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Sammendrag

Sammendrag
Verda over, inkludert i Noreg, gjev klimaendringar uføreseielege nedbørmønster og -mengder.
Dette har resultert i ein tre-trinnsstrategi for overflatevatn. Steg ein dreidde seg originalt om
den lokale vassbalansen, trinn to om fordrøyning av vatn ved større avrenningshendingar og
trinn tre om å sikre trygge flomvegar. Hyppigare ekstreme avrenningshendingar har ført til
eit stort fokus på avrenningsmengder og -volum over dei siste tiåra. I dette vert fokuset på
vasskvalitet forsømt. Fokuset på vassmengder har ført til store dimensjonar på vasskvalitet-
sløysingar, som har resultert i svekket reinseevne i nokon tilfelle samt dyre løysingar.

Denne studien har sett på to typar vegavrenningsreinseløysningar ved høvesvis E6 i Trondheim
og Fv 505 i Sandnes. Det vert teken vassprøvar i innløp og utløp ved fleire avrenningshendingar
i eit supersandfang og eit undergrunns sedimentasjonssystem. Automatiske prøvetakarar tok
prøver over lengre tid i kvar avrenningshendig, slik at utviklinga gjennom hendinga vart funne.
Vassprøvene vert analysert for totalt suspendert stoff, partikkelstørrelsefordeling og utvalde
metall. Metallkonsentrasjonane for Ni, Cu, Zn, Cd og Pb vart bestemd for tre ulike fraksjonar:
grove partiklar, fine partiklar og laust stoff.

Reinseeffektiviteten av total suspendert stoff for supersandfanget varierte frå 10 til 40 %,
imens sedimentasjonssystemet oppnådde ein reinsegrad frå 48 til over 98 %. Partikkelstør-
relsefordelinga varierte mellom dei to anlegga, men i begge var over 90 % av partiklane i
antal mindre enn 1 µm. Metallfjerninga varierte over element og fraksjon. Funn i denne
studien framhevar viktigheita av partikkelkarakterisering av vegvatnet når ein dimensjonerer
partikkelfjerningsanlegg.
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Abstract

Performance of closed particle removal systems for
treatment of road runoff

Kristine Bergseng
Department of Civil and Environmental Engineering
Norwegian University of Science and Technology

1 Abstract
Changes in the global climate are causing major challenges resulting in unpredictability in
precipitation amounts and patterns worldwide, including Norway. This has resulted in a three-
step approach for surface runoff water. Step one originally included local water balance, step
two flood detention, and step three safe floodways. The more frequent extreme events have
led to a focus on runoff quantities and volumes for flood detention over the last decades,
neglecting the water quality considerations. The early focus on quantity has resulted in large
designs of treatment facilities, causing impaired treatment performance and more expensive
measures.

This study investigates two types of road runoff treatment measures located in two coastal
cities in Norway. One hydrodynamic vortex separator (HVS) and one underground modular
sedimentation system (MSS) were monitored using automatic samplers to collect water sam-
ples in the inflow and outflow of the treatment facilities. The samples were analyzed for total
suspended solids, particle size distribution (PSD), and selected heavy metals. Metal concen-
trations for Ni, Cu, Zn, Cd, and Pb were determined for three fractions; coarse particle, fine
particle, and dissolved.

The sediment removal efficiency at the HVS ranged from 10 to 40 %, while the MSS achieved
particle removal of 48 to over 98 %. Particle size distribution differed, but over 90 % of all
particles were below 1 µm. Metal removal variated over element and fraction. Findings in this
study accentuate the importance of particle characterization of the road runoff when designing
a treatment facilities.

Keywords: Three-step approach; Treatment efficiency; Road runoff; Particle size distribution;
Heavy metals
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2 Introduction
Traditionally the approach for managing surface runoff has been to convey water away from
the road surface using piped systems. In Norway, climate change has led to more frequent
heavy rainfall events. In combination with urbanization, this has resulted in capacity problems
in these exciting systems, causing damage to buildings and infrastructure (Sorteberg et al.,
2018). To alleviate this problem, stormwater management has taken on a volume-based
focus. This focus, coupled with the introduction of climate factors in design, has resulted
in solutions with large hydraulic capacities. Management of the water resources as a whole
has revealed that stormwater can cause significant negative consequences in receiving water
bodies (Hoffman et al., 1985; Viklander et al., 2003; among others). Stormwater contain
multiple pollutants from metals to organics and micropollutants at varying concentrations
and loads (Tsihrintzis and Hamid, 1997; Makepeace et al., 1995). Road runoff is among the
most contaminated sources of stormwater where depositions from road salt, anti-skid agents,
emissions from vehicles, wear from tiers, vehicle parts, and pavements are present (Marsalek
et al., 2003).

Lindholm et al. (2008) introduced the three-step approach to meet the challenges of a changing
climate. The three-step approach is a volume-oriented approach differentiated based on small,
medium, and large precipitation events. The design criteria for stormwater pipes are a 20-
year return period, which has become the standard by practice also for step one solutions.
Standard return periods for step two and three have been 20 to 200-year events, dependent
on downstream infrastructure. Additionally, local norms impose climate factors for precaution
reasons. Paus (2018) has analyzed precipitation data and suggests a design value for step one
at 95 % of the annual precipitation, which typically corresponds to two-thirds of the two-year
rain. This is an commonly used design value internationally (Shrestha et al., 2014). The
initial step one approach emphasizes infiltration of small rain events, but the step has evolved
to concern the improvement of water quality (Paus, 2018). However, the volume oriented
approach has led to design of water quality measures with a large hydraulic loading capacity,
that for some are reducing treatment efficiency because it is not optimized for everyday events.

Construction and operation of roads may cause negative impacts on the aquatic environment
(Viklander et al., 2003; Marsalek et al., 2005). The EU’s Water Framework Directive aims to
ensure a good ecological and chemical status for ground and surface water. It is implemented
in Norwegian law through the Water Regulation (Vanndirektivet). The Norwegian Public
Roads Administration (NPRA) handbook N200 implements these regulations in road design.
Requirements in the N200 handbook are based on the vulnerability of the receiving water
body and the annual average daily traffic (AADT) on the road. There are two treatment
requirements. The first focuses on removing particular matter, and the second one targets
dissolved pollutants. However, low AADT (<3000) exempt from treatment. The Water
Framework Directive defines 45 priority substances, which have environmental quality standards
(EQS) given as threshold values between good and bad ecological state. These are given as
yearly average and maximum concentrations for the water body. However, these become
difficult to relate to when designing a treatment measure due to the typical low volume of
the road runoff compared to the recipient. Treatment requirements are clearly stating when

2
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treatment is required, but neither clear targets for percentage removal nor concentration limits
are specified. Meland (2010), documented that road runoff has the potential to disturb aquatic
biota, even during episodes with a low concentration of pollutants. Many studies have been
conducted on particles in stormwater, finding that many particles are present in the first flush
of a runoff event (Cheng et al., 2017; Sansalone and Buchberger, 1997b; Li et al., 2005;
among others).

Underground structures are popular measures to remove particles from road runoff in urban
areas due to their small above-ground footprint. The devices divide into three groups: Filters,
hydrodynamic vortex separators, and underground settling tanks (Wilson et al., 2009). The
two latter have a primary function to remove suspended solids and floatables from the runoff.
Settling tanks utilize sedimentation to remove particles (Li et al., 2006), while particles in the
hydrodynamic vortex separators (HVS) separates from the flow by a swirl effect (Andoh and
Saul, 2003). Aldheimer and Bennerstedt (2003), found an average 84 % removal of suspended
solids in a settling tank treating highway runoff. Settling tanks remove particles larger than
100 µm effectively, while small particles need more specific designs that give a larger hydraulic
residence time (Li et al., 2008). Treatment efficiencies of HVS are reported to vary widely
(Lee et al., 2014; Strømberg, 2020; Tran and Kang, 2013; among others). The treatment
efficiency is dependent on influent discharge and characteristics of particles (Sansalone and
Pathapati, 2009; Butler and Karunaratne, 1995).

Particle size distribution (PSD) is important to characterize the particles in the system (Selbig
et al., 2016). The particle size distributions from road runoff differ with spatial and tempo-
ral variations (Monrabal-Martinez et al., 2019; Kim and Sansalone, 2008; Strømberg, 2020;
Westerlund and Viklander, 2006). Differences in sampling and analytical methods typically
make PSD difficult to compare over different sites. Across studies a large portion of the metals
are found to be particle-bound (Ball et al., 1998; Tuccillo, 2006; Viklander, 1998; among oth-
ers), which makes particle removal an efficient way to hinder heavy metal pollution reaching
the receiving the water body (Li et al., 2005). Especially smaller particles are important to
remove, as these carry a larger bulk of metals, giving them a higher toxic effect (Wang et al.,
1998; Li et al., 2005). Sartor et al. (1974), found that over 50 % of the heavy metals were
associated with particles smaller than 43 µm, while this fraction only accounted for 5.9 % of
the total solids by weight.

As the current design practice funds on the three-step approach developed to handle quantities,
it points to the need to develop water quality-based design guidelines for the treatment of road
runoff. The purpose of this study is to investigate the treatment efficiency of two selected
systems: a hydrodynamic vortex separator and a modular settling system (MSS). The paper
aims to answer the following research questions:

• What does water quality parameters (PSD, total suspended solids, and heavy metals)
in the inflow and effluent of the hydrodynamic vortex separator and modular settling
system indicate for the particle removal efficiency?

• What are the design implications for step one water quality treatment measures based
on the findings in this study?
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Materials and method

3 Materials and method
This section includes a description of the study sites, water sampling, and sediment sampling
in the field. The laboratory analyses done on the water and sediment samples are outlined.

3.1 Description of study areas
The study sites include two road runoff treatment facilities; (1) a full-scale hydrodynamic vortex
separator (HVS) located south of Trondheim treating runoff from the major highway E6 and
(2) a modular closed settling tank south of Sandnes by the regional highway Fv505. Trondheim
and Sandnes are coastal cities with cold (Dfc) and temperate (Cfb) climates according to the
Köppen-Geiger climate classification (Beck et al., 2018), respectively. The sites differed in
traffic intensity, with an AADT of 28 640 for E6 (NPRA, 2021a) compared to an AADT of 6
840 for Fv. 505 (NPRA, 2021b).

