Evgenia Kazakova

WireGuard for Securing Constrained
Application Protocol for loT Devices
(CoAP)

Master’s thesis in Communication Technology and Digital Security
Supervisor: Stig Frode Mjglsnes
Co-supervisor: Christian Tellefsen

June 2021

2
4
=
P

°
o
C

c
]

'_

©
C
(8]
[0}
9]
C

o
(&)

(V2]

Y
o

2
(%]
—
[}

2
C

o)
C

ke
Bo
:
o

zZ

258
.59
082
£ cc
=]
c c O
o ErF
©
=)
=
5
(9]
Q
w
°
c
©
o
<)
c
<
o}
'_
c
S
=]
©
€
_
L
=
[
o
=]
(9]
©
[N

C
°
=]
[0}
-
c
=}
€
€
o
O
ie]
c
T
2
—_
=}
o
]
n
C
°
=]
40
€
—
K]
k=
Y
o
—
[N
9]
[a)

@ NTNU

Norwegian University of
Science and Technology

Evgenia Kazakova

WireGuard for Securing Constrained
Application Protocol for loT Devices
(CoAP)

Master’s thesis in Communication Technology and Digital Security
Supervisor: Stig Frode Mjglsnes

Co-supervisor: Christian Tellefsen

June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

@ NTNU

Norwegian University of
Science and Technology

Title: WireGuard for securing Constrained Application Protocol
for ToT devices (CoAP)

Student: Evgenia Kazakova

Problem description:

WireGuard is a cryptographic encapsulation IP tunnel protocol implemented as
a kernel virtual network interface on the Linux kernel. WireGuard has been proposed
as a replacement for IPsec and OpenVPN due to its small code base, faster perfor-
mance, configuration simplicity, and employment of state-of-the-art cryptography.

A major challenge when building Internet of Things (IoT) networks is securing
communication between resource-constrained devices while still achieving adequate
performance. For instance, Constrained Application Protocol (CoAP) is a lightweight
IoT application protocol (Internet Engineering Task Force (IETF) standard) that
adheres to the client/server Representational State Transfer (REST) communication
model. CoAP is based on User Datagram Protocol (UDP) and is often secured using
Datagram Transport Layer Security (DTLS). However, some researchers [GBP121,
RS16] have questioned whether DTLS is the best and most suitable channel security
mechanism in this context, both in terms of performance, functionality, and security.

This master’s thesis work will investigate the feasibility of using WireGuard to
secure IoT communications. Moreover, it aims to study whether it can potentially
be an advantageous replacement for DTLS when securing CoAP. This will be done
by comparing WireGuard and DTLS and determining the necessary resources for
such resource-constrained devices, in terms of computation time, message length,
packet overhead, throughput, power consumption, etc. Analytical findings should be
supported by measurements on an experimental setup.

Date approved: 2021-02-18
Responsible professor: Stig Frode Mjglsnes, NTNU

External supervisor: Christian Tellefsen, Thales

Abstract

With the ever-rising popularity of Internet of Things (IoT) devices,
the issue of securing communication between the constrained nodes in
the IoT network while still achieving adequate speed and performance
is as significant as always. One of the protocols widely used for that
purpose is the Constrained Application Protocol (CoAP). Designed as a
lightweight and optimised version of Hypertext Transfer Protocol (HTTP),
CoAP utilises the client/server REST architecture and runs on UDP. To
secure communication, CoAP uses Datagram Transport Layer Security
(DTLS) protocol. However, prior research and analysis of DTLS security
mechanisms and performance overhead have shown that DTLS is yet to
become the most efficient and secure protocol for IoT communication.

At the beginning of 2020, a new protocol has emerged, which could
potentially solve some of the CoAP/DTLS issues. WireGuard is a crypto-
graphic encapsulation IP tunnel protocol initially designed to implement a
minimal Virtual Private Network (VPN) into the Linux kernel. Similarly
to DTLS, WireGuard runs on UDP; however, unlike DTLS, it is crypto-
graphically opinionated, meaning that it utilises a fixed set of encryption
algorithms. Furthermore, it presents some modifications which make the
protocol more energy-efficient than its alternatives.

This study explores the central security and performance requirements
for IoT devices and summarises them in terms of Confidentiality, Integrity,
Availability (CIA) triad. Furthermore, it presents CoAP in greater detail,
followed by a presentation of DTLS and WireGuard. The fundamental
part of the project is a comparative study between CoAP and CoAP
over DTLS and WireGuard respectively. The reference implementations
of the protocols are used to acquire the necessary data, and the experi-
mental results are evaluated based on the criteria and attributes chosen
beforehand. The results are further used to determine whether it could
be beneficial to use WireGuard instead of DTLS.

Sammendrag

Populariteten til Internet of Things-enheter (IoT) har veert i stadig gkning
de siste arene, og spgrsmélet om hvordan man kan sikre kommunikasjonen
innad i IoT-nettverket og fremdeles beholde tilstrekkelig hastighet og
ytelse er like relevant som alltid. En av protokollene som er mye brukt
til det forméalet er Constrained Application Protocol (CoAP). CoAP
ble designet som en lettere og mer optimalisert versjon av Hypertext
Transfer Protocol (HTTP) og bruker klient / server REST-arkitektur
og kjgrer pa UDP. For & sikre kommunikasjon, bruker CoAP Datagram
Transport Layer Security (DTLS)-protokoll. Tidligere analyse av DTLS
sine sikkerhetsmekanismer og ytelsesomkostninger har imidlertid vist at
DTLS ikke ngdvendigvis er den mest effektive og sikre protokollen for
ToT-kommunikasjon.

En ny protokoll, som fgrst ble presentert i begynnelsen av 2020, kan
imidlertid lgse noen av CoAP/DTLS sine problemer. WireGuard er en
protokoll for kryptografisk innklapsling av IP-tuneller, og ble opprinnelig
designet for & implementere en VPN tjeneste direkte i Linux-kjernen. Til
tross for at bade DTLS and WireGuard kjgrer pa UDP, er WireGuard
cryptographically opinionated, noe som betyr at den bruker et fast sett
med krypteringsalgoritmer. Videre anvender den noen modifikasjoner
som gjgr protokollen mer energieffektiv enn de alternative protokollene.

Denne oppgaven utforsker de sentrale sikkerhetskravene til loT-enheter
og oppsummerer dem med tanke pa CIA triad (Konfidensialitet, Integritet
og Tilgjengelighet). Videre gir den en mer detaljert presentasjon av CoAP,
etterfulgt av en grundigere presentasjon av bade DTLS og WireGuard.
Den grunnleggende delen av prosjektet er en komparativ studie mellom
CoAP, CoAP over DTLS og CoAP over WireGuard. Referanseimplemen-
teringene av protokollene er brukt til & skaffe de ngdvendige dataene, og
de eksperimentelle resultatene er evaluert basert pa kriteriene og attri-
buttene som er valgt pa forhand. Disse resultatene er videre brukt til a
fastslda om det kunne veere fordelaktig & bruke WireGuard i stedet for
DTLS.

Preface

This master thesis was written in the spring of 2021 as the final part
of the five-year Master of Science (MSc) in Communication Technology
program at the Department of Information Security and Communication
Technology (ITIK). The research was carried out between January and
June of 2021.

Firstly, I want to express my gratitude to my supervisors, Stig Frode
Mjglsnes and Christian Tellefsen, for their time, support and guidance
while writing this thesis. Their contributions to this thesis, both in the
form of good advice and encouragement, were greatly appreciated. I have
learned a lot during this project and am very grateful they could share
this experience with me.

Furthermore, I would like to thank our advisor, Laurent Paquereau, for
always answering my questions about courses, exchange year, and various
other questions I have come up with during these last years. I would
also say thank you to my friends from Class 2021 for being incredibly
supportive and pleasant during these past five years. Most importantly, 1
want to thank them for helping me to keep up my courage when writing
this thesis and reminding me to take a break when it was most necessary.

Lastly, I would like to thank our family friend, Natalia Andreassen,
for proofreading my thesis and giving me valuable advice on making it
even better. Last but not least, I want to give a special thank you to my
parents for continuously checking up on me and lifting my spirits even
when I did not think I needed it.

Evgenia Kazakova
Trondheim, June 2021

Contents

Contents vii
List of Figures xi
List of Tables xiii
List of Acronyms XV
1 Introduction 1
1.1 Motivation L 1

1.2 Research questions L oL 3

1.3 Outline e 4

2 Background and related work 5
2.1 Constrained devices and networks, 5
2.1.1 Main IoT security and performance issues 6

2.2 An overview of Constrained Application Protocol 8
2.2.1 CoAP for M2M communication 10

2.2.2 Securing CoAP with DTLS 12

2.3 An overview of Datagram Transport Layer Security (DTLS) 12
2.3.1 CoAP enhanced by DTLS 14

2.3.2 Known vulnerabilities / drawbacks in CoAP and DTLS . .. 16

2.4 An overview of WireGuard L. 17
2.4.1 WireGuard handshake and key exchange 19

2.4.2 Known vulnerabilities / drawbacks 20

2.5 Related work 21
2.6 Contributions Lo 23

3 Methodology 25
3.1 Literaturereview L L L e 25
3.1.1 Selecting a review topic L. 26

3.1.2 Searching for literature 26

3.1.3 Gathering, reading and analysing the literature 27

vii

3.1.4 Writing thereview L Lo
3.1.5 References. L
3.2 Quantitativeresearch oo
3.2.1 Experimental design L.
3.3 Analysing quantitative data
3.3.1 Validity and reliability

Experimental setup

4.1 Testbedsetup e
4.1.1 WireGuard L
4.1.2 CoAP e
4.1.3 CoAP/DTLS« e
414 CoAP/WireGuard

4.2 Data collection and analysis

Findings

5.1 Handshake time
5.2 Round-trip time (RTT)
5.3 Latency
5.4 Throughput

Discussion
6.1 Main security concern for IoT devices using CoAP
6.2 Comparing WireGuard and DTLS
6.3 Using WireGuard for securing CoAP communication
6.3.1 HI1: WireGuard is faster than DTLS when used to secure CoAP
6.3.2 H2: WireGuard adds less overhead than DTLS when used to
secure COAP
6.3.3 H3: It would be beneficial to choose WireGuard over CoAP
rather than DTLS when securing CoAP
6.3.4 Implementing CoAP over WireGuard

Conclusion and Future work
7.1 Conclusion o o 0 e
7.2 Future worko

References

Appendices
A Appendix A

A.1 Tmplementations
A.1.1 WireGuard configuration files
A.1.2 HelloWorld server CoAP

33
33
34
35
36
37
38

41
42
44
45
46

49
49
o1
92

56

58
60

61
61
63

65

71
71
71
72

B Appendix B

B.1 WireShark captures

C Appendix C

C.1 Results

73
73

75
(0]

2.1

2.2
2.3

24

2.5
2.6
2.7

2.8

4.1
4.2

5.1
5.2

5.3

5.4

5.5

6.1

Al

List of Figures

An example of a Constrained-Node Network (CNN): a Wireless Sensor
Network (cf. [TMVFT14]) oo o
Typical HTTP request/response seen in Wireshark.
CoAP request/response examples. (a) CoAP Non-confirmable Message
(NON) exchange; (b) CoAP Confirmable Message (CON) exchange, an
example of a datagram loss being fixed by retransmission using Message

An example of a Web architecture with HTTP and CoAP (cf. [BCS12]
and [Kaz20])
DTLS handshake (cf. [FBIJM™T20])
Abstract Layering of CoAP secured with DTLS
WireGuard codebase compared to other well-known VPN protocols (cf.
[Donl8)) . . . o o
Wireguard Handshake and Key Exchange

The experimental setup L Lo
Setting up wg0 on Alice.

Handshake 4+ one RTT for GET request and one response.
Measured Round-trip Time (RTT) for CoAP, CoAP/DTLS (no hand-
shake), CoAP/DTLS (handshake), CoAP/WireGuard (no handshake)
and CoAP/WireGuard (handshake) respectively.
Measured latency for CoAP, CoAP/DTLS (no handshake), CoAP/DTLS
(handshake), CoAP/WireGuard (no handshake) and CoAP/WireGuard
(handshake) respectively. o Lo
Measured number of packets per second for CoAP, CoAP/DTLS (hand-
shake) and CoAP/WireGuard (handshake) respectively.
Measured throughput in Mbit/s for CoAP, CoAP/DTLS (handshake)
and CoAP/WireGuard (handshake) respectively.

11
11
14
15

18
20

33
35

43

44

46

47

47

A visual depiction of the DTLS and WireGuard handshakes from Figure 5.1 57

Starting the HelloWorld server for CoAP

72

Xi

B.1 CoAP for Aliceasaclient
B.2 CoAP/DTLS for Aliceasaclient
B.3 CoAP/WireGuard for Aliceasa client

5.1

5.2

5.3

5.4

6.1

C1

C.2

C.3

List of Tables

Measured handshake time expressed by the mean of the results obtained
when running the experiment.
Measured RTT expressed by the mean of the results obtained when
running the experiment. Lo
Latency expressed by the mean of the results obtained when running the
experiment. Lo
Measured throughput expressed by the mean of the results obtained when
running the experiment. Lo Lo

The results for the three implementations of the CoAP protocol based on

our experiments, excluding the outlier. (150 GET requests with no delay).

The results for the three implementations of the CoAP protocol obtained
during our experiments. Expressed by calculating the arithmetic mean
and the standard deviation. (150 GET requests with no delay).
The results for the three implementations of the CoAP protocol obtained
during our experiments, excluding the outlier. Expressed by calculating
the arithmetic mean and the standard deviation. (150 GET requests with
nodelay).
The results for the three implementations of the CoAP protocol obtained
during our experiments. Expressed by calculating the arithmetic mean
and the standard deviation. (150 GET requests with 60 ms delay). . . .

44

45

46

55

76

76

xiii

List of Acronyms

AMQP Advanced Message Queuing Protocol.

CBC Cipher Block Chaining.

CIA Confidentiality, Integrity, Availability.
CNN Constrained-Node Network.

CoAP Constrained Application Protocol.

CPU Central Processing Unit.

DDoS Distributed Denial-of-Service.
DoS Denial-of-Service.

DTLS Datagram Transport Layer Security.
ECDH Elliptic-Curve Diffie-Hellman.

HMAC Hash-based Message Authentication Code.

HTTP Hypertext Transfer Protocol.

IETF Internet Engineering Task Force.
IoT Internet of Things.

IP Internet Protocol.

MITM Man-In-The-Middle.

MQTT Message Queuing Telemetry Transport Protocol.

OSCORE Object Security for Constrained RESTful Environments.

XV

pPps packets per second.

REST Representational State Transfer.

RTT Round-trip Time.

TCP Transmission Control Protocol.

TLS Transport Layer Security.
UDP User Datagram Protocol.
VPN Virtual Private Network.
WSN Wireless Sensor Network.

XMPP Extensible Messaging and Presence Protocol.

Introduction

1.1 Motivation

Today, a wide range of various IoT devices is being used in all spheres of life. Smart
homes, smartwatches and smart cars are well incorporated into our day-to-day
life, whilst other types of IoT devices are being used in the fields of healthcare,
transportation [WLP18, ZKKK19], manufacturing and logistics, among others. In
other words, it is becoming more and more common to use such devices for safety and
security-critical applications. According to Gartner [Hunl7], the estimated number
of IoT devices in the world in 2020 was around 20 billion. Furthermore, based on
their research, roughly 25% of all the identified attacks against businesses are IoT
based, making it evident that security plays a pivotal role for IoT devices.

With the fast growth of IoT devices usage, the amount of vulnerabilities to
be exploited is inevitably increasing as well [Asil7]. However, different devices
have particular requirements to be met to function securely and efficiently. These
requirements have created a need for various communication protocols for securing
end-to-end communication in the networks constructed of IoT devices. Among
such protocols are Message Queuing Telemetry Transport Protocol (MQTT) and
MQTT for Sensor Networks (MQTT-SN), Constrained Application Protocol (CoAP),
Advanced Message Queuing Protocol (AMQP) and HTTP for IoT systems.

Two of the most popular messaging protocols for resource constrained devices
such as IoT devices are MQTT-SN and CoAP. Both protocols are able to ensure
bandwidth- and energy-efficient communication [TMVT14] on an acceptable level
and are able to provide security using Datagram Transport Layer Security (DTLS).
The utilisation of DTLS comes from both protocols running on UDP instead of
Transmission Control Protocol (TCP) and thus not being able to rely on Transport
Layer Security (TLS) as an encryption protocol. DTLS was designed to be a UDP
implementation of TLS and consequently provide equivalent security guarantees
[RM12].

2 1. INTRODUCTION

As a consequence of the widespread popularity of IoT devices, a considerable
amount of research discussing current security challenges they face has been pub-
lished [MYAZ15, ZCW™14]. Using protocols tailored to IoT communication is thus
important in order to mitigate these issues as much as possible. Since MQTT-SN and
CoAP are two of the most used IoT protocols, several studies have been conducted
to test the efficiency and security features of MQTT-SN and CoAP. The results
published in various papers show that both protocols provide limited security features
and could easily be subjected to different types of attacks. These attacks include
Sniffing, Spoofing, Denial-of-Service (DoS) and Hijacking [AN19]. In addition, the
protocols are vulnerable to attacks such as Cross-Protocol and Man-In-The-Middle
(MITM) attacks, as well as Replay and Relay attacks [NC20, SHB14].

Since DTLS is often used to secure CoAP, the security of DTLS has also been
broadly researched in the previous years. The research has helped to uncover several
security issues with the protocol. According to [FBJM™20], the protocol could be
subjected to attacks such as Heartbleed, CBC padding oracle and fuzzing'. With
IoT security being a central topic of discussion in the last couple of years, several
potential improvements for DTLS have been proposed [CCCP15, LS14].

Nevertheless, researchers are on the lookout for new possible solutions. One such
solution has recently been introduced in the form of a new encapsulation Internet
Protocol (IP) tunnel protocol called WireGuard. Released on the 30th of March 2020,
WireGuard relies on UDP and operates with a fixed set of encryption algorithms
in order to make it easier to manage. Moreover, WireGuard is not a "chatty"?
protocol [Donl7]. The creators of WireGuard claim it to be the simplest and fastest
VPN protocol while simultaneously being extremely secure. Already a few months
after its release, WireGuard was being discussed as a possible future replacement
for well-known VPN protocols such as OpenVPN and IPSec, which are far more
complex. Furthermore, the previously mentioned characteristics of the protocol show
WireGuard to be an energy-efficient protocol, making it an attractive option for
securing IoT communication. Thus, the protocol has a potential to provide security
and privacy, alongside appropriate speed and performance, to small IoT sensors and
other IoT devices operating with limited battery and storage capacity.

1 The Heartbleed bug allows any malicious user to read the memory of the systems protected by
the vulnerable versions of the OpenSSL software; Cipher Block Chaining (CBC) padding oracle
attack is performed by getting the server to validate the padding of an encrypted message, which can
provide enough data to encrypt and decrypt messages without knowing the encryption key; fuzzing
is an automated software testing technique which involves feeding the system various permutations
of data until some hackable software bugs are found.

2 Chatty means that when there is no data to be exchanged, both peers will stay silent, positively
affecting energy consumption

1.2. RESEARCH QUESTIONS 3

1.2 Research questions

The topic of security and privacy for IoT devices becomes progressively more relevant
the more devices get connected. Moreover, attackers are becoming more innovative
the more information they obtain about the existing IoT communication protocols. At
the same time, many critical infrastructures relying on IoT devices, such as healthcare
and transportation, require a high level of security and performance. However, the
more developed and robust the protocols become, the more heavyweight they may
come to be. Thus, there is a need to look for new solutions, which is one of the
primary motivations for this thesis.

Unlike MQTT-SN, CoAP is specifically designed to run on DTLS. Since DTLS is
the protocol a big part of this thesis will focus on, we will further concentrate our
attention on CoAP, as well as CoAP and DTLS together. The goal of this thesis is
to (i) present both protocols and their main issues, both with regards to security and
performance; (ii) present WireGuard and discuss whether its usage could potentially
be beneficial to CoAP and IoT devices using CoAP, and (iii) run experiments using
CoAP with DTLS and CoAP with WireGuard, compare the results and conclude.
Three research questions (RQs), introduced below, will be used to facilitate achieving
these goals.

e RQ1: What are the main security concerns regarding confidentiality, integrity,
and authentication (the CIA triad) when it comes to communication between
IoT devices using CoAP?

e RQ2: What are the differences and similarities between WireGuard and DTLS
with regards to features and how they operate?

e RQ3: Could WireGuard potentially be used instead of DTLS for CoAP as a
protocol for securing communication?

- RQ3.1: If yes, how?

— RQ3.2: What would be the benefits of doing so and how would it affect
the security concerns mentioned in RQ1, as well as CoAP’s performance?

RQ1 and RQ2 will primarily be addressed in the first part of the thesis and later
summarised in Chapter 6. To support the investigating of RQ3, a set of the following
hypotheses was formed:

e H1: WireGuard is faster than DTLS when used to secure CoAP.

o H2: WireGuard adds less overhead than DTLS when used to secure CoAP.

4 1. INTRODUCTION

e H3: It would be beneficial to choose WireGuard over CoAP rather than DTLS
when securing CoAP.

1.3 Outline
This master thesis has the following structure:

Chapter 2 provides an introduction to the main protocols and their vulnera-
bilities. It also introduces constrained devices and networks, and the main security
challenges faced by the said devices and networks.

Chapter 3 presents the research method used in this study.

