
Sigurd Vatn Totland

Resilient graph-based multi-modal SLAM for
sensor-degraded environments

Specialization Project Report in Cybernetics and Robotics
Supervisor: Kostas Alexis
December 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

Simultaneous Localization and Mapping (SLAM) is a vital capabil-
ity for robots that is required to accurately understand and navigate
their surroundings. While the last 30 years of research efforts have
pushed state-of-the-art SLAM systems to perform superbly in many
situations, there is still a long way to go before these systems are
resilient enough for general use. Current SLAM systems are particu-
larly challenged in industrial, marine and subterranean environments,
where vision can be severely degraded. In these cases, robustness can
be increased by combining vision with other sensor modalities such as
LiDAR or thermal cameras, so that when one is degraded, the other(s)
offer the necessary resilience through redundancy and resourcefulness.
This project surveys some of the most important single-modality meth-
ods and then explores how they can be extended for multi-modal oper-
ation. The primary focus of this work is on the SLAM back-end, where
the general framework of factor graphs can be used to fuse constraints
from several sensor-specific front-ends into a common optimization
problem. First, we provide a survey overview of the inner workings
of fundamental graph optimization methods, including the frameworks
GTSAM and iSAM2. Provided these frameworks, a preliminary loosely
coupled fusion system is implemented for LiDAR-visual configuration.
The implementation is benchmarked on a dataset gathered in an un-
derground tunnel, where geometric self-similarity severely degrades the
LiDAR odometry estimates. Results of these preliminary experiments
show that fusing several modalities improves localization accuracy and
map consistency compared to single-modality versions, motivating the
need for further research on multi-modal perception. The work pre-
sented in this report stands as a prior and preliminary effort to help
develop a new tight-fusion paradigm for multi-modal SLAM.

i

Summary

This project report presents a preliminary inquiry into the use of multiple
exteroceptive sensor modalities in Simultaneous Localization and Mapping
(SLAM) systems using factor-graphs for the purposes of increased resilience
to sensor degradation, especially in challenging conditions such as those faced
in subterranean, marine or industrial environments.

The first part of the report consists of a survey of some of the currently
important components of a modern SLAM system. This starts of from the
perspective of the traditional EKF-SLAM approach, and proceeds thereafter
to discuss solving the problem using maximum a posteriori optimization with
factor graphs. Lastly, the software libraries and algorithms of GTSAM, iSAM
and iSAM2 are presented.

The second part of the report is a preliminary investigation into using
factor-graphs for sensor fusion of LiDAR and visual data. Here, GTSAM and
iSAM2 are used to implement a loosely coupled fusion of a LiDAR-odometry
and a visual-odometry method. This is followed with an experimental eval-
uation on a dataset gathered in an underground tunnel. The results of this
show that the LiDAR-only odometry is unable to successfully reconstruct
the map and trajectory, whereas the LiDAR-visual fusion is.

ii

Preface

This project report is the product of the TTK4550 specialization project in
engineering cybernetics for final-year students of Cybernetics and Robotics
at NTNU. The goal of the project is for the student to perform a larger, inde-
pendent project work of scientific character under supervision. This includes
learning specific specialized tools and techniques required for achieving the
intended outcomes, obtaining general scientific skills like literature search
and scientific writing, and ultimately preparing the student for writing their
master thesis.

I would like to thank my supervisor Kostas Alexis for his highly valued
feedback and guidance throughout the project. I also want to thank Nikhil
Khedekar for all his help on practical matters even when the time zones were
not on our side. Finally, my thanks goes to Shehryar Khattak for giving me
access to much needed datasets and calibration files.

iii

Contents

Contents

1 Introduction 1

2 Solutions to the SLAM Back-end 3
2.1 The SLAM Problem . 3
2.2 Solving SLAM With Filtering 4

2.2.1 State representation 6
2.2.2 State estimation . 6
2.2.3 Linearization . 8
2.2.4 Landmark initialization 9
2.2.5 Benefits and limitations of filtering approaches 9

2.3 Solving SLAM with Factor Graphs and Nonlinear Optimization 10
2.3.1 Maximum a posteriori estimation 10
2.3.2 Factorizing the MAP objective 11
2.3.3 Non-linear least squares 13
2.3.4 Gauss-Newton . 15
2.3.5 Levenberg-Marquardt 16
2.3.6 MAP estimation vs the EKF 16

2.4 GTSAM . 16
2.4.1 Motivation: The SO(3) manifold 17
2.4.2 Lie theory . 19
2.4.3 Implementing new variable types in GTSAM 21
2.4.4 Implementing new factors in GTSAM 22

2.5 iSAM . 22
2.5.1 Square root SAM . 22
2.5.2 Incremental QR-updating with Givens rotations 23
2.5.3 Variable reordering and relinearization 24

2.6 iSAM2 . 25
2.6.1 The Bayes tree . 25
2.6.2 Incremental inference with the Bayes tree 27
2.6.3 Incremental reordering 27
2.6.4 Fluid relinearization 28
2.6.5 Partial variable updates 28

3 Back-end for Resilient Multi-Modal SLAM 29
3.1 Loosely coupled odometry fusion 29
3.2 Integrating IMU data . 31
3.3 Detecting and handling sensor failure 32

4 Experimental Evaluation 34
4.1 Dataset and experimental setup 34
4.2 Odometry front-ends . 35
4.3 Single-modality performance on the sequence 36

iv

4.4 Multi-modal results . 37
4.5 Discussion . 37

5 Conclusions and Discussion 39
5.1 Conclusions . 39
5.2 Loosely vs tightly coupled sensor fusion 39
5.3 Boolean degeneracy vs partial degradation 40
5.4 Future work . 40

6 Abbreviations 42

Appendix 43

A Software Repositories 43

References 44

Introduction

1 Introduction

For robots to become truly useful in difficult real-life tasks, they require ac-
curate and robust SLAM systems that work in several different environments
and conditions. State-of-the-art systems show that highly accurate localiza-
tion and mapping is possible with sensors like visual cameras and LiDARs
[28, 42]. Yet, most methods focus on a single one of these modalities, thus
forgoing the robustness and accuracy gains available through their combina-
tion, especially in challenging conditions like those in subterranean, marine
or industrial environments where sensors can significantly degrade.

Many exteroceptive sensor modalities are available for SLAM and several
successful implementations exist for each one, but they are rarely combined
to take advantage of their complementary properties. Visual camera data
is a modality highly prevalent in the literature and a wide range of visual
SLAM and visual odometry (VO) algorithms exists that are both robust
and accurate [1, 12, 25, 28]. This is rightly deserved as visual cameras
are cheap, lightweight and energy efficient, yet provide a lot of information
about the scene. However, visual data streams can quickly degrade in more
challenging situations, such as in the presence of obscurants like dust and
smoke or in environments with self-similar texture. LiDAR is an alternative
modality that has proven able to accurately solve the SLAM problem [23, 42],
but this modality too has weaknesses. Since LiDARs are also light-based,
obscurants can deteriorate point cloud measurements, and while LiDARs
do not suffer from textural self-similarity, they will fail in case of geometric
self-similarity. In addition to LiDAR and visual sensors, other modalities
have proven useful for the SLAM problem including RGB-D cameras [11,
29, 30], thermal cameras [21] and recently, event cameras [22, 31, 38], each
with their own strengths and weaknesses. The complementary properties of
all these different sensors make them good candidates for fusion, yet most
SLAM literature has only focused on a single exteroceptive modality alone.

While there are existing methods that fuse multiple exteroceptive modal-
ities, they typically rely on a "main" modality that can become a single point
of failure. For visual-LiDAR fusion, vision is often used primarily for refine-
ment of the LiDAR estimate. The LiDAR-visual fusion method V-LOAM
[41] uses the visual odometry only as a motion prior for the LiDAR odometry.
The goal of this fusion is mainly to improve the tracking, and successfully
does so, as V-LOAM currently ranks highest on the KITTI odometry bench-
mark [14]. It does not however add any robustness to LiDAR failure, at
least in the current configuration. On a similar note, the recent work [20]
also uses visual odometry as a prior for LiDAR odometry, but can addition-
ally detect degeneracy in the LiDAR estimate and perform pass-through of
the visual-odometry. While this improves robustness in severely degraded
LiDAR conditions, the scheme is boolean, treating the LiDAR odometry as
either degenerate or healthy, with no middle ground. This rules out any

1

Introduction

a) Chained fusion

b) Loosely coupled fusion

c) Tightly coupled fusion

Sensor A

Sensor B

Odometry BOdometry A
Prior

Enriched odometry

Sensor A

Sensor B Odometry B

Odometry A

Fusion
Fused odometry

Sensor A

Sensor B

Tight fusion
Fused odometry

Figure 1: Comparison of odometry fusion schemes

handling of partial degradation. Moreover, as these methods only chain the
two modalities (as depicted in figure 1 a), using the output of one as the
prior of another, they make an implicit decision to trust the final, LiDAR
modality the most, rather than basing this decision on uncertainty metrics.

Factor graphs provide a general framework for fusing several, arbitrary
modalities and accounting for their uncertainty in changing environments.
Many successful current SLAM methods are based on factor graphs, such
as the visual method ORB-SLAM3 [3] or the LiDAR method LIO-SAM
[32]. Factor graphs are particularly well suited for multi-modal fusion as
they can either include constraints from multiple odometry front-ends in a
loose coupling (figure 1 b), thus taking advantage of existing high-performing
single-modality systems, or include the sensor data directly in a tight cou-
pling (figure 1 c), thereby considering all correlations between variables and
obtaining a more precise solution [25]. For practical implementations, li-
braries such as GTSAM [7] and g2o [24] make construction of the factor
graphs easier by abstracting away common concerns. The algorithms iSAM
[18] and iSAM2 [19] provide an incremental, modality-agnostic solution to
factor-graph-based SLAM by exploiting the sparsity of the SLAM problem.

In this report, we survey different SLAM methodologies, with particular
focus on factor-graph-based SLAM. We then present a preliminary imple-
mentation of a loosely coupled factor-graph-based LiDAR-visual sensor fu-
sion system that can account for LiDAR degradation. We test this system
on a dataset with severe self-similar geometry and show that our system suc-
cessfully retrieves the trajectory and map regardless of LiDAR degradation.

2

Solutions to the SLAM Back-end

2 Solutions to the SLAM Back-end

Traditionally, the SLAM back-end was solved using filtering methods, but
in recent years, the literature has focused more on nonlinear optimization
of a factor graph. Factor graphs offer two big benefits. Firstly, they enable
simple ways of managing the problem size as the environment is explored to
keep the problem tractable. The graph structure clearly mirrors the natural
sparsity of the SLAM problem, and we can hence optimize over only a small
section of the graph for real time performance. This gives rise to a family
of methods referred to as fixed-lag or sliding-window estimators. A second
benefit of the factor-graph-based approach is that it makes it easy to formu-
late different optimization problems, SLAM being one of them. Formulating
a problem boils down to just defining the states and the constraints, i.e.
factors, between them. Sensor fusion problems like multi-modal SLAM in
particular are simply modeled by adding several factors between the same
states.

This section aims to provide a brief introduction to the SLAM problem
and present the theory underlying the methods used in this project. In addi-
tion, some background on the previous state-of-the-art methods is presented,
in particular EKF-SLAM since it has historically been such a central part of
the literature.

2.1 The SLAM Problem

Simultaneous Localization and Mapping is the problem of simultaneously
localizing a robot and at the same time building a map of its environment.
It is typically formulated as an online estimation problem where we try to
estimate the robot’s trajectory and the location of several detected landmarks
in its environment, given all the measurements received up until now.

Landmark measurements can come from a variety of different sensors.
Cameras and LiDARs for instance are some of the most popular sensors for
SLAM. With cameras, we obtain a whole image at each timestep containing
potentially millions of pixels, so to reduce the computational burden, most
methods extract only a handful of features and treat these as the measure-
ments instead. Tracking these features as 3D landmarks however, is not
straight forward as their 2D pixel locations correspond to an infinite number
of valid 3D points. Only by observing the feature from multiple different
camera positions, can a 3D estimate of the landmark be estimated, in a
process known as Bundle adjustment [37].

Due to the need for several measurements of the same feature in con-
secutive frames, a successful SLAM system needs a way to determine which
feature measurements correspond to which landmarks – a process known as
data association. There is no one way of doing data association in SLAM,
and many different techniques exist. Some SLAM methods known as di-

3

Solutions to the SLAM Back-end

rect methods reformulate the data association step entirely and rely only
on projecting the predicted 3D landmark positions into the new image and
computing the error in intensity [12].

