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A key aspect of conceptual knowledge is that it can be flexibly applied at different levels of abstraction, implying a hierarchi-
cal organization. It is yet unclear how this hierarchical structure is acquired and represented in the brain. Here we investigate
the computations underlying the acquisition and representation of the hierarchical structure of conceptual knowledge in the
hippocampal-prefrontal system of 32 human participants (22 females). We assessed the hierarchical nature of learning during
a novel tree-like categorization task via computational model comparisons. The winning model allowed to extract and quan-
tify estimates for accumulation and updating of hierarchical compared with single-feature-based concepts from behavior. We
find that mPFC tracks accumulation of hierarchical conceptual knowledge over time, and mPFC and hippocampus both sup-
port trial-to-trial updating. As a function of those learning parameters, mPFC and hippocampus further show connectivity
changes to rostro-lateral PFC, which ultimately represented the hierarchical structure of the concept in the final stages of
learning. Our results suggest that mPFC and hippocampus support the integration of accumulated evidence and instantaneous
updates into hierarchical concept representations in rostro-lateral PFC.
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Significance Statement

A hallmark of human cognition is the flexible use of conceptual knowledge at different levels of abstraction, ranging from a
coarse category level to a fine-grained subcategory level. While previous work probed the representational geometry of long-
term category knowledge, it is unclear how this hierarchical structure inherent to conceptual knowledge is acquired and repre-
sented. By combining a novel hierarchical concept learning task with computational modeling of categorization behavior and
concurrent fMRI, we differentiate the roles of key concept learning regions in hippocampus and PFC in learning computa-
tions and the representation of a hierarchical category structure.

Introduction
Concepts are organizing structures that help to assign meaning
to novel information (Kemp, 2012). Depending on the situation,

we flexibly use conceptual knowledge at different levels of
abstraction (e.g., identify a Ferrari as a vehicle, or specifically as a
racing car). Such superordinate and subordinate category levels
are connected via relational rules (Skorstad et al., 1988) that
define subcategorization-relevant features in dependence of the
superordinate level (e.g., speed distinguishes subcategories
within the category ‘cars’, but not within the category ‘animals’).
It is largely unclear how this hierarchical structure inherent to
conceptual knowledge is acquired and represented by the brain.
Many brain regions contribute to concept learning in different
functions (Seger and Miller, 2010). The key aspect of generaliza-
tion over experiences to abstract commonalities and build organ-
ized knowledge is supported by hippocampus and (ventro-)
medial PFC (mPFC), given their roles in relational processing
and memory integration (Kumaran et al., 2009; Zeithamova et al.,
2012; Schlichting et al., 2015; Mack et al., 2018; Spalding et al.,
2018). Recent work specifically suggests that the hippocampus
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and mPFC encode information in cognitive maps that represent
multiple relationships in a common representational space
defined along behaviorally relevant dimensions (hippocampus:
Tavares et al., 2015; Theves et al., 2019, 2020; vmPFC:
Constantinescu et al., 2016; Bao et al., 2019). For instance, the
hippocampus maps distances between stimuli in a space spanned
by feature dimensions that were relevant to categorization during
prior concept learning (Theves et al., 2020). Such cognitive maps
might provide a flexible representation enabling inference and
transfer of meaning to novel encounters, critical to the use of con-
cepts. Previous neuroimaging studies mostly defined catego-
ries either by discrete features shared by their exemplars
(Davis et al., 2012, 2017; Mack et al., 2016, 2020; Bowman
and Zeithamova, 2018) or by the ratio of continuous features
(Seger et al., 2015; Theves et al., 2020). Conceptual similarity
between stimuli as defined by their distance in a continuous
feature space was reflected in scaled similarity between their
hippocampal representations (Theves et al., 2020). It has not
been investigated whether conceptual similarity between
exemplars as defined by the number of shared nodes in a
hierarchical category structure is likewise captured by graded
neural similarity in these regions. Nested hippocampal rep-
resentations have so far been observed in rodents performing
a spatial context-dependent object discrimination task, with
population activity in dorsal hippocampus representing both
superordinate and subordinate distinctions (McKenzie et al.,
2014). Further insight in multiscale representations is pro-
vided by Bernadi et al. (2020). By comparing the generaliza-
tion performance of a neural decoder to new task conditions
with the number of decodable variables, they show that the
representational geometry of hippocampal and prefrontal
ensembles can simultaneously be abstract and high-dimen-
sional. Another strand of research points toward a key role of
the rostro-lateral PFC (rlPFC) in acquiring hierarchical con-
cepts. Most prior fMRI studies used simpler feature-based
categorization rules and focused on memory processes and
similarity-based mechanism, where concept representations
ground on common features and new exemplars are judged
based on representational overlap (Zeithamova et al., 2019).
However, memory processes are thought to be comple-
mented by more abstract reasoning strategies (Smith and
Sloman, 1994; Ashby et al., 1998) specifically during early
concept learning (Erickson and Kruschke, 1998). As a hier-
archical concept is defined by dependent rules, its acquisi-
tion might specifically engage relational reasoning. Abstract
reasoning (Christoff et al., 2001; Kroger et al., 2002; Watson
and Chatterjee, 2012) and relational category learning in spe-
cific (Davis et al., 2017) have been linked to rlPFC. Here,
rlPFC was shown to track the representational distance
between test and training examples during acquisition of
relational versus feature-based concepts, whereas mPFC sup-
ported general decision-making functions (Davis et al.,
2017). It has been debated (Badre, 2010; Speed, 2010)
whether rlPFC processes information stored elsewhere with
respect to task-relevant relations, or whether it reflects the
storage site of relational concepts.

In sum, it has not been explicitly investigated how hierarchi-
cal levels of concepts are acquired and represented. Here we eval-
uate the roles of hippocampus, mPFC, and rlPFC in (1) learning
operations and (2) representations of a hierarchical category
structure, respectively. We compare behavior during a novel

hierarchical categorization task to different learning models and
use the winning model’s parameters to identify learning-related
brain activity. Further, we probe the site of representation of the
hierarchical category structure at the end of learning and evalu-
ate its connectivity to regions involved in learning computations.

Materials and Methods
Experimental design and subject details
Thirty-seven participants, recruited from Radboud University,
Nijmegen, gave written informed consent and were paid as agreed by
the local Research Ethics Committee (CMO region Arnhem-Nijmegen,
the Netherlands). Five participants were excluded from the analyses
because of excessive motion (n= 2; cutoff criteria: mean absolute dis-
placement .2 mm or peak in absolute displacement .3.9 mm; mean
and SD of absolute displacement of analyzed sample: 0.646 0.39 mm),
corrupted MRI data files (n= 1), and lacking engagement in the task
(n= 2). Inside the scanner, participants were trained on a hierarchical
categorization task with the intention to capture computations during
concept learning as well as the emergence of neural concept representa-
tions in the final stages of learning. The categorization task was followed
and preceded by stimulus viewing blocks which are not subject of the
present report. Thirty-two participants (age: 236 3 years; 22 females)
were included in the analysis of learning-related activity. In the represen-
tational similarity analysis (RSA), we intended to measure the represen-
tation of the entire hierarchical concept structure. Therefore, we
excluded 3 participants whose postexperimental debriefing (no explicit
knowledge of Level 2 rule) as well as Level 2 categorization accuracy
(Level 2 accuracy rates stayed,50%) indicated that they did not acquire
both levels of the concept. One participant did not perform the multidi-
mensional sorting task following scanning.