Chapter 4 introduces the experimental setup used used to conduct the experi-
ments during our research.

Chapter 5 presents and discusses the results obtained during the experimental
phase of our study.

Chapter 6 discusses the results presented in chapter 4 in light of RQs and
Hypotheses defined in Chapter 1.

Chapter 7 concludes this the master thesis and discusses with the future work
proposed for this topic.

Appendix A includes the client and server configurations, as well as the screen-
shot of the outcome of running the HelloWorld server.

Appendix B presents the screenshots of WireShark captures for the three
implementation of CoAP tested during our experiments.

Appendix C presents the final results in a table format.

Background and related work

This chapter will first focus on explaining constrained devices and networks, along
with some of the security and performance requirements such network and nodes
commonly have. The three main protocols - CoAP, DTLS and WireGuard - will
subsequently be introduced in greater detail, followed by a discussion of their main
shortcomings, discovered and presented in earlier papers. Additionally, some of the
proposed solutions for improving CoAP and DTLS will be mentioned.

2.1 Constrained devices and networks

The use of Internet of Things has been steadily increasing over the last two decades.
With such devices being used for everything from facilitating remote monitoring of
both patients and equipment in healthcare [WLP18] to improving parking systems
in transportation [ZKKK19], the importance of these is evident. As a result of their
popularity and widespread use, it is vital to keep the cost of IoT devices as low as
possible. At the same time, Internet of Things devices are commonly small devices
with limited Central Processing Unit (CPU), storage and power resources, which
tend to operate with limited payload size and insufficient bandwidth [BEK14]. Due
to those restrictions, devices with aforementioned characteristics are often called
constrained devices or constrained nodes. The significance of constrained devices
makes it essential to find an adequate balance between the cost of a device and its
effectiveness.

Constrained devices are often in charge of gathering and storing information,
which is later sent to another IoT device and one or more servers. Depending on the
application, a device might also be in charge of pre-processing the data or perform
some physical action on it, such as displaying it [BEK14, ZKKK19]. Constrained
nodes that are connected and form a network are generally referred to as a constrained
network or CNN. An example of a CNN can typically be a Wireless Sensor Network
(WSN) consisting of nodes with limited resources (Figure 2.1). Nodes in a constrained

5

6 2. BACKGROUND AND RELATED WORK

Server / Broker

\

OJ

—=
Client Client Client

)}\-}»))———»Gmy

} :))))/ /
D)

b

Sensor Nodes

0—

Figure 2.1: An example of a CNN: a Wireless Sensor Network (cf. [TMV™'14])

network might be of different sizes and have different constraints and requirements.
Hence, such networks can display unique constraints, e.g., low throughput, high
packet loss, asymmetric link characteristics and a limit on reachability over time!

[BEK14].

The modern-day connectivity and interactivity between various constrained
devices create a need for communication protocols designed explicitly for such
lightweight machine-to-machine (M2M) communication. CNNs require a protocol
that is not only energy- and bandwidth-efficient but is also capable of securing
connections between constrained nodes.

2.1.1 Main IoT security and performance issues

To understand why particular protocols are better suited for establishing and securing
communication in CNNs, it is necessary to discuss the security and performance
requirements for the IoT devices that compose such networks.

The main goal of information security is to govern the confidentiality, integrity,
and availability of existing information assets, which include information resources
such as data, information, hardware and software [WO20]. These three principles are
commonly recognised as the CIA triad, where confidentiality refers to protecting data
from unauthorised access, and integrity involves securing the data validity against
undesired changes. Availability, in its turn, relates to ensuring the accessibility of
the information to authorised parties and processes in the form and format needed

[WO20.

The security goals of the CIA triad apply to the world of IoT as well. How-
ever, as previously mentioned, small IoT devices, or constrained devices, have a

1Due to limited battery capacity, IoT devices are usually programmed to go to "sleep mode" or
"deep sleep" by default when not used for some time and wake up periodically to perform an action
they are designed for.

2.1. CONSTRAINED DEVICES AND NETWORKS 7

manifold of constraints and limitations when it comes to computational and power
resources. Hence, not all existing practices and protocols are suitable for securing
ToT communication.

The main security challenges with regard to IoT devices can largely be divided
into two main categories: technological challenges and security challenges [MYAZ15].
Alternatively, the two categories can be related to the two main factors IoT security
is influenced by: the diversity of the devices (heterogeneity) and the communication
medium (networking environment) of the IoT devices [ZCWT14].

Technological challenges are often the result of the heterogeneous? nature of the
ToT devices, and are typically related to scalability, wireless technologies and power
constraints [MYAZ15]. Furthermore, low computational power leads to low cognitive
capability, which is becoming a progressively more significant issue as the volume of
data generated by and circulated in the IoT-based network only increases [KOL19].
Another issue related to the heterogeneity of the devices and the vast scale of the
10T is created by the way the devices and programs are designed. Every device is
different and vulnerable in its own way, which creates various possible attack surfaces.
The heterogeneity and the vast number of existing devices make securing all of them
in the same way difficult, creating a complex security problem [MYAZ15]. Adding
standardised security mechanisms for security patching into the devices may be a
possible solution to this issue. However, they too need to be carefully designed to
suit all the platform they may be implemented on.

Other security challenges are related to the fundamentals and functionalities
which should be enforced to achieve a secure network [MYAZ15]. Authentication and
authorisation are among some of the most crucial principles necessary for attaining
secure communication. However, due to the number of different entities involved in
the process, as well as the fact that resource-constrained devices often have to interact
with each other directly, these principles may be hard to obtain [MYAZ15, ZCW*14].

Many IoT devices collect personal data and information about users’ behaviour
and daily routine to enhance the user experience. Furthermore, the devices can
interchange said information with each other to collectively provide better services.
Thus, preserving users’ privacy is another security challenge that cannot be ignored.

When it comes to securing the communication medium used by IoT devices,
the networking environment is generally expected to be heterogeneous [MYAZ15].
However, various communication media may experience different security issues. As a
consequence, the problem of compatibility between the devices from different networks

2 Heterogeneous - composed of parts of different kinds; having widely dissimilar elements or
constituents; varied; diverse (from: Dictionary.com)

https://www.dictionary.com/browse/heterogeneous

8 2. BACKGROUND AND RELATED WORK

arises. The usage of different protocols will make protecting the communication and
the shared data more complex.

The central security and performance issues for resource-constrained devices are
interconnected. To provide adequate security and satisfactory performance, the
protocols have to be suitable for devices with limited computing power and battery
capacity. Many cryptosystems and protocols which have been proposed for IoT and
are considered secure and robust are not a good fit for resource-constrained devices
such as sensor nodes and other smart devices. It imposes certain limitations for the
design and implementation of protocols, especially when it comes to encryption and
authentication of data and key distribution and management. Lightweight solutions
that are compatible with the device capabilities are thus required. Constrained
Application Protocol (CoAP) is one of the existing lightweight communication
protocols that have been proposed to address the networking needs of resource-
constrained devices.

2.2 An overview of Constrained Application Protocol

As defined in RFC 7252 [SHB14], Constrained Application Protocol (CoAP) is a
specialised web transfer protocol based on a request/response interaction model
between application endpoints. Designed as an optimised version of HTTP, CoAP is
widely used for providing and securing communication between constrained nodes in
CNNs. To understand CoAP, we must look at it’s predecessor, HTTP, first.

HTTP is an application-level request /response protocol which has been used since
1990 [FGM196] and is based on Representational State Transfer (REST). REST
is a client/server architecture style which makes information available as resources
identified by Uniform Resource Identifiers (URIs) [BCS12]. To access the resources, a
client must request them using one of the four fixed methods - GET, PUT, POST or
DELETE. HTTP adds several more methods, including HEAD, PUT, CONNECT,
OPTIONS and TRACE [FR14]. Hence, HTTP methods may be used to not only
retrieve, but also create, update and delete resources [MP*].

Using any of the aforementioned methods, a client can initiate a synchronous
request-response communication with a server. A client can either be a user-agent
(most commonly a Web browser), or a proxy sending requests on behalf of the client.
The overall operation of HTTP is defined in RFC2616 [FGM™96] and is described as
follows (Figure 2.2):

1. To send a request to the server, there must be an open TCP connection between
the client and the server. The client can thus either open a new connection or
utilise an already existing one.

2.2. AN OVERVIEW OF CONSTRAINED APPLICATION PROTOCOL 9

2. The client sends a request to the server in the form of a URI and protocol
version (e.g. GET / HTTP/1.1), followed by a MIME3-like message consisting
of an optional set of HT'TP headers, and possible body content. An empty line
before the message body indicates that all the metainformation for the request
has been sent.

3. The server responds with a status line containing the protocol version and a
status code (e.g. 200, 301 or 404) together with a status message (e.g. OK,
Moved Permanently or Not Found respectively). The status message is further
followed by a MIME-like message consisting of an optional set of HT'TP headers
and, depending on the type of request, a body. Similar to the request, a blank
line before the body would separate the metainformation from the body.

GET fdownlosd.htal HTTP/1.1vr\n «<— start line — HITR/1.17366 OKhein
Host: www.ethereal.comrin Date: Thu, 13 May 2084 18:17:12 GHT\r\n
i1l { U; Windows NT 5.1; en-US; rv:il.6) Gecko/29@48113\r\n Server: Apacheirin
apalication/shinlaml, text/htnl ;g=8.9, text/plain; g=0.1 Last-Modified: Tue, 20 Apr 2084 13:17:88 GHT\rin
\n ETag: "Oa@la-4696-7e354b80"\rin
Accept-Encoding: grip,deflate\rin TTP Accept-Ranges: bytes\rin
Accept-Charset: I50-8859-1,utf-B;G=8.7,%;6=0.7\r\n - headers > Content-Length: 18878\r\n

User-Agent :

Eeep-Alive: timeout=15, max=188\rin
Connection: Keep-Aliveirin

al.con/drvelapment. ntal)
81 - confdrvelopnent. il irin Content-Type: text/htal; charset=T50-3855-1\rin

' ; ™
[Eull reguest URL: hitp://ww.sthersal.con/downlosd, hind] <— empty line—» " -“v
[HTTF reguest 1/1] [HTT® response 1/1]
ﬁ [Time since request: 3.935659000 seconds]
[Request in frame: 41
\ »
bOdf [Request URI: http://www.ethereal.com/download.html]

File Data: 13878 Dytes

Figure 2.2: Typical HTTP request/response seen in Wireshark.

As already stated, HTTP is based on design principles of REST, one of which
is statelessness [MP*]. HTTP is a stateless protocol, making each transaction an
independent transaction that is not linked to any other transaction. After a request
is sent and a response is delivered, the session is terminated. The server does not
retain any client session data (state) between two requests. It is, however, possible
to retain a session between a client and a server using HT'TP Cookies, which can be
added using the Set-Cookie header field [BB11]. Furthermore, although HTTP can
be implemented of top of any protocol that guarantees reliable transport [FGM™96],
it often takes place over TCP/IP, ensuring that the communication is reliable despite
HTTP being stateless.

Having been in use for three decades, HTTP is undoubtedly a favourable and
effective protocol. During that time, HTTP has been continually growing and
progressively adding to the cost of both implementation code space and network
resource usage [BCS12]. Hence, HTTP is a considerably expensive protocol to
implement, making it unsuitable for constrained IoT devices. Thus, an optimised
version of HTTP and REST for M2M communication was created.

3A Multipurpose Internet Mail Extensions type, also commonly referred to as a media type - a
standard that indicates a type and a subtype of a document, file, or assortment of bytes [FKH13]

10 2. BACKGROUND AND RELATED WORK

2.2.1 CoAP for M2M communication

Constrained Application Protocol is a specialised, lightweight web transfer protocol
designed for use with constrained nodes and CNNs. The main goal of CoAP is to
optimise HTTP for M2M applications, while still offering multicast support, low
overhead and simplicity for CNNs [SHB14]. Similarly to HTTP, CoAP is based
on REST architecture and supports the request/response model. Additionally, the
protocol supports publish/subscribe architecture using an extended GET-method
[TMVT14].

One of the central elements in CoAP’s reduced complexity, compared to HTTP,
is the usage of UDP instead of TCP. UDP, or User Datagram Protocol, is a commu-
nication protocol often used when transmission speed and efficiency is more crucial
than security and reliability, such as when it comes to video playback or Domain
Name Service (DNS) lookups. UDP uses a simple connectionless communication
model, meaning that it does not establish a connection before the data is transferred.
UDP provides a minimal amount of "regular" protocol mechanism, delivering data-
grams® without establishing a connection first, indicating the order of the packets, or
providing any guarantee of delivering or duplicate protection [P*80]. Avoiding the
overhead of the said mechanisms makes UDP significantly faster than TCP, albeit
much less reliable.

A CoAP request message is equivalent to a HT'TP request message and is sent
by a client to request action on a chosen resource identified by a URI, using one of
the provided methods. The server gets the request and response with a status code,
sometimes together with a source representation.

CoAP’s messaging model is based on the exchange of messages over UDP, and
the message format is shared both by request and response messages. Within UDP
datagrams, COAP uses a four-binary header, followed by a sequence of binary options
and a payload. As UDP does not provide reliability, CoAP gives every message a
Message-ID, which is used to mark a message as Confirmable (CON). A default
timeout and exponential back-off between retransmissions are used to retransmit
a Confirmable message until the sender gets a message (ACK) with the correct
Message-ID acknowledging that the message has been received (Figure 2.3, (b)).
Messages that do not require as much reliability can be sent as Non-confirmable
messages (NONs) (Figure 2.3, (a)). These messages will not get acknowledged, but
they are still given a Message-ID to detect potential duplicates [SHB14]. In both
cases (CON and NON), if a recipient cannot process the message and provide a
suitable error response, it will reply with a Reset message (RST).

Another characteristic of CoAP is the use of an asynchronous message approach.

4UDP packets are referred to as datagrams.

2.2. AN OVERVIEW OF CONSTRAINED APPLICATION PROTOCOL 11

CoAP CoAP
Client COM [Message ID: 0x99h1] Server

GET flights (Token 0x71)

»
>
CoAP CoAP
Client Server ACK [Message 1D: 0x83h1]

2.05 Content (Token 0x71) "14.6
NON [Message ID: 0x8743] bt
GET /temperature (Token 0x66)

Timeout

h 4

COCN [Message ID: 0x99h1]
GET /flights (Token Dx71)

¥

ACK [Message ID: 0x9%h1]
2.05 Content (Token 0x71) "146 C

(a) (b)

Figure 2.3: CoAP request/response examples. (a) CoAP Non-confirmable Message
(NON) exchange; (b) CoAP Confirmable Message (CON) exchange, an example of a
datagram loss being fixed by retransmission using Message 1D.

When using HTTP, the transactions must always be initiated by the client, meaning
that if a client wants to get an update on a certain resource, it has to send a GET
request over and over again. This actions is called polling. In CoAP, however, a client
can indicate its interest in being updated when the status of any resource changes. It
is done by sending a GET request with a specified option called "Observe" [BCS12].

Constrained network

Internet

Figure 2.4: An example of a Web architecture with HTTP and CoAP (cf. [BCS12]
and [Kaz20])

However, one of the main features of CoAP is providing a stateless HTTP mapping.
This allows for building of proxies to provide access to CoAP resource via HT'TP
in a uniform way, and for HTTP simple interfaces to be realised alternatively over
CoAP [SHB14]. In other words, enabled by the REST architecture, CoAP is capable
of interworking with HTTP via proxies (Figure 2.4). As a consequence of having
equivalent architecture, methods, response codes, and options, the mapping between
the two protocols is straightforward [BCS12]. A proxy is usually able to translate

12 2. BACKGROUND AND RELATED WORK

between CoAP and HTTP without putting any additional requirements on the client
or the server, as it understands the semantics and syntax of both protocols. CoAP
being capable of interworking with HT'TP is crucial for the world of IoT, as it allows
constrained devices to integrate into the Web.

2.2.2 Securing CoAP with DTLS

The most widely deployed protocol for securing network traffic is the Transport Layer
Security protocol, or TLS [RM12], which is often inserted between an application layer
and a transport layer to secure an application protocol. However, since TLS must run
over a reliable transport channel, it cannot be used to secure UDP communication
and is therefore not suitable for securing CoAP.

To solve this issue and to provide TLS-like security guarantees to datagram proto-
cols, Datagram Transport Layer Security (DTLS) was created. DTLS is based directly
on TLS and allows client/server applications to communicate without eavesdropping,
tampering, or message forgery [RM12].

2.3 An overview of Datagram Transport Layer Security
(DTLS)

The main reason for TLS requiring a reliable transport channel is that in a datagram
environment (such as UDP), packets might get lost or delivered out of order. TLS
has no mechanism to handle such situations, meaning that if a TLS packet is lost, the
connection will be broken. The same applies to the TLS handshake: messages must
be transmitted and received in a specific order; otherwise, an error will occur. Thus,
DTLS needed to introduce new solutions in order to use TLS security mechanisms
for datagram protocols.

Firstly, DTLS solves the issue of packet loss by using retransmission. When a client
sends a ClientHello message, it expects to see a Hello VerifyRequest message from
the server. If that does not happen before the timer expires, the ClientHello message
will be retransmitted. The server also has a retransmission timer, retransmitting
the lost packets when it expires. The problem of the handshake messages arriving
in the wrong order is solved by assigning a specific sequence number to each of the
messages. If the received message has the wrong number, it is queued until all the
preceding messages have been received. In addition to that, DTLS supports replay
detection and utilises fragmentation to deal with the issue of DTLS messages being
too large for UDP datagrams [RM12].

Furthermore, DTLS employs a stateless cookie exchange mechanism to prevent
DoS attacks. As explained in [RM12], a typical DoS attack is when an attacker

2.3. AN OVERVIEW OF DATAGRAM TRANSPORT LAYER SECURITY (DTLS) 13

can transmit a large series of handshake initiation requests to the server, which
causes the server to allocate all its resources to perform expensive cryptographic
operations. An alternative DoS attack can be performed using a server as an amplifier
by sending a ClientHello message with a spoofed IP address, making the server flood
the victim with a large Certificate message (next message after ClientHello). In
DTLS, when a client sends a HelloClient message, the server might respond with
a HelloVerifyRequest message, containing a stateless cookie. The client must then
return a HelloClient message with the given cookie, and the server proceeds with the
handshake only if it can verify the cookie. The server is not required to perform this
exchange, but the client has to be prepared to respond to it when required [TF16].

A fully authenticated DTLS handshake can be seen in Figure 2.5 and is detailed
below:

e Flight 1 and 2: The client initiates the communication by sending a Clien-
tHello message, which has information about the highest supported DTLS
version. Moreover, it includes a random nonce, the cipher suite supported by
the client, and optional extensions [FBJM*20]. The server responds with a
Hello VerifyRequest message containing a stateless cookie. The cookie is then
returned in a new ClientHello message.

e Flight 3 and 4: The client repeats the ClientHello message, and the server
responds with a ServerHello message containing the server’s DTLS version,
the cipher suite chosen by the server, a second random nonce, and optional
extensions. The server also sends its certificate with the server’s public key
and an optional CertificateRequest if the server is expecting the client to
authenticate. In ServerKeyFEzchange, the server sends an ephemeral public key
which is signed with the private key for the server’s certificate.

e Flight 5: If requested and supported, the client will send its certificate
back to the server; the same applies to the CertificateVerify message. They
contain the certificate of the client and a signature computed over all previous
messages using the client’s long term private key. The ClientKeyExzchange
message contains a pre-master secret. The content of this message depends
on the cipher suite selected earlier in the handshake. The pre-master secret
is encrypted using the server’s public key. In addition, the client’s public key is
sent to the server.

The random nonces from ClientHello and ServerHello combined with the
pre-master key are used to compute the master_secret. The Finished
message (see Flight 6) will be the first to be encrypted using the master_secret.
Both the client and the server then use this information to derive symmetric
keys, which are then used for the rest of the session. The ChangeCipherSpec

14 2. BACKGROUND AND RELATED WORK

message indicates that all subsequent messages will be encrypted with the
negotiated cipher suite and keying material. Finally, the Finished message is
sent, which contains an Hash-based Message Authentication Code (HMAC)
over the previous handshake messages, and is encrypted with the new keys.

e Flight 6: The server answers with its own ChangeCipherSpec and Finished
messages. After that, both client and server can exchange authenticated and
encrypted application data, and the handshake is completed.

Since DTLS handshake is very expensive, there is generally no need for DTLS
to establish a new session every time a client wants to request something from a
server. RFC7925 [TF16] describes a helpful feature that has been implemented both
for TLS and DTLS called Session Resumption. Session Resumption allows a client
to continue an already established session, meaning that there will be no need to
complete a full handshake once again. The feature improves the performance of the
handshake and leads to fewer messages being exchanged, eliminating some of the
computational overhead that comes with establishing a connection one more time.

| Client | | Server |
Flight 1 ClientHello
’ PleaseVerifyRequest Flight 2
Flight 3 ClientHello R
ServerHello [Certificate], [ServerkeyExchange], Flight 4

[CerlificateRequest], ServerHelloDone

Flight 5 [Certificate]. ClientKeyExchange,
[CertificateVerify], ChangeCipherSpec

¥

Finished »

ChangeCipherSpec Flight &

Finished

Figure 2.5: DTLS handshake (cf. [FBJM*20])

2.3.1 CoAP enhanced by DTLS

Similarly to HT'TP using TLS, CoAP supports the usage of DTLS to protect and
encrypt the communication between constrained devices as CoAP itself does not

2.3. AN OVERVIEW OF DATAGRAM TRANSPORT LAYER SECURITY (DTLS) 15

provide protocol primitives for authentication or authorisation (Figure 2.6). By
adding such primitives, DTLS helps ensure confidentiality when using CoAP [NC20].
The DTLS binding for CoAP is defined in terms of four security modes: NoSec, Pre-
shardKey, RawPublicKey, and Certificates. These four modes differ in authentication
and key negotiation mechanisms, and range from no security to security based on
X.509 certificates [NC20]. These four modes are described in [SHB14]:

1. In NoSec mode, DTLS is disabled, meaning there is no protocol level security.
The packets are simply sent over normal UDP and IP as usual.

