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Abstract

An essential aspect of safe operations of Autonomous Surface Vehicles (ASV) is a
robust Collision Avoidance (COLAV) system. In addition to the ability to react
to dangerous situations, it is also highly beneficial for the COLAV to be able to
proactively avoid high-risk scenarios. In order to do so, the ASV requires solid
situational awareness and the ability to understand how the future might unfold
given a current scenario.

Predicting the future behavior of surrounding vessels is the topic of this thesis.
By utilizing historical data from the Automatic Identification System (AIS), the
goal is to predict the trajectories of vessels into the future.

Two methods based on a Gaussian Process (GP) framework are proposed. The
GP’s intuitive interpretation as a statistical distribution over functions allows the
predictions to also incorporate uncertainty as a first-class citizen of the model. A
Bayesian statistical framework is applied to always explicitly consider the under-
lying uncertainty when performing predictions.

The first proposed method directly applies the GP framework to model the tra-
jectories as a function of time. This approach works reasonably well, except for in
the presence of branching traffic lanes. This formulation makes strict assumptions
about unimodality and is unable to represent any form of multimodal uncertainty.

As a more indirect approach, the second method attempts to use a GP to de-
scribe a latent motion model and use it to simulate trajectories numerically. This
formulation is far more flexible and is, in theory, able to express multimodal tra-
jectory distributions. Combining this approach with an Extended Kalman Filter
(EKF)-based prediction scheme to simulate trajectories works well as long as the
trajectories are sufficiently smooth, such that a Taylor approximation of the mo-
tion model serves as a reasonable approximation. These assumptions do, however,
make this method more fragile than the first method.

Both methods are tested extensively on a real AIS dataset collected from the
Trondheim fjord over the course of one year, and the statistical performance of
both methods are compared. The consistency of the uncertainty estimates is also
tested to investigate whether the methods are able to accurately represent the
true underlying uncertainty.
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Sammendrag

For at autonome overflate-fartøyer (ASVer) skal kunne operere trygt er det essen-
sielt med robuste antikollisjonssystemer. Slike systemer innebærer ikke bare at
et fartøy må kunne reagere i det det oppstår farlige situasjoner, men også evnen
til å proaktivt unngå situasjoner med høy risiko. Fartøyene er dermed nødt til å
gjenkjenne ulike scenarioer og kunne planlegge for potensielle hendelser frem i
tid. Denne fremtidsforståelsen er temaet i denne oppgaven, og målet er å utforske
hvordan historisk data fra Automatisk Identifikasjonssystem (AIS) kan brukes til
å predikere skips fremtidige bevegelser.

Mer spesifikt foreslår denne oppgaven to metoder som begge benytter Gaus-
siske Prosesser til å lære bevegelsesmønsteret til skip i ulike scenarier basert på
historiske data. Motivasjonen bak bruken av Gaussiske Prosesser er basert på dens
intuitive tolkning som en statistisk fordeling over funksjoner. En slik represen-
tasjon kan dermed naturlig innlemme usikkerhet knyttet til prediksjonene som
en sentral del av modellen. Et Bayesiansk statistisk rammeverk brukes i tråd med
Gaussiske Prosesser for å eksplisitt vurdere den underliggende usikkerheten.

Den første foreslåtte metoden bruker et rammeverk basert på Gaussiske Pros-
esser direkte for å modellere posisjon i banen som en funksjon av tid. Denne
tilnærmingen fungerer rimelig bra, bortsett fra i nærvær av forgrenede trafikkfelt.
Formuleringen av metoden gjør strenge antakelser om unimodalitet og er ikke i
stand til å representere noen form for multimodal usikkerhet.

Som en mer indirekte tilnærming forsøker den andre metoden å bruke en
Gaussisk Prosess til å beskrive en latent bevegelsesmodell og bruke den til å simulere
baner numerisk. Denne formuleringen er langt mer fleksibel og er i teorien i stand
til å uttrykke multimodale fordelinger for de predikerte banene. Å kombinere
denne tilnærmingen med et prediksjonssystem basert på et Utvidet Kalman Fil-
ter (EKF) for å simulere baner fungerer bra så lenge banene er tilstrekkelig glatte,
slik at en Taylor-approksimasjon av bevegelsesmodellen fungerer som en rimelig
tilnærming. Disse antagelsene gjør imidlertid denne metoden mer skjør enn den
første metoden.

Begge metodene testes grundig på et reelt AIS-datasett samlet fra Trondheims-
fjorden i løpet av ett år, og den statistiske ytelsen til begge metodene sammen-
lignes. Konsistensen av usikkerhetsestimatene blir også testet for å undersøke om
metodene er i stand til å nøyaktig kunne representere den underliggende usikker-
heten.
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Chapter 1

Introduction

Humans in general are lazy and have always strived to avoid repeating tasks. Time
is better spent doing a more rewarding task, leaving machines to do tasks that are
not worth spending human resources. Automation has typically been chiefly fo-
cused on industrial applications where there is a direct economic incentive to au-
tomate tasks. The processes are also isolated and highly repeatable, which avoids
the need for human interaction as much as possible. While the idea of replacing
humans in more complicated situations outside of the factory floor is not new, it
is only in the last few decades that machines have become sophisticated enough
to actually replace their human alternatives in more everyday tasks. Outside of
the constrained environment of the factory floor, machines need to be able to un-
derstand and adapt to the wide range of different scenarios that may occur in the
chaotic environment designed for and by humans.

This thesis will focus on one such automation task, namely Autonomous Sur-
face Vehicles (ASV). Humans are prone to loss of focus, tiredness, and limited atten-
tion span. Combined with large and powerful machines, they are a potential dan-
ger to both themselves and others. It is estimated that over 75% of maritime ac-
cidents are attributed to human errors [1], motivating the need for automated al-
ternatives to human captains. While altogether avoiding humans at sea would sig-
nificantly reduce accidents, it is simply unrealistic to achieve. Hence, autonomous
vessels need to learn to understand and cooperate with other human-driven ves-
sels. However, it is easy to take humans’ remarkable ability to understand pat-
terns for granted. While people certainly make mistakes, they can understand
highly complex scenarios and infer likely outcomes given their prior experiences
in similar situations. An ASV will need similar abilities in order to operate without
putting humans at risk in a reliable way. A key aspect to solving this problem is a
robust Collision Avoidance (COLAV) system, which can both reactively and proac-
tively avoid collisions. In order to avoid high-risk situations proactively, the COLAV
needs accurate situational awareness, which includes both information about the
current situation as well as how the future might unfold. This thesis will focus on
the latter, namely how to predict the future behavior of nearby vessels.

Knowing the future behavior of surrounding vessels, even only probabilisti-

1
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cally, allows the COLAV system to actively avoid scenarios with increased risk
of collision. A simple solution is to assume near a constant speed and course of
any vessel of interest and is a commonly used assumption for obstacle models
in COLAV research [2]. While certainly a reasonable solution on the open sea,
where vessels spend a significant portion of the time in straight-line trajectories,
it quickly fails when vessels navigate constrained areas such as fjords or close to
shore where more complicated maneuvering is necessary. Considering the usual
prediction horizon of 5 − 15 minutes into the future for the typical COLAV ap-
plication [3, 4], assuming near-constant speed and course is not sufficient. How-
ever, the vessels still tend to follow typical traffic lanes and behave somewhat pre-
dictably. Combined with modern machine learning, the question becomes how this
data can be utilized to improve the prediction of future trajectories, and thereby
allowing ASVs to avoid high-risk COLAV scenarios proactively. Ideally, the ASV
should learn from the available data and use it to recognize patterns to infer likely
outcomes.

1.1 The Need For Quantifying Uncertianty

Predicting the trajectory of a vessel based on the limited information available
is no easy task. Even given historical trajectories of the same vessel, there is no
way to guarantee that the vessel will behave identically in the future. In the end,
a vessel can take an indefinite amount of different trajectories to reach a given
destination.

The ability of a model to express uncertainty is therefore crucial. Ideally, the
model should make accurate predictions while also quantifying the wide range of
different trajectories a vessel might follow. The need for quantifying uncertainty
lends itself nicely to a Bayesian approach, as the uncertainty becomes a first-class
citizen in the model. Such an approach allows the COLAV to express beliefs about
the possible outcomes and does not hide the stochastic nature of the problem it is
trying to solve.

1.1.1 Gaussian Processes

The Gaussian Process (GP) is a stochastic process based on the multivariate Gaus-
sian Distribution. It is an interpolation method with use cases in a wide range
of fields, such as environmental science [5], medicine [6, 7], cognitive research
[8] and optimization [9] to name a few. It was first used by Danie G. Krige in his
master thesis [10] where he used GPs to find the most likely spatial distribution
of gold based on samples from only a few boreholes. GP are therefore sometimes
referred to as kriging in the literature, especially for geospatial statistics or related
fields. The GP is a non-parametric approach, and it is well suited for approximat-
ing black-box systems. While comparable to other interpolation methods such as
splines, GPs has the added benefit of expressing uncertainty based on the avail-
able data. Therefore, it is commonly interpreted as a statistical distribution over
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functions. Prior beliefs can be conditioned on available data to form posterior
beliefs about the true underlying function f (x). This Bayesian interpretation, in
combination with its flexibility as a non-parametric approach, makes GPs a very
powerful tool. GPs will be covered in greater detail in Chapter 3.

The functional interpretation appears to be a good fit for the long-term pre-
diction problem. By considering a vessel’s trajectory as a function of time f (t),
the GP framework should, in theory, then be able to express the vessel’s trajectory,
including the inherent uncertainty of predicting future trajectories. In practice,
however, the computational complexity of GPs may limit their usability.

This raises a few research questions which this thesis will attempt to answer:

1. How can GPs be used to model the long-term vessel trajectory of new ves-
sels?

2. Is it computationally feasible to use GPs in the context of AIS Big Data?
3. Is a GP able to provide consistent uncertainty that reflects the true error

rate?

Especially question 3 will receive emphasized attention in this thesis. If the
GP cannot provide consistent uncertainty estimates, the method offers little addi-
tional value over more straightforward data-driven approaches.

This thesis will propose two alternative solutions to the long-term trajectory
prediction problem, both based on the GP framework. The first method will at-
tempt to model the trajectory directly as a function of time and use a GP to express
this function. The other solution is an indirect approach attempting to learn an un-
known motion model and then simulate the trajectory numerically. Both methods
will be rigorously tested on a real-world AIS dataset.

1.2 Thesis Structure

The thesis will first review existing work on applying the GP framework for tra-
jectory prediction in Chapter 2. As there is little work available on using GPs with
AIS data, solutions from related fields, as well as some approaches not based on
GPs, will also be presented as inspiration.

The Gaussian Process will then be introduced in greater detail in Chapter 3,
along with other necessary theory. The chapter is inspired by the excellent in-
troduction from [11], and the reasoning, intuition, and mathematics behind the
Gaussian Process will be explored to lay the necessary foundation for the rest of
this thesis. A basic understanding of calculus, statistics, and probability theory is
assumed, but all necessary subjects are otherwise introduced.

The thesis then moves on to Chapter 4 which offers an introduction to AIS and
the dataset used in this thesis. Any preprocessing and filtering of the dataset are
included in this chapter.

Once the foundation for the GP and AIS have been covered, Chapter 5 will ap-
ply the GP framework to model a vessel’s trajectory directly as a function of time.
This method will be referred to as the direct GP approach throughout the rest



4 Mellbye: Gaussian Process AIS Trajectory Prediction

of this thesis. Chapter 6 then proposes a more indirect approach, using the GP
framework to model an unknown motion model describing the trajectory gradi-
ents. The trajectories are simulated numerically using an EKF prediction scheme.
This method is inspired by the work in [12, 13], and can be seen as an extension
of the Kalman filter. Familiarity with sensor-fusion methods is beneficial but not
required to follow the derivations.

Once the methods are introduced in their respective chapters, the thesis will
move on to statistical testing in Chapter 7. This chapter will cover the implemen-
tation details and present the results from rigorous statistical testing to see how
the methods perform on real-world AIS data. The results are compared to a simple
CVM model, which is used as a baseline for comparison.

Chapter 8 will then discuss the results from statistical testing, as well as ad-
dress theoretical concerns regarding the proposed methods. Finally, Chapter 9 will
summarize the findings before finishing with possible extensions to this work.



Chapter 2

Previous Work

There is currently limited work available on using GPs on AIS data.
Kowalska and Peel propose a method for anomaly detection of moving vessels

in [14]. The approach uses a GP to learn vessels’ normal behavior in an area, which
is then used to detect abnormal behavior. The work further addresses the compu-
tational challenges when using large datasets and proposes an active learning
approach that iteratively adds new training samples to select the optimal training
sample. A relatively small sample size is then used to represent the entire dataset.
Active learning is computationally feasible by updating the Cholesky decompo-
sition at each step instead of recomputing the entire decomposition. While the
approach works well for anomaly detection, it was not intended for predicting
future trajectories, only to classify existing trajectories.

Rong et al. address the problem of trajectory uncertainty in [15]. The paper
proposes a method for probabilistic trajectory prediction using GPs, where differ-
ent distributions describe the lateral and longitudinal directions of the trajectory.
The parameters of the distributions are learned offline based on historical AIS
data. They are then applied in real-time by adding new observations through a
Cholesky update to avoid recomputing the decomposition. The model uses the
common RBF kernel, and the hyperparameters are selected as the median of the
maximum likelihood estimates for each unique vessel. The prediction is then con-
ditioned on historical AIS samples for a given vessel. A case study is performed
where the model is trained and tested on three months of AIS data along a smooth
traffic lane. The methods yield high prediction accuracy even for long prediction
horizons while still applying to real-time applications. Only a highly smooth traffic
lane with little curvature is used, and the paper does not mention the performance
of curved trajectories. As the model is only conditioned on previous samples of a
given vessel, it is unlikely that the model can predict upcoming turns.

However, there is extensive work on using GPs for trajectory prediction out-
side of the maritime field. Goli et al. [16] utilizes GPs for long-term trajectory
prediction for collision avoidance in a connected vehicle environment. The ve-
hicles are assumed to share position through vehicle-to-vehicle communication,
somewhat in a similar fashion to AIS for maritime vessels. The paper uses a GP to

5



6 Mellbye: Gaussian Process AIS Trajectory Prediction

learn a motion model from historical data, mapping a vehicle’s current position
to a trajectory derivative. The historical data is clustered into a finite number of
clusters, where the trajectories in each cluster are assumed to have similar prop-
erties. The paper utilizes K-means clustering [17] to group trajectories based on
the first and last position of a trajectory. For each cluster, independent GPs are
then fitted for each of the two coordinate axes, using independent RBF kernels
and zero mean priors. While this method should apply to AIS data, there are a
few key distinctions to keep in mind:

1. In this paper, the trajectory derivatives are calculated using finite difference
with a sampling interval of 0.1 seconds. The typical sampling interval for
AIS data is in the range of several seconds or even minutes, so relying on
numerical derivatives might be challenging.

2. The vehicles’ trajectories are from an intersection, and the roads constrain
the vehicles’ behavior. There is therefore only a finite number of route op-
tions that a vehicle may take.

A similar approach is used by Ellis et al. [12] to predict the trajectory of pedes-
trians tracked using computer vision. The paper also learns a dynamical model
using GPs, but it utilizes a Bayes Filter framework proposed by Ko and Fox [13]
to simulate the trajectories. Two different approaches were used:

1. By assuming p(x ) is always uni-modal and Gaussian, the GP-EKF introduced
in [13] was used to simulate the trajectory for multiple timesteps, using the
dynamical GP model as the prediction model. The GP-EKF is based on the
Extended Kalman Filter, where the prediction model is learned from data
using a GP. This formulation is unable to express multimodal uncertainty.