Method details
Behavioral procedures. In the learning phase, participants were

trained to categorize 32 different stimuli, creatures generated with the
video game Spore (http://www.spore.com/), into two superordinate and
four subordinate categories according to a hierarchical rule. Creatures
had five body features which could take two values each (i.e., wings:
present-absent, ears: big-small, eyes: big-small, leaf on belly: big-small,
knee-pads: big-small). Diagnostic for the subcategory was the specific
combination of a subset of critical features. The value of a first feature
(wings) defined a creature’s superordinate category and which second
feature is relevant for further subcategorization within the superordinate
category. That is, depending on whether the creature has wings or not,
either the size of the eyes or the size of the ears was relevant for further
subcategorization. Importantly, both ear and eye size varied for all crea-
tures, yet their relevance for subcategorization depended on the superor-
dinate category. Thus, the subcategory was determined by a dependent
relational rule and was not predicted by the secondary feature alone. The
mapping of features to categories was constant across participants.
Participants were instructed to categorize the creatures into four fami-
lies, that evolved from two different species. In each trial, participants
selected the subcategory (family) by pressing one of four buttons and
received feedback that indicated up to which level in the hierarchy their
categorization was correct: “100%” was displayed when the correct sub-
category was selected, “50%” when only the category but not the subcate-
gory was correct, and “0%” when the category (and consequently the
subcategory) was incorrect. The learning phase comprised 8 blocks of 32
stimuli, each of which were followed by feedback. The 8 blocks were pre-
ceded by a practice block in which the superordinate category had to be
selected from two response options (Fig. 2B, shaded area). Stimuli were
presented for 2 s, followed by 0.5 s feedback and intertrial intervals of 2,
3.5, or 5 s (33.3% each). In a final debriefing questionnaire, participants’
explicit knowledge of the categorization rules was assessed. Each of the
eight learning blocks was followed by six probe trials (three congruent,
three incongruent) during which no feedback was displayed. Probe stim-
uli were creatures with features missing. For incongruent probes, miss-
ing features included the categorization-relevant features (i.e., the eyes
for “wing creatures”), implying that the categorization rule was
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nonapplicable. Congruent probes had all features relevant for categoriza-
tion. Given the equal amount of congruent and incongruent probes, the
absence of feedback, and the fact that other features in addition to the
relevant ones were missing, probe trials were noninformative for learn-
ing. As participants reported difficulties with intermittingly adapting to
the probe-block task structure within only six trials and further found
the presentation of noncategorizable stimuli (which was not announced in
the instruction) confusing, we refrained from interpreting this measure-
ment. The presence of probe trials was included as a regressor in all GLMs
of the learning data. Performance accuracy (mean 6 SD) across these 24
trials was 75.266 15.26% for Level 1 and 63.546 20.49% for Level 2. In a
multidimensional sorting task subsequent to the scanning session, 20
stimuli (three exemplars of each category and eight probe stimuli) had to
be arranged according to their relatedness within a circular arena dis-
played on a computer screen (Kriegeskorte and Mur, 2012) to probe per-
ceived similarity across stimuli as function of their category membership.
All tasks were conducted using Presentation 16.4 (NBS), except the multi-
dimensional sorting task, which was conducted using MATLAB.

MRI methods. All images were acquired using a 3T PrismaFit MR
scanner equipped with a 32-channel head coil (Siemens). A 4D multi-
band sequence (84 slices, multislice mode, interleaved, voxel size 2
mm isotropic, TR = 1500ms, TE = 28ms, flip angle = 65 degrees,
acceleration factor PE = 2, FOV= 210 mm) was used for functional
image acquisition. In addition, a structural T1 sequence (MPRAGE, 1
mm isotropic, TE = 3.03ms, TR = 2300ms, flip angle = 8 degrees,
FOV= 256� 256� 192 mm) was acquired. Separate magnitude and
phase images were used to create a gradient field map to correct for
distortions (multiband sequence with voxel size of 3.5� 3.5� 2.0
mm, TR = 1020ms, TE = 10ms, flip angle = 45 degrees). Preprocessing
of functional images was performed with FSL 5.0.9 (http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/). Motion correction, high pass filtering at 100 s, and
distortion correction were applied to the functional datasets. Spatial
smoothing was only performed before the univariate analysis, but not
before being subjected to RSA. The FSL brain extraction toolbox was used
to create a skull-stripped structural image. The structural scans were
downsampled to 2 mm (matching the functional image resolution) and
segmented into gray matter, white matter, and CSF. Mean intensity values
at each time point were extracted for white matter and used as nuisance
regressors in the GLM analyses. Structural images were registered to the
MNI template. For the functional data, the preprocessed mean image was
registered to the individual structural scan and the MNI template. The
coregistration parameters of the mean functional image were applied to all
functional volumes.

Quantification and statistical analysis
Model specification. In order to estimate the relative contribution of

the knowledge accumulated for each level of the hierarchical concept to
categorization performance, we modeled the sequence of behavioral
responses for each subject with a Dynamic Bayesian Network (DBN)
model. DBNs are a class of probabilistic graphical models (Murphy,
2002; Bishop, 2006; Koller and Friedman, 2009) where complex causal
dependencies between variables of interest, either latent or observed, can
be expressed in the formalism of directed acyclic graphs. A DBN model
is defined by a set of variables or nodes, a set of links or edges reflecting
the causal dependencies among the variables, and the parameters
describing the probability distributions governing each node given its
parents. In the present study, we first defined a static Bayesian Network
(BN) model that is a model for a single experimental trial with no
dependencies across time. The BN is defined by the set of random varia-
bles Z = (X, Y), with X and Y representing latent and observed variables,
respectively. The probability of being correct at any level of the hierarchy
on a given trial was assumed to be dependent on two latent variables, x1
and x2, representing the contribution of either Level 1 or Level 2 knowl-
edge, respectively. Each latent variable was also endowed with its own
private observation node (y1 and y2), representing the correctness of sub-
jects’ responses at any level of the hierarchy. The coding of the behav-
ioral responses (0%/50%/100%) over observation nodes (y1 and y2)
followed the coding of the feedback provided during the task with 0%
being incorrect on both levels (y1, y2 = [0, 0]), 50% being correct on only