2. PreSharedKey (PSK) mode enables DTLS and provides the node with a
list of pre-shared keys, with each key including a list of trusted nodes it can be
used to communicate with.

3. When using RawPublicKey mode, the node has a raw public key - an
asymmetric key pair without a certificate - which is validated using an out-of-
band mechanism, together with an identity calculated from that public key.
The node is again provided with a list of the nodes it can communicate with.
DTLS is enabled.

4. Certificate mode provides the node with an asymmetric key pair validated
by an X.509 certificate that binds it to its subject. A common trust root signs
the key pair. The node is also given a list of root trust anchors that it can use
to validate a certificate. DTLS is enabled.

Application

Request/Responses

CoAP
Messages

DTLS

upp

Figure 2.6: Abstract Layering of CoAP secured with DTLS

Which mode is the best for a certain device depends on the developers, who are re-
sponsible for figuring out the best trade-off between performance (energy constraints)
and security requirements [NC20]. Some constrained nodes and networks are not
able to support all provided modes due to limitations discussed in section 2.1. This

16 2. BACKGROUND AND RELATED WORK

can also depend on which specific cipher suite is used; for example, the mandatory-to-
implement cipher suite for PSK mode is TLS_PSK_WITH_AES 128 CCM_ 8 and
TLS_Elliptic-Curve Diffie-Hellman (ECDH)E_ECDSA_WITH_AES 128 CCM_ 8
for the RawPublicKey mode [SHB14]. Some of the cipher suits add additional
complexity to the existing protocol, which can be significant for small, constrained
devices.

2.3.2 Known vulnerabilities / drawbacks in CoAP and DTLS

Due to the popularity and widespread use of both CoAP and DTLS, the protocols
have been researched and repeatedly tested previously. Arvind et al. [AN19] and
Nebbione et al. [NC20] identify the following potential threats and vulnerable
processes of CoAP devices:

Message parsing: can be exploited if the processing logic of the peers does not
properly handle incoming messages. Message parsing can have a negative effect on
availability due to overload conditions and used for remote execution of arbitrary
code by an adversary.

Proxying and caching: if proxies and caches do no properly implement the access
control mechanisms needed, an attacker can gain access to the network and gain
confidential information from the traffic.

Key generation: CoAP nodes can be compromised as cryptographic keys generation
is not robust.

IP address spoofing: can potentially be exploited to launch a Distributed Denial-
of-Service (DDoS) attack on UDP by forging IP addresses of legit CoAP nodes.

Cross-protocol exchanges (translation from TCP to UDP): an attacker can
force a node to interpret a message to the rules of another protocol by sending a
message with a spoofed IP address and a fake source port number [Kaz20].

These threats and more are discussed in more detail by Shelby et al. in RFC7252
[SHB14]. According to [NC20], improper message parsing is the most common
security issue, and if exploited, it can lead to memory leaks, DoS attacks, and
potentially remote code execution. To counteract some of the aforementioned issues,
it CoAP might be secured using DTLS. However, although CoAP utilises DTLS to
secure communication between nodes, DTLS only secures unicast (client-to-server)
communication, and not multicast (one-to-many) communication, which is also
supported by CoAP.

Moreover, as a result of DTLS being based on TLS, many attacks that can be

2.4. AN OVERVIEW OF WIREGUARD 17

performed on TLS apply to DTLS as well. These attacks include the Heartbleed,
CBC padding oracle and fuzzing attacks mentioned in Chapter 1. Furthermore, the
cookie exchange mechanism presented in Section 2.3 of Chapter 2 does not provide
any defence against DoS attacks from valid IP addresses [Kaz20]. It has also been
determined that many TLS/DTLS cipher suits do not provide forward secrecy, which
can lead to an attacker obtaining the long-term keys used to encrypt the session keys
[SHSA15b]. This would allow the attacker to record encrypted conversations. Many
more attacks applicable to both TLS andd DTLS have been summarised by Sheffer
et al. [SHSA15a], who have also published recommendations for secure use of the
protocols [SHSA15b].

When it comes to securing CoAP with DTLS, there is a widely discussed issue
of DTLS possibly being too heavyweight for lightweight protocols such as CoAP
[AN19, RS16]. Notably, a large message and handshake compression are among the
main concerns for those debating using DTLS. However, several possible solution have
been proposed lately. For example, Raza et al. [RSHT13] introduce a 6LoWPAN
header compression scheme for DTLS, and Lakkudi et al. [LS14] discuss an integration
of lightweight DTLS using Pre-Shared Key. Capossele et al. [CCCP15] propose to
integrate DTLS over CoAP using Elliptic Curve Cryptography in order to minimise
the computational overhead.

2.4 An overview of WireGuard

WireGuard is a cryptographic encapsulation IP tunnel protocol that was first pre-
sented at the beginning of 2020 by Jason A. Donenfeld [Don17]. The protocol was
initially designed for the Linux kernel but has since become available for other OS
such as Windows, macOS, Android, etc. WireGuard presents numerous benefits
originating from a combination of modern cryptographic primitives and a simple
design, together with a very small codebase and high software performance [Donl7].
Indeed, the protocol is implemented in less than 4,000 lines of code, making it much
easier to implement and maintain compared to other popular protocols such as IPsec
and SSL/TLS-based OpenVPN (Figure 2.7). Moreover, fewer lines of code create a
much smaller possible attack surface.

The fundamental principle of every secure VPN is the association between public
keys of peers, and the IP addresses that those peers are allowed to use [Donl7].
WireGuard uses cryptokey routing to secure communication and maintain a simple
association mapping between public keys and the permitted IP addresses. The
WireGuard interface - a cryptokey routing table - has a private key and a UDP port
on which it listens, combined with a list of peers. The peers are identified by their
public keys (a public key in WireGuard is a 32-byte Curve25519 point) and have a
list of allowed source IPs. When a packet is transmitted on a WireGuard interface,

18 2. BACKGROUND AND RELATED WORK

WireGuard
3,771 LoC
IPsec
SoftEther OpenVPN /
"
(XFRM+StrongSwan) 329,853 LoC 119,363 []

419,792 LoC e

Figure 2.7: WireGuard codebase compared to other well-known VPN protocols (cf.
[Don18])

the cryptokey routing table is used to decide which public key should be used for
encryption.

When an interface is added, and its peers are configured using their public keys,
they can begin communicating. From the user’s perspective, WireGuard will appear
to be completely stateless. The session states, connections, perfect forward secrecy
and handshakes are managed "behind the scenes" and are invisible to both the regular
user and the administrator [Donl17].

Nonetheless, the creator of WireGuard is not only claiming the protocol to be
extremely fast, but also highly secure [Donl7]. One reason for WireGuard being
presumably more secure than its predecessors comes from it being cryptographically
opinionated [Donl7]. Unlike IPsec, OpenVPN, or even DTLS, WireGuard does not
offer an opportunity to choose between different cipher suites but instead provides
a fixed set of primitives. The following primitives are provided by WireGuard, as
indicated by Donenfeld [Donl7]:

1. Noise Protocol Framework, or NoiselK is used for key exchange and to
provide forward secrecy (key exchange and key agreement are presented in
more detail in Section 2.4.1).

2. ChaCha20Poly1305 stream cipher is used for authenticated encryption.

3. Curve25519 for Elliptic-Curve Diffie-Hellman (ECDH) is used for key
agreement - short pre-shared static keys are used for authentication.

4. BLAKE?2 is used for hashing.

5. SipHash24 is used for hashable keys.

In addition to providing forward secrecy, WireGuard key exchange has built-in
protection against key impersonation, replay attack, and identity hiding [Donl7].

2.4. AN OVERVIEW OF WIREGUARD 19

Furthermore, it utilises an improved version of DTLS IP-binding stateless cookie
mechanism (discussed in Section 2.3 of Chapter 2) to add encryption and authenti-
cation, and to protect against possible DoS attacks. WireGuard is also a stealthy
protocol, meaning that it does not respond to any unauthenticated packets, making it
invisible to illicit peers and network scanners. Moreover, avoiding unnecessary "chat-
ting" reduces the number of data packets being sent, cutting down on the amount of
data available for potential sniffing and eavesdropping. Being a less "chatty" protocol
also provides an opportunity for WireGuard to be more energy-efficient.

As discussed in Section 2.1.1, lightweight CNNs require lightweight solutions
that provide acceptable security and privacy, together with adequate speed and
performance. WireGuard ensures fast communication due to little overhead and
high-speed cryptographic primitives [tea]. Combining it with the other presented
features makes the protocol easy to set up and use. In addition, WireGuard can offer
relatively low energy consumption, making it a suitable candidate for securing IoT
communication.

2.4.1 WireGuard handshake and key exchange

The following four types of messages are present in WireGuard [Don17]:

1. The handshake initiation message which begins the handshake process (Fig-
ure 2.8). The message contains a cleartext ephemeral public key, the initiator’s
public key, which has been authenticated-encrypted using ECDH, and an
authenticated-encrypted counter, used to prevent replay DoS.

2. The handshake response to initiation message which concludes the handshake
process (Figure 2.8). Now the responder knows the initiator’s static public key
and ephemeral public key. The responder sends back a cleartext ephemeral
public key, together with an empty buffer that is authenticated-encrypted using
a key calculated using the previous message and a new round of ECDH.

3. A reply to either the first or the second type of messages which contains an
encrypted cookie value used in resending either the rejected handshake initiation
message or handshake response message.

4. An encapsulated and encrypted IP packet which uses the secure session estab-
lished by the handshake.

As established in Section 2.4, Noise framework and ECDH are used to generate
session keys. When both handshake messages have successfully been delivered, both
parties can derive two symmetric authenticated-encrypted session keys from the

20 2. BACKGROUND AND RELATED WORK

Initiator Responder

Handshake Initiation Message

h 4

Handshake Response Message

Y

Both sides calculate symmetric session keys

Transport Data

h 4

Transport Data

Y

Figure 2.8: Wireguard Handshake and Key Exchange

static and ephemeral keys known to them. One of the keys is then used for sending
data, while the other is used for receiving data. However, WireGuard provides a
possibility for adding a 256-bit symmetric encryption key, which gets "mixed" into
the initial handshake between the peers. Unlike with client/server architectures, both
sides can reinitiate the handshake in order to derive new session keys, meaning that
the initiator and the responder can swap roles [Donl7].

The WireGuard key exchange only takes 1-RT'T®. Moreover, it does not require
any certificates, such as X.509 that are sometimes used for DTLS); similarly to SSH,
both sides exchange short 32-byte base64-encoded public keys.

2.4.2 Known vulnerabilities / drawbacks

WireGuard is a protocol designed to balance high performance speed and good
security, which is challenging without making some trade-offs. Due to how new the
protocol is, it is yet to receive a rigorous security analysis, although some high-level
analysis can already be found [ABD™15]. Donenfeld and Milner provide a computer-
verified proof of the protocol in the symbolic model in [DM17], while Dowling and
Peterson present a computational proof of the WireGuard handshake in [DP18].
Apart from that, the information about the security vulnerabilities in WireGuard is
limited. However, the creator of WireGuard has publicly acknowledged the existing
drawbacks of the protocol known to him on the WireGuard official website [Don],
which include:

5RTT stands for Round-trip time and indicates the time needed for a signal to be sent, and for
the sender to get an acknowledgement of that signal having been received

2.5. RELATED WORK 21

Deep Packet Inspection and TCP Mode: as WireGuard only runs over UDP,
it does not support the TCP mode. In addition, the protocols do not focus on
obfuscation. The task of transforming WireGuard’s UDP packets into TCP packets
thus falls onto a layer above WireGuard responsible for obfuscation.

Roaming Mischief: an active adversary can conduct a MITM attack and not
only redirect packets but replace source IP addresses. The endpoint address can be
updated, giving the attacker a chance to relay packets even after losing their MITM
privileges. This can be prevented with the help of ordinary firewalling that can lock
down the WireGuard socket to a particular IP address. Even if the packets do get
intercepted, however, they will remain indecipherable for the adversary.

Identity Hiding Forward Secrecy: WireGuard encrypts the sender’s public key
using the static public key of the responder. Therefore, if the responder’s private key
and a traffic log of previous handshakes are compromised, it would make it possible
for an adversary to figure out who has sent handshakes. The intercepted data will
remain indecipherable.

Hardware: there is currently not plentiful dedicated hardware supporting the use
of ChaCha20Poly1305. This could potentially be an issue, albeit it is changing as
new and faster hardware gets introduced.

Post-Quantum Secrecy: WireGuard is not designed to be post-quantum secure.
The secrecy of the data exchange via WireGuard depends on the security of the
Curve25519 ECDH function. As mentioned above, there is an option to use an
additional encryption key to provide a layer of post-quantum secrecy.

The best option for ensuring post-quantum security would be to run a post-
quantum handshake on top of the protocol, inserting the resulting key into Wire-
Guard’s pre-shared key slot. Some possible post-quantum improvements to the
WireGuard handshake are recommended in [KMR20]. Furthermore, a post-quantum
version of WireGuard [HNS*21] was newly proposed.

2.5 Related work

Several RFC documents published by Internet Engineering Task Force (IETF) were
consulted during the initial stage of our research. RFC7228 [BEK14] explains
terminology for constrained-node networks. RFC2616 [FGM196] and RFC7231
[FR14] provide information about HTTP. RFC7252 [SHB14] provides a detailed
presentation of CoAP and all of its aspects. RFC6347 [RM12] describes DTLS 1.2 in
detail, while RFC7925 [TF16] defines a TLS and DTLS 1.2 profile specifically with
IoT in mind.

22 2. BACKGROUND AND RELATED WORK

Due to the popularity of CoAP and DTLS for IoT networks, several studies
evaluating the security aspects of the protocols are available to collect the information
needed for creating a solid background for further research. In [BCS12], Bormann et
al. give an overview of the REST architecture style, HTTP and CoAP. Arvind et al.
[AN19] discusses common security issues found in CoAP and test the protocol by
performing a sniffing attack on a test network with a CoAP client-server and a proxy
model. Nebbione et al. [NC20] present and analyse potential security threat for
protocols such as MQTT and CoAP and suggest countermeasures and good practices
that could be applied to mitigate risks and enhance security. In [BMN19], Burange
et al. also present vulnerabilities found in MQTT and CoAP. Moreover, they discuss
the use of DTLS for securring CoAP and test CoAP by comparing the memory
footprint of secured and non-secured version of CoAP.

Rahman et al. [RS16] outline security issues of 802.15.4, 6LoWPAN and RPL,
protocols used for different layers of IoT communication. The paper also presents
CoAP and DTLS and analyses the protocols’ security status. Fiterau-Brostean et al.
[FBJM™20] reveal four serious security vulnerabilities and functional bugs in DTLS
by using a framework for applying protocol state fuzzing on DTLS servers, which is
used it to learn state machine models for thirteen DTLS implementations. Sheffer
et al. [SHSA15a] summarise known attacks on TLS/DTLS and propose security
practices and countermeasures in [SHSA15b].

With regard to improving CoAP/DTLS security are a 6LoOWPAN header com-
pression scheme for DTLS proposed by Raza et al. [RSH*13] and an integration of
lightweight DTLS using Pre-Shared Key discussed by Lakkudi et al. [L.S14]. Another
suggestion for enhancing the security and performance of CoAP/DTLS was published
by Capossele et al. [CCCP15]. The paper proposes to to integrate DTLS over CoAP
using Elliptic Curve Cryptography in order to minimise the computational overhead.

Being a relatively new protocol, WireGuard is yet to amass the same volume of
research as CoAP and DTLS. However, there are a handful of studies discussing the
security and performance of the protocol. In [ABDT15], Adrian et al. investigate the
security of Diffie-Hellman key exchange, also used in WireGuard. The paper finds
Diffie-Hellman to be less secure than initially believed and presents several ways to
compromise it. Dowling et al. [DP18] discuss security features of WireGuard and
present a computational proof of the WireGuard key exchange protocol. Donenfeld et
al. [DM17] also discuss WireGuard key exchange and its properties before providing
a formal, computer-verified proof of the protocol. In [KMR20], Kniep et al. discussed
possible vulnerabilities of a WireGuard tunnel against quantum computers and
introduced three incremental post-quantum improvements to WireGuard’s handshake
protocol. Moreover, a post-quantum version of WireGuard has been researched and
proposed by Hiilsing et al. [HNS'21].

2.6. CONTRIBUTIONS 23

There are several comparative studies evaluating the performance of CoAP and
CoAP/DTLS against other IoT protocols. Kondoro et al. [KBTM21] present a real
time performance analysis of both unsecured and secured versions of MQTT, CoAP
and Extensible Messaging and Presence Protocol (XMPP). The paper evaluates a
variety of metrics such as packet overhead, latency and scalability. Laaroussi et
al. [LN21] provides an in-depth performance analysis of CoAP and MQTT against
Object Security for Constrained RESTful Environments (OSCORE), testing both
secured and unsecured versions of the three protocols. The scope of evaluation is
defined in terms of latency and throughput, and the impact of extra data such as
handshake introduces by security extensions is discussed. OSCORE is also evaluated
against CoAP/DTLS in [GBP*21], where Gunnarsson et al. provide a comparative
and experimental performance evaluation of the protocol on real resource constrained
IoT devices. The performance is evaluated in terms of memory and CPU usage,
energy consumption on the server side and RTT experienced on the client side.

When it comes to WireGuard, Lackorzynski et al. [LKS19] compare different VPN
protocols for future industrial systems and evaluate them in terms of throughput and
latency. The results indicate that WireGuard outperforms other solutions on different
hardware platforms and that ChaCha/Poly1305 utilised by WireGuard performs
best in resource-constrained networks. In [PWAT19], Plaga et al. presents the
requirements for secure infrastructures and discusses WireGuard as a possible solution
for securing IoT devices due to its simple setup and less consuming cryptographic
primitives.

2.6 Contributions

The possibility of using WireGuard for IoT networks has already been voiced before.
However, there is a lack of prior studies conducting a quantitative comparison of
CoAP and CoAP secured by WireGuard and DTLS, respectively. Most of the research
available on WireGuard focuses on comparing WierGuard to other VPN services such
as [PSec and OpenVPN. Moreover, there are several comparative studies focusing on
the widespread IoT protocols such as CoAP and MQTT, and their versions secured
by DTLS and TLS consecutively. Nevertheless, experiments assessing the usability
of WireGuard for securing CoAP and IoT networks and evaluating the results in
terms of latency, handshake time, RTT and throughput have not previously been
performed.

The absence of such experiments creates a gap in the research literature that
this study aims to fill. The implementation of CoAP over WireGuard is particularly
novel, as it, as far as we know, has not been suggested or done before. Our goals are
to provide an insight on the impact WireGuard and DTLS have on the performance

24 2. BACKGROUND AND RELATED WORK

of CoAP and attempt to determine which protocol is a better fit for securing an IoT
environment not only in terms of performance but also security requirements.

This chapter introduced constrained devices and networks and presented an
overview of the primary security challenges they face. Moreover, CoAP, DTLS and
WireGuard, the protocols that are the primary focus of our research, and their
drawbacks and vulnerabilities were discussed. At last, we presented relevant related
studies consulted during the research and discussed how this thesis aims to contribute
to the field of IoT protocols and networks.

Methodology

This chapter presents the methodology used in this research. Subsequent sections
define the methods chosen for conducting our study and explain why they were
chosen.

As our research revolved around comparing two network protocols regarding their
performance efficiency and security properties, relevant data needed to be acquired to
have a solid base for comparison. RQ1 defined in Chapter 1 is a conceptual question.
A conceptual question is a question that can be answered exclusively based on a
knowledge of relevant concepts and not by performing comprehensive calculations.
RQ2 is also a conceptual question, which includes a comparative element. Thus, it is
natural to consider literature review as a methodology for answering these particular
questions. Investigation of RQ3, on the other hand, requires us to work with numerical
data obtained by experimenting. For this reason, we chose quantitative research,
more precisely experimental design, as the method for answering RQ3.

3.1 Literature review

A literature review is a necessary part of research that helps to obtain relevant
background information and build a solid foundation for later experiments. In their
book, Gay et al. [GMA12] state that a literature review:

"...involves the systematic identification, location, and analysis of docu-
ments containing information related to the research problem, and demon-
strates the underlying assumptions (i.e., propositions) behind the research
questions that are central to the research proposal.”

In other words, a literature review assists us in acquiring information already
known about the problem [Wield]. Moreover, it explains to the reader why we
choose specific hypotheses and research questions to research further. There are

25

26 3. METHODOLOGY

a few different types of literature review, including traditional literature review
and systematic literature review. In our project, we utilised the traditional, or
narrative, literature review method. According to Coughlan et al. [CRCO08], the
primary purpose of a traditional literature review is to "provide the reader with a
comprehensive background for understanding current knowledge and highlighting
the significance of new research". As there is big volume of information that needs
to be studied and summarised, we followed the five steps of literature review process
defined in the article. The steps will be discussed in the following subsections.