2. To retain the inherent multimodality, a sequential Monte-Carlo approach
(i.e., the prediction step of a particle filter) was used to keep track of mul-
tiple modes (i.e., branching trajectories) at the cost of computational com-
plexity.

Of some more theoretical work, Girard et al.[18] discuss how GPs can be used
when the function inputs x are latent variables. It is used in the context of multi-
step ahead time series forecasting, where the GP is recursively evaluated using
the output at one step as the input in the next. As the true posterior distribution
of this recursive formulation is intractable, a Gaussian approximation is applied
in combination with a Taylor approximation.

Another common approach for trajectory prediction using AIS is based on clus-
tering methods. This approach can typically be divided into four steps [19]:

1. Cluster trajectories based on historical data
2. Classify new target vessels into the appropriate cluster
3. Generate a representative trajectory for the given cluster
4. Predict the movement using the representative trajectory

Examples of this approach can be found in [20], [21] and [22].
Traditional clustering methods, such as k-means or DBSCAN, tend to focus
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on clustering point values. In the context of trajectory prediction, the trajectories
would then be clustered as a whole. The trajectory clustering algorithm TRACLUS
was therefore introduced by [23], where it was applied to hurricane trajectory
and animal movement data. The key observation was that trajectories might have
portions that share typical behavior, while entire trajectories might still differ. TR-
ACLUS allows for clustering of trajectories based on common sub-trajectories. It
works by partitioning the trajectories into smaller line segments and grouping
similar segments into clusters.

2.1 Data Driven Approaches

Hexeberg et al. [24] introduced the Single Point Neighborhood Search (SPNS), a
purely data-driven approach. It deviates from the clustering-based methods as it
estimates the future course and speed at each prediction time based on historical
AIS data. Historical AIS samples in the vicinity of the target vessel with a similar
course are used to calculate the median course and velocity, which is then used
to simulate the trajectory one step forward in time before the whole process is
repeated.

The SPNS was later extended by Hexeberg [4] to handle two of the main short-
comings [19], mainly handling branching traffic-lanes and to better estimate the
uncertainty. The result was the Neighbor Course Distribution Method (NCDM).
The NCDM extends the SPNS by representing possible trajectories in a tree struc-
ture, where each trajectory is computed similarly to the SPNS. This method was
further developed by Dalsnes et al.[19] by introducing a Gaussian Mixture Model
(GMM) to represent a vessel’s position in a probabilistic framework.





Chapter 3

Theory

3.1 A short recap of necessary probability theory

The reader is assumed to be already comfortable with basic probability theory. A
more detailed introduction has already been covered in a previous specialization
project [25], but some concepts will nevertheless be reintroduced here mainly to
specify the mathematical notation used throughout this thesis.

3.1.1 Probability Distributions

The notation p(X ) is used to denote the probability distribution of the random
variable X , regardless of X being discrete or random. Whether p(X ) refers to the
Probability Density Function (PDF) for continuous random variables or Probability
Mass Function (PMF) for discrete random variables therefore depends on the con-
text. For the probability of a specific event occurring, the notation Pr{X = x}
and Pr{X ≤ x} will be used instead. The result is always a real number, i.e.
Pr{·} ∈ [0,1].

3.1.2 Joint Distribution

The notation p(X , Y ) = p(X ∩ Y ) is used to denote the joint probability of X and
Y . It is the probability of both events occurring at once.

3.1.3 Conditional Distribution

The notation X |Y is used to express the event X occurring given the known event
occurrence Y . In the context of probability distributions, p(X |Y ) denotes the prob-
ability of X occurring, given that the event Y has already occurred. It is perhaps
easier to read as “the current belief about a quantity X given a known value of Y ”,
as Y will in this thesis usually be some parameter rather than a discrete event.

As this thesis will use a Bayesian interpretation of probability, the notation may
also be used to express the parameters of a distribution, for instance N (x | µ,σ2)
is the PDF for the Gaussian distribution x with mean µ and variance σ.

9
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3.1.4 Marginal Distribution

The integral notation will be used to denote the marginal distribution for both
discrete and continuous random variables. For discrete variables, the integral is
implicitly replaced by a sum.

p(X ) =

∫

Y
p(X ∩ Y )dY =

∫

Y
p(X |Y )p(Y )dY (3.1)

The last equality is commonly referred to as The Law of total probability and
allows a complex distribution p(X ) to be expressed in several simpler components.

3.1.5 The Law of Iterated Expectations & Total Variance

The Law of Iterated Expecations states that

E[X ] = E
�

E[X |Y ]
�

(3.2)

if all the expectations exist. Similarily, the Law of Total Variance states that

V[X ] = E
�

V[X |Y ]
�

+V
�

E[X |Y ]
�

(3.3)

These results are useful when computing the expected value and variance of
complex distributions, as they allow the computations to be separated into simpler,
conditional computations. Proofs are available in [26].

3.1.6 Central Limit Theorem

The central limit theorem should be familiar to most readers, and it is essential
to the derivations in a later chapter. Consider a set of Independent And Identically
Distributed (i.i.d) random variables X i following any distribution with mean µ and
variance σ2. The sum of these variables

SN =
N−1
∑

i=0

X i (3.4)

can be shown to approach the Gaussian distribution

lim
N→∞

p(SN = s) =N (s | Nµ, Nσ2) (3.5)

as N increases, even if the original variables are not Gaussian distributed [17].
For a finite N it can be used to approximate the sum of i.i.d random variables as
a Gaussian distribution.
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3.1.7 Interpretation of Probability

This thesis will heavily rely on a Bayesian interpretation of probability. Bayesian
Statistics is extensively covered in the specialization project [25], and only a short
introduction is included here. Without going into unnecessary philosophical de-
tails, the Bayesian view interprets probabilities as beliefs rather than relative fre-
quencies1. The benefit of the Bayesian interpretation is that it can naturally be
used to model uncertainty of events that cannot easily be expressed as repeated
trials. Examples include one-off events and parameter estimation of fixed but un-
known quantities.2 [17].

Central to the Basian view of probability is Bayes rule, which is used to up-
date the prior beliefs θ when observing new data D. Bayes rule is given by Equa-
tion (3.6) where p(θ ) is the prior belief about θ before observing D, p(D|θ ) is
the likelihood of observing D given a known value for θ , p(D) is a normalization
constant and p(θ |D) is the posterior beliefs about θ after observing D.

Bayes Rule

p(θ |D) = p(θ ∩D)
p(D) =

p(D|θ )p(θ )
p(D) (3.6)

3.2 The Multivariate Gaussian Distribution

The Gaussian Distribution is one of the most used distributions in statistics [17]
and generalizes well for multivariate variables. The pdf for the D dimensional
multivariate Gaussian is given by Equation (3.7) [11, 17].

N (x | µ,Σ)¬
1

(2π)D/2|Σ|1/2
exp

�

−
1
2
(x −µ)ᵀΣ−1(x −µ)

�

(3.7)

3.2.1 Marginalization and conditioning

Consider the joint multivariate Gaussian distribution for two (potentially vector-
valued) variables x and y .

p(x , y) =N
�

�

x
y

� �

�

�

�

�

µx
µy

�

,

�

Σx x Σx y
Σyx Σy y

�

�

(3.8)

The marginal and posterior conditional distribution are given by Equation (3.9)
and Equation (3.10) respectively [11], and will be used extensively throughout

1The interpretation of probabilities as the relative frequency of outcomes from repeated trials is
what is often taught in statistics courses and is called the frequentist interpretation.

2As a thought experiment, let us say you want to determine the number of trees on the planet.
There is a fixed amount of trees, but the actual number is unknown as you cannot count every single
one. There is nothing uncertain about the number of trees itself, only about your beliefs, which are
uncertain due to incomplete knowledge.
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this thesis. Note that the marginal distribution does not actually require any cal-
culations and is found by selecting the corresponding values from µ and Σ.

Marginal Distribution

p(x ) =

∫

y
p(x , y)d y =N (x | µx ,Σx x) (3.9)

Posterior Conditional Distribution

p(x |y) =N (x | µx |y ,Σx |y) (3.10a)

µx |y = µx +Σx yΣ
−1
y y(y −µy) (3.10b)

Σx |y = Σx x −Σx yΣ
−1
y yΣy x (3.10c)

3.3 Introduction to Gaussian Processes

This introduction is heavily inspired by [11], where more details can be found
for those interested. This introduction will only consider the scalar case, and the
discussion of vector-valued functions is delayed until Section 3.4. Rest assured,
this introduction easily extends to vector-valued functions!

A Gaussian Process (GP) can formally be defined as Definition 1.

Definition 1. A Gaussian Process is a collection of random variables, any finite num-
ber of which has a joint Gaussian Distribution.

In this thesis, a more specific definition is adopted in order to interpret GPs as
a statistical distribution over functions. A GP for a random function f ¬ f (x ) is
fully specified by its mean function m(x ) and covariance function k(x , x ′).

f ∼ GP( m(x ), k(x , x ′) ) (3.11)

This interpretation of a GP might seem a bit odd at first. It may help to think of
functions as infinitely long vectors containing the function values for all possible
inputs. The key observation is that the marginal distribution p(x ) of a multivariate
Gaussian distribution p(x , y) is another Gaussian distribution that is completely
independent of y , as expressed in Equation (3.9). Any variables not of interest
can therefore be easily marginalized away. Any GP by Definition 1 can therefore
be viewed as the finite marginal distribution of an infinite Gaussian Distribution,
jointly describing the values of f at all possible inputs x . In the end, a GP is nothing
more than a joint Gaussian Distribution with a fancy interpretation.



Chapter 3: Theory 13

3.3.1 A quick note on vector notation

Different notations for vector values are used to differentiate between three com-
mon cases:

Bold letters are used to indicate a single, multivariate value. f (x ) is the scalar
function f evaluated at the multivariate input x . In practice, this implies
that the input is a column vector x ∈RM with M ≥ 2 elements.

Capital letters such as X , are used to indicate multiple (potentially multivariate)
samples. f (X ) is the scalar function f evaluated at each row in X . In practice
this implies that the input X ∈RN x M with N ≥ 2 rows (samples) and M ≥ 1
columns (dimensions).

Vector Arrows such as ~f are used to denote vector-fields (i.e. vector-valued func-
tions). This will be useful for vector-valued GPs as it allows the distinc-
tion between shorthand notations such as f ∗ = f (X∗), ~f∗ = ~f (x ∗) and
~f ∗ = ~f (X∗).

3.3.2 Introduction to kernels

The covariance function k(x , x ′) determines the similarity between two different
points x and x ′. These covariance functions will be referred to as kernels, which
maps the input space to a feature-space [11]. The output of the kernel is a value de-
scribing the similarity (i.e., covariance) between the two inputs. Kernel functions
are discussed in greater detail in Section 3.5.

The kernel must be symmetric and positive definite to produce a valid covari-
ance matrix, which requires that

k(x , x ′) = k(x ′, x ) (3.12)

The covariance matrix K(X , X ) is the result of calling k(·, ·) on all pairs of
inputs, i.e.

K(X , X )i j = k(x i , x j) ∀i, j (3.13)

3.3.3 Conditioning

So far, only the prior distribution for f has been specified. As a GP is by definition
a multivariate Gaussian Distribution, the posterior conditional in Equation (3.10)
can be used to condition f on observed values. A simple GP f (x ) with mean
m(x ) and kernel k(x , x ′) will be used as an example on conditional GPs.

Let f ∗ ¬ f (X∗) denote the function evaluated at test points X∗. The prior
distribution over f∗ is shown in Figure 3.1a. From a Bayesian perspective, the goal
is to update the prior beliefs about f ∗ using the (potentially) noisy observations
y = f (X ) + ε at multiple inputs X to get the posterior belief p( f ∗ |X , y , X∗). The
noise term ε is considered i.i.d and distributed according to ε∼N (0,σ2).

The joint distribution of y and f ∗ is given by
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p(y , f ∗) =N
�

�

y
f ∗

� �

�

�

�

�

m(X )
m(X∗)

�

,

�

K(X , X ) +σ2 I K(X , X∗)
K(X∗, X ) K(X∗, X∗)

�

�

(3.14)

and the posterior distribution p( f ∗|y) is computed using the posterior conditional
distribution in Equation (3.10).

p( f ∗|y) =N ( f | µ f ∗|y ,Σ f ∗|y) (3.15a)

E[ f ∗] = µ f ∗|y = m(X∗) + K(X∗, X )
�

K(X , X ) +σ2 I
�−1
(y −m(X )) (3.15b)

V[ f ∗] = Σ f ∗|y = K(X∗, X∗)− K(X∗, X )
�

K(X , X ) +σ2 I
�−1

K(X , X∗) (3.15c)

As the notation quickly gets messy for the general case, the shorthand notation
for evaluating f (x ∗) at a single test point is introduced as well. To follow the
convention used by [11], k∗ ¬ K(X , x ∗) is used to denote the vector of covariances
calculated between the test point and each of the training samples. The notation
K ¬ K(X , X ), f̄∗ ¬ E[ f∗], and α= (K+σ2 I)−1

�

y−m(X )
�

is also added to simplify
the equations. Using this shorthand notation for a single test case, Equation (3.15)
boils down to Equation (3.16).

f̄∗ = E[ f∗] = m(x ∗) + kᵀ∗(K +σ
2 I)−1(y −m(X )) (3.16a)

= m(x ∗) + kᵀ∗α (3.16b)

V[ f∗] = k(x ∗, x ∗)− kᵀ∗K
−1 k∗ (3.16c)

In practice, computing the inverse K(X , X ) becomes expensive for an increas-
ing number of samples. To avoid numerical instability, using the Cholesky Decom-
position is usually preferred. The Cholesky Decomposition forms a new lower-
triangular matrix L such that K = LLᵀ, assuming K is symmetric and positive
definite, and it is considered extremely numerically stable [11]. Equation (3.15)
can then be computed using L. The diagonal entry σ2 I added to the kernel matrix
is intended to model noisy observations, while in practice it also improves the nu-
merical stability. A small value is therefore recommended even if the observations
are noise-free [27].

E[ f ∗] = m(X∗) + K(X∗, X ) (LLᵀ)−1 (y −m(X ))

= m(X∗) + K(X∗, X )
�

(Lᵀ)−1(L)−1 (y −m(X ))
�

︸ ︷︷ ︸

α

(3.17a)

V[ f ∗] = K(X∗, X∗)− K(X∗, X ) (LLᵀ)−1 K(X , X∗)

= K(X∗, X∗)− K(X∗, X ) (Lᵀ)−1(L)−1 K(X , X∗)

= K(X∗, X∗)−
�

(L)−1 K(X , X∗)
�ᵀ

︸ ︷︷ ︸

vᵀ

�

(L)−1 K(X , X∗)
�

︸ ︷︷ ︸

v

(3.17b)
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The whole procedure boils down to Algorithm 1 as proposed by [11]. A simple
GP before and after conditioning is shown in Figure 3.1

Algorithm 1 Gaussian Process Prediction
1: procedure GP-PREDICT(X∗, y , k, X )
2: L = cholesk y

�

K(X , X ) +σI
�

3: α= Lᵀ\(L\y)
4: v = L\K(X , X∗)
5: E[ f ∗] = m(X∗) + K(X∗, X )α
6: V[ f ∗] = K(X∗, X∗)− vᵀv
7: return E[ f ∗], V[ f ∗]
8: end procedure

(a) Prior
(b) Posterior after observing the function at two
different inputs (black dots).

Figure 3.1: Simple Gaussian Process example with zero-mean and RBF kernel
with unit variance. The red line is the mean, while the red area is the 95% confi-
dence interval.