Level 1 (y1, y2 = [1, 0]) and 100% being correct on Levels 1 and 2 (y1,
y2 = [1, 1]). Furthermore, to reflect the structure of the concept used in
the task, we also assumed that the amount of information accumulated
at Level 2, x2, was causally dependent on the contribution of Level 1
knowledge, x1 (Fig. 1A). All of the nodes were assumed to be discrete
variables with two possible states [0, 1] and the conditional probability
distributions (CPDs) over the nodes were defined by multinomial distri-
butions expressed as tabular CPDs. Tabular CPDs, also called condi-
tional probability tables, are multidimensional arrays particularly
efficient for describing CPDs in networks with only discrete valued
nodes. The CPD for any node Zi of the graph given its parents, Pa(Zi), is
expressed by the following function:

PðZijPaðZiÞÞ

with the full joint distribution over all the nodes of the directed acyclic
graph given by the following:

P Z1:::ZNð Þ ¼
YN

i¼1

PðZijPaðZiÞÞ

Next, we extended the BN to a DBN to capture the evolution of
causal dependencies among variables across time. This was done by
“copying” the BN for each time step (or time slice) and then connecting
the BN of different time slices. The term “dynamic” refers to the fact that
we are modeling a dynamical system and not that the network structure
changes over time. To fully specify a DBN, we only need to specify two
temporal slices since the structure of the graph is assumed to stay con-
stant over time slices; therefore, it is common practice to refer to a DBN
as a two-slice Temporal Bayes Network. The two-slice Temporal Bayes
Network is defined over the set of variables, Zt = (Xt, Yt) by means of a
directed acyclic graph as follows:

PðZtjZt�1Þ ¼
YN

i¼1

PðZi
tjPaðZi

tÞÞ

where Zi
t is the i’th node at time t, which could be an element of Xt , or

Yt and PaðZi
tÞ are the parents of Zi

tgiven the graph structure. The nodes
in the first slice of a two-slice Temporal Bayes Network do not have any
probability distribution associated with them, whereas for the following
temporal slices each node has an associated CPD, which defines
PðZi

tjPaðZi
tÞÞ for all t. 1. The parents of a node, PaðZi

tÞ, can be part of
either the same time slice or any of the previous time slices. Here we
assumed a first-order Markov process over the latent nodes, meaning
that Xi was dependent only on the latent nodes of the immediately previ-
ous temporal slice (Fig. 1). The semantics of the DBN can be defined by
“unrolling” the two-slice Temporal Bayes Network until we have as
many time slices as the number of experimental trials with the resulting
joint distribution being given by the following:

P Z1:Tð Þ ¼
YT

t¼1

YN

i¼1

PðZi
tjPaðZi

tÞÞ

Model selection. In order to test the adequacy of the hierarchical
DBNmodel (DBNH) as the most parsimonious description of the behav-
ioral data, we fitted four additional competing DBN models with differ-
ent levels of complexity and assumptions regarding the learning
mechanism to the same data. In addition to the hierarchical DBNH

model, we tested the following competing models with increasing degree
of generalization: A DBN with mappings between single stimuli (32
exemplars), response (buttons 1-4), and outcome (feedback 0%, 50%,
100%) variables (DBNERO), a DBN with mappings between all combina-
tions of the critical features (8 combinations), response, and outcome
variables (DBNFRO), a DBN with mappings between all combinations of
the critical features (8 combinations) and outcome variables (DBNFO),
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and a DBN with mappings between subcategory (four categories) and
outcome variables (DBNCO). DBNERO assumes that participants do not
generalize over experiences and simply learn the correct response to each
of the 32 unique stimuli. The DBNFRO and DBNFO assume that partici-
pants do generalize over experiences that features of the stimuli are critical
to categorization, but do not make use of the dependent rule which makes
the concept hierarchical. This ‘flat’ learning strategy would entail repre-
senting all eight possible combinations of the relevant features. The inclu-
sion relative to the exclusion of a response node in DBNFRO versus
DBNFO does not reflect a different learning mechanism per se, but
resulted from stepwise reduction of model complexity. The DBNCO

instead assumes that participants do use the hierarchical rule and thus
need to represent only the four relevant combinations of features. DBNH

additionally collapses over the specific categories and incorporates only
two nodes, one per level of the hierarchy, representing generalization of
the rule over categories. For each model and for each subject, the relative
Bayesian information criterion (BIC) was calculated to provide a quantita-
tive measure of how well the model accounts for the data while penalizing
for the number of free parameters to be estimated. For each participant,
we first rank-ordered the BIC score of each model from the best (lowest
BIC) to the worst (highest BIC). Next, we averaged the ranks for each
model across participants. Model comparison was conducted by selecting
the model with the lowest rank as the most parsimonious account of the
data. BIC scores, ranks, likelihoods, and number of free parameters for all
five DBN models are reported in Table 1. In a Bayesian statistical frame-
work, overly complex models are already penalized at the level of marginal
log-likelihood estimation when the a priori component decreases the pos-
terior predictive power (Wagenmakers et al., 2008).

Model inference. Exact inference at the single-subject level on the
model parameters was conducted in two steps by first updating the

model with available evidence and then calculating the posterior model
parameters (after having seen the data). In the first step, the probability
distributions of the DBN models for each participant were updated with
evidence (time-series of the behavioral responses for one subject) yield-
ing subject-level posterior probability distributions. This step was
accomplished using a two-pass message-passing scheme implemented in
the junction tree algorithm (Murphy, 2002). Next, we extracted parame-
ters reflecting accumulation and updating of hierarchical knowledge for
the subsequent fMRI analyses. To this end, we extracted the unique con-
tribution of Level 2 knowledge (Level 2, node x2) on behavior, by sum-
ming out the contribution of Level 1 knowledge (Level 1, node x1) from
the joint probability distribution of Levels 1 and 2 as follows:

P X2ð Þ ¼
X

i

PðX2; PaðX2ÞiÞ

and by calculating the posterior estimates for the Level 2 node (accumu-
lation). From the posterior estimates, we further computed the first de-

rivative in time,
dxi
dt

, which can be interpreted as a measure of the

instantaneous change of accumulated evidence, that is, how much
updating is needed for the variable after having seen the evidence
(updating). The model-based analysis was conducted in MATLAB using
customized scripts for the Bayes Net Toolbox (Murphy, 2001).

fMRI statistical analysis. All first-level and whole-brain group-level
analyses (Table 2) were performed using FSL 5.0.9 (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/).