3.1.1 Selecting a review topic

Identifying the subject of the research and literature review is an essential step in
order to begin any project. Selection and further specification of the review topic
were made in collaboration with the responsible professor and the supervisor during
the first few weeks of the research. We established early on that there are many
prior studies concerning the security aspect of IoT, together with some suggestions
for how those confirmed security issues could be eliminated or made less severe.
Moreover, plenty of paper about comparative research have been identified. Both
CoAP alone and CoAP/DTLS have previously been tested, and the results published
were a huge asset for our project. However, due to WireGuard being a relatively
new protocol, there was a noticeable lack of academic articles and research available
regarding the security and performance of the protocol. As far as we know, it has
also never been tested for securing IoT communication. Therefore, one of the main
questions of our research became the feasibility of WireGuard being a valuable
protocol for securing IoT communication, as well as how it would be done and
whether it would be beneficial. Before that, however, we decided to focus on the
security of constrained IoT devices and how the known protocols used for securing
them affect their performance.

3.1.2 Searching for literature

Once the review topic was defined, the next step was to find relevant literature that
would help us gather information about IoT security, the protocols chosen for the
research, and the possible implementation of WireGuard over another protocol. The
web search engine Google Scholar! was used for accessing relevant academic research
papers. Websites such as ResearchGates? and IEEE Xplore? were also frequently
visited in order to find other studies related to our main topic, which Google Scholar
might not have acquired yet. Moreover, YouTube was utilised for finding information
regarding WireGuard, such as Jason Donenfeld’s presentation of the protocol at the

Thttps://scholar.google.com/
2https://www.researchgate.net/
3https://ieeexplore.iece.org

https://scholar.google.com/
https://www.researchgate.net/
https://ieeexplore.ieee.org

3.2. QUANTITATIVE RESEARCH 27

Black Hat conference in 2018*. During this phase, we have selected some search
terms which gave the most accurate results related to our topics. These terms were
often searched in combination with other relevant terms.

3.1.3 Gathering, reading and analysing the literature

This step included choosing the correct papers and dividing the ones chosen for our
literature review into different categories, such as "ToT security’, "CoAP/DTLS",
"WireGuard", and "Performance analysis". The abstracts, conclusions and keywords
indicated by the authors of the papers were helpful when deciding whether a paper
was genuinely relevant and would contribute to our research. After the papers were
grouped, we read through them with greater attention to detail. At this stage, we
took notes on what we found most significant for both our background chapter
research and the actual implementation and experiment. These notes included both
information taken directly from the papers and our assessment on the relevance of
the said information.

3.1.4 Writing the review

Chapter 2 presents and highlights the most relevant elements of the literature
research described in the preceding subsections. These elements are categorised
under appropriate sections and support the Research Questions and Hypotheses
investigated in the later chapters.

3.1.5 References

During the literature review, all the references were gathered and stored, grouped
by the same categories as mentioned in the Gathering, reading and analysing the
literature subsection. The References section at the end of this thesis includes all the
relevant references used during our research.

3.2 Quantitative research

Once the literature review phase was completed, and enough background information
was obtained to build a solid foundation for answering RQ1 and RQ2, we could move
on to the next phase of our study. Quantitative research is concerned with collecting
and analysing numerical data. Inspired by papers such as [LN21] and [KBTM21],
we wanted to collect performance metrics by running the protocols predetermined
amount of times and in a fixed environment. Moreover, we wanted to check how
changes in the network would reflect on the values we obtained prior to making the
said changes.

4https://www.youtube.com/watch?v=88GyLoZbDNw&ab_ channel=BlackHat

https://www.youtube.com/watch?v=88GyLoZbDNw&ab_channel=BlackHat

28 3. METHODOLOGY

Similar to other types of research, quantitative research has both advantages and
disadvantages. Since the methods for data collection in quantitative research are
usually standardised and regulated, collecting the data and observing the outcomes
is simple to replicate. Moreover, the same experiments can be conducted anywhere
and with more or completely different objects of interest. The results can then
be directly compared to the previous outcomes, and the effect the environment or
new participants have on the results can easily be analysed. Quantitative research
allows to analyse extensive data from the samples collected from the experiments,
making it possible to use this analysis to confirm or deny hypotheses established
beforehand. Hypothesis testing in quantitative research is formalised and follows
specific procedures, and all the parts of the testing are carefully considered before
any conclusion is drawn [Bha20].

However, when it is predetermined which values should be measured and what
methods should be used, it is easier to ignore other potentially important and
meaningful observations which could benefit the research. Furthermore, the values
presented as the outcome of quantitative research do not explain anything behind
them, making them superficial. In such cases, it is beneficial to utilise qualitative
research to elaborate on the meaning behind the results. Additionally, quantitative
research suffers from the lack of context since it regularly uses unnatural settings
such as laboratories for conducting the experiments or fails to consider other contexts
which might affect the results. Finally, quantitative research can be negatively
impacted by structural biases such as inappropriate sampling methods, such as if
some specific objects of interest are chosen more often than others.

Quantitative research uses three main methods based on different goals researchers
might have: descriptive research, correlational research, and experimental research
[Bha20]. For our study, we utilised the experimental research approach, also known
as experimental design method.

3.2.1 Experimental design

Experimental design is a quantitative research method that is concerned with creating
a standardised set of procedures to test hypotheses stated before the experimenting
begins. These procedures assist us in collecting data which will either support or
refute a hypothesis. The steps of experimental design [Bev19] that were followed
during our research are:

1. Using literature review as our supporting research method, we defined the three
Research Questions from Section 1.1, together with three testable Hypotheses
related to RQ3;

3.3. ANALYSING QUANTITATIVE DATA 29

2. The controlled environment used to conduct the experiments was carefully
designed in order to measure the desired values. Our experimental treatment
closely mimicked the treatment used in [LN21] with the intention to possibly
validate our results by comparing them not only within themselves but also with
external results obtained by other researchers. The environment is described
in detail in Chapter 4;

3. After designing the controlled environment we determined the study size, which
in our case included the number of requests sent by the client and the number
of times the same scenario would be repeated for each protocol. A description
of that can be found in Section 4.2;

4. The next step after designing the proper environment and determining the
study size is experimenting. At this stage, a data set is created. It is vital
that for the experiment itself to have been designed to simplify the entry
process [RM17]. As shown in Section 4.1, our research focuses on a few specific
metrics, which we manually entered into a table with a fixed number of rows
and columns. The titles used closely resembled ones found in WireShark to
facilitate the manual data transfer. The data was then imported to the analysis
software;

5. The next step of quantitative research is analysing and interpreting the acquired
data. In our research, we used descriptive statistics to represent the data, which
is discussed in Section 3.3. The results for all the protocols are then compared
to each other and to the results published in other papers such as [LN21].

6. The last step of the experimental design is discussing the viability of the
hypotheses and answering the research questions. The discussion and conclusion
can be found in Chapter 6.

During the experimental design phase, enough data should be collected to explore
the hypotheses established at the beginning of the research. The end goal is to
confirm or deny the hypotheses, which is ultimately valuable for answering the
research questions.

3.3 Analysing quantitative data

Once the experiment has been conducted and the data has been collected and
processed (step 5 of our experimental design explained in Section 3.2), it needs
to be analysed and interpreted. According to Robson et al. [RM17], descriptive
statistics - also called summary statistics - are used to represent important aspects of
a data set by a single number. The results depicted in Section C.1 of Appendix are
presented using descriptive statistics. The two aspects most commonly introduced

30 3. METHODOLOGY

when discussing this method are the level of distribution and the spread of the
distribution.

Measures of central tendency are used for summarising the level of distribu-
tion. Since the goal is to find a single number to represent the data, it is common to
use the average value obtained by adding all the entries together and dividing the
result by the number of entries. In academic research, the average is often referred
to as the arithmetic mean. The network protocols investigated in our research we
compared using the arithmetic mean measure. Hence, the results presented in Sec-
tion 5 and Section C.1 are the arithmetic means calculated from the values obtained
during our experiments.

The second aspect of descriptive research is the spread of the distribution. For
this purpose, measures of variability were used. Measures of variability help
distinguish how tightly clustered or spread the entries in a data set are. In our
thesis, standard deviation was used to calculate the variance of the entries in our data
set. The deviation is the difference between an individual entry and the arithmetic
mean. A low standard deviation indicates that the entries in the set are close to
the arithmetic mean, and a high standard deviation indicates that the entries are
more spread out. All results in Chapter 5 and Section C.1 of Appendix are presented
together with the standard deviation calculated for that particular set. Furthermore,
all the results are graphically displayed using Matplotlib, a plotting library for
Python. Presenting the data in a more clear and visual way helps when comparing
the results based on the protocols.

3.3.1 Validity and reliability

Validity and reliability are concepts used to evaluate the quality of research. Validity
is concerned about the accuracy of the research, focusing on how accurately a method
measures what it is intended to measure. Reliability refers to the consistency of
the research or evaluation and is concerned about the stability of the measure over
time and with different observers [RM17]. When collecting various previous studies
and analysing the evaluations presented there, a researcher interprets the meaning
of these evaluations. This interpretation can be subjective and thus affect the
validity and reliability of the research produces. Moreover, inadequate evaluation
and interpretation can negatively impact the validity of inferences derived from the
review, such as further experimental design and measurements. Thus, the researcher
needs to focus on objectivity during the process of literature review in order to obtain
validity and reliability [Del05].

The literature review in this study was conducted with the two concepts in mind.
In order to answer our RQs, we collected various papers focusing on different aspects
of our primary research topics (Section 3.1.3). However, there is a possibility that

3.3. ANALYSING QUANTITATIVE DATA 31

some relevant research may not be included in our research, as relevant papers may
have been overlooked in the initial stages of literature reviews. Moreover, the studies
that have been deemed relevant may not be completely valid and reliable. In addition,
more papers with newly conducted research may have been published without being
noticed by us.

When conducting quantitative research, the validity and reliability of the methods
and measurements also need to be taken into account. Four main types of validity
that need to be considered are introduced by Middleton in [Mid20] and are closely
echoed by Heale et al. in [HT15].

Similar to the definition mentioned above of validity, construct validity refers to
how accurately a measurement tool represents what a study intends to measure. To
ensure construct validity, we need to make sure that our indicators and measurements
are developed based on relevant existing knowledge. Our measurements and attributes
were closely based on the experiments performed by other researchers and described
in the papers gather during the literature review phase.

Content validity is concerned with the measurement method covering all rel-
evant aspects of the subject it aims to measure. As our goal was to measure the
network performance of the CoAP implementations, we constructed our experiments
in such a way that all relevant attributes related to performance speed and overhead
would be included in the final results. Even though we concentrated on the four
main attributes during the discussion part, all of the measured attributes can still
be observed in Appendix C and server as supporting attributes for our eventual
conclusion.

Face validity refers to how suitable the experiment content seems to be on the
surface. It is similar to content validity but is considered a more informal type of
validity and is often used in the initial phase of developing the research method.

Criterion validity accesses how closely the results of the experiments correspond
to the results of a different experiment. After conducting our experiments, we could
compare our results to prior research published in other research papers. Although
no research has yet compared WireGuard to CoAP and CoAP/DTLS, various similar
experiments have been conducted to measure the performance of the latter two
protocols. When comparing our results to their results, a high degree of correlation
has been observed, indicating that our experiments indeed measure what they
intended to measure.

The reliability of our experiments can be judged by whether the same result can
consistently be achieved by using the same methods under the same circumstances.
The results obtained during our experiments were presented in the form of the

32 3. METHODOLOGY

arithmetic mean and standard deviation. The entries in the tables presented in
Appendix C indicate an overall low standard deviation, meaning that when running
the same experiment multiple times, the results gathered were consistent and can
thus be deemed reliable. One particular case of an uncharacteristically high entry is
discussed in detail in Chapter 6.

This chapter presented the methodology used for our research, which consisted of
Quantitative research using experimental design combined with a literature review.
The data collected in the course of the research were analysed and interpreted using
descriptive statistics. Validity and reliability of the research methods were also
discussed. Chapter 5 introduces the results obtained during the experimental phase,
and Chapter 6 focuses on step six of the experimental design, as it discusses the
hypotheses and attempts to answer the research questions established in Chapter 1.

Experimental setup

This chapter introduces the technical side of the study and includes the description
of the testbed setup used during our research. The methodology for the experiments
and data collection is described in Chapter 3. Furthermore, this chapter explains the
changes made in the CoAP implementations and presents the final results, which
will be analysed in Chapter 6.

4.1 Testbed setup

For conducting the study, an experimental testbed setup was designed. The main
goal of the experiment was to be able to send CoAP packets through an encrypted
tunnel secured by WireGuard. Similarly to the testbed presented in [LN21], our setup
was limited to a single-hop scenario running in a network interface set up between a
laptop and a virtual machine. To test CoAP secured by WireGuard, we set up an
encrypted WireGuard interface between the peers and bound the server IP-address
to the interface when needed. The setup can be seen depicted in Figure 4.1.

Alice Bob

vboxnetd :| “““““““““““ vboxnetd :|
wgl wg0

kY]

Application

e wg0: wg0:
encrypt + igg encrypt + igg
tunnel tunnel

S

Figure 4.1: The experimental setup

33

34 4. EXPERIMENTAL SETUP

The testbed consisted of two nodes, Alice and Bob. Depending on the experiments,
the nodes were tested both as a client and a server. In our setup, Alice is an Ubuntu
20.04 virtual machine installed using the VirtualBox 6.1.16 application. The virtual
machine was installed on the laptop, which in our setup is Bob. Bob is a Huawei
Matebook X Pro 2020 laptop running Ubuntu 20.04 with Intel® Core i5-10210U
processor and 16GB of RAM. Alice was connected to Bob via a host-only adapter,
creating our own virtual interface vboxnet0. Both Alice and Bob were able to run the
non-secured version of CoOAP, CoAP with DTLS and CoAP with WireGuard, as well
as plain WireGuard. The CoAP clients and servers ran Eclipse Californium?! 3.0.0-M1
for the non-secured version and Eclipse Scandium 3.0.0-M1 for CoAP/DTLS?. Both
implementations are developed in Java, and the changes made to the original code
were minimal. The said changes will be further explained in Section 4.1.2.

4.1.1 WireGuard

To set up an encrypted WireGuard tunnel between two peers, both need to have a
WireGuard interface and know each other’s public keys. To install and configure
WireGuard on Ubuntu, we used the guide provided by the WireGuard creators, which
can be found on the official website®. Moreover, "Ubuntu 20.04 set up WireGuard
VPN server'4 guide published by Vivek Gite was used during the process of setting
up the protocol. After installing the protocol, both Alice and Bob needed to generate
base64-encoded public and private keys, as required by WireGuard. This wa done
by running the following command:

wg genkey | tee privatekey | wg pubkey > publickey

Once the keys were generated, two configuration files were created, one for Alice
and Bob, respectively. In the configuration files, we assigned a specific IP address to
each node on the WireGuard’s wg0 interface. A port that would be used to listen for
incoming WireGuard traffic was also added. In the same configuration file, we created
a new peer using their public keys, wg0 IP addresses and endpoint IP addresses. The
configuration files for both nodes can be seen in Section A.1.1 of the Appendix.

Once the configuration files were created, the interfaces could be set up by running
$ wg-quick up wg0. To get a detailed description of the interfaces that were up,
the $ wg command was used ($ sudo wg when not running as a root). The examples
of the output of these two commands can be seen in Figure 4.2. To check whether
the nodes have successfully been connected, we pinged back and forth using both
wg0 and endpoint vboxnet0 IP addresses. Pinging a vboxnetO IP address makes

Thttps://github.com /eclipse/californium
2https://github.com/eclipse/californium/tree/master /scandium-core
Shttps://www.wireguard.com/install/, https://www.wireguard.com/quickstart,/
4https://www.cyberciti.biz/faq/ubuntu-20-04-set-up-wireguard-vpn-server/

https://github.com/eclipse/californium
https://github.com/eclipse/californium/tree/master/scandium-core
https://www.wireguard.com/install/
https://www.wireguard.com/quickstart/

Jun

¥

S

4.1. TESTBED SETUP 35

/etc/wireguard# wg-quick up wg@

€

root@osboxes: /etc/wireguard# wg

public key: vwjIhUrppqeBTsBepw347Fc7U4yu7ezTeZ5Vy3yMjlw=
private key: (hidden)
listening port: 41194

allowed ips

Figure 4.2: Setting up wg0 on Alice.

the traffic go through the standard network interface, which for this experiment is
vboxnet0. Pinging a wgO IP address forces the traffic to go through the wg0 interface
instead. Once all the pings could reach the intended destination, the wg0 setup was
complete.

4.1.2 CoAP

As previously mentioned, Eclipse Californium and Scandium were used for running
CoAP and CoAP/DTLS respectively. To achieve that, we cloned the repository and
used Maven, a software project management and comprehension tool®, to build the
project. To edit the code and be able to run without using the command line, we
also used Eclipse IDES. Both Alice and Bob had Eclipse and Maven installed in order
for the setups to be as similar as possible. Moreover, the folder containing the built
Californium and Scandium projects was shared between Alice and Bob to ensure
that the code run from both nodes would be identical.

To run the server and the client and connect them via the non-secured version of
CoAP, we used the following commands (for the server and the client, respectively):

java -jar cf-helloworld-server-3.0.0-SNAPSHOT. jar
HelloWorldServer

java -jar cf-helloworld-client-3.0.0-SNAPSHOT. jar
GETClient coap://192.168.56.x

The IP address of the recipient depended on whether Alice or Bob was the server.
Running the HelloWorldServer command created a server bound to all the available
interfaces on the node, including wg0 and vboxnet0. The port on which the server
would listen for traffic or from which it would send traffic is a default CoAP port,

Shttps://maven.apache.org/
Shttps://www.eclipse.org/downloads/

https://maven.apache.org/
https://www.eclipse.org/downloads/

16

36 4. EXPERIMENTAL SETUP

5683. The partial output from running the server command can be seen in Figure A.1
in Section A.1.2 of the Appendix.

Since our goal was to imitate CoAP traffic between constrained devices, the
code for both server and client was intentionally made to be as simple as possible.
By making the nodes transmit a small payload, the packet size was deliberately
minimised as well. Again, this was done so our traffic would resemble how the
real-world IoT traffic would typically behave. The only resource implemented on the
server was a "Hello World!" resource. Thus, the client could send a GET request
to the server to access the resource, and if the request were successful, the server
would respond with "Hello World!". The server code has not been changed and can
be found in the Californium repository on github”. For the client side, a very basic
while-loop was added in order for the client to repeat the request 150 times in a row.
Otherwise, the code for the client can be found in the GitHub repository as well®.

4.1.3 CoAP/DTLS

A similar setup was created for CoAP secured by DTLS. For this part of the
experiment, however, some more modifications of the code had to be done. In addition
to adding the same while-loop as for the non-secured CoAP client, modifying the
server URI was possible to send a GET request directly to the needed IP address and
port. It was done by binding the server to the desired interface (vboxnet0), thus
binding it to the desired IP address. The code changed can be seen below.

DtlsConnectorConfig.Builder builder =
new DtlsConnectorConfig.Builder();
CredentialsUtil.setupCid(args, builder);

NetworkInterface nif = NetworkInterface.getByName ("vboxnet0");
Enumeration<InetAddress> nifAddr = nif.getInetAddresses();
InetAddress a = null;

NetworkConfig config = NetworkConfig.getStandard();
while (nifAddr.hasMoreElements ()) {
InetAddress b = nifAddr.nextElement ();
if (a instanceof Inet4Address) {
a = b;
}
InetSocketAddress bindToAddress =
new InetSocketAddress(a, \gls{dtls}_PORT);
builder.setAddress (bindToAddress) ;

Thttps://github.com/eclipse/californium/blob/master/demo-apps/cf-helloworld-server/src/
main/java/org/eclipse/californium/examples/HelloWorldServer.java

8https://github.com/eclipse/californium/blob/master/demo-apps/cf-helloworld-client /src/
main/java/org/eclipse/californium/examples/ GETClient.java

https://github.com/eclipse/californium/blob/master/demo-apps/cf-helloworld-server/src/main/java/org/eclipse/californium/examples/HelloWorldServer.java
https://github.com/eclipse/californium/blob/master/demo-apps/cf-helloworld-server/src/main/java/org/eclipse/californium/examples/HelloWorldServer.java
https://github.com/eclipse/californium/blob/master/demo-apps/cf-helloworld-client/src/main/java/org/eclipse/californium/examples/GETClient.java
https://github.com/eclipse/californium/blob/master/demo-apps/cf-helloworld-client/src/main/java/org/eclipse/californium/examples/GETClient.java

N

4.1. TESTBED SETUP 37

The original code can also be seen on Scandium Github repository®. If Bob
wanted to send a request to Alice, the SERVER,_ URI would be the following;:

private static final String
SERVER_URI = "coaps://192.168.56.1:5684/Hello";

In our experiment, the default Scandium DTLS cipher suit was used, namely
TLS_ECDHE_ECDSA_WITH_AES 128 GCM__SHA256. The full list of cipher
suits provided by the Scandium implementation can be found on github'°.

One of the main attributes we wanted to measure for both DTLS and WireGuard
was the handshake. In our experiment, the client and the server established a hand-
shake each time the code was run. However, as we briefly discussed in Section 2.2.2,
DTLS handshake is very expensive and is not performed every time a client wants to
send something to the server. Moreover, our connection would technically not be
broken if the client was started from the same communication endpoint (port) each
time. For this reason, we tested the CoAP/DTLS implementation a few separate
times, running it over a few hours, as well as overnight. This was done using the
Thread.sleep() function in Java. The effect it had on the results will be discussed
in Chapter 6.