When given data-associated landmark measurements, the SLAM prob-
lem boils down to an online optimization problem, where we seek to obtain
a robot trajectory and a set of landmark locations that best describe the
received measurements. There are many ways of finding this optimal state,
including Kalman filtering and non-linear maximum a posteriori (MAP) op-
timization. Here too, there are many concerns to consider, such as how to
keep the problem tractible as the map grows ever larger, how to update
the map and trajectory in the event of a detected loop closure and how to
balance the tradeoff between accuracy and timeliness needed for real time
robotic systems.

Because there are so many different concerns needed to be adressed in a
SLAM system, it typically gets broken down into discrete parts. The biggest
and most common partition is into a front-end and a back-end. The front-
end sits at the front of the pipeline, taking in the raw sensor measurements
directly. It has the responsibility of performing feature detection and data
association. It will typically also perform landmark initialization when un-
seen landmarks appear. The back-end on the other hand receives landmark
measurements from the frontend and jointly estimates a a robot trajectory
and map.

The focus of this report is on the SLAM back-end and in particular the
fusion of constraints from multiple frontends of different modalities, such
as LiDAR and visual measurements. The remainder of this section will
therefore present the theory and frameworks needed to support such a back-
end implementation, without focusing much on data association, landmark
initialization and other front-end concerns.

2.2 Solving SLAM With Filtering

Kalman filtering is a powerful algorithm for state estimation used across
many fields of engineering. Given a linear system model and a linear mea-
surement function corrupted only by Gaussian additive white noise, the
Kalman filter is the optimal state estimator and has a closed-form solu-
tion. But such nice linear Gaussian conditions are not common in robot
localization. As an example, if the robot spins in place around its axis, its
landmark measurements will appear to move around it in a circular fashion,
clearly following a non-linear motion model. To relax this linear constraint,
the Kalman filter is often extended by linearizing the system and measure-
ment models. This gives rise to the Extended Kalman filter (EKF) which
has, due to its simplicity and efficiency, enjoyed the status as the default
choice for SLAM for a long time. This section presents the workings of the
EKF adapted for SLAM. The derivations mostly follow that of [36].

4

Solutions to the SLAM Back-end

Figure 2: A toy planar SLAM problem showing three consecutive robot poses x1,
x2 and x3 along with two landmarks l1 and l2. The solid arrows between the robot
poses correspond to odometry measurements gathered from e.g. an IMU or wheel
encoders, or a markov motion model. The dashed red lines between landmarks and
poses correspond to bearing-range measurements, say from a laser scanner. Figure
adapted from [9].

In the SLAM problem as described in section 2.1, we seek to find a robot
trajectory and a set of landmarks that best explain the received measure-
ments. Due to the Markov property of the Kalman filter however, we are
restricted to only keep the newest robot pose in the state, instead of its whole
sequence. We can of course store a copy of the robot trajectory outside the
EKF, adding the newest pose to it at every timestep, but then the older parts
of the sequence will not be a part of the estimation problem and cannot be
corrected upon. As we will see later, methods based on nonlinear maximum
a posteriori estimation can in contrast optimize over all poses, or a sliding
window of poses, enabling them to make such corrections backwards in time
and get a more consistent trajectory. For real time robotics operations how-
ever, this is not too much of a problem, as an estimate of the current robot
pose is typically all that is needed. Hence, the goal for EKF-SLAM is to es-
timate a joint state of landmarks and the current pose, from measurements
of a subset of the landmarks coming in at every timestep.

To facilitate the discussion, we will consider a toy SLAM problem adapted
from [9] that is shown in figure 2. In this 2D problem, a robot is traversing a
terrain for three timesteps and collecting bearing-range measurements of two
trees. It receives odometry measurements from wheel encoders enabling it to
predict its motion between the poses. The SLAM objective is to determine
the pose of the robot for all three timesteps as well as the location of the
two trees. As mentioned before, we assume that a front-end performs data
association, so that we receive the range-bearing measurements labeled with
the landmarks they correspond to.

5

Solutions to the SLAM Back-end

2.2.1 State representation

For our discussion of EKF-SLAM, we will denote the state as xt = [xx
t ,x

l
t]
>,

where xx
t denotes the part of the state corresponding to the robot pose

and xl
t corresponds to the vector of landmarks. The term pose has in the

SLAM and navigation literature come to mean the combined position and
orientation of the robot. In particular, for the 2D toy SLAM example, this
corresponds to a three-element vector xx

t = [xt, yt, θt]
> where xt and yt are

the 2D coordinates of the robot position and θt is the orientation. The
landmarks are represented by their 2D locations in the world, meaning a
vector of m landmarks will be xl

t = [l1x,t, l
1
y,t, ..., l

m
x,t, l

m
y,t]
>. This of course

generalizes easily to 3D as well, by adding a third ljz,t term to each landmark.
The control vector ut describes how the robot moves both in position and
orientation, so that too will be a pose vector ut = [ut, vt, φt]

>. Finally, for
the measurements, we assume as mentioned known correspondences to their
respective landmarks, meaning we can write them in a vector corresponding
to xl

t, i.e zt = [z1
t , ..., z

m
t]>. For a range-bearing sensor, each measurement

contains a range rt and a bearing ρt, so zjt = [rjt , ρ
j
t]
>. Keep in mind that we

do not typically receive measurements for all landmarks, so special care must
be taken when updating the state with measurements. The definitions given
here are of course specific to planar SLAM with bearing-range measurements,
but can be easily generalized to 3D SLAM as well and include other types
of sensors. For instance, when using IMUs to obtain the odometry vector, it
is common to augment the state vector xt with the IMU bias terms so they
can be estimated online.

2.2.2 State estimation

The EKF is a recursive state estimator that calculates a new state xt, from
the previous state xt−1 and the measurements zt received. The state and
the measurements are respectively given by nonlinear functions g and h
and assumed corrupted by zero-mean Gaussian distributed noise vectors,
wt ∼ N (0, Rt) and v ∼ N (0, Qt) so that the state propagates according to
the system model

xt = g(ut,xt−1) + wt

zt = h(xt) + vt.
(1)

Since xt has a generic state representation depending on the problem formu-
lation, the function g can have several different formulations. Even so, all
state representations have one property in common, namely that the land-
marks are assumed to be rigidly fixed in the world. As a result, they are
unchanged by the Markov update, allowing us to write it as

g(ut,xt−1) =

[
gx(ut,x

x
t−1)

xl
t−1

]
(2)

6

Solutions to the SLAM Back-end

where gx is a generic update function for the robot states only. As will
be explained later, this split is beneficial since it manifests itself in a spar-
sity pattern in the Jacobian. For the toy 2D problem in figure 2 the state
prediction becomes

gx(ut,x
x
t−1) =

xt−1 + ut cos(θt−1)− vt sin(θt−1)
yt−1 + ut sin(θt−1) + vt cos(θt−1)

θt−1 + φt

 . (3)

The measurement prediction h predicts the value of landmark measure-
ments zt from the current state xt. We will split this up into functions hj

for each landmark lj , so that h(xt) = [h1(xx
t , l

1), ..., hm(xx
t , l

m
t)]>. For the

2D range-bearing measurements of the toy SLAM problem, this becomes

hj(xx
t , l

j
t) =

[
rjt
ρjt

]
=

[
‖δt‖

atan2(δy,t, δx,t)− θt

]
, (4)

where we have defined the δ = [δx,t, δy,t]
> as the displacement between the

robot and the landmark

δt =

[
δx,t
δy,t

]
=

[
ljx,t − xt
ljy,t − yt

]
. (5)

It is important to realize that the KF and EKF are probabilistic state
estimators, meaning xt represents the current estimate of the robot pose,
and not the actual robot pose itself. They are both Gaussian filters meaning
they maintain a Gaussian distribution around the mean xt with covariance
Σt. This probabilistic representation is natural as we can never know the
exact state of the robot, only a distribution around the current belief. For
a problem with n robot states and d ·m landmark states, where d is the
dimension of the landmark representation, Σt becomes a (n+dm)×(n+dm)
matrix. Because xt is divided into robot states and landmark states, it
is useful to define notation for the specific parts of the covariance matrix
corresponding to these parts of xt. We hence write

Σt =

[
Σx,x
t Σx,l

t

Σx,l
t Σl,l

t

]
, (6)

where Σx,x
t is d× d, Σx,l

t = Σl,x
t

>
is d× dm and Σl,l

t is dm× dm.
The EKF filter algorithm is divided into two steps, a predict step com-

puted entirely from the system model, the previous state xt−1 and optional
control inputs or odometry measurements ut, as well as an update step based
on the incoming measurement zt. In the prediction step, we compute an in-
termediate state with modes x̄t and Σ̄t according to

x̄t = g(ut,xt−1)

Σ̄t = GtΣt−1G
>
t +Rt.

(7)

7

Solutions to the SLAM Back-end

Here, Rt is the covariance of the random noise component wt, while Gt is
the Jacobian of g evaluated at xt−1. When a new measurement zt arrives,
the filter updates the state with the new information resulting in the next
mean and covariance xt and Σt. These are computed according to

Kt = Σ̄tH
>
t (HtΣ̄H

>
t +Qt)

−1

xt = x̄t +Kt(zt − h(x̄t))

Σt = (I −KtHt)Σ̄t,

(8)

where Qt is the covariance of the random measurement noise component vt

and Ht is the Jacobian of h computed at x̄t. The matrix Kt is known as the
Kalman gain and is the optimal gain in the linear Gaussian case, but for the
linearized EKF is not. The residual zt − h(x̄t) is known as the innovation
term and can be thought of as a correction, that gets weighted with the
Kalman gain and added to the predicted mean.

2.2.3 Linearization

The EKF differs from the regular KF in that the functions g and h can be
non-linear. For this reason, it needs to use the Jacobians Gt and Ht in place
of what in the linear case would be the system and measurement matrices.
The linearization is computed as a first-order Taylor approximation at the
most recent mean estimate, i.e.

g(ut,xt−1) ≈ g(ut,xt−1) +Gt(xt−1 − xt−1), and
h(xt) ≈ h(x̄t) +Ht(xtx̄t),

(9)

where the Jacobians are given as

Gt =
∂g(ut,xt−1)

∂xt−1
, and Ht =

∂g(xt)

∂xt
. (10)

From the decomposition of the state prediction function g given in (2), we
see that the Jacobian Gt has the sparse structure

Gt =

∂gx(ut,xx
t−1)

∂xx
t−1

0

0 I

 . (11)

While Gt will always be sparse, the measurement update Jacobian Ht can
potentially be fully dense. However, a sparsity pattern typically arises here as
well since in most cases, only a subset of the landmarks in xmt are observed
and hence only their respective terms in the Jacobian are non-zero. The
sparsity patterns in these matrices means that the computations involved in
(7) and (8) can be computed efficiently.

8

Solutions to the SLAM Back-end

2.2.4 Landmark initialization

In any real-life SLAM scenario, the landmarks will not be known up-front
and so the EKF-SLAM implementation must be able to initialize new land-
marks. Any measurements the front-end cannot associate with an existing
measurement becomes a candidate for a new landmark. After that, it can be
added as a newly initialized landmark to the state vector and the covariance
matrix. For that, the new landmarks are appended to the state vector xt

and the covariance matrix Σt augmented with an initial (high) variance for
the landmarks.

2.2.5 Benefits and limitations of filtering approaches

The simplicity and efficiency of the EKF has made the it a popular choice
for SLAM systems in the last 30 years. Since the filter only retains the latest
robot pose, the size of the problem is kept relatively tractable, and hence
enables longer operation. The computational complexity is quite low at only
O(m2) where m is the number of features in the map [36].

The EKF does however have several drawbacks, so as advancements in
hardware and algorithms have made more resource intensive methods feasi-
ble, EKF-based SLAM has fallen increasingly out of favor [2]. One of the
primary drawbacks of the EKF comes from the linearization. Because the
problem is linearized at every timestep, linearization errors accumulate. An-
other drawback is due to the Markov assumption that underlies the KF,
namely that the current state can only depend on the previous. This means
all old robot poses get marginalized out of the problem and instead baked
into the joint probability distribution. This assumption makes it impossi-
ble to update old states with new information, as is for instance needed to
add a loop closure constraint, without expensively rolling the KF back and
forth again. This marginalization also has the effect of adding correlations
between existing landmarks, hence making the covariance matrix increas-
ingly dense [34]. In fact, EKF-SLAM in the limit makes all the landmarks
fully correlated [36]. This slows down the EKF over time and makes it less
suitable for long term operation.

