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Abstract

Oil and gas production on offshore platforms is a crucial industry for several countries worldwide.
Unfortunately, production currently suffers from high emissions of greenhouse gasses. An approach
already set in motion to deal with these offshore emissions is integrating offshore wind power
production into the current power systems on the offshore platforms, resulting in hybrid power
systems. This thesis aims to make a controller for an offshore hybrid power system to exploit
the potential energy in the wind. More specifically, this thesis investigates the use of a model
predictive controller for such a power system. A model predictive controller is a controller that is
based on a mathematical model of the plant.

A mathematical plant model is firstly derived to test the performance of a model predictive
controller in a hybrid power system. The plant model is then used as a test plant and design
basis for the model predictive controller. Several test cases under different realistic conditions are
simulated to analyze the behavior of the controlled hybrid power system plant model. The resulting
simulations show that the model predictive controller manages to utilize a large proportion of the
potential wind power. Additionally, the overall power in the hybrid power system is appropriately
distributed between components.

The findings from this thesis show the potential of model predictive control for offshore hybrid
power systems.
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1 Introduction

1.1 Potential for a Sustainable Future in Offshore Oil and Gas
Production

Gas and oil production on offshore platforms is an important industry for many countries, Norway
included [1]. A large quantity of power is required to extract the oil and gas from the bottom of
the sea. These offshore platforms most commonly utilize gas turbine generators (GTGs) in order
to produce power [2]. GTGs runs on gas which releases greenhouse gases (GHG), such as carbon
dioxide (CO2), as a byproduct [3]. High amounts of GHG significantly contribute to nationwide
emission [4], and can additionally be costly due to taxes [5].

A future worldwide goal is to reduce the emission of GHG drastically. The goal of emission reduction
is represented through the Paris Agreement, where Norway is one of the many participants [6]. For
offshore facilities, a feasible solution can be found in the use of wind turbine generators (WTGs)
[7]. Studies show that the average wind speed of the coast of Norway and the United Kingdom is
about 7.5 ms−1, which gives a high potential for producing large quantities of renewable wind
power [8]. This implies that GTGs are less needed for power production, resulting in reduced
emissions of GHG offshore.

A challenge with WTGs is that the power production is unreliable due to varying winds [9]. As
many platforms already have installed efficient GTGs, an ongoing approach is to, in the first round,
integrate new WTGs with the existing power systems to increase the share of renewable energy.
In addition, to obtain a stable grid with offshore wind power production, a battery solution is
necessary unless the grid is connected to the mainland. A battery solution can also help to utilize
more wind power as this gives the possibility of fast storage and delivery without the costs of a
mainland transfer cable [10]. This integration of wind energy and batteries results in an offshore
hybrid power system (HPS). The HPS combined with the goal of minimizing GHG emission from
the GTGs means that new ways of controlling the power on the offshore platforms might be
profitable.

A control method that has gotten popular in power systems in the last years is model predictive
control (MPC) [11]. This type of control is based on a model of the plant, which in turn is used
to predict the future behavior of the plant and control the outcome [12]. Using MPC to control
offshore HPSs can therefore be a huge advantage as the power flow can be allocated optimally
concerning the utilization of potential wind energy.

In [13] it is shown that the use of MPC to control offshore WTGs offers the advantage of a
significantly increased power utilization compared to a standard approach of using proportional-
integral (PI) control. A maritime hybrid energy system is controlled with the use of MPC in [14],
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1 Introduction

and the results show that the power is distributed quite well in the system. If the stated effects
of a highly utilized WTG power production and reliable power distribution can be transferred
to the offshore HPS with the use of MPC, there is a high potential for reducing offshore GHG
emissions.

Solutions for sustainable offshore power productions in the future are something that appeals
to a large number of people and companies. The research institution SINTEF has introduced
the concept LowEmission to speed up the technological development regarding offshore energy
production. The major energy company Equinor is also highly interested in the production of
renewable energy offshore as a large proportion of their activities are located offshore. Two
statements from the interested parties mentioned are further provided.

"LowEmission develops new technology and concepts for offshore energy systems and integration
with renewable power production technologies. LowEmission is a platform for innovation, and
strong interaction within the Centre will generate spin-off projects and technology transfer
possibilities for the industry." - SINTEF [15]

"The next decisive phase in the global transition to low carbon and renewable energy is happening
now, with offshore wind at the centre of the revolution." - Equinor [16]

1.2 Problem Specification, Objectives, and Contributions

Now that the potential for a sustainable future in offshore oil and gas production with offshore
HPSs is defined, it is time to formally establish the problem specifications, objectives, and
contributions of this thesis. The overall goal is to produce a model-based controller (specifically
MPC) which can handle the power distribution in a system like an offshore HPS. Additionally, it
is desired for the MPC to be able to utilize all the potential energy in the wind, thus lowering the
emission of GHG to a full extent.

First off, a mathematical HPS model to use for testing and control design is required. For that,
a HPS model derived in an earlier specialization project [17] is to be utilized. However, some
modifications are wanted for this model. The overall goal of the modifications is to make the
model less computational costly for simulations. Additionally, the model is desired a bit more
intuitive and realistic.

To design a MPC, an amount of background theory is necessary. A review and collection of
relevant theory concerning MPC are therefore of importance in this thesis.

With the essential background theory in place, a MPC is wanted designed. Additionally, the
design is required implemented on a digital computer for simulation purposes.

Lastly, to observe how well the designed MPC performs, a series of test cases based on realistic
scenarios is called for. The tests are to be executed using a HPS plant model connected to the
implemented MPC.

As a list, the objectives in this master’s thesis are to:

2



1.3 Limitations

• Modify an existing offshore HPS model to make it more intuitive, accurate, and decrease
the required computational power

• Review and collect background theory on MPC

• Design and implement a MPC digitally

• Create realistic simulation cases to test the performance of the MPC connected to the HPS
plant model

With all the objectives met, the main contributions from this master’s thesis are:

• A computationally cheap offshore HPS plant model

• A prototype MPC for control of an offshore HPS

• Case studies on control of a HPS plant model using MPC

1.3 Limitations

This master’s thesis is subject to several limitations. The two most significant limitations are
mentioned in this section, but more specific cases are found in the relevant sections.

Model Assumptions

The model focus in this thesis is on the larger power producing and consuming components in
the HPS. The electrical grid is assumed to be stable and in steady-state, and the electrodynamics
are removed under this assumption. The models are also scaled in their powers for adjustments
of the overall power distribution. Real components are not necessarily scaleable.

Computational Resources

A noteworthy limitation in this master’s thesis is the limited computational power. To use the
MPC, a sizable amount of computational power is required. The results of the computational
power shortcoming are shorter simulation periods and larger controller time steps than initially
desired. However, great results for analysis are still produced.
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1 Introduction

1.4 Outline

This thesis is divided into seven chapters and three appendices. Chapter 2 is partwise method
and partwise background theory as this is a modeling continuation originating from [17]. The
main background theory is found in chapter 3. Chapter 4 represents the central method in this
thesis. In the chapters 5, 6, and 7, the results, discussion, and conclusion are represented. More
information about the particular chapters is found in the following listing:

• Chapter 2: Introduces a mathematical plant model of an offshore HPS, containing algebraic
and differential equations together with constraints.

• Chapter 3: Expounds relevant theory of model-based control and optimization. An analysis
of the HPS’s properties is also provided.

• Chapter 4: Imparts the design method and choices for the MPC. Tuning of the controller
is also a subject here.

• Chapter 5: Presents different simulation cases to test the HPS plant model with the MPC.
Further, an analysis of the obtained results from the simulation is performed here.

• Chapter 6: Brings forth a discussion based on the methods carried out in this thesis.

• Chapter 7: Puts forward a conclusion of the work executed in this thesis. A suggestion for
further work is also included.

• Appendix A: Provides the values of the parameters used for the HPS model described in
chapter 2.

• Appendix B: Contains all the tuning parameter values from the control designs in chapter
2 and 4.

• Appendix C: Shows off excessive plots resulting from simulations in chapter 5.
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2 Offshore Hybrid Power System

In reality, the power systems on offshore platforms are complex due to the composition and
connections of complex subsystems [18]. Adding components such as WTGs and batteries even
complicates things further. In order to work with a manageable HPS model, only the most
impactful components regarding power production and consumption are concerned in this thesis.
These components are a pump used for oil and gas extraction, a GTG for power production, a
WTG for renewable power production, and a battery for storage and delivery of power from/to
the other components.

Figure 2.1 shows how the offshore HPS model is connected. The pump needs a power supply to
function. This power is distributed from the GTG and WTG through the battery. Additionally, a
control unit is illustrated here. This control unit is used to control the power distribution in the
HPS based on observations made through measurements. Eventually, the control unit is to be
replaced by a MPC in this thesis.

Figure 2.1: Offshore HPS in connection with a control unit

This chapter further presents a plant model of the offshore HPS. Section 2.1 introduces a pump
model along with a simple pump controller. In section 2.2 a GTG model is put forward. Following
are section 2.3, containing a WTG model. Then comes section 2.4, describing a battery model.
Lastly, each individual component are connected as a HPS in section 2.5. The content in this
chapter is taken from [17], where the HPS model is assembled and scaled. However, the following
model changes are made:
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2 Offshore Hybrid Power System

• Pump model: Previously, the pump model has been arranged differently. The inverse
of the equations 2.1a-2.1f had to be solved to obtain the desired solution. This yielded
the necessity for a nonlinear equation solver, which resulted in too much computational
power needed for longer simulations. To get a faster model to simulate, the need for a
nonlinear equation solver is removed through the change of inputs and outputs. For this, a
PI controller is connected to the pump model. The PI controller is further implemented
digitally and tuned for a desired response.

• GTG model: A curve fitted efficiency function for the GTG is added and used for the
output power. This efficiency function creates a more realistic GTG model in terms of
power delivery. Instead of using a power reference as input, a throttle together with a gain
is now used. This change is made to get a unit input, which linearly corresponds to the fuel
usage of the GTG, making it more intuitive to observe the overall fuel usage.

• WTG model: In this model, one of two control inputs is removed to simplify the model.
The removed input belongs to a simplified generator model, and removing it does not
extensively reduce the overall model realism. To compensate for the missing control input,
a mathematical coupling is used as a direct replacement.

• Battery model: A state of charge (SoC) attribute, which measures the battery energy
relative to its maximum, is added for a more intuitive energy storage monitoring.

2.1 Pump

The pump is used in an offshore water pumping station which distributes water to ocean disposal,
well injection, and recycling [19]. Multiple designs of pumps for different applications exist. In
this thesis, a centrifugal pump is in the scope. The overall build of the pump consists of a casing,
bearing house, impeller, and shaft. The shaft is connected to the impeller through the bearing
house. When the shaft is applied a mechanical rotational force, the impeller creates a pressure
difference on the liquid, which is then sucked in on one side of the casing and pushed out on the
other side, resulting in a liquid flow through the pump. The mechanical force needed to drive
the pump can be applied to the shaft with the help of, for example, an electric motor or a gas
turbine [20].

The pump model used, which is stationary, originally comes from [19] and consists of three
submodels. The submodels are head-flow-rate (QH), power-flow-rate (QP), and efficiency-flow-
rate (Qη), which are described in subsections 2.1.1, 2.1.2, and 2.1.3 respectively. The pump
model does not have a specific power source, but it is assumed to be a lossless motor that can
utilize power from the other components in the HPS. Note that all the parameters for the pump
model are excluded from this thesis due to confidentiality. In subsection 2.1.4 a PI controller
is assembled and connected to the pump model in order to make it computational efficient for
simulations.
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2.1 Pump

2.1.1 QH Model

The QH model is given by equations 2.1a-2.1f and is found from regression in [19]. The purpose
of this submodel is to calculate the pump head from a given flow rate and rotational speed. The
variables Qp, ωp and Hp are the flow rate through the pump (m3 s−1), rotational speed of the
pump (rpm), and head (m) which is the height the pump can lift a liquid. The overline notation
i means that the variable is normalized.

Qp =
Qp − µQp

σQp

(2.1a)

ωpQp =
ωpQp − µωpQp

σωpQp

(2.1b)

ω2
p =

ω2
p − µω2

p

σω2
p

(2.1c)

Q2
p =

Q2
p − µQ2

p

σQ2
p

(2.1d)

Q3
p =

Q3
p − µQ3

p

σQ3
p

(2.1e)

Hp = bp0 + bp1Qp + bp2ωpQp + bp3ω
2
p + bp4Q

2
p + bp5Q

3
p (2.1f)

The constraints on the QH model are given in equations 2.2-2.4 and split the pump’s operable
area into two regions, an allowable and a preferable region. The preferable region gives constraints
on where the pump’s efficiency ηp is at its highest values, and the allowable lower constraint
ensures that the model stays in its valid region. Note that the allowable region is not upper
constrained.

Allowable lower constraint:

Q2
pal

=
Q2
pal
− µQ2

pal

σQ2
pal

(2.2a)

Hp = dp0 + dp1Q
2
pal

(2.2b)

Qpal
≤ Qp (2.2c)
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2 Offshore Hybrid Power System

Preferable lower constraint:

Q2
ppl

=
Q2
ppl
− µQ2

ppl

σQ2
ppl

(2.3a)

Hp = ep0 + ep1Q
2
ppl

(2.3b)

Qppl
≤ Qp (2.3c)

Preferable upper constraint:

Q2
ppu

=
Q2
ppu
− µQ2

ppu

σQ2
ppu

(2.4a)

Hp = fp0 + fp1Q
2
ppu

(2.4b)

Qp ≤ Qppu (2.4c)

2.1.2 QP Model

The QP model is linear in its parameters and is found with the use of affinity laws in [19] with
the nominal rotational speed ωpn as a basis. The affinity laws use a known characteristic curve of
the pump at a known speed to predict the pump’s characteristic curves at other speeds [21]. This
model provides the power consumption of the pump Pp (kW) for a given Qp and ωp. The QP
model is described through equations 2.5a-2.5e.

Qpn = (ωpn

ωp
)Qp (2.5a)

Qpn =
Qpn − µQpn

σQpn

(2.5b)

Ppn = cp0 + cp1Qpn (2.5c)

Pp = ( ωp
ωpn

)3Ppn (2.5d)

ωpmin ≤ ωp ≤ ωpmax (2.5e)
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2.1 Pump

2.1.3 Qη Model

The Qη model is used to find the efficiency ηp for the pump. It is expressed with equation 2.6,
where g is gravity (m s−2), ρwat is the density of the water used in the pump (kgm−3), and ε is
an unit conversion factor.

ηp = gHpρwatQp
Pp

ε (2.6)

2.1.4 Head PI Control

To simplify the simulation of the pump model, a PI controller is introduced. This controller also
institutes dynamics into the stationary pump model expressed in the previous subsections. The PI
controller is used to control the pump model to reach a stationary head value equal to a chosen
desired head value Hpd

, given an arbitrary flow rate input value. By using this PI controller, the
need for solving the inverse of equations 2.1a-2.1f is eliminated, and the simulation time for the
pump model is drastically decreased.

