
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/303522844

Optimal	quadrature	for	univariate	and	tensor
product	splines

Article		in		Computer	Methods	in	Applied	Mechanics	and	Engineering	·	May	2016

DOI:	10.1016/j.cma.2016.04.030

CITATIONS

0

READS

31

1	author:

Kjetil	Andre	Johannessen

Norwegian	University	of	Science	and	Technology

8	PUBLICATIONS			61	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Kjetil	Andre	Johannessen	on	26	May	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.	All	in-text	references	underlined	in	blue	are	added	to	the	original	document

and	are	linked	to	publications	on	ResearchGate,	letting	you	access	and	read	them	immediately.

https://www.researchgate.net/publication/303522844_Optimal_quadrature_for_univariate_and_tensor_product_splines?enrichId=rgreq-359c10c6fd2c74a83cda20f7dcb2f45f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUyMjg0NDtBUzozNjU5MDc0MjA0MzQ0MzJAMTQ2NDI1MDUzNTcwMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/303522844_Optimal_quadrature_for_univariate_and_tensor_product_splines?enrichId=rgreq-359c10c6fd2c74a83cda20f7dcb2f45f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUyMjg0NDtBUzozNjU5MDc0MjA0MzQ0MzJAMTQ2NDI1MDUzNTcwMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-359c10c6fd2c74a83cda20f7dcb2f45f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUyMjg0NDtBUzozNjU5MDc0MjA0MzQ0MzJAMTQ2NDI1MDUzNTcwMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kjetil_Johannessen?enrichId=rgreq-359c10c6fd2c74a83cda20f7dcb2f45f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUyMjg0NDtBUzozNjU5MDc0MjA0MzQ0MzJAMTQ2NDI1MDUzNTcwMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kjetil_Johannessen?enrichId=rgreq-359c10c6fd2c74a83cda20f7dcb2f45f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUyMjg0NDtBUzozNjU5MDc0MjA0MzQ0MzJAMTQ2NDI1MDUzNTcwMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Norwegian_University_of_Science_and_Technology?enrichId=rgreq-359c10c6fd2c74a83cda20f7dcb2f45f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUyMjg0NDtBUzozNjU5MDc0MjA0MzQ0MzJAMTQ2NDI1MDUzNTcwMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kjetil_Johannessen?enrichId=rgreq-359c10c6fd2c74a83cda20f7dcb2f45f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUyMjg0NDtBUzozNjU5MDc0MjA0MzQ0MzJAMTQ2NDI1MDUzNTcwMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kjetil_Johannessen?enrichId=rgreq-359c10c6fd2c74a83cda20f7dcb2f45f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUyMjg0NDtBUzozNjU5MDc0MjA0MzQ0MzJAMTQ2NDI1MDUzNTcwMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Optimal quadrature for univariate and tensor product splines

Kjetil André Johannessen
Department of Mathematical Sciences

Norwegian University of Science and Technology, Trondheim, Norway.
Department of Applied Mathematics

E-mail: Kjetil.Johannessen@math.ntnu.no

Abstract

Numerical integration is a core subroutine in many engineering applications, including
the finite element method (FEM). Isogeometric analysis is a FEM technology that uses
smooth B-spline and NURBS basis functions. Traditionally, Gaussian quadrature was used
for numerical integration, but this yields suboptimal performance. This is attributed to
the fact that Gaussian quadrature rules do not take inter-element smoothness of the spline
basis into account, resulting in over-integration. The equations for exact quadrature are well
known, but prove notoriously hard to solve due to their nonlinear nature. These generalized
gauss rules were first introduced in [13] in the context of isogeometric analysis, where newton
iteration was utilized to study and tabulate several cases. Later, homotopy continuation [6]
was used as an alternative strategy for finding these rules. In this paper we describe an
algorithm to generalize on both of these techniques. It is optimal in the sense that it will
integrate a space of dimension n, using no more than n+1

2 quadrature points. The algorithm
works on arbitrary nonuniform knot vectors of any polynomial degree and continuity, and is
demonstrated on polynomial orders up to 15. It extends to 2D and 3D integrals by tensor
product.

1 Introduction

Isogeometric analysis was introduced in [12] to bridge the gap between design and analysis. It
employs the use of smooth nonuniform rational B-splines (NURBS) as a basis for the finite
element method. The smooth basis has a number of intrinsic advantages beyond modeling
convenience. It has been shown to have superior spectral properties [12] and allows for the
construction of compatible spline spaces forming de Rham diagrams [7, 11, 14]. The smooth basis
does, however, have some drawbacks as well. In particular, there were no general quadrature
schemes to integrate piecewise smooth polynomials available. The proposed solution was to use
Gaussian quadrature rules which were designed to integrate C−1 piecewise polynomials. Since
discontinuous piecewise polynomials form a superspace of the smooth piecewise polynomials,
integration was still exact, but at suboptimal performance. A number of authors [15, 17, 18]
have commented on the expensive quadrature in isogeometric analysis.

There has been much research performed into finding optimal quadrature points for these
spaces, but solutions have only been published on a subset of spaces. For instance [13] creates
rules for certain polynomial degrees and continuities up to 5 knot spans suggesting to partition
the global integration domain into integration-ranges or macro elements. Rules for C1 quintic
splines on uniform knot vectors was presented in [5], while rules for C1 cubic splines on stretched
knot vectors was provided in [2], which was extended to C2 cubic splines in [6]. The authors in
[4] considers a local computational model giving nearly optimal quadrature points, but is limited
to certain knot vectors.