3.4 Vector-valued Gaussian Process

GPs can easily be extended for vector-valued functions by simply considering the
joint distribution of each function component as in Equation (3.18).

~f (x ) =

�

fx(x )
f y(x )

�

∼ GP
�

�

mx(x )
my(x )

�

,

�

kx x(x , x ′) kx y(x , x ′)
kx y(x , x ′)ᵀ ky y(x , x ′)

�

�

(3.18)

Only independent output dimensions, i.e. kx y = ky x = 0 will be considered
in this thesis to reduce the number of complicating factors. This is, however, not
without consequences as it assumes zero covariance between the two outputs.
This issue is revisited in Chapter 8.
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3.5 Kernels

This section will introduce some relevant kernels for this thesis. Many more ker-
nels are available in the literature [11].

3.5.1 Stationary Kernels

Stationary kernels are kernels which only depends on r = x − x ′ and is usually
specified as a function of a single variable.

Constant Kernel

As the name implies, the constant kernel is a kernel that is independent of the
input. It is typically used as a scaling parameter in combination with other kernels.

k(·) = σ2 (3.19)

White kernel

The White Kernel is useful for modeling whitenoise in a system as i.i.d [27]. The
white kernel is given by

k(x i , x j) = δi jσ
2 (3.20)

where δi j is the Kronecker-delta which is 1 if i = j and 0 otherwise. This is the
same as the noise term added in Algorithm 1.

Radial Basis Function

The Radial Basis Function (RBF) kernel, also referred to as squared exponential
kernel, is one of the most frequently used kernels, and is given by the covariance
function in Section 3.5.1. The scaling parameter l is the charactheristic length scale
and can intuitively be thought of as a smoothness parameter. This kernel yields
infinitely differentiable functions, meaning that any function drawn from a GP
with this kernel is very smooth[11].

k(r ) = exp
�

−
||r ||2

2l2

	

(3.21)

Matérn class

The Matérn Class of kernels is given by the covariance function in Equation (3.22),
where Kv is the modified Bessel function.

k(r ) =
21−ν

Γ (ν)

�
p

2ν||r ||
l

�ν

Kν

�
p

2ν||r ||
l

�

(3.22)

The parameter ν > 0 determines the smoothness, where:
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• ν= 1
2 yields the Ornstein-Uhlenbeck Process and functions, that when drawn

from a GP, are continious, but not differentiable. The kernel is equivalent
to

k(r ) = exp
�

−
||r ||

l

	

• ν = 3
2 yields functions that, when drawn from a GP, are continous and

once-differentiable. The kernel is equivalent to

k(r ) =
�

1+
p

3||r ||
l

�

exp
�

−
p

3||r ||
l

	

• ν= 5
2 yields functions, that when drawn from a GP, are continous and twice

differentiable. The kernel is equivalent to

k(r ) =
�

1+
p

5||r ||
l

+
5||r ||2

3l2

�

exp
�

−
p

5||r ||
l

	

More generally, the functions drawn from a GP with a Matérn class kernel is k-
times differentiable if and only if ν > k[11]. The Matérn class of kernels is ar-
gued to be a better choice than the RBF kernel for many physical systems, as the
infinitely smooth function generated by RBF is too smooth [11]. Further math-
ematical details can be found in [11, sec. 4.2] as it is outside the scope of this
thesis.

3.5.2 Combining multiple kernels

Kernels can be mixed and matched through multiplication and addition, where
the behavior of the individual kernels can be combined to describe more complex
functions. A simple example is using the constant kernel to scale the covariance
of other kernels. Different kernels can also be used for each input dimension.

3.6 Hyperparameter selection

Manually tuning the kernel hyperparameters is tedious and time-consuming, mo-
tivating the need for automatic selection of parameters. This section will discuss
an automated approach for hyperparameter selection with GPs.

3.6.1 Maximum Likelihood - The Marginal Likelihood

The marginal likelihood, which is the likelihood of observing a set of given obser-
vations y , conditioned on a GP with kernel parameters θ and inputs X , is given
by

p(y | X ,θ ) =N
�

y |m(X ), Kθ (X , X )
�

(3.23)



18 Mellbye: Gaussian Process AIS Trajectory Prediction

and can be used to obtain a Maximum Likelihood Estimation (MLE) estimate of
the parameters θ . Defining ỹ ¬ y −m(X ) and taking the logarithm yields Equa-
tion (3.24)

Log Marginal Likelihood

log p(y | X ,θ ) =−
1
2

ỹᵀKθ (X , X )−1 ỹ −
1
2

log |Kθ (X , X )| . . .

−
n
2

log(2π)
(3.24)

where the optimal hyperparameters θML can be found by maximizing this
quantity3, i.e.

θML = argmax
θ

log p(y | X ,θ ) = argmin
θ

�

− log p(y | X ,θ )
�

(3.25)

The name marginal likelihood comes from the fact that the latent function
f is marginalized out, i.e. the parameters are optimized over all possible latent
functions f .

p(y | X ,θ ) =

∫

f
p
�

y | f
�

p
�

f | m(X ), K(X , X )
�

d f (3.26)

The marginal likelihood is somewhat resilient to overfitting, as it naturally
incorporates a trade-off between model complexity and model fit. However, the
optimization step always imposes the risk of overfitting, especially if there are
many hyperparameters [11].

Optimizing Equation (3.24) with gradient descent requires the inversion of
the kernel matrix at each iteration. It quickly becomes a costly operation, limiting
the size of the dataset that can be used realistically. A possible solution to this
problem is to approximate the global GP by several local models, as proposed in
work such as [28, 29]. These smaller GP models can then be evaluated in parallel
and collaborate in the search for a global optimum.

3.7 Sampling from a Gaussian Process

As the GP is a joint Gaussian distribution, random samples can be drawn from it
as with any other multivariate Gaussian.

f ∗ ∼N ( f̄ ∗,V[ f ∗]) (3.27)

3The marginal likelihood is generally not a convex function of θ as the kernel functions are
usually non-linear functions of θ , and multiple local optima may exist. The practical effects include
that the observed data may be explained well by different combinations of parameters, and each
combination serves as a distinct interpretation of the data. During optimization, care should be
taken to avoid a bad local optimum [11].
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More specifically, a vector of i.i.d standard normal samples, Z , can be turned
into samples from a joint Gaussian distribution.

Once again, the Cholesky decomposition is used to decompose the GP covari-
ance, i.e. V[ f ∗] = LLᵀ. Using L and f̄ ∗, Equation (3.27) can be expressed as

N ( f̄ ∗,V[ f ∗]) = f̄ ∗ + LN (0, I) (3.28)

which yields a way to convert indendent standard normal samples into samples
from a GP [11]:

f ∗ = f̄ ∗ + LZ , Z ∼N (0, I) (3.29)

3.8 Standardization

The method of standardization is the process of converting the data into a standard
unit of measurement, which in practice typically involves transforming the data to
have zero mean and unit variance [30]. This is useful when comparing measures
of different scales.

The proposed GP implementation works well with and without standardized
input data, but standardization has one crucial benefit. While the current imple-
mentation allows separate kernel hyperparameters for each input dimension in x ,
the kernel is assumed to be identical for each output of ~f . The kernel therefore
represents the variability of both output dimensions at once. However, with stan-
dardized training outputs Y , the kernel is relative to the standard deviation of the
training data. This way, the GP can express the different levels of uncertainty for
each output dimension while still sharing the same kernel. An even more flexible
approach would be to allow separate kernels for each dimension, though at the
cost of more complex hyperparameter tuning.

3.9 Approximate methods

The standard derivation of the GP requires inverting the kernel matrix, either
through the Cholesky Decomposition or directly. Unfortunately, the computational
complexity is n3

6 operations for the Cholesky Decomposition and similarly n2

2 for
solving triangular systems [11]. This may be acceptable for sparse datasets, but it
makes GPs infeasible for Big Data applications.

For simple functions, it often works well to only use a representable subset of
the data. However, throwing away the majority of available data is not an elegant
solution to the problem.

3.9.1 Reduced-rank approximation

Several approximations are discussed in [11] and typically use a reduced-rank ap-
proximation of the kernel matrix K = QQᵀ with Q ∈ Rn×q, and use the matrix
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inversion lemma [11, p. 201], reducing the inversion of the n × n matrix to the
inversion of a q × q matrix instead. Unfortunately, the optimal reduced-rank ap-
proximations depend on the eigenvalue decomposition, which itself is a O(n3)
operation. However, if a cheap approximation to the eigenvalue decomposition
can be found, it can potentially be used to approximate the GP. One such low-
rank approximation is the Nyström method, where a subset of the dataset is used
to approximate the eigenvalues.

3.9.2 Sparse Variational Gaussian Process

Another solution is to consider the elements in the covariance matrix as the param-
eters to a surrogate distribution and then use Variational Inference to approximate
the true posterior distribution [31]. The problem of inverting large matrices is
then turned into an optimization problem. Variational Inference is covered in the
specialization project [25].

The Sparse Variational Gaussian Process (SVGP) is a sparse approximation of
GPs, which builds on variational inference. The idea is to summarize the data
(X , y) using a set of m inducing variables for the latent function values f m at the
inducing points Xm [32]. Xm can either be a subset of the available training inputs
X or auxiliary pseudo-points. The goal of SVGP is then to infer the inducing points
Xm as well as the hyperparameters θ from data. Libraries, such as GPFlow [33],
allow the SVGP to be combined with powerfull stochastic optimization techniques
to learn sparse approximations for large datasets.

3.10 The Kalman Filter

The Kalman filter is an algorithm for exact Bayesian filtering for linear Gaussian
state-space models [17]. The reader is assumed to already be familiar with the
Kalman filter, but a short introduction is nevertheless included for completeness.

The filtering is performed in two steps. The prediction step computes the marginal
distribution of the current state x t given the known measurements z1:t−1 up to
the previous timestep.

p(x t |z1:t−1) =

∫

x t−1

p(x t , x t−1|z1:t−1)dx t−1

=

∫

x t−1

p(x t |x t−1)p(x t−1|z1:t−1)dx t−1

(3.30)

The update step directly follows from Bayes Rule

p(x t |z1:t) =
p(z t |x t)p(x t |z1:t−1)

p(x t |z1:t−1)
(3.31)
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These two equations yield what is known as the Bayes filter, and by assuming
all distributions to be linear Gaussian, there exists a closed-form solution given by
Algorithm 2 [17, 34].

Algorithm 2 Kalman Filter
1: procedure KALMAN FILTER(x t−1, P t−1, z t)
2: x̂ t = Gx t−1 . Predicted Mean
3: P̂ t = GP t−1Gᵀ +Q . Predicted Covariance
4: ẑ = Hx̂ t . Predicted measurement
5: v t = z t − ẑ t . Innovation
6: St = HP̂Hᵀ +R . Innovation Covariance
7: W t = P̂ t H

ᵀS−1
t . Kalman Gain

8: x t = x̂ t +W t v t . Mean of Posterior
9: P t = (I −W t)P̂ t . Variance of Posterior

10: return x t , P t
11: end procedure

Further details and derivations can be found in [17, 34].





Chapter 4

Historical AIS data

The Automatic Identification System (AIS) is a vessel-to-vessel communication sys-
tem, which allows a vessel to share vital information about its current state with
other ships, base stations, and satellites electronically. International voyaging ships
with gross tonnage larger than 300 and all passenger ships are required to install
an AIS transceiver according to the Safety Of Life At Sea (SOLAS) convention [35]

The typical AIS receiver has a range of about 10-20 nautical miles. However,
AIS transceivers have been installed on satellites in later years, resulting in global
coverage. The transceivers are divided into two types of classes [35]:

Class A typically transmits at a higher rate, ranging between 30 times per minute
for high-velocity vessels to every third minute for vessels at rest.

Class B are typically smaller, cheaper, and simpler than their Class A counter-
parts. The position message for Class B is sent every 3 minutes when the
vessel’s speed is less than 2 knots and every 30 seconds for faster speeds.

4.1 Message Contents

The typical AIS message contains unique identification (MMSI / IMO), position
(longitude and latitude GPS coordinates), course (COG) and speed (SOG). The
relevant message content for this thesis is summarized in Table 4.1.

Several other fields may additionally be available, depending on the transceiver
and which information the crew has entered.

4.2 The Dataset

The total dataset contains 2995644 AIS samples collected between 1. Jan and
31. Des 2015 from the Trondheim Fjord in Norway. There are 1555 unique MMSI
values, though most of the messages come from a small subset of the vessels. More
than 80% of the dataset originates from the top 250 vessels, as seen in Figure 4.1.

23
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Parameter Explanation
IMO 7 digit vessel identification number that remains unchanged

when transferring a vessel’s registration to a new country
MMSI Maritime Mobile Service Identity (MMSI), a 9 digit vessel identifi-

cation number
Long Degrees longitude in range [−180◦W, 180◦E]
Lat Degrees latitude in range [90◦S, 90◦N]
COG Course Over Ground (COG) is the clockwise rotation of the vessel’s

velocity vector relative to true north
SOG Speed Over Ground (SOG) is the absolute value of the vessel’s ve-

locity vector in knots.
Heading Direction of vessel’s nose or bow relative to true north. Indepen-

dent of the actual movement, so not necessarily identical to COG.
NB: Not always available.

Timestamp Number of days elapsed since 1. jan 1900, 00:00

Table 4.1: Common content of AIS messages [4].
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Figure 4.1: Cumulative distribution of AIS messages for the N most frequent
vessel’s.

However, the dataset is currently too large to conveniently work with on a sin-
gle computer. Two local regions are instead used in this thesis, and they are shown
in Figure 4.2. The first subset is from a curved section of the Trondheim fjord with
a lot of traffic. The subset also includes a ferry crossing, which crosses the traffic
lane. The other subset is from deeper into the fjord, from a relatively straight sec-
tion. The dataset therefore contains both straight-line and curved trajectories, as
well as crossing trajectories.

4.3 Scenario

The AIS dataset contains samples from a wide variety of different trajectories,
as each trajectory is the result of a vessel’s intention, be it reaching a specific
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(b) Zoomed-in version of the subsets used in this thesis. The blue subset in the left-most map shows
the AIS data from three local ferries, which make out more than half of the dataset.

Figure 4.2: The available AIS data used in this thesis.
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destination, commercial fishing, or simply for leisure. As a result, there is a wide
range of possible overlapping trajectories that a vessel might follow in any given
area. Therefore, this thesis will narrow the problem of long-term prediction down
to prediction in specific scenarios. A scenario is in this thesis characterized by the
vessel’s initial position, speed, and course, and it is assumed that vessels in a given
scenario tend to follow similar trajectories. Though not used in this thesis, it would
also be natural to incorporate contextual information such as vessel type, as there
is likely quite a lot of variability between the behavior of different types of vessels.

When predicting the trajectory for a given target vessel, only the subset of AIS
messages from similar scenarios will be used. This simplifying assumption is a crit-
ical part of all methods proposed in this thesis. It allows the AIS data to be reduced
significantly for any given prediction and is what makes the methods computa-
tionally feasible. The following requirements must be satisfied for a trajectory to
qualify as being in a similar scenario as the target vessel:

1. The trajectories’ initial position must be close to the target vessel’s position
x 0. A fixed threshold at ||∆x 0|| ≤ r is used, where ∆x 0 is the difference
between the target vessel’s current position and the initial conditions of a
potential training trajectory and r is a fixed radius.

2. The trajectories’ initial COG must be close to the target vessel’s heading X .
A fixed threshold at X ±∆X is used.

3. The trajectories’ initial SOG must be close to the queried velocity v. A fixed
threshold at v ±∆v is used.

The notion of only using a small subset of close-by samples from the AIS data is
somewhat similar to the SPNS method proposed by [24], though a key distinction
is that this thesis selects entire trajectories based on the initial conditions, rather
than individual points.

