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Summary

The incidence and prevalence of type 1 diabetes in the world has increased the

last four decades [1; 2]. Rakyan et al. had a hypothesis that some of the non-

genetic factors were due to epigenetic variation [3]. The aim of this Master’s

thesis was to train models to predict from methylation profiles whether a per-

son had developed type 1 diabetes, and identify possible type 1 diabetes associ-

ated genes. This was executed by training models by various machine learning

algorithms.

A dataset composed from methylation profiles generated by Rakyan et al. and

Bell et al. was split and used as training and testing data. After pre-processing,

the dataset consisted of 27,006 lines of CpG sites, 226 columns of individuals

diagnosed with type 1 diabetes and 68 columns of individuals without the di-

agnosis. Methylation levels for all CpG sites for all individuals were given as a

value between zero and one.

The best K-value for the K-nearest neighbours classifier was identified by train-

ing models with different K-values. A K-value of 15 gave the highest Matthews

correlation coefficient. The machine learning classifier algorithms of logistic

regression, decision tree, K-nearest neighbours, random forest and multilayer

perceptron were compared with the same comma-separated values file as train-

ing data.

Matthews correlation coefficient was considered a proper performance mea-

sure, because it may be used to evaluate binary classification predictions on
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imbalanced datasets [4]. The machine learning algorithms performed evenly

high with an average Matthews correlation coefficient of around 0.65. Training

data may therefore be more important than the model.

The genetic algorithm Sklearn-genetic and the feature selector from Scikit learn

were used to find feature selections that alone trained the most suitable mod-

els [5; 6]. Models trained with a limited feature selection tended to score higher.

Nine CpG sites were found in more than one feature selection. All nine CpG sites

were considered candidates for T1D relevance. Among these nine sites, two

were type 1 diabetes associated. Based on literature search [7] and the results,

DNA methylation of the LY86 gene appears to be associated with insulin defi-

ciency. The approach was suitable for type 1 diabetes prediction and to identify

possible type 1 diabetes associated genes. Some possible adjustments to the

approach were suggested in order to reach its full potential.
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Sammendrag

Forekomsten og utbredelsen av type 1 diabetes i verden har økt de siste fire

tiårene [1; 2]. Rakyan et al. hadde en hypotese om at noen av de ikke-genetiske

faktorene skyldtes epigenetisk variasjon [3]. Målet med denne masteroppgaven

var å trene modeller for å forutsi fra metyleringsprofiler om en person hadde

utviklet type 1 diabetes, og identifisere mulige type 1 diabetes assosierte gener.

Dette ble utført ved å trene modeller med forskjellige maskinlæringsalgoritmer.

Et datasett sammensatt av metyleringsprofiler generert av Rakyan et al. og Bell

et al. ble splittet og brukt som trenings- og testdata. Etter prosessering bestod

datasettet av 27,006 linjer med CpG-dinukleotider, 226 kolonner av individer

med type 1 diabetes diagnoser og 68 kolonner av individer uten type 1 diabetes.

Metyleringsnivåer for alle CpG-dinukleotider for alle individer ble gitt som en

verdi mellom null og én.

Den beste K-verdien for K-nærmeste naboer klassifikator ble identifisert ved

å trene modeller med forskjellige K-verdier. En K-verdi på 15 gav den høyeste

Matthews korrelasjonskoeffisienten. Klassifikator-maskinlæringsalgoritmene for

logistisk regresjon, beslutningstre, K-nærmeste naboer, tilfeldig skog og flerlags

perceptron ble sammenlignet med samme kommaseparerte fil som trenings-

data.

Matthews korrelasjonskoeffisient ble ansett som et passende ytelsesmål, da det

kan brukes til å evaluere binære klassifiserings prediksjoner på ubalanserte datasett

[4]. Maskinlæringsalgoritmene presterte jevnt med en gjennomsnittlig Matthews
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korrelasjonskoeffisient på rundt 0,65. Treningsdata kan derfor være viktigere

enn valg av modell.

Den genetiske algoritmen Sklearn-genetic og algoritmen for utvalg av param-

etere fra Scikit learn ble brukt til å finne parametere som alene trente de mest

egnede modellene [5; 6]. Modeller trent med et begrenset utvalg parametere

tenderte til å prestere høyere. Ni CpG-dinukleotider ble funnet i mer enn ett

utvalg av parametere. Alle ni ble ansett som kandidater for type 1 diabetes rel-

evans. Blant disse var to type 1 diabetes assosierte. Basert på litteratursøk [7]

og resultatene, ser det ut til at DNA metylering av LY86 genet er assosiert med

insulinmangel. Tilnærmingen var egnet for type 1 diabetes prediksjon og for å

identifisere mulige type 1 diabetes assosierte gener. Noen mulige justeringer av

tilnærmingen ble foreslått for å nå dens fulle potensiale.
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Chapter 1
Introduction

Between 2001 and 2009 a study showed a 30% increase in prevalence of type 1

diabetes (T1D) among children and adolescents aged 0−19 years in the USA [2].

A meta-analysis on databases from January 1980 to September 2019 also con-

cluded that the incidence and prevalence of T1D were increasing in the world

[1]. Rakyan et al. had a hypothesis that some of the non-genetic factors were due

to epigenetic variation [3]. In order to understand complex biological systems,

like the epigenetic variation of T1D, experimental and computational research

are important contributors. This is the field of systems biology, where compu-

tational biology, pragmatic modelling and theoretical exploration are used [19].

In an earlier specialisation project, the author executed a differential co-expression

network analysis using software programs developed by Voigt et al. [20; 8]. Dif-

ferential co-expression network analysis is an important tool for investigation of

differentiation and dysfunctional gene-regulation in diseases. The DNA methy-

lation profiles generated by Rakyan et al. were used to create a network that

was analysed. The project aimed to identify possible T1D associated network
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Chapter 1. Introduction

patterns. In order to achieve results with statistical power, further systematic

analyses were proposed [8]. Approaches using machine learning (ML), were

suggested to obtain this [21].

The aim of this Master’s thesis was to create models to predict from methyla-

tion profiles whether a person had T1D and to identify possible T1D associated

genes. This Master’s thesis executed training of models by ML algorithms to

predict whether a person had developed T1D or not. DNA methylation profiles

generated by Rakyan et al. and Bell et al. were used as training data [3; 22].