Model-informed univariate analysis: accumulation and updating. To
examine the roles of hippocampus, mPFC, and rlPFC in computations

Figure 1. DBN model. A, Bayesian network for one single trial with hierarchical rule representation. B, DBN extension of the single-trial model (A) unrolled for three time slices. C,
Graph structure of control models DBNERO and DBNFRO. D, Graph structure of control models DBNFO and DBNCO. Empty nodes represent latent variables and shaded nodes observed var-
iables. Links indicate statistical causal dependencies between variables, either across layers of the network or across time slices. The superscript index indicates the level of the hier-
archical rule (e.g., x1 = level 1).
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underlying hierarchical concept learning, we estimated knowledge accu-
mulation and updating from behavior using the DBNH model and
regressed each subject’s individual parameters against brain activity in these
regions. For this purpose, we set up a GLM with one regressor modeling
the feedback period and a second regressor of interest weighted parametri-
cally by the respective model parameters. Additionally, stimulus presenta-
tion, trial type, and button presses were added as regressors of no interest
together with six motion parameters and the time course in white matter as
covariates. In the GLM with the updating values as regressor of interest,
accumulation was additionally included as a regressor of no interest to iden-
tify updating-specific activity beyond accumulation. Resulting b maps were
transformed to MNI space to extract the average b value of each ROI (hip-
pocampus, frontal medial cortex, and frontal pole masks from Harvard-
Oxford Atlas) for subsequent analysis. First-level b estimates of the
parametric regressor were averaged across all voxels within an ROI for
each participant, and the distribution of these values was tested for sig-
nificance (at a = 5%) using two-sided permutation t tests (n permuta-
tions = 1000) (Groppe, 2010; corrected for multiple comparisons: tmax
method, Blair and Karniski, 1993).

Control analysis: model contrast. In a post hoc analysis, we further
probe whether activity in the regions, revealed by the analysis above, is
also significantly better tracked by estimates derived from DBNH com-
pared with estimates derived from a stimulus-response-outcome model
(DBNERO, Table 1) that assumes a mapping between each stimulus
exemplar and respective response without making use of generalization
over exemplars of which features (combinations) are relevant. The
DBNERO incorporates a stimulus node, which can take 32 values (for 32
exemplars); a response node, which can take 4 values (four buttons); and
an outcome node with three values of feedback (0%, 50%, and 100%).
Accumulation of subcategory knowledge would in this model be
reflected in the parameter estimates for the outcome node (state 100%
correct). To this end, we included accumulation and updating of subca-
tegory knowledge as estimated by the DBNERO model as regressors in
addition to accumulation and updating as estimated by the DBNHmodel
in otherwise identical GLMs and took the respective contrasts
(accumulationH vs accumulationERO; updatingH vs upadtingERO) to sig-
nificance testing (one-sided, mc-corrected).

RSA.We quantified the emergence of hierarchical concept represen-
tations in the final stages of the learning phase (i.e., when both levels of
the concept had been learned) in hippocampus, mPFC, and lateral PFC
via RSA (Kriegeskorte and Kievit, 2013). The late learning stage was
defined as blocks 7-9 (counting the practice block as block 1) to achieve
a compromise between distance to the average Level 2 learning trial
(within block 4) and sufficient stimulus repetitions. We did not set up
stimulus-specific regressors because of the small number of repetitions
per stimulus (n= 3) in the late learning stage. Instead, to achieve a suffi-
cient number of trials per regressor as well as the minimal number of
regressors necessary to probe a hierarchical representation, we set up a
GLM with two stimulus presentation regressors per subcategory (R1-R8;
see Fig. 4). Stimuli of each subcategory were alternatingly assigned to
one of the two respective regressors (i.e., every other subcategory 1 stim-
ulus presentation contributed to R1, the rest to R2; every other subcate-
gory 2 stimulus presentation contributed to R3, the rest to R4, etc.). As
this assignment was based on participant-specific presentation sequen-
ces, different stimuli contributed to these eight regressors across partici-
pants, diminishing effects of visual similarity. The GLM included eight

stimulus regressors for the late learning stage and eight stimulus regressors
for the remaining phase, regressors for the different feedback scores, trial
type, and button press, as well as six motion parameters and signal change
in white matter as covariates. For every ROI, the multivoxel activation pat-
tern of first-level b estimates of each late learning stimulus regressor was
correlated with the multivoxel activation patterns of all other late learning
stimulus regressors, yielding an 8� 8 neural pattern similarity matrix per
ROI. Pattern similarity matrices were correlated (Spearman) with a pre-
diction matrix that indicated the number of shared levels between stimu-
lus pairs in the category tree (0, 1, or 2; see Fig. 4). That is, pattern
similarity was expected to be lowest for stimuli in different categories,
higher for stimuli in the same superordinate category, and highest for
stimuli in the same subordinate category. The distribution of correlation
coefficients was tested for significance (a=5%) across participants for
each ROI using two-sided one-sample permutation t test (Groppe, 2010;
MC correction: tmax method, Blair and Karniski, 1993).

RSA: perceptual similarity control analysis. To ensure that the hier-
archical representation reflects conceptual similarity beyond perceptual
similarity, we correlated neural similarity matrices with a hierarchical
prediction matrix that was baseline-corrected by pixel similarity across
stimuli. Therefore, we created an 8� 8 matrix reflecting pixel similarity
across stimuli for every participant (as the assignment of stimuli to the 8
regressors was based on the individual presentation sequence). First, we
vectorized the R, G, and B values of all pixels per image. Next, we aver-
aged the pixel-intensity vectors of each image across all images that were
included in the same regressor. Finally, we correlated each of the eight
pixel-intensity vectors with all other pixel-intensity vectors, resulting in
subject-specific 8� 8 pixel similarity prediction matrices. We subtracted
each subject’s pixel similarity prediction matrix from the hierarchical
prediction matrix to obtain baseline-corrected hierarchical prediction
matrices, which we correlated with the neural pattern similarity matrices.
Resulting correlation values were tested for significance via one-sample
permutation t tests (Groppe, 2010; MC correction: tmax method, Blair
and Karniski, 1993). A sanity check of the pixel similarity matrix as a
measure of perceptual similarity was given by its significant correlation
with neural pattern similarity in visual cortex (occipital pole: t(28) =
6.142, p, 0.0001). (An additional control for visual similarity at the
group level could have been achieved by counterbalancing the relevant
features across participants.)

RSA: time of learning control analysis. To further ensure that the
hierarchical representation reflects acquired knowledge and is hence spe-
cifically present at the end of learning, we applied the same analysis we
ran for the late phase of learning to the early phase of learning. The early
learning phase was modeled as the first three blocks of subcategorization
to be of equal length as the late learning phase regressors (blocks 7-9).
Corresponding to the analysis of late learning phase representations, we
set up a GLM with 8 stimulus regressors for the early phase of interest
and 8 stimulus regressors for the remaining phase. All further analyses
steps were identical to the late-learning RSA.