Due to some of these issues, authors like [34] argue methods based on
non-linear optimization are better suited than filtering approaches for solving
the SLAM problem. This is further backed up by the fact that most recent
state-of-the-art systems also happen to be based on non-linear optimization
[3]. Yet, there are recent examples of EKF-based methods that show great
performance, such as [1] and [27].

9

Solutions to the SLAM Back-end

2.3 Solving SLAM with Factor Graphs and Nonlinear Opti-
mization

The EKF has enjoyed a long history as the de-facto solution to SLAM re-
gardless of its downsides, but as computers have become more powerful,
solutions based on more computationally demanding but also more accurate
non-linear optimization have become feasible. Most methods using non-
linear optimization represent the SLAM problem as a graphical model, the
most common of which being the factor graph [2].

The section closely follows that of the excellent tutorial on factor graphs
for robot perception by Daellart and Kaess [9]. Another great introduction
to the theory is given in [15] although it does not explicitly refer to the
graphical model as a factor graph.

2.3.1 Maximum a posteriori estimation

To see how the factor graph representation arises as a natural model for the
back-end, we must look at how to solve SLAM using maximum a posteriori
(MAP) estimation. For SLAM, the states we are interested in are the robot’s
trajectory of poses and the locations of landmarks it observes. The state
could in addition include other variables of interest such as IMU bias terms or
camera extrinsics and intrinsics parameters. By defining X as the collection
of these states, and Z as measurements, the posterior density p(X|Z) is the
probability density over X given the measurements Z. Naturally, to obtain
a state that is as close as possible to the actual ground truth, we should find
the X that maximizes this posterior, leading to the MAP estimate

XMAP = arg max
X

p(X|Z). (12)

Using Bayes’ rule we can rewrite the posterior as

p(X|Z) =
p(Z|X)p(X)

p(Z)
. (13)

The measurements Z are given, so the density p(Z) can be treated as a
constant, letting us instead express the posterior in the simpler form

p(X|Z) ∝ p(Z|X)p(X). (14)

Due to the proportionality, the maxima of these expressions coincide, so

XMAP = arg max
X

p(Z|X)p(X)

p(Z)
= arg max

X
p(Z|X)p(X). (15)

As is done in [9], we will also here define the likelihood l(X;Z) as any
function proportional to p(Z|X). Again, by proportionality, this does not

10

Solutions to the SLAM Back-end

change the argmax of the objective. The likelihood expresses the probability
of observing the measurements Z, given the state X, but since Z is given, it
is really a function of X. This notation helps emphasize this by more clearly
showing which parameters are known and which are not. With this, (14)
can be rewritten as

p(X|Z) ∝ l(X;Z)p(X). (16)

These likelihood functions as we have defined them, do not need to be prop-
erly normalized probability distributions that sum to one. This is part of the
reason why factor graphs are such suitable graphical models for MAP esti-
mation, compared to e.g. Bayes nets where each function must be a proper
probability density [9].

2.3.2 Factorizing the MAP objective

The SLAM posterior is a probability density over all robot poses and land-
marks in the set X, given all measurements Z. If we assume the noise
statistics of the measurements are independent of one another, the posterior
factorizes into a product of densities. Consider for instance the toy SLAM
problem used throughout [9] that we also made use of in our discussion of
the EKF. For the MAP estimation problem to be valid, we need an initial
absolute measurement z1 on the first pose xt. We denote the three bearing-
range measurements as z2, z3 and z4. We can then visualize the resulting
network of states and measurements in a graphical model known as a Bayes’
net. Figure 3 shows this network. Notice how the directed edges denote the
dependencies between variables. The measurement z2 for instance depends
both on the location of the landmark it is measuring, and the pose the robot
was in when the measurement was received. The joint probability density
for this network is

p(X,Z) = p(x1)p(x2|x1)p(x3|x2)

× p(l1)p(l2)

× p(z1|x1)

× p(z2|x1, l1)p(z3|x2, l1)p(z4|x3, l2).

(17)

The first line of the product is the priors corresponding to the markov motion
model of the robot movement and the second line priors on the landmark
locations (something often unavailable in SLAM with no prior map). The
conditional distributions on the third and fourth line correspond respectively
to the initial absolute pose measurement z1 and the three landmark mea-
surements in the poses they were observed.

Conditioning (17) on the measurements Z, we obtain the posterior

p(X|Z) =
p(X,Z)

p(Z)
(18)

11

Solutions to the SLAM Back-end

Figure 3: Bayes net for the toy SLAM problem showing robot poses x1:3, landmark
locations l1:2, the initial pose measurement z1 and landmark measurements z2:4.
Circular colored nodes denote variables, whereas rectangular grey nodes denote
measurements. The directed edges denote the dependence relationships. Figure
adapted from [9].

and as we saw in section 2.3.1, the factors in the posterior can be expressed as
proportional to a product of priors and likelihoods to eliminate the irrelevant
prior on the measurements p(Z). This allows us to formulate the posterior
as

p(X|Z) ∝ p(x1)p(x2|x1)p(x3|x2)

× p(l1)p(l2)

× l(x1; z1)

× l(x1, l1; z2)l(x2, l1; z3)l(x3, l2; z4).

(19)

This factorization motivates the need for a new graphical modeling frame-
work, namely the factor graph. Bayesian networks are great at modeling net-
works of Gaussian probability distributions but in contrast to factor graphs,
they can not model the generally non-linear likelihood functions [9]. Indeed,
the need to treat Gaussian densities and likelihood functions alike in the
same MAP estimation problem is the main motivation for the move to fac-
tor graphs in favor of Bayes nets [9]. To see how such non-linear likelihood
functions appear, even under assumptions of Gaussian measurement noise,
consider for instance a robot positioned at the origin receiving a measure-
ment z ∈ (−π, π] of a single landmark l = [lx, ly]> with a bearing-only sensor.
The measurement model conditioned on the landmark is

p(z|l) =
1√
|2πR|

exp

{
− 1

2
‖ atan2(lx, ly)− z‖2R

}
, (20)

where R is the covariance of the noise model of bearing-only sensor. While
this function is Gaussian when seen as a probability density over the measure-
ment z, we are in the MAP optimization scenario interested in the likelihood
function l(l; z) ∝ p(z|l) over the variable l, where z is considered fixed. Taken
as a function over l instead of z, (20) is clearly non-linear and non-Gaussian
and so a Bayes net cannot be used.

12

Solutions to the SLAM Back-end

To graphically model non-linear likelihoods and probability densities
alike, we use a factor graph instead of a Bayes net. With factor graphs,
we no longer treat measurements as variables, but rather as the immutable
quantities they really are. We do so by defining a factor φi for each received
measurement zi, that is a function of the variables conditioned on that mea-
surement. As an example, the likelihood on the bearing-only measurement
l(l, z) would correspond to a factor φ(l). Likewise, the posterior of the toy
slam problem in (19) can be expressed as

p(X|Z) ∝ φ(X) = φ1(x1)φ2(x2,x1)φ3(x3,x2)

× φ4(l1)φ5(l2)

× φ6(x1)

× φ7(x1, l1)φ8(x2, l1)φ9(x3, l2).

(21)

The factor graph for this posterior is shown in figure 4.
Formally, a factor graph is a bipartite graph F = (Ω, X,E) with factor

nodes φi ∈ Ω and variable nodes xj ∈ X connected by edges eij ∈ E. Every
factor φi is a function of the variables Xi ⊂ X adjacent to it. The factor
graph thus defines a factorization of a function into the product [9]

φ(X) =
∏
i

φ(Xi). (22)

Since each factor φi in a factor graph is a function of only its adjacent
variables with the corresponding measurement zi "baked in", it allows for
abstracting out the concept of measurements entirely, enabling us instead to
conceptualize measurements as constraints between variables. This lets us
phrase the MAP optimization problem as the problem of smoothing a factor
graph. This perspective has given rise to a family of algorithms for SLAM
known as smoothing and mapping solutions to SLAM [7] [8] [18] [19]. Figure
4 shows the factor graph for the toy SLAM problem.

2.3.3 Non-linear least squares

Under the assumption of Gaussian measurement noise, the MAP objective
corresponds to a least squares optimization problem. Gaussian measurement
noise means all the factors, both priors and likelihoods, can be written on
the form

φi(Xi) ∝ exp
{1

2
‖hi(Xi)− zi‖2Σi

}
(23)

where hi is an arbitrary, possibly nonlinear measurement function and ‖.‖2Σi

denotes the squared Mahalanobis distance1 for a measurement with covari-
ance Σi [9]. Taking the logarithm of this turns the product of exponentials

1Informally, the Mahalanobis distance is a measure of the distance from a point to a
probability distribution. It can be seen as an extension to higher dimensions of counting
the number of standard deviations from the mean.

13

Solutions to the SLAM Back-end

Figure 4: The factor graph for the toy SLAM problem corresponding to the
posterior in (19). Variable nodes are shown as big colored circles and factor nodes
as small black circles. Notice that x1 has a factor φ6 corresponding to the initial
absolute pose measurement and a regular prior factor φ1. Figure adapted from [9].

into a sum of the exponents, and since the logarithm is a monotonically in-
creasing function, applying it does not change the location of the maximum.
Scaling by 1

2 and flipping the sign turns this into a nonlinear least squares
minimization problem

XMAP = arg min
X

∑
i

‖hi(Xi)− zi‖2Σi
. (24)

In the following, we will see how this can be solved using nonlinear optimiza-
tion methods such as Gauss Newton or Levenberg-Marquardt.

The least squares objective in (34) is nonlinear due to the nonlinear mea-
surement functions hi, meaning a nonlinear optimization method is needed to
optimize it. One often used non-linear optimization solver is Gauss-Newton
(GN) however most smoothing based SLAM methods use an extension of
this method called Levenberg-Marquardt (LM) that can additionally reject
bad steps and fine-tune its step size to ensure convergence [25] [28]. Both
these algorithm iterate a basic three step process of 1) linearizing the ob-
jective function at the current estimate, 2) solving the resulting linear least
squares problem with the normal equations and 3) updating the estimate
with the solution obtained from the linear problem.

For values in Euclidean vector spaces, the linearization performed in GN
and LM is a first order Taylor expansion of the measurement functions,

hi(Xi) = hi(X
0
i + ∆i) ≈ hi(X0

i) +Hi∆i (25)

where Hi is the measurement Jacobian calculated at the current estimate
X0

i as

Hi ,
∂hi(Xi)

∂Xi

∣∣∣∣
X0

i

(26)

14

Solutions to the SLAM Back-end

and ∆i is the update vector GN or LM will make. In general however, values
do not lie in vector spaces and special care must be taken to compute the
Jacobian. In particular, the rotational component of a robot pose lies on the
non-linear manifold SO(3). Some SLAM algorithms handle this specially,
but as we will see in section 2.4, using Lie theory, SO(3) and vector spaces
can be treated with the same general framework.

Inserting (25) into (34), we get a linear least squares problem

∆∗ = arg min
∆

∑
i

‖hi(X0
i) +Hi∆i − zi‖2Σi

= arg min
∆

∑
i

‖Hi∆i − (zi − hi(X0
i))‖2Σi

(27)

which can be solved for the update step ∆∗ by solving the normal equations.
To solve (27) using the normal equations, we first formulate it as a stan-

dard least-squares problem. The Mahalanobis norm ‖ · ‖2Σi
for an error term

e can be written as

‖e‖2Σi
= e>Σ−1

i e =
(

Σ
−1/2
i e

)>(
Σ
−1/2
i e

)
= ‖Σ−1/2

i e‖22. (28)

Hence, by defining the substitutions

Ai = Σ
−1/2
i Hi,

bi = Σ
−1/2
i

(
zi − hi(X0

i)
) (29)

we obtain the standard least-squares problem

∆∗ = arg min
∆

Σi‖Ai∆i − bi‖22

= arg min
∆

‖A∆− b‖22.
(30)

This lets us solve the problem by solving the normal equations,

(A>A)∆∗ = A>b. (31)

2.3.4 Gauss-Newton

The Gauss-Newton (GN) algorithm for solving non-linear least-squares prob-
lems that takes curvature into account by approximating the Hessian with
the squared Jacobian matrix A>A. It iteratively updates its solution by re-
peatedly linearizing the objective to obtain the linear least squares problem
(27), and then solve the normal equations (31). That is, the update vector
is obtained as

∆∗ = (A>A)−1A>b. (32)

15

Solutions to the SLAM Back-end

There are however some downsides to the basic GN scheme. Firstly, for
particularly non-linear problems, the update step can perturb the estimate
to a worse estimate than before. Secondly, inverting the A>A matrix can
fail if A>A is singular, or close to singular. This situation corresponds to
a degenerate problem formulation in which parts of the solution space is
unobservable [17].