Exploring this thesis was a next step after the earlier specialisation project. There-

fore, the theory about T1D and gene-regulation in Sections 2.1 and 2.2 is a re-

vised edition of the same subsections in the earlier project [8]. Some of the input

data used in the current study were also used in the other project, and some of

the descriptions of the data in Section 3.1 are based on earlier work [8]. Some of

the code used in this thesis is based on code from the previous project [8].
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Chapter 2
Theory

Part of the aim in this thesis was to create models to predict from methylation

profiles whether a person had T1D or not. Theory of T1D, gene-regulation and

ML will be presented in this chapter. The aim was also to identify possible genes

associated with T1D. Genetic algorithms (GA) generate new sample points that

are optimal values of a function, and will also be reviewed [23; 5].

2.1 Type 1 diabetes [8]

T1D is a chronic disease [24]. The symptoms of untreated T1D are impaired gen-

eral condition, polyuria, thirst and loss in weight [25]. The blood glucose levels

can become so high that the patient becomes dizzy or falls into a coma [25]. In-

sulin is secreted by β-cells and is necessary for the transport of glucose from the

blood to the cells [26]. People with T1D have absolute insulin deficiency due

to β-cell destruction [27]. The β-cell destruction is normally caused by the im-

munity mechanisms. Patients therefore need a life long treatment with insulin

[24]. 5− 10% of all diabetes cases are type 1 diabetes [28]. The prevalence of
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Chapter 2. Theory

T1D among children and adolescents has increased since the beginning of the

millennium [2]. Dabelea et al. reported that in 2009, 6666 out of 3,4 million

US youth were diagnosed with T1D for a prevalence of 1,93 per 1000. This was

an increase of 30% since 2001. Further, a meta-analysis on databases from the

year 1980 until 2019, concluded that the T1D prevalence in the world is increas-

ing [1]. Inheritance is a large part of the cause of why a person develops T1D

[28]. Nevertheless, the triggering factors of unset of the clinical disease is not

fully understood. The monozygotic (MZ) twin pair discordance for the com-

plex autoimmune disease childhood-onset T1D is around 50% [3]. Rakyan et al.

had a hypothesis that some of the non-genetic factors were due to epigenetic

variation. From purified immune effector CD14+ monocytes, they generated

genome-wide DNA methylation profiles. After array processing, identification

of T1D methylation variable positions (T1D-MVPs), pyrosequencing validation

and analysis, it was suggested that very early in the etiological process to the

onset of T1D, T1D-MVPs arise [3].

2.2 Gene-regulation [8]

Genetic variation and diversity lead to a range of human phenotypes and reg-

ulate gene expression in cell differentiation over time [29]. However, in some

cases it has been linked to disease [29]. Transcription factors (TFs) are proteins

that regulate gene expression. At the promoter of a gene, there are interactions

of TFs. The sum of these interactions determines whether the gene is activated,

repressed, or not regulated [30].

DNA methylation in cytosine and guanine separated by a phosphate group (CpG)

is one of the ways that a TF can regulate the gene expression [31]. It is the biolog-

ical process whereby a methyl group is covalently added to a cytosine, and gives
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2.3 Machine learning

5-methylcytosine. The biological process is an important epigenetic mark in

eukaryotes [31; 32]. The enzymes that carry out the biological process is called

DNA methyltransferases. DNA methylation is affecting transcriptional activity,

and this may be associated with diseases [33]. Recent genomic technological

advances have made it possible to run large scale studies of human disease as-

sociated or tissue-specific epigenetic variation, such as comparing DNA methy-

lation profiles [3]. DNA methylation as gene regulator may be a more complex

process than repression of gene expression [31]. Causality and the physiological

explanation of DNA methylation level variance are not fully studied. However,

network theory and ML can be used to study differences between conditions

and predict condition.

2.3 Machine learning

ML is a sub-area of artificial intelligence (AI) [34]. AI is simulation of human

intelligence [35]. ML is not necessary a simulation of human intelligence, but a

tool commonly used in that context, and is suggested as a solution to the infor-

mation overload challenge in the 21st century [36]. A large amount of academic

research publications could for example be systematically mapped with com-

puter assistance that aim to catalogue broad evidence bases [37]. There is often

improvement in scaling up training data sets in current ML systems [31].

Statistical learning (SL) is an area in statistics that blends with the parallel devel-

opment of ML, and is referred to as a branch of ML [38; 36]. Rather than making

a distinction between SL and ML, the term ML will mainly be used in this thesis.

ML is a field where systems use datasets, consisting of samples, to learn [39]. ML

is an essential tool for extracting regularities in a dataset and for making infer-

ences [17]. The samples are of different features, and can be categorical, ordinal,
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or numerical [39]. Therefore, different kinds of data collected from patients can

be used.

2.3.1 Independent and dependent variables

When a set of independent variables (X) are known, a dependent variable (Y)

may be predicted, as shown in Equation 2.1 [38].

Y = f (X )+ε, (2.1)

where ε is the random error term and does not depend on X . With a sufficient

number of independent variables, εwill be approximately zero. f is estimated to

predict something, to look at the inference between Y and X, or a combination

of the two [38]. p independent variables X are denoted X1, X2 ... Xp , and n

observations are denoted x1, x2 ... xn , together forming an n ·p matrix.

When a set of input variables X is available, and one wants to predict Y, Equation

2.2 can be used, as ε averages to zero [38].

Ŷ = f̂ (X )+ε, (2.2)

where Ŷ is a prediction of Y , and f̂ is an estimate of f . If the goal is only to

predict, and not to understand the inference, f̂ can be looked at as a black box.

To investigate how Y is affected by X , an estimate f̂ is calculated to reach an

understanding [38]. For example, it can be looked at which predictors that are

associated with the response, then f̂ is no longer considered a black box.
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2.3 Machine learning

2.3.2 Parametric and non-parametric methods

Various ML methods can be used to obtain f̂ . The methods can be divided into

parametric and non-parametric [38]. Parametric methods start with assuming

a shape or form of f . Then a procedure is followed to train the model using

training data, that defines a set of parameters [38]. In general, it requires a large

number of parameters to make a more flexible model, but this can also lead to

overfitting [38]. Non-parametric methods do not assume a shape of f , but seek

to find a function close to the training data [38]. As non-parametric methods

are not trying to fit any shape, overfitting will not be an issue. The disadvantage

with these types of methods is that they require a large number of observations

(n) [38].

2.3.3 Regression and classification problems

Variables can be quantitative or qualitative [38]. Quantitative variables have

a numeric value, while qualitative variables are categorical [38]. An example

of a quantitative variable thus can be the degree of methylation of a CpG site.

Whether a person has a disease or not can be a qualitative variable. When the

response variable (Y) is quantitative it is a regression problem, and when it is

qualitative, it is a classification problem [38].

Linear regression models model a straight line, and are often used when the re-

sponse variables are quantitative [40]. If the response variable is qualitative with

two categories, a cut off of Y = 0.5 could be used, but with three categories or

more it seldom will make any sense to range the variables in some order. There-

fore, logistic regression is more suitable when the response value is qualitative

[38]. Logistic regression and other methods will be covered later in the section.