Figure 1: The location of the hydrodynamic vortex separator (HVS) and modular sedimen-
tation system (MSS) with the upstream systems outlined. In the upper left corner, the HVS
is illustrated with a figure from Hydro International (NJCAT Technology Verification, 2015),
while in the lower corner, the MSS is shown with technical drawings from Skjæveland Ce-
mentstøperi AS. The map is retrieved from Kartverket (2021).
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The total area of 47 ha is draining to the HVS, of which 12,3 ha are impervious road surface
area, and the remaining 34.7 ha are grass-covered (Strømberg, 2020). The road runoff is
conveyed in grass-covered swales into the nearest inlets. There is a total of 28 gully pots
upstream of the HVS. The treatment of the road runoff, therefore, starts upstream the HVS
in the swales (Fardel et al., 2019) and gully pots (Butler and Karunaratne, 1995). Directly
upstream of the HVS, a 88 m3 detention basin is located, followed by a flow regulator. The
system is presented to the top left in Figure 1. A more detailed description of the system can
be found in Strømberg (2020). The installed HVS is a Downstream Defender with an inner
diameter of 2550 mm from Hydro International with a dimensioned flow of 192 L/s1 and a
maximum flow capacity of 270 L/s. However, the flow regulator restricts the inflow to 135
L/s, which is the permitted inflow to the downstream storm sewer. The inlet of the HVS
generates a swirl in the chamber that directs the particles to settle into a sediment chamber
with a storage capacity of 3.8 m3. Oil and other floatables will be removed as it rises to the
top.

An underground modular settling system (MSS) treats water from a catchment area of 1.44 ha
with impervious four-lane road surface including a bridge and a roundabout as the significant
land use (Storm Aqua AS, 2021). The road is expected to have a traffic 12 000 AADT in
the future. The system is designed to remove particulate bound pollutants according to the
NPRA’s design handbook N200 (NPRA, 2018). The water enters the treatment facility into
a modified manhole with a diameter of 2500 mm designed to remove coarse sediments, oil,
and floatables. After the manhole, the water flows into one of three settling tanks, with a
length of 26.5 m and a diameter of 2400 mm. Before the water leaves the treatment system,
the water from all three tanks flows into the same gully pot. The facility can be seen to the
bottom left in Figure 1.

3.2 Water samples
Teledyne ISCO automatic samplers were installed in the pipes of the manholes immediately
upstream and downstream of the treatment facilities. At the HVS study site, the 6712 Portable
Samplers with additional 750 Area Velocity (AV) Modules were used. The automatic samplers
were mounted to the concrete wall under the manhole cover. Low-Profile Velocity Sensors
were used with the AV module. The samples were collected through perforated polypropylene
strainers with a diameter of 3.3 cm. At the MSS study site, 3700 Full-Size Portable Samplers
were used. Due to the design of the system, it was not possible to use strainers. Therefore
suction lines were mounted to the bottom of the inlet and outlet pipes. Pictures of the setup
can be found in Appendix A.

The sampling procedure at the HVS was flow-triggered automatic sampling, while at the
settling tank, it is according to NS-EN 16479:2014 constant time variable volume sampling.
The reason for the different procedures was the available samplers, together with the access
to power. The flow-triggered samplers were chosen to be placed at Tiller because of the
fast response and the need to use batteries. The settling tank has a greater response time

1. Given in the Technical specifications and documentation from the supplier Miljø-og Fluidteknikk As
(internal communication).
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from the water entering to the water is leaving the facility. Consequently, it is found suitable
to use a sampling program with constant time. Both of the procedures gave the possibility
to sample the first flush and the entire runoff event. Manual sampling would not allow the
same possibilities due to the time-extensiveness and the lack of flexibility. The automatic
samplers at site one were programmed to sample the water when the AV sensors registered a
pre-defined water level, which was high enough so the water could flow through the strainer.
In the inflow sampling point of the HVS, the water level was set to 3.5 cm, while at the
outflow it was slightly lower at 3.0 cm. The reason for different water levels is the detention of
flow through the HVS and generally lower outflow. All samplers were programmed to collect
120 mL each sampling; in Trondheim, every five minutes as long as the water was over the
pre-defined water level, while in Sandnes, the time between each sampling was set based on
the weather forecast before each event started. Information about each sampling event are
found in Table 1. All samplers have 24 polyethylene bottles of 500 mL, giving the capacity of
sampling water 96 times. Each composite sample bottle consists of four single samples. This
gave the opportunity to look at different fractions of the runoff event and the development
over time. Inlet and outlet samples were paired together by finding the outlet sample closest
in time from when the corresponding inlet sample was taken.

The samples were collected and brought to the lab as soon as the sampling was completed.
According to Li et al. (2005) particles will start to aggregate after 6 hours. Therefore, the
samples were endeavor analyzed in the laboratory within a short time frame. Samples from the
MSS was shipped to the laboratory at the Norwegian University of Science and Technology
(NTNU) with express delivery overnight.

An ECH20 ECRN-100 0.2 mm tipping bucket gauge was located by the HVS manhole to
record the rainfall events. The EM50 Data collection system stored the data with a 5-minute
resolution of the whole sampling period. Precipitation data from the MSS site was retrieved
from the Norwegian Centre for Climate Services (NCCS, 2020) station SN44730 located 7 km
north of the site. The station has a resolution of the precipitation data of 1 hour. Rainfall
events were separated with at least 240 minutes of dry period.

3.2.1 Laboratory analysis

Analyses of particle size distribution (PSD), total suspended solids (TSS), pH, electrical con-
ductivity (EC), and turbidity were performed in the Water Analysis Laboratory at the NTNU.
Water samples were fractionated, and the total fraction was digested with UltraCLAVE at
NTNU before being analyzed for heavy metals at SINTEF. Information about the number of
analyzes preformed are found in Table 1.

A PSD was performed with a Beckman Coulter LS230, which gives the possibility to measure
a range of particles from 0.04 to 2000 µm with two different methods. The first method
illuminates the water samples, measuring the light intensity flux based on diffraction of the
laser light. In the second method, the LS230 obtains particle size information in the range
0.04 to 0.4 µm using Polarization Intensity Differential Scattering (PIDS). Results of the PSD-
analysis from the instrument can be given as differential distributions for volume, surface area,
or number percentage (Beckman Coulter, 2011). In this study, the latter was reported.

6
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Before each sample, the instrument was rinsed three times with de-ionized water and filled
with de-ionized water as background liquid. The sample bottles were gently inverted in order
to get a representative sample without bubbles. A sample size of 5 mL to 140 mL was added
to obtain a PIDS between 45 - 55 %. All samples were analyzed in three runs with a duration
of 90 seconds and a pumping speed of 50 %.

The road water was vacuum filtered through a pre-weighed cellulose nitrate membrane (What-
man NC45) filters with an average pore size of 0.45 µm to determine TSS. Procedures were
done according to the standard NS-EN 872 (Standards Norway, 2005), but the method devi-
ates from the standard since 1.2 µm glass fiber filters were not used. This is due to the main
presence of smaller particles. After vacuum filtering, the filter is dried at 105 °C, before the
filter was weighed after reaching equilibrium with the surrounding air.

In order to distinguish between the coarse particle, fine particle, colloidal, and truly dissolved
metal fractions, a fractionation was carried out. However, in the literature there is not a
clear standard of defining the different size ranges (Wang et al., 2003; Huerta-Diaz et al.,
2007; Tuccillo, 2006). This results in overlapping fractions in studies, making them onerous to
compare. Due to this, it is desirable to make a common practice to fractions to compare studies
and gain a greater understanding of road runoff. In Appendix B a review of the fractionation
methods across several studies in Scandinavia was conducted. The review concludes that it is
suitable to define the fractionation thresholds as following for this project: particulate (> 0.45
µm) and dissolved (< 45 µm). The particulate fraction is further divided into coarse particles,
greater than 1.2 µm, and fine particles in the range from 0.45 to 1.2 µm. In the dissolved
fraction, colloidal matter is defined as the size from 3 kDa to 0.45 µm, while particle sizes
under 3 kDa truly dissolved. The same division between the particulate and dissolved fraction
is also used in the Water Regulation (Vannforskriften, 2006).

Due to the COVID-19 pandemic, the delivery time of 3 kDa filters was 10 months; consequently,
it was not possible to fractionate within the dissolved fraction in this study. Syringe filters with
an average pore size of 1.2 µm and 0.45 µm were used for the fractionation, with a cellulose
acetate membrane (Whatman) and polyethersulfone membrane (VWR), respectively.

Among heavy metals, Nickel (Ni), Copper (Cu), Zinck (Zn), Cadmium (Cd), and Lead (Pb)
were selected due to their presence in urban runoff at potential harmful concentrations (Direk-
toratsgruppen vanndiriktivet, 2018). Before the analysis, the samples were fractionated and
preserved by adding five drops of ultrapure 0.1 M nitric acid (HNO3) per 15 mL sample. The
total metal samples were digested with UltraCLAVE from Milestone prior to analysis in the
ICP-MS to get the sample in solution form. The UltraCLAVE digestion samples were prepared
with 2 mL of water sample and 4 mL of ultrapure 65% HNO3. The UltraCLAVE was done in a
time period of 1t 18 min stepwise, increasing the temperature and pressure to 245oC and 205
bars under constant microwave power of 1000 W. Cooling was performed in the same reversed
stepwise order. After digestion, the samples were diluted to 15 mL before metal analyses were
conducted. Heavy metals were analyzed by an ICPQQQ, Agilent 8800 (Agilent Technologies)
instrument externally at SINTEF Industry, Trondheim. The metal concentrations in the coarse
particle and fine particle fractions were determined by subtracting the concentration of the 1.2
µm from the total concentration and the 0.45 µm filtrate from the 1.2 µm filtrate, respectively.
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If the fraction came out as negative after subtraction, the fraction concentration was set as
zero. In that case, the corresponding paired upstream or downstream metal concentration (n)
was added to sample n+1. The 0.45 µm filtrate gave the metal concentration of the dissolved
fraction.

