self .drones_list.put(connection_string.strip())
self .drones_list_altitude.put(altitude.strip())
self.available_drones += 1

def update_start_point_reached(self):

self.start_points_reached += 1

if self.start_points_reached == len(self.vehicle_list):
self.all_startpoints_reached = True

else:
self.all_startpoints_reached = False

def get_start_points_reached_indicator(self):
return self.all_startpoints_reached

def _get_bearing(self, latl, longl, lat2, long2):

dLon = (long2 - lomngl)
x = math.cos(math.radians(lat2)) * math.sin(math.radians(dLon))
y = math.cos(math.radians(latl)) x*
math.sin(math.radians(lat2)) - math.sin(math.radians(latl)) *
math.cos (
math.radians (lat2)) * math.cos(math.radians(dLon))
brng = arctan2(x, y)

return math.degrees (brng)
def _send_position(self, traci, sim_vehicle, cur_lon, cur_lat,
straight_indicator):

sim_vehicle.prev_location = [cur_lon, cur_lat]

95
96

97

98

99

D.2. HANDLER.PY

X, y = traci.vehicle.getPosition(sim_vehicle.name)
lon, lat = traci.simulation.convertGeo(x, y)
current_location = LocationGlobalRelative(lat, 1lon,

sim_vehicle.drone_default_alt)

sim_vehicle.locationQueue.put([current_location,

straight_indicator])

def step(self, traci):

self.traci = traci

99

self.send_interval = round(float(l / float(self.step_length)))

arrived_vehicles = traci.simulation.getArrivedIDList ()
for arrived_vehicle in arrived_vehicles:
for v in self.vehicle_list:
if v.name == arrived_vehicle:
self.vehicle_list.remove (v)

for sim_vehicle in self.vehicle_list:

sim_vehicle.next_step = False
X, y = traci.vehicle.getPosition(sim_vehicle.name)
cur_lon, cur_lat = traci.simulation.convertGeo(x, y)
if len(sim_vehicle.prev_location) != 0:
prev_lon = sim_vehicle.prev_location [0]
prev_lat = sim_vehicle.prev_location[1]
if len(sim_vehicle.prev_location) == O:
sim_vehicle.prev_location = [cur_lon, cur_lat]
sim_vehicle.next_step = True
sim_vehicle.set_prev_bearing = True

if not sim_vehicle.next_step:

if sim_vehicle.prev_bearing != O:
sim_vehicle.current_bearing =

self._get_bearing(prev_lat, prev_lon, cur_lat, cur_lon)

if abs(sim_vehicle.prev_bearing -

sim_vehicle.current_bearing) > b:

0,

sim_vehicle.drone_turning = True

traci.vehicle.setColor(sim_vehicle.name, (255,

0))

self._send_position(traci, sim_vehicle,

cur_lon, cur_lat, O0)

0,

else:

traci.vehicle.setColor(sim_vehicle.name, (255,

255))

if sim_vehicle.drone_turning:

114

100 D. TESTBED CODE

self._send_position(traci, sim_vehicle,
cur_lon, cur_lat, 1)

sim_vehicle.drone_straight_cycle = 0

sim_vehicle.drone_turning = False

sim_vehicle.drone_straight_cycle += 1

elif sim_vehicle.drone_straight_cycle %
self.send_interval == O0:
self._send_position(traci, sim_vehicle,
cur_lon, cur_lat, 1)
sim_vehicle.drone_straight_cycle += 1

else:
sim_vehicle.drone_straight_cycle += 1

sim_vehicle.prev_bearing =
self._get_bearing(prev_lat, prev_lon, cur_lat, cur_lon)

else:
sim_vehicle.prev_bearing =
self._get_bearing(prev_lat, prev_lon, cur_lat, cur_lon)

new_vehicles = traci.simulation.getLoadedIDList ()

for new_vehicle in new_vehicles:
self.available_drones -= 1
if self.available_drones < O or self.drones_list.empty():
break
if self.drones_list.empty():
break

traci.vehicle.setMaxSpeed (new_vehicle, 10)

new_drone_connection_string = self.drones_list.get()
new_drone_instance = connect(new_drone_connection_string,
wait_ready=False)
instance = drone.Vehicle(new_vehicle, new_drone_instance)
self .vehicle_list.append(instance)
instance.drone_default_alt =
int (self.drones_list_altitude.get ())
instance.start (self)

print (self.drone_threads)