Some methods can be used both with quantitative and qualitative response [38].
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Chapter 2. Theory

2.3.4 Supervised and unsupervised learning

In supervised learning, statistical models are trained using training data (x1, y1),

..., (xn , yn) in order to predict or estimate output [38]. When a dataset includes

dependent variables y1, ..., yn , it is called labelled data [41]. From unsupervised

learning, relationships and structure can be learned from input data x1, ..., xn

[38]. Thus, unsupervised learning takes place without supervising output. Clus-

tering is in that case useful. Based on unlabelled input data x1, ..., xn , a cluster

analysis will reveal whether the observations fall into relatively distinct groups

[38].

2.3.5 Machine learning algorithms

Logistic regression

As seen in Section 2.3.3, the linear regression model causes problems when used

to predict binary response. The linear regression model fits Equation 2.3, but

when the response is binary, the logistic function in Equation 2.4 is more ap-

propriate to use [38]:

p(X ) =β0 +β1X (2.3)

p(X ) = eβ0−β1 X

1+eβ0+β1 X
(2.4)

The logistic regression model forms an S-shape between zero and one [38]. The

parameters β0 and β1 are estimated based on training data, enabling the pre-

dicted probability p̂(xi ) for each individual to correspond as closely as possible

to the values of the observed individual [38]. This is done by using the likelihood
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2.3 Machine learning

function of Equation 2.5 [38]. When multiple predictors are used, multiple lo-

gistic regression is performed following Equation 2.6 [38].

l (β0,β1) = ∏
i :yi=1

p(xi )
∏

i ′:y ′
i=0

(1−p(xi ′)) (2.5)

p(X ) = eβ0+β1x1+...+βp xp

1+eβ0+β1x1+...+βp xp
(2.6)

When using Scikit learn to train models with logistic regression, a set of pa-

rameters can be established as seen in the documentation [5]. To avoid over-

fitting with a large number of features, the lasso (L1) regularisation, ridge re-

gression (L2) regularisation or a combination called the elastic net, can be used

as penalty [42]. L2 is simple and fast and is good to avoid overfitting [43]. L1

has more sparse properties and is suitable for datasets with a large number of

features [43]. The solver parameter has to support the penalty. The ‘newton-cg’,

‘sag’ and ‘lbfgs’ solvers support the L2 penalties, and ‘elasticnet’ is supported by

the ‘saga’ solver [5].

Decision trees

Some methods use a set of splitting rules to segment the predictor space that

forms a tree. These methods are called decision tree methods and are applied

both in regression and classification problems [38]. In regression trees, the re-

sponse variable for a given observation is the mean response of the training

observations in the same terminal node [38]. A classification tree predict the

response for a given observation by finding the most common category among

the training data in the region it belongs to [38]. While interpreting a classifi-

cation tree, the proportion of training observations that fall into each region, is
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Chapter 2. Theory

also important [38]. A split in a regression tree is a result of using residual sum of

squares (RSS) as criterion, as shown in Equation 2.7. In classification problems,

the Gini index, calculated in Equation 2.8 can be used as criterion for the split

[38].

RSS = (y1 − β̂0 − β̂1x1)2 + ...+ (yn − β̂0 − β̂1xn)2 (2.7)

G =
κ∑

k=1
p̂mk (1− p̂mk ), (2.8)

where κ is the number of classes and p̂mk is the proportion of training obser-

vations in the mth region which originate from the kth class. A small Gini index

means that the node has observations mainly from one class.

Deeper decision trees have a more complex decision boundary and can cause

overfitting [15]. In Scikit learn, the maximum depth can be determined [44].

The default settings for decision tree classifier in Scikit learn, is shown in the

documentation [5].

Decision trees are easy to visualise graphically, and therefore also easy to inter-

pret [45]. An example of a visualisation of a scikit learn decision tree is showed

in Figure 2.1 [15; 44]. A small change in the training data, can make the final tree

look totally different, so it is non-robust. There are methods that utilises several

decision trees, such as random forest, which will make the trees considerably

more robust [38].
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2.3 Machine learning

Figure 2.1: An example of a decision tree created by Raschka and Mirjalili from the book
Python Machine Learning [15]. The example is using the Iris dataset, and different fea-
tures are used to decide class [16]. The decision criterion is entropy, and the maximum
depth is 4 [15].

K-nearest neighbours

The prediction with K-nearest neighbours for an observation x is executed by

using the K training observations closest to x [38]. The K-nearest neighbours

classifier predicts that the observation belongs to the same category as the plu-

rality of the neighbours [38]. In K-nearest neighbours regression, the average

value of the neighbours is what is predicted for the observation [46]. Thus,

the predicted function for Y will not assume a shape, and the method is non-

parametric. The approach is relatively uncomplicated, but does not specify

which variables are most important. When K = 1, it will be an overly flexible

decision boundary with low bias and high variance [38]. However, with a high

K-value the decision boundary will have low flexibility, low variance and high

bias. The Python machine learning library Scikit learn has a K-nearest neigh-

bours classifier [5].
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Random forest

As mentioned, random forest methods use several decision trees to create mod-

els. Building of a decision tree is done by every time a split is made, only a ran-

dom sample of m of the p predictors are considered candidates for the split [38].

The size of m often is as calculated in Equation 2.9 [38]:

m ≈p
p. (2.9)

The average of several trees is calculated. If all p candidates were considered

in all the trees, the trees would have been similar, and the variance would not

have been much smaller than for a normal decision tree [38]. Scikit learn has a

random forest classifier [5].

Neural networks

In the context of neural networks, a neuron is a simple computational unit [17].

A large number of neurons are interconnected in layers to form highly complex

predictions [17; 47]. Besides being flexible, neural networks are also scalable, as

the network can maintain their representation confined to finitely number of

neurons [17].

Neural networks can be seen as a function f , where the inputs are an observa-

tion x and an input vector that is learned from the learning data. For a neuron

with index k, Equation 2.10 shows how the ak is calculated [17].

ak = ρ(
∑

j
a j w j k +bk ), (2.10)

where w j k are the weights and bk is the bias, and they both have to be learned
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from the training data. a j was obtained from the previous layer, and ak will

be its replacement in the next layer, if it is not the final output y . The sum is

the weighted sum over all j neurons in the input to neuron k. ρ is an activa-

tion function that can be made in different manners. A simple neural network

based on a figure from the book Machine Learning Meets Quantum Physics is

illustrated in Figure 2.2 [17].

Figure 2.2: An example of a neural network. Neuron ak in Layer 2 is the result of three
inputs including neuron a j . The figure is based on a figure from the book Machine
Learning Meets Quantum Physics [17].

