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Abstract

Reliable and accurate simultaneous localization and mapping, or
SLAM, is a vital prerequisite for effective deployments of autonomous
systems that enable robots to map and navigate their surroundings,
even in a GPS-denied setting. While current state-of-the-art SLAM
systems are highly accurate and precise, most still struggle in sensor-
degraded environments, due to reliance on a single exteroceptive sensor
modality such as a camera or LiDAR. Resilience to such sensor degra-
dation could extend the reach of autonomous systems beyond what
is possible today, with applications ranging from subterranean oper-
ations to space exploration. It is essential for the success of this to
take advantage of multiple complementary sensors, thus providing re-
silience to single-sensor failure through the redundancy and resource-
fulness offered by additional sensor modalities. Motivated by this,
we present a semi-tight LiDAR-visual-inertial fusion system based on
the mathematical framework of factor graphs and the iSAM2 incre-
mental smoothing and mapping algorithm. Our contribution includes
a) a monocular visual frontend that enriches visual features with Li-
DAR depth, and b) an iSAM2-based sliding-window backend that fuses
the visual data with inertial measurements and odometry constraints
from a LiDAR odometry system. We test our proposed system on
the open Newer College dataset as well as in a degraded environment
where LiDAR-only localization fails due to self-similar geometry. Our
results suggest that a multi-modal approach can offer increased re-
silience to sensor degradation, motivating the need for further research
on multi-modal perception. The work presented in this thesis stands
as a preliminary effort to help develop a new tight-fusion paradigm for
multi-modal SLAM.

i



Sammendrag

Pålitelig og nøyaktig samtidig lokalisering og kartlegging (SLAM)
er en nødvendig forutsetning for vellykket bruk av autonome systemer,
som gjør det mulig for roboter å kartlegge og navigere omgivelsene sine,
uten bruk av GPS. Selv om dagens SLAM-systemer er svært nøyak-
tige og presise, sliter de fleste likevel i sensordegraderte miljøer, siden
de er avhengige av én enkelt eksteroceptiv sensormodalitet som for
eksempel et kamera eller en LiDAR. Motstandsdyktighet ovenfor slik
sensordegradering kan utvide horisonten til autonome systemer utover
det som er mulig i dag, og dermed muliggjøre alt fra underjordiske
operasjoner til romforskning. For å lykkes med dette er det nødvendig
å ta i bruk flere komplementære sensorer og dermed ta nytte av den
økte motstandsdyktigheten og redundansen tilleggssensorer kan tilby.
På bakgrunn av dette presenterer vi et semi-tett LiDAR-visuell-inertiell
fusjonssystem baser på det matematiske rammeverket som faktorgrafer
tilbyr og den inkrementelle glatting- og kartleggingsalgoritmen iSAM2.
Vårt bidrag er todelt og inkluderer a) en monokulær visuell fron-
tend som beriker visuelle landemerker med dybde fra LIDAR, og b)
en iSAM2-basert "bevegende-vindu" backend som fusjonerer den vi-
suelle dataen med inertielle sensormålinger og odometrifaktorer fra et
LiDAR-odometrisystem. Vi tester det foreslåtte systemet på det åpne
datasettet Newer College dataset og i et degradert miljø der lokaliser-
ing basert på LiDAR alene feiler på grunn av geometrisk selvlikhet i
omgivelsene. Resultatene våre tilsier at en multimodal fremgangsmåte
kan gi økt motstandsdyktighet ovenfor sensordegradering og motiverer
dermed videre forskning på multimodal persepsjon. Arbeidet presen-
tert i denne oppgaven er hovedsakelig en innsats for å utvikle et nytt
paradigme for tett koblet sensorfusjon.
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Introduction

1 Introduction

One of the primary challenges faced by autonomous robotic systems, is the
need for accurate and resilient perception. Of particular interest within the
field of robot perception is the ability to perform SLAM, or simultaneous
localization and mapping. The SLAM problem amounts to mapping the
environment of the robot while simultaneously estimating its location within
it. Solutions to this problem enable a wide range of applications such as
control, planning, mapping and environmental understanding. It is therefore
of paramount importance to solve the problem in a way that is both accurate,
resilient to challenging surroundings and—crucially—capable of real time
operation.

Within the field of simultaneous localization and mapping, a large body
of research has been dedicated to solutions with a single exteroceptive sen-
sor, such as a visual camera or a LiDAR sensor [4]. Many solutions have
also made use of inertial measurement units (IMUs) in conjunction with
these sensors [1, 31, 38]. Fusion of several exteroceptive sensors however still
presents an open and active research field. Highly complementary sensor
configurations such as LiDAR-visual or visual-thermal have shown promis-
ing results in enabling resilient perception, yet are still largely unexplored
in the literature. It is now undestood however, that exploiting such comple-
mentary configurations is the key to achieving true resilience in SLAM and
many such approaches have therefore been presented in recent years [22, 49,
42, 29].

Multi-modal sensor fusion systems can generally be categorized into ei-
ther loosely coupled systems or tightly coupled systems. In a loosely cou-
pled system, the localization problem is solved separately for each modality,
and the results subsequently fused. Tightly coupled systems instead opti-
mize over a joint problem comprising the measurements from all sensors.
This tightly coupled paradigm currently constitutes the majority of current
reseach, because, while it requires more computing power, it is generally
considered to provide superior results [6]. In the context of resilient percep-
tion, tight coupling enables using information from a partially failing sensor
modality, such as a LiDAR measuring a geometrically self-similar environ-
ment or a camera that is tracking a low number of features. A loosely coupled
system would in such cases be forced to turn off one of the modalities to avoid
deteriorating the fused result [29], but a tightly coupled system could instead
benefit from the additional information from the degraded sensor.

Because the SLAM problem is fundamentally of nonlinear nature, so-
lutions must be equipped with ways of handling the nonlinear, non-convex
optimization problem that arises. The extended Kalman filter was for many
years the dominating solution to this problem, however recent advances in
computer hardware has enabled solutions based on the more computationally
expensive, but also more accurate maximum a posteriori (MAP) optimiza-
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Figure 1.1: Example factor graphs for loosely coupled (left) and tightly coupled
(right) fusion. In the left figure, we show an interleaved pose graph with green
and blue poses corresponding to two different sensor modalities. The poses are
connected both with factors from their individual single-modality subsystems indi-
cated respectively with triangles and squares, and a motion model connecting the
consecutive variables. In the right figure, the factors from the two modalities are
instead measurements of the same underlying quantities: the landmarks l1 and l2.

tion [4]. This formulation is typically expressed graphically as a factor graph,
a graphical model that seamlessly incorporates the optimization variables,
measurements and the probabilistic relations between them. Factor graphs
are well suited for multi-modal SLAM as they naturally allow expressing
both loosely and tightly coupled sensor fusion formulations with ease, exam-
ples of which as are shown in Figure 1.1. Methods based on factor graphs
and MAP optimization solve the inference problem as a nonlinear optimiza-
tion problem and employ nonlinear solvers such as Levenberg Marquardt
[32] and Gauss Newton [37]. Many state-of-the-art algorithms today, fall
into this category [5, 22, 38, 40, 41, 48, 49], several of which make use of
the factor graph framework of Georgia Tech Smoothing and Mapping (GT-
SAM) [11]. The latter also includes the incremental smoothing and mapping
algorithm iSAM2 by Kaess et al, which exploits the sparsity of the SLAM
problem factor graph to save computation for large problem instances [28].

The contribution presented in this work is a LiDAR-visual-inertial odom-
etry system formulated as a factor graph in the GTSAM library. Our system
fuses odometry estimates from a LiDAR odometry and mapping (LOAM)
subsystem [53] together with LiDAR-depth-enriched visual landmarks and
preintegrated IMU factors [19] in a semi-tight coupling. The implementation
consists of a custom visual frontend and a sliding-window factor graph back-
end based on the iSAM2 framework [28]. We test our system on the open
source Newer College dataset [39] with and without aiding from LOAM, and
then present a simulated degeneracy study, where LOAM is artificially de-
graded for parts of the dataset. Finally, we test our system in a geometrically
self-similar environment where the LiDAR odometry is naturally degenerate.

The rest of this text is organized as follows. In Chapter 2 we present
related work to this thesis. Chapter 3 then presents the theory forming
the background for our work. In Chapter 4, our proposed approach to the
multi-modal fusion problem is presented, and in Chapter 5 we present an
experimental evaluation of our method. We finally end with discussion and
concluding remarks in Chapter 6.

2
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2 Related Work

2.1 Graph-Based SLAM

Our work builds on the many existing SLAM and odometry methods based
on factor graphs and nonlinear optimization. Within the field of computer
vision, the SLAM problem has for a long time been solved using nonlinear
optimization techniques similar to the graph-based approach we use. Here,
the problem is known as bundle adjustment (BA) and amounts to simultane-
ously estimating a set of camera poses and landmarks in the map observed
by the cameras. It is typically formulated as a maximum likelihood problem,
which is a close cousin of MAP estimation as we will see in Chapter 3 [24].
Advances in computer hardware have recently made solving this problem fea-
sible in a real-time setting. One of the first methods to do so was the work
of Mouragnon et al. [35] which solved the bundle adjustment problem over
a small set of local keyframes. Later, the highly successful parallel tracking
and mapping (PTAM) algorithm of Klein and Murray [30] solved the frame-
to-frame localization problem with nonlinear optimization and performed
full BA on a larger map of keyframes and landmarks. OKVIS by Leuteneg-
ger et al. [31] later extended the bundle adjustment problem by including
measurements from inertial measurement units (IMUs) in a tightly coupled
keyframe-based sliding window factor graph. This paradigm of tightly cou-
pling IMU and visual data in a joint factor graph has since become the
de-facto standard for formulations of visual-inertial-odometry [6], and many
of the recent works in this direction use similar approaches [5, 38, 40, 48,
49].

The work of Daellert and Kaess et al. on square root SAM [12] and the
subsequent iSAM [26] and iSAM2 [28] algorithms present ways of efficiently
solving the nonlinear MAP optimization problem by exploiting the sparsity
of the graphical model associated with the SLAM problem. While square
root SAM and iSAM based this on sparse matrix factorization methods,
iSAM2 operates directly on the underlying graphical models. The Bayes
tree datastructure underlying the method enables full MAP optimization
on large problem instances through caching and partial re-linearization, by
structuring the graphical model so that new updates only affect local vari-
ables. Recent methods such as Kimera [40] and VILENS [49] make use of
the efficient marginalization capabilities of the Bayes tree to maintain their
factor graph as a sliding window of states within iSAM2.

2.2 Loosely Coupled Lidar-Visual-Inertial Fusion

LiDAR and visual cameras are good candidates for fusion because of their
complementary properties [29]. We categorize these systems as either loosely
or tightly coupled depending on whether they fuse the results of standalone
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localization systems (loose coupling), or whether they optimize over a single
joint optimization problem that includes the sensor measurements directly
(tight coupling). Many loosely coupled methods use the well known LiDAR
odometry and mapping (LOAM) algorithm [53] based on point cloud scan
matching with optional IMU-based point cloud undistortion. One example
is V-LOAM, which adds a visual odometry system as a motion prior for the
odometry [52]. This is mainly done to improve localization performance, and
successfully does so as it currently ranks highest of the LiDAR solutions on
the KITTI odometry benchmark [21]. This approach adds no extra resilience
to LiDAR degradation however, as the visual odometry is only included as
a prior. Khattak et al. presented in [29] a degeneracy-aware variant of this
scheme which could heuristically detect degeneracy of the LOAM subsystem
and use a visual-inertial or thermal-inertial odometry estimate as a pass-
through in such cases, thereby adding resilience to either LiDAR or camera
failure. The recent work of LVI-SAM [42] proposes two tightly coupled sys-
tems, one LiDAR-inertial and one LiDAR-visual-inertial with depth-enriched
visual features. The final outputs of these systems are then fused in a loosely
coupled pose graph which is resilient to degeneracy of either modality. A
similar recent system is SuperOdometry [55], which also loosely couples the
outputs of individually tightly coupled LiDAR-inertial and visual-inertial
systems, to provide accurate and resilient perception without sacrificing ex-
tensibility.

2.3 Tightly Coupled Lidar-Visual-Inertial Fusion

Several tightly coupled Lidar-Visual-Inertial methods have recently been pre-
sented. Many methods make use of LiDAR point clouds to enrich visual land-
marks with depth measurements for tightly coupled LiDAR-visual-inertial
fusion, examples of which are LIMO [22], LVI-SAM [42] and VILENS [49].
This can improve localization performance and robustness and is not prone to
failure in geometrically self-similar environments because they do not rely on
point cloud scan matching. LIC-fusion and LIC-fusion 2.0 [57, 56] includes
LiDAR data as line and plane features extracted from the point clouds in
the estimation problem and minimize the point-to-line and point-to-plane
distances between these. VILENS [49] combines all these ideas into a single
unified factor graph including depth-enriched visual features, LiDAR line
and plane features and IMU factors.
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3 Theory

3.1 Notation

We define most notation on an as-needed basic, but summarize in this section
some of our broad notation characteristics used throughout.

Typefaces

For vector-valued quantities, we use bold typeface, e.g. x. Matrices are
denoted in uppercase X and scalars are denoted in regular typeface x. Sets
of variables are denoted in caligraphy style, X and index sets in sans-serif
style, X.

Quantities

We typically use the following symbols to refer to specific quantities: Robot
poses on the special euclidian group SE(3) are denoted with T , rotations are
denoted with R and translations with t. Measurements are denoted with z,
landmarks with l, factors with φ and timestamps with t.

Indices

Because there are many sets of different sizes to keep track of, we try to
stay consistent when indexing sets of the same quantities. For robot pose
timesteps we use k, so e.g. Tk denotes the k-th pose. For measurements and
corresponding factors, we use i so zi and φi denotes the i-th measurement
and factor, respectively. Landmarks are indexed with m and when in a
multi-modal context, modalities are indexed with s.

Coordinate Frames

Coordinate frames for rotations and SE(3) transformations are denoted with
subscripts such as RAB to describe the rotation of frame B expressed in frame
A. For vectors, we write the subscript on the left side to indicate what frame
it is in, e.g. Av is a vector in frame A. Furthermore, we denote with right
subscripts what frames the vector is pointing from and to, e.g. AvAB is a
vector from frame A to B, as seen in frame A. To disambiguate between other
subscript quantities, we consistently use capital letters to denote frames.

3.2 SLAM From a Maximum a Posteriori Perspective

The problem of simultaneous localization and mapping consists of estimating
the trajectory traversed by a robot as well as mapping its surroundings. The
problem is complex due to the need for exteroceptive sensors that provide only
information about the outside world and not the motion of the robot directly.
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Figure 3.1: A toy SLAM problem showing a ground robot traversing an envi-
ronment and receiving bearing-range measurements of nearby trees. Red dotted
lines indicate bearing-range measurements from a laser range-finder whereas black
arrows indicate integrated proprioceptive measurements from e.g. an IMU. The
figure is adapted from [13].

Such exteroceptive sensors, of which LiDARs and cameras are examples, are
necessary because proprioceptive sensors such as wheel encoders or inertial
measurement units (IMUs) must be integrated over time and hence introduce
considerable drift in a short amount of time. This results in a situation where
the sensors measure–directly or indirectly–the structure of the environment,
and the robot trajectory must be inferred from the estimated environment.

As an example, consider the toy SLAM problem presented in Figure 3.1.
This is the same example as the one used throughout [47], originally adapted
from [13]. In this example, a robot is traversing an environment and receiving
bearing-range measurements of trees around it as well as some kind of inte-
grated proprioceptive motion estimates. The SLAM problem here amounts
to finding the location of the trees and the complete trajectory of the robot.
In the SLAM literature, map features like the trees in this example are re-
ferred to as landmarks [4]. The fact that we use trees in this example is purely
for illustratory purposes, and landmarks can in principle be any measured
features of interest, as long as they satisfy the assumption of being stationary
in the environment [46]. The static nature of the landmarks means we only
need to represent them as a single variable in the estimation problem. The
robot pose on the other hand, which includes both the location and rotation
of the robot must be represented with one variable for each timestep, so
that the entire trajectory can be estimated. The complete system state here
hence consists of the two landmark locations l1 and l2 as well as the three
poses T1, T2 and T3. This state grows at every timestep, as a new pose is
added and possibly new landmarks if new trees are detected.

The SLAM problem as defined above can be formulated as a probabilis-
tic estimation problem where the past and current states of the robot, as
well as landmarks and other support quantities, are all treated as random
variables with a joint probability distribution [46]. The properties of this
joint distribution is determined by the collection of sensor measurements re-
ceived during operation. The posterior distribution, denotes the probability
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distribution over the states, given the measurements. In the remainder of
this section, we will see how finding the maximum of this posterior, in what
is known as maximum a posteriori or MAP estimation, leads to an accurate
estimate of the robot states. We will see how a Bayesian formulation al-
lows us to find the MAP estimate by optimizing over an objective based on
likelihood functions and how this can be decomposed through factorization
to a graphical model known as a factor graph. Finally, we will discuss how
nonlinear optimization must be employed to solve the factor graph due to
the nonlinearities inherent in robot localization.

The section is heavily based on section 2.3 in [47] and both formulations
and notation follows this quite closely. Additionally, the excellent tutorial
on factor graphs for robot perception by Daellert and Kaess [13] provides
the foundation for the theory in this section.