4.3.1 Clustering

In practical applications, it may be beneficial to use a fixed number of scenarios.
For example, clustering-based methods may be used to cluster similar trajectories
into a fixed number of scenarios. This approach is not implemented in this thesis
but is considered a natural next step.

4.4 Preprocessing

The position (longitude and latitude) is converted from the standard World Geode-
tic System (WGS84) coordinates into the EUREF89 UTM32 (EPSG-25832) coor-
dinate system [36]. As a result, the coordinates are converted from spherical co-
ordinates to a 2D euclidian coordinate system, where the first and second axis
corresponds to easting and northing, respectively. This coordinate system is one
of two official coordinate systems in Norway and yields significantly better pro-
jections in this area than other alternatives, such as the Web-Mercator projector
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frequently used by online maps. Zone 32 is selected as it encompasses the target
region.

4.4.1 From samples to trajectories

Samples with identical MMSI and less than 15 minutes between subsequent sam-
ples are considered part of the same trajectory. The 15 minute requirement is
added to ensure that samples before and after docking are considered separate
trajectories. The length of the trajectories must be between 15 and 30 minutes,
and the number of samples in each trajectory must be greater than 4.





Chapter 5

Model trajectories directly using
a Gaussian Process

A tempting solution is to directly apply the GP framework introduced in Chapter 3
and model the vessel’s trajectory as a function of time ~f (τ). However, as there are
no observations of the target vessel’s future position, there is no actual data to
condition the GP on. Instead, this chapter will attempt to use nearby trajectories
and assume these historical trajectories to resemble the future trajectory of the
target vessel.

5.1 Method

While a pure function of time is tempting, it is unable to differentiate between
different historical trajectories. To utilize as much of the available information
in a single AIS message as possible, and in order to compensate for any initial
differences in position, velocity or course of nearby trajectories, a bit more com-
plex formulation ~f (x 0,ψ0, v0,τ) : R5 → R2 is proposed. The key variables are
explained in Table 5.1.

Variable Description
x 0 ∈R2 Trajectory’s initial position
X0 ∈ [0,360) Trajectory’s initial COG
v0 ∈R Trajectory’s initial SOG
τ ∈ [0,∞) Prediction timestamp
xτ ∈R2 Predicted position

Table 5.1: Key variables

The method is formulated in mathematical terms in Equation (5.1). This will
from now on be referred to as the Direct GP approach, as it directly utilizes a GP
to predict the trajectory.

29
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f (η) = xτ, η=
�

x 0 ψ0 v0 τ
�

(5.1a)

f (η)∼ GP(m(η), K(η,η)) (5.1b)

The function ~f can be conditioned on similar trajectories using Algorithm 1
from Chapter 3, and then be used to answer queries about the likely trajectories
that the vessel might follow. An example output is available in Figure 5.1.

5.1.1 Key Assumption

This formulation builds on the key assumption that the target vessel is following
the same underlying trajectory as the nearby historical trajectories. In other words,
the function ~f does not represent the target vessel’s future trajectory; it merely
interpolates the past trajectories with similar initial conditions.

5.1.2 Choice of Kernel

Many different kernels may work well with this formulation. This section will
cover a few alternatives that works well in practice, but there are likely many
other alternatives that may work just as well, if not better.

The RBF kernel was found to work well with the formulation used in this
chapter. Along the traffic lanes, vessels tend to move in a smooth trajectory, which
makes the RBF kernel a good choice. As the function arguments are of different
scales, it is a good idea to use different lengthscales for each input dimension, i.e.

k(η,η′) = σ2 exp
�

(η−η′)ᵀW−1(η−η)
�

(5.2)

where W is a diagonal matrix with a separate lengthscale for each dimension and
σ2 is a scale parameter. This kernel yields smooth functions for ~f and is well suited
to model the general trend of the trajectory.

In some scenarios, a single RBF kernel results in an unreasonably smooth func-
tion. Adding a second RBF kernel as in Equation (5.3) works well in these scenar-
ios, as it gives the model some additional flexibility in local regions. However,
it makes hyperparameter selection significantly more complicated as the optimal
solution is no longer unique.

k(ηi ,η j) = σ0k0(ηi ,η j) +σ1k1(ηi ,η j) (5.3)

Each term in this kernel offers a unique interpretation:

Long term trend k0 is an RBF kernel intended to cover the long-term behavior
of the trajectories, i.e., a smooth component describing the overall trend of
the trajectories. The length scales of this kernel are expected to be relatively
large.
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Dependent noise k1 is an RBF kernel intended to model the local variations be-
tween different trajectories which is not well explained by k0. The length
scales are therefore expected to be short.

5.2 Implementation Details

This formulation builds directly on the GP framework introduced in Chapter 3 and
the trajectory can be conditioned on available training data using Algorithm 1.

5.2.1 Approximate Gaussian Process

Another promising approach is to utilize an approximation technique to avoid the
scalability issue of GPs. While this thesis focuses on specific scenarios, as discussed
in Chapter 4, the formulation in this chapter lends itself nicely to using more data.
Though not implemented in this thesis, the SVGP introduced in Chapter 3 is one
such method that attempts to fit a GP while simultaneously finding a good subset
of the data to summarize the full dataset.
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(a) The predicted trajectory using the direct GP formulation. The ellipses are the 95% CI for the
prediction at the ground truth timestamps.
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(b) The East and North components plotted against time with a 95% CI.

Figure 5.1: Example output from the Direct GP approach.



Chapter 6

GP-EKF: Non-parametric dynamic
system using AIS tracking data

One of the significant issues with the direct approach is the unimodal assumption
of using a GP. It works well as long as vessels agree on a specific trajectory, but fails
as soon as there are multiple branching trajectories. In search of a better solution,
a non-parametric dynamical model is proposed in this chapter and is inspired by
[12, 13, 16, 18].

The vessel trajectory T can be expressed using the dynamical system

x t+1 = x t + ~f (x t ,τt) (6.1a)

T t = x t + ε, ε∼N (0,σ2) (6.1b)

The function ~f (·) : R3 → R2 denotes the vector field describing the expected
velocity. In the case of long-term prediction, the dynamics ~f (·) are unknown and
unlikely to be stationary. Instead of using the usual parametric approaches to ODE
models, the goal of this chapter is to use a GP to create a non-parametric represen-
tation of the dynamics ~f (·) by learning from historical trajectories of other vessels.
This way, arbitrary complex dynamics can be learned without being limited by a
fixed parametrization. The GP considered in this chapter is a vector-valued GP
with zero mean and identical kernel for each output dimension, as expressed in
Equation (6.2). The output dimensions are assumed to be independent.

~f (x , t) = ~f (η) =

�

fE(η)
fN (η)

�

∼ GP
�

0, k(η,η′)
�

(6.2)

The pipeline for making predictions using available AIS data will now be in-
troduced in greater detail, but can be summarized as:

1. Calculate trajectory gradients y for inputs η from available AIS data.
2. Fit a GP to the time-varying vector-field ~f : R3→R2

3. Simulate the vessel as it is moving through the vector field ~f , using either
EKF-based prediction or Sequential Monte Carlo.

33
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6.1 Notation and variables

The key variables for this chapter are summarized in Table 6.1. All other variables
will be introduced as needed.

Variable Description
x t ∈R2 Vessel position at step t
τt ∈R Timestamp at step t, number of seconds since start of trajectory
Xt ∈ [0, 360) Vessel’s course over ground in degrees at step t
vt ∈R Vessel’s speed over ground in knots at step t
P t ∈R2x2 State Covariance at step t

Table 6.1: Key variables

Note that throughout this chapter, some of the notation used in Section 3.3
will be relaxed in order to reduce the notational complexity. More specifically, the
GPs in this chapter are always assumed to be conditioned on available data, i.e.
p
�

~f (x )
�

= p
�

~f (x ) | y
�

.

6.2 Simulating Trajectories

The vector-field ~f can be expressed using the GP framework from Chapter 3 to
get the prediction model

p(x t+1|x t) =N
�

x t+1 | (x t +E[ ~f (x t )]),V[ ~f (x t ,τt)]
�

(6.3)

Given a current estimate p(x t), the marginal next state distribution for the
predicted state then becomes

p(x t+1) =

∫

x t

p(x t+1|x t)p(x t)dx t (6.4)

However, this integral is intractable, as both the mean and variance depend
on the current state x t with non-trivial relationships [12, 18]. A solution to this
problem is to use sampling-based methods, and one such approach is discussed
later in Section 6.4. However, the main method proposed in this chapter will ap-
proximate this integral by making a few simplifying assumptions. The integral can
be approximated by assuming that the posterior distribution is Gaussian, and the
mean and variance can be calculated using the law of iterated expectations and
the law of total variance [18]. Assuming the current estimate to be distributed
according to the Gaussian distribution p(x t) =N (x̄ t , P t), the mean and variance
of x t+1 is given by
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E[x t+1] = E
�

E[x t+1|x t]
�

= E
�

x t +E[ ~f (x t ,τt)|x t]
�

= x̄ t +E
�

E[ ~f (x t ,τt)|x t]
�

(6.5a)

V[x t+1] = E
�

V[x t+1|x t]
�

+V
�

E[x t+1|x t]
�

= E
�

V[ ~f (x t ,τt)|x t]
�

+V
�

x t +E[ ~f (x t ,τt)|x t]
� (6.5b)

The mean and variance of the GP are the same conditional mean and variance
as in Equation (3.16) from Chapter 3, which both are non-linear functions of x t .
A first-order Taylor approximation around the current best estimate x̄ t is then
applied to linearize the GP mean and variance, with respect to x t .

E[ ~f (x t)|x t)]≈ E[ ~f (x̄ t ,τt)] +
∂E[ ~f (x ∗,τt)]

∂ x ∗

�

�

�

�

x ∗=x̄ t

(x t − x̄ t) (6.6a)

V[ f (x t ,τt)|x t]≈ V[ ~f (x̄ t ,τt)] +
∂V[ ~f (x ∗,τt)]

∂ x ∗

�

�

�

�

x ∗=x̄ t

(x t − x̄ t) (6.6b)

Defining temporary variables for the Jacobians

U t ¬
∂E[ ~f (x ∗,τt)]

∂ x ∗

�

�

x ∗=x̄ t
V t =

∂V[ ~f (x ∗,τt)]
∂ x ∗

�

�

x ∗=x̄ t
(6.7)

and inserting Equation (6.6) into Equation (6.5) then yields

E[x t+1]≈ x̄ t +E
�

E[ ~f (x̄ t ,τt)] +U t(x t − x̄ t)
�

= x̄ t +E[ ~f (x̄ t ,τt)] +U t(E[x t]− x̄ t)

= x̄ t +E[ ~f (x̄ t ,τt)]

(6.8a)

V[x t+1]≈ E
�

V[ ~f (x̄ t ,τt)] + V t(x t − x̄ t)
�

+V
�

x t +E[ ~f (x̄ t ,τt)] +U t(x t − x̄ t)
�

= V[ ~f (x̄ t ,τt)] + V t(E[x t]− x̄ t) +V[x t +U t x t]

= V[ ~f (x̄ t ,τt)] + (I +U t)V[x t](I +U t)
ᵀ

= V[ ~f (x̄ t ,τt)] +G t P tG
ᵀ
t

(6.8b)

which those familiar with sensor fusion may recognize as the Extended Kalman
Filter (EKF) prediction [13]. Notice that only the Jacobian of the expected value
∂E[ ~f (x ∗,τt )]

∂ x ∗

�

�

x ∗=x̄ t
is actually neccessary in the end. This Jacobian is easy to com-

pute and only relies on the covariance between the test point ν∗ and the training
inputs as expressed in
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∂ ~f (x ∗,τ∗)
∂ x ∗

=
∂ ~f (η)
∂ x ∗

=
∂

∂ x ∗

�

kᵀ∗α
�

=
∂ kᵀ∗
∂ x ∗

α

=













∂ k(η∗,η1)
∂ x ∗[1]

∂ k(η∗,η1)
∂ x ∗[2]

∂ k(η∗,η2)
∂ x ∗[1]

∂ k(η∗,η2)
∂ x ∗[2]

...
...

∂ k(η∗,ηN )
∂ x ∗[1]

∂ k(η∗,ηN )
∂ x ∗[2]













ᵀ

α

(6.9)

where the notation x ∗[i] refers to the i-th dimension of x ∗ and ηk is the k-th
training input.

Note that this approximation to Equation (6.4) implicitly makes a few assump-
tions about the motion model ~f , namely that the dynamics are continuous and
highly smooth. It is believed to be a reasonable assumption for vessels in tran-
sit, but makes this approximation unsuitable for complicated situations. Including
higher-order derivatives in the Taylor approximation may yield even better results
for more complex dynamics, and as proposed by [18] it is natural to extend the
method by using a second-order approximation for the variance.

6.2.1 GP-EKF

The joint distribution of all states x 0:t up to timestep t is given by

p(x 0:t) = p(x 0)
t−1
∏

i=0

p(x i+1|x 0:i) (6.10)

where the initial distribution p(x 0) =N (x̄ 0, P0) is assumed to be a known Gaus-
sian.

Applying the Markov assumption allows this joint distribution to be expressed
in terms of the predictive distribution from Equation (6.3), i.e. p(x t+1|x 0:t) =
p(x t+1|x t).

p(x 0:t) = p(x 0)
t−1
∏

i=0

p(x i+1|x i) (6.11)

At each step, the true posterior distribution from Equation (6.4) is approxi-
mated using a Gaussian distribution, as derived in the previous section. The full
trajectory can then be simulated by recursively applying Equation (6.8).

This solution is heavily inspired by the Extended Kalman Filter (EKF), which is
why the rest of this thesis will refer to this method as the GP-EKF. The combination
of GPs and EKF was proposed by [13] and is summarized here. The reader is
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assumed to already be familiar with the Kalman filter and, by extension, the EKF.
The proposed method will now be restated in terms of the EKF.

During the prediction procedure, the state is updated incrementally by adding
~f to the current state. In other words, the EKF prediction model, gt(x ), is given
by

x̂ t = g t(x t−1) = x t−1 + ~f (x t−1,τt−1)∆τ (6.12)

where the time increment∆τ is factored out of ~f to simplify the implementation1.
Due to the potentially non-linear dynamics of ~f , which implies non-linearity

in g (·), it is neccessary to linearize the prediction in order to propagate the previ-
ous state uncertianty P t−1. The Jacobian of the prediction model, G t , is given by
Equation (6.13), where the jacobian of ~f can be computed using Equation (6.9).

G t =
∂ g t(x t−1)
∂ x t−1

= I +
∂ ~f (x t−1,τt)
∂ x t−1

∆τ (6.13)

The state uncertainty can then be predicted using Equation (6.14), propagat-
ing the previous uncertainty P t−1 using the linearized prediction model G t and
adding the prediction uncertianty V[ ~f ].

P t = G t P t−1Gᵀt +V[ ~f (x t−1,τt−1)](∆τ)
2 (6.14)

The prediction procedure is summarized in Algorithm 3 and can be used iter-
atively to simulate a complete trajectory, as demonstrated in Figure 6.1.