Multi layer perceptron (MLP) is a class of neural networks [48]. An MLP has

several layers of neurons. The role of the input layer is to pass the input vector to

the network [49]. Then there may be one or more layers before the output layer.

MLPs are considered fully connected. Each node is connected to every node in

the next and previous layer [49]. Scikit learn has an available MLP classifier [5].
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2.3.6 Comparison of algorithms

Different machine learning algorithms are suitable for different datasets and ar-

eas of use. When the true decision boundaries are linear, linear regression and

logistic regression can be a good fit [38]. If the true decision boundaries however

are more complicated, non-parametric methods like K-nearest neighbours, will

fit better. Decision trees are simple and easy to interpret [38]. However, algo-

rithms composed of several trees, like random forest, will have better prediction

accuracy and be harder to interpret [38]. Neural networks are both scalable and

flexible [17]. A large neural network can represent a wide class of functions with

few errors, but then each training iteration will last longer [17]. Neural networks

thus have limitations when it comes to running time.

Performance measure

How well a model predicts a response variable (Ŷ ), often is an important mea-

sure. This accuracy is depending on reducible error and irreducible error [38].

The reducible error is the difference between f and the estimate f̂ in Equation

2.2 [38]. The irreducible error exists due to the fact that Y also is a function of

the random error (ε), as seen in Equation 2.1 [38].

The most flexible model is not always the model with the most accurate pre-

diction, because of overfitting [38]. A performance measure much used for re-

gression problems, is the mean squared error (MSE) [38]. The MSE can both be

calculated on the training data and the test data. Overfitting is when the flex-

ibility of a model is increased to a level where the MSE of the training data is

decreased, but the MSE of the test data is increased. Overfitting is also an issue

in classification problems [38].

Accuracy, sensitivity, specificity, precision and F1 are performance measures
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that have a score between zero and one, where one is the best possible perfor-

mance [50]. The measurements are based on true positives (TP), true negatives

(TN), false positives (FP) or false negatives (FN). Positives can for example be

people tested positives for a disease, which will be used as an example in the

following.

Accuracy is how many of the predictions that are correct and is calculated by

Equation 2.11 [51]. Sensitivity is calculated in Equation 2.12, and measures how

many of the sick people tested that tests positive [50]. Specificity is the amount

of healthy people that are tested negative, as calculated in Equation 2.13 [50].

Precision is how many of the people tested positive that is actually sick as calcu-

lated in Equation 2.14 [50]. F1 is a combination of sensitivity and precision and

the calculation is shown in Equation 2.15 [4]. Matthews correlation coefficient

(MCC) in Equation 2.16 is a performance measure that can be used to evalu-

ate binary classification predictions on imbalanced datasets, and has a score

between minus one and one [4].

Accur ac y = T P +T N

T P +T N +F P +F N
(2.11)

Sensi t i vi t y = T P

T P +F N
(2.12)

Speci f i ci t y = T N

T N +F P
(2.13)

Pr eci si on = T P

T P +F P
(2.14)
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F 1 = 2 ·T P

2 ·T P +F P +F N
(2.15)

MCC = T P ·T N −F P ·F Np
(T P +F P ) · (T P +F N ) · (T N +F P ) · (T N +F N )

(2.16)

2.4 Genetic algorithms

Genetic algorithms (GA) are initiated with a population and use selection and

recombination operators to generate new sample points that are optimal values

of a function [23; 5]. John Holland and his students first introduced the genetic

algorithm [52]. The computational models are inspired by evolution. When the

algorithms have started with a population of chromosomes, different reproduc-

tive opportunities are evaluated, and chromosomes with a better solution to the

target problem are more likely to be conserved [23]. Sklearn-genetic is a genetic

feature selection module from scikit learn [5].
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Method

The aim of this thesis was to create models that predict from methylation pro-

files whether a person had T1D and identify possible T1D associated genes. The

models were created using different ML algorithms, and the training data was a

dataset consisting of T1D methylation profiles generated by Rakyan et al. and

Bell er al. [3; 22; 53].

3.1 Data

A dataset was composed of methylation profiles generated by Rakyan et al. and

Bell et al. [3; 22; 53]. Rakyan et al. made genome-wide DNA methylation profiles

out of purified C D14+ monocytes from twin pairs where one of the two had

T1D, and control pairs where none of them had T1D [3]. C D14+ monocytes are

a cell type associated with T1D onset. 27,578 CpG sites for 100 individuals were

included in the dataset. 68 individuals did not have T1D. Bell et al. made DNA

methylation profiles across the same CpG sites from 195 individuals with T1D

using the same overall design. In this study the case had T1D and nephropathy
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while the controls had T1D and no renal disease.

From both studies, the series matrix text file was downloaded. The text file from

Rakyan et al. was saved as ’twin_study.txt’ and the heading line, the line with

sample titles and the lines with the values were kept unchanged. The same lines

were kept from the Bell et al. file, and named ’renal_study.txt’. In this project, the

data from the two studies were put together in one dataset using the python file

’create_twinAndRenal.txt2.py’ found on a GitHub page [18]. All code referred to

is found on this page. This code reads in the two text files with the Python tool

Pandas, and writes a new text file named ’twinAndRenal_study.txt’. The ’null’

values and the methylation values that were left out were changed to zero. In

addition, the code created the text file ’cg.txt’ with only one name of a CpG-site

on each line in the same order. A flow chart that shows input and output from

various files is shown in Figure 3.1.

The new text file ’twinAndRenal_study.txt’ was being read in in the code ’linesTo-

Lists.py’ [18]. This code sorted the individuals such that those with T1D came

first, followed by those without. Individuals with more than 5% values of zero

were discarded. CpG sites including invalid methylation values, such as ’−3.40 ·
1038’, were removed. After this a new text file ’inputML.txt’ was written, and in-

cluded two empty lines followed by 27,006 lines for each CpG site. The names

of the CpG sites were not included. The 226 first columns were individuals with

T1D, and the 68 last were individuals without T1D. The file was converted to a

comma-separated values (CSV) file.
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Figure 3.1: A flow chart that shows input and output from various files.

3.2 Methods

The ML algorithms logistic regression, decision tree, K-nearest neighbours, ran-

dom forest and multilayer perceptron (MLP) were all compared with the CSV file

as input data. All algorithms were classifiers, as the response data were binary.

In order to decide which K-value to use in K-nearest neighbours, all K-values

from 1 to 50 were compared. The Python code ’KNearestNeighbours.py’ read

the file ’inputML.csv’. KNeighborsClassifier from the scikit learn library for ML

in Python was applied [44; 18]. 80% of the data chosen at random were used to

train the model, and 20% to test it. The model was run 30 times for each K-value.