The original code for Scandium CoAP/DTLS code can be found on GitHub!.
For this part, all the codes were run in Eclipse IDE 4.19.

4.1.4 CoAP/WireGuard

For the purpose of our experiment, we used the non-secured CoAP server and client
implementations to connect CoAP and WireGuard. Once the setup from 4.1.2 was
complete, the server automatically started on the wg0 interface as well, making it
easy for the client to send GET requests to that particular IP address. We ran the
following command to start the client:

java -jar cf-helloworld-client-3.0.0-SNAPSHOT. jar
GETClient coap://10.1.0.x

Again, the IP address the request was sent to was chosen depending on whether
Alice or Bob acted as the server. As we indicated the endpoint IP addresses to
be the vboxnet0 addresses, the IP addresses from the two network interfaces - wg0

9https://github.com/eclipse/californium/blob/master/demo-apps/cf-secure/src/main/java,/
org/eclipse/californium/examples/SecureServer.java
LOhttps://github.com/eclipse/californium/blob/master/scandium-core/src/main/java/org/
eclipse/californium/scandium/dtls/cipher/CipherSuite.java
Hhttps://github.com/eclipse/californium /blob/master/demo-apps/cf-secure/src/main /java,/
org/eclipse/californium/examples/SecureClient.java

https://github.com/eclipse/californium/blob/master/demo-apps/cf-secure/src/main/java/org/eclipse/californium/examples/SecureServer.java
https://github.com/eclipse/californium/blob/master/demo-apps/cf-secure/src/main/java/org/eclipse/californium/examples/SecureServer.java
https://github.com/eclipse/californium/blob/master/scandium-core/src/main/java/org/eclipse/californium/scandium/dtls/cipher/CipherSuite.java
https://github.com/eclipse/californium/blob/master/scandium-core/src/main/java/org/eclipse/californium/scandium/dtls/cipher/CipherSuite.java
https://github.com/eclipse/californium/blob/master/demo-apps/cf-secure/src/main/java/org/eclipse/californium/examples/SecureClient.java
https://github.com/eclipse/californium/blob/master/demo-apps/cf-secure/src/main/java/org/eclipse/californium/examples/SecureClient.java

38 4. EXPERIMENTAL SETUP

and vboxnetO - are connected, which can be seen in Figure 4.1. When binding the
CoAP server to the wg0 IP address, it forced the traffic to go through the encrypted
network tunnel secured by WireGuard. This partially answers our RQ3, which was
the following;:

RQ3: Could WireGuard potentially be used instead of DTLS for CoAP
as a protocol for securing communication? If yes, how?

Based on our experiments with setting up a working implementation of the
CoAP/WireGuard protocol, we can conclude that it is, indeed, possible to use
WireGuard for securing CoAP. We will further elaborate and discuss RQ3 in Chapter
6, together with the rest of the RQs and Hypotheses.

4.2 Data collection and analysis

As we presented in Section 4.1, our experiment consisted of running three different
implementations of CoAP: non-secured CoAP, CoAP/DTLS and CoAP/WireGuard.
These were run six times, three times with Alice as the server and three times with
Bob as the server. The client sent 150 GET requests to the server each time the code
was run. Taking inspiration from Laaroussi et al. [LN21], we ran the experiments
once with no network delay and once with a fixed network delay of 60 ms, resulting
in twelve experiments per implementation. We did it not only to assess the impact
of the delay for our implementations but also to compare our results with the results
published in [LN21]. We found it interesting to investigate whether our results could
be validated by the results from the paper, given the similarities between the two
setups. Thus, some of the attributes we chose are similar to the attributes seen in
[LN21]. Another paper that has influenced our choice of attributes is the paper by
Kondoro et al. [KBTM21], as it presents a similar comparative study of CoAP/DTLS,
comparing it to MQTT/TLS 1.3 and XMPP/TLS 1.3. The attributes we chose to
use for comparing the data we collected during our experiment are introduced and
discussed in Chapter 5.

The tables with the detailed results can be found in Section C.1 of Appendix A.
The results seen in the table are the arithmetic means of all obtained data sets for
all the attributes. However, as established in Chapter 2, the main attributes and
features we wish to investigate in order to be able to answer our RQs and Hypotheses
are the latency, the RT'T with and without the handshakes, the handshake time and
the throughput. Thus, the tables and graphs used in the following chapters will only
include those four primary attributes.

4.2. DATA COLLECTION AND ANALYSIS 39

To conduct the performance analysis on the data obtained after running the
experiments, several tools were utilised. tshark!?, a network protocol analyser,
was used every time the client and the server communicated with each other to
capture the traffic between them. The output of each captured conversation was
saved in a pcapng. An example of a command for capturing the traffic for the
CoAP/WireGuard implementation can be seen below:

tshark -f 'udp port 41194' -i any -w bob_client_wg_1.pcap ‘

Once all the necessary pcapng files were obtained, we used the following tshark
command to extract the round-trip times (RTTs) from all the files:

]
for i in *; do tshark -r "$i" -T fields ‘
-e frame.time_delta_displayed > "$i".csv; done ‘

|

N

o

This allowed us to quickly collect the RTTs for further investigation. In order to
compare the RTTs for the different protocols gathered during the experiments, we
wrote a short Python script utilising the pandas!?® library. The built-in functions
were used to calculate the arithmetic mean of all collected RTTs and the standard
deviation. The final code can be seen below:

import pandas as pd
import glob, os

os.chdir("/home/evgenia/Desktop/experiments_no delay")
for file in glob.glob("*.csv"):
data = pd.read_csv(file)
average = data.mean ()
df = pd.DataFrame (data)
dev = df.std()
print ('Name: ' + file, average, dev)

For evaluating other attributes such as latency, the number of packets per sec-
ond, packet size and throughput, Wireshark'® was used. The numbers used in
further calculations were found by opening a pcapng file in WireShark and going
to Statistics -> Capture File Properties. Afterwards, the built-in functions
were used to calculate the mean values and the standard deviation in Google Sheets.
To showcase some examples of the wireShark files captured and investigated, one
pcapng file output per protocol can be found in Appendix B.

Lastly, to imitate the 60 ms fixed network delay a tool called tc'® was utilised.
tc is a Traffic Control tool for Linux kernel used to emulate network conditions, such

2https://www.wireshark.org/docs/man-pages/tshark.html
L3https://pandas.pydata.org/

Mhttps:/ /www.wireshark.org/
I5https://man7.org/linux/man-pages/man8/tc.8.html

https://www.wireshark.org/docs/man-pages/tshark.html
https://pandas.pydata.org/
https://www.wireshark.org/
https://man7.org/linux/man-pages/man8/tc.8.html

W N =

40 4. EXPERIMENTAL SETUP

as delay packet loss and duplication. The commands used to add and delete rules to
manipulate the vboxnet0 network interface were the following:

tc gqdisc add dev vboxnetO root netem delay 60ms

tc qdisc del dev vboxnetO root netem delay 60ms

This chapter introduced the experimental setup used for conducting the compar-
ative research and discussed the practical aspect of how the data was collected and
analysed. The results of the experiments will further be presented in Chapter 5.

Findings

This chapter introduces the attributes used to compare the CoAP/DTLS and
CoAP/WireGuard implementations and presents the results based on the said
attributes. The results are expressed by calculating the arithmetic means of the data
sets consisting of the attributes and the standard deviation. The results presented
in this chapter will serve as a foundation for discussing and answering Research
Question and Hypotheses established in Chapter 1.

In order to further compare the two protocols and be able to answer our RQs,
we chose several performance attributes, also called metrics, to measure during our
experiments. In Section 4.2 of Chapter 4 we introduced the papers by Laarroussi et
al. [LN21] and Kondoro et al. [KBTM21] that greatly inspired our choice of metric
for this study. As we have observed in Chapter 2, there is a significant difference
between DTLS and WireGuard handshake. For this reason, we chose handshake time
- the overall time it takes to establish a connection - to be one of the metrics. An
attribute related to the handshake that we will include in our evaluation is packet
overhead. Packet overhead, both in the form of the number of packets and their
message length, is introduced by extra packet data such as security handshakes, as
well as extra headers [KBTM21]. To be able to see how the handshake affects the
overall performance, we also want to measure RTT and latency.

RTT is the time it takes for the client to send one request plus the time it takes
to receive the acknowledgement back from the server. IoT devices are typically small,
constrained devices often responsible for communicating vital information needed
to be conveyed fast. Devices used in the medical field are one example of that,
and a short time span and RTT are seen as a significant advantage, making them
appropriate attributes for analysis. Latency means the total amount of time between
the initial request is sent and the sender receives the final response [KBTM21]. For
this experiment, it was measured as a total RTT, which is the same as the total time
span. For these metrics, we will present the result with and without the handshakes.

41

42 5. FINDINGS

The last attribute we will examine in our research is throughput, which is the
amount of traffic between a source and a destination measured over a period of time.
This particular attribute was measured in two ways: in Mbits/s and the number of
packets per second (pps). The sections below present both results with and without
the handshake, which will undoubtedly affect the throughput.

Although power consumption was initially among the attributes we planned
to examine, we eventually defined the scope of evaluation in terms of network
performance metrics. The main reason for that was the discovery of the paper
by Laaroussi et al. [LN21]. In their study, OSCORE, a new method to provide
end-to-end security for CoAP, is compared with CoAP and CoAP/DTLS. The main
objective of the papers was to test the efficiency of the new protocol compared to
well-known versions of CoAP. Moreover, our plan from the beginning was to use
Californium and Scandium for implementing CoAP and CoAP/DTLS. Altogether,
this caused a change of the direction of the research, as we decided to focus on the
network behaviour of the protocols rather than the physical impact running the
protocols has on IoT devices.

Thus, the main focus of our experiments will be on four of the attributes mentioned
above: handshake time, and latency, RTT and throughput with and without the
handshakes. The rest of the chapter covers the results of the experiments based
on these four attributes and gives a summary comparing the CoAP/DTLS and
CoAP/WireGuard against each other and the non-secured version of CoAP.

5.1 Handshake time

As addressed previously, both DTLS and WireGuard use a handshake to establish
the communication between the client and the server. The DTLS handshake is six
flights (Figure 2.5), while WireGuard handshake is only two flights (Figure 2.8). Both
protocols can essentially be considered security extensions for CoAP. These security
extensions add packet overhead to the non-secured CoAP protocol. In Section 2.1.1,
we established the importance of securing IoT communication. However, it is still
crucial to attempt to minimise the metrics such as packet overhead with regards to
constrained devices, and it increases the volume of the traffic.

For this experiment, we measured the handshakes for traffic with no network delay
and with a delay of 60 ms. Table 5.1 shows the results and provides a comparison of
the latency separated into protocol families, which will be the case throughout the
rest of the analysis. The non-secured version of CoAP does not include establishing
a connection with the help of a handshake; thus, the table entry for CoAP is empty.

In terms of the total number of additional packets, the packet overhead DTLS

5.1. HANDSHAKE TIME 43

CoAP CoAP/DTLS CoAP/WireGuard

No network delay

Handshake, ms - 218 £ 212 1+0.412
60 ms network delay
Handshake, ms — 407 £ 112 31+ 30

Table 5.1: Measured handshake time expressed by the mean of the results obtained
when running the experiment.

introduces to CoAP is six, while WireGuard only adds two additional packets.
Furthermore, as seen in the Figure 5.1, the total amount of bytes exchanged during
a CoAP/DTLS handshake equals 1573 bytes (12,584 bits). On the other hand, the
size of the WireGuard handshake is 328 bytes (2,624 bits). Figure 5.1 compares
the two fastest handshakes achieved during our experiment for CoAP/DTLS and
CoAP /WireGuard, respectively.

No. Time Source Destination Protocol Length Info
16.000000000 192.168.56.1 192.168.56.103 DTLSvi.2 191iClient Hello
20.001123645 192.168.56.103 192.168.56.1 DTLSvi.2 104Hello Verify Request
30.003358592 192.168.56.1 192.168.56.103 DTLSvi.2 223Client Hello
40.007106562 192.168.56.103 192.168.56.1 DTLSv1.2 507 Server Hello, Certificate, Server Key Exchange, Certificate Request, Server Hello Done
50.062745498 192.168.56.1 192.168.56.103 DTLSvi.2 429Certificate, Client Key Exchange, Certificate Verify, Change Cipher Spec, Encrypted Handshake Message
60.081405683 192.168.56.103 192.168.56.1 DTLSv1.2 119Change Cipher Spec, Encrypted Handshake Message
70.097547282 192.168.56.1 192.168.56.103 DTLSV1.2 99 Application Data
80.108523404 192.168.56.103 192.168.56.1 DTLSvi.2 107Application Data

No. Time Source Destination Protocol Length Info
10.000000000 192.168.56.1 192.168.56.103 WireGuard 192 Handshake Initiation, sender=0x478635E2
20.000527015 192.168.56.103 192.168.56.1 WireGuard 136 Handshake Response, sender=0x5CB8CB1A, receiver=0x478635E2
30.033799665 192.168.56.103 192.168.56.1 WireGuard 124 Transport Data, receiver=0x478635E2, counter=0, datalen=48
40.036695091 192.168.56.1 192.168.56.103 WireGuard 588 Transport Data, receiver=0x5CB8CB1A, counter=1, datalen=512

Figure 5.1: Handshake 4+ one RTT for GET request and one response.

It takes almost three times longer for CoAP/DTLS to establish a handshake
compared to CoAP/WireGuard. Moreover, for this exchange, the DTLS handshake
takes almost 75% of the processing time (similar to the results depicted in [KBTM21]).
On the contrary, the WireGuard security handshake takes up only 1.436% of the
whole processing time. To summarise, during our experiment, the following outcomes
could be observed:

e Average handshake for CoAP/WireGuard is 218 faster than an average hand-
shake for CoAP/DTLS without delay in the network, and approximately 13
(13.129) times faster for CoAP/WireGuard when a fixed delay of 60 ms is
introduced.

e CoAP/WireGuard processing time is almost three times (2.957) less than
CoAP/DTLS.

44 5. FINDINGS

(a) No network delay (b) 60 ms network delay

Figure 5.2: Measured RTT for CoAP, CoAP/DTLS (no handshake), CoAP/DTLS
(handshake), CoAP/WireGuard (no handshake) and CoAP/WireGuard (handshake)
respectively.

e DTLS handshake takes almost 75% (75.012%) of the whole processing time
(handshake + one RTT for GET request and response), while WireGuard
handshake only takes 1.436% of the processing time (for a network with no
delay).

5.2 Round-trip time (RTT)

Table 5.2 and Figure 5.2 depict average RT'Ts for all the tested protocols and includes
results with and without the DTLS and WireGuard handshake.

CoAP CoAP/DTLS CoAP/WireGuard

No network delay

RTT w/ handshake, ms 3+0.210 842.700 3+0.419
RTT no handshake, ms 3 +0.210 74+2.100 3+ 0.157
60 ms network delay

RTT w/ handshake, ms 34+1 360 33.680 =1
RTT no handshake, ms 3441 35£0 33.870 £ 1

Table 5.2: Measured RTT expressed by the mean of the results obtained when
running the experiment.

We can observe that the results are consistent with the results from Section 5.1.
The main conclusions possible to draw from the outcome are summarised below:

5.3. LATENCY 45

e In our experiment, the average RTT was not particularly affected by adding a
handshake. It is true for both CoAP/DTLS and CoAP/WireGuard and applies
to the results obtained with and without a network delay.

e Again, the difference between the protocol becomes less the more delay is added,
which is consistent with the findings reported by Laaaroussi et al. [LN21].

e Using WireGuard to secure CoAP adds no overhead looking from the perspective
of average RTT. Furthermore, the average RTT for CoAP/WireGuard is
measured more than half as much for CoAP/DTLS.

5.3 Latency

Table 5.3 demonstrates the experimental results for all three protocols. The results
for DTLS and WireGuard are presented both with and without the handshakes. A
more graphical comparison can be seen in Figure 5.3.

CoAP CoAP/DTLS CoAP/WireGuard

No network delay

Time span, handshake, ms 666 + 63 2,295 4+ 822 865 + 126
Time span, no handshake, ms 666 + 63 2,078 £ 617 865 + 126

60 ms network delay

Time span, handshake, ms 9,983 +£205 10,773 + 96 10,103 4+ 250
Time span, no handshake, ms 9,983 +205 10,367 £106 10,092 + 242

Table 5.3: Latency expressed by the mean of the results obtained when running the
experiment.

A summary of the most important points from Table 5.3 and Figure 5.3 would
be the following:

e As we could observe in the previous section, the footprint of the WireGuard
handshake is so small that it does not have any significant influence on the
overall time span.

e There is a slight decrease in the average time span when removing the handshake
from the CoAP/DTLS implementation: the average time span without the
handshake is 10.442% less than with the handshake in a network with no delay
and 3.768% less for a network with a fixed 60 ms delay.

e Similar results can be observed when a 60 ms delay is introduced: there is only
a very slight decrease in the average time span for CoAP/DTLS (3.916%) and
CoAP /WireGuard (0.109%) when removing the handshake.

46 5. FINDINGS

(a) No network delay (b) 60 ms network delay

Figure 5.3: Measured latency for CoAP, CoAP/DTLS (no handshake), CoAP/DTLS
(handshake), CoAP/WireGuard (no handshake) and CoAP/WireGuard (handshake)
respectively.

e Compared to non-secure CoAP, adding WireGuard increases the overall time
span by 29.880% while securing CoAP with DTLS will increase the overall time
span by 244.595% with the handshake and 212.012% without (for a network
with no delay).

e Similarly to Laaroussi et al. [LN21], we observed that an introduction of a
delay in the network yielded a smaller difference between the protocols.

5.4 Throughput

Finally, we measured average throughput for the three protocols, testing it while
having no network delay and adding a delay afterwards to compare the results.
Figure 5.4, Figure 5.5 and Table 5.4 present an extensive comparison of the throughput

evaluation.

CoAP CoAP/DTLS CoAP /WireGuard
No network delay
Packets per second 454 + 41.617 145.584 + 35.247 355 + 47.527
Throughput, Mbit/s 1.0424+0.092 0.123 £ 0.030 1.009 + 0.136
60 ms network delay
Packets per second 30.050 £ 0.608 28.417 4+ 0.267 29.800 £ 0.792
Throughput, Mbit/s 0.069 £ 0.001 0.024+0 0.084 £ 0.002

Table 5.4: Measured throughput expressed by the mean of the results obtained when
running the experiment.

5.4. THROUGHPUT 47

400

Average number of packets per s

Average number of packets per s

°

1 2 3
1: CoAP, 2: CoAP/DTLS, handshake, 3: CoAP/WireGuard, handshake

(b) 60 ms network delay

1 2 3
1: COAP, 2: COAP/DTLS, handshake, 3: CoAP/WireGuard, handshake

(a) No network delay

Figure 5.4: Measured number of packets per second for CoAP, CoAP/DTLS (hand-
shake) and CoAP/WireGuard (handshake) respectively.

°

Average throughput, Mbit/s
°

Average throughput, Mbit/s

2 3
1: CAP, 2: CoAP/DTLS, handshake, 3: CoAP/WireGuard, handshake

(b) 60 ms network delay

2 3
1: CoAP, 2: COAP/DTLS, handshake, 3: CoAP/WireGuard, handshake

(a) No network delay

Figure 5.5: Measured throughput in Mbit/s for CoAP, CoAP/DTLS (handshake)

and CoAP/WireGuard (handshake) respectively.

To summarise the results presented in this section, we can highlight some of the
more significant results observed in our experiment:

e Asexpected, both CoAP/DTLS and CoAP/WireGuard have a lower throughput

than non-secured CoAP in almost all cases. However, the pps ratio for CoAP
secured by WireGuard is almost 2.5 times higher than the pps for CoAP secured
using CoAP (for a network with no delay).

The measured results for packets per second in a network with a fixed 60 ms
delay exhibit little to no difference;

Looking at the throughput in terms of Mbit/s, CoAP/WireGuard has only
around a 3% decrease from the throughput recorded for non-secured CoAP.
The decrease for CoAP/DTLS compared to CoAP is around 88% (for a network
with no delay).

48 5. FINDINGS

e Despite the results for the number of pps being similar for all the three protocols
in a network with no delay, some significant differences can be observed for
the throughput compared in Mbit/s. When securing CoAP with DTLS, the
throughput went down by 65.220%. However, when using WireGuard instead
of CoAP, the throughput increased by 21.740%. This will be discussed more
thoroughly in Chapter 6.

This chapter introduced the main attributes used for comparing CoAP and its
two secure implementations. Each subsection presented the results related to one
of the attributes and summarised the main findings. The results presented in this
chapter will serve as a foundation for further discussion in Chapter 6, where we will
also address the Research Question and Hypotheses established in Chapter 1.

Discussion

This chapter will conclude the problem investigation phase of our thesis and discuss
the results presented in Chapter 5 more closely. Based on the results, we will answer
our RQs defined in Chapter 1. A set of hypotheses established to investigate RQ3 in
further detail will also be explored in this chapter.

6.1 Main security concern for IoT devices using CoAP

When aiming to find a protocol best-suited for securing any communication, it is
important to examine both the security and performance requirements of the nodes
responsible for carrying out the communication. A CNN consisting of constrained
devices such as IoT devices has its own set of requirements, and our research focused
on summarising these requirements in connection to the CIA triad. Our RQI1 as
defined in Section 1.2 of Chapter 1 is as follows:

RQ1: What are the main security concerns regarding confidentiality,
integrity, and authentication (the CIA triad) when it comes to communi-
cation between IoT devices using CoAP?