Model-informed psychophysiological interaction (PPI) analysis: accu-
mulation and updating. In a final step, we evaluated learning-dependent
connectivity of hippocampal and prefrontal regions in separate PPI anal-
yses using the model estimates for accumulation (for mPFC) and updat-
ing (for mPFC and hippocampus) as the respective psychological
variable. GLMs included the time course of the seed region, model esti-
mates of the learning parameter (accumulation or updating), and the
interaction term between the two (PPI regressor), along with the remain-
ing regressors used in the respective GLMs of the univariate analyses
described above. Finally, the PPI regressor was contrasted against base-
line to reveal the regions that show learning-dependent connectivity
with the seed. Resulting b estimates for the PPI regressor were subjected
to group-level analysis, where we used cluster-based thresholding
(z threshold= 2.3, p=0.05) to control for multiple comparisons.

Results
Performance in a hierarchical concept learning task
Participants were trained on a hierarchical categorization task
with the intention to capture computations during concept

Table 1. Model statistics for the five DBN modelsa

Model LL d9 BIC Rank Z

DBNERO �1599 1535 3690 5 Stimulus exemplar (32) – Response (4) –
Outcome (3)

DBNFRO �1146 215 512 4 Stimulus feature combinations (8) – Response
(4) - Outcome (3)

DBNFO �905 127 295 3 Stimulus feature combinations (8) – Outcome (3)
DBNCO �975 47 107 2 Stimulus categories (4) – Outcome (3)
DBNH �272 15 31 1 Knowledge leve1 (2) – Knowledge level2 (2)
aLL, Maximum log-likelihood; d9, number of free parameters; BIC: average score; Rank: average rank of BIC
score; Z, random variables of interest with number of states (in parentheses).
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learning as well as the emergence of concept representations in
the final stages of learning. Participants learned to categorize 32
different creatures into four subordinate categories emerging
from two superordinate categories according to a hierarchical
rule: The value of a first binary feature (wings) defined a crea-
ture’s superordinate category and which second binary feature
(ear size or eye size) is relevant for further subcategorization
within the superordinate category. Thus, the subordinate cate-
gory was not determined by the secondary feature alone, that is,
superordinate and subordinate category level followed a hier-
archical organization (Fig. 2). In each trial, participants selected
the subordinate category by pressing one of four buttons and
received feedback that indicated up to which level in the hierar-
chy their categorization was correct. The time of learning Level 1
(superordinate category) and Level 2 (subordinate category) of
the hierarchical categorization rule was each defined as the trial
in which a participant’s performance exceeded the respective

chance level for all remaining trials at a confidence level of 95%.
The Level 1 of the categorization rule was acquired early by all
participants (Trial 8.536 26.37), while there was high intersub-
ject variability in the subsequent acquisition of the hierarchical
Level 2 rule (Trial 140.636 95.99) (Fig. 2B). A final debriefing
questionnaire confirmed explicit knowledge of the Level 1 rule in
all participants, and of the Level 2 rule in all but 3 participants.
In a multidimensional sorting task subsequent to the scanning ses-
sion, 20 stimuli had to be arranged according to their relatedness
(three exemplars of each category and 8 novel incomplete probe
stimuli, of which four were categorizable, while four could not be
categorized because of critical features missing). Stimuli from the
same category were judged as more similar than stimuli from differ-
ent categories (category: t(30) = �17.87, p=0.001; subcategory: t(30)
= �22.16, p, 0.001). Multidimensional scaling (example partici-
pant, Fig. 2C, right) visualizes how categorization-rule congruent
probe stimuli clustered with their respective category members,

Table 2. Whole-brain results of accumulation and updating analyses (cluster-based threshold z= 2.3, p= 0.5)a

Cluster index Voxels p Z-max Z-max x (mm) Z-max y (mm) Z-max z (mm) Region

Univariate: Accumulation . baseline
12 6797 0 5.47 �24 �94 �10 Occipital pole
11 1440 4.93E-24 4.3 48 �10 58 Precentral gyrus
10 697 4.95E-14 4.41 �54 �6 42 Precentral gyrus
9 472 2.36E-10 4.03 �48 �44 10 Supramarginal gyrus
8 209 3.70E-05 3.51 �16 �32 78 Postcentral gyrus
7 200 5.98E-05 3.85 �62 �8 �8 Middle temporal gyrus
6 188 0.000115 3.81 22 10 �10 Frontal orbital cortex
5 159 0.000587 3.84 �2 �2 64 Supplementary motor cortex
4 152 0.000883 4.04 62 �4 �10 Superior temporal gyrus
3 119 0.00663 3.73 �18 8 �10 Putamen
2 112 0.0104 3.43 �2 42 �16 Frontal medial cortex
1 110 0.0118 3.44 52 �28 22 Parietal operculum

Univariate: Accumulation , baseline
12 3501 4.20E-45 4.51 32 60 20 Frontal pole
11 2160 3.97E-32 4.39 �50 �68 �26 Cerebellum
10 2123 9.78E-32 5.47 2 28 42 Paracingulate, superior frontal gyrus
9 1625 3.20E-26 4.24 �44 36 24 Middle frontal gyrus
8 1415 9.90E-24 4.26 38 �54 44 Angular gyrus
7 809 1.04E-15 4.49 48 20 6 Inferior frontal gyrus
6 794 1.72E-15 4.47 �6 �68 50 Precuneus
5 606 1.34E-12 3.81 �28 �56 40 Superior parietal lobule
4 544 1.39E-11 4.56 �42 16 0 Frontal operculum
3 441 8.36E-10 4.05 8 �14 10 Thalamus right
2 327 1.19E-07 3.81 62 �38 �16 Inferior temporal gyrus
1 198 6.66E-05 3.81 38 �64 �50 Lateral occipital cortex

Univariate: Updating . baseline
5 230 2.56E-06 3.4 �46 �60 52 Lateral occipital cortex
4 201 1.36E-05 3.42 56 �48 46 Angular gyrus
3 88 0.0245 3.61 0 16 52 Superior frontal gyrus
2 86 0.0285 3.27 38 40 30 Frontal pole
1 80 0.0454 3.32 �32 �54 50 Superior parietal lobule

Univariate: Updating , baseline
1 605 6.15E-14 4.25 0 56 �6 Frontal medial cortex, paracingulate
2 115 0.00336 3.93 �10 �56 14 Precuneus

PPI, Accumulation (seed: mPFC)
4 180 9.70E-05 3.37 �16 �52 10 Precuneus
3 130 0.00207 3.55 18 �68 12 Intracalcarine/precuneus
2 124 0.00305 3.66 �22 26 44 Middle frontal gyrus/superior frontal gyrus
1 108 0.00894 4.07 �14 56 26 Frontal pole

PPI, Updating (seed: mPFC)
2 166 6.32E-05 3.55 �30 52 22 Frontal pole
1 100 0.00665 3.35 2 40 26 Paracingulate gyrus

PPI, Updating (seed: HPC)
1 126 0.000852 3.54 �44 34 20 Middle frontal gyrus, extending to frontal pole

aClusters activated, their voxels, p values, and peaks. Local maxima labels are based on the Harvard-Oxford Atlas. The coordinates are in standard MNI space.
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confirming the ability to transfer the concept to novel information.
This transfer effect was significant on the group level when compar-
ing the dissimilarity of novel probe items to their respective category
members against their dissimilarity to noncategory members (t(30) =
�15.45, p, 0.001).