2.3.5 Levenberg-Marquardt

Levenberg-Marquardt is a damped extension of Gauss-Newton that will re-
ject steps if they increase the objective. It defines a damping factor λ > 0
that decides how far the algorithm will step in a single iteration. This is
achieved by instead solving the augmented version of the normal equations,

(A>A+ λdiag(A>A))∆∗ = A>b. (33)

Large values of λ result in small steps, and small values of λ in large. If a
step increases the value of the objective function, λ is increased (say by a
factor of 10 [9]) to make the algorithm more cautious. Conversely, if a step
reduces the objective, λ is decreased. Adding the diag(A>A) term has the
effect of making the step size larger in flat directions and more cautious in
steep directions [9]. Finally, the diag(A>A) term also ensures the system
can be solved for the update step ∆∗, even in the case of a singular A>A.

2.3.6 MAP estimation vs the EKF

As with the EKF, GN and LM rely on linearization to approximate the op-
timum, but unlike the EKF, they allow repeatedly linearizing and updating
their estimates to find a better approximation. Smoothing solutions that use
these iterative non-linear optimization schemes also do not marginalize out
old states every iteration, meaning that bad linearizations can get corrected
in future iterations as more data becomes available. A second effect of this
longer-horizon smoothing approach is that factors can be added with latency,
such as loop closures or slowly computed measurements. These benefits are
some of the reasons why non-linear optimization of factor graphs has become
such a popular approach to solving the SLAM problem.

2.4 GTSAM

Georgia Tech Smoothing and Mapping (GTSAM) is a general factor graph
optimization framework developed by F. Daellert, M. Kaess, et. al. at
Georgia Tech. The framework is general in its nature and can optimize a
variety of problems provided the necessary Lie theoretic group operations
are defined.

16

Solutions to the SLAM Back-end

2.4.1 Motivation: The SO(3) manifold

The generality of GTSAM owns to the efficacy of the underlying Lie theoretic
machinery it builds upon. We will, as is done in [9], begin our discussion of
Lie theory with a motivating example central to the SLAM problem, namely
how to deal with the rotational part of the robot state lying on the non-linear
manifold SO(3). In the iterative non-linear optimization procedures of GN
and LM as discussed in section 2.3, we must linearize and solve the objective∑

i

‖hi(Xi)− zi‖2Σi (34)

to find an update vector ∆∗, and then increment our current estimate with
it, according to

Xt+1 = Xt + ∆∗. (35)

Recall however, that the state Xt
i contains a set of robot poses, and thus a

set of robot orientations. Let us denote one such orientation R0 ∈ SO(3)
and consider the single square error term corresponding to it in (34):

‖h0(R0)− z0‖2Σ0
. (36)

We have defined z0 ∈ R3, h0 : SO(3) → R3 and Σ0 ∈ R3×3 respectively to
be the corresponding measurement, measurement function and covariance of
R0.

There are different ways of expressing the orientation. One representation
is that of Euler angles, where the orientation is expressed by three angles,
ϕ, θ and ψ. This representation has the benefit of being minimal, but has
the major downside of multiple singularities, e.g. at θ = π/2. This makes
it impractical to use in robot navigation. An often used alternative to Euler
angles is rotation matrices, commonly defined as the set

SO(3) = {R ∈ R3×3|RR> = I, detR = 1}. (37)

This representation is overparametrised: 3 × 3 rotation matrices require 9
parameters to represent a state with only 3 degrees of freedom. This redun-
dancy means the actual valid rotation matrices, forming the SO(3) rotation
group, lie on a non-linear manifold within the 9-dimensional Cartesian space
of all 3× 3 matrices. To add an increment ξ∧ ∈ R3×3, we might be tempted
to simply add with the common addition operator, to obtain

R = R0 + ξ∧. (38)

However, this result is very unlikely to lie on the SO(3) manifold. In fact,
it will in general not, because the group of SO(3) rotation matrices is not
closed under addition. We instead seek a more general "addition" operator
⊕ that we can use to add perturbations to orientations.

17

Solutions to the SLAM Back-end

A minimal representation often used for this purpose is the axis-angle
parametrization where the rotation is described with an angle θ and a unit
vector ω̄ along the axis of rotation. Since ω̄ is constrained to unit length, it
can be expressed as only two parameters, meaning a three parameter vector
is enough to represent the rotation. One such three parameter vector is
obtained as the product of angle and axis, namely

ξ = θω̄ =

ξxξy
ξz

 (39)

This vector corresponds to the skew symmetric matrix, which we denote with
the hat (·)∧ operator,

ξ∧ = [ξ]× =

 0 −ξz ξy
ξz 0 −ξx
−ξy ξx 0

 (40)

For small θ, computing the perturbation as R ≈ R0 + ξ∧ is a reasonable
approximation, however R will still not be on the manifold, only close to it
[9]. To obtain a valid estimate, we can use Rodrigues’ formula to obtain the
rotation matrix corresponding to the angle-axis representation

R(ξ) = I +
sin θ

θ
ξ∧ +

1− cos θ

θ2
ξ∧2. (41)

Multiplying this with the original rotation matrix perturbs it to a valid new
rotation matrix, and is hence the generalized ⊕ operator we are after:

R = R0 ⊕ ξ = R0R(ξ). (42)

This will let us add the increment in (35) even when the state contains
orientations.

The new ⊕ operator also enables defining a linearization of the error term
in (36), according to

h0(R0 ⊕ ξ) ≈ hi(R0) +H0ξ, (43)

where H0 is the Jacobian of h0 calculated at R0 [9]. For details on how the
Jacobian can be calculated, refer to [33]. With this linearization in hand, we
can solve the linear least squares problem in the tangent space, i.e. we can
formulate and solve the linear least squares problem as in (27) even when
rotations are involved. As [9] explains, a simple scheme for using GN and LM
with rotation matrices is to iteratively solve the linear least squares problem
according to (27) and then update the estimate according to (42).

18

Solutions to the SLAM Back-end

2.4.2 Lie theory

What we have presented up until now is only the specific way to handle the
particularities of the rotation group SO(3). It turns out however that these
definitions fit into the more general framework of Lie groups. Expressing it in
the general language of Lie theory allows us to work with several categories
of values with a common framework.

A Lie group is a smooth manifold that satisfies the group axioms and
locally resembles a linear space [33]. As described in [33], a group (G, ◦) is
a set G together with an operator ◦ that for elements X ,Y,Z, E ∈ G satisfy
the axioms

Closure under ◦ : X ◦ Y ∈ G (44)
Identity E : E ◦ X = X ◦ E = X (45)

Inverse X−1 : X−1 ◦ X = X ◦ X−1 = E (46)
Associativity : (X ◦ Y) ◦ X = X ◦ (Y ◦ Z). (47)

Special to Lie groups is that they define an action on members of other
sets that transforms them in some way. For instance 3× 3 rotation matrices
transform vectors of length three by left matrix multiplication. Formally,
given a Lie groupM and a set V, we denote the action of X ∈M on v ∈ V
as X · v. The action must in addition satisfy the axioms

Identity : E · v = v (48)
Compatibility : (X ◦ Y) · v = X · (Y · v). (49)

(50)

Another special property of Lie groups is the Lie algebra m, defined as
the tangent space at the identity,

m , TEM, (51)

with the notation TX denoting the tangent space around the element X. We
have already seen an example of a Lie algebra in our discussion of rotation
matrices, namely the family of skew symmetric matrices ξ̂ corresponding to
axis-angle vectors ξ. Members of the Lie algebra τ̂ ∈ m relate back to the
manifold through a mapping known as the exponential map exp : m →M.
Conversely, the logarithmic map log : M → m maps members of the Lie
group M into the Lie algebra m. The exponential map is typically defined
as the Taylor series

exp : exp(τ∧) , E + τ∧ +
1

2!
τ∧2 +

1

3!
τ∧3 + (52)

For rotation matrices, this develops into the familiar Rodrigues’ formula:

R(ξ) = exp(ξ∧) = I + ξ∧ +
1

2!
ξ∧2 +

1

3!
ξ∧3 + ...

= I + sin θ[ω̄]× + (1− cos θ)[ω̄]2×.
(53)

19

Solutions to the SLAM Back-end

The logarithmic map is found by inverting (52). For SO(3) rotation matrices,
this has the closed form expression

ξ∧ = log(R) =
θ

2 sin θ
(R−R>), (54)

where we find θ as
θ = arccos

(
tr(R)− 1

2

)
. (55)

It is recommended by e.g. [10] that practical implementations use a Taylor
approximation for θ/(2 sin θ) for small values of θ. In addition, when θ is
small, the approximation

R = exp(ξ∧) ≈ I + ξ∧ (56)

holds. GTSAM [7] makes use of both these approximations.
The elements τ∧ ∈ m of the Lie algebra can have non-trivial structures,

like skew-symmetric matrices for SO(3), but they can always be expressed
as a linear combination of some generator elements Ei. This defines a linear
Cartesian space Rm with m = dimm in which we can do linear algebra.
We will denote members of this space as τ (without the ∧). Transforming
between the Lie algebra and Rm is done with the hat and vee operators:

Hat : Rm → m; τ 7→ τ∧ =
m∑
i=1

τiEi (57)

Vee : m→ Rm; τ∧ 7→ (τ∧)∨ = τ =
m∑
i=1

τiei, (58)

where ei are the basis vectors of Rm. For SO(3), the axis-angle vectors
ξ ∈ R3 form this linear Cartesian space. As mentioned previously, this
formulation allows using linear algebra, such as for solving the linear least-
squares problem from (27) using the normal equations.

Equipped with the general Lie theoretical framework, we can define a
general ⊕ operator, just like we did for SO(3) matrices, so that any Lie
group variable types can be treated by the same general framework. We
define this as

⊕ : Y = X ⊕ τ = X ◦ exp(τ∧), (59)

where Y ∈ M, X ∈ M and τ ∈ TXM. Formally, this operator is known
as the right-⊕ operator and we can similarily define a left version of this,
as well as 	 counterparts. We refer the reader to [33] for these definitions
however, as texts such as [24] and [15] do just fine by defining only a single
⊕ operator.

20

Solutions to the SLAM Back-end

Tangent Manifold

Lie algebra

Vector

Figure 5: Overview of the spaces relevant for Lie groups with mappings between
them. The exp-map maps from the manifoldM to the Lie algebra m, whereas the
log-map maps in the reverse direction. The hat (·)∧ operator maps from the Rm

vector representation of the tangent space to the Lie algebra m and the vee operator
(·)∨ back again. Figure adapted from [33] and licenced under CC BY-NC-SA 4.0.

2.4.3 Implementing new variable types in GTSAM

GTSAM is built on top of the Lie theoretic framework discussed previously
for generality and extensibility. By implementing variables according to their
Lie group structure, they can be treated by the same general optimization
framework, eliminating the need for special handling of rotations and poses,
or any other Lie group for that matter. To implement a new type of variable,
say for example Sim(3) transforms, all that is needed is to implement the
operator ◦, the action · and their axioms along with the exp- and log-
maps. Jacobians should also be defined: Even though GTSAM supports
numeric differentiation, having the Jacobians explicitly defined will increase
performance.

Variable types on non-Lie manifolds, such as the set S2 of all unit vectors
in R3, can also be implemented in GTSAM, provided a retraction can be
defined [9]. For a manifold M and a point a ∈ M, a retraction defines a
mapping from a point ξ on the tangent space around a, TaM back onto a
corresponding point onM, i.e.

Ra : M× Rm →M; a⊕ ξ , Ra(ξ). (60)

The retraction hence replaces the need for the exponential map in defining
the ⊕ operator. A retraction needs to be smooth and map the origin of
TaM back onto a, but can otherwise be defined in several ways [9]. Even for
proper Lie groups, defining a retraction can sometimes be computationally
advantageous compared to the regular Lie exp-map. The SE(3) manifold is
one such example [9].