3.2.1 Bayesian Formulation

In general, the system states in the SLAM problem can be defined as a set of
state variables X containing poses and support variables such as landmark
locations. As an example, for the toy SLAM problem presented in figure 3.1,
X would be the set

X =
{
l1, l2, T1, T2, T3

}
. (3.2.1)

Likewise, sensor measurements are all grouped together into a set Z. The
posterior distribution is then defined as p(X|Z) and the MAP estimate as
the value of X that maximizes this posterior,

XMAP = arg max
X

p(X|Z). (3.2.2)

By application of Bayes’ rule, the posterior can be written as

p(X|Z) =
p(Z|X )p(X )

p(Z)
. (3.2.3)

Because the measurements Z are given, this can be further simplified into
the proportionality expression

p(X|Z) ∝ p(Z|X )p(X ). (3.2.4)

Note that forgoing the p(Z) term does not change the maximum, meaning
that

XMAP = arg max
X

p(Z|X )p(X ). (3.2.5)

As is standard in the estimation literature [13], we too will define the
notion of a likelihood function as any function l(X ;Z)1 that is proportional

1The X is placed before the Z in this notation to indicate that it is a function of the
states, while the measurements are fixed. The measurements define the function. They
are not an input to it.
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to p(Z|X ). With the likelihood function we can rewrite the proportionality
expression for the posterior as

p(X|Z) ∝ l(X ;Z)p(X ), (3.2.6)

and the maximum, still unchanged, as

XMAP = arg max
X

l(X ;Z)p(X ). (3.2.7)

A key property of likelihood functions which will become important later is
that, unlike probability distributions, they do not need to be normalized and
sum to 1.

We will shortly see how this formulation leads to the graphical framework
of factor graphs, but will first consider a different graphical model known as
a Bayesian network, or Bayes net. We consider this model both because it
serves as a stepping stone towards factor graphs but also because it is central
to the iSAM2 [28] algorithm which we will discuss in Section 3.4.1.

Formally, a Bayes net encodes a joint probability distribution with nodes
representing random variables and directed edges representing conditional
dependence relationships. We can find a Bayes net for the toy SLAM problem
by considering the joint distribution p(X ,Z). Because the measurements are
assumed independent, the joint distribution factorizes into

p(X ,Z) = p(T1)

× p(z1|T1, T2)p(z2|T2, T3)

× p(z3|T1, l1)p(z4|T2, l1)p(z5|T3, l2).

(3.2.8)

Here, the p(T1) term corresponds to the prior on the first pose and the
remaining conditional terms all correspond to measurements. The terms
on the second line represent integrated pose-to-pose motion measurements
which depend on two consecutive poses, forming a Markov chain. Likewise,
those on the third line represent landmark measurements and hence depend
on the landmark location and the pose it was observed in. This results in
the Bayes net shown in figure 3.2.

3.2.2 Factor Graphs

The Bayes net model provides an intuitive way to model the conditional
dependencies between variables, but as we will now see, factor graphs are a
better language specifically for SLAM. In the Bayes net, measurements and
system states are all treated as random variables in the network, even though
measurements are given and should be expressed as parameters, rather than
variables in the optimization problem. Additionally, as we have already
seen, we commonly need to consider likelihood functions that are not prop-
erly normalized probability distributions, and often are far from linear and
Gaussian.
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Figure 3.2: Toy SLAM problem represented as a Bayes net. Circle nodes represent
variables and rectangles represent measurements. The figure is adapted from [13].

To illustrate how non-Gaussian likelihood functions arise even under
Gaussian measurement noise, consider a bearing-only measurement z ∈
(−π, π] made by a sensor stationed at the origin measuring a landmark
l = [lx, ly] ∈ R2. Because the sensor is at the origin, we do not need to
consider its translational or rotational component in relation to the land-
mark. Instead the measurement model becomes simply,

z = h(l) + w = atan2(lx, ly) + w. (3.2.9)

Here, h( · ) denotes the measurement model while atan2 is the two-argument
arctangent function. The measurement noise w ∼ N (0, σ2) is zero-mean
Gaussian distributed with covariance σ2. The likelihood in this case is any
function proportional to p(z|l). Conditioning on the landmark like this re-
sults in the following Gaussian distribution

p(z|l) = N (h(l), σ2) =
1√

2πσ2
exp

{
− 1

2
‖ atan2(lx, ly)− z‖2σ2

}
. (3.2.10)

This distribution is Gaussian in z, but recall that z is a fixed measurement,
and we are really interested in looking at the distribution as a likelihood
function l(l; z) of the variable l, with z treated only as a parameter. In
this regard, (3.2.10) is clearly nonlinear and non-Gaussian, and could not be
included into a Bayes net. There is no problem however including this in a
factor graph, as we will now see.

The reason factor graphs are a better fit in this case is because they are
more general than Bayes nets and can model any factorizable function. This
means that we can define the factor graph as a function φ(X ) proportional to
the posterior p(X|Z) and maximise it to obtain the MAP estimate XMAP .

By conditional probability, the posterior can be obtained from the joint
distribution as

p(X|Z) =
p(X ,Z)

p(Z)
. (3.2.11)

Again, since the measurements are given, we can like in (3.2.6) rewrite the
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posterior as a proportionality expression with likelihood functions, i.e.

p(X|Z) ∝ p(T1)

× l(T1, T2; z1)l(T2, T3; z2)

× l(T1, l1; z3)l(T2, l1; z4)l(T3, l2; z5).

(3.2.12)

The factorized function of likelihoods and priors on the right hand side of
this expression, is the function we wish to express as a factor graph. We
define this function as

φ(X ) = φ1(T1)

× φ2(T1, T2)φ3(T2, T3)

× φ4(T1, l1)φ5(T2, l1)φ6(T3, l2)

(3.2.13)

and note that again, by proportionality, the maxima of the two objective
functions coincide, so that the MAP estimate is

XMAP = arg max
X

p(X|Z) = arg max
X

φ(X ). (3.2.14)

As with likelihood functions, the factors φi of this function do not take mea-
surements as arguments, and the notation reflects this. The measurements
instead shape the factor itself. This is why factors like φ2 and φ3 in (3.2.13)
are non-equal, φ2 6= φ3, even though they both take two poses as arguments.
Figure 3.3 shows the factor graph for the toy SLAM problem, as given in
(3.2.13).

When referring to factor graphs in the remainder of this text we implicitly
mean factor graphs in the sense described above: a factorization of a function
φ(X ) proportional to the posterior p(X|Z). For completeness however, we
will state the more general definition of a factor graph, as defined in [13].
A factor graph is an undirected bipartite graph (Φ,X , E) that encodes a
particular factorization of an arbitrary function φ(X ). It consists of factor
nodes φi ∈ Φ, variable nodes xj ∈ X and edges eij ∈ E . Edges are always

Figure 3.3: Factor graph representation of the toy slam problem. Large colored
nodes denote variables and small black nodes denote factors. The factor nodes are
labeled for clarity here, but this is often omitted. The figure is adapted from [13].
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between a factor and a variable node and never between two factor nodes or
two variable nodes. A factor φi is always a function of the variables adjacent
to it, Xi ⊂ X . The factor graph therefore defines the factorization [13]

φ(X ) =
∏
φi∈Φ

φi(Xi). (3.2.15)

As we have now seen, factor graphs allow us to pose the MAP optimiza-
tion problem as an maximization problem of a factorized function φ(X ).
This graphical model provides an intuitive understanding of the variables
involved and the dependencies between them. We have seen how defining
factors allows us to conceptualize measurements as constraints rather than
variables. This allows us to pose the MAP optimization problem as that of
smoothing a factor graph, an approach that has come to be known as the
smoothing and mapping solution to SLAM, that is now prevalent in many
state-of-the-art SLAM pipelines [11] [12] [26] [28]. But optimizing the factor
graph is often non-trivial due to the highly nonlinear factors that arise in
the SLAM problem. In the following section, we will therefore describe how
nonlinear optimization techniques are employed to obtain the MAP estimate.

3.2.3 Nonlinear Least-Squares and Nonlinear Optimization

Finding the MAP estimate by maximizing the nonlinear factor graph φ(X ) is
easier said than done, because it is a function of often hundreds or thousands
of variables, often highly nonlinear and contains many local maxima. In this
section, we will see how, under the assumption of Gaussian measurement
noise, the problem is equivalent to a nonlinear least-squares minimization
problem. We will then see how to solve this problem with nonlinear opti-
mization methods that repeatedly linearize the objective function, solve the
resulting linearized local problem, and update the global solution with the
result.

Nonlinear Least-Squares

It is not difficult to show that under Gaussian measurement noise, the MAP
optimization problem is equivalent to a least-squares optimization problem.
With Gaussian measurement noise, all factors can be written on the form

φi(Xi) ∝ exp
{
− 1

2
‖hi(Xi)− zi‖2Σi

}
, (3.2.16)

where hi is an arbitrary, possibly nonlinear measurement model and ‖ · ‖2Σi
is the squared Mahalanobis distance for a measurement with covariance Σi.
Taking the logarithm of this turns the product of exponentials into a sum of
exponents, i.e.

log
∏
zi∈Z

exp
{
− 1

2
‖hi(Xi)− zi‖2Σi

}
= −1

2

∑
zi∈Z
‖hi(Xi)− zi‖2Σi . (3.2.17)

11



Theory

This operation does not change the maximum because the logarithm is a
monotonically increasing function. Finally, scaling the result by −1

2 turns
this into a nonlinear least-squares minimization problem

XMAP = arg min
X

∑
zi∈Z
‖hi(Xi)− zi‖2Σi (3.2.18)

which can be solved by nonlinear optimization methods such as Gauss-
Newton or Levenberg-Marquardt.

Gauss-Newton

Gauss-Newton (GN) is an optimization method for solving nonlinear least-
squares problems that takes curvature into account by approximating the
Hessian. The basic algorithm iterates a sequence of three steps in order
to minimize the sum of squared residuals in (3.2.18). First, the objective
function is linearized at the current estimate to obtain a standard, linear
least-squares problem. Then, this linearized problem is solved using the
normal equations to obtain an update vector. Finally, the current estimate is
updated with the update vector, and the process repeats from the beginning.

For the linearization, we consider a single n-dimensional i-th residual

hi(Xi)− zi. (3.2.19)

We denote the current estimate as X 0, and the n-dimensional component of
this corresponding to the i-th residual as X 0

i . With this, a linearized version
of the residual at X 0

i is obtained as the first-order Taylor approximation

hi(Xi) = hi(X 0
i + ∆i) ≈ hi(X 0

i ) +Hi∆i. (3.2.20)

Here, Hi is the measurement Jacobian calculated at X 0
i as

Hi ,
∂hi(Xi)
∂Xi

∣∣∣∣
X 0
i

. (3.2.21)

Note that this linearization is possible only when X 0
i lies on an Euclidean

vector space. This is not always the case for the types of quantities we
need to optimize over in SLAM. In particular, the rotational component
of a 3D robot pose lies on the nonlinear manifold of the special orthogonal
group SO(3). One way to handle this is instead to define and linearize a
measurement model in the tangent space of the manifold. Because SO(3) is
a Lie group, this can be done using the Lie-group exponential map Exp( · )
and logarithmic map Log( · ). We refer the reader to [44] for the Lie-group
machinery needed for this, and [13] for how it is incorporated in Gauss
Newton or other nonlinear optimization methods.
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Inserting the linearized measurement model (3.2.20) into the nonlinear
least-squares objective (3.2.18), we obtain a linear least-squares problem

∆∗ = arg min
∆

∑
zi∈Z
‖hi(X 0

i ) +Hi∆i − zi‖2Σi

= arg min
∆

∑
zi∈Z
‖Hi∆i − (zi − hi(X 0

i ))‖2Σi .
(3.2.22)

Here, we define ∆∗ as the optimal update step obtained from solving the
complete linear least-squares problem. Note that ∆∗ and ∆ here are not
concatinated vectors of the individual update vectors ∆i, as these can have
overlapping variables. This is because any variable xj ∈ X may be involved
in multiple factors φi ∈ Φ.

Before we can solve the linear least-squares problem in (3.2.22) however,
we need to formulate it as a standard least-squares problem. To do this, we
use the same trick as in [13] which amounts to whitening the measurement
noise: The Mahalanobis norm for an error term e can be written as

‖e‖2Σi = e>Σ−1
i e =

(
Σ
−1/2
i e

)>(
Σ
−1/2
i e

)
= ‖Σ−1/2

i e‖22. (3.2.23)

Thus, by defining substitutions

Ai = Σ
−1/2
i Hi,

bi = Σ
−1/2
i

(
zi − hi(X 0

i )
)
,

(3.2.24)

we obtain an equivalent least-squares problem in standard form

∆∗ = arg min
∆

Σi‖Ai∆i − bi‖22. (3.2.25)

The n×n matrix Ai and the n-length vector bi here are respectively referred
to as the whitened Jacobian matrix and residual (or prediction error). By
collecting the Ai matrices into one large matrix and the bi vectors into a
large concatinated vector,

A =


A0 0 0

0
. . . 0

0 0 AN

 , b =


b0
...

bN

 , (3.2.26)

(assuming for the moment that we have N total residuals), we obtain a
standard least squared problem

∆∗ = arg min
∆

‖A∆− b‖22 (3.2.27)
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that can be readily solved by solving the normal equations. The normal
equations are defined by the expression

(A>A)∆∗ = A>b. (3.2.28)

The matrix on the left-hand-side here is referred to as the information matrix
[13] and is denoted

Λ , A>A. (3.2.29)

It can be seen as an approximation of the Hessian of the nonlinear problem.
Computing the update step using this matrix hence includes information
about the curvature of the function, which allows taking more accurate steps
without having to compute costly second derivatives.

The solution to (3.2.28) can be obtained either by inverting Λ, or as
described in [13] by factorizing it. With the solution ∆∗ obtained from the
linearized problem, the current estimate X 0 is updated as

X 0
i ← X 0

i + ∆∗. (3.2.30)

This linearize-solve-update process can be continued until a convergence cri-
teria is met, or a maximum number of iterations is reached. In applying
(3.2.30), we again assume X 0

i lives on a vector space. For quantities on
a Lie-group manifold such as SO(3), the estimate can instead be updated
using the exponential map

X 0
i ← X 0

i · Exp(∆∗), (3.2.31)

and for arbitrary differentiable manifolds, it can be applied using a retraction.
See [13] for more details on this.

Levenberg-Marquardt

The Levenberg-Marquardt (LM) algorithm extends upon the simple Gauss-
Newton scheme by adding a damping factor λ > 0 to the normal equations.
The augmented version of the normal equations solved in LM is

(A>A+ λdiag(A>A))∆∗ = A>b. (3.2.32)

This simple modification provides two benefits over the regular GN algo-
rithm. Firstly, the diagonal term λdiag(A>A) means the linear system can
always be solved for the update step ∆∗, even in the case of a singular or
near singular A>A. Secondly, the λ factor makes the method act like a trust-
region method. Large values of λ result in smaller steps, whereas smaller
values result in larger steps. This means the algorithm can act cautiusly: If
an update steps too far and increases the error rather than decreasing it,
the update is rejected, and λ is increased, resulting in a more cautius step
the next time around. At nominal updates where the error decreases as it
should, λ is decreased. This has the effect of making steps larger in flat
directions, and shorter in steeper directions [13].
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3.3 Multi-Modal Localization

In many robot applications, especially those in challenging environments, the
accuracy and resilience of the localization system can be increased through
the use of multiple sensors. This holds especially true if the sensors provide
complementary information, such as is the case for visual cameras and in-
ertial measurement units, because situations triggering failure in one sensor
might not do so in the other [31]. Such different sensor types are referred
to as sensor modalities, and when multiple different sensor modalities are
included in an estimation task, it is referred to as multi-modal2.

This section describes the theory underlying multi-modal localization in
a factor graph setting. We will discuss the general mechanics of tightly and
loosely coupled approaches, before first specifically considering the fusion
of exteroceptive sensors, and second inertial measurement units. Finally, we
will put this all together and describe the workings of a visual-LiDAR-inertial
localization and mapping system.

3.3.1 General Mechanics: Tight vs Loose Coupling

Multi-modal localization systems can be broadly categorized into two groups:
those that are tightly coupled, and those that are loosely coupled. There is
some consensus within the robotics community that tight coupling theo-
retically yields the most accurate and robust results, while loose coupling
sacrifices some accuracy for increased flexibility and more economical com-
putational requirements [8, 49]. These terms are sadly fuzzy terms, and
what some authors refer to as a tightly coupled system, others will refer to as
loosely coupled. For instance, the authors of LVI-SAM [42] refer to their sys-
tem as tightly coupled, even though their factor graph optimizes over odom-
etry estimates generated by separate LiDAR-odometry and visual-odometry
systems. Comparing this to a system like VILENS [49], where LiDAR land-
marks and visual landmarks are added as measurements to a combined factor
graph, one may argue that this latter approach is more tightly coupled than
the former.

Where the line goes exactly between a tightly coupled and a loosely cou-
pled system may be hard to define, but we can still define the characteristics
of a fully tightly coupled system and a fully loosely coupled system. In a
system with fully tight coupling, sensor measurements are directly fed into
the system and optimized over in a joint manner. Some preprocessing of
measurements may still be required before they can be included in the fac-
tor graph, such as detecting image corners or performing data association,
but apart from that, the sensor data is included as-is. In a system that is en-

2The usage of the term multi-modal here should not be confused with multi-modal
probability distributions, i.e. distributions with more than one mode (informally, having
multiple peaks).
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Figure 3.4: Tight (top) vs loose (bottom) coupling in sensor fusion systems. The
tightly coupled system fuses measurements directly from the sensors, whereas the
loosely coupled system fuses estimates from individual sensor-spesific estimators.

tirely loosely coupled however, sensor data from each individual sensor is fed
into a separate sensor-specific estimator, the output of which is included as
factors in the joint factor graph. Figure 3.4 illustrates this in block-diagram
form.