From the QH model, it is observed that both the flow rate and the rotational speed can be
used to control the head. The flow rate is assumed to be given externally, leaving the rotational
speed to be controlled. The rotational speed is then controlled with the PI controller such that
the head value converges to the desired head value. For the PI control design, the flow rate is
assumed to be a disturbance and decoupled from the head. In this way, the controlled pump
model is treated as a single-input single-output (SISO) system even though it originally is a
multiple-input singel-output system (MISO). The error in head value ep and the pump’s rotational
speed closed-loop function with the PI controller are given in equations 2.7a and 2.7b.

ep = Hpd
−Hp (2.7a)

ωp = KPpep +KIp

∫
ep (2.7b)

The PI controller is further tuned to mimic the response of a realistic pump system as in [22].
The gains KPp and KIp belonging to the PI controller are found in table B.1. Figure 2.2 shows
the connection of the pump model and PI controller, where the flow rate Qp is modeled as a
disturbance.
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2 Offshore Hybrid Power System

Figure 2.2: Pump model in a closed-loop connection with a PI controller

2.2 Gas Turbine Generator

A gas turbine mainly consists of three parts; a compressor, a combustion chamber, and a turbine.
The compressor draws in air for compression. The compressed high-pressure air is then delivered
to the combustion chamber, where it is mixed with fuel. The mixture combusts and is released
as hot steam into the turbine. The hot steam has a high pressure which creates a pressure
difference on the turbine. This pressure difference makes the turbine start spinning. In this way,
the chemical energy in the fuel is transformed into mechanical energy. The mechanical energy
is so transformed into electrical energy with the use of an electrical generator connected to the
turbine with a shaft and potentially a gear exchange. The combination of the gas turbine and the
electrical generator makes up the GTG [23].

Further in this section, a mathematical model of a GTG is described. Firstly, subsection 2.2.1
expresses a simple GTG model. To find an efficiency for the GTG model, an efficiency function is
produced with curve fitting of an existing efficiency curve. Subsection 2.2.2 explains the process
of and results from the curve fitting.

2.2.1 Gas Turbine Generator Model

The GTG model used comes from a simplification of a GAST model [24]. This model consists of
two first-order systems in series. The first system represents the fuel valve to control the fuel input
and the second system represents the fuel system that converts the fuel into mechanical power.
Note that the fuel system here is equivalent to a simplified version of the compressor, combustion
chamber, and turbine. The GAST model is originally equipped with a temperature control loop
and a loss due to mechanical factors. To simplify the model further, the temperature in the gas
turbine is assumed to be low, and the moving components are assumed to be frictionless. Under
these assumptions, the temperature control and mechanical loss are removed from the model.
Additionally, the gas turbine is not connected to an electrical generator in the GAST model, but
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2.2 Gas Turbine Generator

the gas turbine is assumed to be connected to a lossless generator with no dynamics, thus forming
a GTG.

The GTG model is described with equations 2.8a-2.8e where the variables Vg and γg represent the
fuel flow (pu) and GTG throttle (pu), both referred to the maximum lossless power Pglmax

(kW).
Pgl

, ηg, and Pg are the lossless power (kW), efficiency, and power output (kW) respectfully.

V̇g = γg − Vg
τg1

(2.8a)

Ṗgl
=
VgPglmax

− Pgl

τg2
(2.8b)

Pg = ηgPgl
(2.8c)

Pglmin
≤ Pgl

≤ Pglmax
(2.8d)

γgmin ≤ γg ≤ γgmax (2.8e)

The parameters belonging to the model are found in table A.1. The time constants τg1 and τg2

(s) are adjusted a bit from the ones in [24] due to simulation efficiency. The maximum lossless
power Pglmax

is scaled to fit the potential pump power requirement and the minimum power
Pglmin

is set as a limit, so that the GTG cannot consume power.

2.2.2 Efficiency Function

The GTG has a varying efficiency dependent on the load, where the load is given as a percentage
of the maximum power output Pglmax

. The efficiency ηg is modeled as a second-order polynomial
using the curve fitting tool [25] in MATLAB on the efficiency-load curve from [26]. The resulting
efficiency function is expressed in equation 2.9, and the belonging coefficients agi are found in
table A.1.

ηg = ag1( Pgl

Pglmax

)2 + ag2
Pgl

Plgmax

+ ag3 (2.9)

The curve fit gives an approximation of the efficiency-load curve and a fit with an R-square value
(goodness of fit measurement between 0 and 1, where 1 is a perfect fit) of 0.9839 is chosen as a
trade-off between complexity and accuracy. For load values under 20%, the curve is non-existing.
The curve fit, however, gives an estimate of the efficiency for loads under 20%. This estimate is
used in the model but with the uncertainty factor in mind.
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2 Offshore Hybrid Power System

2.3 Wind Turbine Generator

Wind is something that occurs naturally and in "unlimited" amounts on earth, and it is considered
to be a renewable resource. A WTG converts the kinetic energy in the wind into electrical energy.
The WTG is roughly built of; a rotor part, gear exchange, and electrical generator. The rotor
part contains a number of blades attached to it, which are either fixed or can be pitched. When
the wind hits the rotor blades, it starts spinning and converts the wind energy into rotational
mechanical energy. The amount of energy transferred from the wind to the rotor is dependent
on the design and pitch of the blades. The gear exchange is used to speed up the rotational
speed provided by the turbine. The electrical generator is connected to the gear exchange on the
high-speed side (opposite of the turbine), where the speed is at a magnitude desirable for the
electrical generator. Finally, the electrical generator converts the rotational mechanical energy
into electrical energy [27].

The WTG model is based on a realistic model found in [28] and the lookup tables and parameters
are taken from the digital model of this WTG [29]. However, the generator time constant τw
and efficiency ηw are altered. τw is edited to obtain more efficient simulations, and ηw is used as
a power scaling variable. The parameters can be found in table A.2. The WTG model mainly
consists of three submodels, which is the turbine (rotor with blades), drive train, and generator
described in subsections 2.3.1, 2.3.2, and 2.3.3. As a side note, the lookup tables in the WTG
model use interpolation and "act continuous" in the model simulation.

2.3.1 Turbine Model

The turbine’s dynamic is based on aerodynamics, and the wind is assumed to blow perpendicular
to the turbine. A tower model originally belongs to the WTG, but it is removed under the
assumption that the wind does not twist the WTG. The equations for the turbine torque, tip
speed ratio, and pitch constraints are given in equations 2.10a-2.10c.

Mwtur =
1
2v

3
wρairAwCwtur

ωwtur

(2.10a)

φw = Rwωwtur

vw
(2.10b)

βwmin ≤ βw ≤ βwmax (2.10c)

The variable vw is the average rotor wind speed (m s−1), ρair is the air density (kgm−3), Aw is
the rotor disc area (m2), Rw represents the rotor radius (m), and ωwtur is the turbine rotational
speed (rad s−1). Cwtur is a lookup table that approximates the aerodynamics of the turbine. This
lookup table is dependent on the pitch of the turbine blades βw (deg) and the tip speed ratio
φw.
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2.3 Wind Turbine Generator

2.3.2 Drive Train Model

The drive train model is originally based on a spring, damper, and gear ratio. The spring and
damper behaviors are removed under the assumption that the drive train is rigid and free of
friction. This assumption removes some of the oscillations in the WTG model without changing
the overall power production significantly. This result is a constant relationship between the
turbine and generator rotational speed. Due to this constant relationship, the rotational speeds
can be calculated using the same reference frame. The equations for angular acceleration of the
turbine and rotational speed of the generator are given in equations 2.11a and 2.11b. Equation
2.11c makes sure that the rotational speed ωwtur is in a strictly positive direction, avoiding a
singularity in the torque equation 2.10a.

ω̇wtur =
Mwtur −MwgenNw

Iwtur + IwgenN
2
w

(2.11a)

ωwgen = ωwturNw (2.11b)

ωwturmin
< ωwtur (2.11c)

The inertia (kgm2) of the turbine and generator in their respective frames are Iwtur and Iwgen .
The torque (Nm) of the generator (which is defined to be positive for power generation) is Mwgen

and the generator rotational speed (rad s−1) is ωwgen . The gear ratio between the generator and
turbine is given by Nw, and it is used to transform rotational speed, inertia, and torque between
the reference frames.

2.3.3 Generator Model

The generator is modeled with the use of a lookup table. The lookup table Cwgen provides a
generator reference torque Mwgen (Nm) given by the generators rotational speed ωwgen (rad s−1).
Originally, the generator torque reference is given by a controller. The torque control of the
generator is now removed to reduce the number of inputs in the WTG model. However, the
generator torque is indirectly controlled through the pitch of the turbine with this new formulation.
Equations 2.12a-2.12c provides the generator torque, power output, and power constraints.

Ṁwgen =
Cwgen −Mwgen

τw
(2.12a)

Pw =
Mwgenωwgenηw

1000 (2.12b)

Pwmin ≤ Pw ≤ Pwmax (2.12c)

The generator torque also depends on a time constant τw (s) which is used to model a delay. Pw
is the power output (kW) of the WTG and it is dependent on the efficiency ηw. The maximum

13



2 Offshore Hybrid Power System

power output possible is Pwmax . Additionally, the WTG cannot consume power, which is ensured
by Pwmin .

2.4 Battery

A battery is an element that can store electrical energy in the form of chemical energy. The
electrical energy entering the battery is transformed into chemical energy through electrochemical
processes. The battery can also deliver the stored chemical energy in the form of electrical energy
through a reversed process. Batteries can be made of different materials, and how well the energy
is stored and delivered can differ for the different battery types, and the use of them [30].

The battery is modeled as a simple integrator, which summarizes the total power flow in the
HPS. The electrical and chemical properties in this model are absent, and the battery’s efficiency
is therefore assumed to be 100% at all times. Equations 2.13a-2.13d express the mathematical
battery model and its constraints. The unit conversion constant κ together with the constraint
values are derived in [17] and can be found in table A.3.

Pb = Pg + Pw − Pp (2.13a)

Ėb = Pb
κ

(2.13b)

SoCb = 100 Eb
Ebmax

(2.13c)

Ebmin
≤ Eb ≤ Ebmax (2.13d)

The variables Pb and Eb represent the battery power (kW) and stored battery energy (kWh). The
unit kWh is used instead of kJ as this is the normal measure for battery capacity [31]. SoCb is the
SoC of the battery (%). The energy storage of the battery is upper constrained by a maximum
energy Ebmax and lower constrained by Ebmin

. As a result of the way the battery is modeled, it
becomes a subject to indirect control through the pump power Pp, GTG power Pg, and WTG
power Pw. A positive battery power Pb means that the battery is charging, and a negative power
means that the battery delivers energy.

2.5 Connection

The individual models are connected through their power flow. Instead of consuming power, the
pump model delivers "negative" power. The battery model consumes "negative" power while it is
delivering power and consumes positive power while it is charging. The GTG model and WTG
model are only able to deliver positive power. In table 2.1 the model variables along with their
attributes are found. A diagram of the HPS model connection is shown in figure 2.3.
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2.5 Connection

Model Symbol Variable name Unit Input/Output
PI controller Hpd

Desired head m Input
ωp Rotational speed rpm Output

Pump ωp Rotational speed rpm Input
Qp Flow rate m3 s−1 Input
Hp Head m Output
Pp Power consumption kW Output
ηp Efficiency Output
Qpal

Lower allowable flow rate m3 s−1 Output
Qppl

Lower preferable flow rate m3 s−1 Output
Qppu Upper preferable flow rate m3 s−1 Output

GTG γg Throttle pu Input
Vg0 Initial fuel flow pu Input
Pg0 Initial lossless power kW Input
Vg Fuel flow pu Output
Pgl

Lossless power kW Output
Pg Power delivery kW Output
ηg Efficiency Output

WTG vw Average rotor wind m s−1 Input
βw Blade pitch deg Input
Mwgen0

Initial generator torque Nm Input
ωwtur0

Initial turbine speed rad s−1 Input
Mwtur Turbine torque Nm Output
ωwtur Turbine rotational speed rad s−1 Output
Mwgen Generator torque Nm Output
ωwgen Generator rotational speed rad s−1 Output
φw Tip speed ratio Output

Battery Pb Power flow kW Input
Eb0 Initial stored energy kWh Input
Eb Energy stored kWh Output
SoCb State of charge % Output

Table 2.1: HPS model variables
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2 Offshore Hybrid Power System

Figure 2.3: Connected HPS model with inputs and outputs
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3 Optimal Control

In this chapter, the theory of optimal control, which is essential for MPC, is described. The
chapter gradually changes its focus from basic control theory and optimization to nonlinear
optimal control used in nonlinear model predictive control (NMPC). Section 3.1 starts with a
classification of the HPS to capture its properties, which further is used for the design of a
NMPC. In section 3.2 a continuous time optimal control problem (OCP) is defined along with
a description of different classes of OCPs. The OCP for this thesis is also classified in order to
consider the right control design approaches. Some numerical approaches used to solve OCPs on
digital computers are explained in section 3.3. Section 3.4 provides information about differential
equation solvers used in the numerical approach. The next section, 3.5, focuses on methods for
finding optimal solutions. At last, to set it all together, MPC and NMPC are explained in section
3.6.

3.1 System Classification

To classify the HPS, the theory found in [32] is used in this section. The classification is important
for choosing the right control scheme later on.

A dynamical system can be of two variants, either continuous or discrete. Continuous time
systems evolve with a time t consisting of all real numbers R in an interval, opposed to discrete
time systems, which evolve with a time tk of natural numbers N. The system in scope, the HPS
is a continuous time system as it exists in the real world. However, the plant model is discrete as
it is built on a digital computer.

The state-space of a dynamical system can also contain continuous or discrete properties. For a
continuous state-space, the state vector x can take on any values in X ⊂ R. A discrete state-space,
on the other hand, is when X is a finite set. Since the HPS fits with the first case, the system is in
a continuous state-space. As a note, combinations between continuous and discrete state-spaces
also exist.

Another property of the continuous system is if the state-space is of finite or infinite dimension.
For a finite dimension state-space, the states are defined by a set of real numbers, and the system
dynamics are often described by ordinary differential equations (ODEs) or differential algebraic
equations (DAEs). Infinite state-spaces have a state-space that is a subset of a function space.
To describe these systems, partial differential equations (PDEs) are usually used. The HPS is
expressed by ODEs, and the state vector x takes on real values, meaning that it is in a finite
state-space.
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3 Optimal Control

The control set U, which consists of the values that the control input u can have, is also of
continuous or discrete form. Hybrid forms of control sets, such as integer control sets, also exist.
For the HPS, all control inputs are of continuous values.

The system dynamics can depend on time. This property is called time-variant as opposed to a
system independent of time, called a time-invariant system. Since the dynamic of the HPS is the
same for all time, this system is time-invariant.

For a system to be linear, it must be linearly dependent on its initial values and inputs. If this is
not the case, the system is said to be nonlinear. The HPS consists of both linear and nonlinear
components, which makes the overall system nonlinear.