In this paper we give an algorithm which computes the optimal quadrature rules for spline
integrands. It is demonstrated to work for any nonuniform knot vector of arbitrary degree and
continuity. The paper is outlined as follows. In section 2 we establish notation and present
B-spline functions. In section 3 we introduce the nonlinear equations for exact integration and
provide a good initial guess to solve these with Newton iteration. The algorithm is shown to
work on several knot vectors, in particular it is shown to always converge for uniform knots of
maximum continuity. In section 4, we extend the algorithm to work on any general knot vectors
by homotopy continuation, or continuous deformation of the knot vector. We provide some
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numerical results for a handful of spline spaces in section 5, before summarizing and concluding
in section 6 and 7.

2 B-spline functions

In this section we briefly introduce B-spline basis functions. It is mainly to establish notation,
as a more comprehensive introduction can be found for instance in [9]. Consider a knot vector
of nondecreasing knots

τ = [τ1, τ2, ..., τn+p+1], τi+1 ≥ τi. (1)

We can establish a set of basis functions from this knot vector by the recursive formula

Ni,p,τ (ξ) =
ξ − τi
τi+p − τi

Ni,p−1,τ (ξ) +
τi+p+1 − ξ
τi+p+1 − τi+1

Ni+1,p−1,τ (ξ)

Ni,0,τ (ξ) =

{
1 if ξ ∈ [τi, τi+1)
0 otherwise

where we define fractions such that 0
0 := 0. The functions {Ni,p,τ}ni=1 satisfy all the properties

of a basis and span the space

Spτ = span{Ni,p,τ} =
{
ϕ ∈ L2 | ϕ|ξ=τi ∈ C

ki , ϕ|ξ∈(τi,τi+1) ∈ Pp
}

(2)

where Pp is the space of polynomials of degree p, ki = p−mi and mi is the multiplicity of knot
i, i.e. the number of times the knot τi appears in τ . Stated in plain text: Spτ is the space of all
piecewise polynomials with a given smoothness between the different intervals. When the knot
vector has n+ p+ 1 elements, we have dim (Spτ ) = n.

The knot vector τ is said to be open if the first and last knot is repeated exactly p+1 times,
resulting in the basis being C−1 at the end points τ1 and τn+p+1. In this work we often consider
spaces of uniform continuity, say k, that is all internal knots are repeated the same number
mi = p− k times. In this case, we have

τ = [τ1, ..., τ1︸ ︷︷ ︸
p+1 times

, τ2, .., τ2︸ ︷︷ ︸
p−k times

, τ3, ..., τ3︸ ︷︷ ︸
p−k times

, ..., τm, ..., τm︸ ︷︷ ︸
p+1 times

]. (3)

This particular space of uniform continuity is referred to as Spk, where we do not distinguish
notationally between open and nonopen knot vectors. Note that in general, we may have mixed
continuities, but uniform continuity is of great practical interest. We omit the knot vector
subscript from the basis functions where there is little chance of confusion, i.e. Ni,p,τ (ξ) = Ni,p(ξ).

Each interval [τi, τi+1] with τi+1 > τi is denoted as a knot span, or element. We will refer to
nel as the number of elements.

2.1 B-spline derivatives and integrals

Since the space Spτ is comprised of piecewise polynomials, it may be unsurprising that the deriva-
tives and integrals of any function in this space, can also be represented as a piecewise polynomi-
als; of one degree lower and one degree higher respectively. In fact, one can write the derivative
of a basis function as a linear combination of basis functions of one degree lower, over the same
knot vector. For the integral expression [10], we need to augment the knot vector by padding
the end of it. These expressions are given by

N ′i,p,τ (ξ) =
p

τi+p − τi
Ni,p−1,τ (ξ)−

p

τi+p+1 − τi+1
Ni+1,p−1,τ (ξ) (4)∫ ξ

ξ0

Ni,p,τ (t) dt =
τi+p+1 − τi
p+ 1

ñ∑
j=i

Nj,p+1,τ̃ (ξ) (5)

2

https://www.researchgate.net/publication/268708711_On_Calculating_with_B-Splines_II_Integration?el=1_x_8&enrichId=rgreq-359c10c6fd2c74a83cda20f7dcb2f45f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUyMjg0NDtBUzozNjU5MDc0MjA0MzQ0MzJAMTQ2NDI1MDUzNTcwMA==
https://www.researchgate.net/publication/256209311_On_Calculating_with_B-Splines?el=1_x_8&enrichId=rgreq-359c10c6fd2c74a83cda20f7dcb2f45f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUyMjg0NDtBUzozNjU5MDc0MjA0MzQ0MzJAMTQ2NDI1MDUzNTcwMA==


where

τ = [τ1, τ2, ..., τn+p+1]

τ̃ = [τ1, τ2, ..., τn+p+1, ..., τn+p+1︸ ︷︷ ︸
p+2 times

]

and ñ is the dimension of the space spanned by the knot vector τ̃ .
In particular, we note that∫

R
Ni,p,τ (t) dt =

∫ τi+p+1

τi

Ni,p,τ (t) dt

=
τi+p+1 − τi
p+ 1

ñ∑
j=i

Nj,p+1,τ̃ (τi+p+1)−Nj,p+1,τ̃ (τi)

=
τi+p+1 − τi
p+ 1

ñ∑
j=i

Nj,p+1,τ̃ (τi+p+1)

=
τi+p+1 − τi
p+ 1

. (6)

3 Exact integration using quadrature

3.1 The governing equations

Exact integration on a space Spτ is characterized by∫
R
ϕ(ξ) dξ =

∑
i

wiϕ(ξi), ∀ϕ ∈ Spτ (7)

for some set of points ξi and scaling weights wi. Assume now that we have a space of even
dimension, i.e. that we have 2n basis functions. We note that in this case (7) is equivalent to∫

R
Nj,p(ξ) dξ =

∑
i

wiNj,p(ξi), j = {1, 2, ..., 2n} (8)

where Spτ = span{Nj,p(ξ)} and Nj,p(ξ) is the usual B-spline basis functions. The system (8) is
a set of 2n nonlinear equations. The unknowns in this system are the quadrature weights wi
and points ξi. While the existence and uniqueness [16] of these points have only been proven for
certain types of knot vectors τ , there is strong numerical evidence that this is true in general
as all examples considered in this work converged. With n unknown weights, n unknown points
and 2n equations, it creates a well-defined square system with a unique solution. Equation (8)
is linear in the unknown weights wi, but polynomial in the quadrature points ξi. We cannot
solve this exactly due to the Abel-Ruffini theorem which states that no solution to a general
quintic polynomial can be expressed as radicals. It is however possible to solve this numerically
by Newton iteration.