Reflecting upon the security concerns explored in Section 2.1.1, we can conclude
why the three principles are vital for achieving a secure communication framework
[MYAZ15]:

Confidentiality: Given the sheer amount of data being collected by constrained
devices, the data must be secure and only available to authorised users. In an IoT
network, entities such as humans, different machines and services can all be users.
Furthermore, users can include internal devices (devices that are part of the network)
and external devices (which are not part of the network). Thus, it is vital to ensure
that information is not shared with the nodes which are not authorised to obtain it.

49

50 6. DISCUSSION

There are multiple methods to potentially exploit confidentiality, e.g., performing
attacks such as Replay Attack!, eavesdropping or analysing the traffic.

Integrity: Due to the nature of IoT communication, where data is exchanged
between a large number of different devices, it is essential to protect the information
from being tampered with, either intentionally or unintentionally. The information
shared should be accurate, complete, and come from the right sender. The usage
of firewalls and protocols can help manage data traffic, but maintaining end-to-
end security is vital for enforcing integrity in IoT communication. However, since
constrained devices commonly have low computation power, the security at endpoints
cannot be guaranteed. Integrity can be compromised by attacks such as jamming?
and spoofing® attacks, as well as other types of unauthorised access.

Availability: The idea behind IoT is to connect numerous devices and provide data
to the users whenever they need to access it. Hence, both IoT devices, services, and
the data gathered must be reachable and available at any point in time. The most
common type of attack to affect availability is DoS or DDoS.

Since CoAP is one of the most popular IoT protocols, these concerns are highly
relevant for IoT devices utilising CoAP. CoAP itself does not have any authentication
or authorisation mechanisms and does not provide confidentiality. Thus, there is a
need for standard services such as TLS and DTLS.

It is possible to ensure confidentiality for CoAP by using one of the security
modes and authentication methods provided by DTLS and explained in Section 2.3.1.
However, as established in Section 2.3.2, CoAP is susceptible to different attacks,
including message parsing and IP address spoofing. IP address spoofing can be
used to launch a DDoS attack by forging valid IP addresses. The cookie exchange
mechanism utilised by DTLS improves CoAP’s resistance to various types of DDoS
attacks. It is not, however, immune to attacks from valid IP addresses. Thus, DTLS
does not eliminate the possibility for exploitation of TP address spoofing, which
negatively affects the integrity and availability of the data being sent.

While DTLS is capable of providing some level of security and is widely used for
securing CoAP communication, previous studies have uncovered vulnerabilities that
negatively affect the protocol’s security. With IoT devices being used for various
purposes, the importance of implementing additional countermeasures to secure
the protocol is evident. However, additional security features might increase the

1 Replay Attack is a type of security attack where a third, unauthorised party captures the traffic
and can send it to its original destination, acting as the original sender.

2 Jamming is a kind of Denial of Service attack, where an attacker prevents other nodes from
using a communication channel by completely occupying it.

3 Spoofing is a situation when an attacker successfully masquerades as a legitimate entity to
deceive the receiver.

6.2. COMPARING WIREGUARD AND DTLS 51

complexity of the protocol even further, which is not desirable as some already
consider DTLS too heavyweight for CoAP. There is, therefore, demand for more
lightweight solutions that can match or improve the security level provided by DTLS.

6.2 Comparing WireGuard and DTLS

Studying DTLS and WireGuard during the literature review phase and presenting
the central elements of the protocols in Chapter 2 gave us a foundation to answer
RQ2. As defined in Section 1.2 of Chapter 1:

RQ2: What are the differences and similarities between WireGuard and
DTLS with regards to features and how they operate?

When considering replacing one protocol with another, it is important to highlight
the main differences similarities between them. A concise summary, together with
the evaluated experimental results, will assist us when deciding if replacing DTLS
with WireGuard can be advantageous. A comparison of some of the core features
introduced in Section 2.3 and Section 2.4 of Chapter 2 can be seen below:

e Both DTLS and WireGuard run on UDP, a feature that makes them convenient
candidates for securing IoT communication. While DTLS was designed to
secure the transport layer of the network stack, WireGuard exclusively secures
the network layer.

e Both protocols utilise a cookie-based DoS mitigation technique and ensure
anti-replay protection.

e Unlike WireGuard, DTLS offers cryptographic agility. As previously discussed,
cryptographic agility allows users to tailor several different cipher suites to the
network’s and devices’ demands. Nir et al. [NSS] provide an extensive list of
available cipher suites for TLS and DTLS (up to version 1.3). WireGuard is
not cryptographically agile, meaning that there is no possibility to choose other
algorithms besides the ones provided by the protocol.

e As seen in Figure 2.5 and Figure 2.8, DTLS connection initiation requires the
client and the server to agree on more features than WireGuard before any
data can be transferred.

e The freedom to choose between different cipher suits and add more functionality
increases the complexity of DTLS and creates a debate about whether it is too
heavyweight for CoAP. There is no singular number for how many lines of code
are needed to implement DTLS due to the amount of different implementations

52 6. DISCUSSION

available in different programming languages, but we can assume that the
DTLS codebase is substantial and will impact CoAP performance negatively.
WireGuard codebase, on the other hand, is under 4,000 lines of code, potentially
making it the more favourable protocol for securing IoT communication.

e In contrast to DTLS, which uses certificates depending on the implementation,
WireGuard does not require certificates. When using WireGuard, both sides
exchange short 32-byte base64-encoded public keys.

Answering RQ2 provided us with an outline of the most notable differences
between the two protocols. We believe that the outline shows several shortcomings
of DTLS and provides solid incentives for researching more ways of securing CoAP
communication such as WireGuard. The next sections will discuss this further based
on the experiments performed as a part of our research.

6.3 Using WireGuard for securing CoAP communication

The question of whether or not WireGuard could be a suitable protocol for securing
an IoT protocol such as CoAP was the central question of our research. RQ3 was
formulated in Chapter 1.2 and is reintroduced below:

RQ3: Could WireGuard potentially be used instead of DTLS for CoAP
as a protocol for securing communication?

— If yes, how?

— What would be the benefits of doing so? How would it affect the
security concerns mentioned in RQ1, as well as CoAP’s performance?

The two supporting questions were introduced to suggest a possible way of
implementing CoAP over WireGuard and elaborate on the potential benefits of
doing so. Furthermore, we formed three hypotheses that were tested during the
experimental phase of our research. In this section, we will present and discuss each
of the hypotheses. A general discussion of RQ3 will subsequently follow.

6.3.1 H1: WireGuard is faster than DTLS when used to secure
CoAP

When it comes to IoT communication, better performance often means better speed.
Different protocols have different features that affect how fast they operate. In
our case, one such feature shared both by WireGuard and DTLS is the handshake.
Therefore, measuring the time it takes to establish a handshake for both protocols

6.3. USING WIREGUARD FOR SECURING COAP COMMUNICATION 53

and its impact on the overall time span was essential. DTLS handshake has more
flights than WireGuard handshake, making it reasonable to expect it to take a longer
time. In our experimental setup described in Chapter 4, this was confirmed to be
true.

As seen in Table 5.1, there is a significant difference between the two handshakes,
with the WireGuard handshake being significantly faster. Moreover, when establishing
a new connection between a client and a server in order to send one GET request, the
processing time of this exchange is almost three times faster for CoAP/WireGuard
than CoAP/DTLS. However, we should take into account that during real-life
communication between IoT devices, there will be no need for DTLS to establish
an entirely new connection between an already connected client and server when
sending a new packet (Section 2.2.2 of Chapter 2). Not establishing a new handshake
every time a connection is open would lower the handshake cost when it comes to
the overall time span for real-life communication. However, Table 5.3 shows that
even when removing the handshake completely, the overall time span for traffic sent
with CoAP/DTLS is still substantially longer compared to both non-secured CoAP
and CoAP/WireGuard.

When it comes to latency, we can observe that unprotected version of CoAP
performs significantly better as it has no additional overhead (Table 5.3). Removing
the handshake proves to make no difference for CoAP /WireGuard, while CoAP/DTLS
performs slightly better without the handshake in terms of the overall time span.
However, both with and without the handshake, WireGuard exhibits lower latency
than DTLS. Similarly to the observation made by Laaroussi et al. [LN21], our results
indicate less difference between the protocol the more delay is added to the network.
Their results were most similar when adding 150ms fixed delay to their network, but
since our client sends 150 GET requests as opposed to 19, the difference is minor
already when the delay is 60ms.

Another metric we focused on during our experiments is RTT, presented in
Section 5.2. Based on our experiments, the RTT for CoAP was only slightly affected
when securing it with WireGuard. In comparison, when implementing CoAP over
DTLS, RTT for the same amount of packets was almost tripled. This particular
attribute was not affected by adding or removing the handshake both for DTLS
and WireGuard. Based on the findings, we can conclude that CoAP/WireGuard
exhibited better results compared to CoAP/DTLS.

All the results discussed so far show that sending CoAP packets through a
WireGuard makes little to no difference in terms of both latency and RTT. It holds
true for the last attributes we direct our attention at, namely throughput. Again,
the non-secured version of CoAP exhibits a higher throughput as opposed to its two

54 6. DISCUSSION

secured versions, both in terms of the number of pps and throughput in Mbits/s
(Table 5.4). Our results verify the results obtained by Laaroussi et al. [LN21] for a
network with no delay. Similarly to their results, our findings indicate a significant
decrease of the number of pps when adding implementing CoAP over DTLS compared
to unsecured DTLS. As the paper also mentions, this result is anticipated, since
DTLS handshake requires extra round trips. For the same reason, WireGuard’s
number of pps is also less than for non-secured CoAP. Adding a handshake negatively
impacts the performance of the protocol being secured. Still, the results show that
the footprint of the WireGuard handshake does not affect CoAP results as much as
DTLS does.

When it comes to comparing the throughput achieved by the protocols in Mbits/s,
the performance exhibited by CoAP/DTLS is significantly worse than the results
measured for unsecured CoAP and CoAP/WireGuard. Moreover, when adding a
fixed 60ms delay, we observe that the throughput achieved by CoAP/WireGuard
is higher than the throughput achieved by the unsecured version of the protocol.
The number of pps is approximately the same, but the slightly larger packet size of
WireGuard packets ensures the 21.740% increase of the throughput discovered in
Section 5.4. Moreover, due to the packet size of CoAP/DTLS packets, throughput is
the only metric that gives very different results for the three protocols even when
adding the network delay.

Altogether, the findings presented in Chapter 5 confirm our assumption that
CoAP secured by WireGuard is faster than CoAP implemented over DTLS. It is both
true for a network with no delay and a network with a fixed 60ms delay. However, it is
important to consider that we can only claim this to be the case for our experimental
setup. The protocols were tested in a fixed, prepared environment, and the way they
behave will only apply in such an environment until proven otherwise.

Furthermore, even if an experimental setup is the same for all the protocols, the
results obtained may still vary. As introduced in Chapter 4, each implementation
in our research was tested twelve times: six times with no network delay and six
times with a fixed delay of 60 ms. All the results presented in Appendix C.1 are not
only derived by the arithmetic mean of those six experiments but also the standard
deviation for each metric. Taking a closer look at the tables, we can observe a
high standard deviation for CoAP/DTLS without the network delay, which usually
indicates that the entries are very spread out. However, this is not the case for our
experiments, as only one entry exhibited uncommonly high values for latency and
handshake duration.

The overall time span for that particular experiment was almost twice as big as
the mean of the other five experiments performed for CoAP/DTLS. The handshake

6.3. USING WIREGUARD FOR SECURING COAP COMMUNICATION 55

CoAP CoAP/DTLS CoAP/WireGuard
Packets per second 454.150 = 41.617 159.740 +16.982 355 4+ 47.527
Packet size, B 287.500 £1.500 106 £ 0 355.500 + 0.764
Throughput, Mbit/s 1.042 + 0.092 0.135+0.014 1.009 £ 0.136
Handshake time, ms — 125 4+ 49 1+0.412
Handshake
Time span, ms 666 + 63 1,936 + 190 865 + 126
RTT, ms 3+0.210 7+ 0.620 3+0.419
No handshake
Time span, ms 666 + 63 1,811+ 171 865 + 126
RTT, ms 3+0.210 6+ 0.570 3 +0.157

Table 6.1: The results for the three implementations of the CoAP protocol based on
our experiments, excluding the outlier. (150 GET requests with no delay).

duration for the exact exchange was measured to be around five times longer than
the mean of the other five handshakes. Subsequently, other metrics dependent on
time, such as the number of packets per second and RT'T, were also affected, albeit
not as much as expected. Removing this singular entry reduces the overall time
span to 1,936 ms with the handshake and 1,811 without. Regarding the handshake
duration, the mean value goes from 218 ms down to 125 ms, which is undoubtedly
significant. The final results without the discussed CoAP/DTLS can be seen in
Table 6.1, as well as in Table C.2. Nevertheless, even when considering this, we can
see that WireGuard still performs significantly faster than its counterpart, DTLS.

This particular entry for is a so-called outlier*

including calculation of the arithmetic mean, are sensitive to the presence of outliers

. Many statistical procedures,

[RM17]. Excluding the outliers can lead to the results becoming more statistically
significant [Fro].

In order to treat the outliers properly, it is essential to understand how they
occur. The reason for this particular outlier occurring during our experiments is
hard to ascertain. The experiments were run one after another, with no breaks when
testing each protocol. Both the client and the server only communicated via a virtual
network interface, vboxnet0. Thus, the experiments should not have been affected
by any changes in the public university network.

Nevertheless, there was a possibility of external factors such as the speed of

4An outlier is generally a value which is a lot higher or lower than the main body of the data
[RM17].

56 6. DISCUSSION

VirtualBox influencing the outcome of the experiments. Since the actual reasons
were difficult to define, the outlier value was left as part of our results. The value will
be further mentioned in this chapter whenever it directly affects the results being
discussed.

6.3.2 H2: WireGuard adds less overhead than DTLS when used
to secure CoAP

Overhead can be represented in the form of the handshake time, number of extra
packets or number of extra headers. Figure 6.1 depicts the overall processing time it
takes for CoAP/DTLS and CoAP/WireGuard respectively based on the times from
Figure 5.1. We use these figures to analyse how much impact the handshakes have
on the protocols, and to discuss how much protocol and packet overhead DTLS and
WireGuard add to CoAP.

As it was shown in Section 5.1, DTLS adds six additional packets to CoAP, which
results in additional overhead of 1573 bytes (12,584 bits). WireGuard, on the other
side, only adds two more packets for the handshake, which is three times less. The
whole WireGuard handshake increases the total number of bytes transferred by 328
(2,624 bits). This type of overhead is called the protocol overhead.

Although it is unknown how many packets were exchanged between the client and
the server during the experiments discussed by Kondoro et al. [KBTM21], we can
assume that the results presented there are also the means calculated after running
the experiments several times. This assumption is used when comparing our results
with the results from the paper. During our experiments, we could see that the
DTLS security handshake takes up approximately 75% of the total processing time.
Section 7.1 of [KBTM21] states this number to be 70%. Our research determined
that WireGuard only consumes 1.436% of the whole processing time. These results
are true for a network with no delay.

Based on our findings, it is evident that our assumption about WireGuard adding
less overhead to CoAP than DTLS was correct. However, this hypotheses is only
accurate when looking at the overhead added by the handshake, i.e. the protocol
overhead. Figure 6.1 depicts the first data transfer after the handshake is complete.
In our experiment, all the subsequent data transfers are identical to the first one,
since we only request one particular resource from the server. Figure 6.1 shows that
the GET requests sent using DTLS and WireGuard are not the same size. The same
can be said about the response sent from the server. Curiously, the packets sent
using WireGuard are noticeably bigger than the DTLS packets. The same pattern
can be observed in Figure C.1; the value of the mean packet size is around 3.5 times
larger for CoAP/WireGuard than CoAP/DTLS.

6.3. USING WIREGUARD FOR SECURING COAP COMMUNICATION 57

| Client ‘ | Server ‘
ClientHello
0ms)
(1528 bits) :
5 Client Server
PleaseVerifyRequest
1124 ms
(832 bits)
a Hell Handshake Initiation Message
ientHello p—
(;‘;’3;4‘3"':::) (1536 bits)
Handshake Response Message 0.527 ms
ServerHello [Certificate], [ServerKeyExchange], (1bsa bits)
[CertificateRequest], ServerHelloDone
7.107 ms . i
(4056 bits) Both sides calculate symmetric session keys
[Certificate], ClientKeyExchange, Transport Data
[CertificateVerify], ChangeCipherSpec 33.799 ms
62.756 ms (992 bits)
(3432 bits) Transport Data
. 36.695 ms
Finished (4704 bits)
ChangeCipherSpec
8.140 ms
(942 bits)
Finished
97.473 ms Transport Data
(792 bits)
Transport Data 108.522 ms
(856 bits)

Figure 6.1: A visual depiction of the DTLS and WireGuard handshakes from
Figure 5.1

Based on our findings, the size of a GET request using non-secured CoAP equals
62 bytes (448 bits), while the response is measured to be 515 bytes (4120 bits). When
comparing the overhead added to these messages by DTLS and WireGuard, we can
see that WireGuard overhead is larger. Moreover, the response message sent with
DTLS is notably smaller than both non-secured CoAP and WireGuard responses. It
is possible to use a TLS compression algorithm [DE08] when using DTLS to secure
CoAP, which might be the reason for why DTLS response is smaller than even a
non-secured CoAP response.

However, in the Scandium code the method is initially defined as Compression-
Method.null. Furthermore, [SHB14] advises that TLS compression should be disabled
to mitigate compression-related attacks, and there is no indication that Scandium
uses any sort of message compression. Another possible reason for this can be
the differences in the implementation of Californium and Scandium, as Scandium
does not seem to be directly built "on top" of Californium, but rather as its own
implementation of CoAP and DTLS. In the end, the results presented in Table C.1
and Table C.3 show that WireGuard is more effective despite potentially adding
more message overhead. It is clear that the DTLS handshake significantly affects
the performance of CoAP/DTLS implementation in a negative way. Even if we do
not consider the outlier-value discussed in Section 6.3.1, there is still a considerable
difference between WireGuard and DTLS overhead.

58 6. DISCUSSION

Nevertheless, the findings presented in this thesis do not describe all the possible
situations when using DTLS. As described in Chapter 4, CoAP/DTLS was tested by
running the implementation both over a time span of several hours and overnight.
When doing so, we confirmed that no handshakes apart from the initial handshake
to initiate the connection were observed. The Californium implementation of CoAP
allows client and server to resume a session either using session ID or master_ secret,
without using a full handshake. RFC5077 [SZET08] suggests that the upper limit
for session 1D lifetime should have an upper limit of 24 hours. As DTLS is based on
TLS, it is logical to assume that DTLS follows the same guidelines. This upper limit
is advised due to security concerns regarding a master_ secret that is shared between
a client and a server. Having obtained the master__secret, an adversary might be able
to impersonate the compromised party up until the session ID is retired. Therefore,
the more rare the handshake is the less secure the session might be. It is a classic
security-performance trade-off situation for IoT communication, where a choice must
be taken based on the requirements for the devices needed to be secure.

WireGuard handshake occurs every few minutes after the initial handshake that
established symmetric keys for data transfer. The protocol implements a pulse
mechanism to ensure that the latest keys and handshakes are not out of date and
renegotiates them when needed. Furthermore, by initiating a new handshake every
few minutes, WireGuard provides rotating keys for perfect forward secrecy [Donl7].
Despite WireGuard initiating handshake more often than DTLS, the total overhead
for a network with no delay will most likely still be more for DTLS than WireGuard.
Using our results (Appendix C.1), we can estimate that WireGuard will need to
handshake 218 times only to reach the time span of one DTLS handshake, or 125
when removing the outlier entry. Moreover, the RTT for WireGuard is less both
with and without a handshake, meaning that we can discard the other packets when
talking about the packet overhead.

6.3.3 H3: It would be beneficial to choose WireGuard over
CoAP rather than DTLS when securing CoAP

H3, together with the supporting question RQ3.2, were defined at the beginning of
our research to facilitate the discussion of RQ3. The supporting question was defined
as follows:

RQ3.2: What would be the benefits of doing so and how would it affect
the security concerns mentioned in RQ1, as well as CoAP’s performance?

The first question concerns both the performance and security side of the possible
CoAP/WireGuard implementation. When it comes to performance, the results

6.3. USING WIREGUARD FOR SECURING COAP COMMUNICATION 59

obtained from our experiments are extensively examined in the previous sections of
this chapter, as well as Chapter 5. Our results suggest that using WireGuard for
securing CoAP can lead to a better overall performance of the protocol. Security-wise,
both advantages and shortcoming of DTLS and WireGuard have been discussed
in the preceding chapters. In Section 6.1, we established that DTLS can provide
confidentiality for IoT devices but falls short when it comes to securing integrity and
availability.

WireGuard’s creators claim that WireGuard only provides perfect forward secrecy
but also built-in protection against key impersonation, replay attack and identity
hiding [Don17]. Furthermore, WireGuard’s security primitives such as Noise Protocol
Framework and ChaCha20Poly1305, together with the stateless cookie mechanism
(Section 2.4), serve as a good foundation for implementing the CIA triad. In addition,
these security primitives are less resource consuming, as shown by [LKS19, PWAT19],
along with our research.