The percentage removal efficiency of TSS and metals for the treatment facilities were found
using equation 1, with the average inflow and outflow concentrations of each event.

Removal efficiency[%] = Inflow concentration - Outflow concentration
Inflow concentration ∗ 100 (1)

3.3 Runoff modeling
A rainfall-runoff simulation model was developed in StormWater Management Model (SWMM)
(EPA, 2020) for the study site in Trondheim in order to estimate the flow into the HVS. The
runoff coefficient was set for each sub-catchment based on the land use, where 0.95 was used
for the road and 0.6 for the grass-covered areas. The model was based on the catchment
characteristics and pipe information from Strømberg (2020) and internal technical drawings
of the cite from the NPRA. Manhole depths are not included for the system upstream of the
detention basin. The slope of the pipes was assumed to be equal to the surface gradient.
The Kinematic Wave and Horton equation were chosen as routing and infiltration models,
respectively. The roughness of the pipes was set to a Manning’s value of 0.012 (Table A.7,
Rossman (2015)). Additional model parameters are given in Appendix C.

To calibrate the model, Micro-Divers (Diameter = 18 mm) from Van Essen were installed in the
inflow pipe of the upstream manhole of the HVS. A Baro-Diver was hung next to the ECH20
gauge to compensate the Micro-Divers for atmospheric pressure. The divers logged data from
April 16 to May 13. The model was calibrated with diver data and precipitation recorded in the
period between April 21st and May 13th using R-studio with R version 3.6.1 (RStudio Team,
2019). The calibrated parameters were Mannings n for impervious and pervious surfaces. The
R-script, found in Appendix C, used a differential evaluation method to optimize the parameters
with the Nash Sutcliffe model efficiency, which aims to evaluate the peak performance. In order
to find the 95 % value of the yearly flow, 30 years of precipitation data from Risvollan with
one-minute resolution from the 25th of January 1989 to the 31st of December 2019 (retrieved
from NCCS (2020), station SN68230), was used as input data for the calibrated model.
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Table 1: Information about sampling the sampling program and lab analyzes performed on the samples from each rain event. Data from
both the hydrodynamic vortex separator (HVS) and modular settling system (MSS) are each presented in the table. Due to insufficient
amounts and/or the number of particles in the water, all analyzes, particle size distribution (PSD), pH, electrical conductivity (EC),
Turbidity (Turb), total suspended solids (TSS), metal fractionation, was not done for all the events.

Sampling information Number of lab analyzes preformed
Sampling
point

Date Rain Antcendent
dry period

Rainfall
duartion

Sampling
duration

Total #
samples

#
samples
paired

PSD pH a EC a Turb
a

TSS Metal
fractions

[mm] [min] [min] [min] tot
µm

1.2
µm

0.45
µm

HVS

U 25.02 SMLTb - - 455 21 21 21 21 21 21 21 21 21 21
D 420 21 21 21 21 21 21 21 20 21
U 06.03 25.1 c 680 950 75 d 4 3 4 3 3 3 3 2 2 2
D 40 d 3 3 2 2 2 2 2 2 2
U 20.03 SMLTe - - 370 19 13 18 18 18 18 19 13 13 13
D 280 d 14 14 14 14 14 14 13 13 13
U 22.03 16.4 1555 1085 15 d 1 1 - - - - 1 - - -
D 15 d 1 - - - - 1 - -
U 21.04 6.0 3635 925 20 1 1 1 1 1 1 1 1 1 1
D 20 1 1 1 1 1 1 1 1 1

MSS

U 28.03 8.8 1020 360 630 8 8 8 - - - - - - -
D 1110 20 20 - - - - - - -
U 08.04 28.5 2340 360 1440 20 24 20 9 9 9 14 24 24 24
D 1440 24 24 10 10 10 15 24 24 24
U 20.04 3.8 14460 1500f 480 9 8 6 5 6 6 9 8 8 8
D 480 22 22 11 13 14 22 8 8 8
U 09.05 4.9 8640 240 180 10 10 10 9 9 9 10 9 8 8
D 252 15 10 15 13 13 15 9 8 8

a pH, conductivity (EC) and turbidity (Turb) was analyzed according to the the standards ISO 10523:2008(ISO, 2008), NS-ISO
7888:1985 (ISO, 1985) and ISO 7027-1:2016 (ISO, 2016b), respectively.
b No precipitation recorded. Snow depth data from NCCS (2020), station SN68120 shows a decrease of 5 cm in the 24 hours before
the sampling started. c Sludge/rain on snow d Sampling ended due to battery failing. e No precipitation recorded before the
event started. Snow depth data from NCCS (2020), station SN68120 shows a decrease of 3 cm in the 24 hours before the sampling
started. First precipitation registered after sampling finished. f A stay in precipitation of 5 hours within the period.
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3.4 Sediment samples
To evaluate the treatment train upstream, the HVS samples of the sediments in the upstream
gully pots were collected on the 5th of May 2021. Five gully pots were sampled as marked in
Figure 1. All upstream gully pots could not be sampled due to safety reasons; see Appendix
D. Before taking samples of the gully pots, the top water was abstracted by a vacuum vehicle.
One grab composite sample of 1 liter was collected in plastic bottles from each gully pot using
a Van Veen grab of stainless steel. The road was opened to traffic in November of 2018, and
the sediment build-up was below 10 cm in the gully pots. Layering of sediments was therefore
not an issue, as described by Adler (2020). All sediment samples were taken in the center of
the gully pot. The Van Veen grab was first rinsed with water from the vacuum truck, followed
by de-ionized water between sampling of each gully pot in order to prevent contamination.
The samples were kept at 4°C until the lab analyses were performed.

3.4.1 Laboratory analysis

The PSD analyses of the sediment were performed based on the method developed by Adler
(2020), utilizing manual wet sieving and a Beckman Coulter LS230 instrument. Manual weight-
based wet sieving was used to sift particles between 50 and 2000 µm, giving a weight-based
PSD. The sifted particles that came through a 50 µm sieve were diluted with distilled water
and analyzed in the LS230 instrument, which yielded a number-based PSD.

Within short time particles in the highway runoff will form particle aggregates (Li et al., 2005).
Therefore, a dispersant was used to disperse the agglomerations into their primary particles.
The samples from each gully pot were split into two equal subsamples with a riffle splitter
before they were analyzed in parallel; One with a natural appearance of the particles in the gully
pot (NAT) and the second with added dispersant (DIS) using 3 g/L sodium pyrophosphate
decahydrate (Na4P2O7*10H2O) in crystal form. The NAT sample was soaked overnight for at
least 12 hours before the wet sieving began (NPRA, 1997).

Approximately 100 g of dry mass of each subsample was used for wet sieving to ensure sufficient
mass for the largest sieves while preventing overloading of the smaller. This equated to
approximately 300 g of wet sample (ISO, 2016a). Stainless steel sieves with a diameter of 200
mm and mesh sizes of 50, 75, 100, 150, 250, 1000, and 2000 µm placed over pre-weighed
trays of stainless steel were used for sieving. The particles < 50 µm were collected in a tray
underneath. The tray was mixed by hand before a sample was collected into a 100 mL plastic
cup. To make sure that all particles were sieved, each sieve was flushed with approximately
0.5 L de-ionized water over a second tray. This water was then poured over the sieves with
smaller mesh sizes before the flushing was repeated for the next sieve. The sieve tower was
placed over a third tray before the same procedure of flushing was repeated. The particles
left on the sieves were carefully transferred to pre-weighed beakers with distilled water. The
beakers and trays with samples were dried at 105 °C into constant weight, according to the
standard NS 4764 (Standards Norway, 1980), and weighed to determine the weight of each
fraction. As in the method by Adler (2020), the particles above 2000 µm are not included to
avoid underestimating smaller fractions.
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The 100 mL plastic beaker containing a sample of the particles below 50 µm was gently
mixed, and 10 mL was subtracted into a 50 mL plastic tube with a pipette. This was then
diluted with distilled water up to 50 mL. The sample was analyzed in the LS230 as in Section
3.2.1 Laboratory analysis. For the DIS sample the dispersant (3 g/L Na4P2O7*10H2O) with
distilled water was used as background liquid 2. The organic matter in the sediment samples
was determined according to NS 4764:1980 (Standards Norway, 1980) for the total and <50
µm fraction for each NAT sample.

2. The distilled water + 3 g/L Na4P2O7*10H2O has a reflection index of 1.3335, which has to be set for
the LS230. Distilled water has a standard reflection index for water at 1.3330
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4 Results and discussion
This section examines the water quality parameters analyzed from the in - and outflow of the
HVS and MSS. A discussion of pH, conductivity, and turbidity falls outside the main scope of
this paper, but the parameters are included as a reference of the overall water quality. Secondly,
the results of the sediment analyses will be presented to gain a better understanding of road
runoff characteristics of the incoming water to the HVS. Lastly, the findings are discussed to
describe design implications.

4.1 Particle removal efficiency
A majority of the particles bot at the HVS and MSS are smaller than 1 µm. Figure 2 represents
the PSD of four runoff events at the HVS and two at the MSS. For the analyses of the MSS
events on the 28th of March and 8th of April, the PIDS component was out of order, which
resulted in no division of particles smaller than 0.4 µm. Findings show that over 90 % of the
particles at the MSS were below 1 µm. At the HVS, 99 % of the particles were below 1 µm,
with a median particle size of 0.134 ± 0.05 µm upstream and 0.152 ± 0.07 µm downstream.
There is little difference in PSD in the inflow and outflow of the treatment facilities in most
events in these results. However, as seen for event 6th of March (HVS) and 20th of April
(MSS), some events show a shift in the peak towards larger particles in the outflow. This
indicates the facility’s ability to remove small particles less than 1 µm.

The two study sites differ in land use, AADT, climate, and geographic regions, which are factors
that influence the composition of runoff (Kayhanian et al., 2012). Despite this difference, the
inflow PSD to both the treatment facilities is smaller than expected. Smaller particles in the
inflow of the HVS, however, might be caused by the complex upstream system with swales and
several gully pots (Figure 1). A higher AADT might cause the particles to be swept further
away, at the same time as they might crush into a smaller size due to the high traffic load.