We write our equation system (8) as

Fj(

[
w
ξ

]
) =

∑
i

wiNj,p(ξi)−
∫
R
Nj,p(ξ)dξ = 0 , j = {1, 2, ..., 2n} (9)

or

F (

[
w
ξ

]
) =


N1,p(ξ1) N1,p(ξ2) N1,p(ξ3) . . . N1,p(ξn)
N2,p(ξ1) N2,p(ξ2) N2,p(ξ3) . . . N2,p(ξn)

...
. . .

...
N2n,p(ξ1) N2n,p(ξ2) N2n,p(ξ3) . . . N2n,p(ξn)



w1

w2
...
wn

−

∫
N1,p(ξ)dξ∫
N2,p(ξ)dξ

...∫
N2n,p(ξ)dξ

 .
(10)
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The last term, i.e.
∫
Nj,p(ξ)dξ is computed using (6). To solve the equation F = 0 by Newton

iteration, we need its Jacobian. This can be computed as

∂F

∂w
=


N1,p(ξ1) N1,p(ξ2) N1,p(ξ3) . . . N1,p(ξn)
N2,p(ξ1) N2,p(ξ2) N2,p(ξ3) . . . N2,p(ξn)

...
. . .

...
N2n,p(ξ1) N2n,p(ξ2) N2n,p(ξ3) . . . N2n,p(ξn)

 (11)

∂F

∂ξ
=


w1N

′
1,p(ξ1) w1N

′
1,p(ξ2) w1N

′
1,p(ξ3) . . . w1N

′
1,p(ξn)

w2N
′
2,p(ξ1) w2N

′
2,p(ξ2) w2N

′
2,p(ξ3) . . . w2N

′
2,p(ξn)

...
. . .

...
wnN

′
2n,p(ξ1) wnN

′
2n,p(ξ2) wnN

′
2n,p(ξ3) . . . wnN

′
2n,p(ξn)

 (12)

∂F =

[
∂F

∂w
,
∂F

∂ξ

]
∈ R2n×2n. (13)

Denoting the collective set of unknowns z =

[
w
ξ

]
we may formulate Newton iteration as

∂F (zk)δzk = −F (zk) (14)
δzk = (zk+1 − zk). (15)

At each iterate level, equation (14) is solved for the update delta δzk which is then added to the
previous solution zk to produce zk+1. This is continued until some desired residual tolerance has
been reached.

The system is sensitive to the choice of initial guess and without a proper starting point z0

we cannot, in general, expect to achieve convergence. One of the primary contributions of this
work is to provide a good initial guess. We propose that the initial guess should be given as

w0
i =

∫
N2i,p(ξ) +N2i+1,p(ξ) dξ

ξ0
i = (τ∗2i + τ∗2i+1)/2 (16)

(17)

with

τ∗i =
1

p

i+p∑
j=i+1

τj .

We will now give some reasoning behind the choice of these initial guesses. The interpolation
points should be points of some significance to the basis. It has been shown in the literature that
the Greville abscissae τ∗i have a number of interesting properties [18, 9], so these already stand
out as good candidates. Since we have twice as many Greville abscissae as we have quadrature
points, we simply take the average of two neighbouring. The weights was chosen because they
mirror the behaviour of the left-hand-side of (8) and again noting that we have twice as many
left-hand-side components as we have quadrature weights, we sum the integral of two consecutive
basis functions. We don’t take the average as we want the integration of all functions

∑
j

∫
Nj,p

to equal that of the total weight
∑

iwi.
The algorithm is outlined in Algorithm 1. It is almost complete, but it does not account for

possible divergence in the Newton iteration. Typically one would like to add additional logic to
handle this, such as put a maximum number of iterations on the computation of δzk or break if
∂F becomes singular.
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Algorithm 1 Generate Optimal Quadrature Rules
Require: p // Polynomial degree
Require: τ = [τ1, ..., τ2n+p+1] // Knot vector with 2n basis functions
1: for j ← 1 to 2n do
2: τ∗j ←

∑i+p
i=j+1 τi/p // Greville abscissae

3: Ij ← (τj+p+1 − τj) /(p+ 1) // Exact integral
∫
Nj,p(ξ) dξ

4: end for
5: for i← 1 to n do
6: ξi ← (τ∗2i + τ∗2i−1)/2 // Initial guess
7: wi ← I2i + I2i−1 // Initial guess
8: end for
9: δz ←∞

10: while ‖δz‖ > TOL do // Newton iteration loop
11: for j ← 1 to 2n do
12: for i← 1 to n do
13: Jj,i ← Nj,p(ξi)
14: Jj,n+i ← wiN

′
j,p(ξi) // J = ∂F , jacobian matrix of F

15: end for
16: Fj ←

∑n
i=1wiNj,p(ξi)− Ij

17: end for
18: Solve Jδz = −F for δz ∈ R2n

19: for i← 1 to n do
20: wi ← wi + δzi
21: ξi ← ξi + δzn+i

22: end for
23: end while
24: Return (ξi, wi), i = {1, ..., n}
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3.2 Spline spaces of odd dimension

The previous section was written under the assumption that the spline space had an even number
of basis functions. In order to get the quadrature rules for odd spaces, we simply create a
superspace of even dimension and compute the quadrature points here. If the quadrature rules
is exact for some Spτ̂ ⊃ Spτ , then clearly it will be exact for the space Spτ as well. Letting
τ = [τ1, ..., τ2n+p], it is quite easy to construct such a superspace τ̂ , by simply augmenting the
knot vector τ , inserting any arbitrary single knot τ̂ ∈ [τ1, τ2n+p]. We can choose any knot we
like (including existing knots resulting in reduced continuity), but for numerical stability it is
suggested inserting it in the center of the largest knot span.

