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Abstract 

Drilling a well for exploration or production of petroleum resources is a costly and 

complicated procedure. On the Norwegian Continental Shelf (NCS), it is estimated that 

approximately 50 percent of field development costs are related to drilling and well 

activities, with 80 percent of these costs being related to time [1]. There is in other words 

a great potential for cost reduction by drilling safer, faster and with less Non-Productive 

Time (NPT). Reducing the time spent on drilling will not only save costs, it also provides 

the benefit of lowering the environmental impact of drilling operations. 

From a mechanical standpoint, achieving high efficiency drilling can be realized 

by optimizing the applied Weight on Bit (WOB) and drillstring rotational speed 

(Revolutions per Minute - RPM). However, selection of optimal values for WOB and 

RPM is a complex task. The drilling action at the bit happens at distances often several 

kilometers away from the rig, and only indirect measurements performed at the surface 

are routinely available to gauge what is happening down the hole. The task is further 

complicated by uncontrollable changes in downhole conditions such as variations in rock 

properties and wear and tear on the bit, which can alter the bit/rock interaction so that the 

WOB and RPM that was optimal a few minutes ago might no longer be the most efficient 

solution. Furthermore, the information required to accurately model the downhole 

conditions might not be directly measurable or available in real-time, which could 

preclude available models from predicting the optimal WOB and RPM. 

In this work, an adaptive model-free algorithm called Extremum Seeking (ES) is 

investigated for the purpose of optimizing the WOB and RPM in real-time. The method 

is data-driven and relies on continuously performing small tests with the applied WOB 

and RPM while drilling ahead, to gather information about the current downhole 

conditions. The test results are used to generate a local linear model, based on which the 

ES algorithm continuously performs automatic adjustments in WOB and RPM in the 

direction that increases Rate of Penetration (ROP) or reduces Mechanical Specific Energy 

(MSE). This process is designed to iteratively drive the WOB and RPM to their optimal 

values and maintain optimal drilling by adapting to changes in downhole conditions. The 

ES method does not require an a priori model of the drilling process and can thus be 

applied even in instances when sufficiently accurate drilling models are not available. 
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To ensure that the ES algorithm does not steer the WOB or RPM to values which 

might be detrimental to drilling equipment or personnel, several constraint handling 

techniques are included in the proposed methodology. The ES algorithm employed in this 

thesis is a product of modifications proposed by the authors, as well as different 

algorithms and tools found in the literature, which are assembled to make the routine 

better suited for drilling applications. The outlined optimization strategy is tested in a 

variety of scenarios with simulations and experiments on a small-scale drilling rig. The 

experiments and simulations demonstrate the ES algorithm’s ability to seek out optimal 

values for WOB and RPM, adapt to changes in downhole conditions, and avoid violation 

of process constraints. Therefore, this study indicates a potential for significant 

improvement in drilling efficiency from applying the ES method for real-time drilling 

optimization. 
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1 Introduction 

1.1 Motivation 

Drilling a well for exploration or production of petroleum resources is a costly and 

complicated procedure. On the Norwegian Continental Shelf (NCS), it is estimated that 

approximately 50 percent of field development costs are related to drilling and well 

activities, with 80 percent of these costs being related to time [1]. There is in other words 

a great potential for cost reduction by drilling safer, faster and with less Non-Productive 

Time (NPT). Reducing the time spent on drilling will not only save costs, it also provides 

the benefit of lowering the environmental impact of drilling operations. One of the key 

enablers to achieve this potential is drilling automation systems, which can aid the driller 

and deliver consistency by performing tasks such as providing data analysis and 

visualization, envelope control, and automatic optimization of drilling variables. The 

focus of this thesis is on a method for automated drilling optimization, employed to seek 

out and maintain the optimal values for the mechanical input variables; Weight on Bit 

(WOB) and drillstring rotational speed (Revolutions per Minute - RPM), to achieve safe 

and high efficiency drilling. 

 

1.2 Thesis objective and research outcome 

The main goal of this thesis is to contribute towards automatic solutions for safe 

and efficient well construction. This goal is carried out by investigating a data-driven 

optimization method called Extremum Seeking (ES) for the purpose of automated drilling 

optimization through manipulation of the mechanical variables WOB and RPM. The 

overall research objective is summarized in Figure 1.1. 

The ES algorithm is chosen for analysis because of its beneficial properties which 

satisfy the criteria given in Figure 1.1, as well as the methods proven track-record from 

other industries. The ES methodology employed in this thesis is a product of 

modifications proposed by the authors, as well as different algorithms and tools found in 

the literature, which are assembled to make the routine better suited for drilling 

applications. The articles resulting from this study investigate the ES algorithm’s ability 
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to obtain drilling with optimal WOB and RPM in simulations and experiments. The 

studies indicate a potential for significant improvement in drilling efficiency from 

applying the ES method for real-time drilling optimization.  

 

Figure 1.1 – Research objective. 

1.3 Contributions 

Publications 

As part of this thesis, I have been the lead author on three scientific papers. The 

articles are summarized in Section 4 and given as full texts in the appendices. In the role 

of lead author, I performed all simulations, modeling, experiments, and analysis, wrote 

the manuscripts, and implemented revisions based on feedback from the co-authors and 

journal reviewers. The co-authors contributed with supervision, ideas, scientific 

discussions, and gave feedback on the paper manuscripts. 

 Article 1, “Micro-Testing While Drilling for Rate of Penetration Optimization” 

Magnus Nystad, Alexey Pavlov 

Published in Proceedings of the ASME 2020 39th International Conference on 

Ocean, Offshore and Arctic Engineering, OMAE2020, December 2020. 

 Article 2, “Micro-Testing While Drilling for Rate of Penetration Optimization: 

Experiments and Simulations” 

Magnus Nystad, Bernt Sigve Aadnøy, Alexey Pavlov 

Submitted to Journal of Offshore Mechanics and Arctic Engineering, March 

2021. 
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 Article 3, “Real-Time Minimization of Mechanical Specific Energy with 

Multivariable Extremum Seeking” 

Magnus Nystad, Bernt Sigve Aadnøy, Alexey Pavlov 

Published in Energies, Special Issue: Drilling Technologies for the Next 

Generations, February 2021. 

 

Conferences and Presentations 

 OG21 forum, Popular science presentation: “Real-Time Analysis of Drilling 

Data to Improve the Drilling Process”, 8th of November 2017, Oslo, Norway. 

 OMAE 2020, Technical Presentation, “Micro-Testing While Drilling for Rate of 

Penetration Optimization”, 4th of August 2020, Virtual, Online. 

 

Knowledge sharing 

As a part of the BRU21 program within the recently created field of petroleum 

cybernetics at IGP, I have contributed at internal meetings and workshops with 

presentations, supervised two international master’s students and worked as a teaching 

assistant in the course PG8406 - Petroleum Cybernetics. 

 

1.4 Thesis outline 

The first part of the thesis is structured as follows: 

 Section 1 provides motivation, research objective and outcome as well as an 

overview of scientific contributions made by the author. 

 Section 2 presents the background for the task of drilling safely and efficiently 

and gives a review of drilling optimization approaches in the literature. 

 Section 3 details the classical extremum seeking algorithm and how it was 

modified by the authors, followed by an overview of the drilling models and 

experimental setup employed in the articles. 

 Section 4 gives a summary of the articles contained in the appendices. 

 Section 5 rounds off the thesis by providing conclusions and directions for further 

research.  
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2 Background 

2.1 Drilling equipment, measurements and control 

The overall goal of drilling a petroleum well is to generate a high-quality wellbore 

which can be used as a conduit between the reservoir and the production facilities, to 

extract hydrocarbons from the subsurface. Figure 2.1 shows a schematic of a draw-works 

based drilling rig, which is the most common drilling apparatus used for well 

construction. To retain generality, the riser system employed in offshore drilling 

operations is omitted in this figure. The following sections give a brief overview of key 

elements on the drilling rig, relevant measurements and the control logic used to regulate 

the WOB.  

2.1.1 Hydraulic system 

During on-bottom drilling, a drilling fluid (mud) is continuously circulated 

through the system by a pump at the surface. The mud is pumped through the standpipe 

and into the hollow drill string as facilitated by a hydraulic swivel in the top drive 

assembly which allows for circulation while the top drive is rotating. At the bottom of the 

drill string, the mud is ejected at high velocity through nozzles at the bit into the annulus. 

The rock excavations are transported by the mud through the annulus to the surface, where 

the mud is processed to remove cuttings and prepared for re-injection into the well.  

Apart from transporting cuttings out of the hole, the mud provides several other 

important functions in the drilling process. The drilling fluid cools and lubricates the bit, 

and most significantly, provides pressure support in open hole sections to stabilize the 

hole (to avoid formation collapse) and evade influx of formation fluids (commonly 

referred to as a kick). This principle is illustrated in the lower right corner of Figure 2.1, 

which shows nominal curves for pore-, annular-, and fracture pressures versus depth in 

the open hole interval. The mud must maintain a wellbore pressure above the pore 

pressure to act as the primary barrier of the well against unwanted kicks. At the same 

time, the annular pressure should be kept below the formation fracture pressure, to avoid 

fluid losses. This upper and lower bound on the annular pressure is often referred to as a 

pressure window. Maintaining wellbore pressures within this window can pose 

significant challenges. As an added safety measure against fluid influx, a Blowout 
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Preventer (BOP) at the top of the wellbore acts as the well’s secondary barrier against 

kicks. The annular pressure is influenced by properties such as mud rheology and density 

(which might be altered though interaction with the formation), the amount of cuttings in 

suspension (which increases the mud density), as well as the mud velocity controlled by 

the pump rate. The depth to which a section can be drilled is often determined by the 

pressure window. Additional instrumentation can be installed on the rig to facilitate 

drilling through narrow pressure windows through different forms of Managed Pressure 

Drilling (MPD) [2], but these methods are not considered further here. When reaching a 

point where the hole cannot be further propagated without violating the pressure 

constraints, a casing string is set to isolate the open formation from the drilling fluid and 

a smaller diameter bit (and possibly a different mud) is used to drill the next section.  

 

Figure 2.1 – Drilling rig schematic with key elements and pressure window, inspired by [3]. 
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2.1.2 Mechanical system 

To excavate rock, often several kilometers from the rig, a drill string is used. The 

string transmits the drilling fluid from the pumps, as well as rotational energy from the 

top drive (or alternatively, from a rotary table). The drill string is comprised of drill pipes, 

which make up the majority of its length, and a Bottom Hole Assembly (BHA), which 

contains components such as drill collars, stabilizers, reamers, subs, downhole motors, 

directional drilling and measurement tools, as well as the drill bit. The WOB used to 

engage the bit cutters/teeth with the formation is provided by the drill collars. A section 

of heavy-weight drill pipe is often used at the intersection between the drill pipe and the 

BHA to reduce drill string fatigue and to supply additional WOB if needed.  

The drill string is lowered into the progressing borehole from a derrick (or a 

similarly functioning mast). The top of the string is attached to the top drive, which slides 

vertically along dolly guide rails (not shown in Figure 2.1). The position and velocity of 

the top of the string is controlled by a block and tackle system functioning through a wire 

rope being spooled in and out of the drawworks. In addition to the drawworks drum, this 

system consists of the crown block suspended from the derrick and the traveling block, 

between which wire rope is strung and subsequently anchored at the end of the dead line. 

As the bit progresses and the current length of drill string is lowered into the hole by the 

drawworks system, a connection is made with new joints of drill pipe that are added to 

the string (often in triplets, referred to as a stand) and further drilling can commence.  

2.1.3 Commonly available measurements 

To monitor and control the drilling process, measurements of relevant parameters 

are performed at different locations on the drilling rig, with the possible addition of 

measurements from downhole sensors sent to the surface through mud-pulse telemetry or 

wired drill pipe. Wired pipe also facilitates the inclusion of measurements performed 

along the string, in addition to sensors placed in the BHA. Because the drilling action 

itself happens at distances often several kilometers from the rig, it is common practice to 

rely in indirect measurements and calculation of even of some of the key factors, such as 

the ROP and WOB. The following list of available measurements that can be utilized by 

a driller or possibly an automated drilling system is modified from [4] and supplemented 

with additional information. It should be noted that the list is not exhaustive, but it 
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includes relevant measurements available on most rigs performing conventional drilling 

operations, with more details provided on measurements pertinent to the application of 

extremum seeking. Typical sampling rates vary by supplier, with 1 Hz or more being the 

standard and some vendors providing rates in the range of 10 Hz for critical values such 

as the traveling block position [5]. The factors commonly derived from the measurements 

are given in parentheses: 

 Hook load (WOB) – Represents the combined weight of the top drive, traveling block 

and the buoyant weight of the drill string submerged in mud. The measurements are 

commonly performed by a sensor that measure tension or displacement in the dead line 

[5], from which an estimate of the WOB can be produced by subtracting measured hook 

load from a recorded (zeroed) off-bottom rotating hook load. The WOB calculated from 

this method can be made inaccurate from downhole phenomena such as mechanical and 

hydraulic drag forces along the string and hydraulic lift force from the nozzles [6]. Surface 

effects related to additional length of drill pipe being subject to buoyancy as compared to 

when the weight was zeroed [5,6], variations in the weight exerted by the mud hose 

attached to the top drive and sheave friction can also affect the calculated WOB [7]. 

Remedial actions to correct the estimated WOB can be performed based on the models 

provided in [6,7]. Another approach would be to apply the proximity principle of 

performing measurements as close as possible to the quantity of investigation [8]. Some 

or all of the aforementioned sources of inaccuracy could be alleviated by performing 

measurements with load pins beneath the traveling block [5], placing a measurement sub 

beneath the top drive [9] or by utilizing direct downhole measurements [10]. 

 Block position (ROP, bit position and well depth) – Signifies the elevation of the 

traveling block above some datum such as the rig floor. This quantity is commonly 

estimated from the angle of the drawworks drum (as measured by an incremental encoder) 

and its radius, which depends on the amount of wire rope currently on the drum. The 

calculated position is sometimes supplemented by proximity sensors placed on the dolly 

guide rails. Bit and well depth are calculated from the block position and tally description. 

Current industry practice is to use the time derivative of the estimated block position as 

the ROP [11]. This will on average provide a good estimate, but in a shorter timeframe it 

can cause inaccuracies. Several factors should be accounted for to improve the calculated 
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depth and ROP from the hook position [11]: elasticity of the drill line, thermal drill string 

expansion, elongation of the drill string caused by gravitational pull (which varies with 

applied WOB and jet force at the bit), hydrostatic pressure shortening, and ballooning 

effects. A method for estimating ROP from noisy block measurements with a Kalman 

filter is described in Appendix A. This method is extended to account for drill string 

elasticity in Appendix B, based on the formulation in [11].  

 Surface torque (torque on bit) – the rotational force required to rotate the drill string 

at the surface can be extracted from the variable frequency drive with dynamic accuracy 

of about 2% for Alternating Current (AC) machinery [5]. This is the most common motor 

type in top drives. For Direct Current (DC) rigs, the torque can be estimated from the 

current passing through a magnetic field on its way to the motor. This technique can cause 

significant inaccuracies if this measurement is not routinely calibrated [5]. In some 

optimization applications (such as in Appendix C), the bit torque is needed. The bit torque 

can be calculated based on the surface value from a torque and drag model utilizing the 

latest known rotational friction factor [12]. Still, this calculation can be erroneous if the 

modeled friction factor is not known exactly, and it might be necessary to include 

downhole sensors to obtain more accurate bit torque.  

 Surface RPM (downhole RPM) – is read from the variable frequency drive on the 

common AC top drive systems. In cases where a rotary table is used, the measurements 

are usually handled by a proximity switch which counts time between revolutions [5]. On 

average, the downhole RPM will be equal to the top-side measurement, and the two 

quantities are used interchangeably. In cases where the drill string is subject to stick-slip, 

the downhole RPM is known to fluctuate between no rotation (full stick) and rotation at 

typically more than twice the surface RPM in the slip phase [13]. If a mud motor is used, 

the increase in downhole RPM is usually estimated from the flow rate and/or SPP. 

 Standpipe Pressure – the SPP is measured from a pressure gauge located at the 

standpipe and represents the frictional pressure loss accumulated throughout the mud’s 

flow path from the pump and back to the surface (assuming no backpressure is applied). 

Although not standardly utilized, additional information about the mud density and 

rheology can be extracted by placing several differential pressure transducers along the 

circulation path between the pump and the top drive [14]. 
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 Pump rate – Volumetric flow rate at the pump, usually derived from counted piston 

strokes per unit of time. More accurate estimates of the pump rate can be obtained through 

accounting for fluid compressibility and pump efficiency, or through installation of 

additional sensors which are not standardly used and might be cost prohibitive [5].  

 Casing pressure – annular pressure measured at the wellhead when the well is shut 

in, used for well control purposes [4]. 

 Mud measurements – quantities relevant for well control and monitoring are routinely 

measured as the mud flows through the return line (outlet), in the mud tanks/pits, and in 

the suction line of the pumps (inlet). At the outlet, this includes volume fraction of gas in 

the return flow, temperature, density (often manual), and flow rate, where the flow is 

usually estimated with a displacement paddle. More accurate measurements of flow rate 

and density are achieved on rigs utilizing equipment such as Coriolis flow meters. Mud 

pit fluid level and temperature are usually automatically measured, and supplemented 

with manual measurements of  the mud’s density, rheology, and gel properties performed 

at regular intervals [4]. At the inlet, the pit measurement is commonly employed as a 

proxy for temperature, and can be accompanied with flow measurements performed at 

the suction line [5]. A system replacing manual mud measurements with automatic ones 

are detailed in [15]. 

Deployment of any type of drilling automation system is dependent on reliably 

having access to some or all of the aforementioned measurements, to gauge downhole 

conditions and monitor the well. Data quality is therefore of high importance, and has 

spurred research on how to improve quality of data [16]  as well as the communication 

protocols needed to efficiently handle the ever growing stream of measurements [17]. The 

advent of technologies such as wired drill pipe that can facilitate high bandwidth 

measurements from the subsurface is yet a valuable tool on the way to further 

understanding the drilling process and achieving automated operations. But still, some of 

the key variables such as the ROP cannot be gauged by downhole tools [11], and surface 

measurements remain the backbone of available information about the drilling process. 

The ES methods investigated in the appendices mainly requires access to commonly 

available surface measurements, but the availability of downhole data could in some cases 

make the analysis more accurate (e.g. measured downhole torque in Appendix C). 
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2.1.4 Controlling the WOB – autodriller functionality 

There are three main variables that the driller or a control system can regulate in 

real-time to affect the cutting action at the bit: WOB, mud flow rate (Q) and RPM. The 

drillstring rotation (and resulting torque) is provided directly by the top drive. The mud 

flow rate is directly controlled by the pumps. The WOB, however, is controlled indirectly 

by a functionality commonly denoted as an autodriller (ADR). Referring back to Figure 

2.1, where it is indicated that the drill pipes and part of the collars hang in tension, their 

buoyant weight carried by the hoisting apparatus. The neutral point in the BHA signifies 

the transition between tension and compression, and the (buoyant) weight of the collars 

below this point is what provides weight at the bit. Assuming that this situation represents 

a snapshot in time, the system is operating in equilibrium at some Q and RPM and with a 

traveling block velocity, 𝑣௕௟௢௖௞, which is equal to the ROP. The WOB will in this case be 

constant and correspond to the weight required to drill at the current ROP. If the block 

velocity is increased, the top of the string will transiently travel faster than the bit. This 

“pulse” will be sent at the speed of sound through the pipe, and shortly reach the 

subsurface components. If the ROP cannot promptly increase to match the new 𝑣௕௟௢௖௞, 

the neutral point will start to move upwards and additional WOB starts to accumulate. 

The elevated WOB will (presumably) result in higher ROP, possibly with some of the 

recently added weight being “drilled off”, and after some time the system attains a new 

equilibrium where the ROP is equal to the new 𝑣௕௟௢௖௞ at constant WOB. 

The ADR seeks to leverage this relationship between 𝑣௕௟௢௖௞ and the WOB to 

control the applied weight, or possibly other factors. The amount of WOB is regulated by 

a control system that seeks to minimize the “error” between setpoint for the WOB and 

the measured value, 𝑒 = 𝑊𝑂𝐵ௌ௉ − 𝑊𝑂𝐵௠௘௔௦௨௥௘ௗ. This is done by controlling the rate at 

which wire is spooled in and out of the drawworks drum, here denoted by 𝑣. Increasing 

the spool rate will cause the travelling block to move at higher velocity. A typical ADR 

uses some variant of Proportional-Integral-Derivative (PID) control on the form 

𝑣 = 𝐾௉𝑒 + 𝐾ூ න 𝑒 𝑑𝑡 + 𝐾஽𝑒̇. (2.1) 
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In Eq. (2.1), the “dot-accent” signifies a time derivative, and 𝐾௉, 𝐾ூ, and 𝐾஽ are 

tuning parameters that represent the controller’s proportional, integral, and derivative 

gain, respectively. To intuitively understand Eq. (2.1), consider a situation where the 

WOB is below the setpoint, resulting in a positive 𝑒-value. The first term will increase 

the spool rate, 𝑣, proportionally to how far the current WOB is away from the requested 

value, which will increase the applied weight. The integral in the second term will 

continue to grow as long as the WOB is below the setpoint, resulting in larger and larger 

spool rates until the setpoint is achieved (eliminating any offset). The last term’s function 

is to predict how the error is changing with time and accordingly regulate the spool rate 

to avoid overshooting (increasing the weight excessively above the setpoint).  

This relatively simple controller can be used to track the requested WOB, or 

alternatively follow setpoints for differential pressure over a mud motor, torque, or the 

spool can be run in constant velocity mode [18]. The derivative term in Eq. (2.1) is often 

omitted in autodrillers, because it will exacerbate the noise present in the 

measured/estimated WOB [18]. The ADR performance is reliant on proper tuning of the 

gain parameters, which should be designed for robust behavior in different rock 

formations (which will alter the ROP-WOB relationship). Poor ADR tuning has been 

shown to produce unstable drilling and to induce stick-slip vibrations [18,19]. Rules for 

automatic ADR tuning is provided in [19]. It has also been pointed out that operating at 

the peak ROP (assuming a convex steady state ROP-WOB relationship) requires a 

controller that is able to balance a nonlinear system at the border between stable and 

unstable steady states, and more advanced control strategies might be beneficial [20].   

 

2.2 Bit/rock interaction 

Drilling is a complicated process with a multitude of factors affecting the ROP, 

such as personnel and rig efficiency, formation characteristics, mechanical and hydraulic 

factors, and drilling fluid properties [21]. These many and often interconnected effects, 

together with dynamics related to drillstring vibration, make accurate modeling of the 

drilling process a complex task. However, the general mechanics of the interaction 

between the bit and formation and well understood [22]. The ROP that is expected for a 

given WOB is largely determined by three mechanical factors: RPM, formation strength, 
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and bit aggressiveness. The general relationship between these factors is depicted in 

Figure 2.2 and is conceptually representative for both roller cone and Polycrystalline 

Diamond Compact (PDC) bits [22]. Figure 2.2 indicates that ROP as a function of WOB 

is expected to show a linear trend with a steeper slope for drilling with an aggressive bit 

as compared to a less aggressive bit, and the same behavior for soft rock versus hard rock 

and high RPM versus lower RPM. This is because the ROP is mainly a product of the 

Depth of Cut (DOC), as determined by the applied WOB, formation strength and bit 

aggressiveness, and the sliding distance of the cutters provided by the drillstring rotation. 

What is meant here by DOC, is the combined indentation depth from all bit cutters/teeth 

over some interval, e.g. one rotation of the bit. If the ROP does not respond in a straight-

line trend to changes in WOB, this is caused by effects that interfere with the DOC [22].  

 

Figure 2.2 – Influence of mechanical drilling factors on ROP for an efficiently drilling bit, 
modified from [22].  

 

Figure 2.3 depicts typical relationships between the ROP, WOB and RPM. The 

instantaneous ROP can conceptually be described by  

𝑅𝑂𝑃 = 𝑓(𝑊𝑂𝐵, 𝑅𝑃𝑀, 𝒓), (2.2) 

where 𝒓 is a vector containing all parameters other than the WOB and RPM which affect 

the ROP, such as flow rate, bit condition, bottomhole pressure and formation properties. 

The nonlinear function 𝑓 is not known explicitly, but for any set of values contained in 𝒓 
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it is expected that the ROP as a function of varying WOB or RPM (with the other variable 

constant) exhibits several characteristic drilling regimes. Figure 2.3a shows a nominal 

relationship between the ROP and the applied WOB, where it is assumed that the RPM 

and the factors in 𝒓 are constant. The ROP-WOB relationship is characterized by three 

distinct phases [22-24]:  

1) Inefficient drilling caused by low WOB, where the exerted weight is inadequate 

to obtain an acceptable DOC and the bit is not fully engaging with the formation. 

2) Some threshold DOC has been achieved and the bit is fully engaged with the rock. 

This facilitates that all added WOB is translated to increases in ROP in a straight-

line fashion at high efficiency (with a slope mainly determined by the factors in 

Figure 2.2). 

3) At some point, effects which cause the DOC to be lower than the expected 

straight-line response will occur. These effects are commonly referred to as bit 

foundering and include inadequate cleaning at the bit and vibrations such as stick-

slip or whirl.  

The transition between the last two regions in Figure 2.3a is referred to as the 

founder point, and it is drilling at the WOB corresponding to this point (or slightly below) 

that is mainly desired. In this way, possible detrimental effects that cause bit foundering 

as well as the bit wear resulting from a large increase in WOB for a small increase in ROP 

can be avoided. The locations of the different phases in the ROP-WOB relationship 

depicted in Figure 2.3a are subject to change as parameters in 𝒓 or the RPM vary, but the 

general shape of the three regions is expected to remain. A change in formation properties 

or an increase in RPM could alter the WOB at which foundering occurs, but WOB at or 

slightly lower than the foundering value would still correspond to the most efficient 

drilling and values above the foundering value would still constitute inefficient drilling. 

The shape of the third region depends on what type of effect is causing it. Contingent on 

the cause of founder, its onset could be delayed (increasing the ROP that can be achieved 

before foundering occurs) by manipulation of drilling parameters, e.g. increasing the flow 

rate if cuttings accumulation at the bit is the issue, or increasing the RPM if stick-slip is 

the culprit. Reengineering of the drilling equipment could also be performed to delay the 

onset of founder [23,25], but such considerations are beyond the scope of this thesis. 
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                                   (a)                                                                        (b) 

Figure 2.3 – Nominal relationships between ROP and mechanical input variables. (a) ROP as 
a function of applied WOB (at constant RPM), modified from [22,23]. (b) ROP as a function 
of RPM (at constant WOB), modified from [26,27]. 

 

Figure 2.3b depicts a nominal relationship between the ROP and RPM, for 

constant WOB and static values for the parameters in 𝒓. The ROP is expected to increase 

linearly with increasing RPM up to some threshold value, where the efficiency declines. 

Typical causes of this deterioration are inadequate hole cleaning [26,27] and drillstring 

vibrations [22] which limit the DOC. The ROP-RPM relation in Figure 2.3b follows from 

the DOC concept, as the expected ROP scales linearly with the sliding distance of the bit 

(RPM) multiplied with the DOC. As was the case for the ROP-WOB relationship, the 

RPM value which marks the transition between the bit operating efficiently and 

inefficiently is subject to change as parameters in 𝒓 vary. 

The curves shown in Figure 2.3 represent typical average responses in ROP for 

applied WOB and RPM [22,23,26,27]. Because of vibrations and inaccurate 

measurements, the recorded values of e.g. ROP versus WOB during a Drill-off Test 

(DOT) can at first inspection look more like a cloud of datapoints than the characteristic 

curve shown in Figure 2.3a, but through appropriate data filtering the underlying 

relationship is revealed. This concept is illustrated in Figure 2.4, which shows a DOT 

performed on the experimental rig described in Section 3.3.3 and Appendix B. The gray 

datapoints represent values for instantaneous ROP and WOB recorded at a frequency of 



 

15 
 

50 Hz. The high frequency measurements capture the vibrational nature of the bit/rock 

interaction, resulting in scattered datapoints. Additionally, the numerical differentiation 

performed to calculate the ROP from positional measurements amplifies any noise in the 

signal. The blue dataset is generated with a moving average filter over a window of 6 

seconds (300 datapoints), which reveal clear phase 1 and 2 drilling tendencies in the data. 

It is this average relationship that is of interest for most drilling modeling and 

optimization applications (including the extremum seeking approach employed in this 

thesis). For full-scale operations, the time or depth window needed in the analysis to 

obtain the “underlaying” static ROP-WOB relationship depends on factors such as 

measurement accuracy, absolute value of the ROP, drill string length, as well as the 

transients needed by the system to achieve steady state (as discussed in Section 2.1.4).  
 

 

Figure 2.4 – DOT performed on experimental rig at RPM = 200. 

 

The mud flow rate used when drilling will also impact the bit/rock interaction in 

several ways. A certain flow rate is needed to provide sufficient fluid velocity through 

the nozzles to effectively transport cuttings away from the bit. This facilitates that the bit 

can properly engage the formation. As ROP increases and more cuttings are produced, a 

higher flow rate is needed to avoid accumulation of cuttings. At the same time, higher 

flow rates will (to some extent) raise the bottomhole pressure. Elevated bottomhole 
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pressure can reduce the achieved ROP through two mechanisms; increased apparent rock 

strength and the chip hold-down effect [28]. The increase in apparent rock strength can 

be attributed to the confining pressure exerted on the formation by the mud, which can 

alter the failure mechanism of the rock. The chip hold-down effect stems from differential 

pressure between the wellbore- and pore pressure (at least in permeable formations). The 

dislodgement of recently cut rock is opposed by the differential pressure acting across the 

chip, generating the chip hold-down effect. The magnitude of these two effects depends 

on rock and bit properties (e.g. elevated differential pressure in low permeability rocks  

[29] and chip-hold down being more pronounced with drag bits [30]). However, the 

downhole pressure will be largely dictated by the mud density. The marginal decrease in 

ROP that could come about from increased flow rate through these pressure-related 

effects, can likely be offset by increased ROP from better hole cleaning which allows for 

higher WOB and RPM to be used. Additional factors to considered when determining 

appropriate mud flow rate are covered in Section 2.4. 

 

2.3 Quantifying optimal drilling 

Any real-time drilling optimization approach, manual or automated, needs some 

measure (objective function) that quantifies what constitutes optimal drilling. The driller 

or an automated algorithm uses this objective function to assess if the current values of 

WOB, RPM and possibly flow rate achieve objectives such as minimizing MSE [23], 

drilling cost [31], or maximizing ROP [32]. Other candidate objective formulations can 

include combinations of ROP and MSE, as well as additional terms to quantify 

detrimental effects such as stick-slip [33]. The theoretical foundation for the ROP-WOB-

RPM relationships detailed in Section 2.2, dictates that the optimal operating conditions 

are found at the transitions between the bit operating efficiently and inefficiently. 

Operating at this point will result in the maximal dysfunction-free ROP, thereby 

achieving high drilling rates while at the same time avoiding excessive wear and tear on 

bit and downhole components [34].  

Two objective formulations are utilized in the appendices to quantify efficient 

drilling conditions. In appendices A and B, the following formulation is employed to 

identify the optimal WOB to drill with, 
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𝐽 = 𝑅𝑂𝑃 − μ𝑊𝑂𝐵. (2.3) 

The tuning parameter 𝜇 in Eq. (2.3) is a term which penalizes the use of excessive WOB, 

and was proposed in [35]. Its effect can be seen from Figure 2.5, which shows a drill-off 

curve generated with the drilling model detailed in appendix C, together with the 

objective function described by Eq. (2.3) with a 𝜇-value of 0.001 m/hr/kg. Compared to 

the ROP-curve, the 𝜇-parameter essentially shifts the extremum of the 𝐽-curve closer to 

the founder point. The exact behavior of this shift depends on the shape of the ROP-WOB 

relationship, but in general, a larger 𝜇-value will correspond to a more conservative 

estimate of what the optimal WOB is. In the scenario depicted in Figure 2.5, the maximal 

ROP of 35.6 m/hr is found at a WOB of 16800 kg. Operating instead at the extremum 

dictated by Eq. (2.3) would result in a marginal decrease of 1 m/hr in ROP but drilling at 

2 tonnes lower WOB, which would be beneficial for bit life. A second penalty term could 

be introduced to extend this methodology to also penalize excessive RPM, but this 

approach is not utilized in this thesis. 

 

Figure 2.5 – Drill-off curve and objective function at constant RPM, with  𝜇 = 0.001 m/hr/kg. 

There are both pros and cons of using a formulation like Eq. (2.3) to quantify 

optimal drilling. On the one hand, it facilitates drilling at or closer to the founder point 
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than would be the case if one simply sought out maximal ROP. This behavior can extend 

bit life while still drilling at high ROP. On the other hand, it introduces an extra tuning 

parameter which has to be considered. If a gradient-based algorithm like the extremum 

seeking method was initiated in phase 1 drilling and a too high 𝜇-value was utilized, it 

could result in the method requesting lower values of WOB rather than performing the 

wanted behavior of elevating the WOB in this situation. The 𝜇-parameter can therefore 

in some cases dictate the ES method’s domain of attraction. That is, where the algorithm 

can be initiated and still be able to seek out better operating conditions. For this reason, 

low 𝜇-values should be used unless the driller has prior knowledge of the expected drilling 

conditions and is able to initiate the ES algorithm sufficiently close to the optimum.  

Alternatively, a different objective function could be used. In Appendix C, the 

concept of MSE is utilized to identify the optimal WOB and RPM to drill with. This 

methodology is given in detail in the article and is not covered further here. The 

ROP/MSE ratio [33] could also be a potential candidate, as discussed in Section 5.2. 

 

2.4 Drilling constraints 

There are a multitude of factors that can affect the drilling efficiency. For an 

efficient bit that drills with the expected DOC, the ROP will increase linearly with 

increasing WOB and RPM, as shown in Figure 2.3, unless a dysfunction reduces the bit 

efficiency or a constraint limits the application of additional input energy [22,23,25]. The 

factors that influence ROP, and therefore to some extent the drilling efficiency, can in 

general be grouped into two categories [25]: 

 Bit limiters – foundering effects that reduce the efficiency of energy transferal 

between the bit and the formation. Applying additional energy to the bit will in most cases 

result in less than proportional increases in ROP and can be damaging to the downhole 

equipment depending on the encountered foundering effect. A comprehensive overview 

of drilling dysfunctions and remedial actions that the driller can perform to mitigate them 

is provided in [22]. That overview includes effects related to bit and bottomhole balling, 

stick-slip, whirl, interfacial severity, and axial vibrations.  

 Non-bit limiters – which constrain the amount of energy that can be applied through 

the controllable input variables when drilling. In the case when the input energy is 
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constrained before the onset of founder, the bit would still be able to drill efficiently at 

e.g. higher values of WOB and/or RPM, but because of a system constraint these 

parameters cannot be increased. One operator estimates that 60% of globally drilled 

footage occurs in a state where the ROP is constrained by non-bit limiters [25]. Table 2.1 

gives an overview of non-bit limiters identified in the literature [23,36-39]. Some of these 

constraints are complex and depend on interplay between several effects. A prime 

example of this is in the case of a maximal ROP related to hole cleaning in deviated 

sections, which will be affected by the WOB and RPM which facilitate excavation at the 

bit. At the same time, hole cleaning can be aided by increased pump rate or drillstring 

rotation, which are both constrained by limiters of their own. These interconnected 

relationships dictate that several of the limiting factors in Table 2.1, especially those 

related to ROP and cuttings transport, might not be as straight-forward to implement as 

setting a maximal limit on the variable in question, unless a conservative value is used.   

Table 2.1 – Non-bit limiters reported in the literature [23,36-39]. 