3.3.2 Loosely Coupled Exteroceptive Modality Fusion with Pose-
Graphs

For robot localization there are typically two types of sensors: exteroceptive
sensors, sensors that measure the external environment of the robot, and
proprioceptive sensors, which are sensors that measure things internal to the
robot. Among the exteroceptive type, we find sensors like cameras, LiDARs,
sonars and radar. In the proprioceptive group on the other hand, we have
accelerometers, gyroscopes and wheel encoders. A successful localization
system can not only rely on proprioceptive sensors, as when integrating the
measurements over time they quickly accumulate significant drift. Extero-
ceptive sensors however, anchor the robot in its surrounding environment.

Accuracy and robustness of the localization task can be improved by
fusing the measurements of multiple complementary exteroceptive sensors.
We will in this and the subsequent section therefore describe the major
paradigms for how multiple exteroceptive modalities can be fused. We will
first look at the loosely coupled approach, where each sensor stream is pro-
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cessed by an individual localization system, before the outputs of these sys-
tems are incorporated into a pose graph and solved for the fused result. In
the next section, we will contrast this with the more tightly coupled approach
where each exteroceptive modality produces landmarks that are included into
a bundle-adjustment optimization problem formulated as a factor graph.

Loosely Coupled Odometry Systems and Pose-Graph Optimization

The simplest, most plug-and-play approach to multi-modal exteroceptive fu-
sion is to loosely couple two or more odometry systems and combine their
results as factors in a pose-graph. An odometry system such as LOAM, a
LiDAR odometry system, or ROVIO, a visual odometry system, outputs at
each timestep an estimate of the robot pose. Since such systems will in-
evitably drift, the two odometry estimates will increasingly disagree with
each other. It therefore makes little sense to include the absolute pose esti-
mates directly into the factor graph. A better approach is to instead compute
the relative transformations between consecutive poses and include these as
between-factors. We will now see how to create such a between-factor, how
to include it in the factor graph, as well as how to handle when the different
odometry estimates are unsynchronized and arrive at different rates.

In a pose-graph setting, a pose between-factor is a factor φi(Tk, Tk+1)
between two pose variables Tk ∈ SE(3) and Tk+1 ∈ SE(3)3. The mea-
surement for this factor, zi ∈ SE(3) provides a transformation between the
aforementioned poses. The error vector for the factor is then computed as

ei = log(z−1
i T−1

k Tk+1) ∈ R6. (3.3.1)

This error is defined on the 6-dimensional tangent space of the SE(3) man-
ifold. The mapping from the manifold is done using the Lie-group log map
[11].

Adding multiple exteroceptive modalities to a pose-graph optimization
pipeline requires additional considerations due to the different frequencies of
the measurements. In fact, this is one of the benefits of multi-modal localiza-
tion in addition to increased resilience. It allows combining high-accuracy,
low-rate estimates with lower-accuracy, high-rate estimates, to produce a
high accuracy, high-rate result. We will now look at two ways of structuring
the pose graph for handling this, one which interleaves the measurements,
and one which uses interpolation to synchronize the measurements into a
single chain.

3In general, a between-factor can be defined for two variables of any type so long as a
concept of a between transformation can be defined on the type.
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Figure 3.5: Multi-modal pose-graph with interleaved measurements for a config-
uration with two exteroceptive modalities. Pose variables are colored either blue
or green depending on which modality they correspond to. The graph contains
both between-factors between variables of the same modality, in addition to a prior
factor on the first pose, and IMU factors between every consecutive pose.

Interleaved Measurement Pose-Graph

One way of fusing different-rate measurements is to form one chain of poses in
the factor graph for each modality. Graphically, this may look like the graph
shown in Figure 3.5. Whenever a new odometry measurement arrives, a new
pose variable is inserted into the graph, and connected with a between factor
to the previous pose variable from the same modality. Because estimates
from the other modalities may have arrived in the meantime, this previous
variable may not be the most recent pose. To handle this, the method needs
extra bookkeeping variables for holding the previous pose variable for each
given modality. If we define S ⊂ Z+ as an index set, with an index for every
modality, and let s ∈ S denote the index of a particular modality, we can let
Ts,prev be a bookkeeping variable for the most recent pose added for modality
s. Adding a new odometry measurement then amounts to the following three
operations

Φ← Φ ∪ {φi(Ts,prev, Tk+1), φi+1(Tk, Tk+1)} (3.3.2)
X ← X ∪ {Tk+1} (3.3.3)
Ts,prev ← Tk+1. (3.3.4)

Here, (3.3.2) updates the factor graph with the between factor φi(Ts,prev, Tk+1)
and the IMU factor φi+1(Tk, Tk+1), (3.3.3) adds the new pose Tk+1 to the
set of variables X, and (3.3.4) updates the bookkeeping variable Ts,prev. The
IMU factors added are necessary in order to connect the two "chains" of pose
variables. Without them, there would be nothing connecting the two chains,
and the drift present in each individual modality would manifest itself in
each chain. We will define this IMU factor properly in Section 3.3.4. Alter-
natively, if IMU or other proprioceptive measurements are not available, a
markov motion model could be used instead.

As discussed in [47], there are some edge-cases that must be considered
when applying this approach. One such case occurs if odometry estimates
arrive at practically the same time and IMU measurements are not available
for integration in between them. Another case is when one of the modalities
becomes unavailable for a while, due to e.g. sensor failure, before later
becoming available again. In that case, computing an SE(3) transform from
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Figure 3.6: Multi-modal pose-graph with synchronied measurements for a config-
uration with two exteroceptive modalities. Between-factors from the main modality
are shown as square nodes, whereas interpolated between-factors from the secondary
modality are shown as diamonds. The graph additionally contains a prior factor
on the first pose and IMU factors between every consecutive pose.

before the failure period to after, will yield wrong results, and a between
factor φi(Ts,prev, Tk+1) should not be added to the graph. For the sake of
brevity however, we will not repeat the discussion of these problems and
their solutions here, but instead refer the reader to [47] for the details. A
completely different approach, which does not suffer from the aforementioned
edge-cases, is to use interpolation to synchronize the pose-graph and create
a single chain. We describe this approach in the following.

Synchronized Pose-Graph with Interpolated Poses

The other way to handle the asynchronous odometry streams, is to define
one modality as the main modality and initialize new pose variables when-
ever its estimates arrive, while all secondary exteroceptive modalities are
included as between-factors between these pose variables. An example of
such a structure is shown in Figure 3.6. Because of the asynchronous nature
of the estimates, the secondary odometry must be synchronized in some way
so that the between-factors correspond to the same timestamps as the pose
variables. One way to do this is by means of interpolation, which we will
detail here.

For SE(3) poses, simple linear interpolation is not possible, as the poses
live on a nonlinear manifold. Instead, let us define an interpolation function
f : SE(3)×SE(3)×R which can interpolate between two SE(3) poses T1, T2

given an interpolation parameter t ∈ [0, 1] such that

f(T1, T2, 0) = T1,

f(T1, T2, 1) = T2.
(3.3.5)

Recall from the discussion of between-factors, that the between transform
T12 can be obtained as T12 = T−1

1 T2, such that

T1T12 = T2. (3.3.6)

There are several ways to define an interpolation that yields a pose which is
informally "a distance t along the way to T12". One way is to map T12 into
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the tangent space and apply a linear interpolation, before mapping it back
onto the manifold, i.e.

exp(t log(T12)). (3.3.7)

This yields an interpolation function

fLie(T1, T2, t) = T1 exp(t log(T12)). (3.3.8)

Formally, this interpolates the pose along a geodesic in the Lie group, and in
fact always yields the shortest transform [14]. An alternative interpolation is
that of quaternion SLERP, which we will define as fSLERP . This interpola-
tion transforms the rotational component of the pose along a shortest-path
geodesic in the group of unit quaternions SU(2). However, because the unit
quaternions map doubly to SO(3) (changing the sign of the quaternion yields
the same rotation), fSLERP may not yield the shortest rotation4[9]. Because
both interpolation schemes interpolate along a geodesic, they yield rotational
interpolations that have constant linear and angular velocity.

Using the interpolation function for SE(3) poses f , we can for any pose
variable Tk in the pose-graph, compute a corresponding measurement z̃k from
a secondary modality as an interpolation between the two measurements
closest in time to Tk. Let tk be the timestamp corresponding to Tk. We can
then obtain the measurements from the secondary modality immediately
before and after tk, which we will denote respectively as z− and z+ with
corresponding timestamps t− and t+. The interpolation parameter then
becomes

t =
tk − t−

t+ − t−
(3.3.9)

and z̃k can be obtained as

z̃k = f(z−, z+, t). (3.3.10)

Note that this assumes the latest measurement z+ exists. Practical imple-
mentations must of course wait with adding any factors based on z̃k until
z+ arrives.

With the above method for obtaining interpolated measurements for any
pose variable, we can create additional between-factors from the secondary
modality between any two pose variables Tk and Tk+1

5. To do this, we
obtain corresponding interpolated measurements z̃k and z̃k+1 and compute
the transform between them, yielding a between measurement

z̃i = z̃−1
k z̃k+1. (3.3.11)

This is then used to create a between factor φi(Tk, Tk+1) which is added to
the factor graph.

4It yields either the "short way" with a < 180◦ rotation, or "the long way" with a
> 180◦ rotation.

5These need not be in immediate succession of one another. Such additional between-
factors can be added between every second pose, every third pose or every n-th pose for
that matter, depending on the application and the type of modality used.

20



Theory

Effect of Covariance Matrices

The covariance matrix Σi ∈ R6×6 for each SE(3) between-factor φi deter-
mines how much each exteroceptive modality is weighted. We see this from
looking at the error term, which is minimized to obtain the MAP estimate

‖e‖2Σi = e>Σ−1
i e. (3.3.12)

It is clear from this that a smaller covariance is weighted more in the esti-
mation problem. Consequently, when multiple exteroceptive modalities are
added with between factors in a pose-graph, the fused estimates will tend to
follow most closely whichever modality has the smallest covariance matrix.

3.3.3 Tightly Coupled Exteroceptive Modality Fusion with Multi-
Modal Bundle-Adjustment

The other, more tightly coupled approach to the multi-modal fusion task is
to pose the optimization as a bundle adjustment (BA) problem with land-
marks extracted from both exteroceptive modalities. Bundle adjustment
is most commonly applied with camera sensors and is the foundation for
many visual SLAM algorithms based on nonlinear optimization [31, 36, 38].
Recently, a more general bundle adjustment has also been applied to Li-
DAR sensors [33, 49]. In its simplest form, bundle adjustment amounts to
jointly optimizing for the robot poses and landmark locations by minimizing
the reprojection error between reprojected landmarks and their measure-
ments[24]. For cameras, the reprojection error is computed by projecting
the 3-dimensional landmarks into the image using a known camera model.
We can define a similar notion of reprojection error for other modality types
as well. By generalizing also the landmarks to other variable types than
simple 3D points, for instance lines and planes, we obtain a general form of
bundle adjustment capable of multi-modal fusion.

Let S ⊂ Z+ be the index set of modalities that we wish to fuse, and let
Ls be the index set of landmarks for modality s ∈ S. Now for a particular
landmark lm, let further Tm be the set of robot poses with corresponding
indices Tm in which lm,m ∈ Ls was observed. In general, a landmark can
produce several observations in a single timestep, such as in LiDAR BA using
plane landmarks and minimizing point-to-plane distance, because several
points in the point cloud will be part of the same plane. We therefore define
a set of measurement indices Zm,k for measurements of lm in pose k. In
visual BA, this set will always be a singleton, but for LiDAR BA and in
general, it may contain multiple measurements. For the single landmark lm,
the bundle adjustment problem then amounts to

l∗m, T ∗m = arg min
lm,Tm

∑
k∈Tm

∑
i∈Zm,k

‖πs(lm, Tk)− zi‖2Σi , (3.3.13)
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Figure 3.7: Basic example factor graph for a bundle adjustment problem with a
single landmark observed from three poses (left) and a more general factor graph
for a multi-modal bundle adjustment problem (right). The different colored pose
and landmark nodes correspond to different modalities. Both graphs also contains
IMU factors and a prior factor on the first pose.

where Σi is the measurement covariance and πs is the reprojection function
for modality s which takes a landmark lm and a pose Tk and produces a
measurement prediction which we compare with zi to obtain the reprojection
error [24]. To extend this to the multi-modal context, we let T be the set
of all poses and L be the set of all tracked landmarks, regardless of their
modality. The full multi-modal bundle adjustment problem is then obtained
by additionally summing (3.3.13) over the modalities and all the landmarks,

L∗, T ∗ = arg min
L,T

∑
s∈S

∑
m∈Ls

∑
k∈Tm

∑
i∈Zm,k

‖πs(lm, Tk)− zi‖2Σi . (3.3.14)

Since (3.3.13) and (3.3.14) are nonlinear least-squares optimization prob-
lems, they correspond nicely to nonlinear factor graphs. Figure 3.7 shows
an example factor graph for both the basic version of the BA problem from
(3.3.13) and the more general multi-modal BA in (3.3.14). The factors that
connect landmarks to poses, φi(lm, Tk) all minimize the reprojection error
πs(lm, Tk)−zi. In order include an exteroceptive modality with this scheme,
three things must be defined: 1) the type of landmark lm to store in the
factor graph, e.g. 3D points for visual or planes or lines for LiDAR, 2) the
type of measurements zi received, e.g. 2D pixel locations for visual or 3D
points for LiDAR6, and 3) the reprojection function πs as this is dependent
on the landmark and measurement types.

Timing Considerations

The above scheme suffers from the same timing problems presented in sec-
tion Section 3.3.2, in that different modalities are inherently asynchronous

6Minimizing point-to-plane or point-to-line distances is not the only way to formulate
a LiDAR BA system. Extracting line and plane features from the raw point clouds in a
pre-processing step and treating these as measurements has also proved successful [49].
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in nature. The factor graph must therefore implement either an interleaved
asynchronous pose graph or apply synchronization mechanisms to synchro-
nize measurements to poses [49].

Resilience to Single-Modality Degeneracy

As explained in section Section 3.3.1, single-modality degeneracy can occur
if not enough information from that modality is available to constrain the
robot pose. In a loosely coupled context where each modality alone must
be able to produce a valid robot trajectory, a degenerate modality must
be turned off so not to deteriorate the fused result. In the multi-modal
BA scheme presented here however, the measurements from the degenerate
modality still provide useful information to the problem. In particular, the
situation occurs if the set of landmarks for modality s ∈ S observed in pose
k ∈ T, Ls,k is non-empty, yet can not alone constrain all poses Tm for all
landmarks lm ∈ Ls,k in (3.3.13) to a unique solution. Combined with the
other modalities in S however, the combined set of visible landmarks Lk does
constrain the solution. This results in a natural resiliancy to degeneracy
without special treatment [49].

3.3.4 Inclusion of Inertial Measurements

So far, we have mentioned inertial measurements and IMUs (inertial mea-
surement units) on several occasions without properly defining the charac-
teristics of these sensors or how to include them into the factor graph. This
section therefore explains the workings of IMUs and why they are beneficial
to the multi-modal sensor fusion problem.

An IMU is a proprioceptive sensor, meaning it provides information about
the internal motion of the robot directly, without having to infer it from
exteroceptive measurements of the surroundings. It is common for IMUs to
include an accelerometer and a gyroscope [50], so when referring to IMUs in
this text we mean a unit comprising these two sensor types.

The reasons for including such proprioceptive measurements in the multi-
modal localization problem are plentifold. Firstly, these sensors are comple-
mentary to the exteroceptice sensors commonly used in SLAM. During rapid
motion for instance, cameras suffer due to motion blur and LiDARs suffer
due to point cloud distortion. An IMU can complement both these chal-
lenging scenarios by making the rapid motion of the robot observable while
not introducing considerable drift due to the short-term motion [31, 53]. A
second benefit of IMUs is the high measurement frequency that they often
provide. This is beneficial for control algorithms since they typically require
high rate estimates [40]. A third and final benefit of IMUs is that, due to im-
provements in IMUs of the MEMS kind (microelectromechanical systems),
they are now generally available at low cost and with low footprint [50],
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making them ideal for handheld devices or small, highly mobile robots such
as micro aerial vehicles (MAVs).

Motion Model Formulation and Integration

An IMU measures acceleration and angular velocity of the robot, so to ob-
tain pose estimates, the measurements must be integrated over time. This
integration is the major source of the rapid drift present in inertial-only
navigation and minimizing this drift requires estimating the inherent biases
associated with the accelerometer and gyroscope. Since these biases are un-
known, slowly varying quantities, they too must be estimated in addition to
the robot motion [50]. We now formulate the state representation, kinematic
motion model and integration required to obtain robot pose estimates while
accounting for the biases. The notation and derivation lends heavily from
the seminal paper about on-manifold preintegration theory by Forster et al
[19].

As in [19], we define the acceleration Wa(t) ∈ R3 of the body expressed in
the world frame W and the angular velocity BωWB(t) ∈ R3 of the robot body
frame B relative to W expressed in B. The IMU measures these quantities,
but its readings are corrupted by the biases ba(t),bg(t) and additive white
noise components wa(t) ∼ N (0,Σa),wg(t) ∼ N (0,Σg) (superscripts a and g
respectively denote accelerometer and gyroscope), so that the measurements
become

Bã(t) = R>WB(t)(Wa(t)− Wg) + ba(t) + wa(t), (3.3.15)

Bω̃WB(t) = BωWB(t) + bg(t) + wg(t). (3.3.16)

Here Wg is the constant, known gravity vector and RWB(t) is the rotation of
the body B expressed in the world frame W [19]. Note that both measure-
ments are expressed in B. This is because the IMU provides measurements in
relation to its own frame, and we are assuming for simplicity that the IMU
frame coincides with B.