3.3 Numerical tolerances

The work contained herein is based on numerical methods, and tolerances have to be introduced.
The source code used to generate the quadrature points is provided in the appendix. We use
three break criteria for stopping the Newton iteration:

1. Converges at ‖δzk‖ < 10−10

2. Too many newton iteration steps at i > 15

3. Singular matrix ∂F if min
i

(ξi) < τ1 or max
i

(ξi) > τ2n+1

In practice, it turns out that it was the final one which was the hardest to reliably and effi-
ciently detect. Naïve approaches such as taking the determinant or the diagonal elements after
an LU-factorization are numerical unstable. Computing the condition number or rank on the
matrix is more reliable, but when computed on a full matrix, end up completely dominating
the computational time. Sparse options such as eigenvalue and condition number estimation
were found to produce false positives. In the end, we propose a very coarse singularity condition
(which is sufficient, but not necessary), stating that if ξi < τ1 or ξi > τ2n+1 for some i, then no
basis function have support on this evaluation point and one would get an all-zero row in the
matrix ∂F . Any other singular matrix are simply ignored, and will ultimately fail to produce a
convergent result after 15 iterations.

These values, in addition to the source code should be enough to reproduce all results.
Do note, however, that there is no guarantee of this since low-level factors such as machine
architecture (floating point arithmetic), linear algebra libraries and library/matlab versions may
play some part. While there might be small deviations in the values of some tabulated numbers,
we find it doubtful that the broad picture or conclusions would change.

3.4 Uniform knot vectors

In the following we demonstrate how this approach works on different knot vectors. First, we
choose the trivial uniform knot vector of repeated integers

τ = [ 0, ..., 0︸ ︷︷ ︸
p−k times

, 1, .., 1︸ ︷︷ ︸
p−k times

, 2, ..., 2︸ ︷︷ ︸
p−k times

, ..., nel, ..., nel︸ ︷︷ ︸
p−k times

]. (18)

It is unsurprising that the number of elements has hardly any impact on the convergence prop-
erties on such a regular knot. The continuity of the space however, has a more direct influence
as to whether the scheme is converging or not. We have tabulated if the technique converges
and, if so, how many iterations it takes to converge for all spline spaces Spk and continuities up to
degree 15 in Table 1. When testing different continuities, we keep the knot spans (i.e. elements)
the same, resulting in a different number of degrees of freedom. The location of the quadrature
points for uniform knot vector of size nel = 9 is depicted in Figure 2.
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Sp0 Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7 Sp8 Sp9 Sp10 Sp11 Sp12 Sp13 Sp14

S1
k 2

S2
k 5 1

S3
k 5 1 5

S4
k 5 5 5 4

S5
k 5 2 5 5 5

S6
k 6 6 5 5 5 5

S7
k 6 6 6 5 5 5 5

S8
k 7 10 6 5 5 5 5 5

S9
k 9 7 - 6 5 6 5 5 5

S10
k - - - 8 6 5 5 5 6 6

S11
k - - - - - 5 6 5 6 6 6

S12
k - - - - - 6 6 6 6 6 6 6

S13
k - - - - - 6 6 7 6 6 6 6 6

S14
k - - - - - - 7 6 8 6 6 6 7 7

S15
k - - - - - - - 6 9 8 7 7 7 7 7

Table 1: Number of iterations for Algorithm 1 to converge on a uniform knot vector of 128 knot
spans, see (18). Keeping the number of elements nel fixed, we vary polynomial degree p along
the rows and continuity k along the columns. A dash "-" indicates that the method failed to
converge. The table is triangular since the maximum continuity of a spline space of degree p is
Cp−1. Notice in particular that the diagonal Spp−1 is converging, that is it works for all spaces of
maximum continuity.

3.5 Open uniform knot vectors

Next we consider an open knot vector with the first and last knot repeated p + 1 times and all
internal knots repeated p− k times where k is the continuity, i.e.

τ = [ 0, ..., 0︸ ︷︷ ︸
p+1 times

, 1, .., 1︸ ︷︷ ︸
p−k times

, 2, ..., 2︸ ︷︷ ︸
p−k times

, ..., nel, ..., nel︸ ︷︷ ︸
p+1 times

]. (19)

Again, we note that the number of knot spans nel is not important for the convergence properties,
and the results for all spline spaces of all continuities up to p = 15 using nel = 128 is tabulated
in Table 2.

3.6 Geometric knot vectors

Geometric knot vectors, often denoted as stretched knot vectors, are defined by a constant ratio
on consecutive knots. Where uniform knot vectors keep the difference τi+1 − τi between knots
constant, geometric knot vectors will keep the ratio τi+1/τi = α constant. We let the knot vector
be given as

τ = [αnel−1, ..., αnel−1︸ ︷︷ ︸
p+1 times

, αnel−2, ..., αnel−2︸ ︷︷ ︸
p−k times

, ..., α, ..., α︸ ︷︷ ︸
p−k times

, ..., 1, ..., 1︸ ︷︷ ︸
p+1 times

] (20)

for some α < 1. These knot vectors are of great practical interest as they are often used to
resolve boundary layers in computational methods. This example is slightly more sensitive to
the choice of α and nel, and for brevity we choose to only tabulate α = 4

5 and nel = 128 in
Table 3.