Parameter Limiting property 

WOB 
 Allowable weight on bit or downhole tools 
 Available BHA weight (drill string buckling) 
 Maximal weight related to directional steerability 

RPM 

 Top drive limit (maximal RPM and maximal output power) 
 Allowable RPM specified by bit- or downhole motor design 
 RPM limit dictated by sampling rate of logging while drilling tools 
 Fatigue considerations in highly deviated wells drilled at low ROP 
 Maximal RPM related to directional steerability 
 Surface vibrations related to high RPM 

Torque 
 Drill string make-up torque 
 Maximal torque on bit or downhole tools 
 Top drive rating (maximal torque and output power) 

ROP 

 Cuttings concentration suspended in mud – increases fluid density which can 
cause high downhole pressures that exceed the fracture pressure 

 Formation of high cuttings bed in deviated sections – causing increased 
pressure, torque and drag, or ultimately a full pack-off  

 Directional targeting control 
 Solids handling capacity at surface 
 Limited ROP in laminated formations, to reduce bit damage from hard layers 

Q 

 Maximal pump pressure (dictated by the pump or other equipment) 
 Maximal pump flow rate capacity/available pump power 
 Maximal flow rate related to maintaining the annular pressure window 
 Minimal flow rate required to transport cuttings and clean the bit 
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2.5 Current state of drilling optimization 

A substantial part of offshore field development costs originates from drilling, 

with most of these costs being related to time [1]. There is a great potential for reducing 

cost and environmental footprint by drilling safer, faster and with less NPT. One of the 

main drivers for realizing this potential is drilling automation systems, which can 

facilitate optimized and repeatable drilling operations. The evolution of automated and 

mechanized drilling, as well as the benefits brought by advancements in this field, has 

been traced in [40]. A timeline of breakthroughs in drilling optimization aided by rig 

automation systems and computerized data analytics has been detailed in [32]. The 

current state of drilling automation mainly consists of separate functionalities that can aid 

the driller by performing tasks like providing envelope control [41,42], fault detection 

[43,44], vibration mitigation [45,46] or selection of WOB, RPM and pump rate to drill 

with [37,38]. Systems that provide some or all of the aforementioned tasks in an 

integrated framework are also documented in the literature [47,48] and are routinely 

employed in the field. The focus of this thesis, and therefore of this overview section, is 

on methods for obtaining drilling with optimal values for WOB and RPM, and the models 

and techniques used to achieve this goal. 

The main objective of optimizing drilling operations is to safely deliver a high-

quality wellbore in a cost-effective manner [49]. In the context of real-time optimization, 

this is typically achieved by selecting the best suited WOB and RPM to obtain high 

drilling efficiency given the current downhole conditions and operational constraints. 

This ensures high drilling rates without excessive wear and tear on downhole components 

[34]. The WOB and RPM are selected for drilling optimization because they can be 

adjusted in real-time as the process is ongoing. A third variable, the mud flow rate, can 

also be adjusted in real-time to impact the drilling efficiency. Yet, because of its influence 

on well control, flow rate is often determined based on hole cleaning and HSE 

considerations rather than from the perspective of real-time optimization [39].  

As detailed in Section 2.2, the task of drilling optimally (from a mechanical 

standpoint) consists of identifying and steering the drilling operation to the last point on 

the linear ROP-WOB and ROP-RPM relationships, as long as this is permissible given 

the constraints in Table 2.1 [23]. As downhole conditions are altered through effects such 
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as changes in formation, pore pressure or bit degradation, the optimal WOB and RPM 

combination(s) change, and the employed optimization approach must adapt to the new 

conditions to retain efficient drilling. The values for optimal WOB and RPM predicted 

by the chosen optimization routine can be displayed as suggestions for the driller, directly 

communicated to the rig’s control system and executed with closed-loop, or some middle 

ground between the two [17]. The degree of human interaction in this process depends on 

the trust placed in the optimization system. As trust in such systems increase through field 

tests and demonstration of robust constraint handling, they could potentially bring about 

further increases in drilling efficiency by being allowed to autonomously perform 

optimization actions faster, as well as more frequently and precisely, than a driller would 

be able to. This outlook is echoed in [37], where it is stated that “The main benefits of a 

drilling optimization system are gained when it is integrated into a drilling control system 

such that the optimum decisions are automatically enforced”. 

The methods used for drilling optimization can broadly be grouped into classical 

model-based methods, data-driven methods, and hybrids between these two. The classical 

model-based approach uses models derived from physical principles, such as the one 

detailed by Detournay et al. [24], empirical correlations, as is the case in the Bourgoyne-

Young (BY) model [50], or a combination of analytical and empirical terms as proposed 

by Warren [51]. Parameters in the chosen model is tuned to best fit relevant data from 

current or offset operations, and the calibrated model can subsequently be employed to 

predict optimal values for WOB, RPM and possibly mud flow rate. The data-driven 

method can in many cases be viewed as a reverse procedure of the model-based approach; 

where relevant data is used to construct a model, which can thereafter be used to forecast 

optimal values for controllable variables [52]. 

The classical model-based technique is well exemplified by the methods described 

in [32,36,38]. In [32], a multiple linear regression technique was used to fit the eight 

tuning parameters in the BY model to historical drilling data, and model predictions 

showed how the WOB and RPM could be changed to potentially drill at higher ROP. 

That study was performed on offline data, but the workflow was designed for real-time 

use [32]. In [36,38], the Detournay model was fit to recent drilling data and used for 

optimization of WOB and RPM. A multitude of constraints were identified and included 

in the model to limit the WOB and RPM suggested by the optimization routine to safe 
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values [36].  Field tests of this optimization system resulted in significant increases in 

ROP, as well as a reduction in downhole tool failures, with the largest ROP gains obtained 

when the system was run in closed-loop control [36]. The closed-loop results were 

attributed to the removal of the human element in following recommended WOB and 

RPM changes as frequently as the system dictated, as well as through improvements in 

the drilling engineering capabilities in the organization [36].    

An important component in any drilling optimization approach, is determining 

what data should be used for model tuning (or model training, in the case of data-driven 

methods). For the optimization approach to be effective, the data needs to be 

representative of the current downhole conditions to yield accurate predictions [32,52], 

e.g. from the same formation and with the current state of bit wear. The dataset used for 

tuning/training also needs varied samples of the input variables (WOB, RPM) and the 

output (ROP) for any meaningful information to be extracted, a topic that is revisited later 

in this review.  

In the optimization approach described in [36,38], a changepoint algorithm was 

utilized to determine what data was relevant for model tuning. A strategy based on particle 

filtering was proposed in [53] to tune the Detournay ROP model (with a possible inclusion 

of dynamic effects) to a window of recent drilling data. This statistical approach provides 

the advantage of quantifying the uncertainties in the modeled parameters and thus how 

much recommendations from the calibrated model can be trusted [53]. Using a multiple 

linear regression technique over a sliding window of recent measurements to tune the BY 

model in real-time, together with a predictive control strategy to implement optimal 

values for WOB and RPM, was investigated in [21]. A similar sliding window strategy 

was studied in [54] to tune a model combining terms from the BY and Warren ROP 

models for optimization purposes. It was however pointed out in that study, that the 

model-based approach suffers from existing models not being very accurate in predicting 

ROP [54]. An investigation of different ROP models fit to field data showed mixed results 

with some models providing good predictions in some instances, while showing poorer 

performance in other situations [55], which puts in question the reliability of available 

ROP models. 

A potential drawback to the classical model-based approach is that it forces 

historical data to fit into the framework of a model which might not be able to accurately 
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describe the relation between the ROP and the input variables. This shortcoming stems 

from the sequentially linear and non-linear relationship in the ROP response to input 

WOB and RPM (as shown in Figure 2.3), which cannot be adequately captured by a 

closed-form model for all input values [56]. A remedy for this could be to replace or 

augment the classical models with data-driven models utilizing Machine Learning (ML) 

techniques. Studies comparing classical models and data-driven ML models have found 

that ML methods yielded better ROP predictions than their classical counterparts, when 

the same dataset was used to tune/train both approaches [52,56]. In [56], this result is 

largely attributed to the flexibility in the model form of ML methods, which permit 

segmentation of the drilling operational space to account for different phases in the ROP 

response. It should be pointed out that the Detournay model [24] was not amongst the 

classical models investigated in [52,56]. The Detournay model relies on separating the 

ROP response to WOB into three linear drilling phases and is therefore not subject to the 

closed-form model problem pointed out in [56]. This property could explain the success 

of the field trials of the “Detournay-based” optimization system in [36,38], as well as the 

choice of this particular ROP model as the foundation in other real-time optimization 

approaches [37,53,57]. Other classical drilling models could conceptually be employed 

with the same segmentation principle (using different model coefficients for different 

drilling phases). This could potentially increase model accuracy, but it would also 

complicate the tuning procedure. 

Different ML methods have their distinct advantages and drawbacks [58], the 

interested reader is referred to the extensive reviews on ML methods and their use for 

drilling applications provided in [58-60]. At large, ML methods are able to account for 

(possibly non-linear) relations between model inputs and outputs without knowing these 

relationships in advance. The ML techniques also provide flexibility in the amount of 

input variables that are employed to provide predictions, a property which can be used to 

include additional information (if available) into the generated models. Selection of which 

inputs (features) to use in the ML model, referred to as feature engineering, can in itself 

be turned into an optimization problem that can be solved by combinations of drilling 

engineering knowledge and ML techniques [59,61]. In a review of ML methods used for 

ROP prediction, the authors in [59] found that the most common inputs used in ML 

models conform to the inputs and parameters commonly employed in the classical model-
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based approach. This observation is quite intuitive since the variables and parameters in 

the classical models are included because of their physical influence on the drilling 

process.  

The superior predictive capabilities of purely ML based approaches comes with 

some drawbacks. The unknown functional form of many ML methods makes them 

computationally expensive, which could preclude their use in real-time. The selection of 

data-driven/ML methods that can be applied in real-time is therefore a tradeoff between 

predictive capability and computational cost, where more advanced models will give 

better predictions but suffer from longer computational times and vice versa [62]. Of the 

53 papers detailing ML methods for ROP prediction that were reviewed in [59], only 

three considered modeling while drilling. These three approaches [52,56,61] used recent 

drilling data (in an offline setting) to train ML models that were employed for ROP 

prediction, with the models being re-trained as new data “became available” in [56,61]. 

In [61], the ML generated model was used to simulate how WOB, RPM and mud flow 

rate could be optimized in real-time to improve drilling rate. 

In addition to potential computational cost limitations, many ML methods also 

suffer from black-box properties which reduce the model’s interpretability and therefore 

reduce trust in the model [58,63]. A potential remedy to the black-box property is to use 

hybrids methods that integrate both classical models and data-driven/ML algorithms for 

optimized solutions [58]. In [63], a hybrid method employing an ensemble of physics-

based models was found to yield better ROP predictions than deterministic models alone, 

while retaining model interpretability. The particle filter approach to model tuning 

investigated in [37,53] can also be placed in the hybrid category, since it leverages a 

combination of statistical inference with a classical model. Other hybrid strategies employ 

a two-step approach [57,64]. The authors in [57] studied how to automatically minimize 

MSE when drilling through layered materials with a lab-scale rig. The first step consisted 

of using recent drilling data fit to the Detournay model to find an initial estimate of the 

optimal WOB. The second step was carried out by using a data-driven (golden search) 

algorithm while drilling, which varied the WOB in the neighborhood of the first-step 

estimate to identify WOB values which would further reduce the MSE [57]. In [64], an 

initial estimate of optimal WOB, RPM and mud flow rate was generated from a ML 

method trained from historical data. While drilling ahead, variations in  WOB and RPM 
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were proposed to the driller according to a random search algorithm, to identify possible 

drilling conditions which would further increase ROP and reduce MSE [64]. 

Both data-driven and classical models need data that is representative of the 

current downhole conditions, as well as varied samples of the WOB and RPM (and 

possibly flow rate), to tune/train the models. The need for varied input samples (from 

drilling phases 1 – 3 in the case of WOB) can be illustrated by referring back to Figure 

2.4, which shows drilling in phase 1 and 2 for ROP as a function of WOB. Any type of 

model fit to this dataset would not be able to predict the onset of foundering effects 

accurately and therefore what the optimal WOB is, without additional information (which 

might not be available). Performing variations in controllable variables such as WOB and 

RPM to gauge their effect on ROP and obtain information about the current downhole 

conditions and the location of the different drilling phases is perhaps the oldest form of 

drilling optimization. Designated testing procedures such as the drill-off test [65] and 

five-point test [31] have routinely been used to explore how the ROP or MSE responds 

to various combinations of WOB and RPM [22,23,33,66]. The prevalence of testing as a 

means of drilling optimization is stated in [67] as: “No credible optimization of drilling 

rate can be complete without some sort of drill-off testing designed to empirically test the 

effect of RPM, WOB, and other drilling parameters on ROP being conducted”. The data 

collected from the designated testing procedures can be used for model tuning/training 

[32,62], or a “response surface” can be generated directly from the data to locate the 

optimal operating conditions [33]. A potential downside of the type of “one-time-testing” 

provided by e.g. drill-off tests is that the procedure can be time-consuming when testing 

a multitude of WOB and RPM combinations to find an operational sweet-spot [67]. In 

addition to time consumption, the results are valid only for the current downhole 

conditions, and as soon as conditions change the test has to be repeated. 

An alternative to optimization based on pre-calculated models or on “one-time 

testing” are approaches employing “testing on the fly”. In these approaches, the relation 

between the WOB and/or RPM (and possibly mud flow rate) and an objective function is 

explored by performing tests while drilling ahead and selecting more optimal WOB and 

RPM based on the obtained information. As downhole conditions change, the repeated 

tests can identify how e.g. WOB and RPM should be adjusted to drill more efficiently, 

given the new circumstances. In [48], the authors describe tests in the form of modulations 
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in applied WOB and RPM and observing the ROP response. The gathered information 

could be used to provide recommendations for the driller or for closed-loop optimization 

[48]. Field trials of advisory systems that can suggest variations in the applied WOB and 

RPM while drilling ahead to search for conditions that yield minimal MSE have been 

described in [68,69]. In [37], a hybrid optimization routine is detailed that provides 

stepwise updated setpoints (in advisory or closed-loop mode) for WOB, RPM and mud 

flow rate based on models continuously updated from the newly collected data. The 

second optimization step in the hybrid approaches [57,64] described a few paragraphs 

ago also employ the “testing on the fly” methodology.  

In recent years, several authors have investigated a data-driven “testing on the fly” 

method called Extremum Seeking (ES) for drilling optimization, which is the topic of this 

thesis. This method has low computational cost, which makes it applicable for real-time 

optimization. It relies on continuous testing and optimization based on the test results and 

is described in detail in Section 3 as well as in the appendices. The method can briefly be 

explained by an example of WOB optimization: while drilling ahead, the ES algorithm 

continuously executes small variations in the WOB. A sliding window of recent data 

containing test results are used to generate a local linear model of how some objective 

function relates to the varied WOB. Small adjustments to the WOB are continuously 

performed based on the local linear model with closed-loop control, in the direction that 

will optimize the objective. In this way, the gradient-based search is used to iteratively 

drive the WOB to its optimal value where the objective is maximized (or minimized).    

The ES method was first investigated for drilling purposes in [70], where it was 

employed to find the optimal driving frequency of an ultrasonic drilling apparatus 

designed for rock excavation in low-gravity environments. Later, Banks [71] investigated 

ES on a lab-scale drilling rig for the purpose of benchmarking drill bits. High frequency 

oscillations in imposed DOC was applied in to minimize an objective function related to 

MSE in real-time. The experiments showed that the ES algorithm was able to track 

operating conditions that resulted in minimal MSE drilling [71]. In [35], it was 

demonstrated in simulations that the ES method could be utilized to seek out WOB that 

resulted in drilling at the founder point in an unconstrained environment. An optimization 

system employing ES to optimize applied WOB and RPM was recently field tested [39]. 

Over a period of 2 years, the field tests resulted in ROP improvements of 7.2% and 8% 
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in vertical and lateral sections, respectively, with higher ROP gains obtained in the last 

year of the system rollout. This optimization system also includes modules for handling 

of dysfunction related to stick-slip, interfacial severity, downhole motor stalling and 

autodriller limitations [39]. It is conjectured in [72] that the improvements in ROP 

documented in [39] do not live up to the full potential of the ES algorithm, with a possible 

explanation being that the ES algorithm can “get stuck” in phase 3 drilling when 

encountering transient foundering effects related to bit cleaning/bit balling. However, no 

explicit data to back up this claim is provided in [72], and the hypothesis remains 

unvalidated.   

2.5.1 On relating the content of this thesis to the state-of-the-art  

As this overview of the state-of-the-art in drilling optimization has (hopefully) 

shown, research on drilling more efficiently, and therefore safer and with less 

environmental footprint, is a rich topic of investigation that spans a multitude of methods 

and approaches that each come with their potential strengths and weaknesses. The 

advantage of the ES method (and other “testing on the fly” techniques) is that it functions 

by continuously performing tests that extract information of the downhole conditions. 

The ES method can therefore perform optimization actions based on the most up-to-date 

information available. In the ES approach, the tests should be designed to not disturb the 

overall process, as discussed in Section 3.1.4. Drilling models (classical or ML-based) 

are still a valuable tool that can be combined with the ES algorithm or other “testing on 

the fly” methods. Models can e.g. be used to provide the initial starting point for the ES 

algorithm’s search for optimal drilling, or the test data can be used for model tuning. 

These topics are discussed in Section 5, together with potential drawbacks to applying the 

ES algorithm for drilling optimization and how these can possibly be remedied.  

Drilling optimization with the ES algorithm was chosen as the topic of this thesis 

because of the algorithm’s proven track record from other industries, as well as beneficial 

properties related to the method’s robustness to noise, relatively straight-forward tuning 

and the limited a priori knowledge of downhole conditions needed to apply the algorithm. 

During the period of research documented in this thesis, two independent studies were 

published by other groups of researchers on ES for drilling optimization, as documented 

in [35,39]. Although the idea of applying ES for drilling optimization is not new, the 
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papers constituting the core of this thesis and contained in the appendices fill a gap in the 

published literature. The contributions of the papers include several modifications of the 

classical ES method to make it more applicable to drilling and easier to tune, as well as 

proposals for several constraint handling techniques to ensure safe operations. 

Furthermore, the ES algorithm’s performance is tested in a variety of scenarios in both 

simulations and experiments, and the papers incorporate practical aspects such as 

handling of the noisy conditions prevalent in drilling operations. Lastly, the papers 

contain tuning considerations and guidelines for applying the ES method, and all relevant 

details of the employed algorithm(s) are included to make the results reproducible (as 

opposed to the study documented in [39]). 
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3 Methods and materials 

Section 3.1 introduces the classical Extremum Seeking (ES) algorithm and how it 

can be utilized to optimize a plant with limited a priori process knowledge. Then, an 

overview of modifications to the classical ES method that makes it more well-suited for 

drilling optimization, as well as different approaches for constraint handling, are detailed 

in Section 3.2. Lastly, the models and lab-setup used in second part of this thesis are 

described in Section 3.3.  

 

3.1 The classical extremum seeking algorithm 

Extremum Seeking is an adaptive control algorithm that can be employed to 

optimize a process in real-time. It is essentially a perturb and observe method, where the 

controllable input variable(s) to be optimized are systematically varied and the measured 

system response to these variations are used to automatically perform optimization 

actions. This methodology does not rely on an underlying model and has guaranteed 

convergence and stability under certain well-defined conditions, which makes ES a 

particularly useful approach for optimizing complex systems [73] such as the drilling 

process. Because of its relatively simple implementation, ES has previously been 

employed successfully in a variety of engineering systems ranging from yield 

optimization in bioprocesses to jet engine stability control and many others [73,74]. The 

ES methodology has also been studied for petroleum applications such as optimization of 

injection rates in gas lifted wells [75,76] and optimal injection of dilutants in oil-

producers [77], in addition to selection of WOB [35,78,79], WOB and RPM combinations 

[39,80] and traveling block velocity [71] to drill more optimally. 

The ES algorithm is a gradient ascent (or descent) method which requires a 

process with well-defined steady-state characteristics, so that for a given constant input, 

the system settles to a constant output within a reasonable time frame. It also needs the 

existence of a unique extremum in the measured output, which corresponds to some value 

in the input variable(s) within the operational envelope (if operating at the extremum is 

to be achieved). These conditions will be briefly elaborated on in the following. For a 

more comprehensive review of ES stability, convergence and underlying assumptions, 
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the interested reader is referred to [74,81] and the references therein. It should also be 

noted that with ES being a gradient based method, it is inherently a local optimizer. This 

implies that the starting point where the ES algorithm is initiated will determine which 

optima is sought out by the algorithm if several extremal points are present in the static 

map to be optimized. However, for drilling applications, as explained in Section 2.2, it is 

expected that there exists a unique optimum or an optimal region to operate in which the 

ES algorithm can be used to seek out. Care should still be taken to initialize the ES 

algorithm as close as possible to the optimal point, if prior process information is available 

to facilitate this, as this will make the method converge faster to the optimal region. 

The ES method provides a whole range of algorithms and tools available for 

various applications, starting with the fundamental ES controllers described in e.g. 

[73,74,81]. The overview given here generally traces a combination of the algorithm 

explanations provided in [73] and [74]. In the following, a single variable version of the 

classical ES algorithm is explored for a generic drilling example where some objective 

function related to the drilling efficiency, J, is to be maximized. The same analysis can 

with minor modifications be adjusted to account for multiple manipulated input variables. 

A block diagram of the classical filter-based ES algorithm is shown in Figure 3.1, where 

the Laplace variable, 𝑠,  in the adaptation block represents integral action. Let the 

manipulated input variable be denoted by 𝑢, which for this example could signify the 

WOB (although the same logic could be applied with the RPM). It is assumed that the 

measured process output represents a static map dependent on the input, 𝐽 = 𝐽(𝑢). This 

assumption will be revisited in Section 3.1.4. 

The overall goal of the ES algorithm is to perturb the input, u, measure how this 

affects the objective, J, and automatically implement how u should be adjusted based on 

the extracted information. This process can be split into three main components:  

 The excitation signal, which introduces a variation in the input of the system.  

 Gradient estimation, used to quantify how the system reacts to the excitation. 

 Adaptation, which adjusts the input variable based on the estimated gradient. 

The role of these components and how they interact can be explained by performing a 

loop through the block diagram in Figure 3.1, representing a single iteration of the ES 

algorithm. 



 

31 
 

 

3.1.1 The excitation signal  

Starting out in the lower left corner of Figure 3.1, drilling is commenced at an initial guess 

of the optimal input value, 𝑢ത. While drilling ahead, the input is perturbed by a sinusoidal 

oscillation around this best guess value, by sending updated setpoints for 𝑢 to the control 

system on the rig according to  

𝑢(𝑡) = 𝑢ത(𝑡) + 𝐴𝑠𝑖𝑛 ൬
2𝜋𝑡

𝑃
൰ . (3.1) 

In Eq. (3.1), 𝐴 and 𝑃 are the amplitude and period of the excitation signal, respectively. 

How the drilling process responds to this perturbation is captured by real-time 

measurements of the objective function, 𝐽, and passed over to the gradient estimation 

scheme.  

 

Figure 3.1 – The classical extremum seeking algorithm. 
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3.1.2 Gradient estimation 

The recorded values of the objective function are passed through several filters and a 

correlation block, to extract a local linear model of 𝐽(𝑢) from the processed signal. This 

procedure is based on the assumption that the measured values of the objective function 

can be described by a first order Taylor expansion around the (approximately) stationary 

point, 𝑢ത, 

𝐽(𝑢) = 𝐽 ቆ𝑢ത(𝑡) + 𝐴𝑠𝑖𝑛 ൬
2𝜋𝑡

𝑃
൰ቇ = 𝐽(𝑢ത) +

𝑑𝐽

𝑑𝑢
ฬ

௨ୀ௨ഥ
𝐴𝑠𝑖𝑛 ൬

2𝜋𝑡

𝑃
൰ + 𝑂(𝐴ଶ). (3.2) 

Further assuming that the amplitude is relatively small and/or that the underlying static 

map is quite linear inside the investigated region (which has been explored by the input 

excitation), the error term, 𝑂, can reasonably be neglected. The signal approximated by 

Eq. (3.2) is subsequently sent through a High Pass Filter (HPF) designed to allow the 

excitation frequency to pass while attenuating the static component, 𝐽(𝑢ത). The resulting 

signal can be expressed as  

φ ≈
𝑑𝐽

𝑑𝑢
ฬ

௨ୀ௨ഥ
𝐴𝑠𝑖𝑛 ൬

2𝜋𝑡

𝑃
൰ . (3.3) 

The filtered signal, φ, is subsequently multiplied with a sinusoidal term with the same 

period as the perturbation. This is done to correlate any changes in 𝐽 with the 

corresponding variation in the input signal, e.g. if an increase in 𝐽 correlates with an 

increase in 𝑢. An underlying assumption in this correlation procedure is that the variable 

𝑢 follows the prescribed sinusoidal excitation. The resulting signal, 𝜉, can be expressed 

with the aid of a trigonometric identity as 

𝜉 ≈
𝑑𝐽

𝑑𝑢
ฬ

௨ୀ௨ഥ
𝐴𝑠𝑖𝑛ଶ ൬

2𝜋𝑡

𝑃
൰ =

𝑑𝐽

𝑑𝑢
ฬ

௨ୀ௨ഥ

𝐴

2
൬1 − cos ൬

4𝜋𝑡

𝑃
൰൰ . (3.4) 

Processing 𝜉 with a Low Pass Filter (LPF) tuned to diminish the oscillatory component 

of Eq. (3.4), the attenuated signal can be approximated by 

 

𝜒 ≈
𝑑𝐽

𝑑𝑢
ฬ

௨ୀ௨ഥ

𝐴

2
. (3.5) 
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The final step is composed of multiplying the signal described by Eq. (3.5) with a factor 

equal to 2 𝐴⁄ , to obtain an estimate of the sought gradient. 

3.1.3 Adaptation 

The calculated gradient is used by the ES method to determine the direction and 

magnitude which the base value, 𝑢ത, should be adjusted to increase the objective function. 

This is done by passing the signal through an integration block, which calculates an 

updated 𝑢ത-value from 

𝑢ത̇ = γ
𝑑𝐽

𝑑𝑢
ฬ

௨ୀ௨ഥ
. (3.6) 

In Eq. (3.6), γ is the adaptation gain, which is a tuning parameter that determines the 

learning dynamics of the algorithm. That is, how fast the ES scheme should vary 𝑢ത as a 

response to the estimated gradient. If e.g. a large positive gradient is estimated, this is 

interpreted by the algorithm as a situation where there is a substantial potential for 

improvement which can be obtained by increasing the input, and the input should be 

adjusted accordingly. For a given γ-value, the incremental change in 𝑢ത will be 

proportional to the gradient, scaling the step size to the improvement potential recognized 

by the algorithm. The updated  𝑢ത-value found from Eq. (3.6) is subsequently used as the 

starting point for a new iteration of the ES algorithm. Repeating this process will 

incrementally drive the input towards its optimal value. 

3.1.4 Time scales and tuning considerations  

The ES scheme outlined in the previous section relies on the assumption that there 

is an underlying static relationship, 𝐽(𝑢), which can be locally mapped by the excited 

input signal. In drilling, this static map is in practice dependent on multiple properties 

such as the characteristics of the formation being drilled and the current state of bit wear. 

The governing function could therefore more correctly be expressed as 𝐽(𝑢, 𝒓), where 𝒓 

is a vector containing all relevant parameters and properties that affect the process, other 

than the actuation signal 𝑢. An underlying assumption in the ES scheme is that the 

parameters contained in 𝒓 are constant (within the relevant time frame) or slowly varying 
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compared to the time scale of the algorithm’s learning dynamics. From this vantage point, 

the objective is only dependent on the manipulated variable, 𝑢. 

Most processes, including drilling, will have dynamic periods where e.g. a 

variation in 𝑢 (WOB or RPM) will not immediately be translated to a measurable 

variation in 𝐽 (ROP or MSE). In extremum seeking, process dynamics as well as slow 

process variations are handled by the principle of time scale separation. There are three 

relevant time scales involved in the ES method: fast, intermediate, and slow. What 

constitutes e.g. fast or slow dynamics is relative and depends on ES tuning and on the 

dynamics of the process being optimized.  For drilling applications, the time scales can 

be summarized as:  

 Fast – system dynamics. This time scale represents transient behavior experienced 

when changing the WOB and/or RPM. The rig’s control system will need some time to 

attain the updated setpoint, and the measured system response (often related to the ROP) 

will need additional time to settle to a measurable, stable value which can be related to 

the updated WOB and/or RPM. 

 Intermediate – the excitation signal period. The periodic excitations in WOB and/or 

RPM are required to be slow enough so that the system dynamics are negligible compared 

to the variations in the process inputs. This allows the ES algorithm to “see” the static 

map, 𝐽(𝑢), without too much interference from process dynamics. The amount of 

measurement noise can also dictate the extent of the intermediate time scale, as longer 

excitation periods might be needed to obtain valid measurements of the objective. 

 Slow – learning dynamics. The adaptation in 𝑢ത has to be slow compared to the 

intermediate time scale to extract meaningful derivative estimates. This property can be 

deduced from the approximation detailed in Eq. (3.2) and the subsequent signal 

processing, which relies on 𝑢ത being a fixed quantity and the excitation signal varying 𝑢 

around this point. At the same time, the learning dynamics need to happen fast enough 

with respect to process disturbances, be they abrupt (e.g. the time between changes in 

drilled formation) or gradual (e.g. from bit degradation), for the ES method to 

successfully adapt to changes in the underlaying static map, 𝐽(𝑢).  

The main task when tuning the single-variable classical ES algorithm consists of 

finding suitable values for five parameters that will make the method adhere to the time 
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scale separation principles described above. At the same time, a well-tuned ES algorithm 

strives to converge to the optimum as rapidly as is practically possible, which is a 

competing interest when considering the slow adaptation required to separate the 

intermediate and slow time scales. As is common in optimization, simultaneously 

achieving these objectives might not be feasible, and requires a weigh-off between fast 

algorithm performance and robustness. In the following, some general tuning 

considerations for applying ES for real-time drilling optimization are given. Tuning 

guidelines for the multivariable case are covered in Appendix C. See also [82] for a 

general discussion on tuning of the classical single-variable ES algorithm.  

The relevant tuning parameters are the adaptation gain, 𝛾, the amplitude and 

period of the excitation signal, 𝐴 and 𝑃, as well as one or more tuning parameter for each 

of the filters. Optimizing multiple inputs simultaneously will scale up the amount of 

required tuning parameters, but the guidelines given below will still be relevant: 

 The excitation amplitude’s main task is to elicit a measurable response in the output, 

𝐽, for gradient estimation. To accomplish this, the amplitude needs to be large enough to 

obtain a good Signal to Noise Ratio (SNR), as well as be large enough to be realized 

within the resolution of the control system on the rig. At the same time, the amplitude 

should not be too large, as this can disturb the overall process and cause the estimated 

gradient to be inaccurate, as seen in the error term in Eq. (3.2). Recommended values for 

amplitudes in the WOB signal will typically lie in the interval 200 – 500 kg, and for the 

RPM in the interval 2 – 5 rpm. Determining amplitude values also depends on the chosen 

objective function, as well as engineering knowledge of e.g. the expected WOB to be 

used in the current section. An amplitude of 500 kg might be excessive for a formation 

expected to be drilled with WOB around 5 tonnes, but suitable for a non-responsive 

formation to be drilled with weights around 15 tonnes. 

 The excitation period’s lower bound is dictated by separation between the fast and 

intermediate time scales and is largely determined by a combination of the system 

dynamics and measurement resolution. In general, the period should be selected as low 

as possible while still allowing for the system dynamics to be neglectable [83] and 

retaining an acceptable SNR. Longer periods necessarily include more data in the gradient 

estimation, which increases the SNR. At the same time, an excessive period will make 
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the algorithm less responsive to changes in 𝐽(𝑢), which would increase the algorithm’s 

response time to e.g. a change in formation. Long wells with complex geometries and the 

responsiveness of the rig’s control system might also dictate that longer periods be used, 

as they could induce longer transients in the system’s response to excitations. An 

additional effect to consider for the WOB excitation period, is that of induced stick-slip. 

As reported in [18], any significant WOB variation can cause enough torque variation to 

induce stick-slip vibrations. This problem can arise if the WOB is varied at a frequency 

close to the drill string’s natural torsional frequency, which typically corresponds to a 

period of 3 – 20 seconds dependent on drill string length and design [18]. Instigation of 

stick-slip should therefore be avoided by keeping the WOB excitation period well outside 

of this interval, together with moderate amplitude values which will reduce torque 

oscillations. Based on these considerations, recommended period values lie in the interval 

1 – 4 minutes. 

 The adaptation gain is an important tuning parameter, which determines how rapidly 

the controlled input, 𝑢, is allowed to adapt as a response to the estimated gradient. The 

selection of 𝛾-value is a weigh-off between speed of convergence and robustness. Overly 

large 𝛾 will make the algorithm susceptible to noise and disturbances, since the algorithm 

will respond to these disruptions by aggressively making changes to 𝑢. Additionally, large 

𝛾-values might fail to uphold the time scale separation principle, which could result in 

the entire feedback loop becoming unstable [82]. This time scale separation issue can be 

mediated by utilizing a Least-Squares (LS) method for gradient estimation [84], as will 

be elaborated on in Section 3.2.2. HSE considerations dictate that ES algorithms used for 

drilling optimization should avoid too aggressive tuning, in addition to being used in 

conjunction with robust constraint handling techniques. 

 Filter parameters refers in the classical ES algorithm to the time constant in the HPF 

and LPF in Figure 3.1, which dictates which signal frequencies are allowed to pass and 

which frequencies are attenuated. The ideal signal processing described in Eqs. (3.3) and 

(3.5) cannot be fully realized, but the filters should be designed to retain as much of the 

sought signal while attenuating the “unwanted” components. The classical extremum 

seeking method is commonly studied through average analysis, where it can be shown 

that the algorithm performs as it should as long as the filters on average are able to extract 
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a good estimate of the gradient [74]. For single variable drilling optimization, the authors 

in [35] recommend a time constant equal to the excitation period in the HPF and a time 

constant of 3 times the excitation period in the LPF. 

 

3.2 Customizing the extremum seeking algorithm for drilling 

The purpose of this section is to give a description of and motivation for the 

modifications to the classical ES algorithm that are utilized in the second part of this 

thesis. These modifications are comprised of altering the shape of the excitation signal, 

using a least-squares method to estimate the gradient as well as the inclusion of several 

constraint handling techniques in the algorithm. There are many variants of the ES 

method with different algorithms and tools which can make it better suited for a given 

application. Tan et al. [74] broadly splits the ES methods into two categories: 1) gradient 

based ES techniques utilizing a continuous excitation signal, and 2) ES algorithms that 

use a (repeated) series of probing inputs, that exploit ideas and recipes from numerical 

optimization methods. The focus of this thesis is on a variant from the former category, 

based on the classical ES approach detailed in Section 3.1.  

 Within gradient based ES methods, there are many changes to the classical 

scheme (as depicted in Fig. 3.1) proposed in the literature. A phase shift can be included 

in the correlation signal, to account for known delays caused by system dynamics or the 

HPF [81]. The HPF can be replaced with a band pass filter to attenuate high frequency 

noise [85]. One can remove the HPF [82] or both filters, at the possible expense of 

algorithm performance [74]. Second order derivatives can be included in the analysis to 

potentially increase convergence speed over curved static maps [86]. Augmenting the 

integral action in the adaptation block with proportional action can speed up algorithm 

convergence, if the objective gradient can be directly measured [87]. Sliding mode control 

has been employed in ES to smoothen the adaptation rate in 𝑢 [88], a topic which is 

further explored in Appendix C. Known process dynamics can be used to abolish the need 

for time scale separation between the fast and intermediate scales [89]. Replacing the 

filter-based gradient estimation with a Least-Squares method removes the requirement of 

separating the intermediate and slow time scales [84], and can in some cases alleviate the 

need for the excitation signal altogether [90]. A variant of the LS gradient estimation 
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technique is described in Section 3.2.2. The shape of the excitation signal can also play a 

vital role in the performance of the ES algorithm [91], which brings us to the first 

modification made to the classical ES method in our work. 

3.2.1 A square wave excitation signal 

Tan, Nešić and Mareels [91] studied different excitation signal shapes and found 

that for a given adaptation gain and amplitude, a square wave signal improved the 

convergence rate of the ES algorithm. This result can be intuitively understood by 

performing a loop through the ES scheme in Figure 3.1 with an excitation signal on the 

form 

𝑢(𝑡) = 𝑢ത(𝑡) + 𝐴 · 𝑠𝑔𝑛 ቆ𝑠𝑖𝑛 ൬
2𝜋𝑡

𝑃
൰ቇ . (3.7) 

In Eq. (3.7), 𝑠𝑔𝑛 is the signum function which takes on a value of 1 when the 

argument is positive, a value of 0 when the argument is zero and a value of -1 when the 

argument is negative. Repeating the analysis in Section 3.1 with the square wave signal, 

which has twice the signal power of the sinusoidal shape [91], the resulting version of Eq. 