The system can either be controlled or uncontrolled. An uncontrolled system means that the
control set is empty. In the case of the HPS, the system is controlled as the control set is nonempty.
If the system is controlled, it can also have the property of being controllable. Controllability
implies that all the states in x can be controlled to desired values given the initial values. The
pump head Hp is controlled through the input flow rate Qp and the pump rotational speed ωp.
The GTG’s states are being controlled in cascade, meaning that the input throttle γg makes the
GTG controllable. The pitch βw of the WTG is steering the torque of the turbine Mwtur , which
again controls the generator speed ωwgen , making this component controllable as well. Lastly, the
battery input is a function of controllable states. Since the battery only integrates its input, it is
also controllable. In conclusion, the entire HPS system is controllable.

The system can be deterministic or stochastic, meaning that it is either possible to predict the
evolutions of state trajectories or that the trajectories behave randomly. The HPS is deterministic
as it does not have any random behavior (its wind input, however, can appear to behave
randomly).

Lastly, the system can be open-loop or closed-loop controlled. In open-loop control, the control
inputs are predetermined and only dependent on time. Closed-loop control uses the information
about the current states, gained by measurements or estimation, in such a way that the inputs
are dependent on the states. Practical MPC acts as closed-loop control with the current system
states used as initial states for the prediction (thoroughly described in section 3.6). In this thesis,
the HPS model is therefore mainly closed-loop controlled.

The properties of the controlled HPS are summarized as:

• Continuous time

• Continuous state-space

• Finite state-space

• Continuous control set

• Time-invariant

• Nonlinear

• Deterministic
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3.2 Optimal Control Problems

• Closed-loop controlled

3.2 Optimal Control Problems

In this section, general OCPs are introduced. In subsection 3.2.1 the formulation of a continuous
time OCP is formulated and described. Subsection 3.2.2 goes through different classes of OCPs
in addition to classify the OCP for use in this thesis. The theory found here is mainly based on
[32].

3.2.1 Continuous Time Optimal Control Problem Formulation

A type of control problem for systems existing in continuous time is a continuous time OCP. The
continuous time OCP for a system of ODEs can be formulated as an objective function, modeled
dynamics, and constraints as in equations 3.1a-3.1e.

min
x(t),u(t)

J(x(t),u(t)) = min
x(t),u(t)

∫ T

0
L(x(t),u(t)) dt (3.1a)

subject to f(x(t),u(t)) = ẋ(t) (3.1b)

h(x(t),u(t)) ≤ 0 (3.1c)

g(x(t),u(t)) = 0 (3.1d)

x(0) = x0 (3.1e)

In the OCP (equation 3.1a), the goal is to minimize the objective function J by optimizing with
respect to the system states x and inputs u as decision variables. The term L is called the
Lagrangian term and contains the states and inputs to be optimized in time t ∈ [0,T ]. As a side
note, the Mayer term, which is the terminal cost at t = T , is often used in stability proofs and
has a low practical impact. This term is therefore not included in the objective function.

The dynamics for the OCP is given by the state transition function f in equation 3.1b, and it
consists of a mathematical model of the system to be controlled. The dynamical model is typically
simplified to have a trade-off between model-system accuracy and computational efficiency.

The terms h and g from equation 3.1c and 3.1d are the problem’s inequality and equality
constraints. These constraints describe physical limitations for the system, or they can be chosen
to form the OCP according to specifications. The trajectories are typically only bounded by
inequality constraints.

The last equation 3.1e gives equality constraints on the initial values. It ensures that at time t =
0, the state vector x is bounded at the initial values x0.
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The OCP is illustrated in figure 3.1, where the problem contains an input u and two states x1
and x2. The states are constrained by the initial value at t = 0. Furthermore, the state x1 is
constrained by the inequality constraint h and the state x2 is bounded by the equality constraint
g. The important aspect here is to find the optimal value of the objective function by controlling
x trough u.

Figure 3.1: Visualization of an OCP with two states, a control variable, and constraints (based
on [32])

3.2.2 Optimal Control Problem Classes

In this subsection, the different properties that can be found in continuous time OCPs are briefly
discussed. Additionally, the OCP at hand is classified by analyzing the formulation in subsection
3.2.1 together with the HPS’s properties from section 3.1. An important feature for the design of
the OCP is that it can be formulated to have different properties than the system (e.g. continuous
inputs can be optimized as integers).

First off, the OCP can be of a constrained or unconstrained nature. If the equality and inequality
sets are empty (i.e. no constraints exist), the problem is said to be unconstrained. If this is
not the case, the problem is constrained. Since the physical system possesses limitations (hard
constraints), the OCP has to be formulated as a constrained problem to be practically useful.
The HPS is naturally constrained by physics, and the HPS plant model is further constrained by
valid model regions. Constrained problems can, however, be infeasible, meaning that no solution
exists inside the constrained set [33].
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Another important property of the OCP is if it is convex or non-convex. The problem is convex
if the objective function J is convex and the feasible set (set given f , h, g, and x0) is convex.
Convex means that a line can be created between two arbitrary points on the function and that
the line always lays above the function. For convex problems, the local minimum is also the global
minimum. Non-convex problems, on the other hand, can have multiple local minimums, making
it NP-hard (not solvable in polynomial time) to find the global minimum [34]. Unfortunately,
the nonlinear system dynamics of the HPS makes the feasible set of the OCP non-convex, and
therefore making the OCP itself non-convex.

The OCP can be classified as continuous, meaning that the optimization variables are continuous.
For continuous OCPs, linear programs (LPs) and nonlinear programs (NLPs) are the main
categories. LPs are problems where all of the constraints together with the objective function is
linear. This also implies that all LPs are convex. As a special case of NLPs, a class of quadratic
programs (QPs) exist. These programs have quadratic objective functions with linear constraints.
If the quadratic form is positive (semi)definite, the problem is convex. Other NLPs either have a
nonlinear objective function, constraints, or both. This means that NLPs are generally non-convex,
except for the special cases [12]. Due to the system dynamics f (constraint) being nonlinear, the
OCP in this thesis is also nonlinear.

There also exist discrete OCPs. If all of the variables in the problem are integers laying in the set
Z, the problem is called an integer program (IP). If only some of the variables are integers, the
problem is called a mixed integer program (MIP). In addition, these programs can be categorized
as linear or nonlinear [12]. However, since the feasible set contains discrete values, these problems
are all non-convex. On the upside, IPs and MIPs can model many realistic systems [35]. In this
thesis, integer variables are out of the scope, making the OCP continuous.

The OCP properties for the HPS are summarized as:

• Continuous time

• Constrained

• Non-convex

• Nonlinear

• Continuous

3.3 Numerical Approaches

There are multiple approaches to approximate the solution of the continuous time OCP of a finite
horizon numerically. These approaches are categorized into state-space approach described in
subsection 3.3.1, indirect approach in subsection 3.3.2, and direct approach found in subsection
3.3.3. As the control system is implemented on a digital computer, the continuous time OCP has
to be transformed into discrete time. The numerical approaches account for this by the process
of discretization. Most of the theory used in this section is gathered from [32] and [36].
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3.3.1 State-Space Approach

The state-space approach is based on solving the OCP with the use of the Hamilton-Jacobi-
Bellman (HJB) equation. The HJB equation constitute a PDE, which is solved numerically. This
continuous approach relies on that all the optimal subarcs of a trajectory provide an optimal
trajectory. The use of the HJB equation in continuous time can be connected to the use of
dynamical programming (DP) in discrete time. By discretizing the OCP, the HJB equation
becomes an algebraic DP type of equation. This equation can then be solved numerically using
an iterative minimization routine.

A good reason for using the state-space approach is that an approximation of a feedback law is
provided directly. The approach works well for many kinds of special problems. It is, however,
restricted to problems of a lower state-space dimension nx as the number of nodes needed for
accuracy grows exponentially with nx and thus increasing computational time drastically. This
is known as the "curse of dimensionality". As the state-space of the HPS model is of a higher
dimension, this approach is not preferred.

3.3.2 Indirect Approach

The indirect approach for control is based on using Pontryagin’s Maximum Principle, which is
the optimality conditions in continuous time. The approach is based on solving a boundary
value problem (BVP) for the system of ODEs. This method is often called: "first optimize, then
discretize" as the discretization happens after the derivation of the optimality conditions.

The indirect approach offers a quite exact approximation, even better than the direct approach,
but it has some major drawbacks. The drawbacks are problems connected to complex algebraic
manipulation, non-smooth ODEs, and nonlinear/unstable behavior. Due to its many issues, the
indirect approach is usually not chosen as a preferred method, and it is therefore not utilized in
this thesis either.

3.3.3 Direct Approach

The direct approach uses the principle; "first discretize, then optimize", as opposed to the indirect
method where the order is turned. When the OCP is discretized, the problem to be solved is a
finite dimensional NLP, which is an approximation of the original problem. This approach makes
it easy to deal with the problem’s constraints, and several efficient solvers for NLPs exist. The
direct approach is, therefore, the simplest and most popular approach of the ones mentioned.

The direct approach is chosen as the method for approximating the solution of the OCP at hand,
but there are several variants. These variants are different in the way that they transcribe the
original problem into a NLP. The direct methods mainly consist of single shooting, multiple
shooting, and collocation. The methods are based on parametrizing the continuous time input
u(t) into a discrete time input uk. A trait of the shooting methods is that they use external
equation solvers to eliminate the continuous time dynamics.
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3.3 Numerical Approaches

Direct Single Shooting

The direct single shooting method uses a sequential approach, meaning that the optimization
and simulation run sequentially. The states x(t) are calculated by integrating over ẋ(t) for the
full time horizon [0,T ]. First, a discrete time grid is chosen as in equation 3.2a. The new discrete
inputs are set as uk in equation 3.2b for the discrete time grid, where nu is the input dimension.
The inputs are then held constant between the points in the time grid as in equation 3.2c. The
path constraints h and g are also discretized, typically at the same time grid as the inputs.

0 < t0 < t1... < tN = T (3.2a)

uk ∈ Rnu , k = 0, ..., N − 1 (3.2b)

u(t) = uk, t ∈ [tk, tk+1] (3.2c)

In short, the single shooting method suffers from large amounts of non-linearity during longer
simulations. This method is, therefore, generally not preferred. Figure 3.2 shows an illustration of
the direct single shooting approach.
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Figure 3.2: Direct single shooting approach (based on [32])
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Direct Multiple Shooting

The direct multiple shooting method is based on solving the ODEs at each time interval t ∈
[tk,tk+1], instead of the entire horizon as the direct single shooting method does. The trajectories
are calculated piecewise, and a new set of initial values xk are defined at each time interval. x′k
is used as the notation for the piecewise trajectories. The input vector u is discretized the same
way as for the single shooting method.

Equation 3.3a provides the dimension of the initial state vector and the number of calculations of
the trajectories. The splitting of the dynamic and new initial values are given by equations 3.3b
and 3.3c. The method ensures continuity for the trajectories by adding the additional shooting
constraint as in equation 3.3d. The constraints h and g are also discretized in a time grid, often
the same as for the input, but a denser time grid is also possible. The constraints are checked for
in every discrete time tk.

xk ∈ Rnx , k = 0, ..., N (3.3a)

ẋ′k(t,xk,uk) = f(x′k(t,xk,uk),uk), t ∈ [tk, tk+1] (3.3b)

x′k(tk,xk,uk) = xk (3.3c)

x′k(tk+1,xk,uk) = xk+1 (3.3d)

Multiple shooting acts as a series of single shootings, but the discrete NLP is now easier to solve.
The reason for this is that the short intervals reduce the non-linearity. The downside of this
method is the increased number of optimization variables. Figure 3.3 shows an example of direct
multiple shooting.
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Figure 3.3: Direct multiple shooting approach (based on [32])

The multiple shooting approach uses a simultaneous procedure, meaning that both the optimization
and simulation are performed at the same time. This approach is based on a sparse structure of
the OCP and provides an efficient solution method. Therefore, direct multiple shooting is the
preferred method in most cases, and it is utilized in this thesis as well.

To get a sparse structure of the OCP, the optimization variables are collected in a vector w in
a specific order as in equation 3.4a. The constraints h and g are also arranged in a particular
structure as in equations 3.4b and 3.4c for the same purpose [37]. The constraints are, in this
case, discretized in the same time grid as the rest of the OCP.

w =
[
x>0 u>0 ... u>N−1 x>N

]
(3.4a)

h(w) =


h(x0,u0)

...
h(xN−1,uN−1)

h(xN )

 (3.4b)
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g(w) =


x(0)− x0

f(x0,u0)− x1
...

f(xN−1,uN−1)− xN

 (3.4c)

The OCP in discrete time is expressed with equations 3.5a-3.5c, where Lk represents the discrete
time Lagrangian term. Note that the Mayer term is also removed in the discrete time OCP.

min
w

J(w) = min
x,u

N−1∑
k=0

Lk(xk,uk) (3.5a)

subject to h(w) ≤ 0 (3.5b)

g(w) = 0 (3.5c)

Direct Collocation

Collocation is based on discretizing the inputs and states on a higher resolution time grid. On
each interval [tk,tk+1], the trajectories are approximated with the use of polynomials. The NLP
is then made by direct collocation of the obtained equations. The collocation method is much
similar to the multiple shooting method, but unlike multiple shooting, the variables in the solution
algorithm also act as optimization variables.

3.4 Differential Equation Solvers

The shooting methods require an external differential equation solver. Since all of the equations
of the HPS model are ODEs, an ODE solver for this type of equations is needed. The popular
integration methods (solving methods) briefly discussed in this thesis are the explicit (subsection
3.4.1) and implicit (subsection 3.4.2) Runge-Kutta (RK) methods. These methods iteratively
integrate the differential equations. The following content is based on the theory found in [38].

First off, the generalized RK method of s stages is expressed as in equations 3.6a-3.6c. The
number of stages corresponds to the number of times the function f is evaluated. The constants
a, b, and c are given by butcher tableaus, which are value tables containing values depending
on the method. ∆t is the time step, set by the time grid for the integrator. If the next K can
explicitly be calculated by the previous K, the discrete state vector xk, and input u, the method
is said to be explicit. If this is not the case, the method is implicit, and both the diagonal and
the upper diagonal of the butcher tableau are nonzero.

K1 = f(xk + ∆t
s∑
j=1

a1jKj ,u(tk + c1∆t)) (3.6a)
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...

Ks = f(xk + ∆t
s∑
j=1

asjKj ,u(tk + cs∆t)) (3.6b)

xk+1 = xk + ∆t
s∑
i=1

biKi (3.6c)

3.4.1 Explicit Runge-Kutta Method

The simplest form of explicit RK method is the Euler method: Runge-Kutta of first order (RK1).
This method is easy to implement, but it neglects the trajectory curvature. Increasing the order
of the method makes it possible to capture the trajectory characteristics but at the cost of more
computational time. In general, reducing the approximation error can be obtained by increasing
the order of the method or decreasing the time step ∆t. Increasing the time step also results in
increased computational time.

For orders up to and including Runge-Kutta of fourth order (RK4), the computational power
needed is proportional to the order. This does not, however, hold for higher-order explicit RK
methods, where an increase in order requires a larger increase in computational power due to
multiple extra stages needed. On the bright side, the number of stages gives an exponential
increase in accuracy. In this thesis, the RK4 method is chosen as this method generally gives the
best trade-off between computational time and accuracy.