Contrary to the findings of Strømberg (2020) and Westerlund and Viklander (2006) this study
could not draw any clear differences between rain and snowmelt events due to limited data.
However, in Figure 2 the curves on the snowmelt and rain/sludge on snow events the curves
are more flattened than for the rain event 21st of April. This indicates smaller particles in road
runoff during rain events. Neither this study nor the study by Strømberg (2020) have large
enough data material to draw any conclusion, but based on the characterization of snowmelt,
it is likely to assume bigger particles during snowmelt (Vijayan et al., 2019). PSD has been
measured in road runoff in several studies (Westerlund and Viklander, 2006; Monrabal-Martinez
et al., 2019; Selbig et al., 2016), but few of these are using a number based PSD over the
range from 0.04 up to 2000 µm. A general method for determining PSD is still lacking. This
make a comparison across studies challenging because there is none consistent experimental
method. Westerlund and Viklander (2006) studied number-based PSD in the range 4 - 120
µm on a road with an AADT of 7400. The study reported that a range of 58 to 80 % of
particles during rain and snowmelt events was in the smallest fraction between 4 - 6 µm. This
emphasizes that smaller particles are largely represented both during snowmelt and rainfall.
However, when comparing results to older studies, it must be pointed out that the particle
range differs from this current study. Hence, the smallest particles are not included in the
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statistics. The PSD in the current study skews towards smaller particles, with a majority of
the particles well under 1 µm.

Figure 2: Particle size distribution of four events at the hydrodynamic vortex separator (HVS)
and two of the events at the modular sedimentation system (MSS).

In order to further understand the inflow PSD, sediment samples were collected in the up-
stream manholes to investigate the PSD in these sediments. Wet sieving gave a mass-based
PSD for the sediments in the upstream gully pots of the HVS, as represented in Figure 3.
The fraction with particles below 50 µm is the largest for both NAT and DIS samples, with
a median differential weight of 60 % for both. There is a minimal difference between the
samples with and without dispersant, which Adler (2020) implies is due to weak bonds in the
aggregation of particles. All the results from the sediments analyses are given in Appendix
G. Strømberg (2020) analyzed the sediments in the HVS and the direct upstream gully pot,
finding a contribution of 91 and 84 % in the < 50 µm fraction for the DIS and NAT samples,
respectively. The smallest fraction increases in these gully pots, suggesting that coarser par-
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ticles are removed in the upstream gully pots. However, all the gully pots at the study site
have finer particles than sediments from gully pots in other Scandinavian cities with somewhat
similar AADT, where the mass-based median particle ranged from 350 to 1500 µm ( Karlsson
and Viklander, 2008; Leikanger and Roseth, 2016).

Figure 3: Particle size distribution of the sediment samples samples in the fractions without
dispersant (NAT). The legend refers to the number of the gully pot, and the red line visualizes
the median value within each fraction.

PSD analysis for the < 50 µm fraction, which was done with a number-based approach,
indicated that most of the particles are well below 1 µm. The median of the D90 are 0.204
µm and 0.234 µm for NAT and DIS samples, respectively. Together, the present findings,
combined with Strømberg (2020), confirm that the road runoff at the site consists of small
particles.

In the total fraction, organic matter ranged from 3.92 - 7.63 %. The organic part in the <
50 µm fraction ranged from 7.23 - 11.3 %, with a median of 10 %. The findings are in line
with the findings of Adler (2020), which showed that there is in general more organic matter
in the fractons below 150 µm. Based on the smell and formation of a dark layer on top of
the DIS-samples during drying, the organic part is most likely oil in the minuscule fraction.
Leikanger and Roseth (2016) found a buildup of oil in gully pot sediments, which supports the
implication of oil in the fraction < 50 µm. Pictures from the analyses and of the dark film are
found in Appendix G.

Total suspended solids (particles > 0.45 µm) removal efficiencies at the HVS were observed in
the range from 10 to 40 % during events with two or more paired TSS samples. The highest
removal efficiency was found at the 25th of February event, while the event the 20th of March
event had the lowest removal performance. Figure 4 represents TSS, pH, EC, and turbidity
results of the paired samples from the two events together with boxplots that summarize the
results of all paired samples at the HVS combined. Overall there is a reduction in TSS, EC,
and turbidity for the HVS events combined. For each event, the TSS and turbidity show the
same pattern. The pH remained between 7 and 8 in both the inflow and outflow at the HVS.
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The 25th of February event produced the maximum peak of TSS concentrations recorded in
the period in both the inflow and outflow with 813.8 mg/L and 745.1 mg/L. A reason for
the high TSS concentration might be runoff generated by snowmelt, which is found to have
higher contents of solids than rain-events (Westerlund et al., 2003; Helmreich et al., 2010).
At the beginning of the event, TSS and turbidity are high before it stabilizes halfway through
the event. This demonstrates activation of the swirl in the HVS, and particles are removed
from the water phase. In the 20th of March event, a small removal efficiency is found as the
TSS concentration in the inflow and outflow are following each other in a steady increase. A
swirl in the HVS is probably not generated. Hence, the small removal is enhanced by standard
sedimentation in the large water volume. It must be empathized that the inflow concentrations
of TSS, EC, and turbidity are a tenfold larger in the first event than in the last event discussed.
The low removal efficiency might somewhat be explained by this (Barrett, 2005; Strecker et
al., 2001). The findings of varying and generally low removal efficiency ties well with previous
studies of similar hydrodynamic separators done by Strømberg (2020) and Curwell (2015).

Both of the exemplified runoff events are generated by snowmelt. Therefore the developed
SWMM model could not simulate the runoff at the HVS. However, from a weather station
located 2 km away at the same altitude, the snow depth was recorded to decrease by 5
cm at the 25th of February and 3 cm on the 22nd of March. A higher flow, which started
the swirl, may also explain the better removal efficiency at the first event. Curwell (2015)
noted the importance of capturing the whole event when calculating the removal efficiency
due to higher pollution concentrations at the beginning of an event. This is supported by the
knowledge of higher toxicity and pollution in the first flush (Kayhanian et al., 2012; Li et al.,
2008 and Cheng et al., 2017; among others). No discharge measurements were made during
the sampling, but a depth of 3.5 cm and 3.0 cm in the inflow and outflow, respectively, was
required for the sampling to start. A portion of the runoff was therefore passing before the
pre-defined threshold value was reached.

Observations during sampling were done in the direct upstream and downstream manholes,
showing that the pipes sometimes were dry. The recorded precipitation and diver data are
presented in Appendix F. The diver data indicated a base flow that fluctuated around a depth
of two centimeters. This was evaluated to be noise in the data, which was supported by
the diameter of the diver of 18 mm. Consequently, the diver data was filtered resulting in
that values under two centimeters were set to zero. The SWMM model was calibrated to a
Nash–Sutcliffe model efficiency coefficient of 0.01, which means that the model has predictive
skills slightly better than the mean of the observed data. This was acceptable for a simplified
model, together with some uncertainties in the observed diver-data. The calibration yielded
n-imperv to 0.39 and n-perv to 0.48. These are high manning values for asphalt and grass-
covered swales compared to Manning’s values given in the SWMM handbook table A.6 for
overland flow and A.8 for channel-flow, which are 0.011 for asphalt and 0.03-0.4 for vegetated
channels (Rossman, 2015). The high Manning’s value slows the water down with the increased
roughness, compensating for the swales and other unmodelled obstacles in the model upstream
of the detention basin. The simulation of 30-year precipitation gave a maximum flow of 100
L/s at the HVS, with a 95 %-value of the total flow at 10 L/s. This value indicates the flow
that reaches the HVS, but caution must be taken due to the uncertainties in the model and
the fact that the precipitation data is from a weather station located 7 km northeast.
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(a)

(b)

(c)

Figure 4: TSS, pH, electrical conductivity (EC) and turbidity from all paired samples at all sampled events (a), as well as the 25th of
February (b) and 20th of March events at the HVS.
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(a)

(b)

Figure 5: TSS, pH, electrical conductivity (EC) and turbidity from all paired samples at all events sampled at the MSS (a), followed by
data from the 9th of May event (b). The downstream TSS consentration is below the report limit at 2 mg/L.
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The removal efficiency at the MSS of total suspended solids was recorded to be 48 %, 92 %
and 98 % for the events 8th and 20th of April and 9th of May event, respectively. The highest
precipitation was recorded on the first event, which likely also generated the highest flow into
the MSS. As the incoming volume is larger, the time for settling will decrease. With a low
settling velocity, small particles such as those found at the MSS will not have enough time to
settle (Li et al., 2008). At the same time, larger runoff intensities might bring larger particles
to the treatment facility that will according, to Stoke’s law, sedimentate faster. Figure 5
represents results of TSS, pH, EC and turbidity analyzes for all paired samples summarized
and for the 9th of May event. The reduction of TSS and turbidity follow the same pattern, with
a clear reduction totally from the inflow to the outflow. Li et al. (2006) suggests that these
two parameters can be useful surrogates for each other, as they show a strong correlation. At
the exemplified event 9th of May, the turbidity rises over the inflow halfway through the event.
Explanations for this might be that some of the water in the outflow had a long residence
time or that some particles were re-mobilized. An interesting finding is that both pH and EC
rise from the inflow to the outflow. This supports the hypothesis of re-suspension of some
particles in either the sedimentation chambers or in the downstream manhole.

Paired samples for four out of five events at the HVS and three out of four events at the
MSS were analyzed for Ni, Cu, Zn, Cd, and Pb. The total in-and outflow concentrations
for the Ni, Cu, Zn, and Pb are given in Figure 6. The Cd concentration is given for the
dissolved fraction in both plots due to methodological limitations. All metals, except for Cd
where data is not available, are found to be present in both the particulate and dissolve forms.
This is in line with findings from Kayhanian et al. (2012). The events earlier discussed are
shown in Figure 7, 8, and 9 to show how the metal concentrations develop over time in the
inflow and outflow. The annual average environmental quality standard (AA-EQS) values
for Cu (7.8 µg/L) and Zn (11 µg/L) are found in the guide for classification of water by
Norwegian Environment Agency (2016), while for values for Ni (4 µg/L), Cd (0.08 µg/L 3),
and Pb (1.2 µg/L) are also found in the Water Regulation (Vannforskriften, 2006). Long-
term exposure in the recipient of concentrations greater or equal to the AA-EQS value will
cause chronic effects. Acute toxic effects may occur if the metal concentrations are above the
acute predicted no effect concentration, PNECacute (Norwegian Environment Agency, 2016).
According to Appendix VIII E in the Water Regulation (Vannforskriften, 2006) the EQS values
for Cu and Zn given for the total concentration in the water sample, while for Ni, Cd, and
Pb, the values are current for the dissolved concentrations (< 45 µm), which are the most
bio-available. Notwithstanding, total metal concentrations for Ni and Pb are presented as
an overview for all samples because both the facilities investigated are intended to remove
particles.