(3.5) would appear without the factor 1 2⁄ , causing adaptation proportional to twice the 

value of the estimated gradient. This property in itself bears limited practical 

consequence, as one could simply double the adaptation gain with a sinusoidal dither and 

obtain similar convergence properties. However, when the measured values of 𝐽 are noisy, 

as is the case for drilling optimization, the increased signal power of the square wave will 

increase the SNR (assuming that the noise is additive). For a given amplitude, this 

translates to the maximal SNR that can be obtained, from which a more accurate estimate 

of the objective gradient can be calculated.  

The main advantage of the square wave excitation signal as compared to the 

sinusoidal shape, is that the sinusoidal excitation requires about 40% larger amplitude to 

obtain the same signal power as the square signal. This is relevant because the amplitude 

should be designed to not disturb the overall process, as discussed in Section 3.1.4, which 

can be achieved by selecting a square wave and a smaller amplitude without losing 

information from the signal. However, the discrete nature of the square wave in the 

“transition periods” when the signum function changes sign will cause transients in the 
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applied input, as the rig’s control system strives to follow the changed setpoint. These 

transients can inherently be handled by replacing the filter-based gradient estimation with 

a least-squares technique, which uses measurements of the applied input rather than 

assuming that the input follows the provided setpoint. The data stemming from these 

transients will not necessarily correspond to the underlaying static map, 𝐽(𝑢), but the 

symmetry of the excitation will cause most of the transient effects to cancel out. Still, 

models can be used to account for transient effects such as drill string elongation when 

the WOB is altered (as is done in Appendix B), to make the analysis more accurate. 

3.2.2 Least-squares gradient estimation 

One of the main limitations of the ES technique is the need for time scale 

separation, which can cause prohibitively slow convergence of the method [84,89]. For 

the drilling process with its slow dynamics, time scale separation necessitates long 

excitation periods and consequently low adaptation gain. In this case, the optimal WOB 

and/or RPM sought by the ES algorithm can likely change (e.g. through a change in 

lithology) before the optimum can be achieved, causing the ES algorithm to constantly 

chase elusive optimal operating conditions. 

 Chioua et al. [84] evaluated ES with a recursive least-squares method for gradient 

estimation and found that this technique allows for more aggressive tuning of the 

adaptation gain and faster convergence. This result stems from the LS gradient estimation 

not requiring the base value, 𝑢ത, to be approximately constant, which relaxes the need for 

separation between the intermediate and slow time scales. Figure 3.2 depicts the 

customized ES algorithm used in the appendices, where the ongoing drilling process is 

perturbed by square wave oscillations in the input. The most recent measurements of the 

objective function and the input are stored in buffers containing one period of the 

excitation signal, 𝑃. These buffers are used to estimate the gradient from 

න ൫𝐽(𝜏) − (𝑎𝑢(𝜏) + 𝑏)൯
ଶ

dτ → min
௔,௕

,
௧

௧ି௉

(3.8) 

∂𝐽

∂𝑢
ฬ

𝑢=𝑢ത
≈ a. (3.9) 
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In Eq. (3.8), 𝑎 and 𝑏 are the least-squares slope and intercept, respectively. The 

slope parameter is used as an estimated gradient of the objective function. As seen from 

Figure 3.2, the estimated gradient is passed to the adaptation block to update the input 

base value and a new setpoint for 𝑢 is provided by adding the square wave excitation. As 

new measurements of 𝐽 and 𝑢 become available, the new measurements are incorporated 

in the analysis and the oldest measurements contained in the buffers are discarded. The 

formulation in Eq. (3.8) is based on the technique proposed in [90], where a fixed window 

of historical data was used to estimate the gradient, as opposed to the forgetting factor 

used to limit the amount of evaluated data in [84]. In our approach, only the minimal 

amount of data needed to evaluate the gradient, one period of the excitation signal, is 

utilized in the algorithm. This LS formulation results in only three tuning parameters 

needed to employ (the unconstrained version of) our method: the amplitude and period of 

the excitation, as well as the adaptation gain.  

 

 

 

Figure 3.2 – Extremum seeking scheme with least-squares gradient estimation. 
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In drilling, the WOB and RPM enacted by the rig’s control system might deviate 

from their requested setpoints, see e.g. [39]. Apart from the aforementioned advantages, 

a benefit of the LS method is that this technique uses actual measurements of the process 

input, rather than assuming that the input follows the prescribed setpoints. This makes the 

LS method account for divergence from the setpoints in the analysis, resulting in more 

representative gradient estimates. For the multivariable ES case, the LS method also has 

beneficial properties when it comes to estimating e.g. a gradient related to WOB while 

the RPM is varied. This property is explored in Appendix C.  

Zengin and Fidan [92] compared the classical filter-based ES scheme to a 

recursive LS method and found that in addition to faster convergence, the LS method also 

showed beneficial properties with respect to handling measurement noise. The LS 

technique for gradient estimation is robust to noise and sensor bias, since much of the 

noise is filtered out over the least-squares window, and any sensor bias is captured by the 

𝑏-parameter (which is not used by the algorithm). Furthermore, the integral action in the 

adaptation block acts as a LPF to limit abrupt variations in the adaptation rate. However, 

since the measurements on the rig are notoriously noisy, it can still be beneficial to filter 

the data before it is used for gradient estimation. If filtering is performed, all relevant data 

should be processed with filters that result in an equal time delay. This will synchronize 

the data so that e.g. a given WOB measurement will be correlated with the corresponding 

ROP response. This technique is discussed in Appendix B, where a Kalman Filter (KF) 

is used to estimate the instantaneous ROP from noisy block measurements, and a LPF is 

used to remove excessive WOB measurement noise.    

3.2.3 Constraint handling 

An important component of a practically relevant optimization method is handling 

of operational constraints. Since the ES method inherently needs full control over e.g. the 

WOB while drilling, it is integral that the algorithm does not steer the WOB to values 

which violate process limitations. A distinction can be made between constraints that are 

known a-priori and constraints related to process output values that are not known in 

advance. In the former category, a maximal WOB associated with e.g. a buckling criterion 

can be enforced by rejecting adaptation proposed by the algorithm past a certain WOB 

value with a logic criterion such as: 𝑖𝑓 (𝑊𝑂𝐵തതതതതതത + 𝐴 + 𝑆𝑎𝑓𝑒𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟) ≥ 𝑊𝑂𝐵௟௜௠௜௧,
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𝑑𝑖𝑠𝑎𝑙𝑙𝑜𝑤 𝑊𝑂𝐵̇ > 0. Similar logic could be used to compel the algorithm to avoid high 

RPM values associated with e.g. top-side vibrations. 

In the latter category, where a process output, e.g. a maximal ROP related to hole 

cleaning should not be exceeded, the WOB and RPM that produce too high ROP is not 

known in advance and a different approach is needed. In the second part of this thesis, 

three strategies for this type of output constraint handling in combination with the ES 

algorithm are investigated and explained in detail. A presentation of these strategies and 

their rationale is also given in the following. The techniques are exemplified for cases of 

limiting ROP and torque values, but the methods are generic and could be used to account 

for other process limitations as well, given certain assumptions. 

 

The modified objective function approach 

This is the type of constraint handling often employed in ES algorithms, see e.g. 

[93-95], and involves including a barrier term in the objective function. The barrier term 

will be zero if the constraint is not violated, and conversely take on non-zero increasing 

values if a process output exceeds a certain limit (in the case of a minimization problem, 

such as finding the minimal MSE to drill with. In a maximization problem, the barrier 

term will necessarily make the objective decrease). This functionality disincentivizes the 

ES scheme from making further adjustments in the direction which makes the modified 

objective function grow. In Appendix C, rather than minimizing the MSE, the following 

function is used to quantify optimal conditions that avoid drilling with too high ROP:  

𝐽 = 𝑀𝑆𝐸 · ቆ1 + 𝜌
max(0, 𝑅𝑂𝑃 − 𝑅𝑂𝑃௟௜௠௜௧)

𝑅𝑂𝑃௟௜௠௜௧
ቇ (3.10) 

In Eq. (3.10), 𝑚𝑎𝑥 is a function which outputs the largest of the input arguments and 𝜌 is 

a tuning parameter that determines how much the function increases when drilling with 

ROP higher than the allowable value. A formulation similar to Eq. (3.10) has previously 

been used to quantify drilling with stick-slip in a drilling surveillance system [33].  

Different constraining parameters can be additively included in Eq. (3.10), in a 

similar fashion as the ROP term, to penalize the presence of e.g. measured vibrations or 

high torque, which makes the technique very versatile. In appendix C, this constraint 

handling method is used in combination with a saturation function which limits the 
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allowable adaptation in the inputs, to ensure slow and steady behavior. A downside of 

this approach is that if a sudden change in operating conditions, e.g. entering a more 

drillable formation, makes the ROP increase by some margin above the threshold, the 

time it takes for the ES algorithm to steer the applied WOB and/or RPM to better values 

is dictated by the rather slow adaptation rate of the algorithm. A more prudent approach 

would then be to employ a separate control loop with the ability to modify the inputs more 

rapidly. 

 

Reactive constraint handling 

To be able to swiftly reduce e.g. the applied WOB if the measured torque is 

suddenly above its permissible value, a reactive control loop was introduced in the ES 

scheme. This technique could also be used on other limiting parameters, if they satisfy 

the premise that the constrained output is correlated (in known direction) with the adjusted 

input variable. Another possible use of this technique could be for observed stick-slip 

vibrations which would be met with a reduction in WOB (or through minor modifications 

of the method, an increase in RPM or a combination of the two) 

This method relies on a penalty variable which is zero when the constraint is not 

violated, and proportional to the amount of violation if the limit has been exceeded. If the 

torque is deemed too high, a PI controller with the penalty variable as input is used to 

reduce the applied WOB until the torque is again within permissible bounds, at which 

point the integral term in the controller is reset to “forget” any previous torque-

transgressions. The rationale behind this method is that it allows faster adjustment of the 

WOB than would be enacted by a robustly tuned ES algorithm through the adaptation 

block. It can be argued that constraint handling through the modified objective function, 

with a high ρ-value, could obtain similarly rapid adjustments in the WOB. However, use 

of Eq. (3.10) relies on an estimated gradient. If the high torque values arose from e.g. a 

change in lithology at a time when the excitation signal was in a “low position”, this could 

lead the ES algorithm to relate low WOB with high torque (for a limited time). This would 

result in increasing WOB for some time (when a reduction was needed) before more data 

became available for analysis. This behavior is avoided with the reactive constraint 

handling technique and justifies its use. It can be noted that as the name implies, this 

method is only able to adjust the WOB to lower the torque after some limit has been 
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violated. This necessitates that a threshold lower than the system’s actual limitation is 

used. 

 

Predictive constraint handling  

The changes in the drilling process caused by varying the WOB and RPM can be 

a good source of information about the current system conditions and how other drilling 

parameters are affected by the varying inputs. The same LS methodology that was used 

in Eqs. (3.8) and (3.9) can also be utilized to extract a gradient of other drilling parameters 

and how they vary in relation to the excited inputs. Using again the example of a limiting 

torque value, a gradient of ∂T 𝑑𝑊𝑂𝐵⁄  can be calculated from the past 𝑃 seconds of 

drilling data. This estimate is used to predict how the torque will vary if the WOB is 

increased further, and to stop WOB-adaptation if operations are sufficiently close to the 

limiting torque value, according to 

𝛾 = ൞
 𝛾, 𝑖𝑓 ൬𝑇௔௩௚ + 𝐴

∂T

∂WOB
𝑆𝐹൰ < 𝑇௟௜௠௜௧

0, 𝑖𝑓  ൬𝑇௔௩௚ + 𝐴
∂T

∂WOB
𝑆𝐹൰ ≥ 𝑇௟௜௠௜௧ 𝑎𝑛𝑑 

∂J

𝑑𝑊𝑂𝐵
> 0

. (3.11) 

In Eq. (3.11), 𝑇௔௩௚ is the average torque value from the past 𝑃 seconds and 𝑆𝐹 is a safety 

factor with a value greater than one. The product 𝐴 · 𝑑𝑇 𝑑𝑊𝑂𝐵⁄  is a projection of how 

much the torque will grow if the WOB is increased by 𝐴 kg. By setting 𝑆𝐹 to a value of 

e.g. 3, Eq. (3.11 ) seeks to stop adaptation if the 𝑊𝑂𝐵തതതതതതത-value is 3𝐴 kg away from the 

critical WOB which would make the torque exceed its limit. This allows the ES algorithm 

to continue performing excitations without violating the torque-restriction, as well as 

allowing for some error in the estimated torque gradient. The positive objective gradient 

condition in Eq. (3.11) is included to avoid a situation where the ES algorithm wants to 

reduce the WOB to drill more efficiently but is precluded from doing so because it is 

currently close to the maximal allowable torque.  

The formulation in Eq. (3.11) relies on three assumptions: 1) that 𝑇௔௩௚ 

approximately represents the torque when drilling with a weight of 𝑊𝑂𝐵തതതതതതത kg, which is 

close to the average weight during the past 𝑃 seconds. 2) That the torque is mainly a 

(positively correlated) function of WOB, as is commonly assumed in the literature 
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[24,96]. 3) that the algorithm is initiated at conditions where the constraint is not violated, 

since the method is only able to stop adaptation, not navigate away from detrimental 

conditions. For this reason, the predictive method should be used in combination with the 

reactive technique. The first assumption essentially reintroduces the need for separation 

between the slow and intermediate time scales, since it requires relatively slow adaptation 

to be valid. This problem is mediated by introducing the safety factor, which can make 

the adaptation stop before the constraint is violated even when more aggressive gain is 

used and assumption 1 is not completely satisfied.  

 

3.3   Drilling models and experimental setup 

In the appendices, the ES algorithm is studied in three different 

simulation/experimental settings to investigate the method’s applicability to drilling 

optimization. Section 3.3.1 gives a brief introduction to OpenLab, a high-fidelity drilling 

simulator employed in Articles 1 and 2. In Section 3.3.2, a qualitative drilling model 

developed by the authors for use in Article 3 is described. The experimental setup utilized 

in Article 2 is detailed in Section 3.3.3. 

3.3.1 OpenLab 

OpenLab is a high-fidelity drilling simulator developed by the Norwegian 

Research Centre (NORCE) in collaboration with the University of Stavanger. The 

simulator consists of a set of integrated numerical models covering different aspects of 

the drilling process, including torque and drag effects, cuttings transport, multi-phase 

flow and heat transfer [97]. This simulator has since 2017 been available to the public, 

with the stated purpose of facilitating and accelerating development and testing of real-

time drilling automation systems [98], which makes it an excellent environment for 

testing and qualifying the ES algorithm in realistic scenarios.  

Simulations in OpenLab are performed by first defining a configuration, where 

the designer can specify properties such as well-path, hole sections and casing program, 

the drilling fluid program, drillstring components, drilling window in terms of pore and 

fracture pressures, formation strength(s) as well as the top-side equipment used. From a 

defined configuration, the models on the OpenLab platform are run by supplying the 
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simulator with setpoints for input variables such as the desired flow rate, RPM and WOB 

(or hook velocity, when run in ROP-mode). The setpoints are translated to actions on the 

drill-floor with built in functionalities which simulates the actuation of the relevant rig 

equipment [99,100]. The proposed optimization method was investigated in simulations 

run through a Matlab client. Figure 3.3 shows a typical OpenLab desktop for a sample 

simulation of single variable ES applied to find the optimal WOB to drill with. 

Although OpenLab provides a high-fidelity environment to test automated 

optimization routines, one weakness of this simulation platform must be pointed out. The 

location of the founder point, as a function of WOB and RPM, is in the current OpenLab 

version hardcoded. This means that e.g. in a scenario where one drills into a new 

formation, the optimal WOB and RPM stays fixed, which is not what is expected from 

drilling theory (see Section 2.2). One of the most beneficial properties of the ES algorithm 

is that it can track optimal operating conditions as they change (if they do not change too 

frequently or quickly). To be able to study this property, the authors developed a drilling 

model which qualitatively accounts for drilling dysfunctions and allows for a study of the 

ES algorithm in scenarios where the optimal operating conditions change.  

  

 

Figure 3.3 – Sample simulation of single variable extremum seeking in OpenLab. 
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3.3.2 A qualitative drilling model 

The theoretical foundation for the qualitative drilling model, henceforth referred 

to as the extended model, is detailed in Appendix C, and briefly summarized here. The 

extended model utilizes as a “base model” the rate-independent interface laws proposed 

by Detournay et al. [24], which define static relationships between the WOB, RPM, bit 

Torque and ROP from bit and formation properties. It is expected that for a given BHA 

configuration drilling through some rock formation, that certain combinations of WOB 

and RPM can result in detrimental dysfunctions such as stick-slip or whirl. The locations 

of these dysfunction zones in the WOB-RPM plane are heavily affected by bit and BHA 

characteristics, as well as mechanical rock properties  [101].  

To account for these phenomena in a qualitative way, the extended model utilizes 

a penalty function which reduces the modeled ROP when drilling with WOB/RPM 

combinations in zones that are being affected by dysfunctions (as defined by the user 

prior to simulations). The penalty functionality is set up to reduce the ROP as a function 

of how far into the dysfunction region the operating point is. In this way, drilling “further 

into” any of the deleterious regions (as seen by moving outwards from the green region 

in Figure 3.4) will result in a penalized ROP output that deviates further and further from 

the expected straight-line behavior predicted by the Detournay model. The methodology 

is illustrated in Figures 3.4 and 3.5. Figure 3.4 shows contours of the (dysfunction-free) 

ROP response calculated from the Detournay model for combinations of WOB and RPM, 

as well as generically placed zones that are affected by dysfunctions (based on the 

dysfunction zone placements in [38,101,102]). Because the Detournay model does not 

explicitly account for deviations from phase II drilling, the ROP is seen to monotonically 

increase for all values of applied WOB and RPM. 

Figure 3.5 depicts the ROP calculated from the extended model after ROP 

reductions have been imposed on drilling in the dysfunction zones, for the same scenario 

as in Figure 3.4. In Figure 3.5, the ROP now resembles a hill where there is a region of 

WOB/RPM combinations that result in maximal ROP, resembling the “heatmaps” 

generated from field data in [33]. It can be noted from Figures 3.4 and 3.5 that the regions 

which are not affected by the dysfunctions are identical (e.g. the shaded region in Figure 

3.4), since the Detournay-modeled ROP is used in both these cases.  
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Figure 3.5 – Contour plot of ROP as a function of WOB and RPM with the extended model. 

 

 

Figure 3.4 – Contour map of ROP (m/hr) response for combinations of WOB and RPM in the 
Detournay model, together with dysfunction zones and an optimal region (green). 
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Altering the location(s) of the dysfunction zones in the WOB-RPM plane for 

different formations allows for simulations which can capture effects such as drilling hard 

formations being more prone to whirl vibrations [103]. A tuning parameter in the 

extended model is used to determine how much different dysfunctions affect the output, 

so that e.g. whirl can have a stronger negative impact on the ROP than stick-slip [22] or 

stick-slip effects on ROP being more pronounced in hard formations [104]. The extended 

model is not meant as a predictive tool, but rather as a representation of a steady state 

drilling response which qualitatively replicates field observations of reduced ROP and 

increased MSE when drilling with dysfunctions [22,23,101]. The use of the extended 

model as a part of the drilling plant (as applied in Appendix C) is depicted in Figure 3.6. 

The plant receives setpoints for WOB and RPM, which are translated to applied values 

according to a discrete first order system response that emulates actuation on the rig floor. 

The exerted WOB and RPM are used to calculate an “ideal” ROP response from the 

Detournay model, which is passed through a penalty layer that reduces the output ROP if 

the current operating point is in a zone of dysfunction. 

 

 

Figure 3.6 – Block diagram of the plant in Article 3. 

3.3.3  Experimental setup 

The experimental rig used in Appendix B was built to compete in the annual 

Drillbotics competition [105] hosted by the Society of Petroleum Engineers (SPE), 

allowing students and researchers to get hands-on experience with drilling automation 

technologies. The miniature rig is designed to work in an analogous fashion as a full-scale 

rig. It consists of a steel framework with integrated motors, sensors, hydraulic circulation 

system and other functionalities that are needed to drill through rock samples. A more 
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detailed description than the one provided here of the miniature rig and its use for other 

drilling automation applications can be found in [106-108]. Figure 3.7 shows the 

experimental drilling rig together with a schematic that highlights key components.  

 

  

(a) (b) 

Figure 3.7 – The experimental rig used in Article 2, figures modified from [108]. (a) Rig 
photo, highlighting the BHA. (b) Rig schematic with key components. 

 

At the top of the derrick, approximately 2.85 m above floor level, a hoisting motor 

provides rotational energy which is translated to vertical movement of the top drive 

assembly and drill string through a ball screw system. The top drive assembly is 

comprised of a motor to provide drill string rotation and a hydraulic swivel to facilitate 

circulation of drilling fluid while rotating. These components are mounted on a frame 

which slides along guide rails to ensure that all movement of the top drive and drill string 

is vertical, similar to the functionality of a full-scale top drive system. Fresh water from 

a standard water outlet is circulated through the drill string to transport cuttings out of the 

annulus and to cool and lubricate the bit. The drill string has a length of approximately 
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0,9 m and is made up of a hollow steel drill pipe, connection joints, a stabilizer sub, and 

a generic two-wing PDC bit with an outer diameter of 2,8 cm. Because of the reduced 

scale of the drilling rig, adequate WOB cannot be applied through high-weight drill string 

components as is done in full-scale operations. Instead, WOB is exerted by the top drive 

assembly pushing down on the drill string, placing the entire string in compression. The 

drill pipe is passed through a radial ball bearing stabilizer on the “rig floor” to mitigate 

buckling, by reducing the effective length of the string.  

A load cell located at the hoisting system’s nut bracket provides measurements of 

the total load from the bit and from the weight of the guide frame and top drive, which is 

converted to WOB by subtracting the weight of the mechanical components. Internal 

sensors in the top drive and hoisting motor supply measurements of drillstring rotational 

speed, (surface) torque, and the guide frame position. From the position measurement, an 

estimate of the ROP is calculated with a Kalman Filter by approximating the downhole 

ROP as the surface velocity of the traveling block (guide frame), as described in Appendix 

A. Because of the reduced scale of the system, the drill string elasticity can be reasonably 

neglected. The rig’s control system is implemented in LabVIEW, where all 

communication with the motors and sensors is done with a 50 Hz update frequency. The 

top drive and hoisting motors are controlled by supplying them with requested setpoints 

for RPM and hoisting velocity, respectively, which are translated to the apposite motor 

and rotational rates by factory tuned internal PID controllers. To run experiments with 

WOB control, a PID autodriller was implemented in LabVIEW to convert requested 

WOB setpoints to the appropriate velocity setpoints for the hoisting motor.  

The lab-scale drilling rig was used to investigate single variable ES with the WOB 

as the manipulated variable, as described in Appendix B. The maximal amount of WOB 

that could be applied without the top drive motor stalling out (at torque values of 7.2 Nm) 

was approximately 50 kg in the two investigated concrete formations. Within this interval, 

we were not able to repeatedly induce “natural” foundering effects without the top drive 

stalling (e.g. by decreasing the flow rate to facilitate cuttings accumulation around the bit 

at high enough ROP). For this reason, a simulation layer was employed in the 

experiments. This effect was used to simulate a reduction in ROP (as read by the rig’s 

control system) when drilling at rates higher than some threshold ROP value which 

typically occurred within the allowable WOB range. The shape of the simulated ROP 
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response was designed to mimic the curves provided in [22,23], and allowed for 

experiments where the ES algorithms performance could be studied in the presence of 

(simulated) drilling dysfunctions. 
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4 Article summaries 

4.1 Article 1: Micro-Testing While Drilling for Rate of Penetration 

Optimization 

This paper investigates a data-driven optimization strategy called Extremum 

Seeking for attaining drilling at the optimal WOB. The method’s main facilitator is a 

continuous series of micro-tests which vary the WOB while drilling ahead. The 

information gathered from these tests is used to automatically adjust the WOB based on 

a local linear model constructed from the test results. The studied ES method is a product 

of different algorithms and tools found in the literature, which are assembled to make the 

routine better suited for drilling application. This includes a least-squares method to 

calculate the local model as well as the use of a square wave excitation signal to maximize 

the obtained test information. Emphasis is placed on avoiding violation of operational 

constraints, as well as practical considerations related to estimation of instantaneous ROP 

and handling of noisy measurements. To ensure that the WOB is not steered to values 

which might be detrimental, a combination of two generic constraint handling techniques 

is proposed by the authors and demonstrated for an example of a limiting torque value 

that prevents drilling at the founder point. The effectiveness of constrained optimization 

algorithm is exhibited with simulations on a high-fidelity drilling simulator. 

 

Paper highlights 

 A modified version of the Extremum Seeking optimization method is proposed 

and employed to achieve drilling at the WOB which corresponds to maximal 

dysfunction-free ROP, with limited a priori information. 

 The optimization routine is augmented with two novel strategies for constraint 

handling, to ensure safe operations.  

 The proposed algorithm’s ability to optimize the applied WOB while adhering to 

process constraints is demonstrated in simulation scenarios on a high-fidelity 

drilling simulator for instances with and without measurement noise.  
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4.2 Article 2: Micro-Testing While Drilling for Rate of Penetration 

Optimization: Experiments and Simulations 

This paper is an extension of Article 1. The performance of the single-variable 

extremum seeking algorithm and constraint handling techniques used to optimize the 

WOB in Article 1 is here studied on a lab-scale drilling rig. The experimental setup is 

designed to work in an analogous fashion to a full-scale rig, with a hydraulic system to 

remove cuttings, a top drive providing bit rotation and a “traveling block” that controls 

the bit velocity (and indirectly the WOB). The scaled rig captures the vibrations and noisy 

nature of the drilling process, which makes it a well-suited arena for studying the drilling 

optimization algorithm under conditions mimicking those in the field. However, the 

foundering tendencies reported in field operations could not be replicated in the lab and 

had to be added through a simulation layer. The ES method was experimentally tested in 

different scenarios, including initiating the algorithm above and below the optimal WOB 

value, drilling through a change in formation as well as in constrained situations where 

the torque had to be kept below a threshold value. A study of the ES method was also 

performed on a high-fidelity simulator to qualify the experimental results for field 

conditions, where the algorithm only had access to noisy top-side measurements. In both 

experiments and simulations, the algorithm demonstrated the sought behavior of 

navigating to the optimal WOB and avoiding constraint violations, without requiring 

detailed prior process information.  

 

Paper highlights 

  A constrained data-driven optimization method used for obtaining drilling with 

optimal WOB is explained in detail. 

 The proposed optimization strategy is tested in a series of experiments on a lab-

scale drilling rig. 

 The experimental results are supplemented with simulations on a high-fidelity 

drilling simulator, to study the optimization method for full-scale operations. 

 In both experiments and simulations, the algorithm demonstrated the ability to 

seek out the optimal WOB while avoiding violation of constraints, resulting in 

safe and efficient drilling.  
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4.3 Article 3: Real-Time Minimization of Mechanical Specific 

Energy with Multivariable Extremum Seeking 

In this paper, a constrained multivariable extremum seeking algorithm is 

employed to simultaneously optimize the WOB and RPM by minimizing the MSE. A 

drilling model that includes vibrational effects in an existing model from the literature is 

proposed and used to study the optimization approach. The modified drilling model does 

not capture the dynamics of drilling dysfunction effects, but it does qualitatively represent 

steady state drilling responses that are documented from field operations, which is what 

is needed to study the average behavior of the algorithm. Emphasis is placed on algorithm 

design and tuning for application of the algorithm in drilling operations, as well as 

different constraint handling techniques that ensure safe operations. An in-depth analysis 

of MSE as a tool  to increase drilling efficiency and how it can be employed as an 

objective function in automated drilling optimization routines is also provided. This 

methodology involves programming the ES algorithm to interpret a flat MSE-response to 

varying WOB and/or RPM as a scenario where the relevant input should be increased to 

improve the drilling efficiency. The simulations show the method’s ability to 

simultaneously optimize the WOB and RPM while avoiding violation of drilling 

constraints. 

 

Paper highlights 

 A constrained multivariable extremum seeking algorithm that minimizes the MSE 

through manipulation of the applied WOB and RPM is given in detail, together 

with tuning guidelines that facilitate its use. 

 A drilling model that qualitatively includes vibrational dysfunction effects is 

proposed by the authors and used to study the ES algorithm. 

 Three constraint handling strategies to be used in conjunction with the 

optimization method are presented and employed in simulation scenarios. 

 The simulations demonstrate the algorithm’s ability to seek out and maintain 

drilling with minimal MSE, avoid violation of constraints and track variations in 

optimal operating conditions resulting from changes in the drilled formation. 

  



 

56 
 

  



 

57 
 

5 Conclusions 

5.1 Concluding remarks 

The main goal of this thesis is to contribute towards automatic solutions for safe 

and efficient well construction. This goal is carried out by investigating a data-driven 

optimization method called Extremum Seeking for the purpose of automated drilling 

optimization through manipulation of the mechanical variables WOB and RPM. Drilling 

optimization with the ES algorithm is chosen as the topic of this thesis because of the 

algorithm’s proven track record from other industries, as well as beneficial properties 

related to the method’s robustness to noise, relatively straight-forward tuning and the 

limited a priori knowledge of downhole conditions needed to apply the algorithm. The 

ES methodology employed in the appendices is a product of modifications proposed by 

the authors, as well as different algorithms and tools found in the literature, which are 

assembled to make the routine better suited for drilling applications.  

In Appendix A, a single variable ES algorithm is presented and the method’s 

ability to seek out the optimal WOB to drill with while adhering to process constraints is 

demonstrated in simulation scenarios on a high-fidelity drilling simulator. In Appendix 

B, the single variable constrained ES algorithm from Appendix A is investigated with 

experiments on a lab-scale drilling rig, as well as in simulations. In Appendix C, a 

constrained ES algorithm that minimizes MSE while drilling by simultaneously 

optimizing applied WOB and RPM is detailed, and its performance is studied in 

simulation scenarios. In the simulations and experiments detailed in the appendices, the 

proposed ES algorithm demonstrates the capability of avoiding violation of process 

constraints while seeking out optimal drilling conditions with limited a priori information. 

The algorithm also exhibits the ability to adapt to downhole changes and seek out new 

optimal conditions when drilling into new rock formations. Overall, the three studies 

indicate a potential for significant improvement in drilling efficiency from applying the 

ES algorithm for real-time drilling optimization. 

The advantage of a data-driven “testing on the fly” method like the ES approach, 

is that it functions by continuously performing tests that extract information of the 

downhole conditions. It can therefore perform optimization actions based on the most up-
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to-date information available and does not require detailed prior knowledge of the 

downhole conditions to be applied. This property is very beneficial for drilling 

optimization, since the detailed knowledge of downhole conditions needed to accurately 

model the bit/rock interaction might not be directly measurable or available in real-time, 

which is a limiting factor for some model-based approaches. 

There are some possible drawbacks to applying the ES algorithm for drilling 

optimization. The method needs full control of the applied WOB and/or RPM while 

drilling and could in its search for optimal drilling potentially steer these values to regions 

that could lead to unsafe operations. Robust constraint handling should therefore be 

integrated into the algorithm, as detailed in Section 3.2.3 and the appendices. As theorized 

in [72], the ES algorithm could possibly fail to seek out the optimum in the presence of 

transient foundering effects. This hypothesis is not investigated in this thesis and remains 

unanswered. Additionally, the choice of objective function used in the method could limit 

the region of where the algorithm can be initiated and still successfully converge to the 

optimal WOB and/or RPM, as discussed in Section 2.3. Steps that could be taken to avoid 

or mediate these potentially detrimental properties are described below. 

 

5.2 Topics for further research 

There are several interesting directions for further studies which would build on 

the results of this thesis: 

 Further research could be performed based on the ES method’s inherent nature of 

relating measurements of drilling parameters to known variations in the WOB and/or 

RPM induced by the excitation signal(s). If available, additional measured or calculated 

parameters such as the magnitude of different forms of vibrations could be related to the 

input variations. This modeling could be performed with the simple linear relationship 

extracted by the least-squares technique in the ES algorithm, or by more advanced 

models.  Knowing how downhole vibrations vary as a function of WOB and/or RPM 

could be utilized for optimization, constraint handling or be displayed as useful 

information for the driller 

 Two different functions were investigated to quantify optimal drilling in this work: a 

formulation related to ROP in appendices A and B and MSE in Appendix C. Application 



 

59 
 

of both of these formulations require a tuning parameter to alter the objective function so 

that its extremum is at or close to the founder point. A candidate objective function that 

potentially does not require this tuning parameter is the ROP/MSE ratio, which should be 

the topic of an additional study. This objective function also has the beneficial property 

that it is monotonically increasing for phase 1 and 2 drilling (at least according to the 

drilling model detailed in appendix C). This implies that an ES algorithm employing this 

objective could be initiated also in phase 1 drilling without the risk of the algorithm 

erroneously reducing the WOB in this scenario. It is possible that the ROP/MSE ratio was 

used in the ES approach described in [39], but the limited amount of algorithmic details 

given in that paper obfuscates what objective function was used. 

 The ES algorithm can be used as a stand-alone method for optimization as long as it 

is initiated within the domain of attraction of the selected objective function (see Section 

2.3). However, the most efficient drilling is (logically enough) obtained when the method 

is initiated with a “good guess” of the optimal conditions, as the method will converge to 

the optimum more rapidly. Using a model-based approach to provide the starting point 

for the ES algorithm would formalize the initialization process, by incorporating any a 

priori knowledge of the drilling conditions into the analysis through the model. This 

approach would be conceptually similar to the methodology used in [57]. 

 The proposed ES method should be tested in facilities that are able to capture the 

dynamics of bit foundering, either in the field or a more advanced testing site than the 

experimental setup used in Appendix B. Such a study would be needed to confirm that 

the ES algorithm is able to provide stabile drilling at or sufficiently close to the founder 

point, a property that was questioned in [72]. 

 The mud flow rate could be included as a third manipulated variable in the ES 

algorithm. This approach would necessitate rigorous constraint handling and monitoring 

of the well, so that the ES algorithm would not steer the flow rate to values that would 

interfere with adequate hole cleaning and well integrity. Manipulating the flow rate would 

potentially require additional terms in the used objective function, to account for changes 

in the well that happen at a slower time scale (e.g. accumulation of a cuttings bed in 

deviated sections), since such effects would not be adequately captured by formulations 

related to instantaneous ROP or MSE. 
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ABSTRACT 
The Rate of Penetration (ROP) is one of the key parameters 

related to the efficiency of the drilling process. Within the 

confines of operational limits, the drilling parameters affecting 

the ROP should be optimized to drill more efficiently and safely, 

to reduce the overall cost of constructing the well. In this study, 

a data-driven optimization method called Extremum Seeking is 

employed to automatically find and maintain the optimal Weight 

on Bit (WOB) which maximizes the ROP. To avoid violation of 

constraints, the algorithm is adjusted with a combination of a 

predictive and a reactive approach. This method of constraint 

handling is demonstrated for a maximal limit imposed on the 

surface torque, but the method is generic and can be applied on 

various drilling parameters. The proposed optimization scheme 

has been tested on a high-fidelity drilling simulator. The 

simulated scenarios show the method’s ability to steer the system 

to the optimum and to handle constraints and noisy data.    

Keywords: Data-Driven, ROP, Drilling Optimization, 

Micro-Testing, Constraint Handling, Extremum Seeking 

INTRODUCTION 
A substantial part of offshore field development costs 

originates from drilling, with most of these costs being related to 

time. There is a great potential for cost reduction by drilling 

safer, faster and with less non-productive time, which is why 

drilling optimization has been the subject of research for more 

than six decades, a process which has been traced by Eren and 

Ozbayoglu [1]. Methods used for real-time drilling optimization 

often focus on tuning physics-based models of the drilling 

process to fit available data from current or offset operations. 

The tuned models are used to predict how the drilling process 

will react to different values of the controllable parameters such 

as WOB, drill string rotational speed (RPM) and flow rate. Based 
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on this prediction, the models can be used to provide estimates 

of the optimal drilling parameters, which can be supplied to the 

driller as suggestions or directly fed to the control system on the 

rig in a closed loop [1-5]. Field tests of an ROP optimization 

algorithm using physics-based models have shown good results, 

with the largest increases in ROP obtained when the algorithm 

was run in closed loop [2,3] and a reduction in downhole tool 

failures when applying the optimization algorithm [3].  