4 Quadrature points as a function of the knot vector

As was demonstrated, the initial guess (16) produced a convergent series for a large number of
knot vectors. We now describe an algorithm to ensure convergence of the rest of the knot vectors.

7



Sp0 Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7 Sp8 Sp9 Sp10 Sp11 Sp12 Sp13 Sp14

S1
k 2

S2
k 5 5

S3
k 5 5 5

S4
k 5 5 5 5

S5
k 5 5 5 5 5

S6
k 6 6 6 6 6 5

S7
k 6 6 7 7 6 6 5

S8
k 7 - - 8 7 6 6 6

S9
k - - - - - 7 6 6 6

S10
k - - - - - - 8 7 6 6

S11
k - - - - - - - 8 7 7 6

S12
k - - - - - - - - 9 8 7 7

S13
k - - - - - - - - - - 9 7 7

S14
k - - - - - - - - - - - - 8 8

S15
k - - - - - - - - - - - - - - 9

Table 2: Number of iterations for Algorithm 1 to converge on a open uniform knot vector of 128
knot spans with C−1 basis at the start and end, see (19). We let the polynomial degree p vary
along the rows and the continuity k along the columns. A dash "-" indicates that the method
failed to converge.

Sp0 Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7 Sp8 Sp9 Sp10 Sp11

S1
k 2

S2
k 5 5

S3
k 5 5 5

S4
k 5 5 5 5

S5
k 5 5 5 5 5

S6
k 6 6 5 5 5 5

S7
k 6 6 7 6 6 5 6

S8
k 6 - - - 6 6 6 -

S9
k - - - - - 7 6 6 -

S10
k - - - - - - - 6 6 -

S11
k - - - - - - - - 7 - -

S12
k - - - - - - - - - - - -

Table 3: Number of iterations to converge on a geometric open knot vector of 128 knot spans
with C−1 basis at the start and end, see (20). A dash "-" indicates that the method failed to
converge. The relation between consecutive knots were chosen to be α = 4/5.
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Inspired by the recent work in [6, 8] we reformulate the problem via homotopy continuation as
the following. Let

G(p,w, ξ, τ ) = 0 (21)

be our nonlinear equations for exact integration on the knot vector τ of degree p. That is, for

any fixed τ and p, we have G(p,w, ξ, τ ) = F (

[
w
ξ

]
), with F given in (9). The interesting

thing in this formulation is that we can let τ vary. One can then think of G as polynomial in τ
and (w, ξ) as the roots of this polynomial. The solution roots will then depend continuously on
τ and any small change in the problem parameter τ will result in a small change in the solution
roots (w, ξ).

If Algorithm 1 diverges for some knot vector τ , we may reformulate the problem and search
for quadrature points (ŵ, ξ̂) on an "easier" knot vector τ̂ and use these as initial guess for the
harder knot τ . This might be done in a continuous fashion, where

τ̂ (t) = tτ + (1− t)τU (22)
τ = [τ1, τ2, ..., τm−1, τm]

τU = [τ1,
(m− 1)τ1 + 1τm

m
,
(m− 2)τ1 + 2τm

m
, ...,

1τ1 + (m− 1)τm
m

, τm]

and τU is the uniform knot vector (over the domain [τ1, τm]) of maximum regularity which we
have shown always converges; see the diagonal in Table 1. Let τU have the same number of
components as τ . The t parameter can be thought of as a pseudo time-parameter, or measure of
problem difficulty. With t = 0 we have the easiest uniform knot vector and with t = 1 we have
the hardest problem, and the one which we ultimately are interested in. We solve the problem on
successively harder and harder parameters t, using at each iteration the result from the previous
easier iteration as the initial guess on our new problem.

Note that if multiple knots appear in τ this poses no extra problem, as the knot vector τ̂
will continuously deform into τ and eventually collapse separate knots into multiple knots. If τ
does have duplicate knots, then τ and τU will have different number of knot spans (elements),
but the same number of knots.

In order to minimize the number of subproblems to solve, we create a recursive bisection
of the problem domain t ∈ [0, 1]. This is outlined in pseudo-code as Algorithm 2 and is best
illustrated by an example. Assume that one has available the weights and points (w0, ξ0) as
well as the uniform knot vector τ̂ (0) = τU . If these initial guesses are not good enough to solve
for τ̂ (1) = τ , then we use these as initial conditions for the problem on τ̂ (1

2). If the method
converges, we progress on higher t by computing τ̂ (3

4) and if the method diverges, we try to solve
for τ̂ (1

4). In the case that it fails for τ̂ (1
2), but converges for τ̂ (1

4), we use the result from the
latter as initial guess in the former. If this fails to convergence, we try and solve for the center
point between what we know t = 1

4 and what we search for t = 1
2 , i.e. on the knot vector τ̂ (3

8),
see Figure 1.

The number of subproblems t to solve for is tabulated in Table 4–6 for a selection of knot
vectors.
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Figure 1: Example of the recursive calls of Algorithm 2

Sp0 Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7 Sp8 Sp9 Sp10 Sp11 Sp12 Sp13 Sp14 Sp15

S8
k 1 21 17 1 1 1 1 1

S9
k 23 24 24 32 33 1 1 1 1

S10
k 26 28 33 33 33 33 1 1 1 1

S11
k 30 35 33 33 33 33 37 1 1 1 1

S12
k 33 36 33 33 35 37 38 40 1 1 1 1

S13
k 38 38 33 36 38 39 40 40 41 42 1 1 1

S14
k 40 39 38 38 40 40 40 41 42 43 49 53 1 1

S15
k 41 40 40 40 40 41 41 42 43 46 53 72 72 73 1

S16
k 43 41 41 41 41 42 42 43 47 69 71 72 73 73 74 81

Table 4: Number of recursive calls to Algorithm 2 before returning the optimal quadrature points
on a uniform open knot vector. This is the number of t-values we need to solve for before the
algorithm converges. It is the same setup as in Table 2 using nel = 128 elements and note that
all convergent knot vectors in Table 2, are returning on the first recurisive call. The largest
tabulated space is dim(S16

0 ) = 2049.