Total Cadmium was under the detection limit of the ICP-MS for all samples. The same
occurred for Ni at the HVS’s 20th of March event and the MSS’s 8th of April event. This
uncovers some weaknesses of the method since the 1.2 µm, and 0.45 µm filtrate was detected.
The most significant error in the method is probably the dilution of the total samples after
UltraClave digestion. A dilution must be done to transfer the samples from the silicone tubes
used during UltraClave to metal-free tubes. However, an option is to provide more sample

3. Minimum value. The limit depends of the hardness of the water (Vannforskriften, 2006).
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volume into the UltraClave to reduce the effect of dilution. Another weakness is the overlap
of fractions for some metals, especially for Ni and Cd, as seen in Figure 7, 8, and 9. The
overlap should by theory not occur but might be caused by several errors, for example, sample
contamination. In the event 20th of March, Figure 8, there might be a switch between the
samples, as the peaks in the total and 1.2 µm filtrate are offset from each other.

(a)

(b)

Figure 6: Representation of all in -and outflow concentrations of Ni, Cu, Zn, Cd, and Pb for all
the paired samples from the HVS (a) and MSS (b). The total concentrations are represented
for all the metals except for Cd, where the dissolved concentration is shown due to invalid
results for the total. For some samples at the 20th of March event, Ni results were reported
under the detection limit.

In the monitored events at the HVS and MSS, the average dissolved concentration for Ni,
Cd, and Pb never exceeds the AA-EQS, while Cu and Zn have exceeded the threshold both
the inflow and outflow. If Ni, Cd, and Pb concentrations were too high, the HVS and MSS
would initially not have been a good choice of treatment solution since they aim to remove
particulate matter. At the HVS, the metals of concern, Cu and Zn, had on average 83 and 94
% of the concentrations in the particulate fraction at the inflow and outflow, respectively. The
average concentration in the outflow was nearly three times the value of PNECacute = 15.6
µg/L for Cu and two times the value of the PNECacute = 60 µg/L for Zn. Average outflow
concentrations of Cu and Zn at the MSS were both 2.4 times larger than the respective
PNECacute threshold value. The dissolved fraction in the inflow constituted 60 % of the total
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Cu concentration, while in the outflow, this shifted to only 40 %. For Zn, the concentration of
Zn in the particulate grew from 28 to 40 %. This increase of concentration in the particulate
fraction was unexpected because one would think that the particles settle. Nevertheless, the
same trend is found in the PSD for the 20th of April event, where the particles are skewed
towards larger particles in the outflow. At the same time, it might also explain the increased
EC in the outflow of the MSS.

Values above PNECacute in the outflow are not necessarily a threat to the downstream recipient,
but further investigations should be done of the recipient to make sure concentrations are not
surpassing. The typical low volume from the treatment device in proportion to the recipient
often dilutes the concentrations sufficiently. However, high concentrations above PNECacute in
the outflow should be checked with caution, as these can threaten the aquatic environment.

A larger variation in concentration is found in the inflow for each of the metals than in the
outflow. The highest concentrations of metals, as well as TSS, occurred during the 25th

of February event at the HVS, which was caused by significant snowmelt. All paired metal
concentrations for the event are presented in Figure 7. For Ni, Cu, Zn, and Pb the same trend
as for TSS (Figure 4, (b)) can be seen, with a clear reduction in concentration in the middle
of the event. This demonstrates that the HVS has the ability to remove metals when the swirl
starts. Despite a higher AADT at the highway draining to the HVS, the metal concentration
are solely not more significant than at the MSS. Recorded inflow concentrations of Ni and
Pb are highest at the HVS, while Cu, Zn, and Cd are larger at the MSS. The differences
might be caused by differences in land use, AADT catchment size, geographic region, total
event rainfall, and antecedent dry period, which Kayhanian et al. (2012) reports to significant
influence pollutant concentrations.

Statistical analyses was not performed in this study, but previous studies have investigated
the correlation between TSS, PSD, and metal concentrations in road runoff (Ferreira et al.,
2013; Meland, 2018; Westerlund and Viklander, 2006; Sansalone et al., 1995; among others).
Sansalone et al. (1995) found a strong correlation between the heavy metals investigated in
the current study and TSS at E6 further south of the HVS study site, in Jessheim. The
correlation was strongest for small particles < 15 µm and during snowmelt events. This was
expected as smaller particles have an increased specific surface area (Sansalone et al., 1995)
and more available material containing heavy metals to adsorb to the particles (Westerlund
and Viklander, 2006). Meland (2018) studied untreated tunnel wash water, which can be
characterized as a hot spot within road runoff due to the high pollution concentrations. The
study demonstrated a correlation ranging from 0.86 to 0.90 between TSS and the metals
Ni, Cu, Zn, and Pb. As a result of this, Meland (2018) suggests that TSS can be used
to estimate other pollution concentrations. Contrary to the findings of the discussed studies
Ferreira et al. (2013) did not find a strong correlation with TSS and the particulate-phase metal
concentration. Removal of TSS and heavy metals do not seem to have a strong relationship
at the MSS either, as the removal efficiency of TSS at the 9th of May event was 98 %, while
for the metals it is ranging between 42 and 55 % (see Appendix E, Removal efficiencies). In
Figure 9, which represents the evolution of metals in the inflow and outflow of the event, it
can also be seen that metal concentrations in the outflow are above the AA-EQS value.
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Figure 7: Metal concentrations of Ni, Cu, Zn, Cd, and Pb from the 25th of February event
at the HVS. The upstream and downstream concentrations are represented to the left and
right, respectively. For each sample, the error bar represents the relative standard deviation.
AA-EQS values for the individual metal in freshwater are shown with the red dashed line. For
Ni, Cd, and Pb, the AA-EQS values are current for the dissolved fraction.
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Figure 8: Metal concentrations of Ni, Cu, Zn, Cd, and Pb from the 20th of March event
at the HVS. The upstream and downstream concentrations are represented to the left and
right, respectively. For each sample, the error bar represents the relative standard deviation.
AA-EQS values for the individual metal in freshwater are shown with the red dashed line. For
Ni, Cd, and Pb, the AA-EQS values are current for the dissolved fraction. Ni is represented
without a coarse particle fraction due to concentrations under the detection limit.
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Figure 9: Metal concentrations of Ni, Cu, Zn, Cd, and Pb from the 9th of May event at the
MSS. The upstream and downstream concentrations are represented to the left and right,
respectively. For each sample, the error bar represents the relative standard deviation. AA-
EQS values for the individual metal in freshwater are shown with the red dashed line. For Ni,
Cd, and Pb, the AA-EQS values are current for the dissolved fraction.
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Figure 10: The removal efficiency of each event for metals in the total, particle, and dissolved
fractions for the hydrodynamic vortex separator (top) and modular sedimentation system (bot-
tom). The particulate Nickle concentration of 22nd of March and 21st of April event at the
HVS and the 8th of April event at the MSS were not included due to a negative particulate
fraction value. Cadmium is exclusively presented in the dissolved fraction.

The removal efficiency varies between the metals and the events at both the HVS and MSS,
shown in Figure 10. All over, Ni had the highest removal efficiency, where most of the removal
is found in the particulate fraction. The total median removal efficiency is above zero for all
metals, but it is negative for Cu and Pb for some events. However, Cu and Zn are the only
metals that are above the AA-EQS value in the outflow.
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4.2 Implications for step one water quality treatment measures
From the modeling and water quality parameter results, it is clear that the HVS and the
upstream treatment train have an improper design. The supplier of the HVS in this current
study reports retention of 80 % for events with flows of 192 L/s and particles ≥ 110 µm.
However, a flow regulator restricts the discharge entering the HVS to 135 L/s. Therefore, it
will not be possible to reach optimal flow conditions in the HVS. Results from flow modeling
in SWMM imply that over a 30-year period, the flow of 192 L/s would not have been reached
even without the flow regulator. An extensive treatment measure is here direct against its
intention because the everyday events have a low treatment efficiency. A suggested better
position of the HVS would be upstream of the detention basin, as shown in Appendix A;
Figure A3, to ensure more significant flows entering the treatment facility. Hence, the swirl
could start in more events, and an all-over better treatment efficiency could be obtained. The
same results could possibly be gained by reducing the size of the HVS, which would also have
reduced the initial installation costs. A smaller device would require more frequent sediment
removal from the storage, but this could give benefits in the form of hindering the sedimented
pollutants in re-mobilization. Even though the flow was greater than the optimal treatment
flow, the HVS has a large hydraulic capacity. The studied HVS have a maximum capacity of
540 L/s (Miljø- og Fluidteknikk AS, 2020).

The findings of that 99 % of the particles are smaller than 1 µm raises concern if a HVS
is a suitable treatment device at the site. Large numbers of small particles at the HVS can
contribute to findings of low treatment efficiencies of TSS at the HVS. From the supplier, the
80 % retention is given for particles ≥ 110 µm, which is not present at this site. Laboratory
testing, of the same HVS as investigated in this study, performed by NJCAT Technology
Verification (2015) gave TSS removal efficiency of 55 %, but this was without particles smaller
than 1 µm. TSS analyses in the current study only measure particles over 0.45 µm, while
90 % of the particles found in the inflow were below 0.316 ± 0.11 µm. Even though most
particles are small, they may contribute little to the total mass (Li et al., 2005). However, due
to the high specific surface area, these very small particles can carry harmful pollutants such
as heavy metals and polycyclic aromatic hydrocarbons (PAH) (Sansalone and Buchberger,
1997a). The fine particles are of great concerns as they can cover spawning ground for
fish and disturb aquatic biota at even low concentrations (Nøst, 2019; Meland, 2010). The
investigated particle removal systems aim to remove particles, but the fine matter is proven to
be of concern. Analyses of the sediments in the upstream gully pots of the HVS substantiate
that the road runoff contains in large parts small particles.