Algorithm 3 GP-EKF Trajectory Prediction

1: procedure GP-EKF-PREDICT( ~f , x t−1, P t−1, ∆τ)
2: x̂ t = x t−1 +E

�

~f (x t−1,τt−1)
�

∆τ

3: Gt = I + ∂ ~f (x t−1,τt−1)
∂ x t−1

∆τ

4: P̂ t = Gt P t−1Gt
ᵀ +V[ ~f (x t−1,τt−1)](∆τ)2

5: return x̂ t , P̂ t
6: end procedure

6.3 Incorporating vessel position

While the prediction procedure proposed in Algorithm 3 yields good predictions
in many cases, it is inherently an open-loop prediction. Inaccurate predictions
will never be corrected, propagating through any remaining iterations, potentially
leading to significant errors later on. It would be desirable if the prediction con-
verged towards available position measurements, slowly and only if the prediction

1Factoring out ∆τ allows for the implementation of ~f to only focus on modelling the dynamics
in meters per second. This utilizes the fact that ~f follows a Gaussian distribution, for which any
linear combination is still Gaussian.
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Figure 6.1: Illustrative example of the GP-EKF in practice
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is clearly wrong. In other words, a weak feedback compensates for minor predic-
tion errors. Expressed using Bayes law

p(x 0:t |D) =
p(D|x 0:t)p(x 0:t)

p(D) ∝ p(D|x 0:t)p(x 0:t) (6.15)

where D here is all available training data.
Although the dataset D contains a lot of data from trajectories that are as-

sumed to be similar, the problem is that it does not contain any samples from the
target vessel’s future trajectory. Thus, the challenge is to relate the target vessel’s
trajectory to the data-generating process for the dataset D.

This is still very much considered an unsolved problem. This thesis attempts
two different approaches, but the solutions are not yet satisfactory.

6.3.1 Synthetic Likelihood

This section is inspired by the work of Jain et al. [37].
A proper likelihood p(D|x 0:t) is unavailable, or at least considered infeasible

to compute. This motivates the use of so-called likelihood-free methods, where the
most common method is the Approximate Bayesian Computation (ABC). Likelihood-
free methods are used when the likelihood cannot be computed, while simulation
from the model is still possible [38, 39]. In this thesis, the focus will be on an-
other likelihood-free approach, namely, the Synthetic Likelihood (SL), which re-
places the likelihood by one or several approximate Gaussian summary statistics,
S0:t = S(x 0:t)∼N (µ(x 0:t),Σ(x 0:t)), of the data. Assuming the summary statistic
contains sufficient information about x 0:t , it should yield a good approximation
of the true likelihood, i.e.

p(D|x 0:t)≈ p(S0:t |x 0:t) (6.16)

The likelihood is assumed to factorize into

p(S0:T |x 0:T ) =
T
∏

t=0

p(St |x t) (6.17)

and the summary statistic Si is selected as the mean of the samples in the vicinity
of x i . A simple solution is to define the vicinity as a fixed radius around the state
x i

Yt = Yt(x t) = {z i ∈ D : ||x t − z i|| ≤ r} (6.18)

where the threshold r is a fixed parameter. The summary statistic Si is then given
by

St = S(x t) =
1
N

∑

z i∈Yt

z i (6.19)
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where N is the number of samples in Yt . Assuming the measurements in Y are
i.i.d, the summary statistic is then approximately Gaussian by the central limit
theorem (see Section 3.1.6). By further assuming a simple measurement model

z i
t = x t + ε

i
t , εi

t ∼N (0,R) (6.20)

the expected value and variance of the summary statistic has a closed-form solu-
tion, i.e.

E[St] =
1
N

∑

z i
t∈Yt

E[z i
t] = x t (6.21a)

V[St] =
1

N2

∑

z i
t∈Yt

V[z i
t] =

1
N

R (6.21b)

yields the following parametric distribution for the summary statistic given the
predicted state x i

p(St | x t) =N (x t ,
1
N

R) (6.22)

The posterior distribution of the trajectory prediction can then be approxi-
mated by

p(x 0:t |D)≈ p(x 0:t |S0:t) =
p(S0:t |x 0:t)p(x 0:t)

p(S0:t)

=
p(St |x t)p(x t |x t−1)p(x 0:t−1|S0:t−1)

p(St |S0:t−1)

(6.23)

where the second equality yields a recursive formulation for the posterior distri-
bution. As all distributions are Gaussian, Equation (6.23) boils down to the nor-
mal Kalman update step, using the summary statistic Si as measurement for each
timestep. The procedure is summarized in Algorithm 4.

Algorithm 4 SL update for GP-EKF

1: procedure GP-EKF-SL(x̂ t , P̂ t , | R, r)
2: Yt = Yt(x t) = {z i ∈ D : ||x t − z i|| ≤ r} . Relevant measurements
3: St =

1
N

∑

z i∈Yt
z i . Compute summary

4: W t = P̂ t(P̂ t +
1
N R)−1 . Kalman Gain

5: x t = x̂ t +W(St − x̂ t) . Conditional Mean
6: P t = (I −W t)P̂ t . Conditional Variance
7: return x t , P t
8: end procedure

The derivations in this section blindly make quite substantial assumptions that
can seriously impact the results.
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1. The derivations claim the summary statistics to be approximately Gaussian
by the central limit theorem. The underlying assumption is that the data is
i.i.d and that there is a large number of samples. As the samples originate
from several types of vessels and from different trajectories, there is reason
to suspect the samples might not be i.i.d.

2. The measurement model in Equation (6.20) assumes that the measurements
are distributed around the target vessel’s trajectory. In practice, however, the
samples might be heavily influenced by several different trajectories at once.
This makes tuning R a challenge. More complex measurement models can
be used by replacing the mean and variance of p(St |x ) by estimates [39].

6.3.2 Probabilistic Data Association Filter

The SL update ends up using an overly simplistic measurement model and does
not consider the possibility that some measurements may originate from different
underlying trajectories. Thus, for the target vessel following a specific underlying
trajectory, the dataset may actually contain substantial amounts of false measure-
ments, which negatively affect the prediction. As the SL update has no notion of
false measurements, the result is overconfident uncertainty measurements, as can
be seen in Figure 6.2.

This section attempts a rather different approach by incorporating the notion
of data association into the mix. More specifically, the idea is to view the entire
problem as single-target tracking and then apply the Probabilistic Data Association
Filter (PDAF) to solve the problem.

The PDAF is a method commonly used in target tracking which combines data
association and filtering. The following introduction to PDAF is mostly inspired
by [34], with some adaptations to better fit the current problem. As single target
tracking and data association is not the topic of this thesis, only a short introduc-
tion to the PDAF will be included here. For more details, see [34, 40].

In this section, all measurements in the available training set are considered
virtual 2 position measurements, which may or may not originate from the vessel
at time t. It is assumed that at most one measurement may originate from the
target to reduce the computational complexity significantly [34]. The rest of the
measurements are assumed to be clutter.

Given the predicted state x̂ t , any real measurement is expected to be dis-
tributed around this state due to some measurement noise. Following the notation
used by EKF, and using the measurement model h(x ) = x =⇒ H = ∂ h(x )

∂ x = I ,
the predicted measurement distribution is expressed as in Equation (6.24) where
the innovation covariance is defined as St ¬ P̂ t + R and R is the measurement
noise.

2Virtual meaning a measurement that did not originate from the target vessel, but rather a mea-
surement that could potentially originate from the target in the future. The word measurement is
still used to keep the terminology similar to what is used by PDAF.
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Figure 6.2: Illustrative example of the GP-EKF with the SL update procedure in
practice.



Chapter 6: GP-EKF: Non-parametric dynamic system using AIS tracking data 43

ẑ t ∼N (x̂ t ,St) =N (x̂ t , P̂ t +R) (6.24)

There is also the possibility that none of the measurements originated from
the target, and all observations are clutter. A good clutter model is a complicated
topic, but the Poisson clutter model is used in this thesis. As the measurements
are not actual measurements from the target, it is difficult to assign meaning to
any clutter model. It therefore simply boils down to which parameters need to
be tuned 3 and the Poisson clutter model should already be familiar to anyone
with experience in target tracking. Using the Poisson clutter model, the associa-
tion probabilities are given by Equation (6.25) [34], where at is a discrete variable
following a Categorical distribution and at = k > 0 denotes that measurement k
originated from the target. at = 0 is the special case when none of the measure-
ments originated from the target, i.e. the predicted state should not be updated.
Z denotes a matrix of all the measurements (positions) available in the training
data and is independent of time, i.e. all measurements are always potential candi-
dates. λ denotes the clutter rate, and PD denotes the probability of detecting the
target vessel.

Pr{at |Z}∝

¨

λ(1− PD) at = 0

PDN (zat |x̂ t ,St) at > 0
(6.25)

Using the likelihood for each of the possible outcomes, the association proba-
bilities β can be computed by normalizing the likelihood, i.e.

β
at=i
t =

Pr{at = i | Z}
∑M

k=0 Pr{at = k | Z}
(6.26)

The predicted state can then by updated using the Kalman update procedure
for each measurement individually. As the measurements zat>0

t are known values,
the state innovation v at>0

t ¬ zat>0
t − ẑ t is distributed according to the measure-

ment prediction ẑ t .

v at>0
t ∼N (zat>0

t − x̂ t , St) (6.27)

The updated state for each measurement is then given by the normal EKF update
step

x at>0
t = x̂ t +W t v

at>0
t (6.28a)

Pat>0
t = (I −W t)P̂ t (6.28b)

where W t ¬ P̂ tS
−1
t is the Kalman gain. The updated state of the vessel over all

possible measurements can be described as a Gaussian Mixture Model over the

3The trajectory prediction is here considered to be target tracking of future position. The clut-
ter parameters therefore need to be interpreted in the context of target tracking, not trajectory
prediction.
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M + 1 different modes weighted by the association probabilites, i.e.

p(x t ) = β
at=0
t N (x t | x̂ t , P̂ t)
︸ ︷︷ ︸

No measurements are valid

+
M
∑

k=1

β
at=k
t N

�

x t |x
at=k
t , Pat=k

t

�

︸ ︷︷ ︸

Measurement k is valid

(6.29)

Moment reduction is then used to combine the different hypotheses into a
single unimodal Gaussian distribution, i.e. a Gaussian distribution is fitted to the
first and second moment (mean and variance) of the Gaussian mixture. The mean
and variance of the resulting distribution is given by Equation (6.30a) and Equa-
tion (6.30b) respectively, using v t ¬

∑

at>0 β
at
t v at

t .

x t = x̂ t +W t v t (6.30a)

P t = P̂ t − (1− β0
t )W tSt W t

+W t

�

M
∑

at>0

β
at
t v at

t (v
at
t )
ᵀ − v t v

ᵀ
t

�

Wᵀt

︸ ︷︷ ︸

spread of innovation

(6.30b)

While available measurements could be used at each timestep, it is in practice
more convenient to only include a subset that is close enough to the predicted
state. As this measurement gate should scale with the uncertainty, the gated subset
is selected as Equation (6.31), where g is the number of standard deviations that
the method should consider.

G =
�

zat>0 | (zat>0 − x̂ t)
ᵀS−1(zat>0 − x̂ t)< g2

	

(6.31)

By combining the PDAF update with the GP-EKF prediction procedure in Al-
gorithm 3, the predicted trajectory can be tuned to favor areas with a large num-
ber of samples, effectively pulling the state towards areas with available samples.
Conversely, in regions with samples spread evenly around the predicted state, the
PDAF’s effect is then negligible (assuming proper tuning).

6.3.3 Tuning the parameters

The model should primarily trust the prediction model, since it would get stuck as
the measurements do not change over time. If the SL or the PDAF parameters are
tuned too aggressively, it tends to affect the velocity estimates of the prediction
negatively. However, finding a set of parameters that works well across different
trajectories turns out to be challenging. Parameters that improve the prediction
for one trajectory may do more harm than good on another. The performance of
using SL and PDAF will be explored further in Chapter 7.
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Figure 6.3: Illustrative example of the GP-EKF with the PDAF update procedure
in practice.
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Algorithm 5 PDAF update for GP-EKF

1: procedure GP-EKF-PDAF(x̂ t , P̂ t , | R, λ, pD, g)
2: St = P̂ t +R . Innovation Covariance
3: W t = P̂ tS

−1
t . Kalman Gain

4: for each measurement zat>0 do
5: v at>0

t = zat>0 − x̂ t . Innovation
6: β̃at>0 =N (v at>0

t | 0,St) . Unnormalized Weight
7: end for
8: β̃

at=0
t = λ(1− pD) . Unnormalized Clutter Probability

9: β = β̃
∑

at
β̃at

. Normalize weights

10: v t =
∑

at>0 β
at v at

t
11: x t = x̂ t +W t v t . Update the state mean
12: P̃ t = W t

�∑M
at>0 β

at
t v at

t (v
at
t )
ᵀ − v t v

ᵀ
t

�

Wᵀt . Spread of innovation

13: P t = P̂ t − (1− β0
t )W tSt W t + P̃ t . Updated state uncertianty

14: return x t , P t
15: end procedure

6.4 Simulating trajectories using Gaussian Process Sequen-
tial Monte Carlo

The Kalman-based prediction scheme proposed in the previous section works well
as long as a single Gaussian distribution can sufficiently explain the uncertainty.
However, in branching trajectories, minor differences in position early in the pre-
dicted trajectory might significantly affect the predictions that follow. The result is
a multimodal trajectory distribution, which a Kalman-based approach is not able
to express.

Inspired by the prediction step used by particle filters [34], the idea of sampling
trajectories can be used to explore the multimodal trajectory distribution. While
inspired by the particle filter, this approach will from now on be referred to as
Sequential Monte-Carlo to avoid confusion4, as well as to follow the same naming
convention as used by Ellis et al. [12].

The derivation of the Sequential Monte-Carlo approach is embarrassingly sim-
ple, as this method trades high computational complexity for more straightfor-
ward mathematics. Instead of analytical propagation of uncertainty, many trajec-
tories are simulated through random sampling and used to express the uncertainty
empirically. As a result, the uncertainty for any trajectory distribution can be de-
scribed, though at the cost of considerable computational complexity. N different
trajectories are initialized with similar initial conditions. The trajectories are then
simulated by drawing independent increments from ~f using the approach de-
scribed in Section 3.7, conditioned on the current state of each trajectory. The

4A vital part of the particle filter is weighting the particles based on available measurements. As
only the sampling of trajectories is performed, Sequential Monte-Carlo seems like a better fit.
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result is visualized in Figure 6.4 for N = 1000 trajectories.
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Figure 6.4: Trajectories simulated by sampling from ~f . Notice how it is able to
represent the multimodal trajectory distribution. The color represent the motion
model’s confidence when predicting the next step.

6.5 Training Source

There are two potential sources for the training samples y:

1. Trajectories from the dataset can be converted into training samples for
~f using the simple first-order finite-difference method in Equation (6.32)
between subsequent AIS samples in a trajectory i. This yields the training
outputs y i

t corresponding to the inputs ηi
t such that y i

t = ~f (η
i
t) + ε.

2. The COG and SOG from the AIS data can be used directly.

y t =
x t+1 − x t

τt+1 −τt
(6.32)

A concern with using the COG and SOG from the AIS is that this assumes the
vessel’s own estimates to be accurate. The effect of this design choice is investi-
gated further in Chapter 7.
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6.6 Choice of kernel

The approximation used to calculate the posterior distribution in Equation (6.4)
is only a first-order Taylor approximation. Hence, it is only a reasonable approxi-
mation for functions with a low degree of nonlinearity, and care should be taken
when designing the GP dynamics ~f . In this thesis, it is argued that an RBF kernel
is the preferred choice due to the highly smooth characteristics of the functions
drawn from this kernel. The RBF kernel

k(η,η′) = σ2 exp
�

−
1
2
(η−η′)ᵀW−1(η−η′)

�

(6.33)

is found to work well in most cases, as long as the vessel follows a reasonably
smooth trajectory. W is a diagonal matrix containing separate length scales for
each input dimension. The RBF is the go-to kernel for the GP-EKF in this thesis,
though other kernels, such as the Matern class of kernels, may work just as well,
if not better.