We now define the motion model which relates the robot pose TWB =
(RWB,Wp) to the acceleration and angular velocity. For the linear part of
the pose, we have the familiar equations

Wv̇(t) = Wa(t), Wṗ(t) = Wv(t), (3.3.17)

where Wṗ(t) ∈ R3 is the velocity of the robot in frame W [19]. For the
rotational component, the angular velocity BωWB(t) = [ω1(t), ω2(t), ω2(t)]>

is applied as a skew-symmetric matrix

[BωWB(t)]× =

 0 −ω3(t) ω2(t)
ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0

 . (3.3.18)
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And the derivative is obtained by compounding with the current rotation,
i.e. [15, 19]

ṘWB = RWB[BωWB(t)]×. (3.3.19)

The biases are also time varying quantities. They vary slowly and are typi-
cally modeled as a random-walk process, i.e.

ḃa(t) = wba(t), ḃg(t) = wbg(t), (3.3.20)

where wba(t) ∼ N (0,Σba) and wbg(t) ∼ N (0,Σbg) are respectively the ac-
celerometer and gyroscope continuous-time additive white noise components
that drive the random-walk process [19, 50].

The motion model (3.3.17) and (3.3.19), can be discretized and integrated
in order to obtain pose and velocity estimates for the robot. Assuming that
Wa(t) and BωWB(t) are constant within the timespan of two IMU measure-
ments, [t, t+∆t], we can do as in [19] and define an Euler integration scheme

RWB(t+ ∆t) = RWB(t) exp(BωWB(t)∆t).Wv(t+ ∆t) = Wv(t) + Wa(t)∆t

Wp(t+ ∆t) = Wp(t) + Wv(t)∆t+
1

2
Wa(t)∆t2

(3.3.21)
In (3.3.21), the integration is applied in the SO(3) tangent space using the
exponential map, but other formulations are also possible, e.g. using quater-
nions [31, 38]. Inserting (3.3.15) and (3.3.16) into the above, yields an inte-
gration scheme based on the IMU measurements

RWB(t+ ∆t) = RWB(t) exp((Bω̃WB(t)− bg(t)−wgd(t))∆t).

Wv(t+ ∆t) = Wv(t) +RWB(t)(Wã(t)− ba(t)−wad(t))∆t

Wp(t+ ∆t) = Wp(t) + Wv(t)∆t+
1

2
Wg∆t2

+
1

2
RWB(t)(Wã(t)− ba(t)−wad(t))∆t2

Here, wad(t) and wgd(t) are discrete-time variants of the continuous-time
noise functions wa(t) and wg(t). See [19] for details of the relation between
these.

The bias model can also be discretized to give

ba(t+ ∆t) = ba(t) + wbad(t)

bg(t+ ∆t) = bg(t) + wbgd(t).
(3.3.22)

Again, wbad(t) and wbgd(t) are discretized versions of the corresponding
continuous-time noise functions [19].
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Exteroceptive Fusion with Preintegrated IMU-Factors

In the factor graphs for multi-modal exteroceptive fusion we have shown so
far, such as e.g. Figure 3.5, we have included partial "IMU factors" between
pose variables. We will now use the formulation above to formulate real IMU
factors and show how they can be included into a multi-modal localization
factor graph.

Including inertial measurements in the multi-modal factor graph requires
defining new types of variables apart from the robot poses and support vari-
ables related to exteroceptive sensors. This is because the IMU integration
also requires estimating the biases and velocities. This results in at least
three variables for each timestep k: a pose Tk ∈ SE(3), a velocity vk ∈ R3

and an IMU bias bk ∈ R6.
A naive way to include the IMU into the factor graph could be to add new

variables for each incoming measurement into the graph, and then apply the
integration scheme (3.3.22) to obtain a factor to connect with the previous
set of variables. Considering however that IMUs can easily produce sev-
eral hundred measurements every second, it becomes clear that this scheme
would add too many variables into the graph and performance would suffer
[19]. As suggested in [19, 34], a better approach is to summarize the IMU
measurements between exteroceptive measurements, e.g. between camera
frames.

Integrating (3.3.22) directly to form an IMU factor between frames k
and k + 1 is not sufficient. This is because, in a factor graph smoothing
setting, past poses, velocities and biases could be changed as a result of the
optimization. The integration in (3.3.22) would then have to be recomputed
with the new values of RWB(t), Wp(t), Wv(t), ba(t) and bg(t). This has
prompted the need for a preintegrated IMU factor, which integrates the
measurements between frames into a single factor that is independent of the
linearization point. This amounts to defining the integration in a local frame
[19]. One such scheme was first presented in [34] using Euler angles and then
later refined to use on-manifold integration in [19]. Many SLAM algorithms
have since made use of this on-manifold IMU preintegration scheme including
[5, 38, 40, 42, 49].

For the sake of brevity, we will not include the details of Forster et.
al.’s on-manifold preintegration scheme here and instead refer the reader to
[19]. We will however state the resulting preintegrated measurements and
the preintegrated measurement model and show schematically how the IMU
factors are included in the factor graph.

Considering a set of IMU measurements obtained at times k = i, ..., j−1,
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[19] defines the following preintegrated measurements:

∆R̃ij =

j−1∏
k=i

Exp((ω̃k,b
g
i )∆t)

∆ṽij =

j−1∑
k=i

∆R̃ik(ãk − bai )∆t

∆p̃ij =

j−1∑
k=i

3

2
∆R̃ik(ãk − bai )∆t

2.

(3.3.23)

Notice that the measurements are relative motion increments, and not de-
fined at any particular rotation, position or velocity. The expression does
however include the bias terms, which could change during the optimiza-
tion. Instead of re-integrating the measurements to perform such updates,
[19] applies bias updates with a first order Taylor expansion.

With the preintegrated measurements (3.3.23), [19] defines the following
preintegrated measurement model:

∆R̃ij = R>i Rj Exp(δφij)

∆ṽij = R>i (vj − vi − g∆tij) + δvij

∆p̃ij = R>i (pj − pi − vi∆tij −
1

2
g∆t2ij) + δpij

(3.3.24)

This relates the actual poses, velocities and biases at k = i and k = j, with
the preintegrated measurements between them. The noise quantities δφij ,
δvij and δpij are obtained and propagated from the IMU noise characteristics
Σa, Σg, Σba, Σbg. See [19] for the details of this.

With the preintegrated measurement model (3.3.24), we can define a
15-DoF residual for fitting the involved poses, velocities and biases to the
IMU measurements. In addition, a 15 × 15 covariance matrix can be de-
fined from the propagated noise terms. Refer to [19] for the expressions for
this. Together, the residual and covariance forms a 6-way combined IMU fac-
tor connecting six variables φIk,k+1(Tk, Tk+1,vk,v,k+1 ,bk,bk+1). Figure 3.8
shows such factors connecting the poses in Figure 3.5.

3.4 Backend for Incremental Graph-Based SLAM

The theory we have presented so far has not addressed the incremental na-
ture of SLAM. There are two aspects to this that must be considered. Firstly,
because new information arrives with every timestep, the full factor graph
grows ever larger. Memory and computing power is not infinite, so the back-
end needs a way to bound the problem size. Secondly, the SLAM problem
is inherently sparse in nature. Indeed, in a robot exploration task, mea-
surements in one part of the environment will not be highly correlated with
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Figure 3.8: Figure 3.5 with preintegrated combined IMU factors. The factor
graph includes both pose, velocity and bias variables, all connected with 6-way
IMU factors. The figure is adapted from the previous work [47].

measurements from a completely different part of the environment. Exploit-
ing this sparsity is key to achieving performant smoothing solutions to SLAM
[13].

We will in this section look at two methods which facilitate incremental
graph-based SLAM. First, we will consider a family of algorithms known as
incremental smoothing and mapping algorithms which exploit sparsity in the
SLAM problem to avoid relinearizing distant parts of the problem [26, 28].
Secondly, we will look at fixed-lag smoothing, a method for bounding the
problem size by considering only a sliding window of states.

3.4.1 iSAM2 and the Bayes Tree

This section presents the iSAM2 algorithm by Kaess et al. [28], an algorithm
which has become increasingly popular as a backend for many state-of-the-
art SLAM systems based on factor graphs and nonlinear optimization [20,
40, 42, 49]. We present only a high level overview of iSAM2 and refer the
reader to [28] and [13] for details. In addition, this section lends heavily from
section 2.6 in [47] which presents the same topic.

Square Root SAM and iSAM with QR-Updating

To begin our discussion of iSAM2, we present its predecessor algorithms
square root SAM (or simply SAM) [12] and iSAM [26].

The main idea in SAM lies in how the sparsity of the measurement Jaco-
bian A for the linearized standard least-squares problem (3.2.27) is exploited
to efficiently solve the normal equations (3.2.28) without directly inverting
the information matrix A>A [12]. Instead of linearizing, we factorize the
information matrix as

A>A = R>R (3.4.1)

where R is the upper-triangular square root matrix, sometimes called the
square root information matrix, giving square root SAM its name. Such
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a factorization can be obtained with e.g. Cholesky factorization or QR-
factorization. With QR-factorization, instead of computing the information
matrix, we factorize A itself. Assuming for now that A is m× n, we obtain

A = Q

[
R
0

]
, (3.4.2)

with Q ∈ Rm×m an orthogonal matrix. Defining also d ∈ Rn, e ∈ Rm−n as[
d
e

]
= Q>b (3.4.3)

and exploiting the orthogonality of Q, the least squares cost becomes

‖A∆− b‖22 = ‖Q>A∆−Q>b‖22 = ‖R∆− d‖22 + ‖e‖22. (3.4.4)

To minimize this, we can thus ignore the separated ‖e‖22 term and only solve
by back-substitution the triangular system [12]

R∆∗ = d. (3.4.5)

While the SAM scheme presented above benefits from being solved with
simple back-substitution rather than forming and inverting the large infor-
mation matrix A>A, it still suffers in an incremental setting because each
iteration requires recomputing the R matrix from the augmented A matrix,
and redoing the back-substitution. iSAM [26] improves on this by updating
R directly using QR-updating. To add a new measurement to the system,
A must be augmented with a new row r>, according to

A′ =

[
A
r>

]
. (3.4.6)

However, noting that we can append the same row to the QR factorization,

A′ =

[
A
r>

]
=

[
Q

1

][
R
r>

]
, (3.4.7)

thus obtaining an almost triangular, Hessenberg matrix [R, r>]>. To make
this triangular again, and hence obtain a proper triangular factor matrix R′,
we can apply a sequence of Givens rotations to [R, r>]>,

R′ = Jn...J1

[
R
r>

]
. (3.4.8)

Informally, each Givens rotation "moves" one element from below the diag-
onal into the elements above the diagonal. At most n such Givens rotations
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are required, but as noted in [26], the number is usually much lower since
r> usually only contains a few non-zero values at the end. The notable ex-
ception to this is when a robot undergoes a loop closure by returning to a
place already visited. In this case, correlations spanning far back into the
history are introduced. This both requires a number of Givens rotations in
general proportional to n, and introduces fill-in into the R matrix, making
it significantly less sparse. To minimize the fill-in, a good variable ordering
is required, and the variables must be reordered periodically to accomodate
changes in the factor graph structure. In iSAM, after reordering the vari-
ables, the QR-factorization must be recomputed from scratch [26]. We will
return to variable ordering while discussing iSAM2 in the following.

The QR-updating scheme presented above that represents the main work-
ings of iSAM only apply to the linearized version of the otherwise nonlinear
least-squares problem (3.2.18). As a result, the problem must be periodically
relinearized and R recomputed from scratch [26]. Not only is it sub-optimal
to only relinearize periodically (instead of every iteration), but it is slow
when it is finally done [28]. This has led to the development of the iSAM2
algorithm [28], which is able to relinearize and reorder partially, thus avoid-
ing periodic relinearization and reordering steps.

iSAM2 and the Bayes Tree

iSAM2 addresses the shortcomings of iSAM by departing from the realm of
sparse matrix factorization and instead working directly on graphical models.
The graphical model underlying iSAM2 is the Bayes tree, a tree representa-
tion of a Bayes net. By operating on the Bayes tree directly, relinearization
and reordering can be done partially, allowing for fast computation at every
iteration [28].

The Bayes tree structure is obtained by first converting the factor graph
into a chordal Bayes net, using the elimination algorithm, then converting the
result into a Bayes tree by discovering its cliques. The elimination algorithm,
as described in [28], recursively converts a factor graph φ(X ) =

∏
i φi(Xi)

into a Bayes net. Recalling from Section 3.2.1, a Bayes net defines a product
of conditional and prior densities. The resulting Bayes net only contains
densities on the variables X , unlike the Bayes nets we saw in Section 3.2.1
which also contained the measurements Z.

The elimination algorithm begins by considering the first variable in the
ordering, xj . We define the separator Sj as the set of variables adjacent7 to
xj in the graph and the joint factor ψ(xj ,Sj) as the product of all factors
involving xj . The joint factor ψ(xj ,Sj) is then factorized into a density and

7Adjacent variables are here taken to mean variables which share a factor with xj ,
rather than the general graph-theoretic term of node adjacency. This is because as ex-
plained in Section 3.2.2, variable nodes can strictly speaking only be adjacent to factor
nodes in a factor graph.
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Figure 3.9: The Bayes net for the toy SLAM problem resulting from eliminating
the factor graph in Figure 3.3 with the ordering l1, l2, T1, T2, T3. The directed
arrows indicate dependence relationships between variables, e.g. l1 depends on T1
and T2. The figure is adapted from [28].

a new factor on the separator τ(Sj),

ψ(xj ,Sj) = p(xj |Sj)τ(Sj). (3.4.9)

The density p(xj |Sj) is here the first density in the Bayes net. The elimina-
tion algorithm then recursively calls on the factor graph formed by removing
the factors making up ψ(xj ,Sj) from φ(X ) and adding in the new factor
τ(Sj), starting this time on the next variable in the ordering. The process
completes when reaching the last variable in the ordering, at which point the
separator Sj is the empty set, and the elimination returns a single prior on
the last variable [28].

As an example, consider the toy SLAM problem presented in Figure 3.3.
This factor graph, if eliminated with the ordering l1, l2, T1, T2, T3 produces
the Bayes net

p(X ) = p(l1|T1, T2)p(l2|T3)p(T1|T2)p(T2|T3)p(T3). (3.4.10)

Figure 4 in [28] shows graphically how each step in the elimination algorithm
gradually converts the factor graph for this example into the Bayes net, one
variable at a time. In addition, Figure 3.9 shows the resulting Bayes net.

The Bayes net resulting form the elimination algorithm is chordal. This
means that each cycle of more than three nodes has a chord, i.e. an extra
edge connecting two variables in the cycle [13]. Any chordal graph can be
converted to a clique tree or junction tree, by discovering its cliques [28].
The fundamental property of clique trees is that they have one node for each
clique in the Bayes net. The Bayes tree is a directed variant of this type of
tree that preserves information about elimination order and conditioning.

For the Bayes tree, we define three sets of variables for each node: the
clique Ck, the separator Sk which is the intersection Ck∩Πk between the clique
Ck and its parent clique Πk, and the frontal variables Fk = Ck\Sk, which are
those that remain. Each node in the Bayes tree defines a conditional density
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p(Fk|Sk) and the complete Bayes tree then defines the following joint density

p(X ) =
∏
k

p(Fk|Sk), (3.4.11)

where for the root node, with Sk empty, the conditional becomes only a
simple prior p(Fk) [28].

The constructed Bayes tree is actually equivalent to the QR-factorization
performed in iSAM. As a result, the solution ∆∗ can be obtained in the same
way: by back-subtitution. In the Bayes tree, this amounts to one pass up
from the leaf nodes to the root, in elimination ordering to define the condi-
tional densities, and one pass down again to retrieve the optimal assignments
for ∆∗. The upwards pass is already done as part of the elimination, while
the downward pass is equivalent to solving the triangular system (3.4.5) with
back-substitution. For that, instead of beginning at the bottom of an upper
triangular matrix R and moving upwards, using the results from previous
rows for subsequent computations, the back-substitution in the Bayes tree
works by moving downwards from the root node, using results from previous
nodes for subsequent nodes conditioned on them [28].

The Bayes tree datastructure shines in the context of incremental SLAM
because it allows incremental inference and reordering, as well as fluid relin-
earization of variables and effective variable caching. We have already seen
regular iSAM perform incremental inference. As new measurements come in,
the R matrix must not be recomputed from scratch, but can instead be QR-
updated to introduce the new measurements. The same applies to iSAM2.
Here, only the variables affected by a new factor and those above them in
the tree need to be reeliminated. All remaining variables downwards in the
branches remain unchanged, as these were eliminated before the affected
variables in the ordering [28]. This usually results in only a few variables
being modified with every increment, except when a factor is added between
variables in separate branches, such as in case of a loop closure. In such a
case, both branches must be re-eliminated eliminated to account for the new
correlation [28].

As new variables are added to the problem, or new factors between ex-
isting variables, the Bayes tree may need reordering. This is because the
elimination order determines how much fill-in8 results in the Bayes tree.
Both iSAM and iSAM2 therefore makes use of the column approximate min-
imum degree ordering algorithm (COLAMD)[10] to obtain an ordering that
reduces fill-in. Because in SLAM, new measurements are more likely to af-
fect recent states, they both impose constraints on the ordering, forcing the
most recent states to the end of the ordering and hence the top of the tree.
This constrained COLAMD (CCOLAMD) algorithm leads to faster infer-
ence times at the cost of slightly more fill-in [26, 28]. The benefit of the

8The concept of fill-in here is equivalent to fill-in in the R matrix for iSAM and a denser
(more connected) Bayes net for iSAM2, hence the shared terminology
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Bayes tree for ordering, is that reordering can be performed on only a sub-
set of the variables that need it, leaving the remaining variables untouched.
iSAM2 does this along with the re-elimination in the incremental inference
steps. That way, those variables that need reordering to better reflect new
dependencies between them, are reordered to reduce fill-in, while the cost of
doing a complete batch reordering step is avoided [28].