A potential drawback to real-time optimization with the 

physics-based models is that the analysis is based on a 

mathematical description of the drilling process, and the existing 

models might not be very accurate in predicting the ROP [5,6]. 

A possible remedy for model inaccuracies could be the use of 

data-driven modelling techniques, or a hybrid between data-

driven and physics-based modelling methods. The latter 

approach was applied by Spencer et al. [7] in a study on how to 

automatically minimize Mechanical Specific Energy (MSE) 

when drilling through layered materials with a lab-scale rig. A 

physics-based drilling model was used to find an initial estimate 

of the optimal WOB. A data-driven algorithm was subsequently 

utilized while drilling to search the neighborhood of the initial 

estimate for WOB values which could further reduce the MSE. 

Hegde et al. [8] found that a data-driven model gave better ROP 

predictions compared to physics-based models when both 

approaches were using the same input parameters. The selection 

of which type of data-driven model that can be used for real-time 

optimization is a tradeoff between runtime and performance 

where more advanced models will give more accurate ROP 

predictions but suffer from longer computational time and vice 

versa [9]. A recent study investigated the application of a data-

driven optimization strategy with low computational cost called 

Extremum Seeking (ES) to maximize the ROP [10]. Using 

simulated data, it was shown that ES can identify the WOB 
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which maximizes the ROP and automatically steer the WOB to 

this optimal value in an unconstrained environment. 

The drilling process is subject to a multitude of operational 

constraints which affect the safe operational space of the input 

parameters. Chapman et al. [3] gives a detailed list of factors that 

could directly limit the application of the controllable parameters 

such as a maximal WOB and RPM dictated by the drilling 

equipment, as well as listing more indirect factors related to 

torque, vibrations and hole cleaning which will limit certain 

combinations of input parameters. Dunlop et al. [2] further 

describe the implementation of these constraints for real-time 

drilling optimization. Factors limiting the amount of energy that 

can be applied to the drilling process through the controllable 

input parameters and factors which diminish the efficiency of the 

energy transferal between input parameters and ROP have also 

been investigated [11,12]. A solution for constraint handling in 

data-driven modelling is to limit the data used as the training set 

to values that do not violate constraints and not allowing the 

model to extrapolate results outside of this region [9]. 

The data used to tune or train the models used for real-time 

optimization, both physics-based and data-driven, needs to be 

representative of the current drilling conditions (e.g. from the 

same formation) to yield more accurate predictions [1,8]. A 

changepoint algorithm which determines what historical data is 

relevant for the task of ROP modelling and optimization has been 

implemented [2]. Using a sliding window of data containing a 

fixed amount of the most recent measurements to tune a physics-

based drilling model has also been suggested [4,5]. In addition 

to using representative data, the models need a varied sample of 

input (e.g. WOB and RPM) and output parameters (e.g. ROP) 

within this dataset to generate a representative data-driven model 

[9] or to tune the parameters in a physics-based model. A drilling 

advisory system which suggests changes in input parameters to 

the driller for the purpose of exploring the parameter space and 

identifying the operational point which minimizes the MSE has 

been field tested with good results [13]. 

Extremum seeking has previously been implemented 

successfully in a variety of engineering systems ranging from 

yield optimization in bioprocesses to jet engine stability control 

and many others [14], as well as in the petroleum industry for 

gas lift [15,16] and has been investigated for the purpose of 

drilling optimization [10]. The ES algorithm is a gradient ascent 

(or descent) method which requires a process with well-defined 

steady-state characteristics, so that for a given constant input, the 

system settles to a constant output within a reasonable time. It 

also needs the existence of a unique extremum in the output 

which corresponds to some value in the input variable(s) within 

the operational envelope. A more thorough review of these 

conditions and convergence criteria can be found in Tan et al. 

[14] or Ariur and Krstić [17]. When the system conditions are 

satisfied, the ES algorithm will automatically seek and maintain 

the value of the optimal input variable(s), without knowing the 

details of the relationship between the system’s input and output.  

The method we employ in this study is an ES algorithm that 

searches for the WOB which optimizes the ROP by use of real-

time drilling data.  While drilling ahead, the ES algorithm 

prescribes a continuous series of micro-tests by sending 

commands for variations in the WOB to the autodriller. The 

micro-tests are performed by periodically varying the input 

WOB around some base value to gather information about the 

current drilling conditions, and the data generated from this 

procedure is the training data used by the ES algorithm. The 

magnitude and frequency of the WOB variations are determined 

before the start of drilling and should be designed to induce a 

measurable change in the ROP, without interfering much with 

the overall drilling process. The algorithm relates the changes in 

the output ROP to the corresponding variations in the input WOB 

and uses this information to estimate the gradient of the output 

in the local region which has been investigated by the micro-test 

procedure. A sliding window of recent data is used to estimate 

the current gradient by means of linear least-squares regression. 

The gradient is automatically used to determine the direction and 

magnitude in which the WOB base value should be changed to 

increase the ROP by providing the autodriller with updated 

setpoints for the WOB. By continuously repeating this 

procedure, the ES algorithm can navigate the system to its 

optimal point and keep the process at its optimum by continuing 

to probe for changes in the system conditions.  

Hegde, Wallace and Gray [18] found that regression 

modelling methods gave acceptable ROP prediction, but the 

accuracy of the prediction suffers from the nonlinearity between 

the ROP and the regressors, among others the WOB. The 

gradient estimated by the ES algorithm is based on a relatively 

small region defined by the extent of the most recent variations 

in the WOB. In this local region the accuracy of a linear 

approximation of the nonlinear relationship between the ROP 

and the WOB will suffer less than when one considers a wider 

range of ROP and WOB values.    

We focus in this study on the practical aspects related to 

using ES for drilling optimization. The ES algorithm is 

automatically making changes to the applied WOB to maximize 

the ROP. To ensure that the algorithm does not steer the WOB 

to values which will result in e.g. the torque exceeding its 

maximal limit, a combination of a predictive and a reactive 

constraint handling technique is proposed. The constraint 

handling is based on real-time measurements while drilling and 

is demonstrated for a maximal limit imposed on the surface 

torque, but the method is generic and can be applied on various 

drilling parameters. The proposed optimization scheme is able to 

handle the process and measurement noise inherent to the 

drilling process, which can have a strong effect on the algorithm 

performance. Compared to the classical filter-based ES scheme 

(see e.g. Aarsnes, Aamo and Krstić [10]), the proposed method 

is also adjusted to ensure easier tuning of the system by using a 

least-squares method to estimate the gradient, which reduces the 

number of tuning parameters in the algorithm. 

The paper is organized in the following way: first, the 

background of the problem is given, before the ES algorithm is 

described. Then, a control strategy for handling drilling 

constraints is detailed, followed by a section containing details 

on instantaneous ROP estimation. The last two sections contain 

simulation results and conclusions. 
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BACKGROUND 
Drilling is a complicated process with a multitude of factors 

affecting the ROP, such as personnel and rig efficiency, 

formation characteristics, mechanical and hydraulic factors, and 

drilling fluid properties [4]. These many and often 

interconnected effects make accurate modelling of the process in 

real-time a complex task, because many of the parameters 

needed to correctly model the situation are not measured directly 

and will change over time. However, the general mechanics of 

the interaction between the bit and formation are well understood 

[19]. The instantaneous ROP can be described by  

 

𝑅𝑂𝑃 = 𝑓(𝑊𝑂𝐵, 𝒓), (1) 

 

where r is a vector containing all parameters other than the WOB 

which affect the ROP, such as RPM, flow rate, bit condition, 

bottomhole pressure and formation properties. The nonlinear 

function f which governs the relationship between the WOB, r 

and the ROP is not known explicitly, but for any set of values for 

the parameters contained in r it is assumed that f as a function of 

WOB inhibits several characteristic drilling regimes. Figure 1 

shows a nominal relationship between the ROP and the applied 

WOB, where it is assumed that the values of the parameters in r 

are constant. The ROP-WOB relationship is characterized by 

three distinct phases: 1) Inefficient drilling caused by low WOB, 

where the depth of cut is inadequate, 2) efficient drilling where 

all added WOB is transferred to cutting action at the bit in a 

straight-line fashion, and 3) inefficient drilling caused by 

founder [11,19]. The locations of the different phases in the 

ROP-WOB relationship are subject to change as parameters in 

the vector r vary, but the general shape of the three regions is 

expected to remain. A change in formation properties or an 

increase in RPM could alter the WOB at which foundering 

occurs, but WOB lower than the foundering value would still 

correspond to efficient drilling and values above founder would 

constitute inefficient drilling. The shape of the third region 

depends on what type of inefficiency is causing it, which could 

be excessive vibrations or inadequate cleaning at the bit. 

Depending on the cause of founder, its onset could be delayed 

by manipulation of combinations of drilling parameters or 

reengineering of the system [11,12], but these approaches are 

beyond the scope of this paper. 

The transition between the last two regions in Figure 1 is 

referred to as the founder point, and it is drilling at WOB which 

corresponds to this point or slightly below that is mainly desired. 

In this way, the possibly detrimental effects causing the founder 

as well as the bit wear resulting from a large increase in WOB 

for a small increase in ROP can be avoided. A convenient way 

of approaching this situation is to try and maximize not the ROP 

itself, but a performance function on the form 

 

𝐽 = 𝑅𝑂𝑃 − 𝜇𝑊𝑂𝐵, (2) 

 

where μ is a tuning parameter which penalizes the use of 

excessive WOB [10]. As the ES optimization scheme outlined in  

the next section is driven by an estimated gradient of J with 

respect to the WOB, the algorithm seeks the optimum given by 

 
𝜕𝐽

𝜕𝑊𝑂𝐵
=

𝜕𝑅𝑂𝑃

𝜕𝑊𝑂𝐵
− 𝜇 = 0. (3) 

 

From equation (3), the physical meaning of μ can be interpreted 

as a limiting value at which the ROP gradient is deemed too low 

to want to further change the WOB, even though the maximal 

ROP is not yet achieved. A larger value for μ will therefore 

correspond to a more conservative estimate of what the optimal 

operating point is. 

In practice, the drilling process is subject to constraints 

which might limit how much WOB can be applied, so that 

drilling at the founder point may not be feasible. A multitude of 

constraints like this have been identified by Dupriest and 

Koederitz [11] and Chapman et al. [3], such as available BHA 

weight, solids handling capacity and top drive torque rating. A 

method of avoiding violation of limitations while searching for 

the founder point is outlined in the constraints handling section.  

 

 

 
FIGURE 1: NOMINAL RELATIONSHIP BETWEEN ROP AND 

WOB, MODIFIED FROM DUPRIEST AND KOEDERITZ [11]. 
 

EXTREMUM SEEKING FOR ROP OPTIMIZATION 
The variables that the driller or an algorithm can readily 

control from the rig floor to affect the ROP are the WOB, the 

RPM and the flow rate. In this paper, we consider the case of 

optimizing the ROP by means of controlling the WOB in a 

constrained ES approach, with constant RPM and flow rate. The 

method is illustrated in Figure 2, where a continuous excitation 

signal is applied to the WOB to investigate the steady-state 

characteristics of an output performance function defined by 

equation (2). Under the assumption that the ROP-WOB 

relationship is subject to the different drilling regimes outlined 

in the Background section, the drilling process has a unique 

optimal WOB at which foundering starts to occur and is well 

suited for optimization with ES. 
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Although drilling is a continuous process, the sampled 

measurements and the commands given to the control system on 

the rig are performed in discrete time. This motivates the 

notation used here: t is the current time, Δt is the time interval 

between both measurements of drilling parameters and updated 

setpoints provided to the autodriller (here assumed to be the 

same), so that t + Δt signifies a value for the coming timestep.  

The ES algorithm can be divided into three main 

components: 1) The excitation signal, which introduces a 

variation in the input of the system, 2) the gradient estimator, 

used to quantify how the system reacts to the excitation, and 3) 

the optimizer, which changes the input WOB based on the 

estimated gradient. These components are described in detail in 

the following sections. 

 

 
FIGURE 2: CONCEPT ILLUSTRATUION OF EXTREMUM 

SEEKING APPLIED TO DRILLING. 
 

The Excitation Signal 

Some best estimate of the optimal input value, WOB0, is 

initially applied to the system. This estimate could be based on 

calculations from an available drilling model or experience from 

a similar offset well. While drilling ahead, the ES algorithm 

continuously explores the neighborhood of WOB0 and how the 

system responds to small variations in the WOB by conducting 

a series of micro-tests. This is done by automatically varying the 

WOB-setpoint provided to the autodriller according to  

 

𝑊𝑂𝐵(𝑡) = 𝑊𝑂𝐵0(𝑡) + 𝑑(𝑡, 𝐴, 𝑃). (4) 

 

The last term in equation (4) is the excitation signal, which for 

any integer, n, is given by 

 

𝑑(𝑡, 𝐴, 𝑃) =  {
𝐴. . …  𝑡 ϵ [𝑛𝑃, (𝑛 + 

1

2
) 𝑃⟩… . .

    −𝐴        𝑡 ϵ [ (𝑛 + 
1

2
)𝑃, (𝑛 + 1)𝑃⟩

 . (5) 

This signal is a square wave with an amplitude of A kg and a 

period of P seconds, which oscillates symmetrically about 

WOB0. For each period, the magnitude of A approximately 

determines the extent of the WOB-interval which is being 

investigated by the algorithm. A should be small enough to not 

detrimentally affect the overall drilling process, but at the same 

time be large enough to elicit a measurable change in the ROP 

which can be used for gradient estimation. The period of the 

excitation signal determines the amount of historical data used 

to estimate the gradient of the performance function and needs 

to be tuned accordingly. The parameter P should be designed 

large enough to generate a dataset that contains enough 

information so that it can be used for gradient estimation, while 

at the same time considering that a very large value for P will 

result in a lot of previous drilling data (which might no longer be 

representative of the current drilling conditions) being used for 

gradient estimation. 

 

Gradient Estimation 

The applied WOB and the resulting values of J calculated 

from equation (2) are stored in a buffer containing P seconds of 

history for these two parameters, denoted by WOBB and JB. At 

each update of measurements, the past values of J(t) and WOB(t) 

stored in the buffer are used to solve the 1st-order least-squares 

problem given by 

 

min
𝑎,𝑏

∑(𝐽𝐵(𝑡 − 𝑖𝛥𝑡) − (𝑎𝑊𝑂𝐵𝐵(𝑡 − 𝑖𝛥𝑡) + 𝑏))
2

𝑃−1

𝑖=0

,  (6) 

 

where a and b are the slope and intercept of the least-squares fit, 

respectively. These two parameters represent a linear 

approximation to how J has changed with the varying WOB for 

the past P seconds. The slope parameter a is used as an estimate 

of the gradient of the performance function at the current 

timestep, 

 
𝜕𝐽

𝜕𝑊𝑂𝐵
(t) ≈ 𝑎(𝑡). (7) 

 

In this way, a sliding window of data corresponding to one full 

period of the excitation signal is used to estimate the current 

gradient of J. On average, this estimate corresponds to the 

formation which was drilled P/2 seconds earlier, as this is the 

center of the sliding window. The excitation signal is symmetric 

about the slowly varying WOB0, so that equation (7) represents 

a gradient evaluated approximately at WOB0.  

 This technique of gradient estimation is a variant of the 

method proposed by Hunnekens et al. [20], where least-squares 

estimation was used in an ES algorithm without an excitation 

signal. This way of calculating the gradient is robust with respect 

to noise and sensor bias, since much of the noise is filtered out 

over the least-squares window, and any sensor bias is captured 

by the b-parameter, which is not used by the algorithm. In 

addition to this, the method is easier to apply than the classical 

filter-based ES approach. This is because the least-squares 
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gradient estimation does not require any tuning apart from 

determining the amplitude and period of the excitation signal, 

while the classical ES approach needs to tune both the excitation 

signal parameters and the filters to obtain an estimated gradient. 

 

Optimizer 

From Figure 2 it can be seen that the performance function 

has a positive slope when drilling with a WOB to the left of the 

maximal value of J, and a negative slope for WOB values beyond 

this point. The gradient obtained from equations (6) and (7) can 

thus be used to determine how the WOB should be altered to 

increase the performance function, J. This is done by calculating 

an updated WOB0 value for the coming timestep from 

 

𝑊𝑂𝐵0(𝑡 + 𝛥𝑡) = 𝑊𝑂𝐵0(𝑡) + 𝛾
𝜕𝐽

𝜕𝑊𝑂𝐵
(𝑡)𝛥𝑡, (8) 

 

which will move the drilling system to a slightly higher value of 

J. The parameter γ is a gain which determines the learning 

dynamics of the algorithm. That is, how fast the ES scheme 

should vary WOB0 as a response to the estimated gradient of J. 

The new WOB0 value calculated from equation (8) is used to 

update the WOB which will be sent to the autodriller in the next 

timestep, as dictated by equation (4) evaluated at t + Δt. The 

algorithm will subsequently repeat the process of estimating a 

new gradient based on new measurements and adapting to the 

newest information. It is worth noting that this update takes place 

at each timestep, with γ tuned so that WOB0 varies slowly 

compared to the variations in WOB caused by the excitation 

signal. In the constrained case, the WOB0 value requested by the 

algorithm is calculated from equation (14). 

A block diagram of the described optimization structure is 

shown in Figure 3. Each timestep constitutes a loop through this 

diagram, where the algorithm will vary the WOB according to 

equation (4), record and quantify the system response with 

equations (6) and (7) and use this information in equation (8) to 

update the WOB which should be applied to initiate a new 

iteration of the algorithm. 

 

 
FIGURE 3: ES SCHEME FOR UNCONSTRAINED 

DRILLING OPTIMIZATION. 

ROP OPTIMIZATION WITH CONSTRAINT HANDLING 
The optimization algorithm proposed in the previous section 

will be able to steer the drilling system to the optimum dictated 

by the performance function. In practice, operating at this point 

might not be feasible. Some reasons for this could be that the 

required WOB might exceed the available BHA weight or 

allowable WOB, there could be a maximal ROP limit related to 

cuttings transport or handling of cuttings at the surface, or the 

torque generated at the bit or at the surface could exceed the 

allowable values. Two methods for making the ES algorithm 

avoid violation of this type of constraints while searching for the 

optimum is presented below. The methods are illustrated for a 

maximal limit imposed on the surface torque, but the techniques 

are generic and could also be used on other limiting parameters. 

 

Predictive Constraint Handling 

The changes in the drilling process caused by varying the 

WOB can be a good source of information about the current 

system conditions and how other drilling parameters are affected 

by the WOB. The same methodology as was used to extract an 

estimate of the gradient of J in equations (6) and (7) is also able 

to estimate gradients of other drilling parameters and how they 

vary with the changing WOB. By storing measured values of the 

surface torque in an additional buffer, TB, containing P seconds 

of data, the gradient of the surface torque can be calculated from 

 

min
𝛼,𝛽

∑(𝑇𝐵(𝑡 − 𝑖𝛥𝑡) − (𝛼𝑊𝑂𝐵𝐵(𝑡 − 𝑖𝛥𝑡) + 𝛽))
2

𝑃−1

𝑖=0

,  (9) 

 
𝜕𝑇

𝜕𝑊𝑂𝐵
(t) ≈ 𝛼(𝑡). (10) 

 

The parameters α and β are the slope and intercept of the least-

squares fit, respectively. The gradient estimate given by 

equations (9) and (10) can be used to predict how the surface 

torque will react to further changes in the WOB, and how to 

avoid violation of constraints based on this information. 

The recorded surface torque is often plagued by noise, both 

from inaccurate measurements and process noise in the form of 

drillstring vibrations. Because of this, there is some uncertainty 

as to what the value of the surface torque is. To remedy this issue, 

the average value of the torque buffer, TB,avg, is taken as the 

surface torque, which approximates the torque experienced by 

the system when drilling with a weight on bit of WOB0. This 

averaging will reduce the amount of noise in the torque value 

used by the algorithm, but it will also introduce a time delay in 

the averaged torque value corresponding to half of the averaged 

period, the same delay that is inherently present in the gradient 

calculated in equations (9) and (10).  

To avoid the WOB being steered to values which cause a 

violation of the allowable torque, Tlimit, the gain parameter γ in 

equation (8) is calculated as  
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𝛾 =  {
   𝛾 ,   (𝑇𝐵,𝑎𝑣𝑔 + 𝐴

𝜕𝑇

𝜕𝑊𝑂𝐵
(𝑡)𝑆𝐹) < 𝑇𝑙𝑖𝑚𝑖𝑡

     0 ,    (𝑇𝐵,𝑎𝑣𝑔 + 𝐴
𝜕𝑇

𝜕𝑊𝑂𝐵
(𝑡)𝑆𝐹) ≥ 𝑇𝑙𝑖𝑚𝑖𝑡   

, (11) 

 

where SF is a safety factor greater than 1. Because the algorithm 

varies the weight on bit about WOB0 with a magnitude of A kg, 

equation (11) will stop the optimizer from exceeding the torque 

limit with a margin dictated by the SF parameter. This method 

also allows the excitation signal to continue the micro-testing for 

changes in the drilling conditions, even when the torque is close 

to the highest allowable value. The value for Tlimit used in 

equation (11) should be lower than the maximal limit the drilling 

system can handle, as an added safety measure.  

 

Reactive Constraint Handling 

In some instances, the predictive constraint handling 

detailed in equation (11) might not be enough to ensure that the 

torque stays within the allowable boundaries. This could be 

caused by either very noisy measurements which makes the 

calculated torque gradient inaccurate, or abrupt changes in 

drilling conditions, such as a formation change, which alters the 

torque in a short span of time. To ensure safe operations, a 

reactive constraint handling technique is implemented using a 

variable which is equal to zero if the constraint is not violated 

and proportional to the violation if the torque limit is exceeded, 

 

𝑒(𝑡) =  {
               0 ,                    𝑇𝑎𝑣𝑔 < 𝑇𝑙𝑖𝑚𝑖𝑡

  𝑇𝑎𝑣𝑔(𝑡) − 𝑇𝑙𝑖𝑚𝑖𝑡  ,      𝑇𝑎𝑣𝑔 ≥ 𝑇𝑙𝑖𝑚𝑖𝑡
 .  (12) 

 

Tavg is an average value spanning a few seconds of the most 

recent torque measurements, e.g. 5 seconds, to remove some of 

the measurement noise while still being representative of the 

current torque. This average parameter is introduced so that the 

constraint handling routine will not react to very short-term 

spikes in the measured surface torque. The value for Tlimit should 

be lower than the actual system limit, because the reactive 

constraint handling will only start to affect the system when Tavg 

is larger than Tlimit. The variable e from equation (12) is used to 

calculate a penalty variable, λ, by use of a discrete PI controller, 

 

𝜆(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∑𝑒(𝑖)𝛥𝑡.

𝑡

𝑖=0

 (13) 

 

KP and KI are the proportional and integral gains, respectively, 

which are the tuning parameters that determine how aggressively 

the controller should penalize torque values above the limit. The 

penalty term calculated from equation (13) is used to reduce the 

weight on bit demanded by the ES algorithm according to  

 
𝑊𝑂𝐵0,𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑(𝑡 + 𝛥𝑡) = 𝑊𝑂𝐵0(𝑡 + 𝛥𝑡) − 𝜆(𝑡). (14) 

 

The parameter WOB0,constrained is used in equation (4) to calculate 

the constrained WOB setpoint which is sent to the autodriller.  

The first term on the right-hand side of equation (14) is the 

unconstrained WOB0 value found by the optimizer, equation (8), 

which is calculated independently of the reactive constraint 

handling. If the torque limit has not been violated, λ will be equal 

to zero and the constrained WOB0 value will be equal to the 

WOB0 found by the optimizer. If the torque limit is exceeded, 

the WOB demanded by the ES algorithm will be reduced until 

the torque is again below its limiting value, at which point λ will 

retain a value determined by the summation term in equation 

(13).  How fast the reduction in WOB takes place once the 

constraint is violated is controlled by the gain parameters KP and 

KI in equation (13). They should be large enough to ensure that 

the penalty variable, λ, reduces the requested WOB faster than 

the adaptation gain, γ, is able to demand increases in the WOB. 

 

PRACTICAL CONSIDERATIONS 
Instantaneous ROP Estimation 

The proposed optimization algorithm relies heavily on 

causing a change in the ROP by varying the WOB and being able 

to quantify this change. The ROP is not a directly measured 

parameter, but rather calculated as a derivative of the position of 

the travelling block or other surface equipment, possibly with a 

model to account for the elasticity of the drill string. This 

differentiation procedure will amplify any inaccuracies in the 

measured block position, making the calculated ROP imprecise. 

These inaccuracies could be caused by measurement noise, rig 

heave or unaccounted for elongation and shortening of the 

drilling line when the hook position is estimated from the 

drawworks. A common way of dealing with this issue is to use 

ROP values averaged over a certain time or depth increment, 

which will reduce the inaccuracy but cause a time-delay in the 

estimated ROP. 

In this paper, the instantaneous ROP is approximated as the 

velocity of the travelling block. This is done by means of a 

Kalman Filter (KF), which is designed to account for process and 

measurement noise to yield a better ROP estimate. The KF is 

based on a linear state-space model which describes the 

relationship between the block position, hblock, and its derivative, 

the ROP, in consistent units as 

 

[
ℎ𝑏𝑙𝑜𝑐𝑘

𝑅𝑂𝑃
] (𝑡 + 𝛥𝑡) = [

1 −𝛥𝑡
0 1

] [
ℎ𝑏𝑙𝑜𝑐𝑘

𝑅𝑂𝑃
] (𝑡) + 𝑤(𝑡). (15) 

 

The last term in equation (15) is the process noise, which 

represents any forces which affects the ROP and makes it non-

constant, which in turn will affect the hook position. This could 

be a change in drilling conditions or variations in the input WOB, 

RPM or flow rate. The measurement of the block position is 

described by  

 

𝑦(𝑡) = [1 0] [
ℎ𝑏𝑙𝑜𝑐𝑘

𝑅𝑂𝑃
] (𝑡) + 𝑣(𝑡). (16) 

 

In equation (16), y represents the measured block position, which 

is made inaccurate by the measurement noise, v.  

The KF uses a combination of the hblock and ROP predicted 

by equation (15) and the measured y from equation (16) to yield 
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an estimate of what the true ROP is. This combination is done 

based on how much noise is affecting equations (15) and (16), 

where the KF will trust the ROP from equation (15) more if there 

is a lot of measurement noise compared to process noise, and 

vice versa. The values of v and w at any given time are not known 

by the filter, but some assumptions are made about them. The KF 

assumes that the disturbances are normally distributed variables 

which continuously affect the system, and that their distribution 

is described by 

 

𝑤~𝑁(0, 𝑄), , … . …  𝑄 =

[
 
 
 
(𝛥𝑡)4

4

(𝛥𝑡)3

2
(𝛥𝑡)3

2
(𝛥𝑡)2

]
 
 
 

𝜎𝑝
2, (17) 

 

𝑣~𝑁(0, 𝑅), …… …  𝑅 =  𝜎𝑚
2 . … . ….                 (18) 

 

In equations (17) and (18), Q and R are the covariance matrices 

of the process and measurement noise, respectively. The 

parameter σm is the standard deviation of the measurement noise 

and is presumed known from the specifications of the applied 

sensor or measurement technique. The standard deviation of the 

process noise, σm, is then the only unknown factor in equations 

(15) - (18) and is used as a tuning parameter for the KF. It should 

be noted that equations (15) and (17) can be derived from the 1st 

and 2nd equations of motion, where w captures the effect of a 

normally distributed acceleration affecting the system. 

In practice, it is not expected that the process noise affecting 

the drilling rate and hook position is normally distributed and 

continuously affecting the system, as is assumed in equation 

(17). It is more likely that this noise is displayed as more discrete 

variations in the system caused by changing drilling conditions 

and the fluctuating WOB. Despite this, the Kalman filter will still 

be able to provide good estimates of the instantaneous ROP when 

properly tuned. A block diagram of the complete ES scheme with 

constraint handling and ROP estimation is shown in Figure 4. 

 
FIGURE 4: ES SCHEME FOR CONSTRAINED DRILLING 

OPTIMIZATION.  

 

SIMULATION RESULTS 
Drilling Simulator 

The simulator used to study the proposed optimization 

technique is OpenLab, a high-fidelity drilling simulator 

developed by the Norwegian Research Centre (NORCE) in 

collaboration with the University of Stavanger. The simulator 

consists of a set of integrated numerical models covering 

different aspects of the drilling process, including torque and 

drag effects, cuttings transport, multi-phase flow and heat 

transfer [21]. The models on the OpenLab platform are run by 

supplying the simulator with setpoints for input variables, which 

the simulator translates to actions on the drill-floor with built-in 

functions which limits the allowable rate of changes according 

to equipment specifications [22].  

To simulate the effects of measurement noise, an option to 

add white gaussian noise to the surface torque and block position 

was included in the system. These sources of noise are denoted 

by vT and vh, respectively, and can be seen in Figure 4. The noise 

parameters used in the simulations have been taken to match the 

noise from logged drilling operations. 

 

Simulation Results 

A series of simulations have been performed in OpenLab to 

investigate the applicability of the proposed optimization 

scheme. The simulations detailed here are all carried out in the 

8.5” section of a vertical well, with drilling commencing at a 

depth of 2500 meters through a homogeneous formation. The 

system is set up to start the drilling of each new stand at an initial 

constant value of WOB for three minutes, followed by a full 

oscillation period of the excitation signal to estimate an initial 

gradient of J, before the ES algorithm starts the WOB-adaptation 

according to equation (14). Both RPM and flow rate are held 

constant throughout the runs, except when ramping up and down 

for connections every 27 meters. Parameters common for all the 

simulated scenarios are listed in Table 1. The value for μ used in 

the simulations signify that the optimum determined by J is 

reached when the ROP increases less than 5 m/hr for a 1000 kg 

increase in WOB. The simulations are all initiated at a 

conservative WOB value of 2000 kg, at which the ROP is 23 

m/hr. The optimum point sought by the ES algorithm is found at 

4700 kg of WOB and corresponds to a drilling speed of 43 m/hr, 

meaning that there is a potential increase in the ROP of 20 m/hr 

by drilling at the optimum WOB value.  
 

TABLE 1: PARAMETERS COMMON FOR ALL SIMULATIONS.  

Parameter Value Unit 

A 200 kg 

P 240 s 

μ 0.005 m/hr/kg 

Δt 1  s 

Kp 0.5 kg/Nm 

Ki 0.25 kg/Nm 

SF 3 - 

RPM 150 rpm 

Q 2000 lpm 

WOB0(t = 0) 2000 kg 



 

 8  

Simulations Without Measurement Noise 

This section covers two simulated scenarios where three 

stands are drilled. The gain parameter γ in equation (8) is here 

set to a value of 400 kg2·hr/m/s. No noise is added to the 

measurements, and the ROP used is the actual drilling rate 

reported by the simulator. The two simulation conditions are 

identical, with the exception of a limiting value for the surface 

torque of 5000 Nm which is imposed on the system in the second 

run. Figure 5 shows the resulting ROP, J, WOB and surface 

torque from these two simulations. 

In simulation 1, the weight on bit is steered from 2000 kg to 

a WOB0 value of about 4300 kg during the drilling of the first 

stand, before a connection takes place at approximately 2850 

seconds. This adjustment in WOB results in an increase in ROP 

of 18 m/hr, which is 90% of the interval between the starting 

point and the optimum. The next two stands are spent drilling 

while the ES algorithm slowly makes the system converge to the 

optimal WOB value, at which the performance function is seen 

to flatten out and become constant. 

The second simulation is initially identical to the first, 

before the increasing WOB causes the surface torque to become 

too close to the limiting value after 1400 seconds. At this point, 

the predictive constraint handling part of the algorithm stops the 

WOB-adaptation before the constraint is exceeded.  Because the 

system is forced to drill with a WOB lower than the optimal 

value, the second simulation spends about 23 minutes more than 

the first to complete the three stands.   

 
FIGURE 5: SIMULATIONS 1 AND 2, WHERE A TORQUE LIMIT 

IS IMPOSED ON THE SYSTEM IN SIMULATION 2. 

 

 

 

Simulations with Measurement Noise 

The results from simulations 3 and 4 are presented in Figure 

6, where the latter run is limited by a maximal surface torque of 

5000 Nm. Other than this, the scenarios are identical and are both 

performed with the parameters given in Table 2. A lower value 

of the adaptation gain, γ, is used in these simulations compared 

to the first two. The noise levels, vh and vT, are designed so that 

the measurements are disturbed by normally distributed random 

variables that take on values in the intervals ± 0.03 m and ± 500 

Nm, respectively. The ROP used in the algorithm is estimated 

from noisy block measurements with the Kalman filter. The 

spikes seen in the estimated ROP at the start of each drilled stand 

in Figure 6 are caused by the KF, which overestimates the ROP 

initially, before it has more data to work with and is able to home 

in on the true ROP value. These ROP-spikes occur during the 

initiation of drilling where the weight on bit is held constant and 

are thus not used by the algorithm for adaptation of the WOB.  

 

TABLE 2: PARAMETERS USED IN SIMULATIONS 3 AND 4. 

 

 

 

 

 

 

 

 

 

  
FIGURE 6: SIMULATIONS 3 AND 4, WHERE A TORQUE LIMIT 

IS IMPOSED ON THE SYSTEM IN SIMULATION 4. 

 

Parameter Value Unit 

vh ~N(0, 0.01) m 

vT ~N(0, 167) Nm 

σp 3·10-5 m/s2 

σm 10-2 m 

γ 250 kg2·hr/m/s 

Tavg interval 5 s 
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Simulation 3 is from the second track in Figure 6 seen to be 

adapting towards the optimal WOB-value but is not able to reach 

it within the simulated interval. The fastest adaptation takes place 

during the drilling of the first stand, where he ROP is increased 

by about 12 m/hr from the initial value. This corresponds to 60% 

of the total ROP improvement sought by the algorithm in this 

scenario. 

The third track in Figure 6 displays the “raw” noisy torque. 

This value is frequently seen to surpass the limiting torque, as 

the algorithm interprets it as very short-term fluctuations which 

it does not react to. The bottom track in Figure 6 shows the 5 

second average torque value for simulation 4, which is used in 

equation (12) to determine when the torque is above the limit. 

After drilling for 2500 seconds and onwards, this Tavg value is 

seen to exceed the constraint for a short period of time on several 

occasions. Each time this occurs, a reduction in WOB takes place 

until the torque is again within its allowable values. As in 

simulation 2, the WOB in simulation 4 is not allowed to work its 

way further towards the optimum, which causes the drilling of 

the three stands to take more time.  

 

Discussion of Results 

Throughout the simulations, the ES algorithm is seen to 

adjust the WOB the fastest during the first drilled stand. This is 

caused by the adaptation being proportional to the gradient of the 

performance function. As the WOB closes in on its optimal 

value, this gradient will become smaller (see Figure 2). As can 

be observed in simulations 1 and 3, this property allows the ES 

algorithm to quickly modify the WOB to the neighborhood of 

the optimal value. After the initial fast adaptation, it slowly 

converges towards the optimum while continuously probing for 

any changes in drilling conditions. An important parameter 

which affects the adaptation rate of the algorithm is the gain 

parameter γ. On the one hand, it determines the rate of 

convergence of the WOB to the optimum. The larger it is, the 

faster is the convergence. On the other hand, higher values of γ 

will make the algorithm more sensitive to measurement and 

process noise, as the system makes larger adjustments even for 

small deviations caused by noise. Thus, finding a value for 

gamma which balances the convergence rate and sensitivity to 

noise is an important tuning task when using the ES algorithm. 

The constraining torque value which is used in simulations 

2 and 4 is only a fraction of what would be the allowable 

continuous torque of e.g. a top drive. The limitation is 

implemented to demonstrate the algorithm’s ability to stay 

within constrictions in a practical manner while it searches for 

the optimum WOB, as is seen in the simulated scenarios. 

Simulation 4 demonstrates that when the constrained parameter 

(the torque) is very noisy, it can exceed the limit for short periods 

of time. This observation together with general HSE 

considerations necessitates that the maximal torque value 

implemented in the algorithm is lower than the actual system 

limitation. 