The explicit RK methods suffer from potential instability. The stability region increase with an
increase in order or decrease in time step value. The stability region, however, is still limited to a
certain degree. The RK4 method has a decent stability region with a reasonable choice of the
time step ∆t.

3.4.2 Implicit Runge-Kutta Method

The reason for choosing an explicit RK method is the advantage of a lower computational cost.
That being said, the implicit method has its advantages. The stability of this integration method is
independent of the time step ∆t, but this is, as mentioned, not the case for explicit methods. The
number of stages required for higher orders is also lower for implicit RK methods, but this does
not necessarily make them more efficient for solving differential equations. The last advantage of
the implicit method mentioned here is that it handles DAEs smoothly. This property is, however,
irrelevant in this thesis since all model equations to be solved are ODEs.
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3.5 Optimization Methods

To solve the NLP arising from the direct multiple shooting approach, an optimization method is
used to find a set of optimal trajectories and inputs w∗. The optimization methods for NLPs
are divided into two classes; the nonlinear interior point (IP) method and sequential quadratic
programming (SQP). These methods are based on solving the Karush-Kuhn-Tucker (KKT)
conditions (subsection 3.5.1), which are the necessary conditions for optimality in NLPs. Newton’s
method (subsection 3.5.2) together with step length methods (subsection 3.5.3) make up the
basis of both IP (subsection 3.5.4) and SQP (subsection 3.5.5) methods. These methods differ
as IP uses the barrier functions while SQP uses linearization. The optimization theory is reached
from [32] and [33].

3.5.1 Karush–Kuhn–Tucker Conditions

The KKT conditions are given in equations 3.7a-3.7e. L is called the Lagrangian function and is
a function of the optimization variables in w and Lagrange multipliers λ and µ (multipliers for
equality and inequality constraints respectfully). The ∗ notation implies that the variable is a
local minimizer (i.e. a variable belonging to a local minimum). The parameter nh represents the
number of inequality constraints.

∇L(w∗, λ∗, µ∗) = ∇J(w∗) + λ∗∇g(w∗) + µ∗∇h(w∗) = 0 (3.7a)

g(w∗) = 0 (3.7b)

h(w∗) ≤ 0 (3.7c)

µ∗ ≥ 0 (3.7d)

µ∗ih∗i (w∗) = 0, i = 1, ..., nh (3.7e)

A subset of the KKT conditions (equations 3.7c-3.7e) goes by the name complementary conditions.
If µ∗i = hi(w∗) = 0 the conditions form a set that is non-smooth (not differentiable at the origin),
and the constraint is said to be weakly active. The constraint is strictly active if µ∗i > 0. If all of
the constraints are strictly active, the property of strict complementary is obtained.
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3.5.2 Newton’s Method

Both the SQP and nonlinear IP methods are based on solving the nonlinear KKT conditions
using Newton’s method. The idea of this method is to iteratively find the roots of the function
f(x) by using its gradient ∇f and Hessian ∇2f . The method starts with an initial guess for the
solution.

Equation 3.8a shows one iteration j of Newton’s method. This equation uses the exact Hessian
∇2f of the function f , and it is not guaranteed to provide a descent step close to the solution. A
modified Hessian Bj is, therefore, an alternative to ensure convergence. The equation using the
modified Hessian is given in 3.8b. The Quasi-Newton method, which uses a modified Hessian,
makes sure that Bj is positive definite by updating it with a given formula every iteration. Other
modifications also exist, such as adding positive values to the original Hessian.

The variable αj ∈ (0,1] represents the step length for the iteration. The step can be scaled to
ensure progress to the root-finding, as a full step (αj = 1) might skip solutions in some regions
(e.g. a large step from the edge of a steep hill can miss the local minimum at the bottom of the
hill).

xj+1 = xj − αj∇2f(xj)−1∇f(xj) (3.8a)

xj+1 = xj − αjBj(xj)−1∇f(xj) (3.8b)

3.5.3 Step Length Methods

The performance of the step length can be checked through a merit function that measures the
solution’s progress. The merit function works as a somehow scaled version of the NLP where it
combines the objective value and constraint violations. It accepts steps if it produces a lower
merit function in the next iteration. Using a merit function can cause a slow convergence of
the algorithm as it tends to throw away numerous step suggestions. It is also possible to use
filter methods where a decrease in either objective value or constraint violation makes the step
acceptable. The filter stores the best combinations of objective values and constraint violations
and uses them as comparisons. The filter methods often result in full steps.

To find appropriate steps, a line search or trust region algorithm is used. The line search method
uses some chosen conditions (for example, Wolfe conditions), and with the help of the merit
function or a filter, it reduces the step length from a full step length until the conditions are met.
The trust region method adds an extra constraint to make a small region close to the last iteration.
This is to get a decrease in the merit function. The region size can be adjusted to ensure progress
towards the solutions. Using both these methods does, in theory, result in global convergence,
meaning that a local solution is always found using an arbitrary initial starting point.
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3.5.4 Interior-Point Method

The IP method approximates the non-smooth set from the complimentary conditions as a smooth
set. A hyperbola function is commonly used for this. A strictly positive constant τ is used for the
smoothing in this approximation. This constant starts out large and is gradually reduced during
the iterations of solving the nonlinear equations. Equation 3.9 shows how the complimentary
conditions in equations 3.7c-3.7e are smoothed to obtain a smooth system of equations. The
equation solving is then executed by using Newton’s method. This method is called the primal-dual
method.

µ∗ih∗i (w∗) + τ = 0, i = 1, ..., nh (3.9)

Another IP method, is the primal method, where equation 3.9 is inserted into equation 3.7a. This
results in the so called barrier problem as expressed in equations 3.10a and 3.10b.

min
w

J(w)− τ
nh∑
i=1

log(−hi(w)) (3.10a)

subject to g(w) = 0 (3.10b)

The primal and primal-dual methods provide the same solution to the problem, but the primal
method suffers from ill-conditioned matrices when τ becomes small. A small solution error is
desired, and the error linearly decreases with τ . The primal-dual method is, therefore, the preferred
method when it comes to numerical implementation.

The primal-dual formulation can be extended to include slack variables s. The complimentary
conditions then end up as in equations 3.11a and 3.11b. Even though this yields the same solution
as with equation 3.9, the slack variables provide some benefits. With slack variables, the initial
guess can be infeasible. Through the iterations of Newton’s method, equation 3.11b makes sure
that the solutions are feasible. Another advantage of using slack variables is that backtracking
(step size reduction), which can be computationally expensive, is not required.

µ∗i s∗i − τ = 0, i = 1, ..., nh (3.11a)

hi(w∗) + s∗i = 0, i = 1, ..., nh (3.11b)

In this thesis, the nonlinear IP (primal-dual) method is chosen for optimization as it offers a great
open-source code solver called interior-point optimizer (IPOPT). This solver is based on using a
linear solver as its subroutine to compute the roots of the KKT conditions. The solver also uses
the line search and filter method to progress [39].
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3.5.5 Sequential Quadratic Programming

The SQP methods iteratively transform the NLP into a QP by linearizing the objectives and
constraints. The resulting inequality constrained QP is then solved by using an IP method for
QPs or an active set method. The active set method solves the optimization problem directly
by computing active sets. The SQP method is advantageous for both large and small problems.
However, the IP method proves better performance in this thesis.

3.6 Model Predictive Control

The main goal of MPC is to compute the optimal inputs u, resulting in an optimal evolution of
x. To do this, the OCP (section 3.2) is solved by using a numerical approach (section 3.3). The
prediction model f together with u are used to predict the future trajectories x with the use of a
differential equation solver (section 3.4). The predicted trajectories are used in the optimization
method (section 3.5) to find the optimal inputs uk. A regular type of objective function to specify
the control goals of the MPC is further described in subsection 3.6.1. The content here stems
from [32] and [12].

There are two ways of using the MPC, either in open-loop or closed-loop. The open-loop method
solves the finite horizon OCP once and applies the calculated inputs uk to the plant at every
discrete time tk. This is called open-loop optimization. The closed-loop optimization method
recomputes the finite horizon OCP at every discrete time step tk and applies the first optimal
input uk of the solution to the plant. As the solution is recomputed, the initial conditions x0 are
replaced by the current plant measurements yk, which are the discrete time measurements at
time tk. This technique is also called a receding horizon.

A significant issue with the open-loop approach is that the predictions drift away from the real
system dynamics due to model imperfections. The closed-loop optimization compensates for the
modeling imperfections by introducing the receding horizon as described in the previous paragraph.
This approach provides a correction at every discrete time step, yielding a more accurate control.
The focus of this thesis is on a receding horizon MPC.

In this thesis, all plant states are measurable as they are outputs from the HPS plant model.
In reality, where measurements are impossible or hard, a Kalman filter (KF) or moving horizon
estimator (MHE) can be used to estimate the states.

Figure 3.4 shows the MPC in a closed-loop connection to a plant with a measurement unit. The
measurement unit measures the plant outputs y at discrete times tk. A reference r is included as
the objective typically is to track a reference. In this thesis, the plant is replaced with a plant
model. The plant model is commonly more complex than the prediction model due to less power
needed for simulation than optimization.
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Figure 3.4: Overview of a model predictive controller with a feedback connection to a plant
through an output measurement unit (based on [40])

The evolution of the model trajectories x is predicted for the finite horizon Tph, called the
prediction horizon. The prediction of optimal inputs uk can be chosen to lay in a shorter interval
Tch, which is called the control horizon. The control inputs are then held constant for t ∈
[Tch,Tph]. A reason for using a reduced control horizon is to decrease the number of optimization
variables, bringing down the needed computational power. The inputs are typically less necessary
at the end of the prediction horizon. In addition, a plant with a large delay needs some adjustment
time.

Equations 3.12a-3.12c show modifications to the discrete time OCP when using different horizons.
Nch and Nph are the number of discrete time steps for the control and prediction variables, where
Nch ≤ Nph. Moreover, the constraints h and g are accounted for lesser variables if Nch 6= Nph.

min
w

J(w) =
Nph−1∑
k=0

Lk(xk) +
Nch−1∑
k=0

Lk(uk) (3.12a)

uk ∈ Rnu , k = 0, ..., Nch − 1, 0 < t0 < t1... < tNch
= Tch (3.12b)

xk ∈ Rnx , k = 0, ..., Nph − 1, 0 < t0 < t1... < tNph
= Tph (3.12c)

As the horizon moves for every time step ∆t, a notation for the time given the current placement
of the horizon is essential. The discrete time inputs, states, measurements, and references are
redefined as uk,k”, xk,k”, yk,k”, and rk,k”, where k denotes the position relative to the horizon
and k” gives the position of the horizon start relative to the global timeline. Using this notation,
the inputs to be applied at each time step are u0,k”.

Figure 3.5 shows an example of a receding horizon strategy. The figure is divided into the past,
where the control inputs already have been applied, and the future, which is the prediction of the
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MPC. The dots represent measurements, predictions, and input appliances in discrete time. The
shaded plot in the past area of the figure shows the history of inputs u applied to the plant, the
actual measured outputs y, and the past references r. In the future region, the predicted optimal
open-loop trajectories x and inputs u are calculated to follow the reference r in the future. This
example also includes a shorter control horizon compared to the prediction horizon.
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Figure 3.5: History and prediction from a receding horizon strategy (based on [12] and [41])

NMPC is a special form of MPC where the dynamical model is nonlinear. The NMPC approaches
usually end in non-convex OCPs. This is also the case in this thesis, as analyzed in section 3.2.

3.6.1 Objective Function

The objective function is designed in order to reach desired objectives. The standard approach for
MPC is to use reference tracking, where the controlled variables (CVs) track the references r
which is time-varying or stationary. The manipulation variables (MVs) are also included in the
objective function [42]. Figure 3.5 shows an example of a time-varying reference tracking.

Both the terms containing the reference tracking of CVs and the MVs are weighted by the diagonal
matrices Qk and Rk respectfully. These weight matrices can be time-varying or constant. Time-
varying matrices yield a more complex tuning due to an increased number of tuning parameters.
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A higher weight value on the CVs means a higher priority in tracking the reference, and a higher
weight value on the MVs makes the inputs more costly to use. The Lagrangian term for typical
reference tracking is shown in equation 3.13 [42], [43].

Lk(xk,uk) = Qk(rk − xk)2 + Rku2
k (3.13)

The terms in the objective function are often chosen to be quadratic. This makes the objectives
convex and the derivatives easier to analyze. In addition, one extreme point is ensured. Other forms
of formulations also exist, for example, robust MPC, which is designed to handle disturbances.
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This chapter describes the details around the design of the NMPC. It is required that the NMPC
handles the power distribution in the HPS under different wind conditions, with a high focus
on utilizing potential wind power. Additionally, the controller should be concerned with rapid
movements to decrease wear and tear. Figure 4.1 shows how the design aspects of the NMPC
are put together.

Figure 4.1: Design elements for the NMPC

Firstly, section 4.1 describes approximations of the HPS model’s lookup tables, which are used in
the HPS prediction model. Section 4.2 arranges the prediction model equations into a state-space
form and augments the system to include input dynamics. The NMPC constraints are found in
section 4.3. In section 4.4, the controller objectives needed to gain a desired control response
are expressed. A guideline for general MPC tuning and the specific tuning for the NMPC are
described in section 4.5. Lastly, the software choice and implementation method for the NMPC
are represented in section 4.6.
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4.1 Lookup Table Approximations

As the lookup tables used in the WTG model (section 2.3) consist of a limited number of values,
this makes the OCP a mixed integer nonlinear program (MINLP), where a subset of the states
lay in discrete state-space. To formulate the OCP as a NLP, which are generally less complex
to solve, the lookup tables are approximated as continuous functions. In subsection 4.1.1 the
generator torque lookup table is approximated and the turbine lookup table is approximated in
subsection 4.1.2. To that end, the curve fitting tool [25] from MATLAB is utilized. The resulting
parameters are given in table A.4.

4.1.1 Generator Torque Lookup Table Approximation

The characteristics of the generator torqueMwgen as a function of rotational speed ωwgen resemble
the characteristics of a sigmoid function. Therefore, this type of function, and more specifically a
logistic function, is used to approximate Mwgen . The function has a flat region at the start and
end, with a steep slope in between. Figure 4.2 shows the generator torque lookup table and the
approximated generator torque function for a varying rotational speed.
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Figure 4.2: Generator torque lookup table and approximation of generator torque for a varying
rotational speed

36



4.1 Lookup Table Approximations

The approximation of the lookup table is given as a function in equation 4.1, where Mwgenmax
is

the maximum generator torque, Kwgen is a constant to adjust the curve steepness, and ωwgenmid

is the midpoint of the function’s slope. The resulting approximation has an R-square value of
0.99, which means that the fit of the curve is quite good.

Dwgen =
Mwgenmax

1 + e−Kwgen (ωwgen−ωwgenmid
) (4.1)

4.1.2 Turbine Lookup Table Approximation

The lookup table Cwtur is a function of the pitch βw and tip speed ratio φw. The two inputs
in different combinations give different values, meaning that the lookup table values shape a
3-dimensional figure. This fact implies that the continuous approximation of the lookup table
is a plane wrapped in three dimensions. Unfortunately, finding a good approximation for a
3-dimensional figure is a lot harder than for a 2-dimentional one.