Every run the model was tested and accuracy, sensitivity, specificity, precision,

F1 and Matthews correlation coefficient were calculated. The averages of each

K-value were calculated. The score was plotted against K-value with the plotting

library for Python Matplotlib. A polynomial curve fitting was also carried out by
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using the Python package numpy.

The Python code ’machine_learning_KNearest.py’ also used KNeighborsClassi-

fier with ’inputML.csv’ as input [18]. It trained and tested models in the same

way as the code mentioned previously, with 30 models for each K-value from

1− 30. In addition to include a smaller range of K-values, this approach also

created box plots for each of the six performance measures. The box plots were

created using the Python data visualisation library Seaborn, together with Mat-

plotlib.

After investigating which K-value resulted in better model performance, all the

mentioned ML algorithms were used to train models using the same CSV file.

This was executed by the Python code ’machine_learning.py’ [18]. Six classifiers

from the scikit learn library were used, LogisticRegression, DecisionTreeClassi-

fier, KNeighborsClassifier, RandomForestClassifier and MLPClassifier [44]. The

decision tree used the Gini impurity as split criteria. The default parameters

were used in all algorithms, except the K-value in K-nearest neighbours was sat

to 15. It was trained 30 models of each. A randomly drawn subset covering

80% of the data were used for training, and the remaining data were used for

testing. The last of the 30 models for each ML algorithm was saved with the

Python tool kit joblib. The last model trained using decision tree, was visualised

with export_graphviz from scikit learn. Again, accuracy, sensitivity, specificity,

precision, F1 and MCC were calculated. Boxplots of the different performance

measures for the ML algorithms were made using the Python data visualisation

library Seaborn.

Two methods were used to find feature selections that alone trained the best

models. The code used to execute this was based on code by Chen and the orig-

inal paper by Chicco and Jurman [54; 55]. From Chen’s Colab notebook, the
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sections Data Preprocessing, Logistic Regression Baseline, Logistic Regression

+ GA and Logistic Regression + Select From Model, were run with adjustments

[54]. The data pre-processing after the imports was adjusted to the dataset, and

shown in Listing 1 in Appendix A [54].

With these adjustments, the code read in the file ’inputML.csv’ and started by

defining variables for which ML algorithm and population size that should be

used, as shown in Listing 1 in Appendix A. This can be changed to different ML

algorithms and population sizes. The previously described ML algorithms were

used, except for the neural network algorithm MLP, because it was time con-

suming and had not performed better than the other ML algorithms. This time

the random forest algorithm had a maximum depth of 3 instead of no maxi-

mum, and the solver of logistic regression was ’liblinear’ instead of ’lbfgs’.

Sklearn-genetic was the first method used as feature selection module to find

which smaller group of parameters that alone trained the best models [5]. Ge-

neticSelectionCV was used with parameters listed in Table 3.1.

Table 3.1: GeneticSelectionCV was used with the parameters listed.

Parameter Value
crossover probability 0.5
mutation probability 0.2

generations 10
crossover independent probability 0.5
mutation independent probability 0.1

gen. no. change 10
scoring MCC

ML algorithms

LogisticRegression(solver = "liblinear")
DecisionTreeClassifier()

KNeighborsClassifier(n_neighbors=(15))
RandomForestClassifier(max_depth=3)

MLPClassifier()

Populations
10

1000
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The Scikit learn feature selection SelectFromModel was also used. It was done

with populations of 10 and 1000, both with a max population of 25.

The features selected by GeneticSelectionCV and SelectFromModel were given

as indices. The Python code ’IndexToCg.py’ used ’cg.txt’ to translate the indices

in to CpG sites [18].
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Results and analysis

The created models to predict T1D will be presented in the following. The se-

lections created with GA and the Scikit learn approach for feature selection will

also be listed. To identify possible T1D associated genes, further analyses of

these results were also conducted.

4.1 Results from Machine Learning

Figures 4.1 and 4.2 show how different K-values in K-nearest neighbours af-

fected the performance score. The results were used to decide that 15 should

be used as K-value, as there were K-values in a wide range around it with low

variance and bias.
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Figure 4.1: Different K-values in K-nearest neighbours affected the performance score.
(a) The different performance scores were plotted against K-values between 1 and 50.
(b) The same points were fitted to a polynomial curve.
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Figure 4.2: Different K-values in K-nearest neighbours affected the performance score.
In separate windows, the different performance scores were plotted as box plots against
K-values between 1 and 30.

A K-value of 15 was set for the K-nearest neighbours algorithm, and all models

trained with ’machine_learning.py’ are available at FigShare archives [56; 57; 58;

59; 60]. The model trained using the decision tree classifier is also visualised in

Figure 4.3. The box plots created as a result of 30 of each model type is shown in

Figure 4.4.
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Figure 4.3: Decision tree classifier created with ’machine_learning.py’ and visualised
using Visual Studio Code [18].

Table 4.1: The corresponding CpG sites to the indices in the Decision tree in Figure 4.3

.

Index CpG site
1232 cg01249910

17347 cg17698505
22583 cg23090824
14088 cg14377370
13142 cg13467814
18947 cg19346899
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Figure 4.4: The box plots created as a result of 30 of each model type, with different kind
of performance measures.

The results of the genetic selection and the select from model features selections

are shown in Table 4.3 and 4.4 respectively. The MCC of the various algorithms

without selection are shown in Table 4.2. The neural network algorithm MLP

was not included as it did not give significantly better performance, and it was

more time consuming. The K-nearest neighbours classifier was only included in

the genetic selection, because it was not compatible with the Scikit learn feature

selection. The K-nearest neighbours classifier missed the attributes ‘coef_‘ and

‘feature_importances_‘.

Table 4.2: The MCC of the various algorithms without selection.

Without selection Logistic regression Decision tree K-Nearest neighbours Random forest

MCC 0.640 0.619 0.611 0.695
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Table 4.3: The results of the genetic selection. CpG sites which exist in several selections
are marked in bold. CpG sites which both exists in several selections and have T1D
related functions are marked in in blue.