The initial WOB0 used in all the simulations is quite far from 

the optimal value. Even though the adaptation of the algorithm 

is faster when further away from the optimum, a more efficient 

optimization method in this scenario could be a hybrid between 

the data-driven and physics-based approaches, conceptually 

similar to what was done by Spencer et al. [7]. The information 

gathered from the initial WOB excitations could be used to 

roughly tune a physics-based drilling model, and the suggested 

optimal parameters provided by this model would be the starting 

point for the ES algorithm which would further home in on the 

founder point. 

 

CONCLUSIONS 
We present a data-driven optimization strategy which 

automatically seeks and maintains the optimal WOB maximizing 

the ROP. The algorithm does not require any model of the 

drilling process and utilizes continuous micro-testing of the 

drilling conditions to identify and implement adjustments of the 

WOB leading to higher ROP. The micro-testing procedure does 

not cause any significant perturbation to the drilling process and 

is run continuously to adapt to the current drilling environment. 

The algorithm has been tested on a high-fidelity drilling 

simulator where it demonstrated the ability to steer the WOB to 

values resulting in higher ROP both with and without the 

presence of noise in the data. The simulated scenarios show that 

the proposed optimization strategy is able to automatically 

search for and implement improvements in the ROP while 

adhering to process constraints, where the constraint handling 

was demonstrated with the example of a maximal limit imposed 

on the surface torque. 

NOMENCLATURE 
Parameters 

a Least-squares slope (m/hr/kg) 

α Least-squares slope (Nm/kg) 

A Amplitude of excitation signal (kg) 

b Least-squares intercept (m/hr) 

β Least-squares intercept (Nm) 

d Excitation signal (kg) 

Δt Time increment (s) 

e Torque limitation variable (Nm) 

γ Adaptation gain (kg2·hr/m/s) 

hblock Height of travelling block (m) 

J Performance function (m/hr) 

JB Buffer with past J values (m/hr) 

λ Penalty variable (kg) 

μ Parameter in J (m/hr/kg) 

N Probability density function of the normal 

distribution 

P Period of excitation signal (s) 

Q Process noise covariance matrix  

r Vector of drilling parameters  

R Measurement noise covariance matrix 

σm Measurement noise std. dev. (m) 

σp Process noise standard deviation (m/s2) 

t Time (s) 

T Torque (Nm) 

Tavg 5 second average torque value (Nm) 

TB Buffer with past torque values (Nm) 
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TB,avg Average value of TB (Nm) 

Tlimit Limiting torque value (Nm) 

v Measurement noise  

vh Measurement noise in hblock (m) 

vT Torque measurement noise (Nm) 

w Process noise  

WOB0 Center WOB value in d (kg) 

WOB0,constrained   Constrained WOB0 value (kg) 

WOBB Buffer with past WOB values (kg) 

y Measurement of hblock (m) 
h  
Abbreviations 

ES Extremum Seeking  

KF Kalman Filter  

MSE Mechanical Specific Energy  

ROP Rate of Penetration (m/hr) 

RPM Revolutions per Minute (rpm) 

SF Safety Factor    

WOB Weight on Bit (kg) 
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ABSTRACT 

The Rate of Penetration (ROP) is one of the key parameters related to the efficiency of the 
drilling process. Within the confines of operational limits, the drilling parameters affecting 
the ROP should be optimized to drill more efficiently and safely, to reduce the overall cost 
of constructing the well. In this study, a data-driven optimization method called Extremum 
Seeking (ES) is employed to automatically find and maintain the optimal Weight on Bit 
(WOB) which maximizes the ROP. The ES algorithm is a model-free method which gathers 
information about the current downhole conditions by automatically performing small tests 
with the WOB and executing optimization actions based on the test results. In this paper, this 
optimization method is augmented with a combination of a predictive and a reactive 
constraint handling technique to adhere to operational limitations. These methods of 
constraint handling within ES application to drilling are demonstrated for a maximal limit 
imposed on the surface torque, but the methods are generic and can be applied on various 
drilling parameters. The proposed optimization scheme is tested with experiments on a 
downscaled drilling rig and  simulations on a high-fidelity drilling simulator of a full-scale 
drilling operation. The experiments and simulations show the method’s ability to steer the 
system to the optimum and to handle constraints and noisy data, resulting in safe and efficient 
drilling at high ROP. 
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1. INTRODUCTION 

A substantial part of offshore field development costs originates from drilling, with most 

of these costs being related to time. There is a great potential for cost reduction by drilling 

safer, faster and with less non-productive time. Methods used for real-time drilling 

optimization often focus on tuning physics-based models of the drilling process to fit 

available data from current or offset operations. The tuned models are used to predict how 

the drilling process will react to different values of the controllable parameters such as 

Weight on Bit (WOB), drill string rotational speed (RPM) and mud flow rate. Based on this 

prediction, the models can be used to provide estimates of the optimal drilling parameters, 

which can be supplied to the driller as suggestions or directly fed to the control system on 

the rig in a closed loop [1-4]. Field tests of a Rate of Penetration (ROP) optimization 

algorithm using physics-based models have shown good results, with the largest increases in 

ROP obtained when the algorithm was run in closed loop [1,2] and a reduction in downhole 

tool failures when applying the optimization system [2].  

A potential drawback to real-time optimization with the physics-based models is that the 

analysis is based on a mathematical description of the drilling process, and the existing 

models might not be very accurate in predicting the ROP [4,5]. A possible remedy for model 

inaccuracies could be the use of data-driven modelling techniques, or a hybrid between data-

driven and physics-based modelling methods. The latter approach was applied in a study on 

how to automatically minimize Mechanical Specific Energy (MSE) when drilling through 

layered materials with a lab-scale rig [6]. A physics-based drilling model was used to find an 

initial estimate of the optimal WOB. A data-driven algorithm was subsequently utilized while 

drilling to search the neighborhood of the initial estimate for WOB values which could 

further reduce the MSE. Hegde et al. [7] found that a data-driven model gave better ROP 

predictions compared to physics-based models when both approaches were using the same 

input parameters. The selection of which type of data-driven model that can be used for real-

time optimization is a tradeoff between runtime and performance, where more advanced 

models will give more accurate ROP predictions but suffer from longer computational time 

and vice versa [8].  
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The data used to tune or train the models employed for real-time optimization, both 

physics-based and data-driven, needs to be representative of the current drilling conditions 

(e.g. from the same formation) to yield more accurate predictions [8,9]. A changepoint 

algorithm which determines what historical data is relevant for the task of ROP modelling 

and optimization has been implemented in [1]. Using a sliding window of data containing a 

fixed amount of the most recent measurements to tune a physics-based drilling model has 

also been suggested [3,4]. In addition to using representative data, the models need a varied 

sample of input (e.g. WOB and RPM) and output parameters (e.g. ROP) within this dataset 

to generate a representative data-driven model [8] or to tune the parameters in a physics-

based model.  

An important component of a practically relevant optimization method is handling of 

operational constraints. The drilling process is subject to a multitude of operational 

limitations which affect the safe operational space of the input parameters. Chapman et al. 

[2]  give a detailed list of factors that could directly limit the application of the controllable 

parameters such as a maximal WOB and RPM dictated by the drilling equipment, as well as 

listing more indirect factors related to torque, vibrations and hole cleaning which will limit 

certain combinations of input parameters. Dunlop et al. [1] further describe the 

implementation of these constraints for real-time drilling optimization. Factors limiting the 

amount of energy that can be applied to the drilling process through the controllable input 

parameters and factors which diminish the efficiency of the energy transferal between input 

parameters and ROP have also been investigated [10,11]. A solution for constraint handling 

in data-driven modelling is to limit the data used as the training set to values that do not 

violate constraints and not allowing the model to extrapolate results outside of this region 

[8]. The downside of these types of constraint handling is that the limiting values for e.g. the 

WOB needs to be known in advance (e.g. based on a model), which can lead to conservative 

estimates which precludes drilling at peak efficiency.  

In this paper, we apply a data-driven optimization method called Extremum Seeking (ES) 

[12] to the problem of seeking optimal WOB providing maximal dysfunction-free ROP under 

unknown and uncertain downhole conditions. The ES method does not require any a priori 
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model of the process to be optimized and has low computational cost. This makes it 

especially suitable for the considered real-time optimization of ROP(WOB). ES has 

previously been implemented successfully in a variety of engineering systems ranging from 

yield optimization in bioprocesses to jet engine stability control and many others [13]. In 

several recent studies, ES has been investigated for the purpose of drilling optimization. 

Banks [14] evaluated ES with induced high-frequency oscillations on a laboratory drill rig to 

benchmark different bits through MSE minimization. Simulation studies on single variable 

[15,16] and multivariable [17] ES have explored the method’s potential for drilling 

applications. A closed-loop optimization system employing ES has been tested in the field 

with promising results [18]. 

The ES method, applied to the optimization of ROP(WOB), can be briefly described as 

follows. While drilling ahead, the ES algorithm prescribes a continuous series of micro-tests 

by sending commands for small variations in the WOB to the autodriller. The micro-tests are 

performed by periodically varying the input WOB around some base value to gather 

information about the current drilling conditions. The data generated from this procedure is 

the training data used by the ES algorithm to create a local linear model. The algorithm relates 

the changes in the output ROP to the corresponding variations in the input WOB and uses 

this information to estimate the gradient (linear model) of the ROP as a function of WOB in 

the local region investigated by the micro-test procedure. The gradient is then automatically 

used to determine the direction and magnitude in which the WOB base value should be 

changed to increase the ROP. By continuously repeating this procedure, the ES algorithm 

can navigate the system to its optimal point and keep the process at its optimum by continuing 

to probe for changes in the system conditions.  

Although the idea of applying ES to drilling optimization is not new, the state-of-the-art 

literature lacks details on the practical application of ES in the inherently noisy drilling 

environment, as well as details on constraint handling techniques used to ensure safe 

application of the optimization method. In this paper we are addressing this gap by focusing 

on the practical aspects related to using ES for drilling optimization, with emphasis on 

handling process constraints, uncertain conditions, and noisy measurements. To do this, we 
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investigate the ES algorithm on a downscaled drilling rig which captures the vibrations and 

noisy behavior of the drilling process. The ES method is also tested with a high-fidelity 

drilling simulator, to qualify the results from the experiments to full-scale operations. The 

ES algorithm is automatically making changes to the applied WOB to optimize the ROP. To 

ensure that the algorithm does not steer the WOB to values which will result in, e.g., the 

torque exceeding its maximal limit, a combination of a predictive and a reactive constraint 

handling technique is investigated in the lab and in simulation scenarios. The constraint 

handling is based on real-time measurements while drilling and is demonstrated for the case 

of a maximal limit imposed on the surface torque (still, the method is generic and can be 

applied on various drilling parameters). The proposed optimization scheme is able to handle 

the process and measurement noise inherent to the drilling process, which can have a strong 

effect on the algorithm performance. Compared to the classical filter-based ES scheme (see 

e.g. Aarsnes, Aamo and Krstić [16]), the proposed method is also adjusted to ensure easier 

tuning of the system by using a least-squares method to estimate the gradient, which reduces 

the number of tuning parameters in the algorithm. 

The remainder of the paper is organized in the following way: In Section 2, we present 

the background for the challenge of drilling with the optimal WOB. Section 3 describes the 

Extremum Seeking algorithm and its application in drilling operations. In Section 4, we detail 

approaches for constraint handling and instantaneous ROP estimation. Experimental setup 

and results are provided in Section 5. Section 6 details simulations performed on a high-

fidelity drilling simulator. A discussion of the results and conclusions are given in Sections 

7 and 8, respectively. 

 

2. BACKGROUND 

Drilling is a complicated process with a multitude of factors affecting the ROP, such as 

personnel and rig efficiency, formation characteristics, mechanical and hydraulic factors, and 

drilling fluid properties [3]. These many and often interconnected effects make accurate 

modelling of the process in real-time a complex task, as many of the parameters needed to 

correctly model the situation are not measured directly and will change over time. However, 
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the general mechanics of the interaction between the bit and formation are well understood 

[19]. The instantaneous ROP can be described by  

 

𝑅𝑂𝑃 = 𝑓(𝑊𝑂𝐵, 𝒓), (1) 

 

where r is a vector containing all parameters other than the WOB which affect the ROP, such 

as RPM, flow rate, bit condition, bottomhole pressure and formation properties. The 

nonlinear function f which governs the relationship between the WOB, r and the ROP is not 

known explicitly, but for any set of values for the parameters contained in r it is assumed that 

f as a function of WOB inhibits several characteristic drilling regimes. Fig. 1 shows a nominal 

relationship between the ROP and the applied WOB, where it is assumed that the values of 

the parameters in r are constant. The ROP-WOB relationship is characterized by three 

distinct phases: 1) Inefficient drilling caused by low WOB, where the depth of cut is 

inadequate, 2) efficient drilling where increased WOB is transferred to cutting action at the 

bit at peak efficiency in a straight-line fashion, and 3) inefficient drilling caused by 

foundering effects [10,19]. The locations of the different phases in the ROP-WOB 

relationship are subject to change as parameters in the vector r vary, but the general shape of 

the three regions is expected to remain. A change in formation properties or an increase in 

RPM could alter the WOB at which foundering occurs, but WOB at or slightly lower than 

the foundering value would still correspond to efficient drilling and WOB values above the 

founder point would constitute inefficient drilling. The shape of the third region depends on 

what type of inefficiency is causing it, which could be inadequate cuttings removal at the bit 

or excessive vibrations such as stick-slip and whirl. Drilling with these types of dysfunctions 

can be detrimental for the bit and downhole tools and should be avoided to extend the lifetime 

of the equipment. Depending on the cause of founder, its onset could be delayed by 

manipulation of combinations of drilling parameters or reengineering of the system [10,11], 

but these approaches are beyond the scope of this paper. 
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Fig. 1 Nominal relationship between the ROP and WOB, modified from Dupriest and 

Koederitz [10]. 

 

The transition between the last two regions in Fig. 1 is referred to as the founder point, 

and it is drilling at WOB which corresponds to this point or slightly below that is mainly 

desired. In this way, the possibly detrimental effects causing the founder as well as the bit 

wear resulting from a large increase in WOB for a small increase in ROP can be avoided. A 

convenient way of approaching this situation is to try and maximize not the ROP itself, but 

a performance function on the form 

 

𝐽 = 𝑅𝑂𝑃 − 𝜇𝑊𝑂𝐵, (2) 

 

where μ is a tuning parameter which penalizes the use of excessive WOB [16]. As the ES 

optimization scheme, outlined further in Section 3, is driven by an estimated gradient of J 

with respect to the WOB, the algorithm seeks the optimum given by 

 

𝜕𝐽

𝜕𝑊𝑂𝐵
=

𝜕𝑅𝑂𝑃

𝜕𝑊𝑂𝐵
− 𝜇 = 0. (3) 
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From Eq. (3), the physical meaning of μ can be interpreted as a limiting value at which the 

ROP gradient is deemed too low to want to further change the WOB, even though the 

maximal ROP is not yet achieved. A larger value for μ will therefore correspond to a more 

conservative estimate of what the optimal operating point is. 

In practice, the drilling process is subject to constraints which might limit how much 

WOB can be applied, so that drilling at the founder point may not be feasible. A multitude 

of constraints like this have been identified by Dupriest and Koederitz [10] and Chapman et 

al. [2], such as available BHA weight, solids handling capacity and top drive torque rating. 

A method of avoiding violation of limitations while searching for the founder point is 

outlined in Section 4.  

 

3. EXTREMUM SEEKING FOR ROP OPTIMIZATION 

The ES algorithm is a gradient ascent (or descent) method which requires a process with 

well-defined steady-state characteristics, so that for a given constant input, the system settles 

to a constant output within a reasonable time. It also needs the existence of a unique 

extremum in the output which corresponds to some value in the input variable(s) within the 

operational envelope. A more thorough review of these conditions and convergence criteria 

can be found in Tan et al. [13] or Ariur and Krstić [12]. When the system conditions are 

satisfied, the ES algorithm will automatically seek and maintain the value of the optimal input 

variable(s), without knowing the details of the relationship between the system’s input and 

output.  

The variables that the driller or an algorithm can readily control from the rig floor to 

affect the ROP are the WOB, the RPM and the flow rate. In this paper, we consider the case 

of optimizing the ROP by means of controlling the WOB in a constrained ES approach, with 

constant RPM and flow rate. The method is illustrated in Fig. 2, where an excitation signal 

is applied to the WOB to investigate the steady-state characteristics of an output performance 

function defined by Eq. (2). Under the assumption that the ROP-WOB relationship is subject 

to the different drilling regimes outlined in Section 2, the drilling process has a unique 
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optimal WOB at which foundering starts to occur and is well suited for optimization with 

ES. 

 
Fig. 2 Concept illustration of Extremum Seeking applied for drilling optimization. 

 

Although drilling is a continuous process, the sampled measurements and the commands 

given to the control system on the rig are performed in discrete time. This motivates the 

notation used here: t is the current time, Δt is the time interval between both measurements 

of drilling parameters and updated setpoints provided to the autodriller (here assumed to be 

the same), so that t + Δt signifies a value for the coming timestep.  

The ES algorithm can be divided into three main components: 1) The excitation signal, 

which introduces a variation in the input of the system, 2) the gradient estimator, used to 

quantify how the system reacts to the excitation, and 3) the optimizer, which changes the 

input WOB based on the estimated gradient. These components are described in detail in the 

following. 
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3.1 The Excitation Signal 

Some best estimate of the optimal input value, WOB0, is initially applied to the system. 

This estimate could be based on a drill-off test, calculations from an available drilling model 

or experience from a similar offset well. While drilling ahead, the ES algorithm continuously 

explores the neighborhood of WOB0 and how the system responds to small variations in the 

WOB by conducting a series of micro-tests. This is done by automatically varying the WOB-

setpoint provided to the autodriller according to  

 

𝑊𝑂𝐵(𝑡) = 𝑊𝑂𝐵଴(𝑡) + 𝑑(𝑡, 𝐴, 𝑃). (4) 

 

The last term in Eq. (4) is the excitation signal, which is given by 

 

𝑑(𝑡, 𝐴, 𝑃) = 𝐴 · 𝑠𝑔𝑛 ቆ𝑠𝑖𝑛 ൬
2𝜋𝑡

𝑃
൰ቇ (5) 

 

In Eq. (5), sgn is the signum function which takes on a value of 1 when the argument is 

positive, a value of -1 when the argument is negative and a zero value for a zero argument. 

This signal is a square wave with an amplitude of A kg and a period of P seconds, which 

oscillates symmetrically about WOB0. For each period, the magnitude of A approximately 

determines the extent of the WOB-interval which is being investigated by the algorithm. The 

amplitude should be small enough to not detrimentally affect the overall drilling process, but 

at the same time be large enough to elicit a measurable change in the ROP which can be used 

for gradient estimation. A square wave signal is used in this work, as this will yield the 

maximal output (ROP) signal power for a given amplitude [20], which will enable the ES 

algorithm to estimate more accurate gradients in the presence of noisy measurements. It is 

also expected that a square signal shape is easier to realize with a standard autodriller 

functionality, compared to the sinusoidal signal often used in ES algorithms. 

The period of the excitation signal determines the amount of historical data used to 

estimate the gradient of the performance function and needs to be tuned accordingly. The 
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parameter P should be designed large enough to generate a dataset that contains enough 

information so that it can be used for gradient estimation when the data is noisy. At the same 

time, it must be considered that a very large value for P will result in a lot of previous drilling 

data (which might no longer be representative of the current drilling conditions) being used 

for gradient estimation.  

 

3.2 Gradient Estimation 

The applied WOB and the resulting values of J calculated from Eq. (2) are stored in 

buffers containing P seconds of history for these two parameters. At each update of 

measurements, the past values of J and WOB stored in the buffers are used to solve the 1st-

order least-squares problem given by 

 

෍ ൫𝐽(𝑡 − 𝑖𝛥𝑡) − (𝑎𝑊𝑂𝐵(𝑡 − 𝑖𝛥𝑡) + 𝑏)൯
ଶ

 → min 
௔,௕

௉/௱௧ିଵ

௜ୀ଴

 (6) 

 

where a and b are the slope and intercept of the least-squares fit, respectively. These two 

parameters represent a linear approximation to how J has changed with the varying WOB for 

the past P seconds. The slope parameter a is used as an estimate of the gradient of the 

performance function at the current timestep, 

 

∂𝐽

∂𝑊𝑂𝐵
ฬ

ௐை஻బ(௧)
≈ 𝑎(𝑡). (7) 

 

In this way, a sliding window of data corresponding to one full period of the excitation signal 

is used to estimate the current gradient of J. On average, this estimate corresponds to the 

formation which was drilled P/2 seconds earlier, as this is the center of the sliding window. 

The excitation signal is symmetric about the slowly varying WOB0, so that Eq. (7) represents 

a gradient evaluated approximately at WOB0.  
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 This way of calculating the gradient is robust with respect to noise and sensor bias, since 

much of the noise is filtered out over the least-squares window, and any sensor bias is 

captured by the b-parameter which is not used by the ES algorithm. Still, if the measurements 

are very noisy, the data should be low pass filtered before being analyzed with Eqs. (6) and 

(7) to get a better gradient estimate. The least-squares technique used here is also easier to 

apply than the classical filter-based ES method. This is because the least-squares gradient 

estimation does not require tuning of the filters used in the classical approach.  

 

3.3 Optimizer 

From Fig. 2 it can be seen that the performance function has a positive slope when 

drilling with a WOB to the left of the maximal value of J, and a negative slope for WOB 

values beyond this point. The gradient obtained from Eqs. (6) and (7) can thus be used to 

determine how the WOB should be altered to increase the performance function, J. This is 

done by calculating an updated WOB0 value for the coming timestep from 

 

𝑊𝑂𝐵଴(𝑡 + 𝛥𝑡) = 𝑊𝑂𝐵଴(𝑡) + 𝛾
𝜕𝐽

𝜕𝑊𝑂𝐵
(𝑡)𝛥𝑡, (8) 

 

which will move the drilling system to a slightly higher value of J if the estimated gradient 

indicates that this is possible. The parameter γ is a gain which determines the learning 

dynamics of the algorithm. That is, how fast the ES scheme should vary WOB0 as a response 

to the estimated gradient of J. The new WOB0 value calculated from Eq. (8) is used to update 

the WOB which will be sent to the autodriller in the next timestep, as dictated by Eq. (4) 

evaluated at the coming timestep, t + Δt. The algorithm will subsequently repeat the process 

of estimating a new gradient based on new measurements and adapting to the newest 

information. It is worth noting that this update takes place at each timestep, with γ tuned so 

that WOB0 varies relatively slowly compared to the variations in WOB caused by the 

excitation signal.  
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A block diagram of the described optimization structure is shown in Fig. 3. Each timestep 

constitutes a loop through this diagram, where the algorithm will vary the WOB according 

to Eq. (4), record and quantify the system response with Eqs. (6) and (7) and use this 

information in Eq. (8) to update the WOB which should be applied to initiate a new iteration 

of the algorithm. 

 
Fig. 3 ES scheme for drilling optimization. 

 

4. CONSTRAINT HANDLING AND PRACTICAL CONSIDERATIONS 

The optimization algorithm described in the previous section will be able to steer the 

drilling system to the optimum dictated by the performance function, given that the drilling 

process adheres to the general ROP-WOB relationship described in Section 2. In practice, 

drilling at the founder point might not be feasible. Some reasons for this could be that the 

required WOB might exceed the available BHA weight or allowable WOB, there could be a 

maximal ROP limit related to cuttings transport or handling of cuttings at the surface, or the 

torque generated at the bit or at the surface could exceed the allowable values. Two methods 

for making the ES algorithm avoid violation of this type of constraints while searching for 

the optimum is presented in the following. The methods are illustrated for a maximal limit 
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imposed on the surface torque, but the techniques are generic and could also be used on other 

limiting parameters. The underlying assumption for these techniques in the case of a torque 

constraint, is that the torque and WOB are positively correlated. 

 

4.1 Predictive Constraint Handling 

The changes in the drilling process caused by varying the WOB can be a good source of 

information about the current system conditions and how other drilling parameters are 

affected by the WOB. The same methodology as was used to extract an estimate of the 

gradient of J in Eqs. (6) and (7) is also able to estimate gradients of other drilling parameters 

and how they vary with the changing WOB. By storing measured values of the surface torque 

in an additional buffer containing P seconds of data, the gradient of the surface torque with 

respect to the WOB can be calculated from 

 

෍ ൫𝑇(𝑡 − 𝑖𝛥𝑡) − (𝛼𝑊𝑂𝐵(𝑡 − 𝑖𝛥𝑡) + 𝛽)൯
ଶ

 → min,
௔,௕

௉ ௱௧⁄ ିଵ

௜ୀ଴

(9) 

 

∂𝑇

∂𝑊𝑂𝐵
ฬ

ௐை஻బ(௧)
≈ 𝛼(𝑡). (10) 

 

The parameters α and β are the slope and intercept of the least-squares fit, respectively. The 

gradient estimate given by Eqs. (9) and (10) can be used to predict how the torque will react 

to further changes in the WOB, and how to avoid violation of constraints based on this 

information.  

The recorded surface torque is often plagued by noise, both from inaccurate 

measurements and process noise in the form of drillstring vibrations. Because of this, there 

is some uncertainty as to what the value of the torque is. To remedy this issue, the average 

value that spans P seconds of data, Tavg, is taken as the surface torque, which approximates 

the torque experienced by the system when drilling with a weight on bit of WOB0. This 

averaging will reduce the amount of noise in the torque value used by the algorithm, but it 
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will also introduce a time delay in the averaged torque value corresponding to half of the 

averaged period, the same delay that is inherently present in the gradient calculated in Eqs. 

(9) and (10). Additional measures to counteract the effects of noisy torque and WOB on the 

analysis is to use filtered values for these parameters in Eq. (9), as well as increasing the 

summation interval to analyze e.g. data from two periods of the excitation signal.  

To avoid the WOB being steered to values which cause a violation of the allowable 

torque, Tlimit, the gain parameter γ in Eq. (8) is calculated as  

 

𝛾 =  ൞
   𝛾 ,   ൬𝑇௔௩௚ + 𝐴

𝜕𝑇

𝜕𝑊𝑂𝐵
(𝑡)𝑆𝐹൰ < 𝑇௟௜௠௜௧

     0 ,    ൬𝑇௔௩௚ + 𝐴
𝜕𝑇

𝜕𝑊𝑂𝐵
(𝑡)𝑆𝐹൰ ≥ 𝑇௟௜௠௜௧ 𝑎𝑛𝑑 

𝜕𝐽

𝜕𝑊𝑂𝐵
> 0  

, (11) 

 

where SF is a safety factor greater than 1. Because the algorithm varies the weight on bit 

about WOB0 with a magnitude of A kg, Eq. (11) will stop the optimizer from exceeding the 

torque limit with a margin dictated by the SF parameter. This method also allows the 

excitation signal to continue the micro-testing for changes in the drilling conditions, even 

when the torque is close to the highest allowable value. The positive gradient condition in 

Eq. (11) is included to avoid a situation where the ES algorithm wants to reduce the WOB to 

drill more efficiently but is precluded from doing so because it is currently close to the 

maximal allowable torque. The value for Tlimit used in Eq. (11) should be lower than the 

maximal limit the drilling system can handle, as an added safety measure.  

 

4.2 Reactive Constraint Handling 

In some instances, the predictive constraint handling detailed in Eq. (11) might not be 

enough to ensure that the torque stays within the allowable boundaries. This could be caused 

by either very noisy measurements which makes the calculated torque gradient inaccurate, 

or abrupt changes in drilling conditions, such as a formation change, which alters the torque 

in a short span of time. To ensure safe operations, a reactive constraint handling technique is 

implemented to reduce the WOB and consequently the torque if the limit is exceeded. This 
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technique uses a variable which is equal to zero if the constraint is not violated and 

proportional to the violation if the torque limit is surpassed, 

 

𝑒(𝑡) =  ൜
               0 ,                    𝑇௔௩௚ < 𝑇௟௜௠௜௧

  𝑇௙௜௟௧(𝑡) − 𝑇௟௜௠௜௧ ,      𝑇௔௩௚ ≥ 𝑇௟௜௠௜௧
 .  (12) 

 

In Eq. (12), Tfilt is a low pass filtered torque value, designed to remove most of the noise 

while still being representative of the current torque level. This filtered parameter is 

introduced so that the constraint handling routine will not react to very short-term spikes in 

the measured surface torque. If the variable e is larger than 0, this indicates that the constraint 

is violated and the adaptation gain, γ, is set to zero. The value for Tlimit should be lower than 

the actual system limit, because the reactive constraint handling will only start to affect the 

system when Tfilt is larger than Tlimit. The variable e from Eq. (12) is used to calculate a penalty 

variable, λ, by use of a discrete Proportional-Integral (PI) controller, 

 

𝜆(𝑡) = 𝐾௉𝑒(𝑡) + 𝐾ூ𝛹(𝑡)𝛥𝑡, (13) 

 

𝛹(𝑡) = ൞ 

      0,          𝑇௙௜௟௧ < 𝑇௟௜௠௜௧

෍ 𝑒(𝑖)

௧

௜ୀ௡

,   𝑇௙௜௟௧ ≥ 𝑇௟௜௠௜௧

. (14) 

 

In Eq. (13), KP and KI are the proportional and integral gain, respectively, which are the 

tuning parameters that determine how aggressively the controller should penalize torque 

values above the limit. The parameter 𝛹 in Eqs. (13) and (14) is an integral term which will 

continue to grow as long as the torque constraint is violated and consequently make 

adjustments of increasing size in the WOB as a response to the limitation not being adhered 

to. If the torque constraint is not violated, the parameter n in Eq. (14) is set equal to the current 

timestep, to reset the calculated integral to a zero value. The penalty term calculated from 
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Eqs. (13) and (14) is used to reduce the weight on bit demanded by the ES algorithm 

according to 

 

𝑊𝑂𝐵଴,௖௢௡௦௧௥௔௜௡௘ௗ(𝑡 + 𝛥𝑡) = 𝑊𝑂𝐵଴(𝑡 + 𝛥𝑡) − 𝜆(𝑡). (15) 

 

The parameter WOB0,constrained is used in Eq. (4) to calculate the constrained WOB setpoint 

which is sent to the autodriller. If the torque limit is exceeded, the WOB demanded by the 

ES algorithm will be reduced until the torque is again below its limiting value. When the 

constraint is not violated, 𝜆 will take on a zero value and the WOB0 value will be determined 

by Eq. (8). 

 

4.3 Practical Considerations for Field Applications 

The ES algorithm relies heavily on causing a change in the ROP by varying the WOB 

and being able to quantify this change. The standard industry practice for estimating the 

instantaneous ROP is based on calculating the time derivative of the position of the travelling 

block [21]. This practice works well during steady state conditions when the WOB is 

constant, but because of drill string elasticity it can give large errors during transient periods 

when the WOB is non-constant. Specifically, the ROP calculated from the movement of the 

block alone will overestimate the ROP in transient periods where the WOB is increased and 

underestimate the ROP in periods when the WOB is decreased [21]. This is caused by the 

average tension in the drill string being reduced when more weight is supported by the bit, 

which results in a shortening of the drill string, and vice versa when less weight is applied at 

the bit. Using a purely block-based ROP estimate in the ES algorithm is therefore not 

desirable, as the relatively frequent adjustments in WOB can interfere with accurate ROP 

estimation. Because of the symmetry of the excitation signal, elasticity effects will mostly be 

cancelled out when estimating the gradient, but this effect should still be accounted for in the 

ES method to produce more accurate gradient estimates.   

The relation between the bit position, ℎ௕௜௧, and block position, ℎ௕௟௢௖௞, can be expressed 

as  
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ℎ௕௜௧ = ℎ௕௟௢௖௞ + 𝐶௔𝑔𝑊𝑂𝐵 − 𝐿, (16) 

 

where 𝐶௔ is the axial drill string compliance, 𝑔 is the gravitational acceleration and L is 

the length of the drill string at zero WOB and the current mud flow rate [21]. A low pass 

filtered WOB value should be used in Eq. (15) when the measured WOB is noisy. In general, 

the L parameter in Eq. (15) is not required to calculate the ROP since it is a constant that will 

be cancelled out when differentiating. To estimate the instantaneous ROP based on noisy 

measurements, a Kalman filter (KF) based on the following state space model is used in this 

work, 

 

ቂ
ℎ௕௜௧

𝑅𝑂𝑃
ቃ (𝑡 + 𝛥𝑡) = ቂ

1 −𝛥𝑡
0 1

ቃ ቂ
ℎ௕௜௧

𝑅𝑂𝑃
ቃ (𝑡). (17) 

 

Additional details on the use of the KF can be found in [22] for general position tracking 

and in [15] for the case of ROP estimation from noisy data.  

 

5. EXPERIMENTS ON A DOWNSCALED DRILLING RIG 

5.1 Experimental Setup 

This experimental rig used in this study was built to compete in the annual Drillbotics 

competition [23] hosted by the Society of Petroleum Engineers (SPE), allowing students and 

researchers to get hands-on experience with drilling automation technologies. The miniature 

rig is designed to work in an analogous fashion as a full-scale drilling rig. It consists of a 

steel framework with integrated motors, sensors, hydraulic circulation system and other 

functionalities that are needed to drill through rock samples. A more detailed description than 

the one provided here of the miniature rig and its use for other drilling automation 

applications can be found in [24-26]. Fig 5 shows the experimental drilling together with a 

schematic that highlights key components. 
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                         (a)                                      (b) 

Fig. 4 The experimental rig. (a) Rig photo, highlighting the BHA. (b) Rig schematic with 

key components. 

 

At the top of the derrick, approximately 2.85 m above floor level, a hoisting motor 

provides rotational energy which is translated to vertical movement of the top drive assembly 

and drill string through a ball screw system. The top drive assembly is comprised of a motor 

to provide drill string rotation and a hydraulic swivel to facilitate circulation of drilling fluid 

while rotating. These components are mounted on a frame which slides along guide rails to 

ensure that all movement of the top drive and drill string is vertical, similar to the 

functionality of a full-scale top drive system. Fresh water from a standard water outlet is 

circulated through the drill string to transport cuttings out of the annulus and to cool and 

lubricate the bit. The drill string has a length of approximately 0.9 m and is made up of a 

hollow steel drill pipe, connection joints, a stabilizer sub, and a generic two-wing PDC bit 
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with an outer diameter of 2.8 cm. Because of the reduced scale of the drilling rig, adequate 

WOB cannot be applied through high-weight drill string components as is done in full-scale 

operations. Instead, WOB is applied by the top drive assembly pushing down on the drill 

string, placing the entire string in compression. The drill pipe is passed through a radial ball 

bearing stabilizer on the “rig floor” to mitigate buckling by reducing the effective length of 

the string.  

A load cell located by the hoisting system’s nut bracket provides measurements of the 

total load from the bit and from the weight of the guide frame and top drive, which is 

converted to WOB by subtracting the weight of the mechanical components. Internal sensors 

in the top drive and hoisting motors supply measurements of drillstring rotational speed, 

(surface) torque, and the guide frame position. From the position measurement, an estimate 

of the ROP is calculated with a Kalman Filter by approximating the downhole ROP as the 

surface velocity of the travelling block (guide frame), as described in [15]. Because of the 

reduced scale of the system, the drill string elasticity detailed in Eq. (15) can be neglected. 

The rig’s control system is implemented in LabVIEW, where all communication with the 

motors and sensors is done with a 50 Hz update frequency. The top drive and hoisting motors 

are controlled by supplying them with requested setpoint for RPM and hoisting velocity, 

respectively, which are translated to the apposite motor rotational rates by factory tuned 

internal Proportional-Integral-Derivative (PID) controllers. To run experiments with WOB 

control, a PID autodriller was implemented in LabVIEW to convert requested WOB setpoints 

to the appropriate velocity setpoints for the hoisting motor.  

Blocks of concrete with two different material strengths were cast in 0.6 m tall wooden 

boxes and used as rock samples to be drilled by the experimental rig. The Concrete A is 

designed to have an Unconfined Compressive Strength (UCS) of 25 MPa, and Concrete B is 

designed to have a UCS value of 35 MPa.  Fig. 5 shows the relationship between WOB and 

ROP in these two formations, where the data stems from active drill-off tests performed with 

a constant RPM value of 200 and a moving average filter is used to smooth the data. 
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 It can be observed from Fig. 5 that the blue and red datasets show drilling in phase 1 and 

phase 2, as described in the Background section, with a higher WOB threshold for entering 

phase 2 drilling in the harder formation. However, these two datasets do not show any 

foundering tendencies within the investigated WOB interval. The amount of WOB that can 

be applied is limited by the top drive motor, which stalls out at a continuous torque values 

above 7,2 Nm, which typically occurs at WOB values around 50 kg. This is a prime example 

of a factor limiting energy input, where drilling at the founder point is not feasible because 

of a system constraint [10]. In other words, a mechanical limit on the rig precludes drilling 

at higher WOB values where it is expected that the ROP at some point will deviate from the 

straight-line phase 2 trend [10,19]. 