Computations underlying hierarchical concept learning
In order to estimate the relative contribution of specific knowl-
edge accumulated for each level of the hierarchical concept to
categorization performance, we modeled the sequence of be-
havioral responses for each subject with a DBN model
(Bishop, 2006; Koller and Friedman, 2009). To first test
whether the present concept was indeed learned in a hier-
archical fashion, we compared the ability of five different
DBNs, differing in their assumption on the underlying learn-
ing mechanisms (i.e., the degree of generalization), to
account for the data at the single-subject level using the BIC
(Table 1; for model description, see Materials and Methods). In
brief, a first model (DBNERO) assumes simple stimulus-response
mapping (associations between each of the 32 exemplars to their
respective subcategory) without any generalization. The second
and third model (DBNFRO and DBNFO) assume that participants
do generalize over experiences which features are relevant to

categorization but do not make use of the dependent rule connect-
ing both levels (e.g., only if a creature has wings, the size of the eye
is relevant), which makes the concept hierarchical. The fourth
model (DBNCO) instead assumes that participants use the hier-
archical rule and thus need to represent only the four relevant
combinations of features, one per subcategory. A final hierarchical
model DBNH further collapses over the specific categories and
incorporates only the two levels of the hierarchy, representing gen-
eralization of the rule over categories. We find that both hierarchi-
cal models (DBNCO, DBNH) outperform the other models as
assessed by the BIC score, while DBNH provided the most parsi-
monious description of behavior (Table 1) in all participants (i.e.,
DBNH was on rank 1 for all 32 participants).

Accumulation and updating of hierarchical concepts in
hippocampus and PFC
We set out to test whether hippocampal and prefrontal activity
during learning reflects hierarchical concept learning as esti-
mated by the winning model DBNH. For each trial, the model
computes the probabilities of using Level 1 (superordinate cate-
gory) and Level 2 (subordinate category) knowledge to produce
a response. We extracted the impact of Level 2 knowledge on
behavior by summing out the contribution of the Level 1 node

Figure 2. Hierarchical concept learning task and behavior. A, Stimuli (artificial creatures) were presented with a jittered intertrial interval of 3.56 1.5 s for 2 s during which participants
had to select the correct subcategory out of four options. Subcategories were defined by a hierarchical rule: The value of a first feature (wings) determined which second feature (ears or eyes)
became relevant to further subcategorization. Responses were followed by 0.5 s of feedback indicating up to which level in the conceptual hierarchy the stimulus was correctly categorized
(100% = subordinate category, 50% = superordinate category, 0% = none). The task comprised 8 blocks of 32 different stimuli each. In an additional preceding practice block (B, shaded
gray), stimuli had to be sorted into the two superordinate categories. B, Categorization performance on the superordinate (blue) and subordinate category level (red) of the hierarchy showing
the percentage of correct trials for a moving average over 32 trials for individual participants (colored) and averaged across participants (black). C, Pairwise similarity judgments derived from a
subsequent multidimensional sorting task in which the 20 stimuli (3 per subcategory1 8 probe stimuli) had to be arranged according to their relatedness in a circular arena. Stimuli from the
same (sub) category were judged as more similar than stimuli from different (sub) categories (left). Multidimensional scaling of single subject data visualizes how congruent (c1–c4), but not
incongruent probe stimuli (i1-i4) cluster with their respective category members (right).
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from the joint probability distribution. The resulting posterior
estimates for the Level 2 node thus reflect the unique accumula-
tion of hierarchical knowledge over the course of learning. In
addition, the first derivative of the accumulation parameter
reveals the instantaneous rate of change in Level 2 knowledge
from trial to trial, which can be interpreted as updating cur-
rent knowledge of the hierarchy. We regressed the accumula-
tion and the updating parameters against brain activity in
hippocampus, mPFC, and rlPFC. We find that mPFC activity
increased as a function of accumulation of hierarchical
knowledge (t(31) = 3.137, p = 0.005), while rlPFC activity
decreased with accumulation (t(31) = �3.825, p = 0.001); the
hippocampus did not track accumulation (t(31) = 0.703,
p = 0.822). Both mPFC (t(31) = �4.271, p = 0.0001) and hippo-
campus (t(31) = �2.756, p = 0.015) tracked updating from
trial to trial by responding stronger to negative updating val-
ues (i.e., an error follows a correct response), while rlPFC did
not track updating (t(31) = 0.237; p = 0.993) (Fig. 3B; for
whole-brain results, see Table 2). We further show that
mPFC, hippocampus, and rlPFC signals are also significantly
better explained by learning parameters derived from the hierarch-
ical model compared with learning parameters from a nonhierarch-
ical control model DBNERO (accumulationH vs accumulationERO:
mPFC: t(31) = 2.707, p=0.0045; rlPFC: t(31) = �3.478, p=0.001;

updatingH vs upadtingERO: mPFC: t(31) = �2.397, p=0.0150; HPC:
t(31) =�2.099, p=0.033).

Hierarchical concept representations emerge in rlPFC
So far, we investigated how the brain acquires new conceptual
knowledge at a hierarchical level. But where is the acquired concept
represented? Does the neural representation of the concept follow
a hierarchical tree-like structure that comprises, but distinguishes
between, both levels of abstraction to eventually enable the flexible
use of knowledge? We probed the emergence of concept represen-
tations in hippocampus and PFC in the final stages of the learning
phase when both levels of the concept had been learned by partici-
pants, using RSA (Kriegeskorte and Kievit, 2013). We set up a
GLM, including two stimulus regressors per subordinate category
for the final learning stage. For each ROI, we correlated the multi-
voxel activation pattern of each stimulus regressor with the multi-
voxel activation patterns of all other stimulus regressors. To probe
whether neural pattern similarity between stimuli scaled with their
distance in the category tree, neural similarity matrices were corre-
lated with a hierarchical prediction matrix that indicated the num-
ber of shared levels (0=different category, 1= same category, or
2= same subcategory) (Fig. 4). We find that this hierarchical pre-
diction significantly correlates with neural pattern similarity in
rlPFC (t(28) = 3.666, p=0.001), but not in medial PFC (t(28) = 0.889,