To approximate Cwtur , a polynomial function is chosen. However, fitting the entire lookup table
yields a high variance in the approximation around the operational area of the WTG. A reason for
this is the lookup table’s nonlinearities combined with a large span of table values. The entire span
of values is about −210 to 0.6. After a thorough inspection of the lookup table and simulations
of the WTG model at different operational modes, it is found that the operable lookup table
values lay around −0.1 to 0.6. Every table value under −0.1 is therefore removed from the lookup
table in order to obtain a relevant set of points to be curve fitted with high accuracy.

Another issue with the fitting is choosing the proper order of the polynomial to avoid underfitting
or overfitting certain regions, which results in inaccurate fits. During tests of different orders, it is
clear that a first-order fit of both inputs yields in underfitting, and combinations of fourth-order
and fifth-order fits of the two inputs end in overfitting. This leaves the option of combining first,
second, and third-order degrees of fit. Visually, it is hard to determine which one is the best fit,
and the measurement of fit in the curve fitting tool does not eliminate the factor of overfitting.
However, some of the polynomial combinations are eliminated due to obvious misshapes.

Figure 4.3 shows the result of the curve fitting of the operational area. The figure is primarily
zoomed in on the z-axis, and the red dots represent a part of the excluded points. The black
points are the points observed to be in the operational area, and the curve is fitted to intersect
these points. The yellow curve is the 3-dimensional polynomial function fitted to the black points.
The polynomial degree of the plane is 3 in βw and 2 in φw.
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Figure 4.3: Curve fitted 3-dimensional plane for the turbine lookup table approximation

The combinations of degrees of the inputs in the polynomial are compared to the lookup table
Cwtur at different wind speeds vw to find the best fit. These wind speeds represent a sizeable
operational range. A set interval of pitch values βw from 0 to 30 degrees, which represents the
nominal operational pitch range, is also used. The combination of different pitch values and wind
speeds yields different values of φw, such that a larger specter of approximated table values is
tested.

Average mean square error (AMSE), which is the average of the mean square errors (MSEs) for
each wind speed, is used as a "goodness of fit" measurement where a small value is better than a
large one. Table 4.1 shows the results of the test for different orders of the inputs with different
winds.

Deg(βw) Deg(φw) vw = 1 vw = 6 vw = 11 vw = 16 vw = 21 AMSE
1 2 0.0107 0.0056 0.0016 0.0004 0.0011 0.0039
1 3 0.0058 0.0035 0.0013 0.0006 0.0012 0.0025
2 2 0.0107 0.0056 0.0016 0.0004 0.0011 0.0039
2 3 0.0045 0.0033 0.0037 0.0049 0.0051 0.0043
3 2 0.0050 0.0023 0.008 0.0007 0.0010 0.0020
3 3 0.0070 0.0061 0.0070 0.0085 0.0086 0.0074

Table 4.1: Test of polynomial approximations of the turbine lookup table

From looking at the results in table 4.1, it is observed that a βw of degree 3 and a φw of degree
2 gives the least AMSE. This value tells that the average performance of this combination of
polynomial order gives the best mean approximation of the lookup table. To ensure that the
polynomial does not deviate too far from the lookup table at certain values, monitoring of the
performance is also executed. The combination yielding the smallest AMSE also approximately
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gives the slightest maximum deviation. Therefore this polynomial combination is chosen, and it is
expressed in equation 4.2, where p represents the coefficients of the polynomial. This polynomial
fit is also the one shown in figure 4.3.

Dwtur = pw00 + pw10φw + pw01βw + pw20φ
2
w + pw11φwβw

+pw02β
2
w + pw21φ

2
wβw + pw12φwβ

2
w + pw03β

3
w

(4.2)

4.2 Prediction Model State-Space Formulation

In this section, two state-space formulations of the prediction model are formulated. First,
in subsection 4.2.1 the original state-space formulation, where the inputs u are unchanged,
is introduced. In subsection 4.2.2 the state-space formulation is augmented with dynamical
properties of the inputs. The reasons for including the extra input dynamics are to smoothen
the overall closed-loop system response and constrain the input dynamics. This augmentation
reduces the physical stress in the HPS, yielding a lessened necessity for maintenance.

4.2.1 Original State-Space Formulation

To describe the dynamics of the HPS prediction model, the model equations from chapter 2 are
rearranged and put into a nonlinear state-space form, meaning that the differential equations
are of first-order and coupled [44]. Additionally, the lookup tables C are substituted with the
approximated functions D form section 4.1.

The vectors belonging to the state-space model are given in equations 4.3a-4.3c, where x is the
state vector, u is the input vector, and p is the parameter vector. The parameter vector is used
to include the wind speed into the dynamics without having an explicit dynamical wind model.
The matter of how p is treated in this thesis is a further subject in chapter 5. The differential
equations representing the state-space is given with ẋ in equations 4.4a-4.4g.

x =
[
Ip ωp Vg Pgl

ωwtur Mwgen Eb
]>

(4.3a)

u =
[
Qp γg βw

]>
(4.3b)

p =
[
vw

]
(4.3c)
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İp = Hpd
− (bp0 + bp1

Qp − µQp

σQp

+ bp2

ωpQp − µωpQp

σωpQp

+ bp3

ω2
p − µω2

p

σω2
p

+ bp4

Q2
p − µQ2

p

σQ2
p

+
Q3
p − µQ3

p

σQ3
p

) (4.4a)

ω̇p = KPp(Hpd
− (bp0 + bp1

Qp − µQp

σQp

+ bp2

ωpQp − µωpQp

σωpQp

+ bp3

ω2
p − µω2

p

σω2
p

+ bp4

Q2
p − µQ2

p

σQ2
p

+
Q3
p − µQ3

p

σQ3
p

) +KIpIp (4.4b)

V̇g = γg − Vg
τg1

(4.4c)

Ṗgl
= VgPgmax − Pgl

τg2
(4.4d)

ω̇wtur =

1
2v

3
wρairAw(pw00 + pw10

Rwωwtur
vw

+pw01βw + pw20(Rwωwtur
vw

)2 + pw11
Rwωwtur

vw
βw

+pw02β
2
w + pw21(Rwωwtur

vw
)2βw + pw12

Rwωwtur
vw

β2
w + pw03β

3
w)

ωwtur
−MwgenNw

Iwtur + IwgenN
2
w

(4.4e)

Ṁwgen =
Mwgenmax

1+e−Kwgen (ωwtur Nw−ωwgenmid
) −Mwgen

τw
(4.4f)

Ėb =

(ag1( Pgl
Pgmax

)2 + ag2
Pgl

Pgmax
+ ag3)Pgl

+ MwgenωwturNwηw

1000 − ( ωp

ωpn
)3(cp0 + cp1

( ωpn
ωp

)Qp−µQpn

σQpn
)

κ
(4.4g)
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4.2.2 Augmented State-Space Formulation

An augmented state-space representation is formulated to account for the input dynamics. The
previous inputs are transformed into states, and the new inputs are now the derivatives of these
states. The new state and input vectors xaug and uaug are found in equations 4.5a and 4.5b. In
addition, three new linear differential equations (4.6a-4.6c) are added to the state-space. In fact,
this formulation also includes integral action into the system as long as the original inputs are not
weighted [45]. Further, the augmented state-space formulation is used as the prediction model,
and the original inputs are referred to as states whereas the input dynamics are referred to as
inputs.

xaug =
[
Ip ωp Vg Pgl

ωwtur Mwgen Eb Qp γg βw
]>

(4.5a)

uaug =
[
∆Qp ∆γg ∆βw

]>
(4.5b)

Q̇p = ∆Qp (4.6a)

γ̇g = ∆γg (4.6b)

β̇w = ∆βw (4.6c)

4.3 Controller Constraints

The controller constraints are used to ensure that the HPS is controlled in such a way that its
dynamics are valid with respect to the OCP. All of the constraints are inequality constraints
and thus belonging in vector h. The constraints are divided into state constraints and input
constraints in subsections 4.3.1 and 4.3.2.

4.3.1 State Constraints

The state constraints for the NMPC are almost the same as for the HPS model in chapter 2. In the
augmented state-space model, the constraints on the original inputs (for the original state-space
model) are also state constraints. The constraints are summarized in equations 4.7a-4.7h.

The only constraint modification is on the flow rate Qp, which initially has three regions (not
allowable, allowable, and preferable). A choice is made for Qp to be constrained in both the
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allowable and preferable region (as in equation 4.7f). In this way, the flow rate is ensured to be
valid and not exceed values resulting in poor efficiency.

ωpmin ≤ ωp ≤ ωpmax (4.7a)

Pglmin
≤ Pgl

≤ Pglmax
(4.7b)

ωwturmin
< ωwtur (4.7c)

Pwmin

1000Nwηw
≤ ωwturMwgen ≤

Pwmin

1000Nwηw
(4.7d)

Ebmin
≤ Eb ≤ Ebmax (4.7e)

√
Hp − dp0

dp1
σQ2

pal
+µ

Q2
pal

≤ Qp ≤
√
Hp − fp0

fp1
σQ2

ppu
+µ

Q2
ppu

(4.7f)

γgmin ≤ γg ≤ γgmax (4.7g)

βwmin ≤ βw ≤ βwmax (4.7h)

4.3.2 Input Constraints

The input constraints for the augmented state-space (equations 4.8a-4.8c) are used to smoothen
the reference tracking. However, it introduces dynamics that are not modeled explicitly. The
chosen constraint values for the new inputs are found in table A.5.

∆Qpmin ≤ ∆Qp ≤ ∆Qpmax (4.8a)

∆γgmin ≤ ∆γg ≤ ∆γgmax (4.8b)

∆βwmin ≤ ∆βw ≤ ∆βwmax (4.8c)
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4.4 Objectives

The OCP is formulated as a minimization problem (equations 3.1). To weigh the importance of
minimizing the different terms, the weights q and r are used to weigh the terms containing the
states and inputs respectfully. These weights belong in the diagonal matrices Q and R (equation
3.13). The weights are further determined from tuning as described in section 4.5. Equations
4.9a and 4.9b represent the CV and MV parts of the tailored Lagrangian term in equation 4.9c,
which is further used in the objective function.

Lx = qQp(Qpd
−Qp)2 + qPw(PwmaxδPw − Pw)2 + qγg (γgmin − γg)2 (4.9a)

Lu = r∆Qp∆Q2
p + r∆γg ∆γ2

g + r∆βw∆β2
w (4.9b)

L = Lx + Lu (4.9c)

The type of MPC with an objective function which uses the Lagrangian term as in equation 4.9c,
is called economic MPC [46]. The Lagrangian term defines the economic objectives directly (in
this case maximizing Pw) instead of tracking each state to yield economic control. In this thesis,
the term economic refers to using the least amount of fuel in the GTG, harvest the available wind
power, while also running the pump at a desired level.

The first term, which contains the flow rate Qp, targets to track the desired flow rate Qpd
. The

desired flow rate is assumed to be given externally, for example, from an individual optimization
of the flow rate.

The next term, which involves the WTG power Pw, also has the goal of tracking a reference. This
reference is the maximum power output Pwmax . The reference is used to utilize the maximum
amount of renewable wind power available. The constant δPw (> 1) is used to account for the
low cost of the objective as Pw approaches its maximum value.

Further, the GTG throttle γg is desired to follow the reference γgmin with the intent of minimizing
the fuel usage, and by that, reduce GHG emission. The reference vector for the tracking objectives
is expressed in equation 4.10.

r =
[
Qpd

Pwmax γgmin

]>
(4.10)

The last three terms in the Lagrangian term are weighted MVs (inputs). These terms are added
to punish change in the inputs. The mentioned terms are less critical in this thesis since a model,
and not a system, is the control objective. The tuning of these weights is therefore downgraded.
For a real HPS however, the inputs might be set more expensive to use due to physical wear and
tear.

To summarize, the objectives are to:
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• Track a desired flow rate reference

• Maximize power production from the WTG

• Minimize the GTG fuel usage

• Decrease rapid movements in the system

4.5 Controller Tuning

This section concerns the tuning of the NMPC, and it is divided into two parts. In subsection 4.5.1
a guideline used for the tuning is described. The actual tuning is further a subject in subsection
4.5.2.

4.5.1 Tuning Guideline

The NMPC is firstly tuned in open-loop to get a picture of an optimal response. When the
open-loop tuning is satisfied, the resulting tuning parameters are used in the initial tuning for the
closed-loop control. The parameters are further tuned to respond to modeling imperfections and
reflect the optimality in open-loop tuning.

The tuning of the NMPC is split into two categories. The first is the tuning of controller time
periods, and the second is the tuning of objective weights. The time periods are the first to be
tuned, and they are kept constant during the weight tuning. For the time period tuning, the
theory described is taken from [47]. The weight tuning method builds on theory from [43].

Time Period Tuning

The first parameter to tune is the time-step ∆t, which for a large value makes the controlled
system more sensitive for errors and disturbances, and for a small value requires a large amount
of computational power. ∆t is after the guideline, set to be a factor between 0.1-0.25 of the
desired closed-loop response Td.

As ∆t is set to a satisfying value, the prediction horizon Tph is the next up for tuning. Tph is
desired to be of a value such that the controller can respond to possible constraint violations
and, in addition, remain stable. A suggestion for an initial guess of Tph is given by equation 4.11.
The closed-loop response time is lower bounded by the HPS plant model, which also affects the
choice of Tph. A large prediction horizon results in a higher computational cost. Therefore, a
method to keep Tph at an acceptable level is to adjust the prediction horizon until the changes in
the open-loop response are small.

Tph = Td
∆t (4.11)
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The final time period to tune is the control horizon Tch, which can take on values between ∆t and
Tph. To reduce computational time, Tch should be set to a value significantly lower than Tph.

Objective Weight Tuning

Before the objective weight tuning, the priority is to scale the objective function. This is to
improve the performance of the optimization algorithm concerning its convergence tolerance
settings. The weights of a scaled objective function are also scaled [48], making them more
intuitive to tune with respect to each other. The objectives are divided by individual scales ψ.
Note that scaling does not work for invariant methods, such as, for example, the pure Newton’s
method [49]. Throughout the objective weight tuning, the scaling factors are kept constant.

Some CVs can have opposite objectives, meaning that all objectives cannot be fulfilled at the
same time. In this case, a priority of the importance of the objectives has to be made. A scale
from low to high priority is then used for the weighting (the priority scale is based on [43]).

The MVs used to target objectives are set to nonzero values. It is suggested to set the MV
weights to lower values than the average of the rest of the weights to avoid problems with the CV
tracking. Since the NMPC prediction is inaccurate, the robustness can be increased by prioritizing
MVs. However, this can turn out in an inadequate performance of the tracking.

4.5.2 Parameter Tuning

The tuning of the time periods is executed in the same manner as described in the guideline. Fast
system response is desired, and an approximate of the fastest closed-loop response Td obtainable
is used. Because of limited computational resources, the time step ∆t is set to a slightly larger
value than initially desired. However, using this time step gives an adequate response. The
prediction horizon Tph is set to a value where the HPS plant model reaches a steady-state given
an impulse response. The control horizon Tch is set to 60% of the prediction horizon, as adding a
more extended control horizon barely impacts the system response. Additionally, a noticeable
amount of computational power is saved due to the reduced control horizon. The resulting values
of the time periods are found in table B.2.