To be able to investigate the ES algorithm’s performance in drilling scenarios where the 

ROP-WOB relationship deviates from straight line phase 2 drilling and enters the foundering 

region (within the allowable WOB range of 0-50 kg), a simulation layer was added to the 

 

Fig. 5 Active drill-off test in concrete blocks A and B at a constant RPM of 200. 
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experiments. The simulation layer is implemented by emulating a reduction in the recorded 

ROP values when they exceed a certain ROP threshold, according to 

 

𝑅𝑂𝑃௦௜௠ = ൜
               𝑅𝑂𝑃௠௘௔,                                                  𝑅𝑂𝑃௠௘௔ ≤ 𝑅𝑂𝑃௧௛௥௘௦௛௢௟ௗ 

 𝑅𝑂𝑃௠௘௔ − 𝑐 · (𝑅𝑂𝑃௠௘௔ − 𝑅𝑂𝑃௧௛௥௘௦௛௢௟ )ௗ,    𝑅𝑂𝑃௠௘௔ > 𝑅𝑂𝑃௧௛௥௘௦௛௢௟ௗ  
(17) 

 

In Eq. (17), 𝑅𝑂𝑃௦௜௠ is the simulated ROP value, 𝑅𝑂𝑃௠௘௔ is the ROP estimated from the 

movement of the guide frame, 𝑅𝑂𝑃௧௛௥௘௦௛௢௟ௗ is a threshold value of 7 cm/min at which the 

simulated foundering occurs, c and d are model parameters with values of 0.35 and 1.5, 

respectively, that determine how much the simulated ROP is reduced when the threshold is 

exceeded. The values for c and d were chosen to get a generic ROP-WOB relationship that 

simulates a foundering effect where the ROP response “flattens out” at higher WOB values, 

as could be the case for e.g. stick slip vibrations [19]. The effect of the simulation layer can 

be observed in the yellow dataset in Fig. (5), where it is seen that the ROP deviates from the 

straight-line trend when the ROP exceeds the threshold value of 7 cm/min at approximately 

28 kg WOB. It is the value of 𝑅𝑂𝑃௦௜௠ that is sent to the ES algorithm for WOB optimization. 

If we are e.g. drilling at a WOB of 40 kg in Concrete A, the rig will be drilling with an ROP 

of about 13 cm/min, but the ES algorithm will receive a simulated ROP value of 

approximately 8 cm/min. Experiments in concrete B are not affected by the simulation layer, 

as the ROP values observed in this formation are in general below 7 cm/min. 

 

5.2 Experimental Results 

To investigate the proposed ES algorithm for drilling optimization, a series of 

experiments were performed on the miniature drilling rig described in the previous section. 

Before each run, a 4-5 cm pilot hole was drilled with an additional stabilizer mounted directly 

above the BHA. This was done to reduce the amount of whirl seen at low WOB in 

combination with the BHA not being in contact with borehole walls to stabilize the string. 

After removing the additional stabilizer and turning on the water circulation system, the 

experiments were performed with the rig in autonomous mode. In this mode of operation, the 
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rig executes a tagging sequence to place the bit in contact with the formation and ramps the 

RPM up to the requested value, before increasing the WOB setpoint linearly up to the initial 

value of 𝑊𝑂𝐵଴ kg. Following a few seconds of drilling with constant WOB, a single period 

of the excitation signal is performed without any adaptation, to get an initial estimate of how 

the objective function relates to the applied WOB. After the initial excitation, the WOB 

requested by the rig follows Eqs. (4) through (9). The experiments were carried out with the 

parameter values given in Table 1. The simulated ROP described in Eq. (17) was used as a 

substitute for the measured ROP, to emulate drilling with bit foundering when the ROP 

exceeds a certain threshold. 

 

Table 1 – Parameters common for all experiments. 

Parameter Value Unit 

A 2.5 kg 

P 40 s 

μ 0.1 cm/min/kg 

γ 0.006 kg2/cm 

Δt 0.02 s 

RPM 200 rpm 

Flow rate 10 lpm 

 

The results from experiment 1 are displayed in Fig. 6, where the four tracks show time-

series of the WOB, ROP, objective function and the estimated gradient, respectively.  
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This run was performed in Concrete A with a conservative initial guess of the optimal 

WOB of 15 kg. The first 125 seconds of the run show the tagging sequence, ramp-up and 

initial excitation of the WOB, where the average ROP at this initial WOB can be seen from 

the second track to be approximately 3 cm/min. At 125 seconds, the adaptation was activated, 

and the ES algorithm determined that the WOB should be increased to drill more efficiently 

(as can be seen from the positive gradient), and the following 275 seconds were spent drilling 

with progressively higher WOB values. About 400 seconds into the experiment, the 𝑊𝑂𝐵଴ 

value converged to an approximately constant level at 28 kg and the remainder of the run 

 

Fig. 6  Experiment 1, performed in Concrete A with an initial WOB of 15 kg. 
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was drilled with this value. At the end of the run, the rig was drilling with an average ROP 

of around 7.3 cm/min, which is an improvement of approximately 140% compared to the 

initial ROP. At 460 seconds, the target depth was reached, and the rig started tripping out of 

the drilled hole. 

There are several important aspects that can be noted from Fig. 6. From the first track, it 

can be seen that the measured WOB is very noisy and needs to be filtered to obtain values 

that can be used in the ES analysis and for WOB control with the autodriller. The appropriate 

filtering and analysis are automatically performed by the rig’s control system. The optimal 

WOB marked in the top track in Fig. 6 is based on the drill-on curve in Fig. 5, where the ROP 

deviated from straight-line behavior at a WOB of approximately 28 kg. However, the ES 

method had no prior knowledge of the optimal WOB value and used only information 

gathered from the micro-test procedure to optimize the applied WOB. In the second track, 

the effect of the simulation layer can be seen for ROP values higher than 7 cm/min. The gray 

dataset shows the actual ROP that the rig was drilling with, and the blue data denotes the 

simulated ROP that was used by the ES algorithm for WOB optimization. Throughout most 

of the run, the ROP is seen to generally increase and decrease proportionally to the variation 

in the WOB. After about 400 seconds, only small improvements in the (simulated) ROP are 

seen when the WOB is increased, which is reflected by a relatively flat response in the 

objective function and low gradient values. This leads the ES algorithm to reduce the rate of 

WOB adaptation, almost to a stop, at this point, as this tendency indicates that foundering 

has started to occur and the optimal WOB has been found. 

Experiment 2 was designed to be identical to the first run, with the exception that in this 

case the constraint handling techniques described in Eqs. (9) through (14) were active with 

the following parameters: Tlimit = 4.5 Nm, KP = 0.004 kg/Nm, KI = 0.01 kg/Nm/s and SF = 

3. The results from this run are presented in Fig. 7, which shows the WOB, ROP, torque and 

the estimated torque gradient.  
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Fig. 7  Experiment 2, performed in Concrete A with an initial WOB of 15 kg and a 

maximal allowable continuous torque of 4.5 Nm. 

 

The first 65 seconds were spent ramping up the WOB and performing the initial 

excitation, before the ES algorithm started increasing the 𝑊𝑂𝐵଴ variable towards the founder 

point. After 160 seconds, 𝑊𝑂𝐵଴ had reached a value of 24.2 kg and the constraint handler 

predicted that the torque would exceed the limit if 𝑊𝑂𝐵଴ was increased further. As a 

response to this, the adaptation gain, γ, was set to zero as dictated by Eq. (11). The remained 

of the run was drilled with almost constant 𝑊𝑂𝐵଴ values while the WOB was varied 

according to Eqs. (4) and (5). As can be seen from the third track in Fig. 7, the measured 

torque is very noisy, and a filtered torque value was used for the constraint handling. Several 
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instances of small torque-spikes exceeding the allowable limit of 4.5 Nm can be seen in this 

track (e.g. at around 350 and 405 seconds), which made the reactive constraint handling 

technique described in Eqs. (12) through (14) reduce the 𝑊𝑂𝐵଴ value from 24.2 to 22.9 kg. 

Applying the constrained ES algorithm in this case increased the ROP from 3 cm/min initially 

to approximately 5 cm/min, resulting in a 67 % improvement. Greater gains in ROP could 

have been achieved if the rig was allowed to drill with higher torque values, as was seen in 

Experiment 1 for a 𝑊𝑂𝐵଴ value of 28 kg. However, given the torque constraint, the ES 

algorithm sought out the WOB that resulted in maximal ROP without drilling with too high 

torque. 

A third experiment was performed in Concrete A, without constraint handling and with 

an initial guess of the optimal 𝑊𝑂𝐵଴ value of 35 kg. The results from this run are depicted 

in Fig. 8, which shows the WOB, ROP, objective function and objective gradient. The high 

starting point for the WOB resulted in drilling in the founder region, as can be seen from the 

relatively flat (simulated) ROP response to WOB variations in the top two tracks. After 

having completed the initial excitation period at 75 seconds, the ES algorithm estimated a 

negative gradient (caused mostly by the μ parameter in Eq. (2)). The negative gradient 

prompted the ES algorithm to reduce the applied WOB to exit the founder region. The rest 

of the run was performed with 𝑊𝑂𝐵଴ values monotonically decreasing from 35 to 30 kg. 

Throughout the run, the ROP did not change much except for some transient spikes. Still, the 

reduction in WOB performed by the ES algorithm would be beneficial if the bit foundering 

was caused by e.g. vibrations, which could be detrimental for the downhole equipment to 

drill with.     

 



Submitted to Journal of Offshore Mechanics and Arctic Engineering 

 

28 

 

 

Fig. 8  Experiment 3, performed in Concrete A with an initial WOB of 35 kg. 

 

The results from experiment 4 are displayed in Fig. 9. This run was performed in a 

concrete block consisting of 20 cm of Concrete A overlaying a 40 cm thick layer of the harder 

Concrete B. The initial 𝑊𝑂𝐵଴ value was set to 28 kg, to represent a continuation of 

Experiment 1 (e.g. drilling of the next stand) where this was found to be the optimal WOB 

value to drill with in this formation. As can be seen from Fig. 5, the harder formation B should 

be drilled with WOB that is higher than 28 kg to increase the ROP. The initial part of the run, 

in Concrete A, was spent performing the initial adaptation-free excitation and making some 

small reductions in the 𝑊𝑂𝐵଴ variable. About 110 seconds into the experiment the harder 

formation was encountered, which resulted in a drastic reduction in the ROP from 

approximately 7.5 to 2 cm/min. Drilling in Concrete B, the ES algorithm recognized that 
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higher WOB values would be beneficial to drill with, which resulted in the  𝑊𝑂𝐵଴ variable 

being steered to a value of approximately 42 kg at the end of the run where the average ROP 

was increased by about 100% to 4 cm/min. 

 

 

Fig. 9  Experiment 4, performed in a layered formation an initial WOB of 28 kg. 

 

The abrupt change in drilling conditions at 110 seconds caused the estimated gradient 

to bounce between quite large positive and negative values for a short time interval, before 

more data representative of the new formation was included in the analysis and the estimated 

gradient again became representative of the current drilling environment. This phenomenon 

can be explained by the ES algorithm trying to relate any changes in ROP (which in this case 
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was caused by the formation shift) to the relatively small variations in the WOB. In the 

interval 200 – 550 seconds in Fig. 9, the 𝑊𝑂𝐵଴ variable can be seen to gradually increase at 

a quite slow pace, before it increases more rapidly from 550 – 710 seconds. As can be seen 

from Fig. 5, the ROP is quite unresponsive to WOB variations for phase I drilling in Concrete 

B. This caused the adaptation rate of the 𝑊𝑂𝐵଴ variable to be quite low until phase II drilling 

was entered and more rapid adaptation took place.        

  

6. SIMULATIONS ON A HIGH-FIDELITY DRILLING SIMULATOR 

Simulations on the high-fidelity drilling simulator OpenLab were carried out to study the 

performance of the ES algorithm on a full-scale rig. The simulator consists of a set of 

integrated numerical models covering different aspects of the drilling process, including 

torque and drag effects, cuttings transport, multi-phase flow and heat transfer [27]. The 

models on the OpenLab platform are run by supplying the simulator with setpoints for the 

input variables, which the simulator translates to actions on the drill-floor with built-in 

functions which limits the allowable rate of changes according to equipment specifications 

[28]. In the simulation scenarios, the ES algorithm was only allowed access to (noisy) 

measurements of the WOB (assumed derived from the hook load), surface torque and hook 

position, which would be readily available in field operations. To emulate the noisy 

conditions on the rig floor, a layer of white gaussian noise was added to these measurements, 

with the noise levels based on logged field-data. The applied WOB was controlled by a PI-

autodriller which regulated the velocity of the travelling block based on the noisy WOB 

measurements, as would be the case in the field. The noise distribution notation for these 

measurement disturbances given in Table 2 can be interpreted as 99% of the measured values 

falling within the true value ± 3000 kg for the WOB, ± 1000 Nm for the torque and ± 0.03 m 

for the hook position. The ROP was calculated with the approach described in Section 4.3, 

with drillstring compliance included in the analysis. 

The four simulation runs studied here are referred to as Sim 1, Sim 2, Sim 3 and Sim 4, 

and depict vertical drilling of a 12.25” section through a homogeneous formation, staring at 

a depth of 2500 meters. The founder point sought by the ES algorithm is found at a WOB of 
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12000 kg where the corresponding ROP is about 64.5 m/hr, but this information was not 

known by the algorithm in advance. Apart from the initial 𝑊𝑂𝐵଴ value in Sim 2 and Sim 4 

and a maximal torque limit in Sim 3, the simulations were all performed with identical 

parameters, as listed in Table 2. The runs were initiated in the same fashion as in the 

experiments; by building up the RPM and pump flow rate to their constant values before the 

WOB was ramped up to the initial 𝑊𝑂𝐵଴. A single period of the excitation signal was 

performed without any adaptation to get an initial estimate of the objective function gradient, 

before the ES algorithm was allowed to start adjusting the  𝑊𝑂𝐵଴ value to increase the 

drilling efficiency. 

 

Table 2 – Simulation parameters 

Parameter Value Unit 

A 500 kg 

P 180 s 

μ 0.0035 m/hr/kg 

Δt 0.1 s 

γ 1500 kg2hr/m/s 

RPM 100 rpm 

Mud flow rate 2000 lpm 

WOBnoise ~𝑁(0, 1000) kg 

Tnoise ~𝑁(0, 333) Nm 

hnoise  ~𝑁(0, 0.01) m 

Initial 𝑊𝑂𝐵଴, Sim 1 7000 kg 

Initial 𝑊𝑂𝐵଴, Sim 2 15000 kg 

Initial 𝑊𝑂𝐵଴, Sim 3 7000 kg 

Initial 𝑊𝑂𝐵଴, Sim 3 10000 kg 

Tlimit, Sim 3 6000 Nm 

SF, Sim 3 3 - 
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The results from the four simulation runs are shown in Fig. 10. Sim 1, shown in orange, 

started out drilling with relatively conservative 𝑊𝑂𝐵଴ value of 7000 kg, resulting in an 

average ROP of about 30 m/hr. After performing the initial excitation, the ES algorithm 

started adjusting the WOB towards the optimal value, at first quite rapidly but gradually more 

slowly as the WOB closed in on the optimal value and the estimated gradient became smaller. 

At the end of the run, the average WOB and ROP were approximately 11800 kg and 64 m/hr, 

respectively, which is an increase of about 110 % in the ROP from the initial value.   
 

 

Fig. 10  Four runs with the ES algorithm performed on the high-fidelity drilling simulator 

OpenLab. 
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Simulation 2, indicated by the blue lines in Fig. 10, was initiated at a 𝑊𝑂𝐵଴ value of 

15000 kg, where the average ROP is approximately 69 m/hr. This represents drilling in the 

founder region, where the ROP is slightly higher than at the founder point. Drilling in this 

region for prolonged periods can be damaging to the bit and downhole tools, and it should 

be avoided. Throughout this run, the ES algorithm is seen to reduce the 𝑊𝑂𝐵଴ variable 

towards the founder point, ending the simulation at an average WOB and ROP of 11750 kg 

and 64 m/hr, respectively. This is in fact a reduction in ROP of about 7% from the initial 

value, but drilling at this slightly reduced ROP is still the desired behavior because of the 

diminished potential for downhole equipment wear and tear.  

The third simulation is depicted with purple lines in Fig. 10. The starting point is the 

same as in Sim 1, but a maximal torque limit of 6000 Nm is imposed on the system. The first 

550 seconds in Sim 3 are almost identical to Sim 1. At this point, the constraint handling part 

of the ES algorithm predicted that further increasing the 𝑊𝑂𝐵଴ variable would violate the 

torque limitation. This behavior can be seen in the fourth track of Fig. 10, where the filtered 

torque remains within the acceptable bounds as the adaptation was stopped in time. From the 

third track in Fig. 10, the estimated gradient is seen to retain a positive value throughout the 

run. This indicates that the ES algorithm recognized a potential for more efficient drilling at 

higher WOB, which could not be realized because of the torque constraint. From 550 seconds 

and onwards, this run was performed with an average WOB and ROP of 8900 kg and 46 

m/hr, respectively. Because the ES algorithm was not allowed to steer the 𝑊𝑂𝐵଴ variable to 

the founder point, the improvements in ROP in this run (of about 50%) are not as high as in 

the unconstrained Sim 1. Still, the ROP achieved from 550 seconds and onwards in this run 

is close to the maximal ROP that could be obtained while still adhering to the torque 

constraint.   

A fourth simulation is detailed with green lines in Fig. 10. This run was initiated with a 

𝑊𝑂𝐵଴ value of 10000 kg, which could represent a case where we had some prior knowledge 

(e.g. from drilling an offset well) of what WOB this section should be drilled with. Because 

the initial WOB was quite close to the optimal point, the drilling commenced at a quite high 

ROP of 54 m/hr. Yet, the ES algorithm recognized that higher drilling efficiency could be 
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achieved by increasing the WOB, resulting in the 𝑊𝑂𝐵଴ being steered to a value of 11900 

kg where the average ROP was increased by about 19% to a value of 64.3 m/hr. The third 

track in Fig. 10 shows that the estimated gradient stabilized around a zero value at about 1000 

seconds of simulation time, at which point the ES algorithm stopped adapting the 𝑊𝑂𝐵଴ 

variable, while still performing the WOB excitations to detect any potential changes in the 

drilling conditions.  

It can be noted that the 𝑊𝑂𝐵଴ value which the ES algorithm converged to simulations 1, 

2 and 4, is slightly below the pre-calculated optimum at 12000 kg. A likely explanation for 

this is that the ES algorithm calculates a gradient based on measurements on both sides of 

the 𝑊𝑂𝐵଴ value (at 𝑊𝑂𝐵଴ ± A kg), and approximates the gradient at 𝑊𝑂𝐵଴ through linear 

regression. This linearization, combined with noisy measurements and drillstring elasticity, 

can cause the estimated gradient to deviate slightly from the true analytical value (and show 

some transient spiky behavior). Still, the ES algorithm was able to navigate the  𝑊𝑂𝐵଴ 

variable sufficiently close to the founder point to achieve drilling at or close to the highest 

possible dysfunction-free ROP in these scenarios. 

 

7. DISCUSSION OF RESULTS 

In the experiments and simulations, the ES method was seen to autonomously perform 

the micro-tests and steer the WOB to achieve more efficient drilling while avoiding violation 

of the torque limitation in the constrained cases. How much the ES algorithm is able to 

increase the ROP depends on the initial 𝑊𝑂𝐵଴ value, which determines the potential for ROP 

improvements. This property is illustrated in the unconstrained simulation cases where the 

ROP gains were in the range −7% to 110%, dependent on the initial condition. In cases where 

the application of the ES algorithm resulted in reduced ROP (Simulation 3 and to a small 

extent Experiment 3), this was the preferred behavior as the reduction was a result of exiting 

the dysfunction region. 

How quickly the ES algorithm is able to seek out the optimal point to drill at is dependent 

on the adaptation gain, γ. A large value for γ will cause rapid changes in the WOB and 

converge to the optimum quicker. At the same time, too aggressive tuning of γ can cause the 
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algorithm to make large adjustments even for small deviations in the estimated gradient 

caused by noise or disturbances. Thus, finding a value for γ which balances convergence rate 

and sensitivity to noise is an important tuning task when using the ES algorithm to optimize 

a noisy process such as drilling.  

A related topic when considering optimization based on noisy data, is the application of 

appropriate filtering. The goal is to filter the data enough to extract useful information, while 

at the same retaining as much as possible of the underlying “true” signal. Excessively filtering 

the data to remove all noise will in fact eliminate most of the information which the ES 

method uses for gradient estimation. A balance must be struck between performing the 

analysis on too noisy data which can make the estimated gradient inaccurate, and overly 

filtering the data which eliminates most of the true signal. When considering time series 

analysis of filtered data, it is important that filters with the same or similar time-delays are 

used to be able to extract the relationships between the measured parameters. 

The experiments performed on the downscaled drilling rig supports the finding that the 

ES algorithm can be used for optimization of full-scale operations, as the method is able to 

handle the vibrations and noise experienced in the lab. The experimental rig is set up to work 

in an analogous fashion as a full-scale drilling rig, allowing us to draw some conclusions 

from the experiments. Still, experiments on this small scale are not able to capture all the 

complex dynamics related to drill string vibrations and bit foundering seen in field operations 

and how the ES method would perform under these conditions. Because of the simulation 

layer used to emulate bit foundering, the dynamics of bit foundering and its effect on the ES 

algorithm’s effectiveness could not be studied here. Still, the simulation layer used in the 

experiments is able to qualitatively mimic the foundering ROP-WOB relationship seen in 

field operations [10,19], which indicates that the method would be effective also in the field. 

Additional experimental studies on ES with a rig which can organically capture foundering 

effects and extending the experiments to encompass other relevant parameters for drilling 

optimization, such as the RPM, are promising topics for future research. 
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8. CONCLUSIONS 

We present an optimization strategy which automatically seeks out and maintains the 

WOB that results in drilling at the highest possible dysfunction-free ROP. The algorithm is 

data-driven and does not require any model of the drilling process to be employed. The 

proposed method gathers information about the current drilling conditions by performing 

micro-tests with the applied WOB and autonomously uses the test results to perform 

optimization actions that increases the ROP. The micro-test procedure is run in the 

background while drilling ahead, with the tests performed continuously to adapt to the current 

drilling environment. The algorithm has been tested with experiments on a downscaled 

drilling rig and on a high-fidelity drilling simulator, which both capture the noisy conditions 

inherent to the drilling process. In both the experiments and simulations, the ES algorithm 

demonstrated the ability to automatically steer the WOB to the founder point without any 

prior knowledge of the drilling conditions. The studied cases also showed that the proposed 

method is able to adhere to process constraints, where the constraint handling was 

demonstrated with the example of a maximal limit imposed on the surface torque. 
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NOMENCLATURE 

Parameters 

a Least-squares slope (m/hr/kg) 

α Least-squares slope (Nm/kg) 

A Amplitude of excitation signal (kg) 

b Least-squares intercept (m/hr) 

β Least-squares intercept (Nm) 

Ca Drill string compliance (m/N) 

d Excitation signal (kg) 

Δt Time increment (s) 

e Torque limitation variable (Nm) 

g Gravitational acceleration (m/s2) 

γ Adaptation gain (kg2·hr/m/s) 

hblock Height of travelling block (m) 

hbit Bit position (m) 

J Performance function (m/hr) 

L Length of drill string (m) 

λ Penalty variable (kg) 

μ Parameter in J (m/hr/kg) 

N Normal distribution probability density function 

P Period of excitation signal (s) 

Ψ Summation term (Nm) 

r Vector of drilling parameters  

t Time (s) 

T Torque (Nm) 

Tfilt Filtered torque value (Nm) 

Tavg Average torque value (Nm) 

Tlimit Limiting torque value (Nm) 

WOB0 Center WOB value in d (kg) 

WOB0,constrained Constrained WOB0 value (kg) 

WOBB Buffer with past WOB values (kg) 

y Measurement of hblock (m) 
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Abbreviations 

ES Extremum Seeking  

KF Kalman Filter  

MSE Mechanical Specific Energy  

ROP Rate of Penetration (m/hr) 

RPM Revolutions per Minute (rpm) 

SF Safety Factor    

WOB Weight on Bit (kg) 
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Abstract: Drilling more efficiently and with less non-productive time (NPT) is one of the key enablers

to reduce field development costs. In this work, we investigate the application of a data-driven

optimization method called extremum seeking (ES) to achieve more efficient and safe drilling through

automatic real-time minimization of the mechanical specific energy (MSE). The ES algorithm gathers

information about the current downhole conditions by performing small tests with the applied weight

on bit (WOB) and drill string rotational rate (RPM) while drilling and automatically implements

optimization actions based on the test results. The ES method does not require an a priori model

of the drilling process and can thus be applied even in instances when sufficiently accurate drilling

models are not available. The proposed algorithm can handle various drilling constraints related to

drilling dysfunctions and hardware limitations. The algorithm’s performance is demonstrated by

simulations, where the algorithm successfully finds and maintains the optimal WOB and RPM while

adhering to drilling constraints in various settings. The simulations show that the ES method is able

to track changes in the optimal WOB and RPM corresponding to changes in the drilled formation.

As demonstrated in the simulation scenarios, the overall improvements in rate of penetration (ROP)

can be up to 20–170%, depending on the initial guess of the optimal WOB and RPM obtained from

e.g., a drill-off test or a potentially inaccurate model. The presented algorithm is supplied with

specific design choices and tuning considerations that facilitate its simple and efficient use in drilling

applications.

Keywords: real-time drilling optimization; extremum seeking; data-driven optimization; mechanical

specific energy; rate of penetration

1. Introduction

Drilling a petroleum well is a complicated process with a multitude of factors that
affect the drilling efficiency. Because of the high costs associated with well construction, the
industry has for more than a century sought to improve drilling performance, in particular
through automation and mechanization; a process which has been traced by Eustes [1]. The
current state of drilling automation mainly consists of separate functionalities that can aid
the driller by performing tasks like providing envelope control [2,3], fault detection [4,5],
vibration mitigation [6,7] or selection of the best suited weight on bit (WOB) and drill
string rotational rate (RPM) for rate of penetration (ROP) optimization [8,9]. The focus of
this study is on developing an automatic system for real-time drilling optimization that
automatically seeks out and maintains the WOB and RPM resulting in optimal and safe
drilling for the current downhole conditions.

To apply any automated algorithm to drill more efficiently, an objective function
is needed to quantify what is meant by optimal drilling conditions. In this work, we
employ the mechanical specific energy (MSE) as the objective function to be minimized.
The MSE is a measure of the energy required to excavate a unit volume of rock and can
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be expressed as a ratio between the rate of energy usage to the rate of penetration [10],
which provides a relative measure of the drilling efficiency [11]. The MSE is strongly
dependent on the relationship between the ROP and the applied WOB and RPM. It is
expected that for a certain region of WOB and RPM values, the bit will drill at peak
efficiency [12]. Increasing the WOB or RPM inside the efficient drilling region will result in
corresponding proportional gains in the ROP, while the MSE decreases or stays constant.
At some threshold value, often referred to as the founder point, further increases in WOB
or RPM will no longer yield a proportional response in ROP. The lower than expected
response in ROP is caused by a drilling dysfunction such as vibrations, bit- or bottomhole
balling, which reduces the drilling efficiency and drastically increases the MSE. The founder
point can therefore be identified as the combination of WOB and RPM that corresponds to
the minimum MSE. If there is no specific operating point that results in minimal MSE, but
rather a range of WOB and RPM values at which the MSE is minimal and nearly constant,
the founder point can be identified by increasing the WOB and RPM until the MSE starts
to grow [12].

It is important to note that drilling at the founder point results in high ROP and
the most energy-efficient drilling, but moderately higher ROP can in most cases be ob-
tained by increasing the WOB and/or RPM somewhat past the point of founder. Drilling
with dysfunctions can however be deleterious for the bit, downhole tools and borehole
quality [12,13], which can result in equipment wear and NPT by having to pull the bit pre-
maturely [14]. The ROP that is achieved when the MSE is at its minimal value is therefore
the maximal “good ROP” that can be attained without re-engineering drilling equipment
or procedures [11].

In addition to drilling dysfunctions that should be avoided, there are also process
constraints that the driller or an algorithm controlling the drilling must adhere to. Drilling
at the founder point might not be feasible because of process constraints such as a maximal
allowable ROP related to hole cleaning, an upper limit on the WOB to prevent bit damage
or top-side energy constraints. In these constrained cases, the authors consider the optimal
drilling conditions to be at the smallest MSE value that can be attained without violating
the process constraints.

Selecting the optimal WOB and RPM is not a trivial task. Available drilling models
might not be accurate enough in predicting the relationship between the ROP and related
drilling parameters [15,16]. Varying downhole conditions such as changes in pore pressure
or formation properties as well as degradation of the bit teeth/cutters can alter drilling
efficiency so that the combination of WOB and RPM that was optimal a short time ago
might no longer be the best solution. Historically, designated testing procedures like the
Drill-off test [12] or five-point test [17] have been used to empirically explore how the
ROP responds to various combinations of WOB and RPM. The downside of this type of
“one-time testing” is that the results are only valid for the current downhole conditions,
and as soon as the conditions change, the test will have to be repeated.

An alternative to optimization based on models and on “one-time testing” are ap-
proaches employing “testing on the fly”. In these approaches, the relation between the
WOB and/or RPM and an objective function such as the ROP or MSE is explored by
performing tests while drilling ahead and selecting more optimal WOB and RPM based
on the obtained information. As the downhole conditions change, the repeated tests can
identify how the WOB and RPM should be adjusted to drill more efficiently, given the
new circumstances. Rommetveit et al. [18] describe an approach of making changes in
the WOB and RPM to gather information on how the ROP reacts to these changes. The
gathered information can then be used to generate recommendations for the driller or
for closed loop control by an optimization algorithm [18]. An automated golden search
algorithm that varies the WOB to identify drilling with minimal MSE has been tested on a
lab-scale drilling rig [19]. Field trials of advisory systems that can suggest variations in the
applied WOB and RPM to search for the drilling conditions that yield the lowest MSE have
been described in [20,21]. In recent years, several authors have investigated a data-driven
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method called extremum seeking (ES) for drilling optimization. This method relies on
continuous testing and optimization based on the test results. Banks [22] explored single
variable ES to minimize the MSE with a laboratory drill rig. Aarsnes et al. [23] showed
with simulations that ES can be used to seek out the optimal WOB to drill with. A method
for adhering to process constraints while optimizing the applied WOB with ES has also
been investigated [24]. A drilling optimization system that employs multivariable ES has
been tested in the field with good results [25], although no specific details on the algorithm
have been provided in that paper.

Extremum seeking is a model-free control algorithm that provides a framework for
automatically conducting small tests of the current operating conditions and adapting to
the results of the tests to optimize the process. ES has previously been utilized in a variety
of engineering systems; an extensive list is provided by Tan et al. [26]. In the context of
drilling optimization, the ES algorithm can be employed to find the combination of WOB
and RPM which minimizes the MSE (or some other objective function). While drilling
ahead, small periodic variations in the WOB and RPM are automatically implemented
by the algorithm to test the current drilling conditions. How the MSE responds to these
variations is calculated and logged from real-time measurements of the relevant drilling
parameters. This generates a local linear “map” of how the MSE is related to the WOB
and RPM, which is used by the ES algorithm to make small adjustments in the WOB and
RPM in the direction that lowers the MSE. By iteratively performing this procedure of
testing and adapting to the results, the WOB and RPM will be steered to the values which
result in drilling with minimal MSE. As new tests are performed and new data is recorded,
older measurements are discarded from the analysis so that the information used by the
algorithm is up to date and representative of the current downhole conditions. In this way,
the algorithm will be able to adapt to downhole changes like drilling into a new formation
where new values of WOB and RPM might be more beneficial to drill with.

The main advantage of applying the ES method for drilling optimization is that
it is model-free, and therefore requires limited a-priori knowledge about the current
drilling environment to be employed. When using models to predict how to drill opti-
mally [8,9,15,16,27], the models need to be tuned based on data that is representative of the
current downhole conditions. When the conditions change, the models will no longer be
valid before they are re-tuned to the new circumstances, which can limit their applicability
for real-time optimization. Nevertheless, the drilling models are still a valuable tool that
can be combined with data-driven approaches such as Extremum Seeking. The models
can provide an initial estimate of the optimal WOB and RPM to drill with, which the ES
method can use as a starting point to further improve the drilling efficiency.

In this paper, we present a multivariable ES algorithm that automatically adjusts the
WOB and RPM to reach drilling with a minimal MSE value. Although an application
of multivariable ES to drilling was presented in [25] with successful field trials, limited
details of the algorithm were provided. The algorithm presented in our paper is given
in detail with a description of specific design choices and tuning considerations that lead
to its simple and efficient use for drilling applications. In addition to that, the presented
algorithm can automatically handle operational constraints relevant to safe drilling. The
paper details several options on how this functionality can be implemented. Finally, to
test the algorithm, a new qualitative model that links the ROP, WOB, RPM and Torque as
well as drilling dysfunctions is presented. Without dysfunctions, the model coincides with
the drilling model developed by Detournay et al. [28]. This combined model is qualitative
when it comes to modelling the dysfunction effects. Yet, it represents phenomena observed
in field operations where drilling with dysfunctions result in reduced ROP and high
MSE [12–14], and can be utilized for testing of ES algorithms as well as other data-driven
(model-free) drilling optimization approaches.

The remainder of the paper is organized in the following way: in Section 2, we
formulate the challenge of achieving safe and efficient drilling as an optimization problem
and present models that qualitatively describe the relations between the drilling efficiency
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in terms of MSE, drilling dysfunctions and operational constraints. These models will be
used for testing the proposed algorithm in a simulation environment. In Section 3, the
multivariable extremum seeking method and different techniques for constraint handling
are detailed together with practical aspects on how to apply and tune the algorithm.
Section 4 presents simulation results that demonstrate the performance of the proposed
algorithm and highlight its properties. Section 5 contains a discussion of the results of the
study, while Section 6 presents conclusions and directions for further work.

2. Safe and Efficient Drilling as an Optimization Problem

The overall goal in drilling optimization (when it comes to mechanical aspects of
drilling) is to ensure WOB and RPM that result in drilling that is both safe for the on-
site personnel and drilling equipment (including wear minimization) and provides high
efficiency. To achieve this goal, the concept of MSE can be used as a performance index
to identify the most efficient drilling conditions, which will generate high ROP without
exposing the bit and downhole tools to excessive vibrations. The latter can accelerate
equipment wear and reduce the ROP.

Although it is theoretically possible to develop accurate models describing both the
rock cutting process and various dysfunctions (e.g., using bit-rock interaction models [28]
and advanced proprietary drill string models [14]), such models can be of limited value for
real-time drilling optimization. They require detailed knowledge of downhole conditions
like mechanical rock properties, the current bit wear state and formation characteristics
such as heterogeneity, anisotropy and interbedding [14,28], parameters that change over
time and are hard, if possible at all, to measure while drilling. Field experience do however
show that at certain combinations of WOB and RPM, downhole vibrations that can be
detrimental to the ROP and drilling equipment do occur [9,14,29]. Situations where the
drilling efficiency is hampered by vibrations should therefore be accounted for in any
optimization approach that attempts to seek out the optimal WOB and RPM to drill with.