The derivative of this kernel with respect to the i-th input dimension η[i] can
be computed as [12, 13]

∂ k(η,η′)
∂η[i]

= −W−1
ii (η[i]−η

′[i])σ2 exp
�

−
1
2
(η−η′)ᵀW−1(η−η′)

�

(6.34)

A possible extension is to use the sum of two RBF kernels to get some addi-
tional flexibility while still having a reasonably smooth function. This is the same
kernel proposed in Chapter 5, though without the COG and SOG input dimen-
sions. It works better than the RBF kernel in some of the more complicated cases,
though at the cost of having to tune more hyperparameters. In simple cases, hyper-
parameter optimization typically reduces the scale parameter of one of the RBF
kernels such that the dependent noise kernel k1 has a negligible effect. It is impor-
tant to stress the word "typically," as this kernel is also more prone to finding bad
local optima during hyperparameter optimization due to the additional parame-
ters [11]. Consequently, it may end up overfitting. If the length scales become too
small, the dynamics ~f are allowed to become highly non-linear, and small changes
in the input x may have a large impact on the prediction. The Taylor approxima-
tion is not a reasonable approximation in these cases, and the result is unstable
uncertainty estimates 5. The key takeaway is that the more flexible kernels are
also more prone to overfitting, and care should be taken during optimization to
avoid unrealistic parameters.

Other kernels may be preferred if the posterior density in Equation (6.4) is
evaluated using sampling-based methods, such as Sequential Monte-Carlo, as the
Taylor approximation does not limit these methods. However, it is not covered by
this thesis.

5This is typically seen in the uncertainty estimates as large steps at seemingly random time steps,
where the uncertainty experiences sudden jumps as some elements in the Jacobian become large.
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6.6.1 Optimizing the hyperparameters

The hyperparameters can be optimized using the MLE approach discussed in Sec-
tion 3.6.1.

The whole dataset cannot be used to find the optimal hyperparameters due
to the computational complexity. Two approaches are proposed to mitigate this
issue:

1. Find a set of hyperparameters that work well across a wide range of cases.
Model selection is then be performed in an offline context, and more ex-
tensive testing can be performed to ensure a good model is selected. One
possible approach is to use Monte-Carlo simulation to find a set of robust
hyperparameters which empirically works well. However, the hyperparam-
eters may become too general for the more challenging scenarios.

2. Rerun the hyperparameter optimization for each scenario. This approach
tends to find the optimal parameters in each case. However, it is also error-
prone as it is not guaranteed to find a global optimum, and it may cause
overfitting.

The first approach is likely the preferred choice in practical applications, as the
hyperparameter optimization is prone to bad local optima, and the results should
ideally be inspected before deployment to real-world applications. A possible ex-
tension is to find a global set of parameters for each distinct vessel type, assuming
a vessel’s behavior is somewhat consistent across the entire region.

6.7 Summary

This chapter has introduced quite a few new concepts so that it might be nice with
a summary of the overall pipeline:

1. Based on the target vessel’s current state, such as position, COG and SOG,
trajectories with similar initial conditions are selected from the training set.

2. Training inputs η and outputs y for ~f are generated from the training tra-
jectories.

3. The kernel hyperparameters are optimized using MLE to find the parameters
that best explain the training data. This is either done once to find a global
set of parameters or individually for each scenario.

4. The training data and kernel can then used to get the conditional distribu-
tion for ~f .

5. The EKF procedure in Algorithm 3 is called repeatedly, using the current
state of the target vessel as initial conditions. At each step, if desirable, the
SL or the PDAF update procedure can be used as well. Sequential Monte-
Carlo can alternatively be used to simulate multimodal trajectories.

The only parameters that need manual tuning for the GP-EKF are the time
increment ∆τ and the initial covariance P0. All other parameters are learned
from the data.





Chapter 7

Statistical Testing

Inspired by [4], the performance of the proposed models will be compared on
straight-line and curved trajectories independently. This comparison is intended
to showcase the methods’ ability to consistently predict reasonable trajectories
and motivate further research into GP based methods. However, the content of
this chapter is not intended to showcase a perfect solution, and the methods are
still heavily influenced by how the hyperparameters are selected, as well as any
tuning parameters.

7.1 Method

The simulation will test the performance on a total of 700 different test trajec-
tories, where one half corresponds to straight-line trajectories and the remaining
half consists of curved trajectories. Trajectories are selected from the dataset pro-
posed in Chapter 4, and will have a total duration of between 15 and 30 minutes.
The Direct GP and GP-EKF from Chapter 5 and Chapter 6, respectively, will be
tested on the same scenarios as defined in Chapter 4 and get access to the exact
same training data.

Three different metrics – trajectory error, path error and normalized estima-
tion error squared – will be used to compare the performance of the various meth-
ods.

7.1.1 Trajectory Error

The trajectory error is found by comparing the predicted mean position with the
ground truth. As the predicted trajectory is simulated in discrete time, the points
with the closest timestamps are used for comparison. The simulation will use
∆τ = 10 seconds, which yields a maximum error in time ∆τ2 = 5 seconds, which
is considered to be acceptable considering the time-horizon of between 15 and 30
minutes.

51
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7.1.2 Path Error

The path error is defined as the closest point in the predicted trajectory to each
point in the ground truth, under the constraint that the corresponding predicted
timestamps must be monotonically increasing. In other words, the path cannot
move backwards in time.

7.1.3 Normalized Estimation Error Squared

For the uncertainty estimates to provide any value, the predictions must be consis-
tent. In this context, the term consistency is borrowed from the term filter consis-
tency used when tuning Kalman filters [34]. The idea is that prediction errors, on
average, should scale with the state covariance. In other words, the model should
not place much confidence in a prediction that is wrong while being highly con-
fident when a prediction is correct. Consistency can also be interpreted using a
frequentistic interpretation of probability, where after many predictions, the state
uncertainty should reflect the actual error rate.

The Normalized Estimation Error Squared (NEES) is a metric that can be used
to quantify consistency and is given by

NEES= (x − x̂ )ᵀP−1(x − x̂ ) (7.1)

where x is ground truth and x̂ refers to the prediction.
Assuming that the prediction error follows a Gaussian distribution, the NEES

follows a Chi-Squared distribution which can be used to form a confidence in-
terval. Comparing the prediction errors with this confidence interval can then be
used to get a sense of whether the estimated state uncertainty is consistent with
the actual error rate.

7.1.4 Comparing distributions - Boxplot

The boxplot is used to visualize the distribution of the different metrics. The box-
plot visualizes the estimated quartiles, i.e. the 25%, 50%, and 75% quantiles, of
the distribution. The "whiskers" show the range of values not considered to be
outliers. Points outside of [Q25 − 1.5 IQR,Q75 + 1.5 IQR] are considered outliers,
where IQR=Q75 −Q25 is the inter-quartile range [41].

7.1.5 Interpolation

The metrics will be compared at fixed 5 minute intervals using linear interpola-
tion. The error for short trajectories is not extrapolated, so there might be fewer
available samples for the metrics when moving past 15 minutes.
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7.1.6 Baseline - Constant Velocity Model

As a basis of comparison, the Constant Velocity Model (CVM) method is used as a
baseline. The model uses the initial COG and SOG to predict a straight line, where
the vessel is assumed to keep a constant velocity and heading.

7.1.7 Selecting test cases

The two datasets from Chapter 4 are used to perform the statistical testing.
However, 54% of the dataset originates from only three ferries. Distinct dis-

continuities characterize the trajectories of these ferries as the vessels dock for
short periods before moving back the same way they came. These discontinu-
ities directly contradict the assumptions of smoothness made by the GPs used in
this thesis. Whether or not to include these vessels was a challenging decision,
as a COLAV will need to be able to handle ferries, just as any other vessel type.
However, in a practical application, it is natural to distinguish between different
vessel types and allow the use of more specialized models to handle cases such
as frequently docking ferries. As no such distinction is made in this thesis, the
statistical testing will be more insightful without using edge-cases for more than
50% of the test cases. While it would be possible to not completely remove these
vessels, i.e. perform subsampling, it is considered more confusing. Therefore, the
samples from these three vessels are removed from the test set, though they are
still present in the training set. This thesis has not proposed any method for filter-
ing the training data based on the MMSI; removing these vessels from the training
set would be an unfair advantage.

The result is an artificial bias favoring the GP framework proposed in this
thesis, as the fraction of smooth trajectories has been artificially increased.

Straigth-line trajectories

The methods are first compared to the CVM on simple straight-line trajectories.
The statistics are based on 350 randomly sampled trajectories without replace-
ment that satisfy the following requirements:

1. The sum of subsequent changes in COG must be less than 30 degrees, i.e.
∑

i |(Xt+1 −Xt)| ≤ 30◦. This requirement ensures a straight-line trajectory.
Additional care is always taken to use the smallest possible difference as the
angles X ∈ [0◦, 360◦) wraps around.

2. There must be sufficient data available for training in the neighborhood
around the initial starting point, with similar initial heading and speed. Af-
ter sanitizing the dataset and removing irrelevant trajectories, at least 3
trajectories need to be available for training.

3. The overall duration of the trajectories must be between 15 and 30 minutes
to be considered a test candidate.
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Curved Trajectories

The curved trajectory statistics are based on 350 randomly sampled trajectories
that satisfy the following requirements:

1. The sum of subsequent changes in COG must be greater than 40 degrees,
i.e.

∑

i |(Xt+1−Xt)| ≥ 40◦. This requirement ensures a minimum curvature
in the trajectory. Additional care is always taken to use the smallest possible
difference as the angles X ∈ [0◦, 360◦) wraps around.

2. There must be sufficient data available for training in the neighborhood
around the initial starting point, with similar initial heading and speed. Af-
ter sanitizing the dataset and removing irrelevant trajectories, at least 3
trajectories need to be available for training.

3. The overall duration of the trajectories must be between 15 and 30 minutes
to be considered a test candidate.

7.1.8 Training Data

The initial conditions for each test trajectory are considered a distinct scenario,
and the relevant training data is selected according to the method proposed in
Chapter 4. The requirements are restated here with the concrete values used for
testing:

1. The trajectories’ initial position must be close to the target vessel’s position
x 0. A fixed threshold at ||∆x 0|| ≤ 200 m is used, where ∆x 0 is the differ-
ence between the target vessel’s current position and the initial conditions
of a potential training trajectory.

2. The trajectories’ initial COG must be close to the target vessel’s heading X .
A fixed threshold at X ± 20◦ is used, with additional care taken when the
angles wrap.

3. The trajectories’ initial SOG must be close to the queried velocity v. A fixed
threshold at v ± 4 knots is used.

Due to the way trajectories are generated from the AIS dataset, there will be
significant overlaps between trajectories. Therefore, naively dividing the trajecto-
ries into a train and test set is considered insufficient, as sub-trajectories from the
test set might also exist in the training set. Instead, the entire dataset is available
for training, but all trajectories with identical MMSI and date as the test trajec-
tory are removed before training. The date requirement ensures that trajectories
for the same vessel can be used for training on any other day. There is still the
possibility of leaking data from the test set if the trajectory moves past midnight,
but this is assumed only to affect a negligible number of trajectories.

7.2 Implementation

The implementation details for each method are described in this section.
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7.2.1 Direct GP

The excact GP formulation is implemented using the GaussianProcessRegres-
sor from the Python library, scikit-learn [27]. The library supports all kernels in-
troduced in Chapter 3 and supports hyperparameter optimization using multiple
restarts to avoid bad local optima.

The slightly more complicated kernel in Equation (5.3) from Chapter 5 is used.
This kernel is preferred over a single RBF kernel as it simply yields the best per-
formance across a range of different simulations. The noise term σ2 is included
as a White kernel and optimized like any other hyperparameter. The parameters
are optimized for each test scenario, using 10 random restarts to reduce the risk
of bad local optima.

7.2.2 GP-EKF

The GP-EKF is tested with and without both the SL and the PDAF update steps,
as well as using both finite difference and the COG/SOG from the AIS dataset,
resulting in 6 different instances.

The GP-EKF requires more flexibility during development. Due to the need

for calculating the gradient ∂
~f

∂ x , it is impractical to use existing GP implementa-
tions. Due to the simple implementation of Algorithm 1, it is easier to implement
it from the ground up rather than adapting existing solutions. The GP-EKF used
in this thesis is therefore implemented directly in Python using only scipy[42]
and numpy[43] to speed up linear algebra routines. The Cholesky decomposition
in Algorithm 1 can be computed using scipy.linalg.cho_factor, which calls a
highly optimized LAPACK routine. Similarily, scipy.linalg.solve_trianglular
can be used to solve the lower triangular system of equations by forward substitu-
tion. The implementation of GP-EKF and the PDAF update is then straightforward
using Algorithm 3 and Algorithm 5 from Chapter 6. The implementation used for
the statistical testing use standardized training outputs y .

For statistical testing, the proposed RBF kernel from Equation (6.33) with in-
dependent length scales will be used due to its simplicity. More complicated ker-
nels are avoided due to challenges with bad local optima during hyperparameter
optimization.

The hyperparameters are tuned using the GP implementation in the popular
scikit-learn [27] Python package. 10 random restarts are used during optimization
to reduce the risk of bad local minima. A lower bound constraint for the length
scales is also used to avoid obvious overfitting and requires the length scales to be
greater than 50. Due to the wide variety of different scenarios on the training set,
the hyperparameters are optimized for each iteration. This way, the robustness of
the optimization is indirectly tested, as instances of bad local optima are included
in the results.

The remaining parameters not found through MLE are tuned through trial
and error on a few different trajectories. The initial state uncertainty is set to
P0 = 5002 · I , which was found to work well during development. The PDAF
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parameters are available in Table 7.1a and the SL parameters can be found in
Table 7.1b.

Parameter Value
Measurement noise RPDAF 5002 · I
Detection Probability pD 0.8
Clutter Rate λ 2 · 10−3

Gate Size g 2

(a) Parameters used for PDAF update

Parameter Value
Noise RSL 5002 · I
Search Radius 50

(b) Parameters used for the SL update

7.3 Results

The error metrics for straight-line and curved trajectories are available in Table 7.2
and Table 7.3 respectively, while the NEES results are available in Table 7.4 and
Table 7.5. All tables are found at the end of this chapter. Some hand-picked test
scenarios are also included in Appendix A for the different GP-EKF variations.

This section will take a hierarchical approach, where the GP-EKF using finite-
difference for training data is considered the basic configuration of the GP-EKF and
will be used as a baseline when comparing the different variants of the GP-EKF.
Unless explicitly stated otherwise, it is safe to assume that the GP-EKF uses finite-
difference and no update step. For comparing specific combinations, the reader is
referred to Table 7.2 and Table 7.3.

As a base of comparison, the Direct GP and GP-EKF are compared to the CVM
on both straight-line and curved trajectories in Figure 7.2. On straight-line tra-
jectories, both methods perform worse than the CVM with higher trajectory error
for all respective quartiles. As expected, the CVM struggles on curved trajectories,
whereas both the Direct GP and GP-EKF approaches perform significantly bet-
ter with both lower median error and spread. The Direct GP approach performs
slightly better than the GP-EKF, with lower median trajectory error and lower
spread for both straight-line and curved trajectories. When comparing the path
error for straight-line trajectories in Table 7.2b, the GP-EKF performs consistently
better than the Direct GP approach, with lower mean and median path error. The
GP-EKF even outperforms the CVM on straight-line paths when predicting beyond
15 minutes.