A major benefit of the Bayes tree is that linearization can be performed
in a fluid manner, rather than a batch step as in iSAM. This can be done
because iSAM2 keeps track of the linear least-squares update vector ∆j , for
each variable xj in the factor graph. The linearization of the nonlinear factors
involving xj grow increasingly inaccurate the larger ∆j grows. For ∆j close
to zero however, the linearization is still good enough. This suggests only
relinearizing cliques with a ∆j above a certain threshold. iSAM2 therefore
defines a relinearization threshold β. Cliques containing a ∆j with |∆j | ≥ β
are relinearized, along with any cliques above them in the tree. All cliques
downwards towards the leaves however are left unmodified [28].

The final benefit of the Bayes tree is that updates to variable values
tend to only have a local effect, affecting mostly variables in close proximity
in the tree. New variables and factors are usually added to the top of the
tree, and this may not significantly affect variables far down in the branches.
iSAM2 exploits this for computing the update vector ∆, where only the
∆j vectors for variables that significantly change are computed and used
for updating the linearization point or providing estimates, while the rest
can keep their cached values. This is achieved through a wildfire scheme,
in which computation of the ∆ vector begins from the top of the tree and
moves downwards into the branches. If a clique in a branch contains no
variables for which the change in ∆j is larger than the wildfire threshold α,
propagation down that branch stops, and the remaining variables down to
the leaves keep their cached values. That way, large parts of ∆ are obtained
from cached values, with no computation needed.

3.4.2 Fixed Lag Smoothing

While the Bayes tree of iSAM2 significantly improves the feasibility of solv-
ing large real-life SLAM problems, it too can not grow forever, given finite
computing resources. A standard way to constrain the problem size is to
apply marginalization, by marginalizing out old variables, hence bounding
the size of the factor graph. When this is applied in an incremental smooth-
ing setting, it leads to an approach known as fixed-lag-smoothing, where we
keep only a sliding window of poses and marginalize out the rest [13]. In this
section we describe this approach in general as well as how it can be applied
within the framework of iSAM2 to yield an incremental fixed-lag smoother.
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Marginalization

Marginalization is the process of obtaining a marginal probability distribu-
tion from a joint distribution. In general, given two random variables x and
y with a joint probability density function p(x, y), the marginal distribution
over y can be obtained by integrating over x, i.e.

p(y) =

∫
x
p(x, y). (3.4.12)

We often refer to this as marginalizing out x. In the Gaussian case, (3.4.12)
is easy to compute. If p(x, y) has mean µ and covariance Σ, according to

µ =

[
µx
µy

]
, Σ =

[
Σxx Σxy

Σ>xy Σyy

]
, (3.4.13)

then the marginal distribution can be read directly from the matrix, [13]

p(x) = N (µx,Σxx). (3.4.14)

As we will now see, marginalizing out variables is simple also in the square
root factor matrix form used in iSAM2 or the equivalent Bayes net produced
by the elimination algorithm in iSAM2, but—crucially—only for some of the
variables. Which variables are easy to marginalize depends on the variable
ordering. To see why, notice that in the information representation of the
Gaussian probability distribution,

p(x, y) = N (Λ−1η,Λ−1) = N

(
Λ−1

[
ηx
ηy

]
,

[
Λxx Λxy
Λ>xy Λyy

]−1)
, (3.4.15)

the information matrix of the marginal distribution p(y) is given by the Schur
complement of Λxx, i.e.

Λyy − Λ>xyΛ
−1
xxΛxy. (3.4.16)

Recall from Section 3.4.1 however that Λ can be factorized into a square root
factor matrix R according to Λ = R>R. Because R has an upper-triangular
structure, i.e.

R =

[
Rxx Sxy

0 Ryy

]
, (3.4.17)

computing the Schur complement becomes trivial and the marginal infor-
mation matrix of p(y) is simply Ryy. Marginalizing out x is hence a simple
matter of discarding the first row and column of R. This even generalizes
to multiple variables, where marginalizing out n variables requires removing
n rows from the top and n columns from the left. This however all rests on
the variables to be marginalized being at the beginning of the ordering [13].
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Another way to understand the above is to realize that R is equivalent to
the Bayes net resulting from eliminating a factor graph with a given variable
ordering, and that discarding rows and columns in R is the same as dropping
variables from the Bayes net. As we discussed in Section 3.4.1, the Bayes net
defines a joint probability distribution factorized into a set of conditional and
prior distributions. For instance, the Bayes net for the toy SLAM problem
shown in Figure 3.9 is defined as

p(X ) = p(l1|T1, T2)p(l2|T3)p(T1|T2)p(T2|T3)p(T3). (3.4.18)

The variable l1 can be trivially marginalized out of this expression by drop-
ping the conditional distribution p(l1|T1, T2), because that is the only term
that includes l1:

p(X \ l1) =

∫
l1

p(X ) = p(l2|T3)p(T1|T2)p(T2|T3)p(T3). (3.4.19)

The same applies to l2 and in fact any variable in a Bayes net resulting from
elimination, so long as no other variables depend on it (there are no directed
edges pointing from it) [7]. It is clear therefore why the variable ordering
is important: if l1 was not eliminated before T1 and T2, the dependence
relation would go the other way, and some of the terms in (3.4.18) would be
conditioned on l1 which would make the integration in (3.4.19) non-trivial.

The operations above may give the impression that we are discarding
information when marginalizing out a variable, but this is far from the case.
Rather, when a variable x is marginalized out of the joint density, what
remains is a density with the information from x "baked in". This makes
marginalization an effective way to constrain the problem size while retaining
information from old measurements. It is important to emphasize however,
that the marginalization operations shown above only apply to the linear
Gaussian case. In a nonlinear SLAM setting, the R matrix or the equivalent
Bayes net are obtained from the linearized version of the factor graph with
Gaussian densities. By marginalizing out states from them, we therefore ef-
fectively commit to a linearization point. If the Bayes net is converted back
again into a nonlinear factor graph, the factors connecting to the marginal-
ized variable will be replaced with Gaussian marginal factors on the remain-
ing variables. This retains information from the marginalized variables and
its involved factors, but results in an approximation of the original factor
graph, meaning that the exact MAP solution can no longer be recovered
[13].

Fixed-Lag Smoothing

The marginalization scheme above can be applied for SLAM in order to
smooth over a sliding window of poses instead of an ever-growing factor-
graph. Indeed, to implement such a fixed-lag smoother, we would marginalize
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out old variables when new ones are added and the old get pushed out of
the lag. The marginalization could be computed easily with the scheme
described above, if we keep a representation of the factor graph as a Bayes
net or a factor matrix R. This requires that the variables are ordered by
time of arrival, with new variables placed at the end of the ordering. The
oldest variable in the window is therefore always the first in the ordering,
and can be readily marginalized. Such an ordering additionally works well
in iSAM where new measurements will be added to the end of the R matrix
using Givens rotations, or in iSAM2 where adding new variables at the top
of the Bayes tree requires minimal re-elimination [13].

iSAM2 presents an interesting case for fixed-lag smoothing as the Bayes
net is structured in form of the Bayes tree datastructure. In this case, leaf
nodes contain the variables that can be trivially marginalized. Constraining
the oldest variables to the beginning of the variable ordering has the effect of
constraining them to the leaf nodes. This results in an incremental fixed-lag
smoothing algorithm [7].
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4 Proposed Method and Implementation

To enable resilient SLAM in sensor degraded environments, we propose a
system for fusing LiDAR, visual and inertial measurements in a semi-tightly
coupled factor graph. The factor graph combines odometry constraints from
a LiDAR odometry and mapping (LOAM [53]) system, together with depth-
enriched visual landmarks and preintegrated IMU measurements. The so-
lution can detect and handle degeneracy in the LiDAR odometry to allow
continued operation even in failure conditions if enough visual features are
available. In this section, we present the method and its implementation.

4.1 High-Level Overview

Our system comprises two subsystems as shown in Figure 4.1 implemented
as ROS (Robotic Operating System) nodes. The first is an existing re-
search implemenation of LOAM [53], while the second system, containing
our visual frontend and factor graph backend are new implementations. The
visual frontend detects and tracks visual image features on which we can
perform bundle adjustment. In addition, it projects LiDAR pointclouds into
the image to enrich the features with depth. The backend fuses these in
an iSAM2-based fixed-lag smoother implemented in GTSAM (Georgia Tech
Smoothing and Mapping [11]) together with odometry measurements from
LOAM and preintegrated IMU measurements. We therefore refer to this ap-
proach as having a semi-tight coupling between the sensor modalities. This
is because LOAM operates entirely on its own but the bundle adjustment
receives considerable aiding from the odometry and IMU measurements.

LiDAR

Camera

IMU

LOAM

Fixed-lag ISAM2 Backend

Fused output

Feature tracks

Odometry

Health status

Visual Frontend

Accelerometer/gyro readings

Images

Point clouds

Reprojections

Figure 4.1: High-level overview of the complete system. The shaded area includes
the part of the system that are implemented for this project.
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Figure 4.2: The factor graph for our multi-modal localization pipeline. Poses (in
blue) are connected with both preintegrated IMU factors and between-factors from
LOAM. Landmarks (in red) are connected by projection factors to every pose in
which they are observed, along with optional range-factors whenever they have a
depth measurement in a particular frame. IMU factors are also connected with
velocity values (in yellow) and bias values (in orange).

Figure 4.2 shows the factor graph structure used by our backend. In
addition to prior factors on the first pose, velocity and bias, it contains four
different types of factors:

• φπ(lm, Tk): landmark projection factors,

• φd(lm, Tk): landmark range factors,

• φT (Tk, Tk+1): SE(3) between-factors, and

• φI(Tk, Tk+1,vk,vk+1,bk,bk+1): preintegrated IMU-factors.

The graph is synchronized to camera rate, with a pose Tk added for ev-
ery camera frame and LOAM odometry estimates interpolated to add as
between-factors between the poses. The preintegrated IMU factors are com-
puted according to the preintegration scheme from [19] which we presented
in Section 3.3.4. IMU measurements are buffered as they arrive and prein-
tegrated on the fly whenever a new camera frame is added. The frontend
tracks image features and enriches them with depth from LiDAR pointclouds
when available. These tracks are added to the graph as landmarks lm ∈ R3

when they pass a maturity test. On the landmarks we add projection factors
φπ for all pixel measurements, and range factors φd when depth is available.
The factor graph gives rise to the following nonlinear least squares cost:

∑
k∈K

( ∑
m∈M

(
‖eπm,k‖2Σπ + ‖edm,k‖2Σd

)
+ ‖eTk,k+1‖2ΣT + ‖eIk,k+1‖2Σd

)
+ ‖e0‖2Σ0 ,

(4.1.1)
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where eπm,k, e
d
m,k, e

I
k,k+1, e

T
k,k+1 and e0 respectively correspond to projection

factors φπ, range factors φd, between-factors φT , preintegrated IMU-factors
φI and prior factors φ0. We will in turn describe each residual in more detail
in Section 4.4.

The rest of this chapter is organized as follows: We first present our
two frontends, starting with the visual in Section 4.2 and then with a brief
explanation of LOAM in Section 4.3. After this, we formulate the multi-
modal factor graph in greater detail in Section 4.4 and then finish with our
iSAM2-based fixed-lag backend implementation in Section 4.5.

4.2 Visual Frontend

The visual frontend is responsible for taking raw images from the camera and
producing accurate feature tracks that the backend can include as projection
factors in its factor graph. In addition, the frontend enriches the feature
tracks with depth measurements from LiDAR point clouds projected into
the image.

4.2.1 Feature Extraction and Tracking

We extract strong image features using the Shi-Tomasi feature detector [43]
and then track them using the Lucas-Kanade (LK) [2] feature tracker. To
ensure good feature spread in the image, we perform the extraction in a grid,
keeping a population of features for each grid cell and detecting new ones
when a population goes below a certain threshold. Doing this is especially
important since we are using the Shi-Tomasi implementation provided by
OpenCV [3] which rejects features of bad quality compared to the best qual-
ity feature in the image. This may, in images with regions of wildly different

Figure 4.3: A visualization of data produced by the visual frontend showing
tracked features and the LiDAR point cloud projected into the image. Features
with depth are colored in blue, features without depth in green and yellow circles
indicate IMU-propagated reprojected pixel predictions from the backend.
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texture such as Figure 4.4, result in a high-texture region dominating the
feature extraction and leaving entire regions without extracted features, un-
less using a gridded approach. As a final step in the extraction, we apply
non-maximum suppression on feature quality to the combined set of existing
and new features to achieve good spread also within each grid cell and to
filter out any new features very close to existing features.

4.2.2 Outlier Rejection

The LK feature tracking may occasionally fail for some features and produce
tracks that do not correspond to that feature’s actual movement in image
space. To combat this, we employ two outlier rejection mechanisms on the
tracks: RANSAC and a reprojection test for features with a corresponding
3D landmark location lm.

RANSAC (RANdom SAmple Consensus) can be applied to a set of fea-
ture correspondences to reject bad LK predictions. We apply RANSAC to
compute a fundamental matrix F for the feature correspondences, using the
findFundamenalMat procedure in OpenCV. In addition to computing F , this
rejects features that fall a certain threshold away from the epipolar line [3].

Our second outlier rejection scheme applies a simple reprojection test for
landmarks which have been added to the backend. For every landmark lm
in the factor graph observed in frame k + 1, we compute the simple metric

‖π(lm, T̄k+1)− zπm,k+1‖ (4.2.1)

where zπm,k+1 ∈ R2 is the measured pixel and T̄k+1 is obtained from the most
recent9 pose estimate Tk by integrating IMU measurements between frames

9In practice the most recent pose is usually Tk−1, because the backend and frontend
run in separate threads, so the backend is still processing Tk as the frontend requests T̄k+1.

Figure 4.4: An example image taken from the Newer College dataset [39] where
some Shi-Tomasi features are vastly stronger than others. In this case, the over-
exposed sky along with the rectangular merlons cause nearly perfect corners with
much higher quality scores than other feature candidates in the image.
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k and k + 1. We then compare the results with a predefined threshold and
remove any tracks which fall outside the predicted radius.

4.2.3 Rotation-Compensated Parallax Computation

In order to triangulate a feature, it needs to have sufficient parallax. Common
degenerate landmark configurations such as far-away points, points straight
in front of the camera or points undergoing rotation-only motion, all manifest
themselves in low parallax in the visual plane [24]. Projection factors can
not alone constrain the 3D landmark location in such cases, and adding the
track to the factor graph will hence result in an indeterminant linear system,
which cannot be solved for a unique solution. Even near-degenerate cases
should be avoided, as the solver may end up linearizing the factors involving
the landmark at a bad linearization point which could lead the solution into
a local minimum [24]. Computing the parallax of feature tracks is therefore
a crucial ability for the visual frontend so it can hold back features from the
backend until they have sufficient parallax.

A naive solution could compute parallax by directly computing raw pixel
movement in the image plane, but this would fail to include the effect of
rotations on the pixel movements. As the camera rotates, the features move
across the image plane, yet this movement induces no real parallax and is
of no aid to the triangulation. A real measure of track parallax should
hence not include the effects of rotation. Our solution is to apply a rotation-
compensation scheme similar to that of [38] to compute the parallax of fea-
ture correspondences between two camera frames. In short, the computation
transforms the pixels from one frame into the previous using only the rotation
between these frames. Whatever disparity remains between corresponding
pixels is then only due to the translation. Far away points or points under-
going rotation-only motion will hence have very little disparity, and this is
therefore a good measure for the parallax. We describe the details of this
computation in the following.

Departing for a brief moment from our usual notation, we denote a 2D
pixel as x ∈ R2 and its corresponding 3D point as X ∈ R3. The relationship
between the 2D pixel and its 3D point in the camera frame, CX, is given
by the intrinsic matrix K, according to x′ = K · CX [24]. Note that x′ is
here given in homogeneous coordinates and must be normalized to obtain
its two-parameter representation, whereas CX is not, as we use the 3 × 3
form of the intrinsic matrix. If X was given in a different frame, e.g. the
world frame W , we would have to apply the SE(3) transform TCW to obtain
CX = TCW ·WX. Here, the · operator denotes the Lie-group action on R3,
i.e. CX = RCW ·WX + CtCW, where RCW and CtCW are respectively the
rotation and translation components of the transformation. Consequently,
the relationship between pixels Ax and Bx in camera frames A and B is given
by Ax

′ = KTAB ·K−1
Bx
′. Returning now to our usual notation, we can use
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this to determine where a feature Bz
π
m in camera frame B ends up in camera

frame A if only the rotation RAB is applied to it. This is given by setting
AtAB = 0, which yields

Az̃
π′
m = KRABK

−1
Bz

π′
m. (4.2.2)

We finally compute the distance between these pixels

ρ = ‖Bzπm − Az̃
π
m‖, (4.2.3)

and use that as our parallax metric.
Unlike in [38] where the rotation RAB is obtained from integrated IMU

measurements, we obtain it from an essential matrix E computed from the
feature correspondences. However, this may fail if the scene is not well ex-
plained by a fundamental matrix, a common case in scenes with low parallax.
To add robustness to such situations, we apply the same heuristic as in [36]
to determine if the scene is best described by a fundamental matrix F or a
homographyH. This amounts to computing both F andH using RANSAC,
and then calculating a score for each respective matrix, SF and SH , based
on how many outliers are flagged. From this we compute the comparative
heuristic

RH =
SH + SF
SH

, (4.2.4)

where if RH > 0.45, the scene is best described by the homography, and
otherwise by the fundamental matrix [36]. If this check favors the homog-
raphy, the scene is likely either planar, or all points have low parallax, so
in that case we end the procedure without computing any parallaxes. To
avoid increasing the computational burden too much with this scheme, we
compute F and H in separate threads. The essential matrix is also obtained
directly from F according to E = K−1FK, and so does not require addi-
tional computation. Finally, since RANSAC is used to compute F and H,
this doubles as the outlier rejection mechanism we described in Section 4.2.2.
Even with this heuristic in place however, bad parallax estimates may slip
through. Thus, for even greater robustness to bad parallax estimates, we
compute the parallax for several consecutive frames, and take the median,
thereby avoiding the most serious outliers. An example of this parallax com-
putation scheme applied to feature tracks is shown in Figure 4.5 which shows
far-away points being given much lower parallax than those close by.