Different objective scales are tested to find the set of scales yielding the fastest algorithm
convergence. The final set of weights granting the best performance is found in table B.3.

The weights in the objective function are set as constants to avoid excessive complexity. This
choice results in a manageable tuning situation (with respect to this thesis), as opposed to the
tuning of time-varying weights. The objective weights resulting from the tuning session are found
in table B.4.
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Objective Priorities

The objective weights are tuned in a recursive process (in both closed-loop and open-loop) to
obtain a satisfying result for the objectives. The overall goal is to follow the reference Qpd

, using
minimal amounts of fossil fuel, and at the same time charge the battery with the use of renewable
power when possible (as formulated in the Lagrangian term from equation 4.9c).

First off, the reference tracking of the flow rate is weighted at a high value. This high value is
chosen due to the importance of operating the pump at the desired level and thereby obtaining
the wanted flow rate.

A decision to make is how the power is distributed to the pump. There are three options to
provide the pump power. The first is to use the energy stored in the battery, the second is to use
the GTG, and the last option is to utilize the WTG. The preferred method is to use wind power
directly. This method, however, depends on the available wind. If the wind is absent, the solution
is to use the battery energy, which originates from stored wind power. At last, if there is no power
available from the two mentioned sources, the GTG is used to provide the pump power.

The WTG power objective is weighted high, always to produce power at maximum capacity. If the
power produced is above the power desired from the pump, the battery gets charged. The GTG
throttle objective gets a medium weight as the throttle is not wanted to be used unnecessarily. A
too high weight on the GTG throttle results in a significant deviation in the flow rate tracking if
the battery is empty and the WTG power is low. Therefore, the weighting on the GTG throttle
objective is not set to a high value.

It is also essential to eliminate unnecessary rapid dynamics in the inputs to prevent oscillations
propagating in the system. Careful tuning of these weights is important due to the potential
trouble of too slow closed-loop dynamics using large weights. All these weights are therefore set
as low values.

4.6 Software and Implementation

The continuous time OCP emerging from the control design is formulated in equations 4.12a-4.12d.
The different terms belonging in the objective function J, transition function f , and inequality
constraint vector h are directly referred to their equations in this chapter.

min
x,u

J(x,u) = min
x,u

(
∫ Tph

0
4.9a dt+

∫ Tch

0
4.9b dt) (4.12a)

s.t. f =
[
4.4a 4.4b 4.4c 4.4d 4.4f 4.4e 4.4g 4.6a 4.6b 4.6c

]>
(4.12b)

h =
[
4.7a 4.7b 4.7c 4.7d 4.7e 4.4e 4.7f 4.7g 4.7h 4.8a 4.8b 4.8c

]>
≤ 0 (4.12c)
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x(0) = x0 (4.12d)

To implement the NMPC on a digital computer, the numerical methods as chosen in chapter 3 are
further used. The optimization algorithm is implemented using CasADi, which is an "open-source
tool for nonlinear optimization and algorithmic differentiation" [50]. CasADi is compatible with
both Python and MATLAB. For this thesis, the resulting NMPC is implemented with CasADI in
MATLAB/Simulink as the HPS plant model is implemented in the same software.

To formulate and solve the OCP defined using CasADI, direct multiple shooting, using RK4
is utilized together with the chosen nonlinear primal-dual optimizer (IPOPT). This optimizer
requires a linear solver as a subroutine, and a solver called multifrontal massively parallel sparse
direct solver (MUMPS) is chosen [51]. This solver is proven to perform well on sparse problems
and is the preferred solver in this thesis. Figure 4.4 sums up the the chosen numerical methods
for the NMPC design.

Figure 4.4: Numerical methods for the NMPC design
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The NMPC is validated using the model from chapter 2 as a plant model. The NMPC and plant
model are connected with a feedback connection as shown in figure 5.1. The aspects of interest
in this thesis are to observe what happens with the controlled HPS plant model for different
wind conditions, references, and inaccurate measurements. Firstly, in section 5.1 the setup of the
simulations is described together with the values used in different simulation cases. Section 5.2
introduces scenarios with constant reference tracking where the wind speed is constant. In section
5.3 the wind and reference are time-varying. Lastly, section 5.4 investigates the robustness of the
NMPC for noisy output feedback measurements.

Figure 5.1: Feedback connection between the implemented NMPC and HPS plant model

5.1 Simulation Setup and Conditions

In this section, information about the simulation procedure, results, and analysis is found.
Subsection 5.1.1 describes the software and hardware used for the simulations. In subsection 5.1.2
the focus of the analysis and the test cases are described. Further, the choices of simulation times
are mentioned in subsection 5.1.3. The initial conditions used for the simulations are found in
subsection 5.1.4. In the last subsection 5.1.5, the environmental conditions and reference values
for the simulations are provided.
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5.1.1 Hardware and Software

The digital computer used for simulations is a Microsoft Surface Book 2 with an integrated
processor of the type: INTEL CORE i7-8650U and a graphics card of the type: NVIDIA GeForce
GTX 1050. The software framework for the simulations is Simulink and MATLAB, where both
the plant model and NMPC are implemented.

5.1.2 Analytic Focus and Test Cases

To keep the analysis narrow enough to go in depth, but broad enough to capture crucial overall
system behaviors, some choices for the analysis are made beforehand. The HPS plant model and
NMPC contains far too many variables to all be analyzed. The most important focus is on the
objective variables and power flow in the plant model. Therefore these variables are chosen to
be the main subjects for analysis. Additionally, the MVs are included in some of the analyses as
they directly affect the system behavior. All the presented results are extracted directly from the
output of the controlled HPS plant model in Simulink.

The test cases focus on testing the NMPC for distribution of power during a specter of wind,
measurement, and reference conditions. Each of the individual test cases explicitly mentions
the wind condition used. For all the simulations, the parameter p containing the wind speed
vw, is kept constant at the current wind speed value throughout the predictions. This implies
that the wind model consists of a series of constant values equal to the present wind speed
measurement.

The first case study in section 5.2 investigates the NMPC for constant wind speeds and a constant
reference. This case study is executed in order to rule out system dynamics and analyze the
steady-state power distribution. The wind speed is increased in four stages, where each stage
of wind speed represents an individual case. All the feedback measurements are assumed to be
perfect for these cases.

The following case study in section 5.3 explores varying winds and references. The goal of this
study is to observe how well the NMPC handles uncertainties in the wind prediction and how
it responds to a varying power demand. All of the feedback measurements are assumed to be
perfect in this case study as well.

In reality, the measurements used for feedback are not perfect due to interaction with electrical
equipment and other noise sources. Two cases of feedback measurement noise are tested in
section 5.4 to investigate the robustness of the NMPC. The cases test two common noise forms,
namely a random fluctuating noise (dynamic noise) and a constant biased noise (static noise)
[52]. The wind speed is kept constant to isolate the effects of the noise.

Some extra simulations are performed to prove a number of statements in the different case
studies. The values used for these extra simulations are found in table C.1.
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5.1.3 Simulation Times

To obtain a sufficient resolution of the plant model output, the time step for the simulation is set
to be 0.05 seconds. This choice of time step ensures a stable simulation of the plant model. The
NMPC runs at a different time step ∆t. A rate transition is applied to the feedback measurements
to deal with the time step differences. In addition, the inputs are kept constant by the use of a
zero-order hold (ZOH).

The simulation times are chosen according to the approximately slowest time for reaching the
objectives. The resulting simulation times are 60 and 90 seconds. Longer simulation times are
inefficient as the simulation of the NMPC is computationally expensive, and a steady-state is
reached within the set simulation times (some of the cases do not reach a steady-state, but they
obtain cyclic patterns).

5.1.4 Initial Conditions

The HPS plant model is initialized with some initial conditions for the states. These initial
conditions are chosen so that they satisfy both the HPS plant model’s and NMPC’s constraints.

The initial flow rate for the pump Qp0 is set to be larger than its minimum constraint value to
satisfy the other pump constraints. The initial value of the WTG rotational speed ωwtur0

is also
set to a significantly larger value than its minimum as the plant model is unstable for rotational
speeds approaching the minimum constraint value. This choice of initial turbine rotational speed
directly determines the initial WTG generator torque Mwgen0

as they are coupled.

The battery starts with an initial energy Eb0 . This initial condition is the only initial condition
that changes in the different case studies. The reason for this is to show different attributes in
the simulations. The initial condition used (Eb01

or Eb02
) is mentioned in each section for the

cases studies. The rest of the states are initialized from their minimum values. Table 5.1 shows
the initial values of the states used for simulations.

Initial condition Value Unit Symbol
Pump integration state 0 m s Ip0

Pump rotational speed 0 rpm ωp0

Pump flow rate 650 m3 s−1 Qp0

GTG fuel flow 0 pu Vg0

GTG lossless power 0 kW Pgl0
GTG throttle 0 pu γg0

WTG turbine rotational speed 1 rad s−1 ωwtur0
WTG generator torque 22850 N m Mggen0
WTG turbine pitch 0 deg βw0

Battery energy 1 5 kW h Eb01
Battery energy 2 12 kW h Eb02

Table 5.1: Initial conditions for simulation cases
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5.1.5 Environmental Conditions and Reference Values

For the simulation cases, some environmental conditions are chosen. These conditions are the
desired pump head, wind speed, and measurement noise. The desired head of the pump uses
a numerical value taken from [17]. Further, the selection of wind conditions and measurement
noise are described in this subsection. The references for tracking are also determined here. All
the numerical values for the variables mentioned in this subsection are found in table 5.2.

Geographical data is used to model the wind conditions. The winds are chosen from looking at
typical wind data [53] in the northern sea. The stationary wind conditions used in section 5.2
(from Beauforts scale [54]) are a gentle breeze vwgb

, fresh breeze vwfb
, strong breeze vwsb

, and
gale vwga . As the wind speed approaches storm, a standard procedure is to shut down the turbine
to reduce physical stress, and potential damages on the WTG [55]. Stronger winds are therefore
not investigated further in this thesis.

The varying wind vwva used in section 5.3, is modeled as a sine function varying between a
moderate breeze and a strong breeze. The variation is modeled to be fast enough to have a
significant impact in the NMPC’s prediction, such that the effects of an inaccurate wind prediction
can be analyzed.

Concerning the reference values for the case studies, the only available change in reference value
is for the desired flow rate. The flow rate is modeled as stationary (Qpdst

) or varying as a sine
function (Qpdva

). The different sections mention which reference is used for the specific cases.

The measurement noise is given as a proportion of the latest measurement values y. In this
way, the proportion of noise is the same for all measurements. The dynamic noise vector vdy
is modeled with a uniformly distributed unit white noise w, and the static noise vector vst is
modeled as a bias (this noise is static in steady-state). These measurement noises are only used
in section 5.4.

Simulation variable Value Unit Symbol
Desired pump head 1065 m Hpd

Desired stationary flow rate 800 m3 s−1 Qpdst

Desired varying flow rate 800 + 30 sin (0.1πt) m3 s−1 Qpdva

Gentle breeze 4 m s−1 vwgb

Fresh breeze 9 m s−1 vwfb

Strong breeze 12 m s−1 vwsb

Gale 18 m s−1 vwga

Varying wind 9 + 2 sin (0.2πt) m s−1 vwva

Dynamic measurement noise vector 0.01wy vdy
Static measurement noise vector 0.01y vst

Table 5.2: Environmental conditions and reference values for simulation cases
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5.2 Stationary Wind and Pump Flow Rate Reference

In this section, the NMPC is tested for different stationary wind speeds. Starting out with a
gentle breeze (subsection 5.2.1), moving on to a fresh breeze (subsection 5.2.2), then a strong
breeze (subsection 5.2.3), and lastly a gale (subsection 5.2.4). In this section the initial battery
energy Eb01

together with the constant flow rate reference Qpdst
are used for all cases.

5.2.1 Gentle Breeze

For this simulation, the wind vwge is used and the results are shown in figure 5.2. The gentle
breeze results in a low WTG power output due to the low potential energy in the gentle breeze.
As the battery gets drawn for energy, the GTG gradually speeds up to produce the necessary
power to supply the pump. The objective function formulation and objective weightings allow
the battery and WTG to be the main suppliers of the pump power when there is enough battery
charge or wind. In this case, the battery ends up empty, and the GTG handles most of the power
production due to the lack of wind.
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Figure 5.2: Measured battery energy, pump flow rate, and powers during a gentle breeze

Figure 5.2 shows that the flow rate converges to its reference. The barely noticeable difference in
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the desired and actual value of the pump flow rate is due to the proposed tuning. Controlling
the flow rate to the reference is deemed the most important objective. Another objective that is
also important is to minimize the GTG throttle. The proposed NMPC manages to reach a good
trade-off between these two conflicting objectives.

A heavier weighting of the GTG throttle yields a larger steady-state offset in the flow rate tracking
in addition to reduce the GTG power production. The minimization of the GTG throttle becomes
more important with a heavier weighting, and thus the flow rate reference tracking becomes less
prioritized. Modeling imperfections in the prediction model with respect to the plant model also
impacts the steady-state reference tracking, but in this simulation case, the main offset comes
from the objective weighting. To support these statements, figure C.1 presents an identical test
case except for a significantly increased weighting on the GTG throttle.

5.2.2 Fresh Breeze

This subsection investigates the scenario where the wind speed corresponds to a fresh breeze,
which is represented by vwfb

. Figure 5.3 shows the plots resulting from the simulation. As
expected, the power output from the WTG is drastically increased with the higher wind. This
increase in power production results in less necessity for using the GTG to distribute power to the
pump. The GTG provides power to the pump at a later time than in the previous case (in section
5.2.1) due to the WTG and battery managing the pump power distribution for an extended
period.

An interesting observation from figure 5.3 is the small and long periodical oscillations in the GTG
power. The prediction model imperfections are summed up in the battery prediction model, and
when the battery energy approaches its lower constraint, the GTG quickly produces power to
prevent a constraint violation. This phenomenon results in excessive power delivery to the battery.
The battery energy together with the GTG power slowly drops, and the same incident occurs
over again. The model imperfections are partly dependent on the wind speed as the WTG power
prediction is used to predict the battery energy. The mentioned phenomenon is not present in the
other simulation cases as the battery energy manages to stay further from its lower constraint
(resulting from changes in the prediction and battery charging with different winds).

The reference tracking of the pump flow rate performs great in this simulation case as well. The
steady-state deviation is lower compared to the last case (in section 5.2.1) due to a decreased use
of the GTG. However, the oscillations in the GTG power affect the flow rate to an insignificant
degree (noticeable by observing raw measurement data).
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Figure 5.3: Measured battery energy, pump flow rate, and powers during a fresh breeze

5.2.3 Strong Breeze

This subsection investigates a case of a strong breeze, where the wind vwsb
is used. The results

for this case can be seen in figure 5.4 which shows how the WTG uses its full potential power
output while the GTG is barely used. The WTG single-handedly supplies the pump and charges
the battery with excessive power.