One of the reasons the Lie theoric framework is so popular for SLAM
is that several commonly used value types in various SLAM problems are
Lie groups!. 3D SLAM for instance require use of both Lie groups SO(3)
rotations and SE(3) poses. 2D SLAM based on e.g. range-bearing sensors,

21

https://creativecommons.org/licenses/by-nc-sa/4.0/

Solutions to the SLAM Back-end

or simple 2D navigation using IMU and GPS similarily require the Lie groups
SO(2) and SE(2). Monocular-only visual SLAM systems such as [28] that
attempt to estimate the (unobservable) drift in scale often make use of the
Lie group Sim(3). [10] presents an overview of the expressions needed to
implement all these Lie groups.

2.4.4 Implementing new factors in GTSAM

For many SLAM implementations, the built in variable types GTSAM of-
fers will be enough, but the implementation requires defining a new fac-
tor instead. Defining such a factor requires significantly less work than a
new variable type as the only method that must be implemented is the
evaluateError method. This method computes the error term used in com-
puting the sum in (34),

hi(Xi)− zi. (61)

The method must also calculate the Jacobian Hi at the current estimate Xi.

2.5 iSAM

The Incremental Smoothing and Mapping (iSAM) algorithm is an incremen-
tal version of the smoothing and mapping solution to SLAM, developed by
Michael Kaess et al. [18]. While the algorithm was developed in 2008, it
is still relevant mainly due to its successor iSAM2 [19]. Both algorithms
are available in the GTSAM library [7] and the interface makes it easy to
solve a SLAM problem with iSAM provided the factor graph is formulated
in GTSAM.

The main idea behind iSAM’s incremental updates is taking advantage
of the sparsity of the SLAM problem to update only the parts of the square
root factor matrix for the problem that are significantly changed by new
measurements. To see how this square root factor matrix is formed, we
begin by discussing iSAM’s predecessor algorithm, square root SAM [8], in
which this square root factor was initially proposed.

2.5.1 Square root SAM

Square root smoothing and mapping, or simply SAM, is an algorithm for
solving SLAM with factor-graphs developed by Daellert and Kaess in 2006
[8]. The algorithm solves a SLAM problem by forming its corresponding
linear least squares problem that we defined in (27),

∆∗ = arg min
∆

∑
i

‖Hi∆i − (zi − hi(X0
i))‖2Σi

, (62)

converting it to a standard least-squares problem through variable substitu-
tion and solving it with Cholesky decomposition or QR factorization. After

22

Solutions to the SLAM Back-end

converting the problem to a standard least-squares problem, we can solve it
directly by solving the normal equations,

(A>A)∆∗ = A>b. (63)

Typically, (63) is solved by means of Cholesky factorization of the informa-
tion matrix A>A = R>R into the upper-triangular square root matrix R.
However, SAM also allows using QR-factorization which, while being slower
than Cholesky, offers increased accuracy and numerical stability. We will
focus on QR-factorization here, although the approach can be derived with
Cholesky factorization as well. With QR-factorization, instead of computing
the information matrix, we obtain R by factorizing A itself,

A = Q

[
R
0

]
. (64)

Here, Q is an m ×m orthogonal matrix. By also defining vectors d ∈ Rn

and e ∈ Rm−n as [
d
e

]
= Q>b, (65)

and exploiting the orthogonality of Q, we can rewrite the least squares prob-
lem as

‖A∆− b‖22 = ‖Q>A∆−Q>b‖22 = ‖R∆− d‖22 + ‖e‖22. (66)

This means we can solve it by solving the triangular system

R∆∗ = d (67)

by back-substitution.
In SAM, the QR-factorization is computed with n successive Householder

transformations [16]. These transformations dominate the computational
cost of the QR-based least squares scheme, leading to a total cost of 2(m−
n/3)n2. The Cholesky scheme on the other hand, which includes calculating
the information matrix A>A, requires only (m+n/3)n2. In other words, the
Cholesky scheme is around twice as fast. It is also noted in [9] that Cholesky
factorization significantly outperforms QR-factorization for sparse matrices.

2.5.2 Incremental QR-updating with Givens rotations

The SLAM problem is fundamentally of an incremental nature. As new
measurements arrive, they must be added to the factor graph and the corre-
sponding matrices in the least squares problem augmented with new rows.
In regular SAM, when receiving new measurements, the A matrix must be
augmented with new rows and the square root factor R subsequently recom-
puted. The iSAM algorithm however, addresses the incremental nature of

23

Solutions to the SLAM Back-end

the SLAM problem by performing incremental updates of R by means of
QR-updating.

The QR-factorization is updated by means of Givens rotations. When
receiving a measurement, the measurement Jacobian A must be augmented
with a new row w> ∈ Rn to form an updated matrix

A′ =

[
A
w>

]
. (68)

We must then update the existing QR-factorization A = Q[R, 0]>. However,
instead of recomputing the entire R matrix again, we can append the new
row directly to R, forming a Hessenberg matrix [R,w>]>. We then apply
a series of at most n Givens rotations Jn, ..., J1 to move any new non-zero
elements above the main diagonal, yielding an updated R matrix

R′ = Jn...J1

[
R
w>

]
. (69)

Each of the Ji rotations move a single non-zero element either rightwards
within the same row, or rightwards within the first row above it so that it
ends up above the main diagonal. A graphical illustration of this can be
found in figure 2 of [18]. The RHS vector d is similarly augmented with the
right hand side value γ corresponding to the new measurement. The same
Givens rotations are applied to this vector to form the updated RHS vector
d′ [18].

As [18] notes, the number of Givens rotations needed to add a measure-
ment row is maximally n, but typically much fewer. This stems from the fact
that the Givens rotations only need to be applied from the leftmost non-zero
element in w> and then move rightwards until the right end of the matrix.
Furthermore, in linear exploration tasks, new measurements only result in
factors involving the few most recent values. The new measurement row w>

will therefore be mostly zero except for a few values at the right end. The
Givens rotations need only start at the leftmost of these non-zero values,
greatly reducing the number needed.

2.5.3 Variable reordering and relinearization

As explained in the previous section, updating the square root factor matrix
R with new measurements in a linear exploration task requires little com-
putation as only a few Givens rotations must be applied. Real robot local-
ization tasks however rarely contain only exploration, but also occasionally
returning to previously visited locations. Such "loops" in the trajectory in-
troduce correlations between old states and new measurements [18]. New
measurement rows w> to be appended to A will therefore have non-zero val-
ues placed arbitrarily far to the left, requiring a number of Givens rotations
proportional to n.

24

Solutions to the SLAM Back-end

In addition to requiring more computation time, applying the extra
Givens rotations makes R less sparse. The information matrix of the SLAM
problem typically has a sparse structure, even in the case of loop closures,
and this manifests itself in R as well. However, incrementally updating R
with non-local measurements leads to non-zero elements outside this sparsity
pattern [18]. In [18], this is referred to as "fill-in". Fill-in is disadvantageous
since it makes all operations on R more computationally demanding.

To avoid fill-in, iSAM periodically reorders the states and recomputes
the QR-factorization, leading to a R matrix that is sparse. To efficiently
find a good ordering, they use the column approximate minimum degree
(COLAMD) ordering heuristic from [6]. As loops are often not common,
reordering must not be done with every timestep, but can instead be done
only occasionally. In [18], reordering every 100th timestep has shown to yield
good results.

Since all SLAM problems are usually of a non-linear nature, contain-
ing e.g. non-linear rotation components or bearing measurement functions,
the problem needs to be linearized before it can be solved with the lin-
ear approaches discussed in this section. QR-updating the R matrix does
not account for this linearization and will hence lead to accumulation of er-
ror. This calls for periodically relinearizing the system and recomputing R
from scratch. Since the reordering step already recomputes R periodically,
iSAM combines these two operations into one, forming a combined periodic
reordering and relinearization step [18]. It is noted in [19] however that re-
linearizing only periodically is sub-optimal. In the following section, we will
therefore look at how iSAM2 circumvents this by instead performing fluid
relinearization at every timestep.

2.6 iSAM2

The iSAM2 algorithm [19] extends on iSAM by representing the square root
factor matrix R as a novel datastructure called a Bayes tree. This tree
structure allows both variable reordering and relinearization to be done as
part of the incremental update and not in a separate batch step as was done
in regular iSAM.

2.6.1 The Bayes tree

Using sparse QR-factorization to find the upper triangular square root factor
matrix R used in iSAM is equivalent to converting the factor graph into
a Bayes tree using the elimination algorithm [19]. The first step of this
conversion procedure is to convert the factor-graph to a Bayes net. For this,
the non-linear factor graph must first be linearized into a Gaussian factor
graph. The graph is then gradually converted from a factor graph into a
Bayes net by considering one variable at a time and eliminating the factors

25

Solutions to the SLAM Back-end

adjacent to it. This process gets repeated for the next variable in the variable
ordering until the entire factor-graph has been converted to a Bayes net. For
the specifics of this procedure, see algorithm 2 of [19].

After constructing a Bayes net, iSAM2 goes on to convert it into a Bayes
tree. This can be done because the Bayes net created by the elimination
algorithm is chordal. A chordal graph is a graph where each cycle of more
than 4 edges has a chord, that is, an edge between two nodes in the cycle
that is not itself part of the cycle. Another way to see this is that every
induced sub-cycle has exactly three edges. For that reason, the machine
learning community sometimes refer to these graphs as triangulated [9]. The
procedure for creating the Bayes tree involves finding its cliques. In iSAM2,
this is done by means of the maximum cardinality search algorithm [35]. The
resulting Bayes tree has the same structure as a clique tree, where each tree
node corresponds to a clique in the Bayes net, but the edges are directed
and preserves the elimination ordering [9]. The variables at the end of the
ordering, which are typically the most recent states, are placed at the root
of the tree, and the variables that preceded them during elimination, follow
downwards into the branches in reverse elimination ordering.

Since constructing the Bayes tree is equivalent to QR-factorization, the
least squares solution ∆∗ can be obtained by back-substitution. For the
Bayes tree, this amounts to one pass from the leaf nodes up to the root of
the tree to construct the functions, and one pass down again to obtain the
values [19].

The reason the Bayes tree is so well applicable to SLAM is due to its
structure capturing the sparsity characteristics of the SLAM problem well.
The tree is structured with the most recently added variables at the top,
the most recent being the root. As an example, consider the Bayes tree
shown in Fig. 3 (c) in [19]. This Bayes tree corresponds to the toy SLAM
problem we have considered throughout this text, whose factor graph is
shown in figure 4. The tree follows directly downwards with directed edges
pointing to variables those above depend on. Junctions in the tree appear
where a variable depends on two separate parts of the graph, such as in
the toy example where landmark l2 depends on the pose x3, and l1 and x1

both depend on the pose x2. Another reason for junctions in the Bayes tree
common to SLAM occurs in case of a loop, where the trajectory makes a
T junction. See e.g. Fig 5 in [19] for an example of this. For any Bayes
tree, going down either one of the branches leads you to variables that are
correlated with one another due to their local structure, however the variables
in either branch will not be correlated with the variables of any other branch.
This mirroring of the local structure of the SLAM problem is what makes
the Bayes tree so useful.

It is important to notice that the order the variables are eliminated in,
determines the structure of the resulting Bayes tree. Analogous to how vari-
able ordering in regular iSAM determined whether or not the Rmatrix would

26

Solutions to the SLAM Back-end

get fill-in [18], the elimination order in iSAM2 determines how many nodes
of the Bayes tree must be changed during inference. For linear exploration,
a good ordering is obtained by simply adding new states to the end of it.
When the trajectory features loops however, this naive ordering would result
in the equivalent of fill-in in the Bayes tree.

2.6.2 Incremental inference with the Bayes tree

During inference, we wish to add new factors and variables to the factor
graph, connecting existing states to new. This requires eliminating the parts
of the factor graph involved in the update with the elimination algorithm,
and adding them to the Bayes tree. As in regular iSAM, where incremental
inference could be done without refactoring the entire R matrix, inference
with a Bayes tree also only requires modifying the variables involved in the
factor and those above it in the tree. In other words, the remaining tree,
extending downwards into other branches, remains unchanged.

One special situation occurs when factors are placed between variables
that form part of two different branches, such as in case of a loop closure.
In that case, both branches must be re-eliminated to form a new structure
that accounts for their dependence.