4.2.4 Depth-Enriched Features

Bundle adjustment is a problem of nonlinear nature which, like any nonlinear
optimization problem, requires a good initialization to converge. Initializing
3D landmarks by triangulating feature tracks is however non-trivial because
a) tracks may not have sufficient parallax to constrain their location well and
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(a) Rotation compensated parallax. (b) Naive uncompensated parallax.

Figure 4.5: Visualization of rotation-compensated feature parallax (a) vs un-
compensated parallax (b) in a scene with forward camera motion. Green feature
indicators are saturated to indicate levels of parallax: higher intensity green color
means high parallax whereas grayer color means low parallax. Both computations
take the median of computed values. The image is taken from the Newer College
dataset [39] where many scenes have far away structures with very low parallax.

b) because triangulation requires a good estimate of the camera poses, which
may not be available. A depth sensor such as LiDAR can aid the initializa-
tion in this case by enriching features with depth measurements in regions
where the LiDAR point cloud overlaps with the image plane. This makes
the 3D location of the landmarks in relation to the robot observable from
only a single measurement, which allows better and more rapid initializa-
tion. Subsequent depth measurements can also be included as range factors
between robot poses and landmarks to further constrain the landmark and
aid convergence of the solution.

We use a simple method to associate depth measurements with features
by considering a rectangular patch of LiDAR points projected into the image
plane. In a separate thread, every incoming LiDAR point cloud P ⊂ R3 is
projected into the image frame according to

zPi = KTCL · Lpi, ∀ Lpi ∈ P, (4.2.5)

whereK is the intrinsic matrix and TCL ∈ SE(3) is the static camera-LiDAR
transform. Corresponding depth measurements are computed as

Cdi = ‖Cpi‖ = ‖TCL · Lpi‖, ∀ Lpi ∈ P. (4.2.6)

Note our choice of computing the depth in the camera frame instead of in
the body frame, i.e. Bdi. As we will discuss in Section 4.4.2, this makes
landmark initialization easier, while we can still obtain Bdi from Cdi and
zπm. For each image feature zπm, we then obtain a set of depth measurements
Dm, comprising all depth values Cdi for which zPi is within a rectangular
patch centered at zπm. To avoid spurious depth values, we check that Dm
contains enough features, that they are spread out in all four quadrants of
the patch and that the standard deviation is below a certain threshold. If all

43



Proposed Method and Implementation

these checks pass, we compute the median of Dm and store it as the depth
measurement zdm. Additionally, if some of the checks fail, we can still use
the depth value as a crude rejection mechanism for far-away points, to add
extra redundancy over the parallax mechanism.

In contrast to [49] we do not undistort the point cloud to the nearest
camera frame, but instead simply use it as-is if the time delta is lower than
some threshold (we use typical values of 100–150ms). This means that the
point cloud and image may be slightly misaligned, which can lead to wrong
depth measurements that the standard deviation check onDm may not catch.
This is especially prone to happen for features on a foreground edge, where
we may sometimes get spurious depth measurements from the background,
or vice versa. To combat this, we employ a simple check that consecutive
depth measurements do not change by more than one meter, and require a
track to have a certain number of depth measurements before being added
to the graph.

4.3 Degeneracy-Aware LiDAR Odometry Frontend

To include LiDAR as a second exteroceptive modality in our factor graph,
we employ the popular LOAM (lidar odometry and mapping) algorithm [53]
to produce odometry estimates that we can add as between factors in the
graph. While LOAM is a complete odometry system in itself, we use it as a
frontend on top of our factor graph backend. The particular LOAM imple-
mentation we use comes with the capability to detect degenerate problem
instances due to geometric ambiguity [29]. In this section we describe briefly
how LOAM works, how it detects degenerate problem instances and how we
obtain between-transforms from it which can be added to the factor graph.

4.3.1 LOAM

LOAM is a system for producing precise odometry and accurate 3D maps
in real time using LiDAR. As inputs, LOAM takes raw point cloud scans
together with optional IMU measurements, and outputs estimates of the
LiDAR pose at two frequencies: odometry updates at scan rate (typically
10Hz) and higher-accuracy mapping updates at a lower rate (5Hz in our
case). The latter also include an updated point cloud map.

The odometry updates are produced with a scan-to-scan matching method,
which attempts to find the best alignment between consecutive LiDAR scans.
In LOAM, this is performed as a form of ICP (iterated closest point) [icp]
procedure that uses specific extracted geometric features in the point cloud
for alignment, instead of considering the entire set of points. The features
considered are sharp edges (lines) and planar surface patches (planes) and to
perform the alignment, LOAM minimizes respectively a point-to-line met-
ric and a point-to-plane metric. To obtain the odometry estimate between
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two scans, LOAM first finds correspondences between LiDAR points in the
new scan and the lines and planes in the previous scan. Then, it minimizes
point-to-plane distance for each considered point to find the SE(3) trans-
form TLk+1 between the scans. Each point pLk+1,i considered is transformed
from the newest point cloud into the previous using TLk+1, according to

p̃Lk+1,i = (RLk+1,i)
−1(pLk+1,i − tLk+1,i). (4.3.1)

Here, p̃Lk+1,i is p
L
k+1,i transformed into the k-th point cloud and RLk+1,i and

tLk+1,i are the rotation and translation components of TLk+1,i. The i subscripts
here are needed because each point arrives as part of a LiDAR sweep, i.e. not
at the same time. The i indicates that the point arrived at time ti, and the
pose TLk+1,i is obtained as a linear interpolation of TLk+1. The resulting mini-
mization problem is solved using the Levenberg-Marquardt (LM) algorithm.
This means it repeatedly linearizes the problem and solves a resulting linear
least squares problem using the damped normal equations given in (3.2.32)
and restated here

A>A+ λdiag(A>A)∆∗ = A>b, (4.3.2)

in order to obtain an update step ∆∗ for updating its current estimate. A
is here the Jacobian matrix and b the RHS vector of the normal equations
system.

In the mapping update, LOAM matches and registers the undistorted
point cloud obtained from the odometry step into the world map. This is
done in a way similar to the odometry update, by minimizing point-to-line
and point-to-plane distances for feature-point correspondences, but this time
it considers 10 times as many points, to obtain a more accurate estimate [53].
It does however not need as many iterations of the LM algorithm to converge.

4.3.2 Degeneracy Detection

LiDAR odometry will fail if the operating environment is geometrically self-
similar, as is the case in e.g. long, straight tunnels or wide open fields [29,
42]. We show two such examples in Figure 4.6. The LOAM implementation
we are using has built-in heuristic detection of such degeneracy when the
geometry does not sufficiently constrain the scan-to-scan matching. This
works by checking whether the A>A matrix in the LM inner loop is close
to singular. A singular, or near singular A>A matrix, as we mentioned in
Section 3.2.3, implies that the linearized system does not have a unique so-
lution. The damping term λdiag(A>A) added in LM means that the system
can still be solved, but it does not mean that it will find the correct solution.
LOAM then goes into a degenerate state, where its outputs are incorrect and
should not be trusted. Thankfully, it is easy to detect a near singular matrix
by checking if the eigenvalues are near zero. In the implementation we are
using, a threshold of 30 is set on the eigenvalues of A>A and if any of them
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Figure 4.6: Degeneracy of the point cloud alignment problem due to self-similar
geometry. Orange arrows indicate degenerate directions and blue indicate well
conditioned directions. Straight corridors as shown to the left (top down view) are
ill-conditioned along the direction of the corridor, while flat open environments as
shown to the right have rotational ambiguity.

are lower, the odometry is marked as unhealthy. This is then broadcasted
to all consumers of the odometry, so that we can avoid including it into our
joint optimization problem.

4.3.3 Obtaining Interpolated Between Transforms

We use LOAM’s high-accuracy mapping updates to provide estimates of the
robot pose at 5Hz. To include this in our factor graph which runs at camera
rate of 15Hz, we perform interpolation on the poses. In practice, this is
done using the tf2 library within ROS [18], which uses quaternion SLERP
interpolation as we defined in Section 3.3.2. Our LOAM implementation
makes the current pose of the LiDAR in the world frame available as a tf2
transform, which means we can query it for an interpolated pose at any
timestamp, so long as we do not query past the latest mapping update.

Let us then consider a camera frame k and its subsequent frame k + 1.
We wish to obtain the SE(3) transform TBkBk+1

of the robot body frame
B, from pose k to k + 1. To do this, we query tf2 for the LiDAR poses
TWLk and TWLk+1

. From this, we can obtain a between-transform of the
body frame, by applying the static body-LiDAR transform TBL, which we
get from configuration. The between-transform we need is then obtained as

TBkBk+1
= TBL(TWLk)−1TWLk+1

(TBL)>. (4.3.3)

To keep our notation consistent, we remind ourselves that this is a measure-
ment in our context, and so we denote it as

zTk,k+1 = TBkBk+1
. (4.3.4)

Note that the ( · )T superscript denotes that this is an SE(3) pose measure-
ment and should not be confused with the transpose, which we consistently
denote as ( · )>. Finally, we note that we do not necessarily need to include
these between transforms between every robot pose. We have for instance
had good results inserting the transforms between every 5th pose instead.
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4.4 Factor Graph Formulation

Now that we have seen how our two exteroceptive frontends produce mea-
surements for the backend, we describe how the factor graph fuses all this
together. Our factor graph consists of four types of variables: poses Tk ∈
T ⊂ SE(3), velocities vk ∈ V ⊂ R3, IMU bias terms bk ∈ B ⊂ R6 and
landmarks lm ∈ L ⊂ R3. Our complete state therefore becomes

X =
{
T ,V,B,L

}
. (4.4.1)

The landmarks are connected to poses with projection factors φπ(lm, Tk)
and optional range factors φd(lm, Tk) from the visual frontend. Poses are
connected with between-factors φT (Tk, Tk+1) from LOAM. 6-way preinte-
grated IMU factors φI(Tk, Tk+1,vk,vk+1,bk,bk+1) connect the poses, ve-
locities and biases. In addition, priors on the first pose, velocity and bias
are necessary to eliminate gauge freedom by anchoring the trajectory to a
fixed starting point in the world frame [13]. The factor graph then defines
the following nonlinear least-squares optimization problem

X ∗ = arg min
X

∑
k∈K

( ∑
m∈M

(
‖eπm,k‖2Σπ + ‖edm,k‖2Σd

)
+ ‖eTk,k+1‖2ΣT + ‖eIk,k+1‖2ΣI

)
+ ‖e0‖2Σ0 ,

(4.4.2)

We now define how variables are initialized, factors are constructed from the
measurements and each residual is formed. We start with the IMU factors,
before moving on to the landmarks and finally the LOAM between-factors,
as we believe this is the natural steps we take when constructing the factor
graph in an incremental setting.

4.4.1 Pose Initialization and IMU-Factors

We run the factor graph at camera rate, and hence initialize a pose Tk+1, a
velocity vk+1 and a bias bk+1 for every new camera frame k + 1. We use
the preintegration scheme from [19] which we described in Section 3.3.4 to
integrate our IMU measurements. We use the result of the preintegration
for both the factor, and to initialize the new pose and velocity. The initial
values for frame k + 1 are hence obtained from the measurements and the
previous values by setting the noise terms in (3.3.24) to zero, which yields

Rk+1 ← Rk∆R̃k,k+1,

vk+1 ← vk +Rk∆ṽk,k+1 + g∆tk,k+1,

pk+1 ← pk +Rk∆p̃k,k+1 + vk∆tk,k+1 +
1

2
g∆t2k,k+1.

(4.4.3)
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Here, ∆tk,k+1 is the time-delta between frames k and k + 1, Rk+1 and pk+1

are the respective rotation and translation components of Tk+1 and ∆ṽk,k+1,
∆p̃k,k+1 and ∆R̃k,k+1, the preintegrated measurements for velocity, position,
and rotation as defined in (3.3.23).

When we have inserted the new variables Tk+1, vk+1 and bk+1 into the
graph, we connect them to the previous set of variables Tk, vk and bk using
a 6-way combined IMU factor φIk,k+1(Tk, Tk+1,vk,vk+1,bk,bk+1) as defined
in [19]. This then results in a residual eIk,k+1 being added to the least squares
problem (4.4.2). Furthermore, the covariance ΣIk,k+1 ∈ R15×15 for the factor
is obtained from the continuous-time IMU noise characteristics Σa, Σg, Σba,
Σbg defined in Chapter 3, propagated incrementally with each timestep [19].

4.4.2 Landmark Initialization and Projection/Range Factors

After a new pose variable Tk+1 has been added to the graph, we can initialize
the landmarks and add observations for the features tracked in frame k+ 1.
We use one of two mechanisms for initializing a landmark, depending on
whether the landmark has depth measurements or not. This also determines
what criteria we place on the landmark for performing initialization. In
both cases, we require the track to be of a certain length, however we do
not require tracks with depth to have parallax, as the depth makes the 3D
location of it observable without triangulation.

If a track has depth, initialization proceeds as follows: We find the first
feature in the track with a depth measurement, (zπm,k, Cz

d
m,k), along with

the pose Tk. To initialize the landmark, we then first obtain an up-to-scale
vector along the ray from the camera center to the landmark

Cl̃m = K−1zπ′m,k. (4.4.4)

Here, we let ( · )′ denote a vector in homogeneous coordinates. The scale of
Cl̃m will be arbitrary, depending on the third element of zπ′m,k. To scale it
correctly, we first normalize it, and then scale it with Cz

d
m,k, i.e.

Clm = Cz
d
m,k · Cl̂m, (4.4.5)

where we have let ˆ( · ) denote a unit vector. We can then initialize the
landmark location in the world frame as

Wlm ← TWCk · Clm = TWBkTBC · Clm = TkTBC · Clm, (4.4.6)

where TBC is the static body-camera transform.
If the track has no depth available, we initialize it with triangulation

instead. For that we use a standard DLT approach (direct linear trans-
form) as this is built into GTSAM. We use the poses in which the landmark
was observed, which we can get from the most recent iSAM2 estimate. To
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limit the computational overhead, we pick a maximum of 10 poses and pixel
measurements, spread out evenly across the entire track. To avoid obvious
outliers or degenerate landmarks at this stage, we reject any triangulated
landmarks with high average reprojection error (> 10px) and any for which
the triangulation matrix is near singular (smallest singular value < 50).

After landmarks have been initialized, we can add projection and range
factors to them. While a track is still active, we add projection factors at
every timestep, however we only add range factors when depth is available.
The projection factors minimize the reprojection error between measured
pixel locations and the landmarks reprojected into the image. This gives
rise to the residual

eπm,k = π(lm,k, Tk)− zπm,k, (4.4.7)

where π is the standard projection function that computes the projection

π(lm,k, Tk)
′ = KT−1

BC T
−1
k · lm,k, (4.4.8)

normalizes the result by dividing by the last element and returns the result-
ing point in non-homogeneous form. This makes our approach an indirect
approach, compared to direct visual odometry methods such as [1, 16, 17],
which instead directly minimize pixel intensities.

To add the range factors, we must first transform the depth measure-
ments from the camera frame into the body frame, as the range factors
will minimize the distance from body poses to the landmarks. To obtain a
depth measurement in the body frame Bz

d
m,k, from one in the camera frame,

Cz
d
m,k, we first obtain the landmark in the camera frame Clm,k using (4.4.4)

and (4.4.5). This makes use of the two measurements zπm,k and Cz
d
m,k. Then

we compute the range to the body pose as

Bz
d
m,k = ‖RBC · Clm,k + BtBC‖, (4.4.9)

where RBC and BtBC are the rotation and translation components of the static
body-camera transform. The residual is then computed as

edm,k = ‖R−1
k (lm,k − tk)‖ − Bz

d
m,k, (4.4.10)

where Rk and tk are the rotation and translation components of Tk.
For both projection and range factors, we use the Huber robust cost

function [25] which adds robustness to outliers. This means, instead of min-
imizing the sum of squared Mahalanobis distances, ‖e‖2Σ for the residuals,
we minimize a sum of expressions ρh(‖e‖2Σ), where ρh is defined as

ρh(x) =

{
x2

2 if |x| ≤ k
k(|x| − k

2 ) if |x| > k,
(4.4.11)

for a fixed parameter k. This added robustness to outliers is especially helpful
when optimizing over functions with several local minima (as is common in
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bundle adjustment), because the convexity of the Huber cost function draws
the optimizer towards the true minimum [24]. See [54] for details on this
and other robust cost functions.