Genetic selection Logistic regression Decision tree K-Nearest neighbours Random forest

population: 10
max features: 4

cg09814877 cg10829134, cg13259290
cg06622725, cg07909422,
cg13393195, cg22899145

cg04444006, cg06807379,
cg11407345, cg22781236

MCC 0.000 0.570 0.745 0.669

population: 1000
max features: 4

cg06270401, cg14898639,
cg15972617, cg17067005

cg01675895, cg07613278,
cg15321195

cg11187508, cg18589858,
cg21982518

cg13557178, cg18047509,
cg18830459, cg23426587

MCC 0.725 0.740 0.787 0.775

population: 10
max features: 9

cg08744769, cg09478478,
cg13676215, cg17425224,
cg19515518, cg20699736,
cg21184174, cg27541515

cg02233559, cg05566397,
cg06911113, cg11263296,
cg11826116, cg14560895,
cg17997329, cg21874193,

cg25261329

cg00903375, cg03985657,
cg08823182, cg09396217,
cg11266874, cg12266551,
cg16306115, cg16414852,

cg26952662

cg03900104, cg04536922,
cg15750102, cg18671950,
cg23710218, cg24034289

MCC 0.267 0.629 0.720 0.700

population: 1000
max features: 9

cg02217814, cg02273078,
cg06084117, cg09837977,
cg11021744, cg14802310,
cg16050349, cg18236721,

cg22511947

cg05517572, cg17797815,
cg20053799, cg21142188,

cg26131019

cg06501790, cg13235447,
cg18084791, cg18674980,
cg21295911, cg22800631,
cg23055159, cg23307264,

cg26128441

cg04177705, cg05501721,
cg13232900, cg26306976

MCC 0.648 0.794 0.777 0.788

population: 10
max features: 16

cg03544320, cg04435420,
cg04956790, cg11701148,
cg15477600, cg15783027,
cg20162076, cg24926276,

cg26001030

cg02579736, cg03359508,
cg03914452, cg05343453,
cg08122545, cg08466074,
cg09757107, cg12312863,
cg15599064, cg19166347,
cg20676475, cg20761322

cg00292971, cg02806658,
cg04633513, cg13636404,
cg15006973, cg18627308,
cg21122774, cg22182945,

cg24981018

cg00042156, cg04798158,
cg06910100, cg06943865,
cg07745725, cg08575950,
cg10608333, cg10863038,
cg17067993, cg18653991,
cg23858565, cg26221631

MCC 0.471 0.557 0.712 0.688

population: 1000
max features: 16

cg01193293, cg02089348,
cg02537023, cg05071677,
cg06268694, cg06270401,
cg07535475, cg07676849,
cg10617171, cg11701148,
cg11801374, cg12254515,
cg15379858, cg15747133,

cg22874560

cg01868128, cg02631957,
cg02751839, cg02936468,
cg04058169, cg04564646,
cg10971346, cg15903282,
cg19379303, cg23152667,
cg26413355, cg26466094

cg07685869, cg15790852,
cg16257040, cg18034859,
cg20088913, cg22341310,
cg24043192, cg26195577,

cg26520371

cg00969271, cg05348272,
cg10762132, cg21264055,
cg23030090, cg24407308,

cg26131019

MCC 0.781 0.758 0.792 0.799

population: 10
max features: 25

cg02153528, cg02254407,
cg03430067, cg06114765,
cg08977028, cg09238677,
cg11884656, cg11887234,
cg11928366, cg20485165,
cg20913782, cg20925811,
cg24965984, cg25577842

cg06796611, cg06849477,
cg09924998, cg11429658,
cg12622986, cg15134628,
cg16512727, cg17018527,
cg17612991, cg21784498,
cg22064942, cg25459778

cg03160740, cg04413397,
cg06071083, cg07009002,
cg10185638, cg11943820,
cg14643978, cg18943383,
cg19786920, cg23050981,
cg23123262, cg24603941

cg02212836, cg03046445,
cg03548857, cg03955296,
cg07786760, cg09394600,
cg09656405, cg10076009,
cg11298616, cg12780322,
cg13271951, cg15981753,
cg16386158, cg16802152,
cg19464252, cg21715963,
cg22391400, cg23333306,

cg25836159

MCC 0.327 0.614 0.700 0.754

population: 1000
max features: 25

cg02168291, cg02212836,
cg04115602, cg06728335,
cg07873488, cg09288658,
cg09418321, cg12374721,
cg12477119, cg12600197,
cg13236107, cg18826520,
cg20857947, cg23495733,
cg25306927, cg25600606,
cg25985103, cg25993152,
cg26147338, cg26646411

cg07750111, cg08291000,
cg10762132, cg10971790,
cg11909865, cg16004226,
cg16313587, cg16714091,
cg20828084, cg21038703,

cg27555776

cg02060988, cg04545516,
cg05208153, cg05362516,
cg05473871, cg05484920,
cg08524221, cg12085044,
cg19012475, cg19058629,
cg25219134, cg26177629,

cg27400772

cg01986577, cg03116238,
cg03128832, cg07772309,
cg07778029, cg07933197,
cg11821536, cg13281868,
cg17605847, cg17661881,
cg20788083, cg22108175,
cg22913584, cg26845838

MCC 0.745 0.782 0.790 0.794
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Table 4.4: The results of the select from model features selection. CpG sites which exist
in several selections are marked in bold. CpG sites which both exists in several selec-
tions and have T1D related functions are marked in in blue.

Select from model Logistic regression Decision tree Random forest

population: 10
max features: 25

cg00066153, cg00795812,
cg01989224, cg03734783,
cg04349727, cg04356968,
cg09814877, cg10478221,
cg13882988, cg14356114,
cg14808739, cg14885742,
cg14930674, cg17964955,
cg17977362, cg20022541,
cg21063899, cg22456522,
cg23857226, cg24435704,
cg24541550, cg25022327,
cg26661481, cg27105123,

cg27238470

cg01464985, cg02718725,
cg04619381, cg13725272,
cg19912436, cg21602160,
cg25040733, cg25104511,

cg26131019

cg00795812, cg04197051,
cg04523589, cg06270401,
cg06725035, cg06913228,
cg09197965, cg10762132,
cg11564268, cg11856918,
cg12998491, cg13451483,
cg14781919, cg15039399,
cg15379858, cg15690721,
cg16538604, cg17091770,
cg17655576, cg18085206,
cg21235838, cg24594997,
cg25788012, cg26131019,

cg26831968

MCC 0.718 0.891 0.771

population: 1000
max features: 25

cg00066153, cg00795812,
cg01989224, cg03734783,
cg04349727, cg04356968,
cg09814877, cg10478221,
cg13882988, cg14356114,
cg14808739, cg14885742,
cg14930674, cg17964955,
cg17977362, cg20022541,
cg21063899, cg22456522,
cg23857226, cg24435704,
cg24541550, cg25022327,
cg26661481, cg27105123,

cg27238470

cg01464985, cg02718725,
cg11465372, cg17847607,
cg19531130, cg25040733,
cg25104511, cg26060255,

cg26131019

cg00824109, cg01718139,
cg02047577, cg03157149,
cg08242020, cg08335125,
cg09076012, cg09418321,
cg09475757, cg14698961,
cg14714578, cg14781919,
cg15379858, cg16829154,
cg17896097, cg18264687,
cg18830459, cg18986273,
cg20319264, cg21101222,
cg22305782, cg23508786,
cg24364574, cg24407308,

cg26131019

MCC 0.731 0.911 0.781

4.2 CpG sites that exist in several selections

Nine of the CpG sites were found in more than one selection in Table 4.3 and 4.4.