2.6.3 Incremental reordering

As mentioned previously, the elimination ordering has a big impact on the
performance of iSAM2. As the robot explores its environment, the optimal
ordering will change, prompting the need for reordering. In iSAM2, variables
can be reordered incrementally, as opposed to the periodic batch-reordering
of regular iSAM. This is achieved by reordering during re-elimination in the
incremental inference steps. The variables that are re-eliminated are at the
same time reordered to better reflect new dependencies between them. By
reordering at every increment instead of in batches, fill-in can be reduced
without incurring the significant overhead of a complete reordering.

In [19], they show that reordering the variables with COLAMD before
re-eliminating them yields faster inference for later steps. The reordering is
especially important in case of loop closures, which can otherwise lead to
significant fill-in [18], [19].

However, naively using COLAMD for variable reordering has another
downside. During linear exploration, new variables are usually correlated
with other recently added variables that form part of the local surroundings
of the robot. This suggests that the most recent variables should be placed
at the end of the ordering. The COLAMD heuristic however, does not does
not account for this. In order to force new variables to be added to the
end of the ordering, iSAM2 uses a constrained version of the heuristic, that
forces the most recently accessed variables to the end of the ordering. Their

27

Solutions to the SLAM Back-end

experiments show that this leads to slightly more fill-in, but with the benefit
of less variables being affected in subsequent inference steps [19].

2.6.4 Fluid relinearization

Recall from section 2.3 that in order to optimize the non-linear least squares
objective (34), it had to be linearized at the current estimate Xt. We could
then solve a linear least squares problem for an update vector ∆ and add
it to the estimate, obtaining a new linearization point Xt+1 = Xt ⊕ ∆.
However, as in the regular iSAM algorithm, where we keep incrementally
predicting the state without relinearizing the objective, ∆ can grow quite
large and consequently bring the updated state far from the linearization
point. In regular iSAM, this leads to large linearization errors between the
periodic relinearization steps. One optimization in iSAM2 however, stems
from the observation that only some parts of ∆ tend to grow between itera-
tions, namely those parts affected by new measurements [19]. For factors φi
where ∆i is still small, the previous linearization point of the corresponding
variables Xt

i is still valid. This calls for only relinearizing variables with large
∆i, while omitting those with small ∆i.

Using the Bayes tree, iSAM2 can treat differently those variables that
need re-linearization and those that do not. It does so by thresholding ∆i by
a value β > 0. Those variables with |∆i| ≥ β are replaced with re-linearized
counterparts, along with all variables above them up to the root. Variables
further down in the branches however, are kept as they were.

2.6.5 Partial variable updates

As mentioned, we can compute the update vector ∆ from the Bayes tree by
propagating upwards to the root to obtain the functions, then downwards
again to compute the new values in ∆. This ∆ vector is then compounded
with the current estimate Xt, forming the new estimate and concluding
one step of the iSAM2 algorithm. However, it is important to notice that
large parts of ∆ go unchanged between iterations. In particular, due to
the structure of the SLAM problem, new measurements are likely to only
affect local states, leaving far-away states mostly unchanged. This structure
is reflected in the Bayes tree, and iSAM2 takes advantage of it to perform
partial state updates and save computational costs.

In order to only update those values that significantly change, we update
the values at the top of the tree affected by the new factors, then propagate
downwards updating only those that contribute a large change to ∆. The
change in ∆ is thresholded by a small value α (values of 0.005 and 0.05 have
shown good results). When a node is reached where the change in ∆ is less
than the α threshold, the propagation stops and the previous values for the
remaining nodes in that branch are used instead.

28

Back-end for Resilient Multi-Modal SLAM

3 Back-end for Resilient Multi-Modal SLAM

We will now see how we can fuse constraints from multiple modalities in a
single factor graph, to produce a SLAM system more resilient to sensor degra-
dation. In particular, we present a preliminary loosely coupled factor-graph
odometry fusion system capable of fusing visual and LiDAR odometries.
The system can handle sensor-degradation by preventing constraints of one
modality from being added to the factor graph if it becomes unhealthy.

3.1 Loosely coupled odometry fusion

The system we present in this section is a loosely coupled sensor-fusion sys-
tem. In the context of visual or LiDAR odometry, this means that the quan-
tities to be fused in the joint optimization is the odometry measurements
from the individual single-modality methods. These odometry estimates are
in themselves valid solutions to the localization problem, but a more robust
solution can be obtained by fusing them, especially when the sensor modali-
ties offer complementary properties such as is the case for vision and LiDAR.
This loosely coupled scheme stands in contrast to tightly coupled schemes,
where the sensor measurements from both modalities are directly included
in the common optimization problem.

While we note that the approach is in principle modality-agnostic, we will
for clarity present the system formulated with the visual-inertial-odometry
method ROVIO [1] and the LiDAR-odometry method LOAM [42] as odom-
etry front ends. LOAM receives point clouds from a LiDAR device, whereas
ROVIO receives images from one or more cameras and inertial measurements
from an inertial measurement unit (IMU). Provided these inputs, they both
produce odometry estimates in the global frame that we subsequently in-
corporate in a GTSAM-implemented factor-graph on which we can readily
perform pose-graph optimization to obtain a fused odometry. To provide the
fused odometries incrementally as new measurements become available, we
use the iSAM2 [19] implementation found in the GTSAM library. A block
diagram overview of the described system that shows this information flow
is provided in figure 6.

Adding odometry constraints to the factor graph from multiple front-ends
requires some special care. Firstly, the odometry measurements received are
SE(3) poses in the global frame, representing the newest estimated pose of
the robot. Since neither ROVIO nor LOAM has any mechanism for globally
anchoring their trajectories with e.g. GNSS, these SE(3) odometry esti-
mates will inevitably drift, and do so in different directions. Consequently,
fusing the odometries directly will yield increasingly wrong results. A better
approach is to compute and add to the factor graph the relative transfor-
mations between each robot state. The GTSAM library provides a handy
between-factor for this purpose that adds an SE(3) transformation constraint

29

Back-end for Resilient Multi-Modal SLAM

LOAM

ROVIO

GTSAM/
iSAM2

Point clouds

Images

IMU data

Odometry

Odometry

Fused
odometry

Figure 6: A system overview block diagram showing the information flow between
the two single-modality front-ends LOAM and ROVIO and the GTSAM/iSAM2
factor-graph based back-end. Raw sensor data in the form of point clouds and
images, as well as IMU data, is fed into the front-ends and they produce odom-
etry estimates which are subsequently processed by the back-end to produce an
optimized trajectory of odometries. The IMU data is also utilized directly in the
back-end.

between two pose variables [7].
The second complicating factor is the different rates at which the two

odometry streams arrive. LiDAR odometry is typically significantly slower
than visual due to the lower rates of point cloud gathering and the com-
putational cost of processing such large point clouds. The different rates
also imply that we must treat the measurements as asynchronous. We must
hence ensure that between-factors are placed between pose variables of cor-
rect type, i.e. variables created from the same type of measurement modali-
ties. This means we can think of the pose variables x1:k as separated into two
interleaved chains connected with between factors. In order to connect the
two chains, each consecutive pose pair (xt,xt+1) needs a factor between them
from either a Markov motion model or, in our case, from IMU measurements.
Figure 7 shows the resulting factor graph.

Figure 7: Factor graph for loosely coupled odometry fusion with two front-ends.
Colored circles indicate variables whereas small black nodes indicate factors. Pose
variables are connected with between-factors to form two chains corresponding to
the two modalities. The two modalities are indicated with blue and green colors.
Consecutive poses are also connected with IMU factors (below), although they are
not shown in their full form. The first variable x1 is initialized with a prior factor.

30

Back-end for Resilient Multi-Modal SLAM

3.2 Integrating IMU data

Our system incorporates inertial data in the factor-graph optimization by
adding IMU factors between consecutive poses. An IMU measures linear
and rotational acceleration so in order to use it for position estimation, it
must hence be doubly integrated. The acceleration measurements of IMUs
typically suffer from a slowly varying bias which, when integrated twice,
can lead to large errors in the position estimate [39]. For this reason, most
visual-inertial odometry systems estimate the bias as part of the optimization
problem [1] [3] [25].

IMUs typically operate at much higher frequencies than either visual
or LiDAR based odometry systems can keep up with. Hence, including
the IMU measurements directly in the factor graph is not ideal due to the
sheer number of factors needed. Modern inertially-aided SLAM methods
such as [3] and [25] therefore preintegrate the IMU measurements to form
a single IMU-factor between robot poses. GTSAM includes a state-of-the-
art preintegration scheme based on [26] and extended in [13] that performs
preintegration on the nonlinear manifold. In GTSAM 4.0 however, which
is used for our system, preintegration is instead done in the tangent space
because this increases efficiency [7].

GTSAM provides a combined IMU factor together with the preintegra-
tion scheme, which adds a single combined factor between pose x, velocity
v and bias b terms. With this, we can jointly estimate the velocity and
bias terms along with the robot poses. As new IMU measurements come
in, we store them in a buffer such that when receiving an odometry, we can
integrate measurements from the buffer between the newly arrived odometry
and the previous. The resulting factor graph then has a velocity and bias
variable for every pose, as can be seen in figure 8.

One common situation with asynchronous odometry measurements oc-
curs when they arrive so close in time that no IMU measurements have ar-

Figure 8: The same factor graph as in figure 7, this time showing the velocity and
bias variables involved in each combined IMU factor. As with the first pose x1, the
first velocity and bias terms v1 and b1 are initialized with prior factors.

31

Back-end for Resilient Multi-Modal SLAM

rived in between. With no IMU measurements, we can not add a combined
IMU factor. Hence, in that case, we do not add a new pose, velocity and bias
value for the latest measurement, but instead add the between factor on the
latest existing pose. This means we effectively disregard the negligible time
difference between the two measurements and instead treat them as having
arrived exactly simultaneously. Figure 9 shows the factor graph resulting
from this.

3.3 Detecting and handling sensor failure

If one modality becomes degraded, the odometry estimates based on it will
inevitably be incorrect. Including them without special handling in the sen-
sor fusion would therefore deteriorate the fused result. Our approach avoids
this by excluding unhealthy measurements from the factor graph. There are
many health metrics that can be used for detecting this, e.g. the D-optimality
criterion described in [5] or the degeneracy factor as described in [40]. In
our preliminary implementation however, we rely on this health metric be-
ing provided by the odometry front-ends. That is, we assume the front-ends
provide a second stream of boolean health messages corresponding to each
odometry measurement.

To account for the healthy criterion of the received odometries, we check
the newest health message before adding anything to the graph. If the odom-
etry is considered unhealthy, the measurement is skipped and nothing is
added to the graph. To additionally ensure that the odometry front-end
does not wrongly consider itself healthy when it is not, we buffer the last
nh health messages and declare the odometry degenerate if the number of
unhealthy messages in the buffer exceeds a certain threshold nu. When a
modality is declared degenerate, all its incoming odometry messages will be
considered unhealthy, even if they are reported as healthy. This degeneracy
state persists until the buffer only contains healthy messages.

After a period of degeneracy for a certain modality, its chain in the factor
graph must be reinitialized. Indeed, because the odometry measurements
received are the estimated global position of the robot, adding a between-
factor between the last pose before degeneracy and the newest pose after
degeneracy, will be incorrect. As an example of this, consider a situation

Figure 9: A factor graph illustrating the situation where no IMU measurements
have arrived between subsequent odometry measurements. In this case, no new
pose variable is added and between factors are instead added on the existing pose.

32

Back-end for Resilient Multi-Modal SLAM

Unhealthy measurement

Figure 10: A factor graph illustrating a degenerate odometry measurement. IMU
velocity and bias terms are omitted for clarity. The chain of the blue modality is
broken due to the missing variable. No between-factor is thus placed between the
poses x3 and x5. Instead, x5 is reinitialized with a IMU-factor between x4 and x5.

where LOAM has been degenerate for a longer period, while ROVIO has
been healthy. When LOAM becomes healthy again, we must wait for two
subsequent LOAM odometry measurements to arrive so we can calculate
a delta for the between-factor. Thus, no between-factor is added between
the LOAM poses just before and just after degeneracy. However, in order
to connect the new chain of LOAM odometries to the rest of the graph,
we add an IMU factor connecting the first healthy LOAM message to the
newest ROVIO message. This effectively reinitializes the LOAM chain. A
factor graph showing this situation is shown in figure 10. Note that the same
behavior applies for handling a single unhealthy measurement.