4.4.3 LiDAR Odometry Between-Factors

We include the interpolated odometry measurements from LOAM as between-
factors φT in our graph. LOAM runs asynchronously and at a lower rate than
the camera, but with interpolation we can still add LOAM constraints be-
tween arbitrary pose variables. We do not however want to interpolate these
into higher frequency measurements than the natural frequency of 5Hz. This
is because the interpolation assumes a constant-velocity model between the
real LOAM updates, which is not in general true to the actual robot move-
ment. Instead, we try to stay close to the real 5Hz frequency of LOAM, but
interpolate the poses to the closest camera frames. In practice, we consider
two camera frames k = i and k = j, where i is the previous frame connected
to a between-factor, and k = j is the most recent frame we have a LOAM
update for. We then obtain the odometry measurement zTi,j as described in
Section 4.3.3. Finally, the residual for φT (Ti, Tj) is computed as

eTi,j = Log(zTi,jT
−1
i Tj). (4.4.12)

The Log map here transforms to the SE(3) tangent space, so we can optimize
over vectors in R6. As with the projection and range factors, we also apply
the Huber robust cost function to the between-factors, meaning that the true
contribution to the minization problem is ρh(‖eTi,j‖2ΣT ) as defined in (4.4.11).

4.5 iSAM2-Based Fixed-Lag Smoother Backend

Our factor graph is formulated in the GTSAM library (Georgia Tech Smooth-
ing and Mapping) [11] and we use its incremental fixed-lag smoother im-
plementation based on iSAM2 [28] and the Bayes tree. This formulation,
presented in [7, 27], applies the marginalization scheme we described in Sec-
tion 3.4.2, where variables are marginalized by removing them from the leaf
cliques in the Bayes tree. Marginalization occurs when variables fall out a
sliding window (tmax−tl, tmax) with a fixed temporal lag tl. To keep track of
the variables to be marginalized during an update, we therefore need to keep
a set of timestamps corresponding to all variables in X . These timestamps
are then used to make ordering constraints for CCOLAMD, where all vari-
ables xk with tk < tmax−tl, are placed in the beginning of the ordering, such
that they end up in leaf cliques in the Bayes tree. After reordering, these
variables are marginalized out by removing them from the leaf cliques. We
also remove them from X and their factors from the nonlinear factor graph
Φ. All remaining variables that were previously connected with a factor to a
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now-marginalized variable, will get a Gaussian marginal factor instead. This
three step procedure of ordering, updating and marginalizing completes one
iteration of the incremental fixed-lag smoother.

Landmarks require special attention with this scheme however, because
the lifetime of a track may exceed the lag of the smoother, and we do not
wish to remove it while it is still tracked. We therefore update a landmark’s
timestamp to the most recent time with every new observation, until the
track is finally lost. The landmark is thus only marginalized when its last
connected pose is marginalized. We show in Figure 4.7 what happens to
the factor graph during intermediary marginalizations as a result of this.
The figure shows a slightly modified version of the toy SLAM problem we
considered in Chapter 3. Figure 4.7a shows the original factor graph, with
variables X = {T1, T2, T3, l1, l2}, and projection-factors, between-factors and
a prior factor on T1. This is of course a simplification of the actual structure
of our factor graph, but the principle applies also with additional factors
and variables. We consider a fixed lag of 3 poses, meaning that when a new
pose T4 is added to the graph in Figure 4.7c, T1 is marginalized out. This
results in a marginal factor φ(T2, l1, l2) being added on all variables that
T1 is conditioned on in the Bayes net. We show in Figure 4.7b how this
arises when eliminating T1 as the first variable in the elimination algorithm.
Here, we use the same notation as in [28] to denote a factor graph that is
partially eliminated into a Bayes net. The elimination removes the factors
involving T1 from the graph, and summarizes them into a single joint factor
φjoint(T1, T2, l1, l2). This is then factorized into two parts: a conditional
density p(T1|T2, l1, l2) shown with dashed red arrows in Figure 4.7b and a
marginal factor φ(T2, l1, l2) on the separator S = {T2, l1, l2} shown as a red
factor, i.e.

φjoint(T1, T2, l1, l2) = p(T1|T2, l1, l2)φ(T2, l1, l2). (4.5.1)

Notice that since T1 only shows up in the single conditional p(T1|T2, l1, l2),
it can be marginalized at no computational cost by simply dropping the

(a) (b) (c)

Figure 4.7: One step of the incremental fixed lag smoother with landmarks in-
volved. The variable T1 in (a) is marginalized out as a result of adding T4 in (c).
This results in the marginal factor φ(T2, l1, l2) being added. (b) shows the step
in the elimination algorithm for eliminating the variable T1, which results in the
factor on the separator S = {T2, l1, l2}, that later becomes the marginal factor.
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Figure 4.8: Number of re-eliminated variables resulting from marginalizing several
variables simultaneously at key frames (left), and from marginalizing the oldest
variables at every frame (right). This is using a lag of 10s and marginalization at
every 30 frames (2s).

conditional. This is exactly what happens in Figure 4.7c. What remains
then is only the marginal factor φ(T2, l1, l2) on the separator S. This is then
added into the nonlinear factor graph Φ to retain the information from T1

for subsequent updates, and the marginalization of T1 is complete.
While the marginalization of T1 can be performed without cost, reorder-

ing the variables to place T1 at the leaf nodes can be costly, because it
may require re-eliminating a large number of variables. In the example in
Figure 4.7, both landmarks l1 and l2 had to be re-eliminated to facilitate re-
ordering. The same applies to all landmarks connected to a variable about to
be marginalized. We limit the number of re-eliminations on every timestep
by grouping together variables within a certain time frame, so that they are
all marginalized together at the same time. We do this by only incrementing
tmax on regular intervals, rather than at every frame (incrementing every 30
frames has shown good results). This leads to less total variable eliminations,
except in key frames, where many variables are re-eliminated simultaneously,
as can be seen in Figure 4.8.
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5 Experimental Evaluation

We perform three experiments on two datasets to test the efficacy of the
proposed method. First, in Section 5.2, we show the performance of the
complete system on the Newer College dataset [39]. In Section 5.3 we perform
a simulated degeneracy experiment on Newer College, where LOAM is made
to fail artificially for parts of the dataset. Finally, in Section 5.4 we test
the method in a degraded environment where LiDAR odometry fails due to
self-similar geometry.

5.1 Evaluation Metrics

To quantify the accuracy of our trajectory estimates compared to ground
truth, we report the absolute pose error (APE) and relative pose error (RPE)
as defined in [45]. APE measures the global deviation of our estimate from
the ground truth, and is computed as

eAPEk = (T gtk )−1Tk, (5.1.1)

where T gtk is the ground truth pose at timestep k and Tk is the estimate.
However for measuring drift of an odometry system, the APE can be less
than ideal, because errors early on affect the rest of the trajectory, meaning
that errors in the beginning contribute more to the APE than errors at the
end [45]. We therefore also report the RPE, which measures the local error
over a fixed time interval, computed as

eRPEk =
(

(T gti )−1T gtj

)−1
(Ti)

−1Tj , (5.1.2)

for frames k = i and k = j which form an interval (i, j) of fixed length
∆RPE [45]. For all our experiments we use a delta of 2 seconds, which is
equivalent to ∆RPE = 30 when running at 15Hz. We report the magnitudes
of the rotational and translational components of these errors, where the
magnitude for the rotational component is defined as the unsigned angle
of the angle-axis representation of the rotation. Finally, we report the root
mean square of both these quantities, computed as

eRMSE,trans =

√∑
k∈K ‖trans(ek)‖2

|K|
,

eRMSE,rot =

√∑
k∈K ‖∠rot(ek)‖2

|K|
,

(5.1.3)

where the ∠( · ) operator denotes taking the angle of the axis-angle repre-
sentation. All computations of APE and RPE as well as synchronization of
estimates with ground truth are performed using the evo library [23].
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Figure 5.1: Overview of the Newer College dataset [39] with example images and
their corresponding locations on the map.

5.2 Evaluation on the Newer College Dataset

5.2.1 Platform and Environment

The Newer College dataset [39] is a dataset of visual, inertial and LiDAR
sequences of handheld motion together with an accurate ground truth. It
is collected using an Ouster OS1-64 high-resolution 64-beam LiDAR and a
RealSense D435i commodity-grade stereo camera with an embedded BOSCH
BMI055 IMU. The LiDAR and camera produce measurements at 10Hz and
30Hz respectively, and the IMU at 650Hz10. Figure 5.2 shows an image of
the platform.

The dataset traverses the campus grounds and parkland of the Newer
College campus in Oxford, England and contains parts with dense foliage
and periods of rapid illumination change. Figure 5.1 shows an overview of
the traversed terrain with example images.

10The accelerometer in the RealSense runs at 250Hz and the Gyroscope at 400Hz. In
the dataset, these are combined into a total of 650Hz [39].

Figure 5.2: Data collection platform for the Newer College dataset [39]. The image
is taken from the Newer College dataset home page https://ori-drs.github.io/
newer-college-dataset/ and shared under a Creative Commons license (CC BY-
NC-SA 4.0).
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5.2.2 Depth-Enhanced Visual-Inertial Odometry Results

We first show our system running in depth-enhanced visual-inertial odometry
mode. This includes both projection and depth factors into the factor graph,
but excludes any between-factors from LOAM. For this, we run the frontend
at 30Hz to aid feature tracking, while the backend runs at 15Hz. We use a
smoother lag of 5s and keep 5 grid cells with 5-6 features in each. We run this
on the first 900 seconds of the dataset, which includes one full traversal of the
environment and report the results in Figures 5.3 and 5.4 and table 1. The
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Figure 5.3: Resulting trajectory from running in depth-enhanced VIO-only mode
compared to ground truth. The trajectory drifts significantly, especially when going
through patches that are difficult for the frontend, such as when moving from the
mid-section to the parkland as indicated in Figure 5.1.
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(b) Resulting APE and RPE.

Figure 5.4: Resulting statistics from running in depth-enhanced VIO-only mode
on the Newer College dataset [39].

Table 1: APE and RPE RMSE from depth-enhanced VIO-only mode on the Newer
College dataset [39].

eAPERMSE,trans eAPERMSE,rot eRPERMSE,trans eRPERMSE,rot

18.18m 8.03◦ 0.14m 2.52◦
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Figure 5.5: Number of landmarks tracked in the backend through the Newer
College sequence. For certain parts of the dataset, the landmark counts nearly
drop to zero. In such situations, a VIO-only solution is likely to either drift, or
lead the optimizer into a local minima, which could cause divergence and system
failure. During these parts of the dataset, the addition of LOAM between-factors
adds considerable robustness to failure, and if LOAM is not available, we can expect
performance to suffer.

resulting trajectory is shown in Figure 5.3 compared to the ground truth and
Figure 5.4a show how z, yaw, pitch and roll develops through the sequence.
Figure 5.4b shows the APE and RPE through the dataset and table 1 the
RMSE of these metrics.

The results indicate that our system struggles significantly without the
aiding of between-factors. Parts of the sequence where few landmarks are
tracked are particularily challenging, as this leaves very little information to
constrain the localization problem. We indicate such problem-spots in Fig-
ure 5.5, which shows the number of landmarks tracked through one complete
run of the dataset.

5.2.3 Full Lidar-Visual-Inertial Fusion Results

We then show the results of our system running in complete configuration,
including between-factors from LOAM. For this, we weight the modalities
with a 1mm and 0.005◦ standard deviation respectively for the translational
and rotational part of the LOAM between-factors, 15px for the projection
factors and 2m for the range factors. The reason for trusting LOAM the
most in this case, is because the structured and large scale environment
of the Newer College dataset constrains the LiDAR odometry well. Apart
from that, the configuration is the same as for the VIO-only experiment.
The results of this are shown in figures Figures 5.6 and 5.7 and table 2 with
Figure 5.6 showing the resulting trajectory, Figure 5.7a showing z, yaw, pitch
and roll and Figure 5.7b and table 2 showing APE and RPE. As the results
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Figure 5.6: Resulting trajectory with full fusion compared to ground truth. With
the aiding from LOAM between factors, the trajectory is much closer to the ground
truth.
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Figure 5.7: Resulting statistics with full fusion on the Newer College dataset [39].

Table 2: APE and RPE RMSE with full fusion on the Newer College dataset [39].

eAPERMSE,trans eAPERMSE,rot eRPERMSE,trans eRPERMSE,rot

1.4m 2.44◦ 0.13m 2.56◦

indicate, the addition of LOAM between-factors results in an estimate that
is much closer to the ground truth. This is expected due to the structured
environment of the Newer College.

5.2.4 Timing Analysis

To show the real-time capabilities of our system, we report the processing
times for a complete run of the 25 minute 01_short_experiment sequence
of the dataset. We run our system on the relatively low-power intel i7-
10510U "mobile power efficient" laptop processor. Of the 4 cores and 8
threads available, we dedicate 2 threads to LOAM and the remaining 6 to

57



Experimental Evaluation

Frontend Extraction LK Parallax/RANSAC iSAM2 update
0

10
20
30
40
50
60
70
80

du
ra

tio
n 

[m
s]

Figure 5.8: Timing breakdown for the visual frontend and backend. Frontend time
includes feature extraction, Lucas-Kanade (LK) optical flow calculation and paral-
lax computation/RANSAC outlier rejection. The iSAM2 update duration, which
entirely dominates backend time, is for a full iteration of the fixed-lag smoother, in-
cluding inference, linearization, reordering, elimination and marginalizationl. The
boxes extend to the first quartile of the data and whiskers extend to show the range
of the data, except outlier points which are shown as black circles. Not shown here
are three outliers for the iSAM2 update duration at 225ms, 361ms and 366ms.
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Figure 5.9: Processing times for frontend and backend over the entire dataset.
The figures show the data smoothed with a 10s moving average. Notice how the
outliers mentioned in Figure 5.8 appear as a spike in the iSAM2 update time.
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Figure 5.10: Variables in the fixed-lag smoother and re-elimination and re-
linearization counts shown as a 10s moving average. Notice that the peaks shown
in Figure 4.8 are not shown due to the moving average.
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our frontend and backend. We use a smoother lag of 5s and keep 5 grid
cells with between 3–5 features per cell. The results of this are shown in
Figures 5.8 to 5.10. In Figure 5.8 we show a breakdown of the timing in
box-plot form. Figure 5.9 shows the frontend and backend processing times
through the dataset. Finally, Figure 5.10 shows a plot of the number of
variables in the fixed-lag smoother, showing also how many variables are re-
linearized and re-eliminated with every iSAM2 update. This indicates that
the problem size is successfully bounded by the fixed-lag smoother and that
the iSAM2 Bayes tree allows re-linearizing only a subset of the variables at
every iteration, rather than the entire problem.

5.3 Simulated Degeneracy Study

5.3.1 Description of Experiment

To test how our system handles degeneracy of the LiDAR odometry, we
artificially disable the LOAM odometry measurements for certain segments
of the Newer College sequence. We do this in a randomized fashion, selecting
4 points in the dataset at random, and then inserting a degeneracy period
between 30 and 60 seconds. If any of the periods overlap, they are merged.
We limit our runs to the first 900 seconds of the sequence, which amounts
to one traversal of the entire environment. We perform 10 such experiments
and report the qualitative and quantitative results. All tuning is performed
prior to generation of the experiment data

Note that while we turn off the LiDAR odometry measurements from
LOAM during the simulated degeneracy, we do not turn off LiDAR measure-
ments all together. This is because in many degenerate situations, especially
those resulting from self-similar geometry, the LiDAR measurements still
contain valuable information that can aid the visual frontend. The LiDAR
data alone however is not enough to produce reliable odometry estimates.

5.3.2 Results

The results of the experiment are shown in Figures 5.11 to 5.20. For each
run, we show a top-down view of the resulting trajectory with periods of
degeneracy indicated on the trajectory in red. In addition, we plot the
rotational and translational APE and RPE as they develop through the run.
The period of degeneracy is indicated in red under these plots. Finally, we
report the RMSE of the APE and RPE metrics for the whole run and whether
the experiment was successful, i.e. it got through the entire sequence, or if
the system crashed during the run.

As the results in Figures 5.11 to 5.20 indicate, the system can enable
continued operation in times when LOAM becomes degenerate. The success
of this however, both in terms of survival and accuracy of the result, depends
greatly on the location of the degeneracy period. If LOAM fails at a point
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Figure 5.11: Run 1 of the simulated degeneracy experiment (failure). Left: the
resulting estimated trajectory compared with ground truth. Right: APE and RPE
through the sequence. Bottom: RMSE statistics for APE and RPE over the entire
run. Periods of LOAM degeneracy are indicated in red on the trajectory and on the
color-bar underneath the APE and RPE plots. In this run, a rotation estimation
error occured during the first degeneracy period, which can be seen as a sharp
increase in rotational APE followed by a steadily increasing translational APE.
The system finally crashed during the third degeneracy period. On this particular
location we are typically tracking few features, which can be seen in Figure 5.5a.
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Figure 5.12: Run 2 of the simulated degeneracy experiment (success). Left:
the resulting estimated trajectory compared with ground truth. Right: APE and
RPE through the sequence. Bottom: RMSE statistics for APE and RPE over the
entire run. Periods of LOAM degeneracy are indicated in red on the trajectory and
on the color-bar underneath the APE and RPE plots. In this run, we see a sharp
increase in rotational APE during the second degeneracy period, which manifests
itself in a growing translational APE through the rest of the run.
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Figure 5.13: Run 3 of the simulated degeneracy experiment (success). Left:
the resulting estimated trajectory compared with ground truth. Right: APE and
RPE through the sequence. Bottom: RMSE statistics for APE and RPE over
the entire run. Periods of LOAM degeneracy are indicated in red on the trajectory
and on the color-bar underneath the APE and RPE plots. In this run, we see a
rotation error during the first degeneracy period with a clear spike in RPE and an
increase in rotational APE. However, because the VIO-only system handled well
the remaining degeneracy periods during traversal of the parkland, we finally return
to the starting point with a low final translational APE.
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Figure 5.14: Run 4 of the simulated degeneracy experiment (success). Left:
the resulting estimated trajectory compared with ground truth. Right: APE and
RPE through the sequence. Bottom: RMSE statistics for APE and RPE over the
entire run. Periods of LOAM degeneracy are indicated in red on the trajectory and
on the color-bar underneath the APE and RPE plots.
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Figure 5.15: Run 5 of the simulated degeneracy experiment (failure). Left: the
resulting estimated trajectory compared with ground truth. Right: APE and RPE
through the sequence. Bottom: RMSE statistics for APE and RPE over the entire
run. Periods of LOAM degeneracy are indicated in red on the trajectory and on
the color-bar underneath the APE and RPE plots. In this run, the the VIO-only
solution was not able to survive the first 90s degenearcy period and crashed shortly
after exiting the quad.
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Figure 5.16: Run 6 of the simulated degeneracy experiment (success). Left:
the resulting estimated trajectory compared with ground truth. Right: APE and
RPE through the sequence. Bottom: RMSE statistics for APE and RPE over the
entire run. Periods of LOAM degeneracy are indicated in red on the trajectory and
on the color-bar underneath the APE and RPE plots.