The reference tracking of the flow rate is almost perfect as the GTG throttle obtains its minimum
value. The need for a compromise between the GTG power production and flow rate is thus
removed due to a sufficient amount of wind.
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Figure 5.4: Measured battery energy, pump flow rate, and powers during a strong breeze

5.2.4 Gale

This subsection looks at a case where the wind is a gale vwga . The results from this scenario can
be found in figure 5.5 which shows that the WTG power quickly escalates to over the double
amount of its maximum power constraint. After the large power peak, the WTG power oscillates
around its maximum power constraint. The oscillatory behavior is due to two factors specifically.
The first large peak of the WTG power comes from the fact that the pitch rate βw is constrained,
and the turbine blades cannot pitch fast enough to get a resulting lower power production (see
figure 5.6). Figure C.2 shows a simulation where the initial pitch value is set to an increased
value. It is found that the first large power peak is reduced drastically.

The smaller oscillations around the maximum WTG power are a result of significant differences
in the prediction and plant model evolutions during high wind speeds (rapid dynamics). The
difference decreases as the turbine speed approaches a steady-state (a steady-state is not reached
in the case for this subsection). The prediction model (from chapter 4) uses the approximated
function Dwtur , which is continuous and evolves with the NMPC’s time step. On the other hand,
the plant model (from chapter 2) uses the lookup table Cwtur which is discontinuous (based on
interpolation in the simulation) and evolves with the simulation time step. As a final result, the
NMPC’s predicted dynamics is too slow to comprehend the HPS plant model’s dynamics during
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higher winds. Figure C.3 illustrates the difference in turbine speed for the two models during a
gale with no change in the pitch.
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Figure 5.5: Measured battery energy, pump flow rate, and powers during a gale

A possible solution to remove the oscillations is to physically limit the power output of the WTG
(for example, with the use of a braking system). Figure C.4 shows how the oscillations can be
removed by using a saturation element in the plant model along with a larger initial pitch value.

Further analyzing figure 5.5, it can be observed that the oscillations are spreading throughout the
different power components (except for the GTG due to the minimization of the throttle). This
spreading comes from the common connection of the power components to the battery in the
prediction model. The roots of the oscillations in the HPS plant model are the inputs that are
governed by the inaccurate prediction (as seen in figure 5.6).

By ignoring the oscillations, at this wind speed, the steady-state reference tracking is quit accurate.
The time for the flow rate to reach a steady-state is, however, a bit longer in this case as the
power distribution in the system is disturbed by the WTG’s behavior.
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Figure 5.6: Inputs during a gale

5.3 Varying Wind and Pump Flow Rate Reference

This section investigates three scenarios that differ based on the wind speed and the reference.
First, in subsection 5.3.1 a constant flow rate reference with a varying wind is used. Then a
varying flow rate reference with a constant wind is tested in subsection 5.3.2. In the third case,
in subsection 5.3.3, both the wind and flow rate reference vary to observe the total effects. For
all the cases, the initial battery energy Eb02

is used.

5.3.1 Varying Wind Speed and Constant Flow Rate Reference

For this simulation case, the varying wind vwva is used together with the constant flow rate
reference Qpdst

. The results from the simulation of this case are shown in figure 5.7. Observing
the WTG’s power peaks and bottoms, the power delivery is about the expected values for the
chosen wind, which means that the NMPC performs adequately despite its inaccurate wind
prediction. As long as there is energy in the battery, the GTG remains at rest. A less wanted
scenario occurs when the battery is approaching an empty state. The GTG power gradually
begins to oscillate to compensate for the missing pump power. The overall power delivery is still
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quite good as the pump flow rate follows its reference accurately with only some insignificant
oscillations (observed from measurement data).
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Figure 5.7: Measured battery energy, pump flow rate, and powers during a varying wind and
constant flow rate reference

5.3.2 Constant Wind Speed and Varying Flow Rate Reference

The case in this subsection uses a fresh breeze vwfb
with the varying flow rate reference Qpdva

.
Figure 5.8 shows that the NMPC manages to track the flow rate sufficiently after an initial
converging phase. It is observed that the flow rate almost perfectly obtains the same oscillations
as the reference after the convergence. Additionally, it is observed that the periodic flow rate
reference tracking directly propagates to the pump power due to the flow rate’s and pump power’s
sublinear relation.
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Figure 5.8: Measured battery energy, pump flow rate, and powers during a constant wind and
varying flow rate reference

In this subsection, the effects of the model imperfections as described in the case in subsection
5.2.2 are amplified. As the power demand increases (and the battery approaches an empty state),
the GTG is used to ensure enough power delivery to the pump. Since the power required by the
pump is periodically varying, the power produced by the GTG is also periodical as the WTG is
producing a constant power when the wind is constant. This periodical power demand, together
with the model imperfections, creates the pattern as shown in the GTG power in figure 5.8.

5.3.3 Varying Wind Speed and Flow Rate Reference

This case investigates the scenario with a varying wind vwva and flow rate reference Qpdva
. Figure

5.9 shows the results obtained from the simulation. The reference tracking of the flow rate is
nearly identical to the previous case in subsection 5.3.2. This reference tracking performance
implies that the NMPC manages to distribute the power adequately in the plant model.
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Figure 5.9: Measured battery energy, pump flow rate, and powers during a varying wind and
flow rate reference

The GTG accounts for the varying wind and reference in this simulation. The flow rate reference
and wind are not of the same frequency, and the GTG is therefore observed to be producing
power in an asymmetrical pattern as shown in figure 5.9. A proportion of this pattern might also
originate from model imperfections.

5.4 Feedback Measurement Noise Robustness

This section investigates the robustness properties of the proposed NMPC with respect to feedback
measurement noise. Subsection 5.4.1 provides results for a dynamic noise (uniform white noise),
and subsection 5.4.2 gives the results from using a static noise. The wind speed vwfb

is used
in both cases, and the results are compared to the ones in subsection 5.2.2, where the wind is
the same, but the measurements are noise-free. The initial battery energy Eb01

is used in this
section.
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5.4.1 Dynamic Measurement Noise

The noise vdy is used for this simulation, and the results are shown in figure 5.10. The pump
flow rate uses the inaccurate measurement, resulting in an attempt to adjust to its predicted
trajectory quickly. However, the noise is too quick, and the rapid change in the pump flow rate is
not heavily punished. The pump flow rate response time is roughly the same as for the noise-free
case, but the MSE for this case is about 5.1 % larger than for the noise-free case. The rapid
change in flow rate is also directly reflected in the pump power. However, the power producing
components (WTG and GTG) manages to distribute power without any noticeable side effects,
despite the noisy measurements.
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Figure 5.10: Measured battery energy, pump flow rate, and powers during a fresh breeze with
dynamic noise in the feedback measurements

A practical method to smoothen out the oscillations due to the noisy measurements is to increase
the weighting on the flow acceleration. Figure C.5 shows an identical simulation case, except
for an increased flow acceleration weighting. As expected, the closed-loop response becomes
noticeably slower with a high cost of changes in the flow rate, but the oscillations almost vanish.
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5.4.2 Static Measurement Noise

This subsection investigates the case where the measurement noise is represented by the static
noise vst. Figure 5.11 shows that the reference tracking for the pump flow rate is negatively
shifted and obtains a larger steady-state error. The reason behind the steady-state error comes
from the bias in the measured states. The actual states are lower than the NMPC interprets,
resulting in a shift down. Apart from the bias, the power is being distributed well among the
different components.
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Figure 5.11: Measured battery energy, pump flow rate, and powers during a fresh breeze with
static noise in the feedback measurements

If the NMPC interprets the states as lower values than the actual state values, which happens
with a negative shifted static noise, the flow rate shift becomes positive. Figure C.6 shows the
positive shift in the flow rate when using a negative static noise.
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There are in particular three subjects that need to be further discussed. The first subject in
section 6.1 concerns itself with how well the NMPC performs based on the results from the case
studies. The second subject of importance is the aspects of the NMPC design with respect to
its complexity and model assumptions, which is discussed in section 6.2. Lastly, in section 6.3,
requirements for computational power for implementing the NMPC are discussed.

6.1 Nonlinear Model Predictive Controller Performance

An important topic for discussion is the performance of the NMPC in the case studies. A good
performance measure is to use the goals set for the NMPC. The goals for the NMPC are, as
previously stated, to utilize the potential wind energy, distribute power to satisfy objectives, and
handle disturbances. The NMPC performance in this thesis is evaluated from the control of a
plant model and not an actual plant. The performance is therefore interpreted as optimistic.
Subsection 6.1.1 discuss how well the power is distributed concerning wind energy utilization and
reference tracking. In subsection 6.1.2 the NMPC robustness with respect to external disturbances
(noise in the feedback measurements) is discussed.

6.1.1 Power Distribution and Reference Tracking

In all of the simulation cases, the WTG delivers sufficient amounts of renewable wind power with
respect to its potential (compared to an adjusted approximation of the maximum WTG power
output from [17]). The GTG is only used at instances where there is an insufficient amount of
power from the WTG or battery. The battery is almost exclusively charged by the WTG, yielding
a nearly emission-free use of the battery for pump power supply. The stated results imply that
the goal of utilizing the available wind energy can be considered met satisfactorily.

As the wind is varying, the predictions from the NMPC becomes more inaccurate, resulting in
reduced utilization of the wind energy. The reason for this is the wind model used in the NMPC,
which is based on an assumption of a constant wind. In reality, the wind is varying in a complex
manner, and the constant wind prediction model used in the NMPC might not be sufficient. An
alternative approach to increase the wind model accuracy is to predict the variations in the wind
by using a stochastic model predictive control (SMPC). This control method is further described
in subsection 7.2.1.

The power is in most cases distributed across the power components without sizable rapid changes.
However, a significant problem with severe constraint violations occurs as the WTG is exposed to
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larger winds, and the initial pitch value is at its minimum. A part of the problem can be solved
by starting the WTG with a lower initial pitch value, which in reality, is feasible. The smaller
oscillations are, on the other hand, a bit of a challenge. These oscillations can be removed with
the use of a physical saturation in the HPS. This approach, however, is doubtfully a feasible way
of handling the problem in reality. Instead, the problem should be fixed in the NMPC. A way of
handling the oscillation might be to use a disturbance estimator in the control scheme. The use
of a disturbance estimator is further described in subsection 7.2.2.

If the pump power requirement is larger than the power from the battery and WTG, the GTG
power begins to oscillate in some of the cases. These oscillations come from the working of
the NMPC. That is, either from the prediction model imperfections or the objective function
design. The modeling imperfections can also be reduced with the use of a disturbance estimator.
The oscillations resulting from the objective function need another approach to be reduced. The
NMPC has a short prediction horizon concerning energy storage and usage. An alternative way
of controlling the GTG is to use it at optimal efficiency for some periods and turn it off for
other periods (charging the battery and use the battery power for the power peaks). A larger
prediction horizon is then needed in order to predict the battery charging. This solution also
requires a reformulation of the OCP, which is further proposed in subsection 7.2.3. By using
this approach, the oscillations in GTG power can be reduced, yielding less wear and tear on the
GTG components, in addition to a reduction in working on poor efficiencies. However, the GTG
oscillations are not a significant issue if they do not occur often, and they are not a problem at
all when wind power is available (stored in the battery or delivered directly from the WTG).

In all of the cases, the pump flow rate follows the reference reasonably well. The modeling
imperfections for the pump model only originate from the difference in prediction and plant model
simulation methods and are therefore barely noticeable. As the power distribution to the pump
works well, it follows that the reference tracking also is quite accurate. However, when the power
distribution to the pump is insufficient, it is reflected directly in the flow rate as there is not
enough available power to maintain the desired flow rate. A higher power production from the
GTG results in a larger deviation in the flow rate reference tracking. This effect is, however,
insignificant as it has a small impact on the overall reference tracking performance.

An attribute to consider implementing for the controlled HPS is for it to hold backup energy
stored in the battery for emergencies. A potential method for adding this attribute is to lower
constraint the battery energy to a desired backup energy value (add a hard constraint) in the
NMPC. This constraint can then be removed if there is use for the extra energy. The NMPC
response with adding backup energy do not change compared to the response in this thesis, as
the only difference is a shift in lower battery energy. Another way of adding this attribute is
to add a soft constraint by including a battery energy term in the objective function. A high
weighting of this term makes it hard to use excessive energy and charge the battery to a energy
over the reference value. On the other hand, a low weighting makes it hard to hold on a minimum
desired energy. Therefore, this energy term requires a variable weighting (gain scheduling) to
allow flexibility.
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6.1.2 External Disturbances

In some of the simulations, the feedback measurements to the NMPC from the HPS plant model
are affected by noise. A subject to discuss is how realistic this noise is and how the noise affects
the controlled HPS. In reality, the feedback measurement noise depends on the source of the noise
and the method of measurement transferring. In this thesis, the noise is modeled as a proportion
of the measurement values. This behavior is great for testing due to the same magnitude of
disturbances in each feedback signal, but it does not likely appear in reality. If the noises in the
measurements originate from a common source, all the measurements are roughly affected with
the same magnitude of noise. A way of dealing with this is to scale the feedback measurement
signals before sending them to reduce the noise impact. Other techniques also exist for the
reduction of noise in cables, dependent on the cause of the noise [52]. If the noise cannot be
directly removed, a disturbance estimator can also be used to obtain more accurate measurements.
Using techniques to reduce the noise reduces the requirement for the NMPC to handle noisy
feedback measurements.

By observing the HPS plant model’s response to feedback measurements affected by dynamic
noise, it is clear to see that the most affected variable is the pump flow rate. The reason for
this significant affection is the flow rate’s quick dynamic, as the pump flow rate is modeled as
an integration of the flow acceleration input. Furthermore, the flow acceleration constraints
are set relatively large, and a rapid dynamic is not heavily punished (relatively low weighting
on the objective term). As the flow acceleration is higher weighted, the effect of the dynamic
noise is mostly removed in exchange for a slower dynamic flow rate response. The powers
produced/consumed by the components have a slower dynamic and are therefore harder to change
quickly, yielding more robustness for dynamic noise.

The mean of the dynamic noise is zero, and the pump power is approximately linear for small
changes in flow rate. This means that the net value of the change in pump power is approximately
zero. The battery energy is the integrated sum of powers in the system; the battery, therefore,
smoothens out the noisy pump power. This effect of an approximately unchanged net supply to
the pump and the smoothing of pump power stops the small rapid pump power oscillations from
spreading in the HPS. The final result is that the NMPC handles the overall power distribution
well but suffers from deviations in the flow rate reference tracking for dynamic noises.