Sp0 Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7 Sp8 Sp9 Sp10 Sp11 Sp12 Sp13

S8
k 1 1910 1631 1 1 1 1 1

S9
k 2524 2190 1848 1617 1355 1 1 1 1

S10
k 2871 2482 2120 1835 1623 1359 1 1 1 1

S11
k 3348 2876 2415 2079 1829 1630 1369 1063 1 1 333

S12
k 3586 3268 2762 2391 2081 1828 1630 1375 1070 1 1 339

S13
k 3840 3509 3150 2729 2377 2089 1831 1635 1385 1079 855 587 351

S14
k 4102 3739 3388 3120 2717 2369 2084 1835 1639 1390 1083 859 596 362

Table 5: Number of recursive calls to Algorithm 2 before returning the optimal quadrature points
on a geometric open knot vector. This is using α = 9

10 and nel = 64, see section 3.6.
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Algorithm 2 Iterations on the knot vector

Require: G(p,w0, ξ0, τ 0) = 0 // i.e. (w0, ξ0) should be the solution on the knot vector τ 0

1: Function: (w, ξ, τ ) =RecursiveKnotSearch(w0, ξ0, τ 0, τ )
2: (wk, ξk)← (w0, ξ0)
3: τ k ← τ 0

4: while True do
5: if Algorithm 1 converges on τ with (ξk,wk) as initial guess then
6: (w, ξ)← points and weights from Algorithm 1
7: Return (w, ξ, τ )
8: else
9: (wk, ξk, τ k)←RecursiveKnotSearch(wk, ξk, τ k, τ

k+τ
2 )

10: end if
11: end while

Sp0 Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7 Sp8 Sp9 Sp10 Sp11

S7
k 1 1 1 1 1 1 1

S8
k 1 10 232 8 674 1 1 1 1 1

S9
k 13 482 11 928 10 164 8 660 7 293 1 1 1 1

S10
k 14 873 13 379 11 821 10 156 8 677 7 307 1 1 1 1

S11
k 16 358 14 797 13 288 11 788 10 162 8 703 7 326 5 990 1 1 1 659

S12
k 17 845 16 216 14 662 13 253 11 789 10 171 8 712 7 343 6 011 1 1 1 676

Table 6: Number of recursive calls to Algorithm 2 before returning the optimal quadrature points
on a geometric open knot vector. This is using α = 9

10 and nel = 128, see section 3.6.

5 Numerical Results

In this section we display some of the quadrature point locations for different knot vectors. We
show the location of the points for varying polynomial degrees and continuities on a uniform
knot vector in Figure 2, an open knot vector in Figure 3 and a geometric knot vector in Figure 4.

0 2 4 6 8 10

p=1

p=2

p=3

p=4

p=5

Knots

(a) Sp
p−1

0 2 4 6 8 10

k=0

k=1

k=2

k=3

k=4

Knots

(b) S5
k

Figure 2: Location of quadrature points on uniform knot vector τ = [0, 1, 2, ..., 9] (with multi-
plicity for the lower continuity case) when varying p for maximum continuity and varying k for
p = 5. The quadrature points for the odd spaces S4

3 and S2
1 are not unique as they have been

computed on a superspace given by τ̂ . We may choose any augmented knot vector we like as long
as it contains all knots from the original one. In this example, we add the knot 9

2 for symmetry.

11



0 2 4 6 8 10

p=1

p=2

p=3

p=4

p=5

Knots

(a) Sp
p−1

0 2 4 6 8 10

k=0

k=1

k=2

k=3

k=4

Knots

(b) S5
k

Figure 3: Location of quadrature points on uniform open knot vector τ =
[0, 0, ..., 0, 1, 2, ..., 8, 9, 9, ..., 9] (with multiplicity for the lower continuity case) when varying p
for maximum continuity and varying k for p = 5.
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Figure 4: Location of quadrature points on a geometric open knot vector τ =
[α8, α8, ..., α8, α7, α6, ..., α, 1, 1, ..., 1] with α = 0.9 when varying p for maximum continuity and
varying k for p = 5.
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nel S2
0 S2

1 S4
2 S4

3 S5
0

5 1.320± 2.255 1.000± 0.000 5.880± 17.011 1.640± 4.504 32.740± 50.255
10 15.290± 29.933 1.000± 0.000 6.120± 24.617 1.000± 0.000 68.040± 100.217
20 53.790± 60.155 1.000± 0.000 23.590± 60.752 1.000± 0.000 155.450± 134.127
40 165.270± 111.065 1.600± 6.000 70.440± 149.699 1.000± 0.000 458.940± 279.209

nel S5
4 S9

2 S9
8 S12

2 S12
11

5 3.670± 13.383 55.970± 35.518 23.740± 24.774 81.120± 62.762 36.370± 51.511
10 2.760± 10.545 89.190± 46.633 26.610± 27.428 126.080± 77.523 44.210± 31.343
20 3.170± 18.825 202.160± 126.655 26.480± 34.507 273.190± 151.510 47.040± 27.919
40 6.710± 30.718 491.740± 217.380 16.290± 27.548 663.080± 272.988 43.670± 29.511

Table 7: Mean and standard deviation of recursive calls to Algorithm 2 before returning the
optimal quadrature points on random knot vector. The values are reported as a±σ with a being
the mean value and σ the standard deviation computed from 100 simulations. Explicit rules
for the construction of the random knot vector can be found in section 5.1. All knot vectors
generated the optimal quadrature points and weights, and none diverged or produced an infinite
recursion.