62



Experimental Evaluation

100 75 50 25 0 25 50
x [m]

200

150

100

50

0

y 
[m

]

Degenerate
Healthy
Ground truth

0

10

AP
E 

tra
ns

 [m
]

0

10

AP
E 

ro
t [

°]

0.0

0.5

1.0

RP
E 

tra
ns

 [m
]

0

5

10

15

RP
E 

ro
t [

°]

0 100 200 300 400 500 600 700 800
t [s]

de
ge

ne
ra

cy

RMSE APE trans [m] RMSE APE rot [◦] RMSE RPE trans [m] RMSE RPE rot [◦]

8.68m 6.85◦ 0.12m 2.57◦

Figure 5.17: Run 7 of the simulated degeneracy experiment (success). Left:
the resulting estimated trajectory compared with ground truth. Right: APE and
RPE through the sequence. Bottom: RMSE statistics for APE and RPE over
the entire run. Periods of LOAM degeneracy are indicated in red on the trajectory
and on the color-bar underneath the APE and RPE plots. In this run, rotational
errors during the first, second and third degeneracy periods result in an increase
in rotational APE, which manifests itself in a significant translation APE through
the rest of the run.
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Figure 5.18: Run 8 of the simulated degeneracy experiment (success). Left:
the resulting estimated trajectory compared with ground truth. Right: APE and
RPE through the sequence. Bottom: RMSE statistics for APE and RPE over the
entire run. Periods of LOAM degeneracy are indicated in red on the trajectory and
on the color-bar underneath the APE and RPE plots. In this run, the VIO-only
solution was able to sustain good tracking through all degeneracy periods, resulting
in a low overall RMSE APE of only 2.2m and 2.5◦ translation and rotational.
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Figure 5.19: Run 9 of the simulated degeneracy experiment (success). Left: the
resulting estimated trajectory compared with ground truth. Right: APE and RPE
through the sequence. Bottom: RMSE statistics for APE and RPE over the entire
run. Periods of LOAM degeneracy are indicated in red on the trajectory and on
the color-bar underneath the APE and RPE plots. In this run, we see an increase
of rotational APE during the third degeneracy period, which manifests itself in a
growing translational APE through the rest of the run.

100 80 60 40 20 0 20 40 60
x [m]

200

150

100

50

0

y 
[m

]

Degenerate
Healthy
Ground truth

0

5

AP
E 

tra
ns

 [m
]

0

5

10

AP
E 

ro
t [

°]

0.0

0.5

1.0

RP
E 

tra
ns

 [m
]

0

5

10

15

RP
E 

ro
t [

°]

0 100 200 300 400 500 600 700 800
t [s]

de
ge

ne
ra

cy

RMSE APE trans [m] RMSE APE rot [◦] RMSE RPE trans [m] RMSE RPE rot [◦]

4.12m 3.49◦ 0.12m 2.26◦

Figure 5.20: Run 10 of the simulated degeneracy experiment (success). Left:
the resulting estimated trajectory compared with ground truth. Right: APE and
RPE through the sequence. Bottom: RMSE statistics for APE and RPE over the
entire run. Periods of LOAM degeneracy are indicated in red on the trajectory and
on the color-bar underneath the APE and RPE plots.
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Figure 5.21: The three first eigenvalues of the LOAM A>A matrix through the
San Rafael tunnel sequence, along with example point clouds and images. The fig-
ure indicates the threshold where LOAM is considered degenerate according to the
heuristic described in Section 4.3. The numbered examples indicate the environ-
ments that trigger the degeneracy (1 and 2) compared to the environments that do
not (3 and 4). The example image (1) additionally shows the difficult low-texture
nature of the tunnel, which makes it hard for our LK-based frontend to produce
good feature tracks. The figure is is partially reused from our previous work [47].

where the visual frontend is also struggling, as indicated in the landmark
counts in Figure 5.5, there is naturally little information to go on. This
impacts both the accuracy, as we can tell by the spikes in RPE during some
of the degeneracy periods, and the chance of survival as we can tell by the
two failures during degeneracy.

5.4 Evaluation in a Geometrically Self-Similar Environment

5.4.1 Platform and Environment

As a final experiment, we test our system in a self-similar environment where
the LiDAR odometry becomes degenerate. This dataset, which we refer to
as the San Rafael tunnel sequence, is recorded in a highway underpass tunnel
in the Rancho San Rafael Regional Park in Reno, Nevada. For most of the
underpass, the LiDAR point clouds are entirely self-similar, which makes the
point cloud alignment problem ill-conditioned and the robot translation un-
observable along the direction of the tunnel. Figure 5.21 shows examples of
these self-similar point clouds and indicates how LOAM successfully detects
the degenerate problem instance from the eigenvalues of the A>A matrix
when traversing the tunnel. The dataset is recorded using a Velodyne Puck-
LITE 10Hz LiDAR, a FLIR BlackFly 20Hz camera and a VectorNav VN-100
IMU running at 200Hz. We test our system running in full configuration and
report the resulting LiDAR map.
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5.4.2 Results

Our results of this experiment are shown in Figure 5.22. LOAM in this case
produces a map that is much shorter than the actual tunnel, whereas our
fused result is more closer in length to the ground truth. Our result however
is not geometrically consistent. We attribute this mainly due to drift in the
middle of the tunnel, where the darkness and low-texture tunnel walls make
landmarks hard to track. Indeed, as we show in Figure 5.23, low landmark
counts are prevelant through parts of the tunnel, and when this is paired

a) Ground truth

b) LOAM

c) LiDAR-Visual-Inertial fusion

Figure 5.22: Qualitative results of running our system on the San Rafael tunnel
dataset overlayed on Google Maps. The map of the tunnel produced by LOAM is
much shorter than the ground truth, due to the geometric self-similarity of the tun-
nel. Our LiDAR-visual-inertial fusion gets comparatively closer to the real length,
but also struggles in the middle of the sequence due to low landmark counts, and
hence produces a geometrically inconsistent result.
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Figure 5.23: LOAM Degeneracy (top) and visual landmark counts (bottom)
through the San Rafael tunnel sequence. The top figure shows that LOAM is
degenerate throughout most of the tunnel. In addition, as shown in the bottom
figure, some parts of the tunnel have low landmark counts which makes the VIO-
only solution struggle as well.

with LOAM degeneracy, it is natural to expect drift, as neither between
factors nor landmarks truly constrain the pose estimates. Nevertheless, it
should be noted that LiDAR-visual-inertial fusion can indeed work on this
dataset, as shown in [29] and in our preliminary work [47]. Both these
methods however use the ROVIO visual-inertial odometry system, which,
being a direct method, provides more robust feature tracking in low-texture
scenes [1].
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6 Discussion and Concluding Remarks

As our results in Chapter 5 indicate, the combination of the complementary
LiDAR, visual and inertial sensor modalities can add resilience to situations
where a single-modality solution would otherwise fail. As our benchmark
and simulated degeneracy study on the Newer College dataset shows, the
complete system is resilient to low landmark counts when LOAM between-
factors are available. Conversely, when the backend is tracking enough land-
marks, the system can also withstand failure of the LOAM subsystem. When
both degradations occur simultaneously however, with a degenerate LOAM
in addition to low landmark counts, the system struggles, which typically
manifests itself in high drift or even divergence and failure. The experiment
in the San Rafael underpass confirm these findings as well, as the visual-
inertial solution is able to keep the tracking going through the structurally
self-similar tunnel, but does so with considerable drift due to the severely
low landmark counts in the dark, low-texture parts of the tunnel.

It is important to emphasise however, that with improvements to the vi-
sual frontend, we should expect better results, with less drift and less chance
of divergence. Indeed, as mentioned in Section 5.4, the ROVIO VIO sys-
tem used in [29, 47] is able to track through the low-texture tunnel without
drift. ROVIO is however a special case, because its feature tracking scheme
is particularily robust to low-texture scenarios, and was therefore specifi-
cally chosen as the visual subsystem in [29]. This nonetheless proves that
a visual-inertial method can achieve a good result on this dataset, without
aiding from LiDAR. The same goes for the Newer College sequence, where
monocular vision-only methods such as ORB-SLAM [36] have been proven
to work well, although with the help of loop closures. We consider two
reasons for our issues on this front. The first is the aforementioned use of
optical-flow-based feature tracking instead of a more direct method, which is
generally considered superior in terms of robustness to low-texture scenes [1,
17]. The second reason is the non-trivial problem of feature selection. The
system must include enough features in the bundle adjustment to constrain
the poses, but at the same time avoid including outliers and low-parallax fea-
tures that can not be triangulated well. A successful implementation must
hence find the right balance between these two extremes and neither be too
stringent nor too lenient in the feature selection process. We believe finding
this balance requires a certain finesse and considerable efforts on tuning, trial
and error, but it is by no means out of reach.

The San Rafael tunnel sequence exemplifies an additional opportunity
for further work on this system, namely investigating the gains in robustness
from adding infinite line and plane factors to the factor graph as is done
in [49]. Because the tunnel sequence is a well defined structural environ-
ment, alignment of infinite lines and planes extracted from consecutive point
clouds should constrain the rotational component of the robot pose with
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great accuracy. We hypothesise that this could aid the overall optimization
and lead to a more accurate and geometrically consistent result than a VIO-
solution alone. Testing this tighter LiDAR-visual coupling on this dataset
could therefore be of great research interest. On a more general note, it
would be of great interest to investigate how to exploit the measurements of
any sensor modality that has one or more unobservable degrees of freedom.
The line and plane factors presented in [49] is just one way to do this, and
our current method is in fact already incorporating information from the
degenerate LiDAR sensor stream in the form of depth enriched visual land-
marks. An alternative approach could be to go the route of [51] and detect
and separate the degenerate degrees of freedom from the well-conditioned
degrees of freedom. These approaches, can in theory be expected produce
better estimates than a boolean healthy/degenerate state due to not turning
the partially failing modality completely off in the case of degeneracy.

All in all, the method and the theory presented in this work can be seen
as a step in the direction of a tighter LiDAR-visual-inertial coupling and a
tighter multi-modality exteroceptive fusion paradigm in general. The sys-
tem we have presented to facilitate this is a semi-tight fusion framework for
LiDAR-visual-inertial odometry based on sliding-window factor graphs and
the Bayes tree. While the evaluation of our proposed system shows that a
loosely coupled LiDAR-visual-inertial odometry can offer improved resilience
to both LiDAR and visual degeneracy, our results also indicate that further
investigation into a more unified tight-fusion factor-graph formulation could
be of great research interest. In any case, we have shown that the use of
complementary exteroceptive sensor modalities is key to achieve resilience
in challenging environments and yet is an open and active research field
with many exciting prospects. Indeed, looking out at the broader field of
robotic perception and autonomous systems, we see a flurry of recent and
ongoing work on multi-modal perception that is pushing the boundaries of
what is possible for resilient autonomous systems [29, 42, 49, 55]. We there-
fore expect to see many great complementary sensor-fusion systems—tightly
coupled or not—in the years to come.
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7 Abbreviations

Table 3: Abbreviations

Abbreviation Meaning

APE Absolute Pose Error
COLAMD Column Approximate Minimum Degree
EKF Extended Kalman Filter
GN Gauss-Newton
GNSS Global Navigation Satellite System
GPS Global Positioning System
GTSAM Georgia Tech Smoothing and Mapping
IMU Inertial Measurement Unit
iSAM Incremental Smoothing and Mapping
KF Kalman Filter
LiDAR Light Detection and Ranging
LM Levenberg-Marquardt
MAP Maximum a posteriori
RANSAC RANdom SAmple Consensus
RHS Right Hand Side
RMS Root Mean Square
RMSE Root Mean Square Error
RPE Relative Pose Error
SAM Smoothing and Mapping
SE(n) Special Euclidean Group n
SLAM Simultaneous Localization and Mapping
SLERP Spherical Linear Interpolation
SO(n) Special Orthogonal Group n
SU(n) Special Unitary Group n
VIO Visual-Inertial Odometry
VO Visual Odometry
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List of Figures

1.1 Example factor graphs for loosely coupled (left) and tightly
coupled (right) fusion. In the left figure, we show an inter-
leaved pose graph with green and blue poses corresponding to
two different sensor modalities. The poses are connected both
with factors from their individual single-modality subsystems
indicated respectively with triangles and squares, and a mo-
tion model connecting the consecutive variables. In the right
figure, the factors from the two modalities are instead mea-
surements of the same underlying quantities: the landmarks
l1 and l2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 A toy SLAM problem showing a ground robot traversing an
environment and receiving bearing-range measurements of nearby
trees. Red dotted lines indicate bearing-range measurements
from a laser range-finder whereas black arrows indicate inte-
grated proprioceptive measurements from e.g. an IMU. The
figure is adapted from [13]. . . . . . . . . . . . . . . . . . . . . 6

3.2 Toy SLAM problem represented as a Bayes net. Circle nodes
represent variables and rectangles represent measurements.
The figure is adapted from [13]. . . . . . . . . . . . . . . . . . 9

3.3 Factor graph representation of the toy slam problem. Large
colored nodes denote variables and small black nodes denote
factors. The factor nodes are labeled for clarity here, but this
is often omitted. The figure is adapted from [13]. . . . . . . . 10

3.4 Tight (top) vs loose (bottom) coupling in sensor fusion sys-
tems. The tightly coupled system fuses measurements directly
from the sensors, whereas the loosely coupled system fuses es-
timates from individual sensor-spesific estimators. . . . . . . . 16

3.5 Multi-modal pose-graph with interleaved measurements for a
configuration with two exteroceptive modalities. Pose vari-
ables are colored either blue or green depending on which
modality they correspond to. The graph contains both between-
factors between variables of the same modality, in addition to
a prior factor on the first pose, and IMU factors between every
consecutive pose. . . . . . . . . . . . . . . . . . . . . . . . . . 18
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3.6 Multi-modal pose-graph with synchronied measurements for
a configuration with two exteroceptive modalities. Between-
factors from the main modality are shown as square nodes,
whereas interpolated between-factors from the secondary modal-
ity are shown as diamonds. The graph additionally contains a
prior factor on the first pose and IMU factors between every
consecutive pose. . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Basic example factor graph for a bundle adjustment problem
with a single landmark observed from three poses (left) and
a more general factor graph for a multi-modal bundle adjust-
ment problem (right). The different colored pose and land-
mark nodes correspond to different modalities. Both graphs
also contains IMU factors and a prior factor on the first pose. 22

3.8 Figure 3.5 with preintegrated combined IMU factors. The
factor graph includes both pose, velocity and bias variables,
all connected with 6-way IMU factors. The figure is adapted
from the previous work [47]. . . . . . . . . . . . . . . . . . . . 28

3.9 The Bayes net for the toy SLAM problem resulting from elimi-
nating the factor graph in Figure 3.3 with the ordering l1, l2, T1, T2, T3.
The directed arrows indicate dependence relationships between
variables, e.g. l1 depends on T1 and T2. The figure is adapted
from [28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 High-level overview of the complete system. The shaded area
includes the part of the system that are implemented for this
project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 The factor graph for our multi-modal localization pipeline.
Poses (in blue) are connected with both preintegrated IMU
factors and between-factors from LOAM. Landmarks (in red)
are connected by projection factors to every pose in which they
are observed, along with optional range-factors whenever they
have a depth measurement in a particular frame. IMU factors
are also connected with velocity values (in yellow) and bias
values (in orange). . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 A visualization of data produced by the visual frontend show-
ing tracked features and the LiDAR point cloud projected
into the image. Features with depth are colored in blue, fea-
tures without depth in green and yellow circles indicate IMU-
propagated reprojected pixel predictions from the backend. . 39

4.4 An example image taken from the Newer College dataset [39]
where some Shi-Tomasi features are vastly stronger than oth-
ers. In this case, the over-exposed sky along with the rectan-
gular merlons cause nearly perfect corners with much higher
quality scores than other feature candidates in the image. . . 40
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4.5 Visualization of rotation-compensated feature parallax (a) vs
uncompensated parallax (b) in a scene with forward camera
motion. Green feature indicators are saturated to indicate
levels of parallax: higher intensity green color means high
parallax whereas grayer color means low parallax. Both com-
putations take the median of computed values. The image is
taken from the Newer College dataset [39] where many scenes
have far away structures with very low parallax. . . . . . . . . 43

4.6 Degeneracy of the point cloud alignment problem due to self-
similar geometry. Orange arrows indicate degenerate direc-
tions and blue indicate well conditioned directions. Straight
corridors as shown to the left (top down view) are ill-conditioned
along the direction of the corridor, while flat open environ-
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