D.3 traci-script.py

Below is the code for a bare-bones traci-script. The main job of this script is to
increment the simulation step and provide the Handler with information about the
simulated vehicles. This script can be extended with more functionality without
affecting the logic in the testbed that control the drones.

D.4. DRONES.CONF

101

from future_

__ _ import print_function
import time
import traci

import handler

step_length = "0.1"
sumoBinary = "<sumo-gui>" # <sumo-gui>: Path to sumo-gui binary
sumoCmd = [sumoBinary, "-c", "<sumocfg>>", "--step-length", \

step_length] # <sumocfg>: Path to sumocfg file
traci.start (sumoCmd)
step = 0
simulation_end = False
handler = handler.Handler(step_length,traci)

while traci.simulation.getMinExpectedNumber () > O and step < 1000:
handler.step(traci)
traci.simulationStep ()
step += 1
time.sleep (0.1)

handler.simulation_end = True
traci.close(False)

D.4 drones.conf

This is an example of the contents of drones.conf, the file providing the testbed
with details on how to connect to each drone, and their altitude of flight. In this

example, the testbed will connect to five drones, through five different, locally running

MAVProxy instances.

#format: <connection string> <altitude>

udp:127.0.0.1:9001 5
udp:127.0.0.1:9003 10
udp:127.0.0.1:9004 3
udp:127.0.0.1:9005 6
udp:127.0.0.1:9006 12

@ NTNU

Norwegian University of
Science and Technology

sauo0Jq 8uisn $]030104d |INVA J40) pagisa) e Suidojansg

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Related Work
	Scope
	Outline

	Methodology
	The Engineering- and Design cycle
	Problem Investigation
	Treatment Design
	Treatment Validation
	Treatment Implementation
	Treatment Evaluation

	Theoretical Background
	ITS and VANET
	VANET
	V2V/V2I Communication
	VANET Testing

	Hardware
	Drone
	Telemetry Radio
	Flight Controller

	Software
	SUMO
	netedit
	traci
	ArduPilot SITL

	Drone Control
	Ground Control Station (GCS)
	mavlink
	DroneKit-Python
	GNSS
	Flight Modes

	Time Series
	dtw
	Haversine Formula
	Regulations

	Implementation
	Architecture
	Overview
	Detailed Description
	Interface

	Diagrams and Data Flow
	Activity Diagram

	Behavioral Diagrams
	Initialization
	Execution

	Choice of Hardware and Software
	Mobility Simulator
	UAV Communication Protocol
	Autopilot
	Drone
	Telemetry Radios
	Guided Flight Mode

	Component Requirements
	Challenges and Trade-offs
	Network Georeferencing
	Speed Control

	Limitations
	Traffic Scenario Complexity
	Acceleration Control
	Signal Propagation

	Safety
	Treatment Validation

	Experiments: Setup and Execution
	Simulated Experiments
	Setup
	Execution

	Real world Experiments
	Setup
	Execution

	Results
	Simulated Experiments
	Travel Time
	Path Tracing Accuracy
	Multi-vehicle Experiments

	Real World Experiments
	Travel time
	Path Tracing Accuracy
	Packet Loss

	Discussion & Conclusion
	Experimental Results
	Travel Time
	Path Tracing Accuracy
	Packet Loss
	Multiple Vehicles

	RQ1
	RQ2
	RQ3
	Summary
	Conclusion
	Future Work

	References
	collect.py
	collect.py: Simple data collection script

	Multi Vehicle Simulation
	Real World Multi-vehicle Experiment
	Testbed Code
	drone.py
	Handler.py
	traci-script.py
	drones.conf