They are listed in Table 4.5 and marked in Table 4.3 and 4.4. It was not included if

it was only repeated in the same ML algorithm, same type of selection and same

number of maximum features, but with different population sizes. cg 26131019

was included in six selections, which was the most recurring.

29



Chapter 4. Results and analysis

Table 4.5: The table lists the CpG sites found in more than one selection. It was not
included if it was only repeated in the same ML algorithm, same type of selection and
same number of maximum features, but with different population sizes.

Candidates of
important CpG sites

based on ML

Number of
selections

cg26131019 6
cg09814877 3
cg06270401 3
cg10762132 3
cg00795812 3
cg18830459 2
cg24407308 2
cg02212836 2
cg09418321 2

4.3 Comparison with CSD results

The author’s previous project was to use parts of the same dataset to execute a

differential co-expression network analysis using software programs called CSD

developed by Voigt et al. [20; 8]. The resulting network was analysed in ac-

cordance with theory presented and discussed in the report, and possible T1D

associated network patterns were identified [8]. Candidates for important CpG

sites had more than five neighbours in the network, together with relatively high

values of other centrality measures, and were listed in Table 4.6.
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Table 4.6: The table lists the nodes (CpG sites) with the highest degrees ki, which means
the highest number of neighbours. The node with the highest degree is found in the
biggest component of 212 nodes. The CpG sites cg10031456 and cg09088193 are neigh-
bours, and is found in the second biggest component of 45 nodes [8].

Candidates of
important CpG sites

based on CSD analysis

cg09736162
cg23173455
cg04542415
cg10031456
cg02946754
cg07588113
cg00067471
cg09088193
cg04348872

The CpG sites used to make the best performing models were compared with

the central CpG sites from the CSD analysis. The CpG sites listed in Table 4.6

were searched for among all the selections created by Genetic algorithm, Select

from model and those used to create the decision tree classifier. In addition, the

CpG sites from the decision tree and those from the selections that had MCC

greater than 0.8 were searched for in the entire CSD network. No matches were

found.

4.4 Biological function

To access biological functions, CpG sites were first converted to gene names,

using a data table published by Illumina Inc. [61]. The Python code ’cgDict.py’

was used to execute this conversion [18]. 25,450 out of the 27,006 CpG sites

were found in the table. Biological functions and processes of the nine CpG

sites repeated in several selections were accessed with the NCBI gene tool and
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literature search, as seen in Table 4.7 [9; 10; 6; 11; 12; 7; 13; 14].

Table 4.7: Biological functions and processes of the nine CpG sites repeated in several
selections listed in Table 4.5. They were accessed with the NCBI gene tool and literature
search [9; 10; 6; 11; 12; 7; 13; 14]. T1D related functions are marked in in blue.

CpG site Gene name Function

cg26131019 LRIG1

Enables protein binding
Involved in hair cycle process,

innervation, otolith morphogenesis
and sensory perception of sound

cg09814877 ACPT
Little is known

Significance in enamel maturation [10]

cg06270401 DYRK4 Enables kinase activity [6]
cg10762132 SLC20A1 Enables sodium:phosphate symporter activity

cg00795812 PDCD1
Enables protein binding

Has demonstrated to play a role
in anti-tumor immunity

cg18830459 RNF19B Enables protein (ubiquitin) binding

cg24407308 DGKZ

Enables ATP binding
Enables NAD+ kinase activity

Enables protein binding
Involved in the pathway of

leptin-insulin signaling overlap [11]
From pathway presented by

Wang et al., DGKZ was involved
in the phosphatidylinositol signaling system [12]

cg02212836 LY86

Enables protein binding
DNA methylation of the gene is associated

with obesity and insulin resistance [7]
LY86-AS1 could possibly be used as

a diagnostic marker for type 2 diabetes [13]

cg09418321
DYRK4 [14]

(Same as gene
further above)

See further above

Wang et al. created the disease-associated lncRNA-mRNA-pathway network

with a weighed gene coexpression network approach as seen in Figure 4.5 [12].
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4.4 Biological function

The network suggested that FASN gene was part of the insulin signalling path-

way and DGKZ gene was part of the phosphatidylinositol signalling system, and

that both genes were coronary artery disease (CAD) progression-associated [12].

The DGKZ gene is one of the genes repeated in several ML feature selections.

Figure 4.5: Wang et al. created the disease-associated lncRNA-mRNA-pathway network
with a weighed gene coexpression network approach [12]. The red dots were lncRNAs,
the blue dots were mRNAs, the orange square were the disease pathway, and the bigger
nodes were the disease genes [12].
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Chapter 5
Discussion

Models were trained using several ML algorithms both for prediction and infer-

ence. It was a goal to predict whether a person had T1D or not given his or her

methylation profile. Additionally, which CpG sites that were key predictors, was

interesting. In both cases, it should be discussed which kind of performance

measure that is relevant.

MCC is a performance measure that can be used to evaluate binary classifica-

tion predictions on imbalanced datasets, and therefore a proper measure [4].

A dataset consisting of 226 individuals with T1D and then 68 without T1D can

be considered imbalanced. Even though MCC may be the most relevant over-

all measure, sensitivity and specificity may be useful to see how many of the

sick people tested that tests positive, and the amount of healthy people that are

tested negative. Nonetheless, MCC will cover and balance both considerations.

The algorithms performed evenly when looking at MCC, as seen in Figure 4.4.

However, the random forest algorithm scored slightly higher, meaning the other

algorithms had some more bias. The MLP algorithm had the highest bias, con-
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sidering MCC. The MLP algorithm also had the highest variance. This algorithm

scored higher at specificity than sensitivity, thus if sensitivity is important, the

MLP algorithm should be avoided using this dataset.

As the ML algorithms were about equally good, the input dataset may be more

important. This is in accordance with the fact that there is often improvement

in scaling up training data sets in current ML systems [31]. The selections results

were also supporting the assumption that input data is more important than the

algorithm. With genetic selection and selection from model, MCC was higher

on selections with a population of 1000 than of 10 with same parameters except

that.

However, the MCC was not always higher with the highest number of maximum

features, as seen in Table 4.3. This may be so because finding some few fea-

tures that were good predictors, reduced the problem of overfitting. That did

not mean that a maximum number of features of 4 resulted in higher MCC than

a maximum number of features of 25. At some point it would turn over to un-

derfitting.