Nevertheless, there are some potential disadvantages and security concerns linked
to using WireGuard for IoT devices worth mentioning. As the protocol has a fixed
set of cryptographic algorithms, some of the algorithms may be broken sometime in
the future, which will require an update of all the devices implementing WireGuard.
With the number of tiny IoT devices potentially utilising WireGuard, updating all
of them at the same time may be cumbersome. Implementing stable self-update
features on the devices may help to reduce the scope of the issue.

When it comes to potentially breaking the cryptographic primitives used by
WireGuard, it is essential to mention the concept of post-quantum computers.
WireGuard is not yet post-quantum secure, meaning that when large quantum
computers are created, they may break the underlying algorithms used by WireGuard.
This will significantly weaken the security of WireGuard. In section Section 2.5, some
papers presenting potential improvements regarding post-quantum cryptography are
presented. Despite being more secure, a new, post-quantum version of WireGuard
may become too heavyweight for CoAP and other similar protocols. IoT devices
would thus have to evolve in such a way that the new post-quantum version does not
significantly affect their performance.

Ultimately, however, when designing an IoT network and choosing a protocol, it
is up to the network planner to choose the protocol that best suits the predetermined
requirements for both the devices themselves and the traffic being exchanged in the
network. Currently, DTLS is the most common protocol used for securing CoAP,
and as seen in Section 2.5, there is considerable interest in improving the security and
performance of the protocol. However, securing IoT devices is an ongoing endeavour,
and new protocols such as WireGuard will likely become a focus of more thorough

60 6. DISCUSSION

research in the near future. In addition to generating more research, WireGuard
needs to be developed to better suit IoT devices in order to become a full-fledged
safe alternative to a well-establish protocol such as DTLS.

6.3.4 Implementing CoAP over WireGuard

During the course of this study, we wanted to establish whether it would be feasible
to secure CoAP using WireGuard not only from the theoretical point of view, but
also in terms of an actual implementation. The supporting question RQ3.1 was thus
designed to facilitate the investigation of RQ3 and was defined as follows:

RQ3: Could WireGuard potentially be used instead of DTLS for CoAP

as a protocol for securing communication?

- RQ3.1: If yes, how?

As this thesis shows, it is possible to secure CoAP communication using Wire-
Guard. In our research, CoAP server and client sent packets to each other via
an encrypted WireGuard tunnel, as depicted in Figure 4.1. However, the setup
described in Chapter 4 is experimental and is not entirely applicable for real-life IoT
communication. The limitations enforced on the devices by the CPU and reduced
storage will likely require a change in implementation methods. Still, it is entirely
possible to build and run a CoAP Californium server on a Raspberry Pi and other
IoT devices®.

Moreover, many modern devices are running on Linux distributions, with An-
droidThings, Raspbian and Ubuntu Core being some of them. 2020 IoT Developer
Survey [Fou20] reveals that 43% of the developers choose Linux as the operating
system for constrained devices and edge nodes. Since WireGuard is now integrated
into the Linux kernel, these IoT devices have access to it and should have no trouble
installing it. Furthermore, our method of running CoAP over WireGuard requires
little to no modifications done to the Californium code, simplifying the task of
configuring CoAP/WireGuard on small IoT devices.

This chapter further examined the experimental results presented in Chapter 5
and answered the RQs established in Chapter 1 with the help of the Hypotheses
and supporting questions. Discussing the results in light of the RQs provided a
base for suggesting that using Wireguard for securing CoAP will benefit the overall
peformance of the IoT protocol.

Shttps://www.raspberrypi.org/forums/viewtopic.php?t=277111

https://www.raspberrypi.org/forums/viewtopic.php?t=277111

Conclusion and Future work

7.1 Conclusion

During the last decades, IoT devices have become an integrated part of various infras-
tructures, including critical infrastructures such as the healthcare and public health
sector, transportation and manufacturing. Furthermore, smart homes composed of
small smart devices are becoming increasingly popular, as such devices may simplify
day-to-day tasks and thus improve the quality of life. These devices usually have
limited processing, storage and power capacity and can be referred to as constrained
devices. Often, constrained devices form constrained networks and regularly gather
and exchange data. Their growing popularity is accompanied by growing interest
from adversaries whose goal is to compromise both the devices’ and their owners’
safety and security.

This thesis has explored the main security challenges faced by the constrained
nodes and networks by reviewing the previous works related to the topic. The review
established that security and performance issues of resource-constrained devices are
closely connected since securing the communication creates an overhead that reduces
the performance of many IoT devices and networks. In addition to the literature
review, this study has presented a comparative networks performance analysis of
CoAP and its two secured implementations, CoAP/DTLS and CoAP/WireGuard.
The primary goal of the thesis was to find out whether it would be beneficial to
secure CoAP with WireGuard instead of DTLS both when it comes to security and
performance.

RQ1 explored the main security concerns regarding IoT communication using
CoAP and summarised them in connection to the CIA triad. Information gathered
and stored by the constrained nodes must not be shared with the nodes not authorised
to access it. When the information is shared with other nodes, it must be accurate
and complete; receivers expect information not to have been tampered with and
come from the right senders. Furthermore, the nodes must be reachable and available

61

62 7. CONCLUSION AND FUTURE WORK

at any point in time to provide access to the data to users and other nodes whenever
they require it. Therefore, a protocol securing IoT communication must ensure
confidentiality, integrity and availability for the devices and networks it is securing.
In addition to establishing that, RQ1 examined whether DTLS is able to provide this
level of security for CoAP. Taking into consideration the drawbacks and limitation
of DTLS, we concluded that the protocol could be used to ensure confidentiality
by using security and authentication modes provided for CoAP. However, DTLS
does not give full protection against attacks such as IP address spoofing and DDoS
attacks, and thus cannot ensure full integrity and availability.

RQ2 focused on comparing DTLS and WireGuard in order to find features shared
by the two protocols, as well as differences they exhibit. The results showed that
the two protocols are predominantly different and emphasise different features. For
instance, network layer protocols WireGuard tries to minimise potential overhead by
offering a fixed set of cipher suites and a short handshake. DTLS, on the other hand,
is a transport layer protocol that provides a possibility for customisation of cipher
suites based on the network’s and devices’ demand and requires a more extended
handshake in order for client and server to agree on how they want to communicate
further. The flexibility and overhead added by the handshake adversely affect the
performance of the protocol compared to WireGuard. Overall, RQ2 outlined some of
the shortcomings of DTLS and supported further research of other ways to secure
CoAP.

RQ3 summarised the experimental results and confirmed that adding a security
overhead has a significant impact on the network performance of CoAP. The overhead
was most noticeable when using DTLS for securing CoAP, with the handshake having
a substantial negative impact on CoAPs performance. The most effective protocol
in terms of performance was deemed to be the non-secured version of CoAP. The
overhead measured for WireGuard was much smaller, and even when comparing the
implementations without considering the handshake, the outcome remained the same.
The results demonstrated that CoAP implemented over WireGuard exhibited better
performance in terms of both latency, handshake time, RTT and throughput.

The experimental results obtained during this study suggest that WireGuard could
be a better fit than DTLS for securing CoAP as it reduces the security overhead,
which leads to better overall network performance. Furthermore, WireGuard’s
security primitives provide a good foundation for ensuring confidentiality, integrity
and availability, making it not only preferable in terms of performance but also
security requirements of IoT devices.

7.2. FUTURE WORK 63

7.2 Future work

As a part of further research, we propose evaluating the performance of the imple-
mentation on real resource-constrained IoT devices running Linux OS. Moreover, we
believe it would be valuable to evaluate the implementation in terms of both network
performance and other relevant performance metrics to provide new insight into the
effectiveness and efficiency of the protocols. These metrics may include but not be
limited to power consumption and memory space. When it comes to experimenting
with real-life IoT devices, it could also be relevant to test the protocols using devices
utilising microcontrollers with an integrated hardware encryption engine. With some
of them supporting the AES, DES and 3DES standards, it may have a significant
impact on overhead and how resource-intensive DTLS and WireGuard encryption
would be.

Among other possibilities for examining the implementation compared during our
research is completely disabling the encryption for DTLS to reduce the overhead from
cryptographic operations in the software utilising DTLS. In this case, disabling the
encryption means using the NULL cipher suite provided by DTLS. Moreover, a new
and improved version of DTLS, DTLS 1.3, has recently been introduced. Since there
was no available implementation of CoAP over DTLS 1.3 at the time of conducting
this study, it would be interesting to repeat the experiments and add a CoAP/DTLS
1.3 implementation for further comparison.

[ABD+15]

[AN19]

[AsilT]

[BB11]

[BCS12

[BEK14]

[Bev19]

[Bha20]

[BMN19]

References

David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,
Matthew Green, J Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, et al. Imperfect forward secrecy: How Diffie-Hellman fails
in practice. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 5—17, 2015.

S. Arvind and V. Narayanan. An Overview of Security in CoAP: Attack and
Analysis. 2019 5th International Conference on Advanced Computing €& Commu-
nication Systems (ICACCS), pages 655-660, 2019.

Makkad Asim. Security in Application Layer Protocols for IOT: A Focus on
COAP. International Journal of Advanced Research in Computer Science, 8(5),
2017.

A. Barth and U. C. Berkley. RFC 6265 - HTTP State Management Mecha-
nism. https://www.barretlee.com/ST/RFC-HTTP/, April 2011. (Accessed on
04/13/2021).

C. Bormann, A. P. Castellani, and Z. Shelby. CoAP: An Application Protocol for
Billions of Tiny Internet Nodes. IEEFE Internet Computing, 16(2):62—-67, 2012.

C. Bormann, M. Ersue, and A. Keranen. RFC 7228: Terminology for Constrained-
Node Networks. https://www.hjp.at/doc/rfc/rfc7228 html, May 2014. (Accessed
on 03/31/2021).

R. Bevans. A Quick Guide to Experimental Design: 4 Steps & Examples.
https://www.scribbr.com/methodology /experimental-design/, December 2019.
(Accessed on 06/12/2021).

P. Bhandari. What Is Quantitative Research? Definition, Uses and Methods. https:
/ /www.scribbr.com/methodology /quantitative-research/, June 2020. (Accessed
on 06/12/2021).

Anup Burange, Harshal Misalkar, and Umesh Nikam. Security in MQTT and
CoAP Protocols of IOT’s Application Layer. In Shekhar Verma, Ranjeet Singh

65

https://www.barretlee.com/ST/RFC-HTTP/
https://www.hjp.at/doc/rfc/rfc7228.html
https://www.scribbr.com/methodology/experimental-design/
https://www.scribbr.com/methodology/quantitative-research/
https://www.scribbr.com/methodology/quantitative-research/

66

[CCCP15)

[CRCOS]

[DE0S]

[Del05)]

[DM17]

[Don]

[Don17]

[Don18|

[DP18]

[FBJM+20]

[FGMT96]

[FKH13]

[Fou20]

REFERENCES

Tomar, Brijesh Kumar Chaurasia, Vrijendra Singh, and Jemal Abawajy, edi-
tors, Communication, Networks and Computing, pages 273-285, Singapore, 2019.
Springer Singapore.

Angelo Capossele, Valerio Cervo, Gianluca Cicco, and Chiara Petrioli. Security
as a CoAP resource: An optimized DTLS implementation for the IoT. 06 2015.

Patricia Cronin, Frances Ryan, and Michael Coughlan. Undertaking a litera-
ture review: A step-by-step approach. British journal of nursing (Mark Allen
Publishing), 17:38-43, 01 2008.

T. Dierks and Rescorla. E. RFC5246 - The Transport Layer Security (TLS)
Protocol Version 1.2. https://datatracker.ietf.org/doc/html/rfc5246, August 2008.
(Accessed on 06/17/2021).

Amy B Dellinger. Validity and the review of literature. Research in the Schools,
12(2):41-54, 2005.

Jason A Donenfeld and Kevin Milner. Formal verification of the WireGuard
protocol. Technical report, Technical report, July, 2017.

Jason A Donenfeld. Known Limitations - WireGuard. https://www.wireguard.
com/known-limitations/. (Accessed on 05/10/2021).

Jason A Donenfeld. WireGuard: Next Generation Kernel Network Tunnel. In
NDSS, 2017.

Jason A Donenfeld. WireGuard: Fast, modern, secure VPN tunnel. Black Hat
USA, 2018.

Benjamin Dowling and Kenneth G. Paterson. A Cryptographic Analysis of
the WireGuard Protocol. Cryptology ePrint Archive, Report 2018/080, 2018.
https://eprint.iacr.org/2018/080.

Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget, Joeri de Ruiter, Kon-
stantinos Sagonas, and Juraj Somorovsky. Analysis of DTLS Implementations
Using Protocol State Fuzzing. In 29th USENIX Security Symposium (USENIX
Security 20), 2020.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, R. Leach, and T. Berners-
Lee. RFC 2616: Hypertext Transfer Protocol - HTTP/1.1. https://www.hjp.at/
doc/rfe/rfc2616.html, June 1996. (Accessed on 04/01/2021).

N. Freed, J. Klensin, and T. Hansen. RFC 6838 - Media Type Specifications
and Registration Procedures. https://tools.ietf.org/html/rfc6838, January 2013.
(Accessed on 04/07/2021).

The Eclipse Foundation. 2020 IoT Developer Survey: Key Findings. The Eclipse
Foundation, 2020.

https://datatracker.ietf.org/doc/html/rfc5246
https://www.wireguard.com/known-limitations/
https://www.wireguard.com/known-limitations/
https://eprint.iacr.org/2018/080
https://www.hjp.at/doc/rfc/rfc2616.html
https://www.hjp.at/doc/rfc/rfc2616.html
https://tools.ietf.org/html/rfc6838

[GBP*21]

[GMA12]

[HNS*21]

[HT15]

[Hunl7]

[Kaz20]

[KBTM21]

[KMR20]

[KOL19)

[LKS19]

REFERENCES 67

R. Fielding and J. Reschke. RFC 7231 - Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content. https://www.hjp.at/doc/rfc/rfc7231.html, June 2014.
(Accessed on 04/07/2021).

J. Frost. Guidelines for Removing and Handling Outliers in Data - Statis-
tics By Jim. https://statisticsbyjim.com/basics/remove-outliers/. (Accessed on
06/21,/2021).

Martin Gunnarsson, Joakim Brorsson, Francesca Palombini, Ludwig Seitz, and
Marco Tiloca. Evaluating the performance of the OSCORE security protocol in
constrained IoT environments. Internet of Things, 13:100333, 2021.

L.R. Gay, G.E. Mills, and P.W. Airasian. Educational Research: Competencies
for Analysis and Applications. Pearson College Division, 2012.

A. Hilsing, K. Ning, P. Schwabe, F. Weber, and P. R. Zimmermann. Post-
Quantum WireGuard. In 2021 IEEFE Symposium on Security and Privacy (SP),
pages 511-528, Los Alamitos, CA, USA, may 2021. IEEE Computer Society.

Roberta Heale and Alison Twycross. Validity and reliability in quantitative
studies. Evidence-Based Nursing, 18(3):66-67, 2015.

Mark Hung. Leading the IoT: Gartner Insights on How to Lead in a connected
World. https://www.gartner.com/imagesrv/books/iot /iotEbook__ digital.pdf,
2017. (Accessed on 11/13/2020).

E. Kazakova. WireGuard for securing Constrained Application Protocol for
IoT devices. Project report in TTM4502, Department of Information Security
and Communication Technology, NTNU — Norwegian University of Science and
Technology, Dec. 2020.

Aron Kondoro, Imed Ben Dhaou, Hannu Tenhunen, and Nerey Mvungi. Real
time performance analysis of secure IoT protocols for microgrid communication.
Future Generation Computer Systems, 116:1-12, 2021.

Quentin M. Kniep, Wolf Miiller, and Jens-Peter Redlich. Post-Quantum Cryptog-
raphy in WireGuard VPN. In Noseong Park, Kun Sun, Sara Foresti, Kevin Butler,
and Nitesh Saxena, editors, Security and Privacy in Communication Networks,
pages 261-267, Cham, 2020. Springer International Publishing.

Kenneth Kimani, Vitalice Oduol, and Kibet Langat. Cyber security challenges for
ToT-based smart grid networks. International Journal of Critical Infrastructure

Protection, 25:36-49, 2019.

Tim Lackorzynski, Stefan Kopsell, and Thorsten Strufe. A comparative study on
virtual private networks for future industrial communication systems. In 2019
15th IEEE International Workshop on Factory Communication Systems (WFCS),
pages 1-8. IEEE, 2019.

https://www.hjp.at/doc/rfc/rfc7231.html
https://statisticsbyjim.com/basics/remove-outliers/
https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf

68 REFERENCES

[LN21]

[LS14]

[Mid20]

[MP*]

[MYAZ15]

[NC20]

[NSS]

[P*+80]
[PWA*19]

[RM12]

[RM17]
[RS16]

[RSH*13]

[SHB14]

Zakaria Laaroussi and Oscar Novo. A Performance Analysis of the Security
Communication in CoAP and MQTT. In 2021 IEEE 18th Annual Consumer
Commaunications Networking Conference (CCNC), pages 1-6, 2021.

Vishwas Lakkundi and Keval Singh. Lightweight DTLS implementation in CoAP-
based Internet of Things. September 2014.

F. Middleton. The 4 types of validity | explained with easy examples. https:
/ /www.scribbr.com/methodology /types-of-validity /, June 2020. (Accessed on
06/23/2021).

Snehal Mumbaikar, Puja Padiya, et al. Web services based on SOAP and REST
principles. International Journal of Scientific and Research Publications, 3(5):1-4.

R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan. Internet of things (ToT)
security: Current status, challenges and prospective measures. In 2015 10th Inter-
national Conference for Internet Technology and Secured Transactions (ICITST),
pages 336341, 2015.

Giuseppe Nebbione and Maria Carla Calzarossa. Security of IoT Application
Layer Protocols: Challenges and Findings. Future Internet, 12(3), 2020.

Y. Nir, R. Salz, and N. Sullivan. Transport Layer Security (TLS) Parameters.
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml, Last
updated: 06/04/2021. (Accessed on 06/18/2021).

Jon Postel et al. RFC768 - User datagram protocol. 1980.

Sven Plaga, Norbert Wiedermann, Simon Duque Anton, Stefan Tatschner, Hans
Schotten, and Thomas Newe. Securing future decentralised industrial IoT in-
frastructures: Challenges and free open source solutions. Future Generation

Computer Systems, 93:596—-608, 2019.

E. Rescorla and N. Modadugu. RFC 6347 - Datagram Transport Layer Security
Version 1.2. https://tools.ietf.org/html/rfc6347, January 2012. (Accessed on
11/15/2020).

Colin Robson and Kieran McCartan. Real World Research, 4th Edition. 12 2017.

R. A. Rahman and B. Shah. Security analysis of IoT protocols: A focus in
CoAP. In 2016 8rd MEC International Conference on Big Data and Smart City
(ICBDSC), pages 1-7, March 2016.

Shahid Raza, Hossein Shafagh, Kasun Hewage, René Hummen, and Thiemo Voigt.
Lithe: Lightweight secure CoAP for the internet of things. IEEFE Sensors Journal,
13(10):3711-3720, 2013.

Z. Shelby, K. Hartke, and C. Bormann. RFC 7252 - The Constrained Application
Protocol (CoAP). https://tools.ietf.org/html/rfc7252#section-11, June 2014.
(Accessed on 03/11/2021).

https://www.scribbr.com/methodology/types-of-validity/
https://www.scribbr.com/methodology/types-of-validity/
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc7252#section-11

[SHSA15a]

[SHSA15b]

[SZET08]

[tea]

[TF16]

[TMV+14]

[Wield]

[WLP18]

[WO20]

[ZCW14]

[ZKKK19]

REFERENCES 69

Y. Sheffer, R. Holz, and P. Saint-Andre. RFC 7457 - Summarizing Known
Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS). https:
//www.hjp.at/doc/rfc/rfc7457 html, February 2015. (Accessed on 06/18/2021).

Y. Sheffer, R. Holz, and P. Saint-Andre. RFC 7525 - Recommendations for Secure
Use of Transport Layer Security (TLS) and Datagram Transport Layer Security
(DTLS). https://www.hjp.at/doc/rfc/rfc7525.html, May 2015. (Accessed on
06/18/2021).

J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. RFC5077 - Transport
Layer Security (TLS) Session Resumption without Server-Side State. https://
datatracker.ietf.org/doc/html/rfc5077, January 2008. (Accessed on 06/16/2021).

IPVN team. PPTP vs IPSec IKEv2 vs OpenVPN vs WireGuard. (Accessed on
05/3/2021).

Hannes Tschofenig and Thomas Fossati. Transport Layer Security
(TLS)/Datagram Transport Layer Security (DTLS) profiles for the Internet
of Things. In RFC 7925. Internet Engineering Task Force, 2016.

D. Thangavel, X. Ma, A. Valera, H. Tan, and C. K. Tan. Performance evaluation of
MQTT and CoAP via a common middleware. In 2014 IEEE Ninth International

Conference on Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), pages 1-6, 2014.

R.J. Wieringa. Design Science Methodology for Information Systems and Software
Engineering. Springer Berlin Heidelberg, 2014.

Min Woo Woo, JongWhi Lee, and KeeHyun Park. A reliable IoT system for
Personal Healthcare Devices. Future Generation Computer Systems, 78:626—640,
2018.

Merrill Warkentin and Craig Orgeron. Using the security triad to assess blockchain
technology in public sector applications. International Journal of Information
Management, 52:102090, 2020.

Z. Zhang, M. C. Y. Cho, C. Wang, C. Hsu, C. Chen, and S. Shieh. IoT Security:
Ongoing Challenges and Research Opportunities. In 2014 IEEFE 7th International
Conference on Service-Oriented Computing and Applications, pages 230-234, 2014.