In the sampling period, no storms were generating volumes close to the design size of the
treatment devices. Contrary to the HVS, small inflow volumes at the MSS can improve
treatment efficiency due to longer residence time. However, both Li et al. (2008) and Cheng
et al. (2017), underlines that capturing of the first flush in design storms will constitute a
considerable particle removal effect, due to detention of the most polluted runoff. With a
capturing of 35 % of the total runoff volume, the latter study found a removal of 74 % of
the total TSS (> 1.5 µm). The MSS has a large hydraulic capacity, and TSS removal results
suggest that the efficiency is good for everyday events. At the same time, the removal of
metals, especially Cu and Zn, might not be sufficient. A larger treatment compartment will
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probably not be the preferred solution to remove these metals, but rather a solution to remove
dissolved matter. This is because a large fraction of the remaining Cu and Zn are in the
dissolved phase. For the HVS, on the other hand, a more optimal particle removal solution
will be adequate.

The MSS is designed for a storm with at least a 20 year return period (Storm Aqua AS,
2021). Such a large design would not be necessary to treat everyday events. However, the
sedimentation system also serves as a detention basin. Hence, the MSS is a combined step
one and step two measure according to the three-step approach. For traditional sedimentation
devices, such as sedimentation tanks and basins, a design that combines the intent of step
one and two might be a good implementation, as this enhances particle removal by increasing
the residence time with larger dimensions (Li et al., 2008).

This study points to that step one road runoff quality measures with advantage for all
over treatment efficiency, costs, and maintenance for certain treatment solutions. Cheng
et al. (2017) and Kayhanian et al. (2008), among others, implied the importance and large
effect of treating the first flush in runoff events. By designing step one treatment measures to
treat 95 % of the yearly precipitation, the capacity for treating the first flush will also always
be available. A bypass should convey water past the treatment measure when the maximum
capacity of the device is reached. For devices like hydrodynamic vortex separators, where
certain flows are necessary to obtain the desired treatment efficiency, smaller treatment com-
partments will cause these flows to more frequently be reached. The area requirements and
costs of the treatment measurements will decrease (Paus, 2018), which will make treatment
solutions easier to prioritize and include in more projects (Ranneklev et al., 2016).
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5 Conclusion
The removal efficiencies of total suspended solids (TSS) in this study ranged from 10 to 40
% at the hydrodynamic vortex separator (HVS), while a higher performance was obtained by
the modular sedimentation system (MSS) varying from 48 to 98 %. Metal removal efficiencies
varied between site, metals, and fractions, but Cu and Zn were the only metals that surpassed
the environmental quality standards in the outlet. At both sites, over 90 % of the particles
were below 1 µm, with a particle size distribution (PSD) skewed towards the smallest particles
at the HVS. Sediments in a number of the gully pots upstream the HVS were investigated,
revealing that also these consisted of a majority of small particles. The high number of small
particles was unexpected, as the investigated treatment solutions aim to remove particles by
sedimentation. At the HVS, the highest removal efficiency occurred at high flows, such that
the swirl inside the HVS started and enhanced the particle removal. Contrary, at the MSS,
the lowest removal efficiency was found during the event with the most precipitation. An
explanation is that the residence time for the particles was lower. Consequently, the small
particles did not have time to sedimentate. The study has demonstrated the importance of
investigating the PSD and the pollutants of interest before design.

Findings from the study of the HVS imply that several of step one solutions can be designed
smaller, for example, to treat 95 % of the yearly precipitation volume. With such a design
approach, some water in larger storms will be bypassed, but the everyday events and the
first flush will be treated. For devices like the HVS, the results indicate that large treatment
solutions reduce treatment efficiency because optimal conditions infrequent occur. Smaller
devices will presumably result in better removal efficiencies, as well as require less area and
costs. In cases where it is favorable that step one, treatment, and step two, detention, are
combined, large treatment solutions like the MSS can be adequate. In everyday events, the
MSS has a large capacity. Hence, it is a long hydraulic residence time that is favorable for
particle removal. The number of events monitored in this study is limited; therefore, more
events should be studied to conclude.

Further investigations of the MSS will help to gain a better understanding of how combined
step one and step two solutions work. An investigation of the recipient downstream of the
MSS is also proposed, as the Cu and Zn concentrations may harm the aquatic environment.
Regarding the design of the HVS, further studies of smaller devices, road runoff with small
particles, and differences in removal efficiency of standard gully pots compared with HVSs are
suggested to learn their optimal use. Lastly, this work can hopefully be used as a base for
developing a set of design criteria for the design of step one treatment solutions.
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Appendix A

A Appendix A - Sampling setup

Setup Trondheim

(1) (2)

(3) (4)

Figure A1: Pictures from the setup of the samplers at the hydrodynamic vortex separator.
Pictures: Kristine Bergseng

(1) The sampelers are installed in the upstream and downstram manhole with steel chains.
(2) Upstream manhole with the AV-module installed inside the inlet pipe.
(3) The low profile AV-module are installed inside the pipes with a spring ring.
(4) The strainer (red ring) are placed longitudinally downstream the AV-sensor (arrow).
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Setup Sandnes

(1) (2)

(3) (4)

Figure A2: Pictures from the setup of the inlet and outlet samplers at the modular sedimen-
tation system (MSS). Pictures: Lars Møller-Pedersen.

(1) Placement of the inlet sampler.
(2) Setup of suction line inside the inlet pipe.
(3) Sampler in the outlet manhole.
(4) Setup of suctionline inside the outlet pipe.
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Proposal for location of hydrodynamic vortex separator

Figure A3: Suggestion to move the HVS further upstream the treatment train. The figure
is modified from Merethe Arntsen Strømberg (2020); “Sediment Removal Performance of a
Hydrodynamic VortexSeparator.”
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B Appendix B - Note metal fractionation

Review of size fractionation used in metal concentration
analyses for runoff in Scandinavia

Kristine Bergseng, 25.02.2021
Note

Department of Civil and Environmental Engineering.
Norwegian University of Science and Technology

Introduction
The focus and interest on the water quality of road runoff have increased over the last decades.
In report number 46 from Vegdirektoratet (Åstebøl et al., 2011) knowledge gaps related to
water pollution from tunnel wash water and road runoff are identified. Among the questions
that need to be answered is how toxic this runoff is. This question includes which substances
and fractions (dissolved, colloidal, and particle-bound) this toxicity is attached. In this report,
the division between particulate and dissolved are bigger or smaller than 0.45 µm.

Runoff draining transports matter in a wide range of sizes. Heavy metals are associated with
these particles, with increased concentrations in finer particle sizes (Sansalone and Buchberger,
1997). In the pioneering studies, few studies are in the same field, which means that few
examples are to follow. Therefore, it has not been a clear standard of defining the size range
of particulate, colloidal, dissolved, and truly dissolved fractions. This makes some studies
difficult to compare because the fractions overlap. By using the same classification of fractions,
more studies can be compared. This can result in a greater understanding of the road runoff.
Therefore, this review aims to answer the following question:

• What are the pore sizes of the filters used to fraction the matter when analyzing metal
concentrations in Scandinavia?

• How are the different fractions defined?

This review presents several different studies done in Scandinavian countries to show different
practices related to fractionation.
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Results

Summaries of a selection of studies and reports done in Scandiavia analysing metal consentra-
tion in road runoff (RR) and tunnel wash water (TWW). Abbreviations in the table; Colloidal
(C), Dissolved (D), Particulate (P), and Truly dissolved (TD).

Title Reference Country Runoff
type

Analysis Filter
size

Ecological risk assessment
with Biotic Ligand Model

Johansen
and

Thygesen,
2013

Norway,
(Oslo,
Viken)

RR,
TWW

P, D 0.45 µm

The effects of detergent
(TK601) on the mobility of
metals during sedimentation
of tunnel wash water from
the nordbytunnel at a

motorway (E6) in Norway. -
A laboratory experiment.

Aasum,
2013

Norway,
(Viken)

TWW P, D, C,
TD

0.45 µm,
10 kDa

Laboratory tests - treatment
of tunnel wash water from

the Nordby tunnel

Garshol
et al., 2016

Norway,
(Viken)

TWW P, D, C,
TD

0.45 µm,
10 kDa

Ecotoxicological effects of
highway and tunnel wash

water runoff

Meland,
2010

Norway,
(Viken)

RR,
TWW

P, D, C,
TD

0.45 µm,
10 kDa

Laboratory Melting of
Late-Winter Urban Snow
Samples: The Magnitude

and Dynamics of Releases of
Heavy Metals and PAHs

Vijayan
et al., 2019

Sweden,
(Luleå,
Umeå)

RR P, C,
TD

0.45 µm,
3 kDa

A study of size fractions of
metals in sedimented tunnel

wash water

Kowollik,
2020

Norway,
(Oslo,
Viken)

TWW P, D, C,
TD

1.2 µm,
0.45 µm,
3 kDa

Snow quality in the city of
Lulea, Sweden - time
variation of lead, zinc,
copper and phosphorus.