In Table 4.3 and 4.4 it appears that selections which include CpG sites also in-

cluded in other selections, did not necessarily have a high MCC. This may in-

dicate that important T1D associated CpG sites also exist in the selections that

did not provide the best predictions.

The LY86 gene was found in two selections created with genetic selection. In

literature search for biological functions, it was found that DNA methylation of

the gene is associated with obesity and insulin resistance according to Su et al.

[7]. They studied genes associated with diabetes, and observed methylation of

these genes, namely forward genetics. Reverse genetics is when the functional

study of a gene starts with the gene sequence and not the phenotype [62]. In
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the current study the genes that were associated with diabetes were not picked

out in advance, and the study was more in the direction of reverse genetics. In

spite of that, the dataset was labelled and the aim was not to identify what was

the phenotype of a given structure, but rather if some of the structures were

associated with T1D. The current results may strengthen the discovered result

by Su et al. that DNA methylation of the LY86 gene is associated with insulin

resistance. However, T1D patients have insulin deficiency, they are not insulin

resistant. Both scenarios may be associated with DNA methylation of the LY86

gene.

The DGKZ gene was found in two of the selections. The gene was involved in

the pathway of leptin-insulin signalling overlap [11]. Leptin has a role in the ap-

petite regulation, but also in the control of the peripheral insulin and glucose

responsiveness [63]. Leptin gene therapy on insulin-deficient diabetes in obe-

sity animal models such as T1D mice, has shown good results [63]. Additionally,

the DGKZ gene was close to the insulin signalling pathway, in Figure 4.5, which

may indicate a correlation [12].

Several of the nine CpG sites that were in multiple selections, were associated

with T1D. It may be investigated further whether even more of them are asso-

ciated with T1D. cg 06270401 and cg 09418321 that both were among the nine,

were associated with the same gene, namely DYRK4. They may be candidates

for T1D relevance. cg 26131019 which is associated with the LRIG1 gene existed

in six selections and may also be associated with T1D.

Nine of approximately 27,000 CpG sites were picked out in the current study.

Two of those had biological functions that could be critical for developing T1D

[12; 11; 7]. The approach has been suitable for detecting T1D associated CpG

sites. Selections found when using random forest and to some extend also lo-
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gistic regression, seemed to give the best results, because most of the candidates

for T1D associated genes were found using these algorithms. To reach the full

potential of the approach, optimisation of various parameters are further dis-

cussed.

The logistic regression algorithm did perform approximately equal to ’liblinear’

as solver as seen in Table 4.3 and ’lbfgs’ as seen in Figure 4.4. The default is

’lbfgs’, and previously it was ’liblinear’ [5]. The penalty L1 has more sparse prop-

erties than L2 and is suitable for datasets with a large number of features [43].

It is therefore suggested to use L1 if no feature selection is completed with for

example genetic algorithms.

A parameter that might increase the performance of the decision tree classifier,

could be the maximum depth of the trees. No maximum depth was fixed on the

decision tree classifiers in this study. Therefore, nodes expanded until all leaves

were pure, or all leaves contained less than the minimal samples split, which

was sat to two. To avoid overfitting, smaller integers can be tested as the max-

imum depth. Random forest algorithms consists of several decision trees, and

therefore the same applies for maximum depth in random forest algorithms.

No maximum depth was compared to a maximum depth of 3, but resulted in

little change in MCC. An even smaller maximum depth might have given higher

performance.

The CpG sites used to make the best performing models were compared with

the central CpG sites from the CSD analysis, but no matches were found [8]. The

results may not be comparable, because the CSD method detects correlations.

The inference of the ML algorithms has not been studied beyond finding which

predictors are associated with the response. The CSD method may be better in

detecting patterns that characterise disease than finding genes that alone can
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be used as diagnostic markers for a disease.

The CSD method divides a dataset in conditions, which for example can be in-

dividuals with and without diabetes. If the dataset is not labelled, unsupervised

ML trained models can be used to divide the data in conditions.
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Chapter 6
Conclusion

The aim of the thesis was to create models to predict from methylation pro-

files whether a person had T1D and identify possible T1D associated genes. The

training of models was executed by ML algorithms.

The ML classifiers forms of logistic regression, decision tree, K-nearest neigh-

bours, random forest and MLP were compared. After pre-processing, the dataset

was a CSV file consisting of 27,006 lines of CpG sites, 226 columns representing

T1D individuals and 68 columns representing individuals without T1D. The val-

ues were degree of methylation, which was a value between zero and one. By

comparing trained K-nearest neighbours models with different K-values, a K-

value of 15 was considered optimal. The ML algorithms performed evenly high

with an average MCC at around 0.65. The even results indicated that training

data may be more important than the choice of model. It seems that it is best to

have a large training dataset and spend most of the time and resources on pre-

processing data. However, in order to avoid overfitting in parametric methods it

can be an advantage to create feature selections or adjust ML algorithm param-
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eters that determine how many features to use in the model. Feature selections

were created using the GA Scikit learn-genetic and the Scikit learn approach for

feature selection [5; 44]. Models trained with a feature selection only, tend to

score higher. Nine CpG sites were found in more than one feature selection.

Among these, two were T1D associated. The approach has been suitable for

detecting T1D associated CpG sites. One of the T1D associated CpG sites is as-

sociated with the LY86 gene. DNA methylation of the LY86 gene is associated

with insulin resistance [7]. Given the identified results, DNA methylation of the

LY86 gene appears to be associated with insulin deficiency as well. All nine CpG

sites were considered candidates for T1D relevance.
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Appendix A

warnings.filterwarnings("ignore")

#Choose clf to be one of:

#LogisticRegression(solver = "liblinear")

#DecisionTreeClassifier()

#KNeighborsClassifier(n_neighbors=(15))

#RandomForestClassifier(max_depth=3)

#MLPClassifier()

,→

,→

,→

,→

,→

clf = RandomForestClassifier(max_depth=3)

#population can for example be 10 or 1000

population = 1000

mcc = make_scorer(matthews_corrcoef)

D = pd.read_csv("inputML.csv", delimiter=';')

D = D.transpose()

allfeats = D.columns

allfeats = list(allfeats)

allfeats.remove(0)

numcols = set(allfeats)

numcols = list(numcols)

D[allfeats].dtypes
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D[allfeats]

X = D[allfeats]

Y = D[0].values

Y = pd.DataFrame(Y)

Y = np.array(Y)

Y_binary = []

for i in Y:

if i =='Diabetes':

Y_binary.append(1)

else:

Y_binary.append(0)

Y = np.array(Y_binary)

Listing 1: The data pre-processing after the imports in Chen’s code was adjusted to the
dataset [54].
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