33

Experimental Evaluation

4 Experimental Evaluation

4.1 Dataset and experimental setup

We test our system on a sequence of visual, LiDAR and IMU data recorded
in a highway underpass tunnel, where severe geometric homogeneity causes
the LiDAR odometry to degenerate. As illustrated in figure 11, the LiDAR
produces accurate point clouds representing the structure of the tunnel, but
its tubular shape causes consecutive point clouds to have multiple valid align-
ment solutions along the direction of motion. This consequently makes the
odometry degenerate along the tunnel, producing an incorrect trajectory and
map. However, while the tunnel walls are geometrically self-similar, they
have enough texture for a visual-odometry method like ROVIO to work suf-
ficiently well. The tunnel sequence is therefore a good real-life illustrative
example for the efficacy of the proposed multi-modal method .

The sequence was recorded using a lightweight sensing platform mounted
on a research quadcopter. A Velodyne PuckLITE LiDAR running at 10Hz
was used for point cloud measurements, a FLIR BlackFly camera running at
20Hz for images and a VectorNav VN-100 IMU running at 200Hz for inertial
measurements. The recording was done in handheld configuration to avoid
dust being whipped up by the propellers and obscuring the camera. There
is no ground truth available for this sequence, but we can still evaluate the
results qualitatively and compare with satellite photos of the tunnel from
Google Earth. For further details on the dataset, see [20].

a) Image b) Point cloud c) LOAM-generated map

Close up

Figure 11: An example image (a) and registered point cloud (b) from one time
step in the tunnel sequence showing the challenging conditions LOAM faces due to
the geometrically homogeneous environment. The point cloud has no distinct geo-
metric features along the direction of the tunnel that could constrain the alignment
between consecutive frames to a single unique solution. This leads to degeneracy
in the estimated odometry and the resulting map generated by LOAM (c) is hence
much shorter than in reality and features geometric inconsistencies at the edges of
the tunnel.

34

Experimental Evaluation

4.2 Odometry front-ends

For these preliminary experiments, we used slightly modified versions of
ROVIO [1] and LOAM [42] as single-modality odometry front-ends. The
LOAM implementation is a research-implementation that uses a similar de-
generacy detection mechanism to that described in [40] to detect when it
enters a degenerate state. It provides this along with its odometry estimates
so that we can integrate them as health indicators like described in section
3.3. The ROVIO version used has been slightly modified to correct for a
time-alignment error between the IMU and camera streams. See table 2 in
appendix A for links to the individual software repositories where available.

The LOAM implementation we use has been extended in [20] for degener-
acy awareness. To see why explicit degeneracy awareness is needed to handle
LiDAR-odometry degeneracy, we must understand how LOAM’s pointcloud
alignment procedure works. LOAM uses a Levenberg-Marquardt-based op-
timization scheme for finding the best alignment between consecutive point
clouds [42]. LM, just like Gauss-Newton, approximates the Hessian with
the squared Jacobian matrix A>A. This matrix becomes rank-deficient in
case of degeneracy, which would make the regular GN system unsolvable.
LM, however ensures solvability, but will not step in unobservable directions
[25], hence causing LOAM to predict no forward motion. However, pre-
dicting no motion is still only one of an infinite number of solutions to the
ill-conditioned point cloud alignment problem, meaning this solution should
not be trusted. LOAM was therefore extended in [20] to heuristically de-
tect this degeneracy and pass through a camera-based odometry estimate
instead of the LiDAR-odometry. This scheme detects degeneracy by check-
ing the smallest eigenvalue λmin of the A>A matrix: If λmin falls below a
certain threshold, it indicates A>A is close to singular and the odometry
is hence treated as degenerate. In our system, we use the implementation
from [20], but do not configure it for camera-odometry pass-through since
we implement multi-modality in our GTSAM back-end instead. We use the
degeneracy messages it publishes to decide if LiDAR factors should be added
to the factor graph.

The complete system under evaluation is shown in figure 12 as a block-
diagram, complete with the data flow of the health messages and all sensors
used for the data collection. It is worth noting that we use the same IMU
data both for ROVIO’s visual-inertial odometry, and in the factor graph.
This kind of double inclusion of sensor data introduces correlations into the
estimation problem not reflected in the factor graph, which can produce
incorrect results. For the purposes of illustration however, this effect can be
neglected.

35

Experimental Evaluation

LiDAR
Velodyne Puck LITE

IMU
VectorNav vn-100

Camera
BlackFly

LOAM

Multi-modal fusion
GTSAM/iSAM2

Odometry

Odometry

Health status

Front-end Back-end

ROVIO

Accelerometer/gyro readings

Images

Point clouds

Fused odometry

Figure 12: Full block diagram showing the sensors used for recording the tunnel
sequence, along with odometry front-ends and the GTMSAM/iSAM2 back-end.

4.3 Single-modality performance on the sequence

To illustrate the need for multi-modality on this sequence, we show in figure
13 the trajectories generated from each single modality alone. The LOAM
odometry shows no forward movement between t = 40s and t = 80s. This is
reflected in the smallest eigenvalue of the A>A matrix dropping below the
degeneracy threshold as shown in figure 14. The figure also exemplifies how
the homogeneous geometry of the tunnel provokes this degeneracy, whereas
the more structure-rich geometry outside the tunnel does not. In contrast to
LOAM, the ROVIO odometry does well throughout the sequence aside from
drifting slightly.

0 20 40 60 80
y [m]

0

5

10

15

x
[m

]

ROVIO
LOAM

0 20 40 60 80 100 120

t [s]

0
20
40
60
80

di
st

an
ce

 [m
]

Figure 13: ROVIO vs LOAM generated trajectories on the tunnel sequence (left)
and the how the corresponding distance from starting position develops over time
(right). ROVIO tracks consistently through the entire tunnel sequence whereas
LOAM has a period of degeneracy between t = 40s and t = 80s where it registers
no forward movement.

36

Experimental Evaluation

0 20 40 60 80 100

t [s]

0

100

200

300

e
ig

e
n
v
a
lu

e
s
 o

f
L
O

A
M

 J
tJ

 m
a
tr

ix

41 2 3

41 2 3

Figure 14: Development of the first three eigenvalues of the A>A matrix in
LOAM’s LM procedure showing a period of degeneracy in the 40–80s interval (top)
and selected point clouds extracted at indicated timestamps, showcasing examples
of degeneracy and non-degeneracy (bottom). The pointclouds during degeneracy (1-
2) have multiple valid alignment solutions due to the tubular environment, whereas
the pointclouds during non-degenerate operation (3-4) are geometrically richer and
hence constrain the alignment problem better. This fact is reflected in the eigen-
values of A>A and if the smallest of these falls below a certain threshold (30 in
this case), the odometry is considered degenerate. The process is detailed further
in [20] and [40].

4.4 Multi-modal results

As indicated in figure 15, the LOAM/ROVIO fusion produces a more realis-
tic length estimate of the tunnel and effectively eliminates the inconsistent
geometry induced by the degenerate LiDAR odometry. This suggests that a
loose factor-graph based coupling of estimated odometries can add robust-
ness to situations of similar degenerate geometry provided the front-ends
have a means of detecting degeneracy.

4.5 Discussion

As is clear from figure 13, the ROVIO odometry is able to perform adequately
on the tunnel sequence, whereas LOAM is not. The point of illustrating this
is not to show that either modality is better than the other, but to demon-
strate that including multiple complementary modalities in a SLAM system
increases the overall robustness of the system. Our presented approach does
however require a way to detect degeneracy of each individual modality, so

37

Experimental Evaluation

a) Map generated by LOAM alone

b) Map obtained from visual-LiDAR-inertial fusion

c) Satellite photo

10m

Figure 15: To-scale comparison of maps generated from the tunnel sequence com-
pared to satellite images of the actual tunnel. The map generated by fusing LOAM
and ROVIO (b) does not have the geometrical inconsistencies as in the LOAM-
only map (a). We can also qualitatively verify that the scale is correctly estimated
by comparing with the same-scale satellite image of the tunnel (c) collected from
Google Earth. Grid square sizes in (a) and (b) are 10× 10 meters.

that degenerate measurements can be excluded from the optimization.
The accurate results in figure 15 demonstrates that the factor graph

framework enables gaining robustness even with a simple implementation.
No major modifications to the LOAM or ROVIO implementations were nec-
essary, and the factor graph facilitating the loose coupling is also relatively
simple. This approach hence makes the front-ends interchangeable and dif-
ferent off-the-shelf SLAM systems can be mixed and matched to obtain best
results. Moreover, the modality-agnostic nature of this approach opens up for
including other types of sensors as well, such as RGB-D cameras or thermal
cameras which also offer complementary properties to traditional sensors.

38

Conclusions and Discussion

5 Conclusions and Discussion

5.1 Conclusions

In this reporrt we surveyed some of the currently important frameworks
for SLAM, and presented a preliminary implementation based on these for
multi-modal operation. We have presented a loosely coupled fusion approach
based on factor-graphs that can combine odometry constraints from several
front-ends into a single joint pose-graph optimization problem. The sys-
tem can handle degeneracy in one of the modalities by excluding constraints
made by the degenerate modality from the factor graph. We have tested
our implementation on a dataset provoking a specific failure case of LiDAR
odometry and the results suggests that this approach can handle such de-
generate scenarios and hence increase overall robustness.

5.2 Loosely vs tightly coupled sensor fusion

While our method of loosely coupling two odometry streams allows handling
degeneracy in either sensor modality by falling back on the other, our solution
is far from optimal. Our approach of excluding degenerate constraints from
the factor graph has the adverse effect of throwing away useful information
produced by the degenerate modality. For instance, in the tunnel scenario we
analysed, the movement in the x-direction (forward through the tunnel) is
not observable from the LiDAR measurements alone, but movement in the y-
and z-directions in relation to the tunnel walls is. The LiDAR measurements
hence constrain the solution space well in the y-z-plane, but not along the
x-axis. If a second modality such as visual camera data could constrain the
problem in the x-direction, the joint problem would be well-conditioned.

The above discussion motivates using a tight coupling of the sensor
streams rather than our loosely coupled odometry fusion approach. In a
tight fusion, the map features used by the front-ends would be directly in-
cluded in the factor graph and all correlations between them would therefore
be considered [25]. That way, estimates of visual landmark positions could
influence the alignment of LiDAR point clouds, and vice versa. If done
correctly, problem configurations such as the tunnel sequence, where a sin-
gle modality degenerates, would be implicitly handled by the factor-graph
framework, as the non-degenerate modality would provide constraints where
the degenerate modality does not. That is not to say however that the tightly
coupled factor-graph formulation makes trivial the detection and handling
of degeneracy. One particularly challenging aspect of degeneracy handling
in factor-graphs stems from how linearization is performed. Degenerate vari-
able configurations, together with bad variable initialization can make the
linearization invalid. As an example, consider the initialization of a landmark
in a monocular vision system wherein the robot moves directly towards the
landmark. This problem is ill-conditioned since the depth of the landmark is

39

Conclusions and Discussion

unobservable. A bad initial guess for the depth could cause the linearization
point to be chosen far off the actual value, and subsequently throw off the
optimization. To prevent this, GTSAM implements a special type of fac-
tor called smart-factors, described in [4]. These factors allow incorporating
domain-specific knowledge for detecting and dealing with different types of
degeneracy. Using these factors means degeneracy will be handled within
the factors themselves, rather than on the factor-graph level, something [4]
argues makes the handling much simpler.

5.3 Boolean degeneracy vs partial degradation

The degeneracy handling we described in section 3 treats degeneracy as a
boolean state. That is, the modality in question is either degenerate or
healthy. The method defines an arbitrary threshold for the smallest eigen-
value involved in the optimization problem and flips the boolean degenerate
state only when that threshold is passed. This scheme, although simple to
implement, therefore disregards any notion of partial degradation, or a close-
to-degenerate system. Yet, figure 14 clearly shows the eigenvalues develop in
a smooth manner as the system transitions into degeneracy. This suggests
that a notion of partial degradation and degeneration could be formulated
and used as a weighting heuristic for how much a particular modality should
be trusted, similar to what is done in [40].

5.4 Future work

We believe a tight coupling of the sensor modalities will offer superior per-
formance to the loosely coupled approach presented here. In doing so, it
would be beneficial to investigate the effectiveness of the smart projection
factors included in GTSAM for handling visual landmarks. Additionally,
it could be useful to formalize novel smart-factors for representing LiDAR
measurements that can detect and handle different forms of degeneracy.