Fotios Zantalis, Grigorios Koulouras, Sotiris Karabetsos, and Dionisis Kandris. A
Review of Machine Learning and IoT in Smart Transportation. Future Internet,
11(4), 2019.

https://www.hjp.at/doc/rfc/rfc7457.html
https://www.hjp.at/doc/rfc/rfc7457.html
https://www.hjp.at/doc/rfc/rfc7525.html
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077

Appendix A

A.1 Implementations

A.1.1 WireGuard configuration files

[Interface]

Address = 10.1.0.1/24

ListenPort = 41194

PrivateKey = mCL1t5Qb03+cV1Vqz5Gwqq6Dab6jlpxk2DJYmel2qkM=

[Peer]

Bob's public key

PublicKey = e7HjfGJtGtpLKzJpCses1AfMPE9iY10f2S64ztWxWVE=
AllowedIPs = 10.1.0.0/24

Endpoint = 192.168.56.1:41194

Listing A.1: Configuration file (Alice)

[Interfacel

Address = 10.1.0.2/24

ListenPort = 41194

PrivateKey = wEnLEONpX8ysREhKt/H+7r6vMIggjdwMGnXYY1RUbls=

[Peer]

Alice's public key

PublicKey = vwjIhUrppqeBTsBepw347Fc7U4yu7ezTeZ5Vy3yMjlu=
AllowedIPs = 10.1.0.0/24

Endpoint = 192.168.56.103:41194

Listing A.2: Configuration file (Bob)

71

72 A. APPENDIX A

A.1.2 HelloWorld server CoAP

.625 INFO [CoapServer]: Starting server
INFO [UDPConnector]: UDPConnector starts up 1 sender threads and 1 receiver threads
690 ctor]: Starting network stage thread [UDP-Receiver-/10.1.0 z~5533[@]
c Starting network stage thread [UDP-Sender-/10.1.0.2:5683[0]
91 C UDPConnector listening on /10.1. <ssi‘ recv buf = 106456, send buf = 106496, recy packet
INFO [CoapEndpoint]: coap Started endpoint at coap://10.1. 683
8 INFO [UDPConnector]; UDPConnector starts up 1 sender threads and 1 receiver thread=
DEBUG [UDPConnector]: Starting network stage thread [UDP-Receiver-/feso 00: 27FF : fe00: 0%vboxnet0: 5683[0]
DEBUG [UDPConnector]: Starting network stage thread [UDP-Sender-/fes! o f:fe00: 0%vboxnet 3[0]
INFO [UDPConnector]: UDPConnector listening on /fe80: 800:27FF: fe00:0%4:5683, recv buf = 106496, send buf = 106496, recv packet size = 2048
INFO [CoapEndpoint]: coap Started endpoint at coap://[fe80:0 7Ff:Fe00:0%4]:5683
INFO [UDPConnector]: UDPConnector starts up 1 sender threads and 1 receiver thread
DEBUG [UDPConnector]: Starting network stage thread [UDP-Sender-/192.168.56.1:5683[0]
INFO [UDPConnector]: UDPConnector listening on /192.168.56.1:5683, recv buf = 106496, send buf = 106496, recv packet size = 2048
DEBUG [UDPConnector]: Starting network stage thread [UDP-Receiver-/192.168.56.1:5683[0]
5 INFO [CoapEndpoint]: coap Started endpoint at coap://192.168.56.1:5683
INFO_[UDPConnector]; UDPConnector starts up 1 sender threads and 1 receiver threads
DEBUG [UDPConnector]: Starting network stage thread [UDP-Receiver-/fe8® 0:9bad 20d%w1pds20f3:5683[0]
INFO [UDPConnector]: UDPConnector listening on /fes! 9bad:247d:ef: 0 683, recv buf = 106496, send buf = 106496, recv packet
DEBUG [UDPConnector]: Starting network stage thread [UDP-Sender-/fe80:0:0: :247d:ef34:420d%1p0s203: 5683[0]
8 INFO [CoapEndpoint]: coap Started endpoint at coap://[fe80:0
.709 UDPConnector starts up 1 sender threads and 1 receiver threads
9.709 UDPConnector listening on /2001:760:300:4010:e6l fla:c3fa:5683, recv buf = 106496, send buf = 10649
.709 : Starting network stage thread [UDP-Receiver-/2 e6b:803c: 5F1a:c3fakwl 0520F3~5533[0]
9.769 DEBUG [UDPConnector]: Starting network stage thread [UDP- sender / 0 300:4010 03c: 5f- / 203:5683[0]]
10 INFO [CoapEndpoint]: coap Started endpoint at coap://[
10 INFO [UDPConnector]: UDPConnector starts up 1 sender threads snd 1 receiver threads
11 DEBUG [UDPConnector]: i iver-/2001:700:300:4010:9969:7146:8f36: 5709% £3:5683[0]
11 INFO_[UDPConnector]: UDPConnector listening on /2 00:4010 £36: 57 3, rec 106496, send buf = 106496, recv p
11 DEBUG [UDPConnector]: Starting network stage thread [UDP-Sender-/20 46:8f3 in1pos20f3:5683[0]
.711 INFO [CoapEndpoint]: coap Started endpoint at coap://[2001:
1712 INFO [UDPConnector]: UDPConnector starts up 1 sender threads and 1 receiver e
.712 INFO [UDPConnector]: UDPConnector listening on /10.22.65.93:5683, recv buf = 106496, send buf 496, recv packet size = 2048
1712 DEBUG [UDPConnector]: Starting network stage thread [UDP-Recetver-/16.
.712 DEBUG [UDPConnector]: Starting network stage thread [UDP-Sender-/10.22.65.93:5683[0]
.712 INFO [CoapEndpoint]: coap Started endpoint at coap://10.22.65.93:5683
.713 INFO [UDPConnector]: UDPConnector starts up 1 sender threads and 1 receiver threads
9.713 DEBUG [UDPC : Starting network stage thread [UDP-Receiver-/0: :0:0:0:1%10:5683[0]]
9.713 INFO [UDPConnector]: UDPConnector listening on /@ 1:5683, recv buf = 106496, send buf = 106496, recv packet
.714 DEBUG [UDPConnector]: Starting network stage thread [UDP-Sender- /! 1%
9.714 INFO [CoapEndpoint]: coap Started endpoint at coap://[0:0:0:0:0:
9.714 INFO [UDPConnector]: UDPConnector starts up 1 sender threads and 1 receiver
9.714 DEBUG [UDPConnector]: Starting network stage thread [UDP-Receiver-/1
9.714 INFO [UDPConnector]: UDPConnector listening on /127.0.0.1:5683, recv buf = 106496, send buf = 106496, recv packet siz
:19.715 DEBUG [UDPConnector]: ;t}rtlnq network stage thread [unp 0.0.1:5683[0]
9.715 INFO [CoapEndpoi 3 0 0

Figure A.1: Starting the HelloWorld server for CoAP

B.1 WireShark captures

No.

Time
10.000000000
20.001128766
30.040751176
40.042307808
50.052255497
60.053486057
70.058163698
80.058792068
90.082066681

100.084672823
11 0.093848542
12 0.095764543
130.102536348
14 0.104544164
150.115907836
16 0.117551276
17 0.128590316
180.131371181
190.140712259
200.142007954
210.149902306
220.152198425
230.160711770
240.162880568
250.168095904
260.169018510
270.178552423

Source

192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
1921
192.
1928
APl
HO2
HO28
HO28
2.
192.
192.
192.
192.
192.
192.
192.

168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.

56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.

103
1
103
1
103
1
103
1
103
1
103
1
103
1
103
1
103
1
103
1
103
1
103
1
103
1
103

Destination

192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
1928
11928
1928
11928
2,
g2,
g2,
g2,
g2,
192.
192.
192.
192.
192.
192.

168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.

56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.
56.

1
103
1
103
1
103
1
103
1
103
1
103
1
103
1
103
1
103
1
103
1
103
1
103
1
103
1

Protocol Length Info

CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP
CoAP

62 CON,
515 ACK
62 CON,
515 ACK
62 CON,
515 ACK
62 CON,
515 ACK
62 CON,
515 ACK
62 CON,
515 ACK
62 CON,
515 ACK
62 CON,
515 ACK
62 CON,
515 ACK
62 CON,
515 ACK
62 CON,
515 ACK
62 CON,
515 ACK
62 CON,
515 ACK
62 CON,

Appendix B

MID:20364,
MID:20364,
MID:20365,
MID:20365,
MID:20366,
MID:20366,
MID:20367,
MID:20367,
MID:20368,
MID:20368,
MID:20369,
MID:20369,
MID:20370,
MID:20370,
MID:20371,
MID:20371,
MID:20372,
MID:20372,
MID:20373,
MID:20373,
MID:20374,
MID:20374,
MID:20375,
MID:20375,
MID:20376,
MID:20376,
MID:20377,

GET,
2.05
GET,
2.05
GET,
2.05
GET,
2.05
GET,
2.05
GET,
2.05
GET,
2.05
GET,
2.05
GET,
2.05
GET,
2.05
GET,
2.05
GET,
2.05
GET,
2.05
GET,

TKN:10 d3 6c

Content, TKN:

TKN:6c fa 68

Content, TKN:

TKN:fc d4 9e

Content, TKN:

TKN:24 ae 8e

Content, TKN:

TKN:90 18 bb

Content, TKN:

TKN:50 c4 25

Content, TKN:

TKN:fO 4d 30

Content, TKN:

TKN:a0 69 29

Content, TKN:

TKN:9c 18 fc

Content, TKN:

TKN:fO dd 88
Content, TKN
TKN:84 00 bd

Content, TKN:

TKN:e0 75 49

Content, TKN:

TKN:fc f8 fb

Content, TKN:

TKN:60 4a 8a

Frame 33: 62 bytes on wire (496 bits), 62 bytes captured (496 bits) on interface any, id 0

Linux cooked capture
Internet Protocol Version 4, Src: 192.168.56.103, Dst: 192.168.56.1
User Datagram Protocol, Src Port: 40581, Dst Port: 5683

Constrained Application Protocol, Confirmable, GET, MID:20380

VSS Monitoring Ethernet trailer, Source Port: ©

Figure B.1: CoAP for Alice as a client

35
10
dc
6¢c
59
fc
13
24
02
90
28
50
52
fo
4a
a0
88
9c
92

:fo

84
do
eo
b4
fc
7c

b2
6c
33
68
d2
9e
24
8e

bb
61
25
84
30

29
eo
{fic
83
88

bd
e9
49
a6

do

73

74 B. APPENDIX B

No. Time Source Destination Protocol Length Info
- 10.000000000 192.168.56.103 192.168.56.1 DTLSV... 191Client Hello
20.002251662 192.168.56.1 192.168.56.103 DTLSv. 104 Hello Verify Request
30.030140913 192.168.56.103 192.168.56.1 DTLSv. 223Client Hello
40.055366711 192.168.56.1 192.168.56.103 DTLSvV. 507 Server Hello, Certificate, Server Key Excha
50.196364023 192.168.56.103 192.168.56.1 DTLSV... 429 Certificate, Client Key Exchange, Certifica
60.219431205 192.168.56.1 192.168.56.103 DTLSV.. 119 Change Cipher Spec, Encrypted Handshake Mes
70.339578538 192.168.56.103 192.168.56.1 DTLSv. 99 Application Data
80.343011313 192.168.56.1 192.168.56.103 DTLSv... 107 Application Data
90.424160344 192.168.56.103 192.168.56.1 DTLSV... 99 Application Data
100.432435966 192.168.56.1 192.168.56.103 DTLSv. 107 Application Data
110.462109675 192.168.56.103 192.168.56.1 DTLSv. 99 Application Data
120.468110868 192.168.56.1 192.168.56.103 DTLSv. 107 Application Data
130.475015025 192.168.56.103 192.168.56.1 DTLSV... 99 Application Data
140.476686843 192.168.56.1 192.168.56.103 DTLSv... 107 Application Data
150.479676116 192.168.56.103 192.168.56.1 DTLSv. 99 Application Data
16 0.486854494 192.168.56.1 192.168.56.103 DTLSv... 107 Application Data
17 0.498757855 192.168.56.103 192.168.56.1 DTLSV... 99 Application Data
180.506861336 192.168.56.1 192.168.56.103 DTLSv. 107 Application Data
190.528857924 192.168.56.103 192.168.56.1 DTLSV... 99 Application Data
200.531433539 192.168.56.1 192.168.56.103 DTLSv... 107 Application Data
210.544949802 192.168.56.103 192.168.56.1 DTLSv. 99 Application Data
220.551567263 192.168.56.1 192.168.56.103 DTLSv. 107 Application Data
230.569827632 192.168.56.103 192.168.56.1 DTLSv. 99 Application Data
240.574318701 192.168.56.1 192.168.56.103 DTLSv... 107 Application Data
250.579347058 192.168.56.103 192.168.56.1 DTLSV... 99 Application Data
260.583848140 192.168.56.1 192.168.56.103 DTLSv. 107 Application Data
270.626489725 192.168.56.103 192.168.56.1 DTLSV... 99 Application Data
< »

Frame 30: 107 bytes on wire (856 bits), 107 bytes captured (856 bits) on interface any, id ©
Linux cooked capture

Internet Protocol Version 4, Src: 192.168.56.1, Dst: 192.168.56.103

User Datagram Protocol, Src Port: 5684, Dst Port: 35561

Datagram Transport Layer Security

Figure B.2: CoAP/DTLS for Alice as a client

No. Time Source Destination Protocol Length Info
10.000000000 192.168.56.103 192.168.56.1 WireG.. 124 Transport Data, receiver=0x7FE0260A, counte
20.034279747 192.168.56.1 192.168.56.103 WireG.. 588 Transport Data, receiver=0x2136AFB5, counte
30.034447028 192.168.56.1 192.168.56.103 WireG.. 192 Handshake Initiation, sender=0x478635E2
40.034974043 192.168.56.103 192.168.56.1 WireG... 136 Handshake Response, sender=0x5CB8CB1A, rece
50.036550750 192.168.56.1 192.168.56.103 WireG.. 76 Keepalive, receiver=0x5CB8CB1A, counter=0
60.068246693 192.168.56.103 192.168.56.1 WireG.. 124 Transport Data, receiver=0x478635E2, counte
70.071142119 192.168.56.1 192.168.56.103 WireG.. 588 Transport Data, receiver=0x5CB8CB1A, counte
80.080601870 192.168.56.103 192.168.56.1 WireG... 124 Transport Data, receiver=0x478635E2, counte
90.084263516 192.168.56.1 192.168.56.103 WireG.. 588 Transport Data, receiver=0x5CB8CB1A, counte
100.087911458 192.168.56.103 192.168.56.1 WireG.. 124 Transport Data, receiver=0x478635E2, counte
110.0951706337 192.168.56.1 192.168.56.103 WireG.. 588 Transport Data, receiver=0x5CB8CB1A, counte
120.102330380 192.168.56.103 192.168.56.1 WireG.. 124 Transport Data, receiver=0x478635E2, counte
130.104994106 192.168.56.1 192.168.56.103 WireG.. 588 Transport Data, receive X5CB8CB1A, counte
140.110125368 192.168.56.103 192.168.56.1 WireG.. 124 Transport Data, receiver=0x478635E2, counte
150.111312987 192.168.56.1 192.168.56.103 WireG.. 588 Transport Data, receiver=0x5CB8CB1A, counte
160.113586675 192.168.56.103 192.168.56.1 WireG.. 124 Transport Data, receiver=0x478635E2, counte
170.115184008 192.168.56.1 192.168.56.103 WireG.. 588 Transport Data, receiver=0x5CB8CB1A, counte
180.120561309 192.168.56.103 192.168.56.1 WireG.. 124 Transport Data, receiver=0x478635E2, counte
190.126603544 192.168.56.1 192.168.56.103 WireG.. 588 Transport Data, receiver=0x5CB8CB1A, counte
200.134145892 192.168.56.103 192.168.56.1 WireG.. 124 Transport Data, receiver=0x478635E2, counte
210.136798241 192.168.56.1 192.168.56.103 WireG.. 588 Transport Data, counte
220.139876470 192.168.56.103 192.168.56.1 WireG.. 124 Transport Data, counte
230.140883778 192.168.56.1 192.168.56.103 WireG.. 588 Transport Data, counte
240.143038554 192.168.56.103 192.168.56.1 WireG... 124 Transport Data, receiver=0x478635E2, counte
250.144080011 192.168.56.1 192.168.56.103 WireG.. 588 Transport Data, receiver=0x5CB8CB1A, counte
260.146764025 192.168.56.103 192.168.56.1 WireG.. 124 Transport Data, receiver=0x478635E2, counte
270.147749651 192.168.56.1 192.168.56.103 WireG.. 588 Transport Data, receiver=0x5CB8CB1A, counte
<4 >

» Frame 45: 588 bytes on wire (4704 bits), 588 bytes captured (4704 bits) on interface any, id 0
» Linux cooked capture

» Internet Protocol Version 4, Src: 192.168.56.1, Dst: 192.168.56.103

» User Datagram Protocol, Src Port: 41194, Dst Port: 41194

» WireGuard Protocol

Figure B.3: CoAP/WireGuard for Alice as a client

Appendix C

C.1 Results

CoAP CoAP/DTLS CoAP/WireGuard
Packets per second 454 £+ 41.617 145.584 £ 35.247 355 £ 47.527
Packet size, B 287.500 +1.500 106 0 355.500 4+ 0.764
Throughput, Mbit/s 1.042 £ 0.092 0.123 +0.030 1.009 + 0.136
Handshake time, ms — 218 + 212 1+£0.412
Handshake
Time span, ms 666 £ 63 2,295 £ 822 865 £+ 126
RTT, ms 3+£0.210 8 +2.700 3+0.419
No handshake
Time span, ms 666 £ 63 2,078 £ 617 865 £+ 126
RTT, ms 34+0.210 7+£2.100 34+0.157

Table C.1: The results for the three implementations of the CoAP protocol obtained
during our experiments. Expressed by calculating the arithmetic mean and the
standard deviation. (150 GET requests with no delay).

(0]

76 C. APPENDIX C

CoAP CoAP/DTLS CoAP/WireGuard
Packets per second 454 £ 41.617 159.740 £ 16.982 355 £ 47.527
Packet size, B 287.500 & 1.500 106 +=0 355.500 £+ 0.764
Throughput, Mbit/s 1.042 £ 0.092 0.135+0.014 1.009 £+ 0.136
Handshake time, ms — 125 +49 1+0.412
Handshake
Time span, ms 666 + 63 1,936 + 190 865 + 126
RTT, ms 3+0.210 7+ 0.620 3+0.419
No handshake
Time span, ms 666 £ 63 1,811+ 171 865 + 126
RTT, ms 34+0.210 6+ 0.570 34+0.157

Table C.2: The results for the three implementations of the CoAP protocol obtained
during our experiments, excluding the outlier. Expressed by calculating the arithmetic
mean and the standard deviation. (150 GET requests with no delay).

CoAP

CoAP/DTLS

CoAP /WireGuard

Packets per second
Packet size, B
Throughput, Mbit/s
Handshake time, ms
Handshake

Time span, ms
RTT, ms

No handshake
Time span, ms
RTT, ms

30.050 £ 0.608
287.500 £+ 1.500
0.069 £ 0.001

9,983 + 205
34+1

9,983 + 205
3441

28.417 £ 0.267
106 £0
0.024+0

407 £ 112

10,773 £ 96
36 =0

10, 367 + 106
3540

29.800 £ 0.792
355.334 £ 0.745
0.084 £ 0.002
31+30

10,103 = 250
33.680 + 1

10,092 -+ 242
33.870 + 1

Table C.3: The results for the three implementations of the CoAP protocol obtained
during our experiments. Expressed by calculating the arithmetic mean and the
standard deviation. (150 GET requests with 60 ms delay).

@ NTNU

Norwegian University of
Science and Technology

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Research questions
	Outline

	Background and related work
	Constrained devices and networks
	Main IoT security and performance issues

	An overview of Constrained Application Protocol
	CoAP for M2M communication
	Securing CoAP with DTLS

	An overview of Datagram Transport Layer Security (DTLS)
	CoAP enhanced by DTLS
	Known vulnerabilities / drawbacks in CoAP and DTLS

	An overview of WireGuard
	WireGuard handshake and key exchange
	Known vulnerabilities / drawbacks

	Related work
	Contributions

	Methodology
	Literature review
	Selecting a review topic
	Searching for literature
	Gathering, reading and analysing the literature
	Writing the review
	References

	Quantitative research
	Experimental design

	Analysing quantitative data
	Validity and reliability

	Experimental setup
	Testbed setup
	WireGuard
	CoAP
	CoAP/DTLS
	CoAP/WireGuard

	Data collection and analysis

	Findings
	Handshake time
	Round-trip time (RTT)
	Latency
	Throughput

	Discussion
	Main security concern for IoT devices using CoAP
	Comparing WireGuard and DTLS
	Using WireGuard for securing CoAP communication
	H1: WireGuard is faster than DTLS when used to secure CoAP
	H2: WireGuard adds less overhead than DTLS when used to secure CoAP
	H3: It would be beneficial to choose WireGuard over CoAP rather than DTLS when securing CoAP
	Implementing CoAP over WireGuard

	Conclusion and Future work
	Conclusion
	Future work

	References
	Appendix A
	Implementations
	WireGuard configuration files
	HelloWorld server CoAP

	Appendix B
	WireShark captures

	Appendix C
	Results