Both the Direct GP and the GP-EKF approach perform better on curved trajec-
tories as opposed to straight-line trajectories. After manually inspecting the test
cases, it appears that many of the straight-line test cases belong to slow-moving
vessels that are part of longer curved trajectories. The training samples used to
fit the GPs in these cases often contain samples from faster-moving vessels, mak-
ing the GPs overshoot in their predictions. This hypothesis is corroborated by the
path error in Table 7.2b, as the GP-EKF outperforms the CVM on long straight-line
paths.
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Neither the Direct GP nor the GP-EKF yield consistent uncertainty estimates
as found by comparing the NEES to the theoretical X 2 quartiles in Figure 7.4a
and Figure 7.4b. For both methods, the NEES is especially bad for straight-line
trajectories with estimated quartiles exceeding the theoretical quartiles, which is
likely linked to the increased error for the straight-line trajectories. The Direct
GP approach performs better than the GP-EKF, with the 25% and 50% quartiles
close to the theoretical values, while the basic GP-EKF remains overconfident for
all quartiles. The upper quartile for both methods exceeds the theoretical value
for the X 2 distribution.

7.3.1 GP-EKF: Finite Difference vs. COG/SOG from AIS
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Figure 7.1: GP-EKF using finite differences and the COG and SOG from the AIS
dataset on 350 trajectories. The finite difference approach performs slightly bet-
ter, with lower median error and spread.

A key design choice for the GP-EKF is deciding which data source to use for
training. The model can either be trained using the COG and SOG values con-
tained in the AIS samples or by calculating numerical derivatives of the position
through a finite-difference approach. Figure 7.1 compares the difference side-by-
side. For straight-line trajectories, the results are remarkably similar. The finite dif-
ference approach seems to have a slight advantage on the lower quartile error at
τ= 25 minutes, though with an increased spread and the advantage is likely due
to random errors. The finite difference performs slightly better than COG/SOG
for curved trajectories, especially as time increases, and has both lower median
trajectory error and spread.

For the path errors in Table 7.2b and Table 7.3b, the results favor the COG/SOG
approach, with overall lower mean and median path errors when compared to the
finite difference approach.

Using COG/SOG yields a considerable NEES improvement over the finite dif-
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ference approach, as seen in Figure 7.4c and Figure 7.4d. On curved trajecto-
ries, the estimated NEES quartiles are close to the theoretical values when using
COG/SOG as input data, while the finite difference approach yields overconfident
results. A similar pattern is found for the median NEES values in Table 7.4 and
Table 7.5 for all variants of the GP-EKF.

7.3.2 GP-EKF: Incorporating positions data

The effect on the mean prediction for both the PDAF and the SL update proce-
dures is compared to the basic GP-EKF configuration in Figure 7.3. The results are
incredibly similar for both straight-line and curved trajectories. On closer inspec-
tion, there appears to be a slight advantage to using the PDAF update step, but
the improvement is within the margin of error, so it is not possible to draw any
definitive conclusion.

However, the SL, and to some extent the PDAF update, have a detrimental
effect on the NEES, leading to even more overconfident predictions. This is ap-
parent when comparing the GP-EKF NEES with and without the update steps in
Figure 7.4e and Figure 7.4f, as the NEES for the SL update explodes compared to
the basic GP-EKF method. Similar patterns are found in Table 7.4 and Table 7.5
regardless of whether the GP-EKF is trained with finite difference or COG/SOG
data.
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(a) Straight-line trajectories.
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(b) Curved trajectories.

Figure 7.2: GP-EKF and Direct GP compared to a CVM on 350 straight-line and
350 curved trajectories. For straight-line trajectories, the CVM outperforms both
the GP-EKF and the Direct GP, while the Direct GP yield slightly better perfor-
mance than the GP-EKF. For curved trajectories, the CVM struggles as expected.
Both the GP-EKF and the Direct GP yields far better results with lower error and
lower spread, while Direct GP has the lowest overall trajectory error quartiles.
Interestingly, both GP-EKF and Direct GP performs better on curved trajectories
than straight-line trajectories, with lower overall error and spread.
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Figure 7.3: GP-EKF with and without the SL and PDAF updates on 350 straight-
line and 350 curved trajectories. While there are some slight differences, the PDAF
and SL update does not appear to have any considerable effect on the trajectory
errors. On straight-line trajectories, the results are almost identical across all three
variants. On curved trajectories, the PDAF yields slightly lower error for the me-
dian and upper quartiles, though the difference is well within the margin of error.
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Figure 7.4: A comparison of the NEES for the different methods. (a)-(b) compare
the NEES for the Direct GP and the base GP-EKF to the theoretical quartile values
for the X 2 distribution (red dashed lines) and is intended as a base of comparison.
(c)-(d) compare the difference in consistency between using COG/SOG and finite
difference as input data. (e)-(f) compare the effect of the update steps for the
GP-EKF. The theoretical quartiles are not included in the last row due to the large
differences in scale, and the reader is advised to use the Direct GP and basic GP-
EKF for comparison.
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Time [Minutes] 5 10 15 20 25
Summary Method Training Source

Mean CVM COG/SOG from AIS 172 383 623 786 772
Direct GP Position 603 720 944 1269 1727
GP-EKF COG/SOG from AIS 328 668 1090 1560 2048

Finite Difference 331 656 1029 1417 1917
GP-EKF w/ PDAF COG/SOG from AIS 331 668 1070 1494 1921

Finite Difference 332 657 1025 1392 1856
GP-EKF w/ SL COG/SOG from AIS 325 654 1048 1489 1972

Finite Difference 334 663 1025 1414 1891

Median CVM COG/SOG from AIS 94 226 387 463 549
Direct GP Position 367 562 727 978 1509
GP-EKF COG/SOG from AIS 295 575 883 1505 1911

Finite Difference 298 537 851 1325 1868
GP-EKF w/ PDAF COG/SOG from AIS 301 554 850 1401 1845

Finite Difference 299 529 822 1250 1802
GP-EKF w/ SL COG/SOG from AIS 297 526 829 1324 1805

Finite Difference 299 536 848 1315 1782

(a) Trajectory errors in meters

Time [Minutes] 5 10 15 20 25
Summary Method Training Source

Mean CVM COG/SOG from AIS 58 180 351 491 504
Direct GP Position 362 318 428 575 794
GP-EKF COG/SOG from AIS 82 158 245 283 330

Finite Difference 92 194 309 360 394
GP-EKF w/ PDAF COG/SOG from AIS 81 157 248 295 319

Finite Difference 91 192 309 367 393
GP-EKF w/ SL COG/SOG from AIS 87 169 253 298 329

Finite Difference 99 211 330 396 398

Median CVM COG/SOG from AIS 29 82 187 301 418
Direct GP Position 97 138 224 311 390
GP-EKF COG/SOG from AIS 60 97 150 182 262

Finite Difference 62 121 188 210 237
GP-EKF w/ PDAF COG/SOG from AIS 57 97 145 181 196

Finite Difference 62 117 190 217 237
GP-EKF w/ SL COG/SOG from AIS 62 101 149 189 247

Finite Difference 66 124 188 213 217

(b) Path error in meters

Table 7.2: Error summary for 350 straight-line trajectories. Mean and median
summary statistics are calculated for the trajectory and path error at fixed times-
tamps. Linear interpolation is used between samples. Errors for short trajectories
are not extrapolated, and therefore not included in the 20 and 25 minute bins.
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Time [Minutes] 5 10 15 20 25
Summary Method Training Source

Mean CVM COG/SOG from AIS 483 1184 1936 2148 2684
Direct GP Position 329 507 717 898 1305
GP-EKF COG/SOG from AIS 355 691 1009 1363 1895

Finite Difference 400 706 897 1159 1552
GP-EKF w/ PDAF COG/SOG from AIS 349 663 925 1167 1392

Finite Difference 398 688 863 1078 1417
GP-EKF w/ SL COG/SOG from AIS 351 672 950 1260 1751

Finite Difference 401 703 885 1134 1540

Median CVM COG/SOG from AIS 153 478 990 1441 2334
Direct GP Position 192 342 524 652 806
GP-EKF COG/SOG from AIS 273 532 821 1218 1880

Finite Difference 262 522 721 1024 1421
GP-EKF w/ PDAF COG/SOG from AIS 262 501 724 961 1133

Finite Difference 261 502 699 939 1207
GP-EKF w/ SL COG/SOG from AIS 264 500 732 1036 1616

Finite Difference 256 524 706 1018 1333

(a) Trajectory Error in meters

Time [Minutes] 5 10 15 20 25
Summary Method Training Source

Mean CVM COG/SOG from AIS 214 587 1066 1354 1748
Direct GP Position 162 222 347 484 765
GP-EKF COG/SOG from AIS 159 283 428 451 573

Finite Difference 194 357 466 492 502
GP-EKF w/ PDAF COG/SOG from AIS 153 269 393 424 415

Finite Difference 190 343 450 482 525
GP-EKF w/ SL COG/SOG from AIS 160 285 414 435 512

Finite Difference 194 357 469 501 542

Median CVM COG/SOG from AIS 61 290 729 998 1497
Direct GP Position 72 132 225 280 344
GP-EKF COG/SOG from AIS 107 184 287 262 313

Finite Difference 115 221 337 354 331
GP-EKF w/ PDAF COG/SOG from AIS 100 171 242 226 219

Finite Difference 114 210 315 355 385
GP-EKF w/ SL COG/SOG from AIS 103 186 249 249 240

Finite Difference 117 222 319 376 362

(b) Path error in meters

Table 7.3: Error summary for 350 curved trajectories. Mean and median summary
statistics are calculated for the trajectory and path error at fixed timestamps. Lin-
ear interpolation is used between samples. Errors for short trajectories are not
extrapolated, and therefore not included in the 20 and 25 minute bins.
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Time [Minutes] 5 10 15 20 25
Summary Method Training Source

Mean Direct GP Position 3.88 11.79 21.07 34.11 42.03
GP-EKF COG/SOG from AIS 2.88 83.09 112.68 67.59 24.88

Finite Difference 25.66 79.24 153.31 64.10 185.33
GP-EKF w/ PDAF COG/SOG from AIS 2.99 94.05 126.13 22.34 33.41

Finite Difference 28.90 89.65 156.13 66.86 137.51
GP-EKF w/ SL COG/SOG from AIS 97.91 530.52 582.50 231.68 191.07

Finite Difference 31.76 102.66 214.88 274.35 530.58

Median Direct GP Position 0.66 1.18 2.09 3.23 6.05
GP-EKF COG/SOG from AIS 1.30 2.39 3.36 5.64 7.92

Finite Difference 1.80 4.10 7.26 12.52 25.43
GP-EKF w/ PDAF COG/SOG from AIS 1.42 2.85 4.81 9.62 13.24

Finite Difference 1.99 4.79 8.90 18.12 34.17
GP-EKF w/ SL COG/SOG from AIS 2.79 9.13 22.42 49.73 104.53

Finite Difference 2.96 10.16 27.99 73.56 139.15

Table 7.4: NEES for 350 straight-line trajectories at fixed timestamps. Linear in-
terpolation is used between samples.

Time [Minutes] 5 10 15 20 25
Summary Method Training Source

Mean Direct GP Position 2.74 6.05 10.62 14.79 323.69
GP-EKF COG/SOG from AIS 6.08 65.25 235.24 8.86 15.08

Finite Difference 36.86 28.44 94.24 39.93 89.61
GP-EKF w/ PDAF COG/SOG from AIS 6.32 65.66 234.01 13.75 22.44

Finite Difference 36.94 29.88 59.10 52.79 70.95
GP-EKF w/ SL COG/SOG from AIS 10.21 72.72 258.65 92.60 171.51

Finite Difference 45.92 59.75 114.19 158.79 249.64

Median Direct GP Position 0.29 0.85 2.13 3.49 3.91
GP-EKF COG/SOG from AIS 0.62 0.76 0.91 1.18 1.85

Finite Difference 1.53 3.09 4.89 8.72 18.20
GP-EKF w/ PDAF COG/SOG from AIS 0.80 1.27 2.16 4.46 3.35

Finite Difference 1.67 4.07 8.13 13.30 22.23
GP-EKF w/ SL COG/SOG from AIS 1.66 6.53 15.23 40.30 77.91

Finite Difference 2.38 9.56 19.29 44.08 116.12

Table 7.5: NEES for 350 curved trajectories at fixed timestamps. Linear interpo-
lation is used between samples.
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Discussion

The results from Chapter 7 showcase the GP framework’s ability to predict a ves-
sel’s trajectory using historical AIS data. In this section, the results will be dis-
cussed further together with theoretical considerations.

8.1 Choice of kernel

Finding a good kernel that works well across a wide range of scenarios can be
quite challenging. The choice of kernel forms a prior belief about the underlying
function and has a significant impact on the type of function that the GP will
learn. If the kernel is too simple, the hyperparameter optimization struggles to
find a set of parameters that sufficiently explain the data. On the other hand, an
overly complex kernel may quickly end up overfitting.

In this thesis, the kernels are selected by assuming smooth vessel trajectories
and are reasonable for vessels in transit as they tend to change course slowly.
More specialized vessels, such as local ferries in the AIS dataset, require more
complicated kernels to perform well. These vessels move in more distinct patterns
and are harder to predict due to the vessels’ behavior when docking for short
periods before moving back the same way they came.

The Direct GP approach performs well with more complicated kernels, and
the added flexibility does not significantly impact the consistency of the perfor-
mance. Overfitting is still a concern, but during the development of the Direct GP
approach, the more flexible kernels were found to yield higher accuracy in most
scenarios. However, this thesis does not focus too much on kernel design, and no
statistical testing is performed when using different kernels.

The GP-EKF is more sensitive to the choice of kernel. As already discussed
in Chapter 6, instabilities may occur if the kernel and its hyperparameters are
not chosen carefully. More complicated kernels certainly have their benefits, but
the added complexity during model selection makes it challenging to get robust
predictions across a wide range of scenarios.
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8.2 Sensitivity to parameters

The results for the GP-EKF in Chapter 7 heavily depend on the choice of param-
eters. The basic GP-EKF configuration depends on the initial uncertainty P0, and
as it is a pure prediction method, it has a significant impact on the resulting un-
certainty of the trajectory. The SL update and the PDAF update also heavily de-
pend on the choice of their respective parameters. Finding a suitable procedure
for selecting good parameters for both of these methods is still an open research
question.

The problem with both of the update methods is the lack of an appropriate
interpretation of the parameters. For the SL approach, it is unknown what the
measurement noise R truly should be due to the overly simplistic measurement
model, and it is currently tuned by trial and error. Similarly, the clutter rate λ and
the detection probability pD of the PDAF update currently have no good interpre-
tations when used for trajectory prediction.

The GPs also depend on the result of hyperparameter optimization. The MLE
approach from Section 3.6.1 works well in most cases, but there are several issues
where unrealistic hyperparameters cause trouble. This is especially problematic
for the GP-EKF, as the best parameters for the motion model ~f do not necessarily
yield the best trajectory prediction, and the Jacobian is sensitive to short length
scales. Therefore, it is vital to keep the numerous approximations used by GP-EKF
in mind, as they add artificial limitations to the motion model ~f .

8.3 Incorporating position in GP-EKF predictions

Considering the statistical results for the PDAF and SL updates in Figure 7.3, there
is little evidence to support that these methods for incorporating position data
actually have any benefit on average. The problem is that both these methods
make assumptions about the target vessel’s predicted position, and the historical
AIS samples originate from the same underlying trajectory. In practice, the AIS
data contains samples from a wide range of different overlapping trajectories.
The PDAF is, in theory, supposed to reduce the effect of this issue with the spread-
of-innovation term. However, any effort put into finding a good set of parameters
has been unsuccessful. While the idea of incorporating data association into the
mix is indeed promising, the simple clutter model used by PDAF in this thesis is
likely an unrealistic assumption for long-term trajectory prediction.