Another approach we are currently looking into for handling degeneracy
in a tightly coupled system is to rigorously or heuristically estimate the co-
variance matrices underlying the problem. Having a notion of the covariances
involved would make the fusion of the different modalities more meaningful.
If the covariances could also account for partial degeneracy, say by increas-
ing their magnitude in unobservable directions, they would in effect be able
to provide a smooth transition into degeneracy instead of the boolean state
we use. One of the key challenges with this approach is making the covari-
ances of different modalities correspond metrically, so they can be compared
without bias.

Finally, while this project has focused on LiDAR and visual modalities
only, for our future work we want to investigate including other modalities as
well. Thermal vision is one such modality that has shown promising results

40

Conclusions and Discussion

in subterranean environments [21]. Its ability to penetrate both obscurants
and darkness makes it directly complementary to vision and LiDAR. It would
therefore be of great interest to explore the merits of including this in the
joint optimization.

41

Abbreviations

6 Abbreviations

Table 1: Abbreviations

Abbreviation Meaning

COLAMD Column Approximate Minimum Degree
EKF Extended Kalman Filter
GNSS Global Navigation Satellite System
GTSAM Georgia Tech Smoothing and Mapping
IMU Inertial Measurement Unit
iSAM Incremental Smoothing and Mapping
KF Kalman Filter
LiDAR Light Detection and Ranging
MAP Maximum a posteriori
RHS Right Hand Side
SAM Smoothing and Mapping
SE(n) Special Euclidean Group n
SLAM Simultaneous Localization and Mapping
SO(n) Special Orthogonal Group n
VIO Visual-Inertial Odometry
VO Visual Odometry

42

Software Repositories

A Software Repositories

Table 2: Links to software repositories used for experiments

Repository Link Last commit at time of writing

Odometry fusion github.com/sigtot/odometry-fusion ae5c1658238b5a79fcde0e99c886145cc83b3b67

ROVIO
github.com/sigtot/rovio

(Fork of github.com/ethz-asl/rovio)
3792ebb81434d9b3ad87d6ff4cba1fb8b1405033

LOAM Private repository N/A

43

https://github.com/sigtot/odometry-fusion
https://github.com/sigtot/rovio
https://github.com/ethz-asl/rovio

References

References

[1] M. Bloesch et al. “Robust visual inertial odometry using a direct EKF-
based approach.” In: 2015 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). 2015, pp. 298–304.

[2] C. Cadena et al. “Past, Present, and Future of Simultaneous Local-
ization and Mapping: Toward the Robust-Perception Age.” In: IEEE
Transactions on Robotics 32.6 (2016), pp. 1309–1332.

[3] Carlos Campos et al. “ORB-SLAM3: An accurate open-source library
for visual, visual-inertial and multi-map SLAM.” In: arXiv preprint
arXiv:2007.11898 (2020).

[4] L. Carlone et al. “Eliminating conditionally independent sets in factor
graphs: A unifying perspective based on smart factors.” In: 2014 IEEE
International Conference on Robotics and Automation (ICRA). 2014,
pp. 4290–4297.

[5] H. Carrillo, I. Reid, and J. A. Castellanos. “On the comparison of
uncertainty criteria for active SLAM.” In: 2012 IEEE International
Conference on Robotics and Automation. 2012, pp. 2080–2087.

[6] Tim Davis et al. “A column approximate minimum degree ordering
algorithm.” In: ACM Trans. Math. Softw. 30 (Sept. 2004), pp. 353–
376.

[7] Frank Dellaert. Factor graphs and GTSAM: A hands-on introduction.
Tech. rep. Georgia Institute of Technology, 2012.

[8] Frank Dellaert and Michael Kaess. “Square Root SAM: Simultaneous
localization and mapping via square root information smoothing.” In:
The International Journal of Robotics Research 25.12 (2006), pp. 1181–
1203.

[9] Frank Dellaert, Michael Kaess, et al. “Factor graphs for robot percep-
tion.” In: Foundations and Trends R© in Robotics 6.1-2 (2017), pp. 1–
139.

[10] Ethan Eade. “Lie groups for 2d and 3d transformations.” In: ().

[11] Felix Endres et al. “An evaluation of the RGB-D SLAM system.”
In: 2012 IEEE International Conference on Robotics and Automation.
IEEE. 2012, pp. 1691–1696.

[12] Jakob Engel, Vladlen Koltun, and Daniel Cremers. “Direct sparse odom-
etry.” In: IEEE transactions on pattern analysis and machine intelli-
gence 40.3 (2017), pp. 611–625.

[13] C. Forster et al. “On-Manifold Preintegration for Real-Time Visual–
Inertial Odometry.” In: IEEE Transactions on Robotics 33.1 (2017),
pp. 1–21.

44

References

[14] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for
Autonomous Driving? The KITTI Vision Benchmark Suite.” In: Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2012.

[15] Giorgio Grisetti et al. “A tutorial on graph-based SLAM.” In: IEEE
Intelligent Transportation Systems Magazine 2.4 (2010), pp. 31–43.

[16] Alston S Householder. “Unitary triangularization of a nonsymmetric
matrix.” In: Journal of the ACM (JACM) 5.4 (1958), pp. 339–342.

[17] C. Jauffret. “Observability and fisher information matrix in nonlinear
regression.” In: IEEE Transactions on Aerospace and Electronic Sys-
tems 43.2 (2007), pp. 756–759.

[18] M. Kaess, A. Ranganathan, and F. Dellaert. “iSAM: Incremental Smooth-
ing and Mapping.” In: IEEE Transactions on Robotics 24.6 (2008),
pp. 1365–1378.

[19] Michael Kaess et al. “iSAM2: Incremental smoothing and mapping
using the Bayes tree.” In: The International Journal of Robotics Re-
search 31.2 (2012), pp. 216–235. eprint: https://doi.org/10.1177/
0278364911430419. url: https://doi.org/10.1177/0278364911430419.

[20] S. Khattak et al. “Complementary Multi–Modal Sensor Fusion for
Resilient Robot Pose Estimation in Subterranean Environments.” In:
2020 International Conference on Unmanned Aircraft Systems (ICUAS).
2020, pp. 1024–1029.

[21] Shehryar Khattak, Christos Papachristos, and Kostas Alexis. “Keyframe-
based thermal–inertial odometry.” In: Journal of Field Robotics 37.4
(2020), pp. 552–579.

[22] Hanme Kim, Stefan Leutenegger, and Andrew J Davison. “Real-time
3D reconstruction and 6-DoF tracking with an event camera.” In: Eu-
ropean Conference on Computer Vision. Springer. 2016, pp. 349–364.

[23] S. Kohlbrecher et al. “A flexible and scalable SLAM system with full
3D motion estimation.” In: 2011 IEEE International Symposium on
Safety, Security, and Rescue Robotics. 2011, pp. 155–160.

[24] R. Kümmerle et al. “G2o: A general framework for graph optimization.”
In: 2011 IEEE International Conference on Robotics and Automation.
2011, pp. 3607–3613.

[25] Stefan Leutenegger et al. “Keyframe-based visual–inertial odometry
using nonlinear optimization.” In: The International Journal of Robotics
Research 34.3 (2015), pp. 314–334.

[26] Todd Lupton and Salah Sukkarieh. “Visual-inertial-aided navigation
for high-dynamic motion in built environments without initial condi-
tions.” In: IEEE Transactions on Robotics 28.1 (2011), pp. 61–76.

45

https://doi.org/10.1177/0278364911430419
https://doi.org/10.1177/0278364911430419
https://doi.org/10.1177/0278364911430419

References

[27] Anastasios I Mourikis and Stergios I Roumeliotis. “A multi-state con-
straint Kalman filter for vision-aided inertial navigation.” In: Proceed-
ings 2007 IEEE International Conference on Robotics and Automation.
IEEE. 2007, pp. 3565–3572.

[28] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos.
“ORB-SLAM: a versatile and accurate monocular SLAM system.” In:
IEEE transactions on robotics 31.5 (2015), pp. 1147–1163.

[29] Raúl Mur-Artal and Juan D. Tardós. “ORB-SLAM2: an Open-Source
SLAM System for Monocular, Stereo and RGB-D Cameras.” In: IEEE
Transactions on Robotics 33.5 (2017), pp. 1255–1262.

[30] R. A. Newcombe et al. “KinectFusion: Real-time dense surface mapping
and tracking.” In: 2011 10th IEEE International Symposium on Mixed
and Augmented Reality. 2011, pp. 127–136.

[31] H. Rebecq et al. “EVO: A Geometric Approach to Event-Based 6-DOF
Parallel Tracking and Mapping in Real Time.” In: IEEE Robotics and
Automation Letters 2.2 (2017), pp. 593–600.

[32] Tixiao Shan et al. “LIO-SAM: Tightly-coupled Lidar Inertial Odometry
via Smoothing and Mapping.” In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE. 2020, pp. 5135–5142.

[33] Joan Solà, Jeremie Deray, and Dinesh Atchuthan. A micro Lie theory
for state estimation in robotics. Tech. rep. IRI-TR-18-01. Barcelona:
Institut de Robòtica i Informàtica Industrial, 2018.

[34] Hauke Strasdat, J.M.M. Montiel, and Andrew J. Davison. “Visual
SLAM: Why filter?” In: Image and Vision Computing 30.2 (2012),
pp. 65–77. url: http://www.sciencedirect.com/science/article/
pii/S0262885612000248.

[35] Robert E Tarjan and Mihalis Yannakakis. “Simple linear-time algo-
rithms to test chordality of graphs, test acyclicity of hypergraphs, and
selectively reduce acyclic hypergraphs.” In: SIAM Journal on comput-
ing 13.3 (1984), pp. 566–579.

[36] Sebastian Thrun. “Probabilistic Robotics.” In: Commun. ACM 45.3
(Mar. 2002), pp. 52–57. url: https://doi.org/10.1145/504729.
504754.

[37] Bill Triggs et al. “Bundle adjustment—a modern synthesis.” In: Inter-
national workshop on vision algorithms. Springer. 1999, pp. 298–372.

[38] Antoni Rosinol Vidal et al. “Ultimate SLAM? Combining events, im-
ages, and IMU for robust visual SLAM in HDR and high-speed scenar-
ios.” In: IEEE Robotics and Automation Letters 3.2 (2018), pp. 994–
1001.

46

http://www.sciencedirect.com/science/article/pii/S0262885612000248
http://www.sciencedirect.com/science/article/pii/S0262885612000248
https://doi.org/10.1145/504729.504754
https://doi.org/10.1145/504729.504754

References

[39] Oliver J Woodman. An introduction to inertial navigation. Tech. rep.
University of Cambridge, Computer Laboratory, 2007.

[40] J. Zhang, M. Kaess, and S. Singh. “On degeneracy of optimization-
based state estimation problems.” In: 2016 IEEE International Con-
ference on Robotics and Automation (ICRA). 2016, pp. 809–816.

[41] J. Zhang and S. Singh. “Visual-lidar odometry and mapping: low-drift,
robust, and fast.” In: 2015 IEEE International Conference on Robotics
and Automation (ICRA). 2015, pp. 2174–2181.

[42] Ji Zhang and Sanjiv Singh. “LOAM: Lidar Odometry and Mapping in
Real-time.” In: Robotics: Science and Systems. Vol. 2. 9.

47

	Introduction
	Solutions to the SLAM Back-end
	The SLAM Problem
	Solving SLAM With Filtering
	State representation
	State estimation
	Linearization
	Landmark initialization
	Benefits and limitations of filtering approaches

	Solving SLAM with Factor Graphs and Nonlinear Optimization
	Maximum a posteriori estimation
	Factorizing the MAP objective
	Non-linear least squares
	Gauss-Newton
	Levenberg-Marquardt
	MAP estimation vs the EKF

	GTSAM
	Motivation: The SO(3) manifold
	Lie theory
	Implementing new variable types in GTSAM
	Implementing new factors in GTSAM

	iSAM
	Square root SAM
	Incremental QR-updating with Givens rotations
	Variable reordering and relinearization

	iSAM2
	The Bayes tree
	Incremental inference with the Bayes tree
	Incremental reordering
	Fluid relinearization
	Partial variable updates

	Back-end for Resilient Multi-Modal SLAM
	Loosely coupled odometry fusion
	Integrating IMU data
	Detecting and handling sensor failure

	Experimental Evaluation
	Dataset and experimental setup
	Odometry front-ends
	Single-modality performance on the sequence
	Multi-modal results
	Discussion

	Conclusions and Discussion
	Conclusions
	Loosely vs tightly coupled sensor fusion
	Boolean degeneracy vs partial degradation
	Future work

	Abbreviations
	Appendix
	Software Repositories
	References