Figure 3. Computations underlying hierarchy formation. A, Level-specific accumulation of knowledge over trials and updating was estimated from behavior using a Bayesian Network with a
hierarchical rule representation (DBNH). Parameter estimates for accumulation (light red) and updating (first derivative of accumulation parameter, dark red) of an example subject. Negative
updating values reflect that an error follows correct responses; positive updating values reflect the reverse. B, The DBNH model unrolled for three time slices. Empty nodes represent latent vari-
ables. Shaded nodes represent observed variables. Links indicate statistical causal dependencies between variables, either across layers (incorporating the constraint that correct categorization
at the subordinate level depends on correct categorization at the superordinate level) or across time slices. The superscript index indicates the level of the hierarchical rule (e.g., x1 = Level 1).
C, Regression of individual knowledge accumulation and updating parameters against brain activity in mPFC, hippocampus, and rlPFC (see ROI masks on the right). Bars represent mean of b
estimates across participants. Error bars indicate SEM. Circles represent individual participants. *p, 0.05 (mc-corrected).
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p=0.722) nor in the hippocampus (t(28) = �0.676, p=0.873). To
confirm that this representation reflects learned conceptual infor-
mation beyond perceptual similarity of the stimuli, we further show
that the representation persists when baseline-correcting for pixel
similarity across stimuli (rlPFC: t(28) = 4.357, p=0.0001; mPFC:
t(28) = 1.326; p=0.410; HPC: t(28) = �0.571; p=0.891). In addition,
we show that the representation was not present in the early stage
of learning in any region (rlPFC: t(28) = 2.288, p=0.081; mPFC:
t(28) = 0.558, p=0.917; HPC: t(28) =�1.217, p=0.518).

Learning-dependent connectivity of mPFC and hippocampus
to rlPFC
We observed that the hippocampus and mPFC support learning
computations, while the acquired hierarchical concept structure
was finally represented in rlPFC. Also rlPFC responses scaled
with accumulation of hierarchical knowledge, yet this relation
was reverse in sign compared with the mPFC accumulation
signal. While mPFC activation increased with accumulation of
hierarchical knowledge, rlPFC activation decreased. This
negative relation with accumulation is congruent with find-
ing the concept representation being formed in rlPFC,
given that the demand to incorporate information in the
concept representation decreases with increasing knowl-
edge. One might ask whether accumulation and updating
related activity in mPFC and hippocampus are associated with
the emergence of concept representations in rlPFC. To probe
whether the mPFC and hippocampus interact with rlPFC as a
function of hierarchical learning, we examined their learning-
dependent connectivity patterns in separate PPI analyses
using the model estimates for accumulation (seed: mPFC) and
updating (seeds: mPFC; hippocampus) as respective psychologi-
cal variables. We find that mPFC shows foremost accumulation-
dependent correlation of time-courses with clusters in lateral PFC,
including the rlPFC (z=4.07, MNI = �14/56/26) and middle
frontal gyrus (peak z=3.66, MNI=�22/26/44), as well as the pre-
cuneus (z=3.37, MNI = �16/�52/10) (Fig. 5, red; Table 2).
Updating of hierarchical conceptual knowledge also modulated
mPFC’s connectivity to a cluster in rlPFC (z=3.55, MNI = �30/
52/22), and furthermore to paracingulate gyrus (spreading to ante-
rior cingulate gyrus; z=3.35, MNI: 2/40/26) (Fig. 5, violet; Table
2). Moreover, the PPI analysis with the hippocampal seed revealed
updating-dependent connectivity to a cluster of rlPFC (z=3.18,
MNI = �34/47/24) and middle frontal gyrus voxels (z=3.54,

MNI: �44/34/20) (Fig. 5, blue; Table 2),
partly overlapping with the rlPFC cluster
that showed updating-modulated connec-
tivity to the mPFC seed (Fig. 5, violet).

Discussion
The present study elucidates the roles of
hippocampus and PFC in both learning
and representation of the hierarchical
structure inherent to conceptual knowl-
edge. Participants learned to categorize
unfamiliar cartoon stimuli according to
a tree-like category structure entailing a
superordinate and a subordinate cate-
gory level. Comparing fits of different
computational models on the learning
mechanism to categorization perform-
ance revealed that a hierarchical rule
representation explained learning be-
havior best. The winning model allowed

to extract each choice’s probability of being correct based on
knowledge at the hierarchical level beyond the superordinate
level, resulting in measures of two learning computations,
accumulation of hierarchical knowledge over time and trial-
to-trial updating, to be regressed against brain activity. We
found that mPFC activation scaled with the accumulation of
hierarchical knowledge over time, whereas both mPFC and
hippocampus signaled updating. Further, as a function of
these learning computations, both regions changed their con-
nectivity to lateral frontal regions, including the rlPFC, which
in contrast to mPFC and hippocampus, represented the hier-
archically nested category structure at the end of learning. In
sum, our findings suggest that mPFC and hippocampus sup-
port the integration of accumulated evidence and instantane-
ous updates into hierarchical concept representations in
rlPFC.

The present work significantly extends previous studies on
the involvement of hippocampus, mPFC, and rlPFC in category
learning (HPC and (v)mPFC: Mack et al., 2016, 2020; Bowman
and Zeithamova, 2018; Bowman et al., 2020; HPC: Davis et al.,
2012; Theves et al., 2019, 2020; rlPFC: Davis et al., 2017) by ex-
plicitly investigating their functions in the acquisition and the
representation of the hierarchical structure inherent to concep-
tual knowledge. Specifically, the combination of a novel hierarch-
ical categorization task and modeling approach first allowed to
evaluate the learning mechanism of hierarchal concept acquisi-
tion, and to extract and quantify its hierarchical aspect for a tar-
geted evaluation of related brain effects. Comparing models with
different assumptions on the degree of generalization involved
(from direct stimulus response mapping, to the abstraction of
relevant features, up to the abstraction of features and relational
rules) revealed that a high degree of generalization over experien-
ces to abstract a hierarchical representation explains categoriza-
tion performance best. This provides the first relevant insights
on the learning mechanisms underlying such a task. Future
accounts might further elaborate on this by modeling variations
in aspects other than degree of generalization.

Importantly, the best fitting model allowed to extract and
quantify the accumulation and updating of hierarchical category
knowledge to inform our main research question regarding the
roles of hippocampus and prefrontal regions in learning and rep-
resentation of hierarchical levels within a concept. Indeed, previ-
ous reports in the literature led to diverse predictions on their

Figure 4. Hierarchical concept representations in lateral PFC after learning. Right, Correlations between hierarchical predic-
tion matrix (left), indicating the number of shared levels (0 = blue, 1 = green, 2 = red) between stimuli modeled via eight
“late-learning” regressors (R1-R8: two regressors per subcategory S1-S4) and neural pattern similarity in rlPFC, mPFC, and
hippocampus. Bars represent the mean across participants. Error bars indicate SEM. Circles represent individual participants.
*p, 0.05 (mc-corrected).
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respective contributions: In previous, non-hierarchical, categori-
zation studies, hippocampus and vmPFC were shown sensitive
to conceptual similarity as defined by feature overlap (Bowman
and Zeithamova, 2018) or by distances in continuous feature
space (Theves et al., 2019, 2020), leaving open the question
whether this would transfer to the representation of conceptual
similarity defined along dependent rules of a hierarchical struc-
ture. Hippocampus and PFC could have been considered suita-
ble to represent different levels of abstraction within a concept
given their specific coding properties (McKenzie et al., 2014;
Bernadi et al., 2020). rlPFC might be specifically relevant, given
that a hierarchical concept is defined by relational rules and its
acquisition might thus engage more abstract reasoning processes
associated with rlPFC (Christoff et al., 2001; Kroger et al., 2002;
Watson and Chatterjee, 2012; Davis et al., 2017). In sum, our
results suggest a division of labor between hippocampus and
mPFC as opposed to rlPFC in operational aspects of learning
versus representation
of a hierarchical category structure, respectively.