To study drilling optimization in the presence of vibrational effects, we have chosen
an approach which qualitatively includes vibrational dysfunctions into a drilling model for
polycrystalline diamond compact (PDC) bits [28], and refer to this combined model as the
extended model. The extended model accounts for vibrations by reducing the ROP and thus
the drilling efficiency when drilling with combinations of WOB and RPM that places the
operation in regions with expected vibrations. The extended model is qualitative when it
comes to modelling the dysfunction effects. Yet, it represents phenomena observed in field
operations where drilling with dysfunctions result in reduced ROP and high MSE [12–14].
When applying static models to replicate the bit/rock interaction, as is commonly done
in the literature [28,30], the model variables such as the WOB, RPM and ROP need to be
averaged over a suitable time-window for the model to be representative [28]. The same
logic is applied in the extended model; it will not capture the dynamics of the dysfunction
effects, but it will on average qualitatively represent drilling responses that could be
seen in field operations. Because the underlying drilling model [28] in the extended
model is defined for PDC bits, we focus on vibrational dysfunction effects, which tend to
dominate bit dysfunction with PDC bits [12]. Yet, the extended model could be applied to
qualitatively account for other types of dysfunction such as bit- and bottomhole balling as
well.

2.1. Drilling Model

The drilling model developed by Detournay et al. [28] is used in this work as a base
case scenario to simulate the drilling response of a PDC bit operating under ideal conditions.
What is meant here by ideal conditions is that the drilling response for a given bit and
formation is fully determined by the interface laws proposed by Detournay et al. [28],
which define static relationships between the WOB, RPM, ROP and the bit torque (T) based
on bit and formation properties. Drilling dysfunctions such as vibrations are however not
covered by this drilling model and will be introduced in the next section. The Detournay
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model relies on the existence of three distinct drilling regimes that relate the amount of
applied WOB and the resulting ROP (for a given RPM), separated into

• Phase I drilling, where the WOB is not adequate to force the cutters to fully engage
the formation, resulting in inefficient drilling. It is postulated that this inefficiency is
caused by the cutters having a blunt underside, a wear flat, which supports some of
the WOB and is a source of friction that does not contribute to the excavation of rock.
In phase I, drilling with higher WOB will increase the depth of cut, which translates to
higher ROP. At the same time, the increased depth of cut will expose a larger area of
the wear flats to contact with the formation, which in turn makes the wear flats carry
more WOB. The WOB being translated partly to increased cutting action and partly as
friction on the wear flats continues until a threshold WOB which marks the onset of
the next drilling phase. An ideally sharp bit will in theory never drill in phase I, as it
has no wear flats.

• Phase II drilling, which is characterized by efficient drilling with the bit acting incre-
mentally as an ideally sharp bit. At the onset of phase II drilling the contact forces
between the wear flat and the formation are fully engaged. Further increases in WOB
value will result in the rock deforming beneath the cutters without any increase in the
contact area between the wear flat and formation. An increase in WOB while in phase
II will be transferred solely to increasing depth of cut and correspondingly increasing
ROP at peak efficiency, up to a point where a drilling dysfunction starts diminishing
the efficiency of the cutting action.

• Phase III drilling, where an increase in contact forces between the bit and formation
results in less of the applied WOB being translated to cutting action, which leads to a
reduction in depth of cut and less efficient drilling. The onset of phase III drilling is
referred to as the founder point and is often considered the optimal conditions to drill
at [12,31].

The relationship between the applied WOB and RPM and the resulting bit torque (T)
and ROP in phase I and phase II drilling can be expressed as [28]:

ROP(WOB, RPM) =

{

c1·WOB·RPM
r , WOB ≤ WOB∗

c2·(WOB−WOB∗)·RPM
r + ROP∗, WOB > WOB∗

, (1)

T(WOB) =

{

c3·r·WOB, WOB ≤ WOB∗

c4·r·(WOB − WOB∗) + T∗, WOB > WOB∗
, (2)

where the asterisk subscript signifies the transition point between phase I and phase II
drilling, which is determined by bit bluntness and the formation strength. The values of
ROP∗ and T∗ correspond to the ROP and torque at a weight on bit of WOB∗. The parameter
r is the bit radius, and c1, c2, c3 and c4 are model parameters dependent on bit and formation
properties.

Equation (1) can be viewed as a calculated depth of cut per bit revolution, determined
by the model parameters and the applied WOB, which is multiplied with the RPM to find
the equivalent ROP. The torque can be observed from Equation (2) to be independent
of the RPM, as is often assumed in drilling models [32]. The modelled drilling response
from Equations (1) and (2) for a relatively sharp 12 1

4 ” diameter PDC bit drilling through
a generic formation A is shown in Figure 1, where the transition between phase I and
phase II drilling occurs at a WOB value of approximately 2700 kg. As Equations (1) and (2)
do not account for phase III effects, Figure 1 shows drilling at high efficiency throughout
the investigated WOB and RPM interval after the onset of phase II drilling. In real world
drilling operations, the ROP response to increasing WOB and RPM will at some point
deviate from the ideal phase II drilling, but the ROP response in region III is not unique and
depends on the loading path [28] as well as the dysfunction which causes the foundering
to occur [12,31]. Region III drilling is therefore not explicitly included in the Detournay
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drilling model [28]. A qualitative way of including vibrational drilling dysfunctions in the
model is proposed in the next section.

(a) (b) 

Figure 1. Drilling response in phase I and phase II of the Detournay model [28] for a 12 1/4” bit drilling in the generic

formation A. (a) ROP as a function of WOB for a constant RPM value of 90; (b) Contour plot of ROP (m/h) as a function of

applied WOB and RPM.

2.2. Drilling Dysfunctions and Constraints

There are a multitude of factors that can affect the drilling efficiency. For an efficient
bit drilling with the expected depth of cut, the ROP will increase linearly with applied
WOB or RPM as shown in Figure 1, unless a dysfunction reduces the drilling efficiency
or a constraint limits the application of additional input energy [12,31]. The factors that
influence the ROP can in general be grouped into two categories [13]

• Foundering effects that reduce the efficiency of energy transferal between the bit and
the formation, which causes inefficient drilling. They can be caused by vibrations such
as stick-slip and whirl, as well as bit or bottomhole balling. These dysfunctions will
result in ROP values that are lower than what would be seen with an efficient bit for a
given WOB and RPM.

• Energy input limiters, which constrain the amount of energy that can be applied through
the input parameters WOB and RPM when drilling. In the case when the input energy
is constrained before the onset of foundering effects, the bit would still be able to
drill more efficiently at higher values of WOB and/or RPM, but because of a system
constraint these parameters cannot be increased. A multitude of input energy limiters
have been reported in the literature, such as a maximal WOB or RPM determined by
bit or bottom hole assembly (BHA) design, a maximal ROP dictated by hole cleaning or
solids handling capacity on the surface, a maximal top drive torque rating or top-side
vibrations [8,9,13].

The onset of foundering effects and non-bit limiters can in many cases be extended
to higher values of WOB and RPM through reengineering of the drilling equipment [13],
but such considerations are beyond the scope of this study. Here, we rather focus on the
existence of these effects and how they can be qualitatively included in a drilling model
to explore the performance of a data-driven optimization technique in drilling simulation
scenarios.

Critical values of RPM and WOB that trigger the onset of whirl and stick-slip vi-
brations are heavily affected by bit and BHA characteristics, as well as mechanical rock
properties [14]. For an appropriately designed drill string, it is expected that there is a
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region of WOB and RPM which is not notably affected by vibrations, while a combination
of high WOB and low RPM can result in stick-slip vibrations, low WOB and high RPM
can result in forward whirl, and a combination of high WOB and high RPM can induce
backward whirl [9,14,29]. Figure 2 shows the concept of different regions in the WOB-RPM
plane where the drilling process can be affected by vibrations, together with the ROP
contours calculated from the Detournay model for formation A. The shaded center region
in Figure 2 where one would drill with an acceptably high ROP while not being affected by
the foundering effects was dubbed the optimum zone by Wu et al. [14], as it is in this region
the combination(s) of WOB and RPM which results in the most efficient drilling can be
found. The locations of the dysfunction regions for formation A, as seen in Figure 2, are
generically placed in the WOB-RPM plane to qualitatively represent a scenario where there
is an optimum zone surrounded by regions where dysfunctions will occur [14].

Figure 2. Contour map of dysfunction-free ROP (m/h) as a function of WOB and RPM in formation

A, with generic critical values of WOB and RPM which mark the onset of vibrational foundering

effects when drilling in this formation.

To incorporate vibrational foundering effects in the drilling model described by
Equations (1) and (2) in a qualitative way, a penalty term proposed by the authors is
included in the model. The penalty is formulated by defining limits in the WOB-RPM plane
at which the dysfunctions start to occur, as illustrated in Figure 2. When drilling with a
combination of WOB and RPM that places the operation in a region that is not affected by
vibrations, the drilling response is dictated entirely by Equations (1) and (2). When drilling
in the regions where vibrations are occurring, the proposed penalty term reduces the ROP
calculated from Equation (1) by an amount that is dependent on the specific dysfunction
and how far into the dysfunction region we are operating. This logic mimics the response
seen in field operations for a bit drilling with a dysfunction; if we keep increasing the WOB
and/or RPM further into the dysfunction regions, the experienced ROP will deviate further
and further away from the straight-line ROP response that was expected if the bit was still
drilling efficiently [12,13].

In this modified model, which we refer to as the extended model, the torque is not
affected by the dysfunctions and is calculated from Equation (2) for all values of WOB and
RPM. This property can be argued for from an MSE perspective. In the field, drilling with
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vibrational dysfunctions can reduce the drilling efficiency to the extent that the energy
consumption at the bit is more than an order of magnitude higher than what the rock
strength would indicate [33]. This implies that either the torque continues to grow with
the applied WOB also in the dysfunction region while the ROP is moderately reduced, or
that the torque stays constant or decreases while the ROP is severely reduced as a response
to increasing WOB. The former logic is applied in the extended model. Exactly how the
torque and ROP reacts to drilling with dysfunctions cannot be captured adequately by
a static model like the one we are proposing, but the model will be able to qualitatively
capture the expected behavior of reduced ROP and increased MSE when drilling in the
dysfunction regions.

The penalty functionality is implemented by means of straight-line functions (as
shown in Figure 2) that mark the onset of drilling dysfunctions, but the method we propose
is generic and could be applied to other curves as well. The method is in the following
explained by an example of drilling with backward whirl, but the same logic applies to the
other dysfunctions as well. If we are currently drilling ahead at an RPM of 150 and a WOB
of 11,500 kg, Equation (1) predicts that the resulting ROP will be approximately 45 m/h in
formation A, as can be seen from the contour lines in Figure 2. A penalty for drilling in the
whirl region is calculated based on how far into the dysfunction region we are operating,
which can be quantified by:

L =

√

(

WOB − WOB′

WOBmax

)2

+

(

RPM − RPM′

RPMmax

)2

. (3)

In Equation (3), WOB and RPM are the current operating parameters, WOB’ and
RPM’ signifies the point on the dysfunction curve closest to the operating parameters,
and WOBmax and RPMmax are normalizing values of 20,000 kg and 200 RPM, respectively.
The normalization is performed to assign approximately equal weight to the WOB and
RPM when calculating the parameter L, which is a normalized measure of how far into
the dysfunction region we are operating. When drilling in regions that are not affected
by the dysfunctions, the parameter L is set equal to zero. Equation (3) is used to find the
magnitude of the penalty, R, from:

R = S(mL) =

{

3(mL)2
− 2(mL)3, 0 < mL < 1

1, mL ≥ 1
, (4)

where S is the smoothstep function, which is a clamping function that gives smooth s-shaped
output values between 0 and 1. Using Equation (4) to calculate the penalty, the ROP will
only be marginally reduced when drilling slightly into any of the dysfunction regions
where L will take on small values, and more severely affected as L grows. The parameter m
in Equation (4) is a model constant that can be used to customize how much the ROP is
penalized by the different dysfunctions, so that e.g., whirl can have a stronger negative
impact on the ROP than stick-slip [12]. In this work, the authors have used generic values
of m = 1 to calculate the penalty in the forward and backward whirl regions, and m = 0.5
for the stick-slip region. When drilling at a point that simultaneously falls within two
dysfunction regions, e.g., in the intersection between the stick-slip and backward whirl
regions at an RPM value of 100 and a WOB value of 16,000 kg, the calculated penalty is the
sum of the penalties incurred for drilling in both dysfunction regions.

The output ROP from the extended model is calculated from:

ROP = (1 − R)ROPD, (5)

where the parameter ROPD signifies the ROP calculated from the “ideal” Detournay model
in Equation (1), while R is calculated from Equations (3) and (4). From Equation (5), the
penalized ROP that would be output from the model when operating at a WOB of 11,500
and an RPM of 150 is reduced from 45 to 36 m/h. Figure 3 displays how the ROP varies
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as a function of WOB and RPM when the proposed extended model is applied to model
drilling in formation A. Figure 3a shows a drilling curve for a constant RPM value of 90,
where it can be observed that WOB values above 12,900 kg correspond to drilling with
dysfunction, which reduces the ROP compared to the straight-line response predicted by
the Detournay model. At even higher values of WOB, the penalty is further increased and
the ROP starts decreasing. In Figure 3b, it can be seen from the ROP contours produced by
the extended model that drilling in the dysfunction regions reduces the ROP so that the
highest ROP that can be achieved in this formation is approximately 38 m/h, which occurs
in the region around a WOB value of 14,000 kg and an RPM value of 120. This maximal
ROP value does however correspond to drilling somewhat into the backward whirl region
(as can be seen from Figure 2), and it does not necessarily represent the optimal conditions
to drill at, as will be explained in the next section.

(a) (b) 

Figure 3. Drilling response with the drilling model including dysfunctions in formation A. (a) Drill-off curve for a constant

RPM value of 90; (b) Contour plot of ROP (m/h) as a function of WOB and RPM with the extended model.

2.3. Mechanical Specific Energy

The concept of mechanical specific energy (MSE) was investigated by Simon [34]
and Teale [10] in the sixties and has since been used for applications such as drilling
optimization [11,13] and lithology identification [35]. MSE is defined as the energy required
to excavate a unit volume of rock, and can be expressed as [10]:

MSE =
gWOB

πr2
+

120RPM·T

r2ROP
, (6)

where g is the gravitational acceleration constant with a value of 9.81 m/s2. Equation (6)
can be seen as the ratio between the energy input to the drilling process and the output ROP.
This ratio will assume its minimal value when drilling at peak efficiency in the transition
between phase II and phase III, with higher MSE values when drilling in phases I and
III [13]. It can be noted that of the two right-hand terms in Equation (6), the rightmost
term will normally be larger by a substantial margin and chiefly dictate the value of the
calculated MSE [10]. To calculate an MSE value that reflects the actual energy expenditure
at the bit, the downhole torque should be used when using Equation (6) [11,36]. This is
because friction along the drill string will cause the surface torque to be higher than the
torque on bit. When used as a trending tool, the MSE calculated from the surface torque can
still be applied to identify more efficient drilling, but with the risk of possible inaccuracies
in the analysis caused by fluctuations in the drill string frictional losses. The authors have
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assumed in this work that we have access to the downhole torque values, which could
come from either measurements from a downhole tool or be calculated from the topside
torque with a torque and drag model.

Figure 4 illustrates how the MSE varies with WOB in formation A together with the
corresponding drill-off curve. The plot is generated using the extended model detailed
in Equations (1)–(5) and a constant RPM value of 90. From Figure 4, it can be seen that
the minimum MSE occurs at a value of approximately 12,900 kg of WOB, at the founder
point at which the ROP starts deviating from straight-line phase II drilling. Higher values
of ROP can be achieved by increasing the WOB past the founder point, but this increase
will come at the cost of detrimental foundering effects which can damage the downhole
equipment. The minimum MSE will therefore correspond to the maximal “good ROP” that
can be achieved without deleterious side-effects [11]. The shape of the ROP-WOB curve in
region III will determine how rapidly the MSE increases when entering this region, but as
long as the ROP deviates from the efficient phase II drilling, the MSE will increase at this
point. This property makes the MSE a valuable diagnostic tool for drilling optimization; as
long as the MSE shows an increasing trend in regions I and III (when moving “outward”
from region II drilling in either direction), the most efficient drilling can be identified by
seeking out the highest WOB that does not make the MSE increase.

Figure 4. MSE and ROP as functions of WOB, illustrated for a constant RPM value of 90.

Figure 5 shows how the MSE and ROP varies with RPM for a constant WOB value
of 10,000 kg in formation A. It can be observed that RPM values in the optimum zone,
approximately 65 to 115 RPM, results in a flat minimum value in the MSE. Outside of this
region, where dysfunctions affect the drilling efficiency, the MSE is seen to increase. This
relationship can be deduced from the rightmost term in Equation (6) under the assumption
that the RPM and torque are not coupled, as is the case with Equation (2). As long as the
ROP scales linearly with the RPM, the MSE ratio will remain constant. In the dysfunction
regions, where the gain in ROP is less than the expected linear relationship with the RPM,
the numerator in Equation (6) will grow faster than the denominator. The highest RPM
that can be applied without increasing the MSE above the constant minimum value in
the optimum region will therefore yield the highest dysfunction-free ROP and the most
efficient drilling.
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Figure 5. MSE and ROP as functions of RPM, illustrated for a constant WOB value of 10,000 kg.

A contour plot detailing how the MSE varies as a function of applied WOB and RPM
is shown in Figure 6. This plot is generated using the proposed extended model, where
the ROP is penalized when drilling in the three dysfunction regions (as shown in Figure 2).
As can be seen in Figure 6, there is a region around the point at which the WOB value is
approximately 12,900 kg and the RPM value is 90, where one would drill with the minimal
MSE value of 180 MPa. This point corresponds to the top corner of the optimum zone
depicted in Figure 2. Moving away from this low MSE region in any direction will increase
the MSE; at first with small values and then progressively larger values as we move into the
different dysfunction regions where drilling is less efficient. Comparing Figures 6 and 3b,
it can also be observed that the highest possible ROP values which are found in the region
around a WOB of 14,000 and an RPM of 120, correspond to drilling with a dysfunction, as
is reflected by the higher MSE values around this point in Figure 6.

Figure 6. Contour plot of MSE as a function of WOB and RPM in formation A.
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3. Drilling Optimization with Extremum Seeking

As detailed in Section 2, accurate modelling of the drilling process, which regions
will be affected by dysfunctions and which combination(s) of WOB and RPM which will
yield the most efficient drilling is a challenging task. Not knowing at which point drilling
dysfunctions will be induced can cause the driller to use conservative limits imposed on the
WOB and RPM, which can result in sub-optimal drilling. Accurate modeling of the drilling
process will often require detailed knowledge of downhole parameters which cannot be
measured directly and are therefore hard to obtain in real-time operations. The situation is
further complicated by changes in downhole conditions which can cause models tuned to
data from before the change to no longer be valid for the current circumstances.

Employing a data-driven optimization technique like ES can be used to solve these
challenges, as the method does not rely on having detailed a priori knowledge of the
downhole conditions. The ES algorithm relies instead on executing small tests while
drilling ahead by varying the applied WOB and RPM. Real-time measurements of how
drilling parameters such as the ROP, T and calculated MSE vary when the tests are
performed are recorded by the algorithm. The measured response to the tests represents
the most up to date knowledge on how the drilling process reacts to changes in WOB
and RPM and are automatically used by the algorithm to perform optimization actions
that reduce the MSE if possible. When a change in downhole conditions occurs, such as
a formation shift, this will be reflected in the measured drilling parameters and the ES
algorithm will be able to adapt to the new downhole circumstances.

Using the MSE as an objective function to quantify when we are drilling efficiently
can be a powerful tool for drilling optimization. If the MSE exhibits the general shape
shown in Figure 6; where drilling efficiently will result in lower MSE values and drilling
into the dysfunction regions will make the MSE progressively increase, the proposed ES
algorithm can be used to seek out the WOB and RPM that result in drilling with minimal
MSE. The only a priori information that is needed is knowing the general shape of the MSE
response to drilling efficiently and inefficiently, as well as some general drilling engineering
knowledge that is needed to initiate and tune the algorithm. The ES method is an iterative
algorithm, which means that it needs to be initiated when drilling at some WOB and RPM
and use this as a starting point from which it can perform optimization actions. This
starting point can be viewed as an “initial guess” of the optimal WOB and RPM, and can
be based on the drillers experience, data from an offset well or an estimate provided by a
drilling model.

3.1. The Extremum Seeking Algorithm

Extremum seeking is in essence a hill climbing optimization method that is applied
to a process in real-time. ES works by systematically exciting the system to gather in-
formation about the current operating conditions by varying one or several controllable
input variables. Real-time and recent measurements are used to calculate an objective
function that quantifies the system’s reaction to the excitations. Based on how the ob-
jective function changes with the variations in the input parameters, the ES algorithm
will automatically make small changes to the input variables that steers them towards
the values optimizing the objective function. This happens in an iterative fashion, where
new measurements are continuously included in the analysis and old measurements are
discarded. The optimization method does not require a model of the system, since all
adjustments are performed based on measurements of how the process performs with
different values and combinations of the input variables.

In this work, we consider a multivariable ES approach in which the controllable
variables we seek to manipulate to drill more optimally are the WOB and RPM. The MSE,
as detailed in Equation (6), is used as an objective function to quantify what combination of
WOB and RPM constitutes optimal drilling. The procedure is illustrated in Figure 7, where
the left-hand plot demonstrates how the ES algorithm automatically varies the WOB and
RPM to investigate the drilling response in the local region marked with green shading.
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The right-hand tracks show the varying input variables and the resulting MSE as functions
of time. It can be observed from Figure 7 that, in this case, higher values of both WOB and
RPM results in lower MSE, which would prompt the ES algorithm to slowly increase the
WOB and RPM, as indicated by the dotted lines. This procedure of testing and adapting to
the MSE-response is performed continuously and will over time drive the system to drill
at the optimal conditions that minimize the MSE. In cases where the MSE does not change
when the WOB and/or RPM are varied, this is interpreted by the proposed ES algorithm as
a situation where it should increase the applied WOB and/or RPM further, as explained in
Section 2. Several techniques for avoiding violation of drilling constraints are proposed
and implemented in the following, to ensure that the ES algorithm will adhere to process
limitations while seeking out the minimal MSE.

Figure 7. Concept illustration of multivariable ES applied to minimize the MSE.

The ES algorithm can be split into three main components:

• The excitation signal, which varies the input variables around a base value to investigate
the current drilling conditions.

• Gradient estimation, which quantifies how the process reacts to the excitation signal
by estimating partial derivatives of the objective function with respect to the input
variables.

• Adaptation, which adjusts the base values of the input variables with a magnitude and
direction determined by the estimated gradients, to seek out drilling conditions that
result in lower MSE values.

These components are detailed in the subsequent sections. Because the measurements
of drilling parameters and commands given to the control system on the rig are performed
at regular intervals, discrete time notation is used. It is assumed that relevant measurements
are performed at a time interval of ∆t seconds, and that the top drive and autodriller can
receive updated setpoints for target RPM and WOB every ∆t seconds. For simplicity, ∆t
is set to a value of 1 s. The current timestep is denoted by t, so that a command for the
coming timestep is indicated by the notation t + ∆t.

3.1.1. The Excitation Signal

To probe the current drilling conditions, a periodic excitation signal is continuously
applied to the input variables. Assume that we are currently drilling ahead with the base
values WOB and RPM as initial guesses of the optimal input variables. These initial values
could be based on e.g., data from an offset well or estimates given by a drilling model.
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The ES algorithm dictates a periodic variation in the WOB and RPM about the base values
according to:

WOB(t) = WOB(t) + d(t, Awob, Pwob), (7a)

RPM(t) = RPM(t) + d
(

t, Arpm, Prpm

)

, (7b)

where the left-hand sides signify the WOB and RPM that will be sent to the control system
on the rig as setpoints. The parameters A and P are the amplitude and period of the
excitation signal, d, which is given by:

d(t, A, P) = A·sgn

(

sin

(

2πt

P

))

. (8)

Equation (8) describes a square wave, where sgn is the signum function which takes
a value of 1 when the argument is positive, a value of 0 when the argument is zero and
a value of −1 when the argument is negative. The applied WOB and RPM prescribed
by Equations (7a) and (7b) will oscillate about the base values, WOB and RPM, with
amplitudes of ± Awob kg and ± Arpm rpm, respectively. Through the information gathered
from the excitation signals, the ES algorithm will adjust the base values in the direction
that reduces the MSE.

The induced variations in RPM and WOB can potentially influence the measured MSE
to different extents and in different directions. For the ES algorithm to be able to draw
conclusions as to how the two input variables individually affect the drilling efficiency,
the parameters Pwob and Prpm should be designed to minimize the coupling between the
MSE-responses resulting from the two signals. In this work, the periods of the excitation
signals are set so that Pwob = 2Prpm. This tuning is illustrated in the right-hand tracks in
Figure 7, where the RPM oscillates with twice the frequency of the WOB-signal. For each
half-period of the WOB fluctuations, the WOB remains relatively constant while the RPM
performs a full oscillation, from which the dependency between the MSE and RPM can be
deduced by the gradient estimator. The frequency of the RPM signal is an even multiple
of the WOB signal frequency, causing the average RPM value during each period of the
WOB oscillation to be approximately RPM. This allows for estimation of the relationship
between the MSE and the varying WOB as if the RPM was held constant. The tuning of the
excitation signals is further explored in Appendix A.

3.1.2. Gradient Estimation

To estimate a local model of the MSE as a function of the applied WOB and RPM, a
lest-squares approach is used in this work. As we drill ahead, measurements of the WOB,
RPM, T and ROP as well as the calculated MSE are stored in buffers containing a few
minutes of the most recent data. These buffers contain a sliding window time series of data
that represents the most up to date information that is available about the current drilling
conditions. At each update of measurements, the newest measurements are included in
the buffers, while the oldest are discarded. The buffers contain data from one period of the
excitation signal with the longest period time, which in this case is Pwob seconds.

The excitation signals are designed to elicit responses in MSE that can be associated
with each individual signal. This allows the gradient estimation to be performed by
correlating the variations in measured MSE with the applied WOB and RPM. At each new
timestep, ∆t, the updated buffers are used to solve the least-squares problem:

Pwob−1

∑
i=0

(

MSE(t − i∆t)−
(

awobWOB(t − i∆t) + arpmRPM(t − i∆t) + b
))2

→ min
awob ,arpm , b

. (9)

In Equation (9), awob, arpm and b are the slopes and intercept, respectively, of the lest-
squares fit. The parameters a and b represent a linear approximation (local model) of how
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the MSE correlates with the input variables. The calculated slopes are used as estimates of
the partial derivatives of the MSE with respect to WOB and RPM by setting:

∂MSE

∂WOB

∣

∣

∣

∣

WOB(t),RPM(t)
≈ awob(t),

∂MSE

∂RPM

∣

∣

∣

∣

WOB(t),RPM(t)
≈ arpm(t). (10)

The gradients described by Equation (10) are based on the Pwob

(

= 2Prpm

)

seconds of
the most recent measurements and represent the current best estimate of how the MSE is
related to the input variables in the local region that has been explored by the excitation
signals. Because of the symmetry of the excitation signals, the average values for WOB and
RPM during PWOB seconds of drilling will on average be close or equal to WOB(t) and
RPM(t), respectively, which is why the gradients in Equation (10) are evaluated at this
point.

3.1.3. Adaptation

Assuming that there is a response in the MSE to the variations in the input variables,
the gradients calculated from Equations (9) and (10) determine in which direction the WOB
and RPM should be adjusted to reduce the MSE. When drilling in the optimum zone,
the changes in MSE resulting from variations in the WOB and RPM are expected to be
small. This results in zero or near zero values for the estimated gradients. When using
MSE to increase real-time performance, a negative or zero gradient value indicates that
drilling is efficient and the input WOB and/or RPM should be increased until the point
of foundering [12]. To include this logic in the ES algorithm, a tuning parameter, k, is
subtracted from the estimated gradients. This makes the algorithm see a zero gradient as a
scenario where the corresponding input should be increased.

From the estimated gradients at the current timestep, the ES algorithm prescribes
updated base values for the input variables for the coming timestep from:

WOB(t + ∆t) = WOB(t)− γwob·sat

(

∂MSE

∂WOB

∣

∣

∣

∣

WOB(t),RPM(t)
− kwob, σwob

)

∆t, (11a)

RPM(t + ∆t) = RPM(t)− γrpm·sat

(

∂MSE

∂RPM

∣

∣

∣

∣

WOB(t),RPM(t)
− krpm, σrpm

)

∆t. (11b)

The left-hand sides of Equation (11) denote the new base values that will be used
in Equations (7a) and (7b) in the next iteration of the algorithm. It can be observed from
Equations (11a) and (11b) that for each iteration, the input base values, WOB and RPM,
will change incrementally from their previous values with a magnitude dictated by the
rightmost terms. The magnitude of this incremental change is determined by the adaptation
gain, γ, and the output of the saturation function, sat, which is given by:

sat(x, σ) =







−1, x ≤ − σ
x/σ, −σ < x < σ.

1, x ≥ σ

(12)

The use of Equation (12) in combination with Equation (11b) is illustrated in Figure 8.
In Equation (12), σ is a tuning parameter that determines the width of the region where the
saturation function shifts from negative to positive output values. The saturation function
is used to limit the maximal step size that the ES algorithm is able to implement per iteration
by using the principle of sliding mode extremum seeking control [37]. As the maximal
output of Equation (12) is a value of ±1, the greatest rate of change that the algorithm can
demand in the input variables is given by γ. This property makes the algorithm easier to
tune from a safety standpoint, as the maximal adaptation rate is explicitly stated by the
parameter γ in units of kg or rpm per second.
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The maximal limit on adaptation rate is useful in cases where an abrupt change
in drilling conditions occurs, e.g., a formation change, as the gradients calculated by
Equations (9) and (10) can be erroneous in this situation. This error would be introduced by
the algorithm’s assumption that any changes in the MSE can be attributed to the variations
in the WOB and RPM. For a large change in MSE caused by differences in lithology, the
estimated gradients could become artificially large as the algorithm relates the relatively
small WOB and RPM oscillations to a large change in MSE. If the adaptation was directly
proportional to the estimated gradients in this scenario (as is done in conventional ES
algorithms, see e.g., Tan et al. [26]), it could cause the ES algorithm to demand large
and rapid changes in the WOB and/or RPM that could steer the system away from the
optimum and into the dysfunction regions. It should be noted that in a case like this, the
estimated gradients would only be erroneous for a brief time window before the buffers
would be filled with data representative of the new formation, which would produce more
accurate gradient estimates. The downside of limiting the adaptation with Equation (12) is
that in cases where the estimated gradients correctly indicate that large improvements in
drilling efficiency could be achieved by adapting the inputs, the rate at which the inputs
are adapted to more suitable values will be limited. Weighing faster adaptation versus
more robust control is an algorithm design and tuning consideration, where the authors
have opted to lean towards more robust control through the use of the saturation function.

The saturation function is illustrated in Figure 8, which exemplifies how this func-
tion is applied in Equation (11b) for RPM optimization. The example parameter values
σrpm = 2, krpm = 1 and γrpm = 1 are used in Figure 8. It can be seen that for a gradient
value of zero, the saturation function will yield an output of −0.5, which will translate
to an increase of γrpm/2 in the base value RPM for the next timestep. When drilling in
the optimum zone, the estimated gradient is expected to have a low or zero value, and
the proposed ES algorithm relies on the parameter krpm to indicate that the RPM should
be increased to reach the foundering point, see Section 2.3. With this configuration, the
algorithm will request increasing RPM until the estimated gradient is equal to krpm in
magnitude and the saturation function’s output is zero. At some point, the ES algorithm
will drive the value of RPM close to the dysfunction region. Because the MSE is expected
to increase drastically when drilling dysfunctions occur [13], the gradients estimated past
this point will take on relatively large, positive values. A suitably small value of krpm

will therefore provide increasing RPM values up to the limit at which foundering starts
to occur. If, for some reason, drilling outside of the optimal region occurred, the large
estimated gradients would make the ES algorithm adapt at its maximal rate of γrpm rpm/s
to exit the dysfunction region as quickly as possible. The same logic as described above
also applies to the adaptation in WOB determined by Equation (11a).

A block diagram of the proposed ES algorithm is shown in Figure 9. A loop through
this diagram represents an iteration of the ES algorithm, which is continuously repeated
every ∆t seconds. Starting from the lower left corner, the updated base values and excitation
signal values are combined to produce new values for the WOB and RPM, which are fed
as setpoints to the control system on the rig. The resulting ROP, torque, WOB and RPM
values are measured and used to calculate the current MSE value. The new measurements
are subsequently included in the buffers, while the oldest measurements are discarded.
The updated buffers are used to estimate the current gradient values, which are translated
to updated base values that are employed in the next iteration of the algorithm.
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Figure 8. Illustration of the saturation function and how it is applied in Equation (11b), with the

example parameter values σrpm = 2, krpm = 1 and γrpm = 1.

Figure 9. Block diagram of multivariable extremum seeking applied to minimize the MSE.

3.2. Algorithm Design Choices

The Extremum Seeking method provides a whole range of algorithms and tools
suitable for various applications, starting with the fundamental ES controllers described
in [26,38]. The ES algorithm presented in this paper is a result of selection various elements
from this toolbox to make it robust and well suited for drilling applications.

In particular, the square wave excitation signal was chosen because this is the signal
shape that, for a given amplitude, gives the maximal (output) signal power and results in
faster convergence to the optimal values at least for the standard ES algorithm configura-
tions [39]. It is also expected that square excitation waves are more suitable for realizing
WOB variations with a standard autodriller functionality.
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We can expect that due to transients and various disturbances acting on the drill string,
the actual WOB and RPM realized by the autodriller and top drive may noticeably deviate
from the corresponding setpoints requested by the ES algorithm. Gradient estimation by
the selected least-squares method is less affected by these deviations. In addition to this,
the selected gradient estimation technique accounts for changes in WOB and RPM (caused
by adaptation) and will therefore calculate more accurate gradients than the standard ES
method.

Finally, we have opted to use the saturation function in the adaptation block defined
in Equation (11), to limit the rate of change for WOB and RPM. This makes the algorithm
more robust when experiencing sudden changes in downhole conditions, e.g., a formation
shift.

3.3. Constraint Handling

The ES algorithm detailed in the previous section will automatically steer the WOB
and RPM towards the optimal values that minimize the MSE. As the MSE will increase
greatly when foundering occurs, the ES algorithm will inherently try and avoid these
dysfunctions by seeking out dysfunction-free combinations of WOB and RPM. There are
however many situations where drilling at the minimal MSE is not feasible, as the drilling
process is restricted by energy input limiters, as described in Section 2.2. It is imperative
that the ES algorithm does not exceed these process constraints in the search for the minimal
MSE.

A distinction can be made between constraints that are known a priori in the RPM-
WOB plane and constraints related to process output values that are not known in advance.
In the former category, a maximal WOB associated with e.g., a buckling criterion can be
implemented in the algorithm with a logic condition that would not allow for increase in
the WOB past a certain point, even if the algorithm recognized potential for lower MSE at
WOB which would exceed the buckling criterion. A similar logic condition could enforce
e.g., a maximal RPM value related to surface vibrations. In the latter category, where e.g., a
maximal ROP related to hole cleaning should not be exceeded, the combinations of WOB
and RPM that produce too high ROP are not known in advance and a different approach is
needed. Three techniques that can be used to ensure that the ES algorithm does not violate
constraints related to process outputs while searching for the optimum drilling conditions
are investigated in the following. The constraint handling techniques are generic and
can be applied to different types of limitations. To demonstrate the constraint handling
techniques, we apply them to maximal values imposed on the torque and the ROP that the
ES algorithm must adhere to.

3.3.1. Modified Objective Function

A practical way of making the ES algorithm avoid e.g., ROP values above a given
threshold, is through modification of the objective function. Instead of trying to minimize
the MSE, an objective function on the form:

J = MSE·

(

1 + ρ
max(0, ROP − ROPthreshold)

ROPthreshold

)

(13)

is used in the ES algorithm to identify the optimal combination of WOB and RPM. A
function similar to Equation (13) has previously been explored to limit drilling with
stick-slip [40]. In Equation (13), max is a function which outputs the largest of the input
arguments and ρ is a tuning parameter that determines how much the objective function
increases when drilling with higher than allowed ROP. The modified objective function, J,
will start increasing when the threshold ROP is exceeded, which will make the ES algorithm
avoid higher ROP values. Different constraining parameters can be added to Equation (13)
in a similar fashion as the ROP term, to penalize the presence of e.g., measured vibrations
or high torque, making this constraint handling technique very versatile. A downside of
this approach is that if e.g., a sudden change in drilling conditions makes the ROP increase
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by a some margin above the threshold, the time it takes for the ES algorithm to steer the
WOB and RPM to better values is determined by the rather slow adaptation rate dictated
by γ. A more prudent approach would then be to use a separate control loop with the
ability to modify the applied WOB and/or RPM more rapidly.