In the case of static noise, the flow rate is shifted while otherwise remaining the same as for the
case with no noise. The result of this is a shift in power distribution, where the GTG produces
less or more power dependent on the sign of the static noise while the WTG still produces the
same amount of power. The reason for the change in GTG power is that less power is needed
for the pump at a lower flow rate, and more power is needed for a higher flow rate. The overall
response to static noise is a solid power distribution but a significant deviation in flow rate
reference tracking. However, a heavier weighting on the flow acceleration input reduces the flow
rate reference tracking deviation and yields sufficient reference tracking.
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6.2 Control Design Complexity and Model Assumptions

In the NMPC’s prediction model, a number of simplifications and assumptions are made with
respect to a real HPS. The MPC’s performance is dependent on the accuracy of the prediction
model, and the most significant model assumptions are therefore discussed in this section. The
purpose of this thesis is not to make a NMPC to be directly applied to a real HPS, but rather to
investigate the potential of MPC in offshore HPSs. The main focus of this discussion, however, is
how the control design should be concerned with the assumptions for the NMPC in a potential
realistic implementation.

All of the electrical dynamics are removed from the components in the HPS model. With these
simplifications, the NMPC is designed regardless of the behavior of the electrical dynamics in the
HPS. This simplification is not significant if the electrical properties in the HPS can be controlled
decoupled from the power distribution. A way of integrating the effects of an electrical grid
(electrical dynamics) into the control scheme is further examined in subsection 7.2.4.

The pump model is based on a real pump used in offshore oil and gas applications. The
simplifications for this model are the removal of dynamics and the missing options of turning off
the pump. However, some dynamics are introduced through a PI controller in this thesis. If this
PI controller is tuned in the right way to resemble the pump dynamic, this pump model might be
sufficient to predict the behavior of a real pump of the same type. The problem of not being able
to turn off the pump is something that should be considered as the pump is not desired to be
running all the time. This is further a subject in subsection 7.2.3.

The GTG model is based on a second-order model with two time constants. This model is great
for simulation purposes, but it is very likely to come short when dealing with predictions of the
behavior of a real GTG. If it is to be used in a real setting, the time constants should at least be
found and adjusted as the time constants in this thesis do not belong to a real GTG. The efficiency
function, however, should work great if it is modeled with a curve fitting tool to resemble the real
GTG’s efficiency.

When it comes to the WTG model, this model is based on a real wind turbine. In this thesis, the
WTG model has been modified a bit. The wind is assumed to be perpendicular to the turbine.
In reality, the wind changes its direction, and the turbine should be controlled in order to face
the wind. This implies that the turbine should rotate about the tower and that such a model
should be added to the prediction model. Another modification is the removal of dynamics in
the shaft and gearing. The effect of this might not be necessary for a prediction model as its
impact is limited for the WTG prediction. Lastly, the torque control of the electrical generator is
removed. The NMPC can probably benefit from adding this trait back in, but it is dependent on
the generator type for the real WTG. A realistic efficiency for the WTG should also be added to
the model.

The battery model is a simple integrator, and it models the main workings of a real battery. The
simplifications for this model are the absence of chemical and electrical properties. The battery
model in this thesis can deliver a large amount of power, only dependent on the stored energy. A
real battery is limited in its power delivery/charge by cable sizes and chemical reaction times. For
a realistic implementation, the NMPC should add constraints on the battery power based on data
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6.3 Computational Resources for Implementation

from the cables and batteries used in the HPS. Additionally, an efficiency for the battery should
be found and added.

The augmentation of the state-space model used for the predictions in the NMPC introduces
some input dynamics. The values for the constraints on the input dynamics do not come from
real components. These values should also be found from the components in the specific HPS
where the NMPC is to be implemented.

6.3 Computational Resources for Implementation

This section discusses the computational resources needed for the NMPC implementation. As
discussed in the previous section, the design of the NMPC is not ready for direct implementation.
The current design of the NMPC can, however, give an estimate of the computational resources
needed for the implementation of a finalized NMPC.

In the way the current setup and tuning of the NMPC are executed, using the same computer as
for the simulations is feasible for a real implementation of the controller. To calculate the optimal
control inputs for the prediction horizon takes about 0.1 seconds on average with a deviation of
about ± 0.05 seconds. The NMPC performs these calculations every 0.4 seconds, meaning that
there is a reasonable safety margin in computational time. That being said, for such a nonlinear
system as the HPS, the NMPC might encounter regions where the solution is hard to find. This
can result in a longer computational time.

To increase the safety margins for computational time, the time step of the NMPC can be
increased. A larger time step for the NMPC however, might result in a decrease in the controller
accuracy. Another way to take on this issue is to tune the tolerance and iteration limits of the
NMPC and thereby ensure a shorter computational time. This scheme can, on the other hand,
end up giving suboptimal solutions. The key is to find a trade-off between computations afforded
and the quality of the NMPC solutions. If economically efficient, the best solution is to buy more
computational power.

A solution for obtaining better results in many cases (decrease the effects of model inaccuracies)
is to decrease the NMPC time step. A correction by the feedback measurements is then executed
oftener, yielding a more accurate control. This, however, requires more computational power but
might be considered in some situations. In this thesis, decreasing the time step is not preferred
as the computational resources are limited. In a real implementation of the NMPC, the model
imperfections are larger, but more computational power is most likely also available. The time
step setting should therefore be reconsidered in the case of a real implementation.
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7 Conclusion and Further Work

This section firstly provides the conclusion for this thesis in subsection 7.1. Multiple proposals for
topics regarding further work are included in subsection 7.2.

7.1 Conclusion

The outcomes from this thesis are a prototype NMPC for control of an offshore HPS plant model,
a finalized HPS plant model, and a series of case studies to analyze the potential of the NMPC.
The NMPC is specifically designed to control the power distribution in the HPS in addition to
control the flow rate of the pump used in offshore operations.

First, a mathematical model of an offshore HPS, which consists of a pump, a GTG, a WTG, and
a battery is finalized. The lookup tables in the turbine part of the WTG model are then curve
fitted in order to approximate the lookup tables as continuous functions. With these continuous
functions, a state-space representation of the HPS model is formulated and augmented with
inputs dynamic in order to be used in the NMPC’s prediction model. The constraints for the
NMPC are also formulated. In order for the NMPC to meet the control goals in this thesis, a
tailored objective function is derived. The NMPC is further implemented on a digital computer
with the use of numerical methods before it is tuned to its desired response partly using a tuning
guideline.

By feedback connecting the implemented NMPC to the implemented HPS plant model, a
simulation environment is established in MATLAB and Simulink. Case studies are then carried
out by simulating the controlled HPS model under several realistic conditions. The HPS powers,
battery energy, and pump flow rate are measured to be analyzed with respect to the objectives.

The results from the case studies show that the NMPC is able to utilize considerable amounts
of wind power to power the pump and charge the battery during significant wind speeds. Two
noticeable behaviors resulting in unwanted control scenarios at specific wind conditions are;
the WTG constraint violations during large winds and the GTG power oscillations for some
wind conditions. The oscillations in the GTG are, however, mostly insignificant, but the WTG
constraint violations should be fixed with, for example, disturbance estimation. Generally, the
power distribution in the HPS still works well in all of the simulation cases regardless of the power
oscillations. When it comes to feedback measurement noise, the pump flow rate reference tracking
is quite sensitive. The tracking, however, works properly for noise-free feedback measurements.
Additionally, a higher flow acceleration weighting eliminates the problem with deviation in the
flow rate reference tracking for noisy measurements in exchange for a slower flow rate dynamic.
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In this thesis, the NMPC is used to show the potential of MPC in offshore HPSs. For a future
implementation of a NMPC on a real offshore HPS, the control design should be tailored to the
real components with their respective parameter values. The computational resources required
for implementing a NMPC in a HPS is estimated to be relatively low as a regular computer can
run the current NMPC in real-time. From the obtained results in this thesis, it certainly looks like
MPC has a future in offshore HPSs.

7.2 Further Work

Regarding further work, there are especially five topics that are worth investigating further. First
off, a proposition for further work in subsection 7.2.1 is to use SMPC to reduce uncertainties in
the power production. To decrease the effects of model imperfections, introducing a disturbance
estimator is possible, as further described in subsection 7.2.2. By reformulating the current
OCP to a MIP there is a potential for creating a more effective control scheme as explained in
subsection 7.2.3. A proposition for a method of expanding the NMPC to include electrodynamics
is found in subsection 7.2.4. Lastly, in subsection 7.2.5, a method for estimating unobservable
states in a real HPS is described.

7.2.1 Stochastic Model Predictive Control

The current way of controlling the HPS using the NMPC is deterministic, meaning that the
controller does not account for the uncertainties in the wind (even though the controller is robust
to a certain degree of inaccurate wind information). In practice, wind predictions can be based
on probabilistic models in order to approximate perfect wind information. This approximation
can, for example, be accomplished with the use of SMPC. Two approaches for using SMPC can
be found in [56].

7.2.2 Disturbance Estimation

As seen from the results in chapter 5, model inaccuracies can result in significant disturbances. A
common way of ensuring constant offset-free reference tracking is with integral action. Integral
action can, however, only handle constant disturbances. As a side note, the integral action
resulting from the state-space augmentation in this thesis does not work properly as the reference
tracking objectives in the objective function cancel out the effect. For time-varying disturbances,
it is common to use a disturbance estimator. This disturbance estimator estimates the combined
effects of model inaccuracies and external disturbances. The estimates are further used in the
MPC to account for the estimated disturbances. There are multiple ways of implementing the
disturbance estimation, and more information can be found in [57].
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7.2 Further Work

7.2.3 Mixed Integer Program Formulation

A more efficient power control scheme can be obtained by using a mixed integer formulation.
However, the reformulation is at the cost of computational power, as nonconvex MINLPs generally
are the hardest OCPs to solve. It is, on the other hand, an interesting field for exploration. To
solve the occurring MINLP, an algorithm type such as the spatial Branch-and-Bound (sBB) can
be used [58].

The pump is limited to be in an area where it is constantly running. This might not always be
desired due to operational periods, available water for pumping, or optimal energy usage. A
proposition to solve this problem is to model the pump using integers, allowing the pump to be
turned off. The OCP is then formulated as a MINLP. As a result, the pump can take on the
continuous values in its original operational area or take on discrete values, corresponding to the
pump not running. The GTG can also benefit from the same type of formulation due to the
possibility of eliminating low-efficiency modes and power oscillations.

7.2.4 Electrodynamic Extension

If the NMPC in this thesis cannot be decoupled from the control of electrodynamics in the HPS,
an extension of the NMPC is called for. An introduction of an electrical grid model, either
connected to the mainland or locally at the offshore platform, can be produced. Additionally, the
existing HPS model components need to obtain electrodynamic attributes to be connected with
the electrical grid model.

The extended HPS model can get quite complex with added electrodynamics. To balance the
electrical power system, control of frequencies is vital. Some NMPC solutions for frequency
control in uncertain power systems have already been developed (see [59] for more information).
An option for further work is to combine model based frequency control with the NMPC developed
in this thesis.

7.2.5 Moving Horizon Estimation

The pump integral state Ip, GTG fuel flow state Vg, and GTG lossless power state Pgl
are not

actual quantities in a real HPS, and they must therefore be estimated. A method for estimating
such unobservable states is moving horizon estimation. This method can estimate the states
online with the use of the past measurements in a moving time window, and it is based on an
optimization problem similarly structured as a OCP. Further information about this estimation
strategy can be found in [32].
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Appendix

A Model Parameters

Parameter Value Unit Symbol
Time constants 0.5 s τg1

0.5 s τg2

Efficiency coefficients −0.5714 ag1

1.286 ag2

0.2757 ag3

Power constraints 0 kW Pglmin

4500 kW Pglmax

Throttle constraints 0 pu γgmin

1 pu γgmax

Table A.1: GTG parameters

Parameter Value Unit Symbol
Rotor disk area 12468.98 m2 Aw
Blade radius 63 m Rw
Gear ratio 97 Nw

Inertia of turbine 35444067 kgm2 Iwtur

Inertia of generator 534.116 kgm2 Iwgen

Generator time constant 0.5 s τw
Efficiency 0.78 s ηw
Power constraints 0 kW Pwmin

5000 kW Pwmax

Rotational speed constraint 0 rad s−1 ωwturmin

Pitch constraints 0 deg βwmin

90 deg βwmax

Table A.2: WTG parameters
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Parameter Value Unit Symbol
Unit conversion factor 3600 s κ

Energy capacity constraints 0 kWh Ebmin

5000 kWh Ebmin

Table A.3: Battery parameters

Parameter Value Unit Symbol
Maximum generator torque 45700 Nm Mwgenmax

Steepness constant 0.099 Kwgen

Rotational speed lookup table middle value 97 rad s−1 ωwgenmid

Torque lookup table coefficients −0.118600000 pw00

0.128900000 pw10

0.009222000 pw01

−0.006314000 pw20

−0.005206000 pw11

−0.000159800 pw02

−0.000102600 pw21

0.000040100 pw12

0.000000806 pw03

Table A.4: WTG lookup table approximation parameters

Constraint Value Unit Symbol
Flow acceleration constraints −20 m3 s−2 ∆Qpmin

20 m3 s−2 ∆Qpmax

Throttle rate constraints −0.2 pu s−1 ∆γwmin

0.2 pu s−1 ∆γwmax

Pitch rate constraints −2 deg s−1 ∆βwmin

2 deg s−1 ∆βwmax

Table A.5: Input constraints for augmented state-space

B Control Parameters

Parameter Value Unit Symbol
Proportional gain 1 KPp

Integral gain 4 KIp

Table B.1: PI controller parameters

82



C Extra Simulation Plots and Values

Time period Value Symbol
Prediction horizon 10 Tph
Control horizon 6 Tch
Desired closed-loop time constant 1.6 Td
Time step 0.4 ∆t

Table B.2: NMPC time periods

Objective scale factor Value Symbol
Flow rate 5 ψQp

WTG power 500 ψPw

WTG maximum power 1.01 δPw

GTG throttle 0.1 ψγg

Flow acceleration 2 ψ∆Qp

Throttle rate 0.02 ψ∆γg

Pitch rate 0.2 ψ∆βw

Table B.3: NMPC objective scaling factors

Objective weight Value Symbol
Flow rate 20.9 qQp

WTG power 24.5 qPw

GTG throttle 2.5 qγg

Flow acceleration 2.1 r∆Qp

Throttle rate 1.2 r∆γg

Pitch rate 1.4 r∆βw

Table B.4: NMPC objective weights

C Extra Simulation Plots and Values

Simulation parameter Value Symbol
New GTG throttle weight 100 qγgnew

New initial pitch value 20 βw0new

Pitch value for turbine dynamic test 2.5 βwnew

WTG power saturation 5000 Pwsat

New flow acceleration weight 200 rQpnew

New (negative) static noise −0.01y vstnew

Table C.1: Extended simulation case values
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Figure C.1: Measured battery energy, pump flow rate, and powers during a gentle breeze with a
high GTG throttle weighting
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Figure C.2: Measured battery energy, pump flow rate, and powers during a gale with an adjusted
initial pitch
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Figure C.3: Rotational speed of the wind turbine; comparing the plant and prediction model
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Figure C.4: Measured battery energy, pump flow rate, and powers during a gale with an adjusted
initial pitch and physical WTG power saturation
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Figure C.5: Measured battery energy, pump flow rate, and powers during a fresh breeze with a
high flow acceleration weighting and dynamic noise in the feedback measurements
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Figure C.6: Measured battery energy, pump flow rate, and powers during a fresh breeze with a
negative static noise in the feedback measurements
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