Our paradigm first allowed to probe how actual hierarchical
levels of a newly acquired concept are represented in key regions
involved in concept learning. Specifically, ‘hierarchical’ refers to
the property that superordinate and subordinate levels are con-
nected via relational rules, such that subcategory-relevant fea-
tures alone are not informative (while ‘speed’ distinguishes
subcategories within the category ‘cars’ [racing car vs family
van], speed is not relevant to subcategorization of ‘animals’
[mammals vs birds], although also animals vary in speed). We
find that conceptual similarity between exemplars increasing
from superordinate to subordinate categories is captured by
graded neural similarity in the rlPFC. This fits well with the
notion that rlPFC is critical to abstract relational processing
(Christoff et al., 2001), that rlPFC was shown to track the repre-
sentational distance between novel test and old training examples
during relational compared with feature-based categorization
(Davis et al., 2017), and has also been discussed as a potential
storage site of relational concepts (Speed, 2010). As the present
study focused on the acquisition phase, the endurance of the
rlPFC representation over time remains to be investigated.
Contrary to considerations in theoretical accounts on cognitive
maps (Bellmund et al., 2018; Morton and Preston, 2021), we did
not observe the respective representation in the hippocampus
and mPFC.

The model-based analyses of learning-related activity revealed
that mPFC and rlPFC track accumulation of hierarchical
knowledge, while mPFC and hippocampus track updating.
Interestingly, mPFC and rlPFC effects were reversed in sign.
While mPFC activity increased as a function of hierarchical
knowledge accumulation, rlPFC activity decreased. This pat-
tern is in line with our finding of rlPFC forming the represen-
tation of the concept, given that the demand to incorporate
information in the representation decreases with increasing
knowledge. The positive relation between mPFC activity and
accumulation might be interpreted in light of previous theo-
ries on context-dependent memory retrieval in mPFC
(Preston and Eichenbaum, 2013): With increasing hierarchical
knowledge, the Level 1 feature might increasingly set the con-
text for retrieving the appropriate Level 2 rule. Alternatively,
one might consider context (Level 1 feature)-dependent sam-
pling of respectively relevant information in a given trial
(Level 2 feature) (Braunlich and Love, 2021) to underlie the
accumulation effect in mPFC. Contemporary cognitive mod-
els of concept learning (e.g., SUSTAIN, Love et al., 2004;

ALCOVE, Kruschke, 1992) mostly operated by accentuating
behaviorally relevant stimulus dimensions the same way for
every stimulus and would as such have been unable to account
for learning problems, such as the present. Indeed, the
assumption of dimension-wide attention is challenged by a
new model (SEA; Braunlich and Love, 2021), showing that
dynamic and sequential allocation of attention within a trial
for active sampling of context-relevant information can like-
wise account for a range of classical category learning phe-
nomena. Future work might explore the explanatory power
of this active sampling model for PFC activation in hierarchi-
cal learning problems. Further, negative updating parameters
in mPFC and hippocampus reflect their increased activity
when an error follows a correct response (i.e., mismatch sig-
nal) and might serve to correct the current representation.
Updating-related rapid signal changes in mPFC can be
expected during a rule-based category learning task. Indeed,
changing the used rule has been shown to be reflected in ab-
rupt and sometimes transient activity changes of mPFC neu-
rons in rats (Rich and Shapiro, 2009; Durstewitz et al., 2010)
and in a predictive representation of decision-relevant stim-
ulus features in human mPFC before the strategy shift
(Schuck et al., 2015). More specifically, it has further been
suggested that mPFC disadvantages processing of task-irrele-
vant information to focus on goal-relevant features (Mante
et al., 2013; Mack et al., 2020). The hippocampal role in
updating fits well with the notion that hippocampal codes
are highly dynamic (Horner and Doeller, 2017) and involved
in novelty detection (Knight, 1996; Kumaran and Maguire,
2007; Fenker et al., 2008). A study on memory-based predic-
tion errors in the hippocampus during concept learning
found model-based (Love et al., 2004) estimates of decisional
uncertainty during categorization to correlate with anterior
hippocampus engagement throughout learning (Davis et al.,
2012), suggesting that the hippocampus does not merely sig-
nal novelty but rather indicates the deviation of the current
experience from existing conceptual knowledge. Recent work
further indicates that prediction errors bias the hippocampus
toward encoding versus retrieval, as reflected in increased
connectivity of CA1 to entorhinal cortex and decreased con-
nectivity to CA3 (Bein et al., 2020).

Figure 5. Connectivity changes in mPFC and hippocampus as a function of hierarchical
concept learning. Significant clusters of whole-brain PPI analyses showing regions with accu-
mulation-dependent connectivity to mPFC (red), updating-dependent connectivity to mPFC
(violet), and updating-dependent connectivity to the hippocampus (blue). Plotted are the
thresholded z maps (cluster threshold z= 2.3; p threshold: 0.05) of each PPI regressor.
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While our PPI analysis was not sensitive to intrahippocampal
connectivity changes, we were primarily interested in a potential
communication between the regions involved in learning opera-
tions (mPFC, hippocampus) and regions representing the final
hierarchical category structure (rlPFC). Here we observed both
accumulation- and updating-dependent connectivity changes
between mPFC and hippocampus to rlPFC. This might indicate
that, during hierarchical concept learning, mPFC and hippocam-
pus serve to incorporate accumulated evidence and trial-to-trial
updates into lateral prefrontal representations of the hierarchical
concept structure.

In conclusion, our study provides a first targeted fMRI inves-
tigation to study category learning with respect to the hierarchi-
cal nature of concepts (i.e., different abstract levels connected via
dependent rules). Our modeling approach revealed insight in the
learning mechanism by which humans acquire hierarchical con-
cepts and informed fMRI analyses to evaluate the respective roles
of candidate regions in learning computations versus representa-
tion of hierarchical concepts. As such, the study lays important
ground for future investigations of this relevant aspect of human
higher-level cognition.
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