5.1 Random knot vector

To illustrate the generality of the technique, we apply it to a set of random knot vectors of mixed
continuity. The knot vectors are chosen in the following manner

1. Choose global polynomial degree p, continuity k and number of elements nel
2. Choose nel + 1 knots from a Gaussian distribution of mean 0 and standard deviation 10

3. Duplicate all knots to get a global maximum continuity k

4. Duplicate start and end knots to get an open knot vector

5. Pick 10 percent of of the interior knots from point 2, rounded up if 10% is not an integer

• Knots picked at random from a uniform distribution

• Knots picked multiple times are ignored, no new knot is picked to replace it

• Set the continuity at these knots to a random number (uniform distribution) between
0 and k − 1

6. Repeat this process 100 times and store the number of recursive calls to Algorithm 2

7. Report mean and standard deviation in Table 7.

Of the generated knot vectors, all managed to returned the optimal quadrature points, and none
diverged by producing an infinite recursion.

6 Cost and benefits

The primary motivation for this work was applications within isogeometric finite element analysis.
For this comparison, let us look at the computational cost and benefit one gets from using these
optimal quadrature points in such a setting. The algorithm presented in the previous section is
the solution of a nonlinear global system of equations, and the obvious question is whether this
is a costly operation compared to the assembly process or the solution of the linear system of
equations. One has to remember that this is only global in a single parametric direction. It is
in higher dimensional problems such as 2D and especially 3D, that these techniques makes the
most difference.
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Assume for consistency that we consider a spline space of degree 2n in each direction sepa-
rately. For 3D problems, this means we have (2n)3 unknowns, which completely dominates the
cost of the solution of a 2n system, even a nonlinear one. For dynamic problems, the quadra-
ture points can be reused during the entire simulation, but will have to be re-computed after
refinement operations.

We list two important integrals which frequently appear in finite element problems∫
Ω
Ni,p(ξ)Nj,p(ξ) dξ (23)∫

Ω
N ′i,p(ξ)N

′
j,p(ξ) dξ (24)

corresponding to the mass matrix and stiffness matrix. If one assumes Ni,p ∈ Spk, then we have

Ni,p(ξ)Nj,p(ξ) ∈ S2p
k (25)

N ′i,p(ξ)N
′
j,p(ξ) ∈ S2p−2

k−1 . (26)

We request exact integration of all terms, that is we need to integrate up functions of the largest
polynomial degree and lowest continuity, i.e. S2p

k−1. Note that the number of elements nel is the
same for all these spaces, but the dimension of them will differ. For any spline space with nel
elements we have that

dim(Spk) = (p− k)nel + (k + 1) (27)

and we need half as many quadrature points for exact integration. For maximal continuity
k = p− 1, we have that in order to integrate S2p

k−1 = S2p
p−2 exactly we need

nquadrature =
dim(S2p

p−2)

2
=

(p+ 2)nel + (p− 1)

2
= O

(
p+ 2

2
nel

)
(28)

which is asymptotically half the number of points as traditional gauss integration

ngauss = (p+ 1)nel (29)

This number is squared for 2D problems and cubed for 3D. Using exact integration in 3D we can
get the number of integration points down to 1

8 to that of gauss integration. By careful consider-
ation of the different parts of each individual variational problem, one can slightly improve this
number. For instance, if one integrates the mass matrix (23) and stiffness matrix (24) separately,
then one can construct individual quadrature rules which are optimal for each part, instead of a
global set of quadrature rules which is guaranteed exact on both. Finally, the total computation
time at the gauss points can be further reduced by exploiting the tensor-product structure and
performing sum factorization [3].

In the future we would like to investigate the possibilities of deliberate under-integration.
The integrands arising in finite element methods (23)-(24) keep the lowest continuity of its two
factors, while doubling its polynomial degree. This is attributing a lot to the high dimension
of spline space of the integrand. While there exist research result on under-integration using
inadequate polynomial degree, it is to the best of the authors knowledge, no similar results on
using inadequate continuity. It is unknown what would happen if one were to apply the exact
quadrature rules of S2p

2p−1 to functions in S2p
p−2. If it was proven that this could work without

loss of convergence properties, it would mean a computational speedup of (p+ 2)3 on assembly
of 3D problems.

The use of selective- and under-integration in isogeometric analysis is already being used to
combat numerical locking in nearly incompressible elasticity problems [1].
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7 Conclusions and future work

We have constructed a computational method which generate the minimal number of quadrature
points and weights on any given discretization spline space. It will always consist of no more
than n+1

2 evaluation points, where n is the dimension of the space. In particular for 3D finite
element methods based on smooth spline functions, the assembly process can be computed up
to 10 times faster due to fewer evaluation points, while still confining to exact integration.

8 Acknowledgment

The author gratefully acknowledge the the financial support from the Norwegian Research Coun-
cil and the industrial partners of the FSI-WT project (RCN grant no: 216465/E20): Meteorol-
ogisk Institutt, FFI, Statoil, Trønder Energi, Kjeller Vindteknikk and WindSim AS. We would
also like to thank the reviewers for detailed response and many constructive comments.

15



A A matlab/octave implementation

Here we provide a complete matlab function to compute the optimal quadrature points. It takes
as input a polynomial degree and any arbitrary knot vector and returns the optimal quadrature
weights and points. The initial conditions x0, w0 and knot0 are optional. This is a combination
of Algorithm 1 and 2 provided in this manuscript. It assumes the existence of a BSpline(knot,
p, t) function, also provided here. This function returns a matrix of all B-spline basis function
evaluated at all points, i.e. with input vector tj it returns a sparse matrix N(i,j)=Ni(tj) as well
as its derivatives dN(i,j)=N ′i(tj), also in sparse format.