3.3.2. Predictive Constraint Handling

A combination of a predictive and a reactive constraint handling technique that can
be used to avoid violation of a constraint related to the torque has been tested in the case of
single variable ES [24]. Here, we demonstrate that these techniques can also be applied in
a multivariable ES approach. It must be noted that when using the predictive constraint
handling technique, it should be combined with the reactive approach, as this ensures that
the constraint handling does not make the ES algorithm “get stuck”.

The predictive constraint handling method [24] relies on obtaining additional infor-
mation about the downhole conditions by relating changes in measured output parameters
to the known variations of the excitation signals. For this purpose, the same least-squares
technique as detailed in Equation (9) can be used to estimate a gradient of how the torque
relates to the WOB. This technique relies on the assumption that the torque is mainly a
function of the WOB, as is commonly assumed in the literature [28,32]. Considering a
sliding window time series that contains measured values of the torque and WOB for the
past Pwob seconds, a gradient describing the current T-WOB relationship can be estimated
from:

Pwob−1

∑
i=0

(T(t − i∆t)− (α·WOB(t − i∆t) + β))2
→ min

α, .β
, (14)

∂T

∂WOB

∣

∣

∣

∣

WOB(t),RPM(t)
≈ α(t). (15)

In Equations (14) and (15), α and β are the least-squares slope and intercept, respec-
tively. As the parameter α is a linear fit to how the torque has changed recently as a function
of WOB, α can be used to predict what the torque will be if the WOB is increased or lowered
in the region around WOB. As long as a reasonably accurate estimate of the torque gradient
can be obtained, it can be used to stop the WOB from being steered to a region where the
torque is higher than allowed, assuming that we are operating at a point where the torque
constraint is currently not violated.

Let Tavg denote the average measured torque value for the past Pwob seconds. The
torque constraint which we do not want to exceed is represented by Tlimit. To avoid the
WOB being steered to values which would cause the torque to grow past the allowable
limit, the following rule is imposed on the WOB adaptation gain:

γwob =

{

γwob,
(

TB,avg + Awobα(t)SF
)

< Tlimit

0 ,
(

TB,avg + Awobα(t)SF
)

≥ Tlimit
. (16)

The rule formulated in Equation (16) takes advantage of the fact that during one
oscillation of the excitation signal, the weight on bit will take on values in the range
WOB(t) ± Awob. Assuming that the adaptation gain is low, the value of WOB will be
nearly constant in this time interval and the average weight on bit will be approximately
equal to WOB. The average torque value, Tavg, will therefore correspond to drilling with a

weight on bit of WOB kg. The product Awobα(t) is a projection of how much the torque
will grow if the WOB is increased by a value of Awob kg. This product is multiplied by a
safety factor with a value greater than 1, which determines how far away from the torque
limit we wish to stop the WOB adaptation. Using e.g., a safety factor of 2, Equation (16)
will stop the WOB adaptation when WOB is 2Awob kg away from the weight on bit value
which would make the torque exceed its limit. Stopping the adaptation with some margin
will allow the ES algorithm to continue performing the WOB excitations without the torque
limitation being violated.
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3.3.3. Reactive Constraint Handling

There are instances where Equation (16) will not be adequate to avoid violation of the
torque constraint. The torque measurements are commonly very noisy, which can cause
the estimated gradient to be inaccurate. Changes in downhole conditions could affect the
torque in a way that cannot be predicted by the gradient, causing the torque to exceed its
maximal limit. In this case, a reactive constraint handling technique should be used in
combination with the predictive method to automatically steer the WOB back to the safe
region if the torque constraint is violated [24]. At each timestep a variable, e, is calculated
that quantifies if the constraint is violated and in which case by how much:

e(t) =

{

0, T(t) < Tlimit

T(t)− Tlimit, T(t) ≥ Tlimit
. (17)

If the variable e takes on a value larger than 0, this indicates that the constraint is
violated and the adaptation gain, γwob is set to zero. In Equation (17), T is the measured
torque value at the current timestep. If the torque measurements are very noisy, the torque
used in Equation (17) should be filtered to avoid that the constraint handling reacts too
aggressively as a response to noise [24]. The variable e from Equation (17) is used as the
error term in a discrete proportional-integral (PI) controller which calculates a penalty, λ,
from:

λ(t) = KPe(t) + KIΨ(t)∆t, (18)

Ψ(t) =







0, T(t) < Tlimit
t

∑
i=n

e(i), T(t) ≥ Tlimit
. (19)

In Equation (18), KP and KI are the proportional and integral gains, respectively.
These parameters are used to tune the controller and determine how fast the WOB will be
adjusted if the torque exceeds the imposed limit. If the torque constraint at some point in
time is violated, the summation term, Ψ, will continue to grow and make the penalty term
larger until the torque is adjusted down to acceptable levels. At the time when the torque
is returned to a level below the limiting value, the summation term is reset by setting
the parameter n equal to this time, t, essentially forgetting that the torque constraint has
previously been violated and continuing optimization with the ES algorithm from this
point on.

The WOB that is requested by the ES algorithm is adjusted based on the penalty
according to:

WOBconstrained(t + ∆t) = WOB(t + ∆t)− λ(t). (20)

The first term on the right-hand side of Equation (20) is the WOB value calculated from
Equation (11a). The variable WOBconstrained is used in Equation (7a) as the base WOB value
when the constraint handling is activated. As long as the torque limit has not been violated,
λ will be equal to zero and the WOB will not be adjusted by Equations (17)–(20). The
penalty term, λ, will grow if we are drilling with torque values above the allowable limit,
which will cause the applied WOB to be reduced according to Equation (20) until the torque
is within the allowable bounds and λ is reset to a zero value. Making these adjustments
to the WOB with Equation (20) rather than Equation (13) allows the algorithm to reduce
the applied WOB faster, which will cause the torque constraint to be violated for a shorter
period of time. It can be noted that the reactive constraint handling method will not make
any adjustments to the WOB until the torque limit is exceeded. For this reason, a lower
value for Tlimit than the actual system’s limit should be used in Equations (17) and (19).

3.4. Practical Requirements and Algorithm Tuning

Implementation of the proposed algorithm requires the following measurements:
WOB, RPM, bit torque (either calculated or measured), and calculated ROP. These mea-
surements are used to calculate the MSE from Equation (6). In essence, the components of
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the ES algorithm act like filters when calculating the gradients and performing adaptation
of the WOB and RPM values. Yet, if the measurements are too noisy, appropriate filtering
should be applied before using them in the algorithm.

The algorithm automatically adjusts the setpoints for the WOB and RPM, which are
then used by the autodriller to control the actual WOB and by the top drive to control the
actual RPM. The internal control algorithms in the autodriller and top drive must be able to
realize the requested small changes in the setpoints corresponding to the excitation signals.
This places a lower bound on the excitation signals’ amplitudes, based on the resolution of
these control systems.

There are several key parameters in the ES algorithm that need to be tuned. These
parameters are the period (P) and amplitude (A) of the excitation signals (defined in
Equations (7a), (7b) and (8)), as well as the adaptation rate (γ) and the tuning parameter k
in Equations (11a) and (11b). These parameters should be tuned taking into account the
guidelines presented in Table 1.

Table 1. Tuning considerations for key parameters in the ES algorithm.

Parameter Tuning Considerations

Excitation amplitude, A

• Large enough to be realized by the autodriller and the top
drive, as well as to cause a measurable response in the
objective function through the ROP, RPM, WOB and torque.

• Not too large, to avoid large disturbances to the overall
process.

• Scaled based on the planned range of WOB and RPM for the
drilled section.

Excitation period, P

• Set Pwob = 2Prpm to minimize the interplay between the
identified gradients with respect to WOB and RPM (see
Appendix A).

• Larger Pwob and Prpm result in gradient estimates less
sensitive to noise.

• Trade-off between noise sensitivity and responsiveness to
changes in drilling conditions

Adaptation rate, γ

• Larger γ results in faster convergence to the optimal WOB
and RPM and higher responsiveness to changes in
downhole drilling conditions.

• Overly large γ makes the algorithm too sensitive to gradient
estimation errors, e.g., when a formation shift occurs.

• Trade-off between fast convergence and robustness.

k parameter
• As small as possible, yet leading to increase in WOB and

RPM in the optimum zone (see Section 3.1.3)

4. Simulation Results

To simulate the dynamics of a control system on the rig that receives setpoints for
WOB and RPM from the ES algorithm and steers the input variables to the requested
setpoints as a function of time, the following functions were used to emulate this effect:

WOB(t) = WOB(t − 1) +
1

τwob
[WOBSP(t − 1)− WOB(t − 1)], (21a)

RPM(t) = RPM(t − 1) +
1

τrpm
[RPMSP(t − 1)− RPM(t − 1)]. (21b)

In Equations (21a) and (21b), the left-hand sides represent the current values of the
WOB and RPM that are applied at the bit, while WOBSP and RPMSP are the corresponding
setpoints. How quickly the control system is able to steer the WOB and RPM from their
current values to new values dictated by the setpoints is determined by the time constants,
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τ. For small values of τ, the WOB and RPM will quickly converge to their respective
setpoints. For larger values of τ, convergence to the setpoints will take longer time.

The optimization algorithm and constraint handling approaches detailed in the
previous sections were investigated by using the proposed extended model detailed in
Equations (1)–(5) coupled with Equations (21a) and (21b) as a drilling simulator. In the
simulation scenarios, the ES algorithm provides setpoints for the WOB and RPM, which
are translated to applied WOB and RPM through Equations (21a) and (21b). The model
simulates the ROP and torque response to these values of WOB and RPM that could be
seen in the field for a given bit and formation. The current values for the WOB, RPM, T
and RPM are “measured” from the extended model and used to calculate the MSE with
Equation (6). These updated measurements are read by the ES algorithm and used to per-
form the optimization actions described in Section 3. It must be re-emphasized that the ES
algorithm only uses measurements taken from the simulated drilling process to minimize
the MSE, it has neither prior knowledge about the drilling model nor the locations of the
different drilling dysfunctions.

The simulations emulate drilling in two generic formations, Formation A and Forma-
tion B. Formation A is described in detail in Section 2, where the optimal point to drill at
in this lithology was identified to be at a WOB of 12,900 together with an RPM value of
89.5, as this combination minimizes the MSE. Formation B represents a softer formation
than Formation A, otherwise they are identical. To emulate a preference for drilling with
lower WOB and higher RPM in softer rocks, the onset of dysfunctions in Formation B are
slightly different than in Formation A, placing the optimal point to drill at in Formation B
at a WOB of 12,000 kg and an RPM value of 109. The parameters c1, c2, c3 and c4 that are
used by the extended model in Equations (1) and (2) are provided in Table 2. These values
are generated by picking generic values for the bit and formation parameters in the ranges
suggested by Detournay et al. [28], and correspond to using units of kg for the WOB, rpm
for the drill string rotational rate and the bit radius given in meters in Equations (1) and (2).

Table 2. Parameter values used in Equations (1) and (2).

Parameter Fm. A Value Fm. B Value Units

c1 1.4 × 10−6 1.7 × 10−6 m2/(kg·rpm·h)
c2 4.9 × 10−6 5.9 × 10−6 m2/(kg·rpm·h)
c3 3.05 3.05 m/s2

c4 7.01 7.01 m/s2

All the simulation scenarios are initiated by ramping up the WOB and RPM to their
starting setpoints, which is an initial guess at the optimal input values, which could e.g., be
based on the driller’s experience, a drill-off test, data from an offset well or estimates given
by a drilling model. When the WOB and RPM have reached their initial values, the ES
algorithm is activated and starts testing the drilling conditions with the excitation signals
described by Equations (7a), (7b) and (8). After one full period of the WOB excitation signal,
Pwob = 120 s, the buffers needed for the gradient estimation are filled up with the relevant
measurements and the algorithm starts adapting the WOB and RPM in the direction that
will reduce the MSE. The parameter values that are common in all the simulations are
provided in Table 3.
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Table 3. Parameter values that are common for all the simulations.

Parameter Value Units

Dbit 12 1
4

Inches
γwob 2.5 kg/s
Awob 200 kg
kwob 0.001 MPa/kg
σwob 0.002 MPa/kg
Pwob 120 s
τwob 4 s
γrpm 0.02 rpm/s
Arpm 2 rpm
krpm 0.05 MPa/rpm
σrpm 0.1 MPa/rpm
Prpm 60 s
τrpm 3 s

4.1. Unconstrained Drilling Optimization

This section contains the results from two runs of simulated drilling through the
homogeneous Formation A. The theoretical optimal point in this scenario is located approx-
imately at a WOB of 12,900 kg in combination with an RPM value of 89.5. No constraints
are considered in these two simulations, meaning that the ES algorithm is free to search
for the drilling conditions that will minimize the MSE without any limits imposed on the
torque or ROP.

Figure 10 shows the WOB, RPM, MSE and ROP for Simulation 1. The orange lines in
the WOB and RPM tracks marks the base values, WOB and RPM. This run was initiated
with conservative values of 8000 kg WOB and 60 RPM, which resulted in drilling at a low
ROP of about 11.5 m/h and a calculated MSE of approximately 184 MPa. After performing
the initial variations in the input variables, the ES algorithm detects that increasing the
WOB and RPM will result in more efficient drilling. Both the WOB and RPM are steadily
increased by the algorithm until they converge to the region of the founder point after
drilling for about 2700 s. The rest of the interval is drilled at peak efficiency, where the
average ROP is 31.5 m/h, which is an increase of more than 170% from the starting point.
Throughout the simulation, the MSE is only marginally reduced by the adaptation in the
input variables. This is because the initial WOB and RPM from the start of the simulation
resulted in dysfunction free phase II drilling, where the MSE was already close to its
minimal value. The proposed ES algorithm is designed to interpret small or zero MSE-
gradients as a situation where the corresponding input variable should be increased, which
is why the WOB and RPM was adapted to the optimum in this scenario.

The values of WOB and RPM where the ES algorithm converges to in Simulation 1
are approximately 13,000 kg and 90 rpm, respectively, which are slightly higher than the
pre-calculated values of 12,900 kg and 89.5 rpm. The ES algorithm’s convergence to this
point is caused by the k parameters used in Equation (11). The k values dictate that a (small)
positive gradient must be calculated before the algorithm stops adaptation, and the point
at which this occurs is slightly into the dysfunction region. This property can also be seen
from Figures 4 and 5; the MSE does not significantly grow before the WOB and/or RPM
has moved slightly into the dysfunction region, which is why the ES algorithm converges
to the point seen in this simulation scenario.
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Figure 10. Simulation run 1, showing the ES algorithm converge to the optimum in the homogeneous formation A. The

optimal WOB and RPM values indicated by the dotted lines are shown as an illustration and are not known by the ES

algorithm.

Figure 11 shows the calculated gradients for Simulation 1, where it can be seen from
the lower track that the estimated ∂MSE/∂RPM values show some oscillatory behavior
until the MSE and RPM has converged to the optimum. This is caused by the adaptation
in the WOB and RPM signals, which can sometimes interfere with accurate gradient
estimation. A moving average of ∂MSE/∂RPM is plotted in the same track, which shows
that the estimated gradient on average is unaffected by the oscillations. As long as the
average gradients indicate which way the ES algorithm should adapt the input variables,
the algorithm will be able to steer the WOB and RPM to the optimum. Figure 11 also
shows the estimated gradients converging to a value equal to the k values for the respective
signals, at which point the algorithm stops adjusting the WOB and RPM.

Figure 11. Estimated gradients in Simulation 1.
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The results from Simulation 2 are displayed in Figure 12. This scenario is the same as
Simulation 1, with the exception that the we initiate drilling at a WOB of 13,000 kg and with
an RPM value of 160, which is in the dysfunction region (see Figure 2). The initial WOB is
in fact the optimal WOB value, but only when combined with the appropriate RPM. As can
be seen from Figure 12, drilling commences at a high average MSE value of about 300 MPa.
The ES algorithm recognizes that we are drilling with a dysfunction and reduces both the
WOB and RPM for the first 1800 s to exit the dysfunction region. At this point, the average
MSE has been reduced to a value of approximately 181 MPa. As soon as the optimum
zone is entered and it is safe to increase the WOB again, and the algorithm spends the next
3500 s converging more slowly to the optimal point. It can be noted that the adaptation in
WOB and RPM that occurred during the first 1800 s happened at the algorithms maximal
rate of 2.5 kg/s and 0.02 rpm/s, respectively. This is because of the large variations in
MSE seen when drilling in the dysfunction region and the correspondingly large estimated
gradients, which prompts the algorithm seek out better operating conditions as quickly as
it is allowed to.

It can also be observed from Figure 12 that the adaptation that happens from 1800 s and
onwards only results in small enhancements in ROP and MSE, the larger gains in drilling
efficiency occurred during the early adaptation when moving out of the dysfunction region.
At the start of the simulation, the ROP was about 33 m/h, which has been slightly reduced
when compared to the ROP at the end of the run. The MSE has however been reduced
substantially, which means that the drilling has become more energy efficient and possibly
less detrimental for the bit and downhole tools.

Figure 12. Simulation run 2, showing convergence for drilling initiated in the dysfunction region.

Figure 13 depicts the WOB and, RPM values from Simulations 1 and 2 in the WOB-
RPM plane, together with contours which mark the MSE values for drilling in Formation A.
The blue and orange datapoints can be viewed as the “path” that the ES algorithm took to
converge to the founder point in these two scenarios. In the case of Simulation 2, it can be
seen that the path taken by the algorithm is not the most efficient way to reach the founder
point. It is however close to the most efficient path to exit the dysfunction region as quickly
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as possible. Because of this “detour”, more time is spent to converge to the optimum in
Simulation 2, compared to Simulation 1.

Figure 13. Contour plot of the MSE values for drilling in formation A, together with the WOB and

RPM values for Simulations 1 and 2.

4.2. Constrained Drilling Optimization

In this section, the proposed constraint handling techniques are demonstrated in two
simulation scenarios of drilling through the homogeneous formation A. In Simulation 3,
we have imposed a maximal ROP of 20 m/h on the system through the use of Equation (13)
with a ρ value of 0.1. This means that in this scenario, we seek to minimize the modified
objective function given by Equation (13) and not the MSE. This run is initiated with the
same values as in Simulation 1; a WOB of 8000 kg and an RPM value of 60. The results from
Simulation 3 are shown in Figure 14, where it can be seen that the ES algorithm increases
the applied WOB and RPM for the first 1300 s, before the ROP reaches the limiting value
and the algorithm determines that any further adaptation will cause the ROP to exceed the
allowable amount. Because of this constraint, the ES algorithm converges to the minimal
MSE value that it can obtain while still drilling at an ROP at or below 20 m/h, which it
finds at a WOB of 10,900 and an RPM of 71. There are several operating points at which the
ES algorithm could converge to in this scenario, based on the initial values for WOB and
RPM. Because the MSE response in the optimal region is relatively constant, the algorithm
will seek out the first combination of WOB and RPM that it can find that drills at the ROP
limit. Any adaptation in the input variables beyond this operating point will cause the
objective function to artificially grow through Equation (13), which will discourage any
further changes to the WOB or RPM unless it significantly decreases the MSE.

In Simulation run 4, a maximal torque limit of 10,000 Nm is enforced by the predictive
and reactive constraint handling approaches detailed in Equations (14) through (20). A
safety factor of 2 is used in Equation (16), and the parameters KP and KI in Equation (18)
have values of 0.05 kg/Nm and 0.001 kg/Nm·s, respectively. The initial setpoints for the
WOB and RPM are 8000 kg and 100 rpm, respectively.
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Figure 14. Simulation run 3, a scenario with a maximal limit imposed on the ROP.

Figure 15 displays the results from Simulation 4. In the first 1200 s, both the WOB and
RPM are adapted to higher values, which results in drilling with lower MSE and higher
ROP. At around 1200 s, Equation (16) predicts that the torque will surpass the allowable
amount of 10,000 Nm if the WOB is increased any further. The adaptation in WOB is halted
at this point and onwards, while the RPM continues to grow up to a value of approximately
111, where further increases in RPM would result in drilling in the dysfunction region.
After 2000 s, an unexpected torque-increase of 1000 Nm is simulated, which makes the
torque exceed its limit. This rise in torque could represent e.g., a build-up of cuttings
around the BHA. As the torque is increased, the average MSE is elevated from about 180
to 200 MPa. The predictive constraint handler rapidly lowers the WOB until the torque
is again within the allowable bounds, resulting in a reduction in WOB of about 900 kg.
The reduction in WOB steers the drilling further away from the optimum, and the MSE is
somewhat increased as a response. When drilling with this lower WOB, the ES algorithm
detects that it is now safe to increase the RPM without encountering any dysfunctions
which would increase the MSE. The RPM is seen to adapt to a value of 120, where the ROP
is increased to approximately 29 m/h and we are drilling at the highest efficiency that can
be obtained given the constraint on the torque.
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Figure 15. Simulation run 4, a scenario where the torque is not allowed to exceed 10,000 Nm.

4.3. Unconstrained Drilling with Formation Shifts

The results from Simulation 5 are shown in Figure 16, where we investigate how the
proposed optimization algorithm handles abrupt formation changes. This scenario can be
though as a continuation of Simulations 1 or 2, where the optimum for formation A was
identified by the algorithm as 13,000 kg WOB and an RPM of 90. This scenario could also
represent a setting where e.g., a drill-off test has been performed in formation A, which
identified the optimal WOB and RPM. We initiate drilling with these optimal input values.
After drilling 5 m in Formation A, we enter an 18-m-thick layer of the softer Formation B,
at approximately 580 s. The optimal point in Formation B is located at a WOB of 12,000 kg
and an RPM of 109, as indicated by the dotted lines in Figure 16. As we enter the softer
formation, the WOB and RPM that were optimal for formation A are no longer the optimal
input values to drill with and should be adjusted to drill more efficiently. Shortly after the
formation shift occurs, the ES algorithm recognizes that the downhole conditions have
changed and spends the following 1200 s converging to the optimal point in Formation
B, where the MSE is minimized at an average value of 149 MPa and the average ROP
has increased by approximately 20% from 36 to 43 m/h. At around 2200 s of simulation
time, we enter Formation A again, and the WOB and RPM are slowly adjusted back to the
optimal values that the simulation started out with. It can be seen that the “path” taken
by the algorithm back to the optimum in Formation A consists of first reducing the WOB
value before building it up to 13,000 kg, in the same manner as was done in Simulation 2
(see Figures 12 and 13) to quickly exit the dysfunction region.

Two important aspects of the proposed ES algorithm are shown in Figure 16. First,
the advantage of continuously applying the excitations in WOB and RPM also even when
we are operating at the current optimum, becomes apparent. When the drilled formation
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suddenly changes, the information gathered by the excitation signals is used by the ES
algorithm to rapidly recognize that the conditions have changed, and adjustments should
be made in the applied WOB and RPM to drill more efficiently. These adjustments resulted
in an increase in ROP of about 20%, compared to a setting where formation B had been
drilled with constant WOB and RPM based on what was the optimal point when the
simulation was initiated in formation A.

A second and closely related aspect is seen in the adjustments in WOB,and RPM
performed by the algorithm immediately after the formation change occurs at about 580 s
of simulation time. In the following we consider the WOB, but the same analysis applies to
the RPM. When the drilled formation becomes softer at 580 s, the calculated MSE is reduced.
The ES algorithm relates this reduction in MSE to the currently applied WOB, which at this
time was in an elevated position of WOB + Awob kg. This causes the algorithm to estimate
an artificially large and positive gradient for a short period of time, as higher values of
WOB are related to a significant reduction in MSE. This erroneous gradient indicates that
large improvements to the drilling efficiency can be made if WOB is increased. At this
point, the adjustment of WOB in the wrong direction is limited by the saturation function
and the adaptation gain in Equation (11), that disallows adaptation faster than 2.5 kg/s
even if the estimated gradient is large. During the 50 s that the WOB is steered in the
wrong direction, the WOB is only increased by about 125 kg. The requested changes in
WOB would be much higher if the adaptation was directly proportional to the estimated
gradient (as is usually the case in classical ES algorithms [26]). After drilling in this new
formation for 50 s, the buffers used in the algorithm contain enough data sampled from the
current conditions to detect that the WOB should be reduced to minimize the MSE, and
the algorithm subsequently steers the WOB to the correct optimal value. The same effect
as just described also occurs at the second formation shift at about 2200 s.

Figure 16. Simulation run 5, drilling through 5 m of formation A, 15 m of formation B and then returning to drilling in

formation A.
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5. Discussion of Results

The five simulation scenarios detailed in the previous section demonstrate how the
proposed ES algorithm can be utilized to automatically steer the drilling process to the
optimum conditions where the MSE is minimized. Since the optimization algorithm
inherently requires full control of the WOB and RPM to continuously adjust these variables
towards the optimal point, it is of utmost importance that the algorithm recognizes and
avoids circumstances that could be damaging to the drilling equipment or could cause
a contingency situation. In simulation 2 it was shown that the algorithm automatically
steers away from drilling with dysfunctions, as drilling in this region resulted in high MSE
values that could be reduced by regulating the WOB and RPM. In simulation runs 3 and 4,
the possibly detrimental effects that we wish to avoid are not directly related to the MSE,
but rather to other parameter that we wish to keep within certain limits. Simulations 3
and 4 demonstrate generic approaches to how we can avoid these types of constraints. In
Simulation 4, the predictive constraint handling routine stops WOB adaptation before the
constraint is violated. A separate control loop (the reactive constraint handling) is able to
adjust the WOB back to the safe region when the limit is violated, much faster than if this
constraint was implemented through modification of the objective function. This technique
is however only applicable when the constrained output (the torque) is related to only one
of the input variables, in this case the WOB. When several of the input variables are related
to the output constraint, as is the case between the WOB, RPM and ROP in simulation run
3, the modified objective function described in Equation (13) is a better alternative to avoid
the limit being exceeded.

The main advantage of using a data-driven algorithm like ES to optimize the drilling
process is that it does not require detailed a priori knowledge of the downhole conditions
or a drilling model to seek out more efficient drilling, and it can adapt to downhole changes.
Both of these properties are shown in Simulation 5, where two formation shifts occurred
which prompted the ES algorithm to seek out the new optimal conditions shortly after
the changes happened. The ES algorithm considers a fixed window of time to perform
its analysis and inherently tries to relate any change in the MSE to the applied excitations
in WOB and RPM. If the MSE changes without any relation to the excitation signals,
e.g., at a formation shift, the estimated gradients can become inaccurate when the data
series used to estimate the gradients contain measurements from two differing downhole
conditions. To avoid the algorithm having an exaggerated reaction to disturbances like
this, the saturation function together with moderate values for the gain parameters, γ,
is used to limit the algorithm’s maximal adaptation rate regardless of the magnitude of
the estimated gradients. This design encourages slow and steady adaptation towards the
optimum. Faster convergence could be achieved by increasing γ, but this would also make
the algorithm more susceptible to disturbances and noise.

Although the ES algorithm performs optimization actions without using a model of
the system, engineering knowledge about the process is required to tune the algorithm
and provide appropriate initial values for the WOB and RPM. In the simulation scenarios,
the starting points were chosen to showcase different properties of the ES algorithm
like constraint handling, convergence to the optimum and avoidance of drilling with
dysfunctions. In simulation scenarios 1 and 5, the ES algorithm was able to increase the
ROP by about 170% and 20%, respectively. How much the algorithm can improve the
drilling efficiency (through higher ROP and/or lower MSE) is strongly related to how far
away from the optimal WOB and RPM that the algorithm is initiated. In a field application,
the initial WOB and RPM values should be a best guess of the optimal drilling conditions,
which could be based on the driller’s experience, a drill-off test, data from an offset well or
estimates given by a drilling model.

There are both benefits and drawbacks to choosing MSE as the objective function to
minimize. The MSE can be used to identify the founder point by seeking out the maximal
WOB and RPM values that results in a decreasing or flat response in MSE. The expected
flat region in MSE when operating in drilling region II can however pose some challenges
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when applying the ES algorithm. When drilling in this region, the estimated gradients
will have zero or near zero values and the ES algorithm depends on the parameters kwob

and krpm to indicate if the input variables should be increased. In field applications, the
calculated MSE could be susceptible to noise (especially though the torque) which could
make it hard to estimate zero or close to zero valued gradients. This complication could be
alleviated by increasing the amplitudes and periods of the excitation signals or considering
a longer sliding window time series that encompassed several oscillations of the excitation
signals, which would average out disturbances. Another possible alternative could be to
use a combination of ROP and MSE as the objective function, as in [25].

There are several paths for further research that could be explored. Additional stud-
ies on a more advanced drilling simulator, field trials or lab experiments are needed to
investigate how dynamic effects such as vibrations affect the performance of the proposed
algorithm. Tests in the field or in the lab would also provide the opportunity to compare
the ES method with other optimization methods, either data-driven or model based, in a
realistic setting. Testing the algorithm in e.g., a lab setting would allow us to study if the
algorithm in its current form will be able to converge to the optimum if it is initiated in
a region where severe vibrations occur. The extended model used to simulate drilling in
this study assumes that the MSE will keep increasing when operating further into regions
where vibrations are expected to occur (see Figures 4 and 5). If this is not the case, and the
MSE rather reaches some plateau value that does not change as a function of WOB and
RPM in these regions, the proposed ES algorithm would not be able to find the optimum
if the initial point was in the MSE plateau region. If this is the case, a different objective
function, e.g., on the form of Equation (13) could be used to remedy the issue.

A second possibility for further work relies on the ES method’s inherent nature of
relating measurements of drilling parameters to the known variations in WOB and RPM
induced by the excitation signals. If available, additional measured and/or calculated
parameters such as the magnitude of different forms of vibrations could be related to the
variations in WOB and RPM. Knowing how downhole vibrations vary as a function of
WOB and/or RPM could be utilized for constraint handling or be displayed as useful
information for the driller.

6. Conclusions

We have presented an algorithm based on the multivariable extremum seeking method
that automatically optimizes the WOB and RPM to achieve drilling with minimal MSE,
while adhering to operational constraints for safe and efficient drilling. The algorithm
detailed in the paper is data-driven and does not require detailed a priori knowledge
or models of the drilling process. The algorithm gathers information about the current
downhole conditions by continuously performing small tests with the applied WOB and
RPM while drilling and automatically implements optimization actions based on the test
results. To investigate the algorithm’s performance in a simulation environment, a drilling
model for bit-rock interaction has been extended by the authors to qualitatively account
for drilling dysfunctions. The simulations demonstrate that the proposed algorithm is
able to find and maintain the WOB and RPM that result in drilling with minimal MSE,
while adhering to operational constraints. The constraint handling functionality has been
demonstrated with limits imposed on the ROP and torque. Yet, it is generic and can
be applied to other constraining factors. The simulations show that the ES method is
able to track changes in the optimal WOB and RPM corresponding to changes in the
drilled formation. As demonstrated in the simulation scenarios, the overall improvements
in ROP can be up to 20–170%, depending on the initial guess of the optimal WOB and
RPM obtained from e.g., a drill-off test or a potentially inaccurate model. Along with the
algorithm’s description, we provide an explanation of specific design choices and tuning
guidelines that simplify the use of the algorithm in practice.
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Abbreviations

BHA Bottom Hole Assembly

ES Extremum Seeking

MSE Mechanical Specific Energy

NPT Non-Productive Time

PDC Polycrystalline Diamond Compact

PI Proportional-Integral

RPM Revolutions Per Minute (drill string rotational rate)

T Torque

WOB Weight on Bit

Appendix A. Period Selection for the Excitation Signals

The tuning of the excitation signals is an important part of the extremum seeking
algorithm. To extract a gradient of how the MSE relates to the WOB and RPM indepen-
dently, setting PWOB = 2PRPM is suggested by the authors. Under some simplifying
assumptions, it can be shown that this tuning of the excitation signal’s periods allows for
exact estimation of ∂MSE/∂WOB and ∂MSE/∂RPM without interference between the
two excitation signals. Here, we investigate this property by considering the estimation
of ∂MSE/∂WOB with a continuous-time, single-variable version of Equation (9), which
is applied to a system where both the WOB and RPM is varied according to Equations
(7a), (7b) and (8). A similar analysis can also be performed to show how the least-squares
estimation of ∂MSE/∂RPM is not affected by the variations in the WOB.

Although the MSE is a non-linear function of both WOB and RPM when considering
the entire span of WOB and RPM values (see Figures 4 and 5), the extremum seeking
algorithm uses only a local region of this non-linear relationship when estimating gradients.
The extent of this local region is determined by the amplitudes of the excitation signals.
If suitable (not too large) amplitudes are used, it can be assumed that locally there is an
approximately linear relationship between the MSE and the applied WOB and RPM, which
is the relationship that is estimated by the least-squares gradient calculation in Equation (9).
Using compact notation, let the WOB be denoted by x = x+ dx and the RPM be represented
by y = y + dy, as detailed in Equations (7a) and (7b). In the neighborhood of the point

(x, y), the non-linear relation between the MSE, WOB and RPM can be approximately
described by:

z = β + αxy, (A1)

where z represents the MSE and the parameters α and β take on constant values in this
local region. We further assume that the adaptation in WOB and RPM is small so that x
and y are approximately constant throughout the investigated time interval of Px seconds,
as is common practice for average analysis of extremum seeking algorithms [26].



Energies 2021, 14, 1298 33 of 35

We consider a scenario where we are drilling ahead through a homogeneous formation
and have varied the WOB (x) and RPM (y) according to Equation (8) while recording the
MSE (z) for the past Px seconds. The measured drilling data is used to solve for the least-
squares slope and intercept parameters, a and b, using a continuous-time, single-variable
version of Equation (9):

t
∫

t−Px

[z(τ)− ax(τ)− b]2dτ → min
a,b

, (A2)

where a represents the gradient-estimate, ∂MSE/∂WOB. Substituting in the previously
defined relationships for x and y and approximating the response of the drilling system
with Equation (A1) yields:

t
∫

t−Px

[

β + α
(

xy + dx(τ)
)(

y + dy(τ)
)

− α
(

xy + dx(τ)
)

− b
]2

dτ → min
a,b

. (A3)

Further, using Equation (8) to describe the excitation signals, dx and dy, gives:

t
∫

t−Px

[

α + β

(

x + Axsgn

(

sin

(

2πτ

Pxy

)))(

y + Aysgn

(

sin

(

2πτ

Py

)))

− a

(

x + Axsgn

(

sin

(

2πτ

Pxy

)))

− b

]2

dτ → min
a,b

. (A4)

At any point in time, t, the integral in Equation (A4) can be split into intervals in which
the signum function takes on constant values of ±1. Using the relation Px = 2Py and the
assumption that x and y are constant values, Equation (A4) can be expressed as:

min
a,b

[

Px

(

x2
y + A2

x

)(

α2y2 + α2 A2
y − 2αay + a2

)

+ 2Pxx(β − b)(a − αy) + Px(b − β)2
]

. (A5)

Taking the partial derivatives of Equation (A5) with respect to a and b and equating
them to zero results in the set of equations:

(b − β) + x(a − αy) = 0,
(

x2 + A2
x

)

(a − αy) + 2x(b − β) = 0,
(A6)

which has the solution a = αy and b = β. The estimated gradient, αy, corresponds to the
slope of ∂MSE/∂WOB described by Equation (A1) evaluated at the average RPM value,
y. This shows that in an ideal scenario where the simplifying assumptions are met, the
tuning Px = 2Py allows for accurate estimation of ∂MSE/∂WOB without interference from
the variations in RPM. The same analysis can be repeated for estimation of ∂MSE/∂RPM
to find the expected gradient, αx, for this case. Other combinations of periods for the
excitation signals can also be employed based on similar analysis, as long as one of the
periods is an even multiple of the other, Pwob = nPrpm or Prpm = nPwob where n is an even
number larger than zero.

In reality, the applied WOB and RPM will exhibit dynamics and cannot be expected to
perfectly follow the square wave setpoints requested by the extremum seeking algorithm.
Any deviations from the setpoints will however be dealt with by the least-squares approach
to gradient estimation, which will incorporate these transient periods into the analysis.
Furthermore, if the system is not currently at the optimal point, there will be adaptation
in both WOB and RPM which will make the base values, x and y, change throughout the
investigated time interval. The adaptation can cause some inaccuracies in the estimated
gradients, but this effect can be kept to a minimum by choosing conservative values for the
adaptation gains as well as through appropriate filtering of the data.
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