Viklander,
1998

Sweden,
(Luleå)

RR P, D 0.45 µm

Contribution of coarse
particles from road surfaces

to dissolved and
particle-bound heavy metal
loads in runoff: A laboratory
leaching study with synthetic

stormwater

Borris et al.,
2016

Sweeden RR P, D 0.45 µm
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Title Reference Country Runoff
type

Analysis Filter
size

Metal size distribution in
rainfall and

snowmelt-induced runoff
from three urban catchments

Lindfors
et al.,
2020

Sweeden,
(Umeå)

RR P, D, C,
TD

0.45 µm,
3

kMWCO
∼ 1 nm

Characterization and
temporal variation of urban
runoff in a cold climate -

design implications for SuDS

Monrabal-
Martinez
et al.,
2019

Norway,
(Trond-
heim)

RR P, C,
TD

1.2 µm,
1 kDa

Dual Porosity Filtration for
treatment of stormwater

runoff: first proof of concept
from Copenhagen pilot plant

Jensen
et al.,
2011

Denmark,
(Copen-
hagen)

RR - -

Treatment efficiency of a
wet detention pond

combined with filters of
crushed concrete and sand:
a Danish full-scale study of

stormwater

Sønderup
et al.,
2015

Denmark RR P, D 1.2 µm

Heavy metal composition in
stormwater and retention in
ponds dependent on pond
age, design and catchment

type

Egemose
et al.,
2015

Denmark,
(Aaben-
raa)

RR P, D 1.2 µm

Evaluation of the
accumulation of sediment
and heavy metals in a

storm-water detention pond

Färm,
2002

Sweden,
(Väst-
erås)

RR P, D 0.45 µm

Urban impact on water
bodies in the Luleå area,
northern Sweden, and the
role of redox processes

Rentz
and

Öhlander,
2012

Sweden,
(Luleå)

RR P 0.22 µm

Seasonal variations in road
runoff quality in Luleå,

Sweden

Westerlund
et al.,
2003

Sweden,
(Luleå)

RR P, D 0.45 µm

Heavy metal concentrations
and toxicity in water and
sediment from stormwater
ponds and sedimentation

tanks

Karlsson
et al.,
2010

Sweden RR P, D 0.45 µm

The paper written by Johansen and Thygesen, 2013 analyzed the total and soluble metal
concentrations. The study includes basins along the road stretches E6 Gardermoen - Eidsvoll,
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E18 Askim - Mysen, E18 Drammen - Holmestrand, and within the city of Oslo. The solu-
ble concentration is defined as the fraction that goes through a 0.45 µm cellulose acetate
membrane.

Aasum, 2013 was studying tunnel wash water (TWW) from Nordbytunnelen in his Master’s
Thesis. Three fractions were used; particulate, colloidal, and soluble. The particulate fraction
is removed from the water when filtering through a 0.45 µm filter. The colloidal fraction has
a range of 0.45 µm to 10 kDa. The fraction that goes through the 10 kDa filter is defined as
soluble and consists of low molecular mass (LMM). This same fractioning was used in NPRA
report number 521 (Garshol et al., 2016) and in the Ph.D. thesis of Meland, 2010, which was
both doing analyses of the tunnel wash water in the same tunnel.

Vijayan et al., 2019 did laboratory snow melting experiments of late-winter snow samples from
highway snowbanks. Three different fractions were analyzed for metal concentrations: total,
dissolved, and truly dissolved. The dissolved and particulate fractions were separated by a 0.45
µm filter. The fraction passing through the 3 kDa ultrafilter is defined as the truly dissolved
fraction. Kowollik (2020) used the same fractionation in addition to a filter with size 1.2 µm
to distinguish between fine and coarse particles. The small particles are defined as the range
between 1.2 µm to 0.45 µm. An ongoing study regarding the treatment of tunnel wash water
led by Associate Professor Thomas Meyn at NTNU uses the same fractionation as Kowollik
(2020). The study is an extension of the Nordic Road Water (NORWAT) program.

Monrabal-Martinez et al., 2019 analyzed metals in the fractions suspended matter (>1.2 µm),
colloids including fine particles (<1.2 µm and >1 kDa), and dissolved matter (<1 kDa) for
road runoff in Trondheim.

Jensen et al., 2011 does not fraction filter the samples before analyzing for the metal concen-
tration. This is found in many studies, but this study is presented as an example.

Sønderup et al., 2015 does not describe the method in detail, but it is understood that the
particulate and dissolved fractions are distinguished by a filter size 1.2 µm. This differs from
the others. Egemose et al., 2015 did use filters with the same pore size for fractioning.

Viklander, 1998, Borris et al., 2016, Westerlund et al., 2003, Karlsson et. al. Karlsson et al.,
2010 and Färm, 2002, all based in Sweeden, did all fraction with a 0.45 µm filter. Rentz and
Öhlander, 2012 used a filter with nominal pore size of 0.22 µm to.
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Discussion and conclusion
In the studies in this review the following filter sizes has been used; 1.2 µm, 0.45 µm, 0.22 µm,
10 kDa, 3 kDa, 1 kDa, and 3 kMWCO. In studies where only one type of filter are used the sizes
are 1.2 µm, 0.45 µm, and 0.22 µm. When the smaller ultra filters (10 kDa - 1 nm) are used,
the colloidal fraction is defined as the matter held back, but goes through a 1.2 µm or 0.45
µm filter. The matter passing through an ultrafilter are defined as low molecular mass (LMM)
(Aamaas et al., 2018) or truly dissolved (Vijayan et al., 2019)(Kowollik, 2020)(Monrabal-
Martinez et al., 2019).

It seems like it is widespread to distinguish the particulate and dissolved fractions of metals by
filtration through a 0.45 µm filter, where the metals in the filtrate are considered the dissolved
fraction. This is a fractionation that seems to be universal in the field, also outside Scandinavia
(Sansalone and Buchberger, 1997)(Tuccillo, 2006).

From an overview of the studies, the following fractionation can be used: Particulate fraction
(coarse particles > fine particles) > dissolved particles (colloidal fraction > truly dissolved).
The 1.2 µm filter are distinguishing the particulate fraction into coarse particles and fine
particles. Further, as mentioned above, the 0.45 µm separates the particulate and dissolved
fraction. The dissolved fraction consists of a colloidal fraction, and the smallest can be defined
as truly dissolved. In the studies, the colloidal fraction is defined as the fraction between 0.45
µm and 10 kDa, 3 kDa, 1 kDa, or 1 nm. The lower limit of the fractioning is varying in the
studies. At the studies at NMBU 10 kDa, while at some past and ongoing studies at NTNU
3 kDa are used. Where this limit should be set can be further discussed, but for the master’s
thesis to be written in the spring of 2021, it is appropriate to use the same filter size as other
studies at the university.

For the analysis of metal concentrations in this study, filters in the sizes 1.2 µm, 0.45 µm,
and 3 kDa are preferred to be used. By using these filters, it will be easy to compare to other
studies for most fractions. The fractionating will then be as seen in Table B.1.

Table B.1: Suggested fractionation method when analyzing metal concentrations for different
size ranges. LMM is the abbreviation for low molecular mass, which is truly dissolved in the
water.

Fraction Range

Particulate Coarse particle > 1.2 µm
Fine particle 1.2 µm - 0.45 µm

Dissolved Colloidal 0.45 µm - 3 kDa
Truly dissolved (LMM) <3 kDa

Together with other studies at NTNU and citeAryaSnowMelt there can be a beginning of data
series that uses the same fractionation.
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Appendix C

C Appendix C - Model data and calibration script

Storm Water Management Model (SWMM)

A screenshot of the Storm Water Management Model of the HVS study site. The green dots
are the upstream and downstream manhole, respectively. The HVS (RK810) are represented
with the blue spot.
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Subcatchment information from the SWMM model.

Outlet Area % Imperv Width Slope
SF807 0.1532 83.9 110.41 3
SF821 0.1615 69.1 112.18 40
SF865 0.2758 60.0 139.16 3
SF820 0.1238 68.5 68.56 40
SF868 0.2151 60.0 71.85 3
SF819 0.1574 68.2 84.45 40
SF803 0.1086 83.4 81.77 3
SF801 0.1294 85.4 79.25 40
SF805 0.1024 84.2 72.23 3
SF818 0.1709 67.8 77.94 40
SF860 0.2626 60.0 82.03 3
SF834 0.0993 71.2 66.2 50
SF838 0.1468 75.3 75.71 50
SF859 0.3915 60.0 119.31 3
SF841 0.0274 71.3 19.31 3
SF858 0.0323 91.1 29.58 3
SF857 0.0183 94.9 29.82 1
SF861 0.5479 60.0 166.9 3
SF816 0.2723 68.8 81.21 50
SF848 0.1329 85.2 81.35 3
SF856 0.1247 86.1 69.81 3
SF849 0.0481 72.1 31.39 6
SF846 0.0972 75.9 62.08 6
SF813 0.0596 68.2 52.06 6
SF825 0.3503 74.0 88.40 3
SF827 0.1542 68.9 79.22 3
SF829 0.0537 67.1 30.01 3
SF831 0.2837 68.0 147.68 3

Default parameters used in the SWMM-model

Default Parameters
S-Imperv 0.05
S-Perv 0.05
Param 1 100
Param 2 30
Param 3 4
Param 4 7
Param 5 0

46



Appendix C

R-script for Calibration of SWMM-model
1 #This is a code for calibrating a SWMM model
2 #The author of the script is Elhadi Mohsen Hassan Abdalla , NTNU.
3 #The script is applied to the SWMM model for the HVS and the

measured diver data by Kristine Bergseng
4 #The script is made for SWMM version 3.6.1
5

6 library (swmmr) # Allows R to run SWMM
7 library ( DEoptim )
8 library (zoo)
9 library ( lubridate )

10 library ( readxl )
11 inp_file <- " Trondheim _ modell _ parameter .inp" #File directory to .

inp file
12 inp <- read_inp(inp_file) # SWMM has .inp file
13 obs_wl <- read_excel(" Oppstroms .xlsx") #The diver data
14 obs_wl <- obs_wl$ WaterLevel _ filter /100 # Converting water levels

from cm to m in diver data.
15 obsWL <- unname ( tapply (obs_wl , (seq_along(obs_wl) -1) %/% 5, mean

)) # 5 minute data
16

17 obj_fun <- function (param ,inp_file ,obsWL) {
18 inp <- read_inp(inp_file) # set new parameters and update inp

object
19 inp$ subareas <- transform (
20 inp$subareas ,
21 `N-Imperv ` = rep(param [1] ,28) , # Mannings value for impervious

surface
22 `N-Perv ` = rep(param [2] ,28)) # Mannings value for pervious

surface
23

24 # write new inp file to disk
25 tmp_inp <- tempfile ()
26 write_inp(inp , tmp_inp)
27

28 # run SWMM with new parameter set
29 swmm_files <- suppressMessages (run_swmm(tmp_inp , stdout = NULL)

)
30

31 # remove files when function exits to avoid heavy disk usage
32 on.exit(file. remove ( unlist (swmm_files)))
33