In the web version of this article both functions are available for download, in addition to an
optimized version of BSpline(knot,p,t) written in C++ using the mex library.

Tables 1–3 where tabulated by the it value, while Tables 4–7 were tabulated using the rec
value, both returned from GetOptimalQuadPoints.
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1 function [w, x, rec, it] = GetOptimalQuadPoints(knot, p, w0, x0, knot0, rec)
2 % intended use: [w, x] = GetOptimalQuadPoints(knot,p)
3

4 n = numel(knot)-p-1; % dimension of our spline space
5

6 if mod(n,2)==1 % need to have a space of even dimension
7 i = find(diff(knot) == max(diff(knot)));
8 i = i(ceil(end/2)); % insert new knot in middle of
9 knot = sort([knot,mean(knot(i:i+1))]); % the largest, centermost knot span

10 n = n+1;
11 end
12

13 % compute all greville points and integrals (used for initial guess)
14 greville = zeros(n,1);
15 exact_integral = zeros(n,1);
16 for i=1:n
17 greville(i) = sum(knot(i+1:i+p)) / p;
18 exact_integral(i) = (knot(i+p+1)-knot(i))/(p+1);
19 end
20

21 if exist(’x0’) % if initial guess is provided, use these
22 x = x0;
23 w = w0;
24 else % else compute them based on greville points and integrals
25 w = (exact_integral(1:2:end) + exact_integral(2:2:end)) ;
26 x = ( greville(1:2:end) + greville(2:2:end))/2;
27 rec = 1; % counter variable to count the number of recursive calls
28 end
29

30 newton_tol = 1e-10; % convergence tolerance
31 newton_max_it = 15; % max iterations before divergence
32 while true % recursive loop from algorithm 2
33 for it = 1:newton_max_it % newton iteration loop
34 [N dN] = BSpline(knot, p, x);
35 F = N*w - exact_integral;
36 dF = [N, dN*diag(sparse(w))];
37

38 dx = dF \ -F;
39 w = w + dx(1:end/2);
40 x = x + dx(end/2+1:end);
41

42 % test for diverging (coarse heuristic, see section 3.3)
43 if( min(x)<knot(1) ) break; end;
44 if( max(x)>knot(end)) break; end;
45

46 % test for converging
47 if(norm(dx)<newton_tol) return; end;
48 end
49

50 % at this point, newton iteration has diverged. solve recursively on easier knot
51 if exist(’knot0’)
52 [w, x, rec] = getOptimalQuadPoints((knot0 + knot)/2, p, w0, x0, knot0, rec);
53 knot0 = (knot0 + knot)/2;
54 else
55 uniformKnot = linspace(knot(1),knot(end), n+p+1);
56 [w, x, rec] = getOptimalQuadPoints(uniformKnot, p);
57 knot0 = uniformKnot;
58 end
59 rec = rec + 1;
60 x0 = x;
61 w0 = w;
62 end % loop up and start newton iteration with better initial guess
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1 function [N dN] = BSpline(knot, p, t)
2 % function [N dN] = BSpline(knot, p, t)
3 % parameters:
4 % knot - the knot vector
5 % p - the polynomial order of the basis
6 % t - m component vector of points which is to be evaluated
7 % returns:
8 % N - n by m matrix of the solution of all basis functions i
9 % evaluated at all points xi(j), given in N(i,j)

10 % dN - n by m matrix of the solution of all derivative of the
11 % basis functions i evaluated at all points xi(j), given
12 % in dN(i,j)
13

14 % pad knot vector, so we always compute with C^{-1} at the start/end
15 knot = [knot(1)*ones(1,p), knot, knot(end)*ones(1,p)];
16 n = numel(knot)-p-1; % number of basis functions +2p
17 Ni = ones( numel(t)*(p+1),1);
18 Nj = ones( numel(t)*(p+1),1);
19 Nv = zeros(numel(t)*(p+1),1);
20 dNv = zeros(numel(t)*(p+1),1);
21 for i=1:numel(t),
22 if t(i)==knot(end-p) % evaluate right end-point from the left
23 mu = find(knot>=t(i), 1);
24 else % else evlauate in the limit from the right
25 mu = find(knot>t(i), 1);
26 end
27 if numel(mu)==0 || mu==1 % evaluation outside domain
28 continue;
29 end
30 mu = mu-1; % index of last non-zero basis function
31

32 N = 1;
33 for q=1:p,
34 k = mu-q+1:mu;
35 R = zeros(q+1,q);
36 R(1:q+2:end) = (knot(k+q) - t(i) ) ./ (knot(k+q)-knot(k));
37 R(2:q+2:end) = (t(i) - knot(k)) ./ (knot(k+q)-knot(k));
38 if p==q
39 dR = zeros(q+1,q);
40 dR(1:q+2:end) = -p ./ (knot(k+q)-knot(k));
41 dR(2:q+2:end) = p ./ (knot(k+q)-knot(k));
42 dN = dR*N;
43 end
44 N = R*N;
45 end
46 Ni( (i-1)*(p+1)+1:i*(p+1)) = mu-p:mu;
47 Nj( (i-1)*(p+1)+1:i*(p+1)) = i*ones(1, p+1);
48 Nv( (i-1)*(p+1)+1:i*(p+1)) = N;
49 dNv((i-1)*(p+1)+1:i*(p+1)) = dN;
50 end
51 N = sparse(Ni,Nj, Nv, n, numel(t));
52 dN = sparse(Ni,Nj,dNv, n, numel(t));
53

54 N = N(p+1:end-p,:); % remove extra functions from padding the knot vector
55 dN = dN(p+1:end-p,:);
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