Consequently, one might question the need for these methods and ask whether
the basic GP-EKF performs well enough on its own. However, practical experience
with these methods suggests that only using the open-loop GP-EKF prediction of-
ten results in underconfident estimates, especially if the true trajectory distribu-
tion is multimodal. For example, in branching trajectories, the basic GP-EKF might
get stuck between two trajectories, causing significant uncertainty and resulting
in a trajectory estimate that follows neither of the branching trajectories. Incorpo-
rating position data allows the model to correct for such poor estimates and yields
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estimates that are more consistent with the training data. However, the downside
is that there is a chance for the proposed trajectory estimate to follow the wrong
branch, as can be seen in Figure A.6.

There is also the argument of improving the stability of the predictions. The
basic GP-EKF is sensitive to outlier samples, which might significantly impact the
predicted trajectory distribution. An update step can correct errors induced by
such outlier samples and improve the robustness of the predictions.

Neither the SL update nor the PDAF update is a satisfactory solution to this
problem, as both tend to result in overconfident estimates. However, there are
clear benefits to incorporating the available position data, which motivates further
research.

8.4 Independent Outputs

The formulation of vector-valued GPs in this thesis assumes independent output
dimensions. This choice is intended to reduce some of the complexity, as GPs with
dependent outputs complicate the derivations, and there is less literature on how
to select good kernels when the dimensions are dependent. As a result, the GPs
used in this thesis are unable to express any covariance between the outputs.

This assumption is a limiting factor for the direct GP approach as the un-
certainty is constrained to specific directions. Without the covariance terms, the
model cannot express that the uncertainty is along a given path, such as un-
certainty caused by differences in velocity between training samples. A better
parametrization may be to instead assume independent lateral and longitudinal
components, similar to the formulation used by [15]. Such a decomposition into
course and velocity would allow the model more fine-grained control to express
uncertainty in specific directions. Another approach could be to relax the assump-
tion of independent output dimensions, though it is unclear how this would be
achieved in practice.

For the dynamical GP-EKF approach, the problem of having independent out-
puts is less problematic. The iterative EKF procedure and propagation of uncer-
tainty allow the model to express covariance in the prediction uncertainty, even
if the GP ~f is limited to independent outputs. However, re-parametrization into
lateral and longitudinal components could still be beneficial.

8.5 Shared Kernel

A similar simplification is the assumption of having a shared kernel between each
output dimension. This choice is also intended to reduce complexity and computa-
tional efforts, as optimizing the hyperparameters requires a considerable amount
of time. Doubling the time spent optimizing is therefore avoided.

Standardization of the training data allows the use of one shared kernel, even
if there are differences in scale for the training data, which is considered flexible
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enough in this thesis.

Whether allowing independent kernels will cause the model to perform better
is still an open question. However, it would enable the model to learn separate
length scales and scale parameters for each output dimension, which could prove
beneficial.

8.6 Clustering

Clustering of trajectories has not been prioritized in this thesis. The current im-
plementation of the different methods instead filters the available training data
before each prediction, using a set of initial conditions. While this method has
worked effectively in this thesis, considerable computational improvements can
be made from clustering the trajectories offline and selecting the appropriate clus-
ter when performing predictions. The hyperparameters can then be optimized in
advance for each cluster. Combining this work with trajectory clustering methods
such as TRACLUS [23] may be a good way to tackle some of the computational
challenges of the methods proposed in this thesis.

8.7 Branching Trajectories

The Direct GP approach works well for unimodal trajectory distributions, where
there are only minor variations between the trajectories used for training. Due to
the assumption about Gaussianity, it cannot express multimodal trajectory distri-
butions. Moreover, the method fails on branching trajectories, as it attempts to
use a single Gaussian distribution to describe several modes at once. The result is
a prediction mean that lies somewhere in between the branching trajectories and
has large uncertainty.

The motion model used by GP-EKF will, in theory, handle branching trajecto-
ries better. The vector-field ~f does indeed express multimodal trajectories as seen
in Figure A.6, and the trajectory distribution can for instance be found numerically
through Sequential Monte-Carlo simulations, as seen in Figure 6.4. However, the
GP-EKF approach cannot express multimodal uncertainty, as the state is assumed
to be a unimodal Gaussian distribution. This assumption forces the GP-EKF to
express the distribution as unimodal. While the GP-EKF artificially limits the flex-
ibility of the motion model, it makes it easier to compare the results of Direct GP
and GP-EKF, since both distributions are assumed to be Gaussian. Thus, the GP-
EKF has demonstrated the motion model’s ability to predict trajectories and has
hopefully motivated further research into less constrained ways of simulating the
trajectories, such as Sequential Monte-Carlo.
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8.8 Training Data

One concern with the GP-EKF is the need for accurate gradients for use in train-
ing. Compared to similar approaches in [12, 16], the sampling interval of AIS is
in the range of several seconds or even minutes. The finite difference approach
for calculating the gradients should, in theory, be a poor choice for curved tra-
jectories, as it would only be able to capture the average velocity over a large
sampling interval, but unable to represent the curvature of the trajectory. During
testing, several examples where the numerical gradients caused premature turns
were found. The gradients were calculated using points before and after a turn,
effectively predicting an unrealistic shortcut. Using the reported COG and SOG
is therefore expected to perform better, assuming that the vessels report accurate
COG and SOG estimates. When comparing the trajectory error of the two possible
sources in Figure 7.1, the performance is remarkably similar, though the finitie-
difference approach has a slight advantage. However, the COG/SOG approach
yields significantly improved NEES, meaning the uncertainty estimate is far more
consistent when using COG/SOG as input data. This improvement is hypothe-
sized to be due to the finite-difference approach effectively filtering out some of
the inherent variability in speed and course for different vessels because of the
long sampling interval. As a result, the vessels in the finite-difference dataset may
appear far more similar than in the COG/SOG dataset, causing overconfident pre-
dictions.

8.9 GP-EKF time dependency

The time component of the GP-EKF’s motion model was initially added to better
handle trajectories with sharp turns. For example, if ~f relied on position alone,
the GP would have no way of expressing that the speed vector at position x might
change over time. The time component was later found to explain some of the
variability in the velocity, yielding better uncertainty estimates.

In practice, the MLE approach for hyperparameter optimization will, in many
cases, yield very large length scales1 for the time components of the kernel, effec-
tively disabling the time dependency. The time component is therefore only really
used when the dataset contains a lot of time-dependent noise.

However, the added dimension and corresponding hyperparameter also in-
crease the risk of overfitting [11], and whether or not to include the time de-
pendency becomes a trade-off between complexity and performance. For highly
smooth trajectories, the necessity of including a time dependency is unlikely.

1In fact, the time length scale tends to reach a maximum value during optimization.
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8.10 Numerical issues

As with any other data-driven method, the results of using GPs heavily depend
on the quality of the data. Outlier samples, such as a vessel suddenly making a
u-turn, can cause issues as these samples deviate significantly from the assumed
Gaussian distribution.

The problem proves especially problematic for the basic GP-EKF implemen-
tation. For example, for GP input values close to one such outlier, the resulting
function has a high degree of non-linearity, which conflicts with the Taylor approx-
imation. However, the update steps can, to some extent, alleviate the problem.

While it certainly affects the Direct GP as well, the problem is less severe as
this method directly interpolates the position data.

8.11 Computational Complexity

A key concern with using GPs is the computational complexity required to invert
the covariance matrix and solve large systems of linear equations. Indeed, the
exact formulation of GPs is constrained to small datasets only, and the compu-
tations quickly become infeasible as the number of samples increases due to the
cubic complexity. Practical experience with GPs indicates that working with sev-
eral thousand samples works just fine, as long as the hyperparameters are kept
fixed. However, it is more problematic for hyperparameter optimization, as the
marginal likelihood from Equation (3.24) requires the inversion of the entire co-
variance matrix at each iteration, which tends to be tediously slow when using
more than N = 1000 samples.

The hyperparameter optimization turns out to be the main bottleneck of the
methods proposed in this thesis. This issue motivates the need for a more clever
way to select hyperparameters. For example, a set of global hyperparameters could
be used for real-time applications instead of optimizing for each scenario. Further-
more, as there are likely some variations between different vessels and scenarios,
clustering could be used as an alternative to preparing a fixed number of hyper-
parameters to be used in real-time.

Even in an offline setting, hyperparameter optimization quickly becomes in-
feasible for large datasets. In a real-world application, using approximate methods
might be necessary. Variational formulations of the GP, such as the SVGP, could be
good a solution. In combination with stochastic optimization and mini-batching,
these approximations can utilize large datasets during training. However, these
approximate methods also add a substantial amount of complexity, causing the
GP to lose its advantage over other methods such as neural networks.

8.12 Using Gaussian Processes for trajectory prediction

Recall the three research questions raised in the introduction.
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1. How can GPs be used to model the long-term vessel trajectory of new ves-
sels?

2. Is it computationally feasible to use GPs in the context of AIS Big Data?
3. Is a GP able to provide consistent uncertainty that reflects the true error

rate?

The first question has already been extensively covered by Chapter 5 and Chap-
ter 6. As for the second question, there are certainly computational challenges
to be aware of, but this thesis has demonstrated that there do exist solutions to
these problems and that it is feasible to use GPs in combination with AIS data. The
last question is perhaps the most challenging to answer. Accurately representing
uncertainty, especially in the presence of complex dynamics, is tricky. There is a
wide range of possible ways a prediction might fail, and the potentially non-linear
dynamics of vessels make the problem even more challenging. The methods pro-
posed in this thesis still suffer from overconfident predictions, and more research
is required on how to perform robust model selection. This being said, the GP
framework has certainly shown great promise and flexibility as a method for ex-
pressing uncertainty when learning from data.





Chapter 9

Conclusion

The GP framework utilized in this thesis yields a powerful way of expressing be-
liefs about likely future trajectories. The GP’s interpretation as a statistical dis-
tribution over functions allows the combination of prior knowledge and data to
be used for learning complex relationships while also expressing uncertainty. Fur-
thermore, the Bayesian framework enables these methods to incorporate expert
knowledge as prior beliefs and can be considered a mix of model-based and data-
driven methods.

Two different formulations using GPs are proposed. The first method directly
applies the GP framework to model the trajectory as a function of time. It works
well and yields good results during statistical testing. However, this formulation is
limited to unimodal trajectory distributions and cannot express multimodal beliefs
about branching traffic lanes.

The second method takes an indirect approach and instead uses a GP to learn
an unknown motion model expressed as a vector-field. This motion model is flexi-
ble enough to express multimodal distributions, though at the cost of higher com-
plexity. This method is then paired with an EKF prediction to simulate trajectories
by assuming that the distribution is Gaussian and linearizing the motion model.
This GP-EKF approach works reasonably well, but it is sensitive to the choice of
parameters and numerical instabilities.

Finally, an alternative solution using Sequential Monte-Carlo is discussed briefly,
as the assumptions made by the GP-EKF limit the motion model’s ability to express
multimodal trajectory distributions.

As the GP-EKF is a purely open-loop prediction based on gradients only, two
update procedures are proposed to serve as weak feedback in an attempt to im-
prove the robustness of the GP-EKF. However, both the SL and the PDAF update
steps introduced in this thesis cause a significant increase in overconfident pre-
dictions and are not considered satisfactory solutions.

The statistical testing showcases the benefit of using GPs over the simpler
CVM. For example, on curved trajectories, the GP-based methods yield far better
estimates with both lower error and less variability when compared to the CVM.
However, for straight-line trajectories, there is still a way to go as the GP-based
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methods perform slightly worse than the CVM. The results are also affected by
choice of parameters, and they are primarily intended to showcase that using GPs
for long-term trajectory prediction is indeed a viable solution.

The implementation used in this thesis still suffers from numerical instabili-
ties and bad local optima during hyperparameter optimization. There is still more
research required to understand how model selection can be performed more ro-
bustly.

While there still are some quirks, this thesis has hopefully showcased the
power of using GPs for long-term trajectory prediction. The GP framework is a
compelling method, and the formulations proposed in this thesis are merely ex-
amples of how GPs can be utilized. Especially the motion model used by GP-EKF
is highly flexible, and the simple EKF prediction scheme used in this thesis artifi-
cially limits the true power of this method. Relaxing these assumptions, such as
by using Sequential Monte-Carlo, is a promising extension to this work.

9.1 Future Work

There are several possible extensions to the methods proposed in this thesis:

1. Allow independent kernels for each output dimension of the GPs.
2. Include correlation between the outputs.
3. Use GP approximations to utilize more of the available data. Alternatively,

consider more clever preprocessing of the dataset, such as clustering.
4. Investigate the effect of different kernel choices and perform more rigorous

model selection
5. Use a more informative prior for the motion model. As an example, the CVM

could be used as the mean function and yield a constant velocity estimate
in areas with low data.

6. Relax the GP-EKF assumptions in order to improve the uncertainty esti-
mates. Using the motion model in a Sequential Monte-Carlo context may
yield significantly better estimates, as it avoids linearization as well as the
assumption of a Gaussian posterior distribution.

7. Develop a more realistic likelihood for the GP-EKF update procedure. Nei-
ther the SL nor the PDAF introduced in this thesis accurately represents the
possibility that the vessel is following the wrong trajectory and that the mea-
surements might be all wrong. For the PDAF it might be good to look into a
more elaborate clutter model and not assume a fixed clutter rate.
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Appendix A

GP-EKF example scenarios

This chapter contains several hand-picked scenarios for the GP-EKF from statistical
testing in Chapter 7. The legends and descriptions are omitted from the figures,
but all figures follow the same pattern. Red corresponds to the prediction, blue
is the training data, and yellow is the ground truth. The ellipses show the 95%
CI. Each whole page figure includes the prediction from the basic GP-EKF, GP-EKF
with COG data, GP-EKF with PDAF and GP-EKF with SL update.
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(b) GP-EKF using COG / SOG data
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(c) GP-EKF With PDAF update
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(d) GP-EKF with SL update

Figure A.1: Case 1
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(b) GP-EKF using COG / SOG data
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(c) GP-EKF With PDAF update
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Figure A.2: Case 2
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(b) GP-EKF using COG / SOG data
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(c) GP-EKF With PDAF update
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Figure A.3: Case 3
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(b) GP-EKF using COG / SOG data
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(c) GP-EKF With PDAF update
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Figure A.4: Case 4
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(b) GP-EKF using COG / SOG data
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(c) GP-EKF With PDAF update
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Figure A.5: Case 5
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(b) GP-EKF using COG / SOG data
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Figure A.6: Case 6: Notice how the PDAF and SL helps the GP-EKF select a single
branch, insteading getting stuck in the middle.
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(b) GP-EKF using COG / SOG data
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(c) GP-EKF With PDAF update
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(d) GP-EKF with SL update

Figure A.7: Case 7: Notice how the training data contains faster vessels, making
the GP-EKF overestimate the true velocity.
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(a) Basic GP-EKF
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(b) GP-EKF using COG / SOG data
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(c) GP-EKF With PDAF update

1000 2000 3000 4000

Distance (East) [m]

1000

2000

3000

4000

D
is

ta
n

ce
(N

or
th

)
[m

]

2

4

6

M
ean

V
[ ~f]

over
t

0 20

Time [Minutes]

0

2000

4000

D
is

ta
n

ce
[m

]

East

0 20

Time [Minutes]

D
is

ta
n

ce
[m

]

North

(d) GP-EKF with SL update

Figure A.8: Case 8: Notice how the training data contains faster vessels, making
the GP-EKF overestimate the true velocity.
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