34 sim <- read_out(
35 file = swmm_files$out ,
36 iType =2,
37 object _name = "O812 -O811",
38 vIndex = 1)[["O812 -O811"]][[" average _water_depth"]]
39
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40 sim <- sim[c (1321:7752) ,] # Adjust length of model data set
41 sim <- as.array( coredata (sim))
42

43 # Making equal lengths of data set
44 if( length (obsWL)-length (sim) == 0){
45 KGE_Q <- hydroGOF :: NSE(sim = as.array(sim),obs=as. matrix (

obsWL [1: length (obsWL)]))}
46 if( length (obsWL)-length (sim) == 1){
47 KGE_Q <- hydroGOF :: NSE(sim = as.array(sim),obs=as. matrix (

obsWL [1:( length (obsWL) -1)]))}
48 if( length (obsWL)-length (sim)== 2){
49 KGE_Q <- hydroGOF :: NSE(sim = as.array(sim),obs=as. matrix (

obsWL [2:( length (obsWL) -1)]))}
50

51 #VOL <- 1-abs(KGE_Q/100)
52 KGE_Q1 <- ifelse (is.na(KGE_Q)==TRUE ,-999 , KGE_Q)
53

54 #plot(Qobs ,type = "l",col =" blue",lwd =2)
55 #lines(sim ,col =" red",lwd =2)
56 return (KGE_Q1* -1 }
57

58 calibration _res <- DEoptim (
59 fn = obj_fun ,
60 lower = c(0.1 ,0.1) , #Lover limit of N- imperv and N-perv
61 upper = c(0.4 , 0.5) , #Upper limit of N- imperv and N-perv
62 DEoptim . control (trace=TRUE , parallelType =1, packages =c("swmmr","

zoo"),
63 parVar =c("read_inp","write_inp","read_out","run

_swmm"," coredata "),itermax = 4000) ,
64 inp_file = inp_file ,
65 obsWL = obsWL)
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D Appendix D - Sediment sampling

Sampling of gully pot sediments

(1) (2)

(3) (4)

Pictures from the sampling of gully pots in the upstream system of the hydrodynamic vortex
separator. Pictures: Kristine Bergseng and Christoffer Kjelsberg

(1) The vacuum vehicle was suctioning up the water over the sediments before sampling.
(2) The van veen grab was lowered into the center of the gully pot after the water was re-
moved.
(3) The van veen grab lifted up full of sediments.
(4) The sediments were poured into one-liter plastic bottles.

The gully pots upstream of the hydrodynamic vortex separator had to be sampled at night due
to HSE. To be able to sample at the highway, an impact protection vehicle had to secure the
site. Gully pots in between northbound and southbound lanes could not be sampled because
two impact protection vehicles would have been necessary. The exit and access ramp in the
area could not be closed; therefore, these gully pots could not be sampled.
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E Appendix E - Summary of lab analyses of water

Hydrodynamic Vortex Separator - Summary of lab analyses of water
samples
HVS - 25th of February event

The upstream (left) and downstream (right) plots of the mean, d10, d50 and d90 particles in the
25th of February event. The dotted line represents the trend line.

Results of lab analyses for TSS, Turbidity, pH and EC for the 25th of February event. In the legend
226D represent the downstream and 226U the upstream flow.
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HVS - 6th of March event

Results of the lab analyses of PSD, TSS, turbidity, pH and EC for the 6th of March event.

Upstream Downstream
Time of sampling [hours] 00:00 00:23 00:43 01:03 02:04 02:15 02:35

PSD
Mean [µm] 0.150 0.168 0.188 0.176 0.257 0.223 0.180
d10 [µm] 0.062 0.065 0.070 0.067 0.107 0.088 0.068
d50 [µm] 0.108 0.118 0.134 0.124 0.192 0.163 0.128
d90 [µm] 0.271 0.307 0.345 0.323 0.451 0.402 0.330

TSS [mg/L] 60 60 58 - 44.1 46.2 -
Turbidity [NTU] 85 90 101 - 77.4 81.7 -
pH [-] 7.37 7.33 7.32 - 7.47 7.46 -
EC [µS/cm] 1395 1407 1507 - 1516 1544 -

HVS - 22th of March event

TSS upstream = 80 mg/L
TSS downstream = 78 mg/L

HVS - 21st of April event

Results of the lab analyses of PSD, TSS, turbidity, pH and EC for the 21st of April event.

Upstream Downstream
Time of sampling [hours] 00:00 00:23

PSD
Mean [µm] 0.129 0.108
d10 [µm] 0.059 0.057
d50 [µm] 0.095 0.087
d90 [µm] 0.217 0.171

TSS [mg/L] 62 7.3
Turbidity [NTU] 97 15.8
pH [-] 7.32 7.39
EC [µS/cm] 747 637
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HVS - 20th of March event

The upstream (left) and downstream (right) plots of the mean, d10, d50 and d90 particles in the
20th of March event. The dotted line represents the trend line.

Results of lab analyses for the 20th of March event. The black point are the actual sampling results.
In the legend 320D represent the downstream and 320U the upstream flow. NA can be ignored.
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Modular Sedimentation System- Summary of lab analyses of water
samples
MSS - 28th of March event

The upstream (left) and downstream (right) plots of the mean, d10, d50 and d90 particles in the
28th of March event. The dotted line represents the trend line.
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MSS - 8th of April event

The upstream (left) and downstream (right) plots of the mean, d10, d50 and d90 particles in the
8th of April event. The dotted line represents the trend line.

Results of the lab analyses from the 8th of April event. The black points are the actual sample point.
In the legend 409D represent the downstream and 409U the upstream flow.
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MSS - 20th of April event

The upstream (left) and downstream (right) plots of the mean, d10, d50 and d90 particles in the
20th of April event. The dotted line represents the trend line.

Results of lab analyses for the 20th of April event. The black point are the actual sampling results. In
the legend 421D represent the downstream and 421U the upstream flow. All the 421D TSS results
are below 2 g/l.
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MSS - 9th of May event

The upstream (left) and downstream (right) plots of the mean, d10, d50 and d90 particles in the
8th of April event. The dotted line represents the trend line.

Results of lab analyses for the 9th of May event. The black point are the actual sampling results. In
the legend 510D represent the downstream and 510U the upstream flow. All the 510D TSS results
are below 2 g/l.
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Removal efficiencies
The summarised removal efficiencies for metals and total suspended solids (TSS) of all events
are presented in the tables below.

The removal efficiency of Ni, Cu, Zn, Cd, Pb and TSS for each of the five events at the HVS.

Removal efficiency in event [%]
Parameter Fraction 25.02 06.03 20.03 22.03 21.04

Ni
Total 40 -2 49 - 53
Particle 41 1 - - -
Dissolved -4 -6 2 8

Cu
Total 35 -68 6 - 74
Particle 38 -42 -13 - -21
Dissolved 11 -135 16 - 66

Zn
Total 40 3 1 - 49
Particle 41 16 -3 - 49
Dissolved 16 -29 8 - 48

Cd Dissolved 29 -35 7 - 16

Pb
Total 39 12 6 - 68
Particle 39 12 4 - 70
Dissolved -13 3 35 - 31

TSS Particle 40 25 10 2 88

The removal efficiency of Ni, Cu, Zn, Cd, Pb and TSS for each of the three events at the MSS.

Removal efficiency in event [%]
Parameter Fraction 08.04 20.04 09.05

Ni
Total - 77 52
Particle - 63 55
Dissolved 9 88 48

Cu
Total -22 77 42
Particle -48 47 42
Dissolved 18 85 42

Zn
Total 7 64 55
Particle -20 44 33
Dissolved 20 71 62

Cd Dissolved 24 47 -25

Pb
Total -16 57 55
Particle -17 58 60
Dissolved 1 48 -99

TSS Particle 48 92 98
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F Appendix F - Precipitation and runoff data

The recorded precipitation from the ECH20 and depth of the upstream diver used for the
calibration of the Storm Water Management Model (SWMM).
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G Appendix G - Summary of lab analyses of sediments

Summary of the lab analyses of the sediment samples. The particle size distribution are given
for the samples with (DIS) and without (NAT) dispersant.

Type Particle size [µm] Gully pot
818 820 821 829 831

NAT a

<50 67 60 62 48 39
50 - 75 5 6 6 5 5
75 - 100 3 4 4 4 4
100 - 150 4 6 5 6 7
150 - 250 5 8 7 13 12
250 - 500 7 10 9 13 18
500 - 1000 5 5 5 7 11
1000 - 2000 3 2 3 3 5

DIS a

<50 60 65 54 53 65
50 - 75 6 4 5 5 4
75 - 100 4 3 4 4 3
100 - 150 6 5 6 6 5
150 - 250 6 8 8 9 8
250 - 500 9 9 12 13 9
500 - 1000 6 4 7 7 4
1000 - 2000 3 2 5 3 2

PSD of the particles < 50 µm

PSD, NAT [µm] b
D10 0.0587 0.0580 0.0590 0.0594 0.0588
D50 0.0936 0.0914 0.0949 0.0971 0.0941
D90 0.199 0.191 0.210 0.227 0.204

PSD, DIS [µm] b
D10 0.0619 0.0583 0.0602 0.185 0.0611
D50 0.106 0.0927 0.0993 0.311 0.0991
D90 0.264 0.203 0.234 0.682 0.234

Organic matter

Organic matter [%] <50 µm fraction 10.0 11.3 9.47 7.23 8.41
total fraction 7.25 6.51 7.63 3.92 3.95

a Differential weight [%] b Based on differential number percentage
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Pictures from lab analyses of sediment samples.

(1) (2)

(3) (4)

Pictures from the analyses of the sediment samples from E6.

(1) The dried <50 µm fraction of the 818 sample without dispersant.
(2) The dried <50 µm fraction of the 818 sample with dispersant. A film of oil can be seen
on the top.
(3) Picture of the dried fractions from 50 µm to over 2000 µm.
(4) 100 mL plastic cups with the 831 sample with DIS to the left and NAT to the right.
The picture is taken after the cups have been untouched for five days. The NAT sample has
sedimented, while in the DIS sample many particles are still in suspension.
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