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Abstract— In this paper a source seeking method for multi-
agent systems organized with the Leader-Follower scheme is
studied. Our objective is to develop a controller for the headings
of the agents. The group of agents is characterized by an initial
leader, which steers all the agents towards an initial given
heading. Another agent, an active follower, can take on the role
as leader if it gets satisfactory measures from the environment.
If the active follower becomes leader, it steers the whole group
towards the source present in the field. We focus on a 2D case,
and simulation results are reported to illustrate and validate
theoretical results.

I. INTRODUCTION

Artificial multi-agent systems have been widely studied
during the few last years. They represent an important
resource for the exploration of unstructured environments
and spatially distributed tasks [7]–[9], [13], [16], [17], [23],
[24]. Various applications are source seeking [1], [7]–[9],
[13], target tracking [17], ice inspection [25].

When we deal with a multi-agent network there is a
distinction between networks with or without a hierarchy
among the agents. We may have a network with [1], [16],
[17], [22] and without leaders [8], [9], [13], [24]. The Leader-
Followers scheme has been investigated in depth in the last
years. It is characterized by an agent, the leader, that is able
to influence the states of the others, the followers.

One of the first studies about this scheme is given in [2]. In
this work the author deals with a group of agents in which the
leader is able to control the states of the other elements. The
communication among the agents is characterized by a fixed
topology graph. Necessary conditions on the structure of the
communication graph are given under which the states of the
followers are controllable by the leader. Further investigation
about the connection between controllability of the Leader-
Followers networks and the topology of the communication
scheme is given in [11], [15], [18].

Other authors focused on the controllability of the Leader-
Followers scheme considering a switching topology graph for
communication [6], [14]. In particular [6] gives a thorough
analysis of the stability of a network of agents with and
without a leader. It is assumed that over a certain interval
of time the neighbors of the i− th agent change. Necessary
conditions on the connectivity of the agents’ graph over the
time are given to having an agreement among the agents. In
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the case of the Leader-Followers scheme the followers agree
to follow the leader’s heading.

The common feature in the above articles is that fixed
leaders are considered. The Leader-Followers scheme is
typical for birds and fishes during migration. A motivation
for the work in this paper is the observation that the animal
which takes the role as a leader of the group changes with
time. We believe that this feature may make multi-agent
networks more efficient in search and survey operations.

The work [19] gives a model for the migration of the
birds that is used in [3], [4] to study the evolution of
leadership among the animals. According to this model,
during the migration each animal spends energy in getting
information from the environment and from its neighbors.
This behavior is expressed by the investment parameter. If
a bird spends a lot of energy in sensing the environment it
is characterized by a strong investment parameter. On the
other hand, if it gets information only from the neighbors, it
is characterized by a low investment parameter. The leaders
have a high investment parameter and influence the migration
of the followers. The investment parameter changes over
the evolution of the animals according to their fitness, so
this change occurs over a long period of time. In [3], [4]
a thorough bifurcation analysis gives the conditions under
which stable migration is guaranteed.

For the particular task of source seeking, the multi-agent
network has been investigated in depth in the last few years
[1], [8], [9], [13], [16], [17], [23], [24]. In fact, it is important
that generally the agents can only get scalar measures of
the vector field, so distributed measures to compute the
approximated gradient are generally needed. Source seeking
tasks can be performed with the Leader-Followers scheme
[1], [7], [16], [23] and with the leaderless scheme [8], [9],
[24].

The work [1] deals with a source seeking mission per-
formed using a multi-agent system in which only the leader
gets scalar measures from the field. In order to get distributed
measures, it moves due to a dither motion to compute the
approximated gradient. The followers keep an assigned for-
mation around the leader. Their relative position is controlled
by a passivity based control. This controller guarantees that
the followers move behind the leader filtering its dither mo-
tion. The asymptotic stability of the motion of the formation
towards the source is proved.

In [7], [23], a group of full-actuated agents are used to
perform source seeking using the scalar measure from each
agent. In particular, some virtual leaders are used to achieve
a prescribed formation using artificial potentials. Each real



agent gets scalar measures that are used to compute the
gradient of the environment. A Kalman filter is used to
improve the quality of the gradient estimate. Asymptotic
convergence to a region that contains local minima is proved.

In [16], a source seeking guidance law for UAVs agents
based on a Leader-Followers scheme is studied. The follow-
ers constantly move on a circular trajectory around the leader.
Only the followers are able to get scalar measures from the
field. The leader receives the measures from the followers
and uses them to compute the approximated gradient in order
to move towards the source. It is necessary that each follower
communicates with the leader during the motion. Asymptotic
convergence towards the source is proved.

In this paper we consider the source seeking problem using
under-actuated vehicles organized in a Leader-Followers
scheme. Our model is inspired by the migration model in [4].
However in our work we consider the investment parameter
as a function of the current scalar measures from the field.
We want the followers to move along the trajectory imposed
by the leader. But if a certain follower detects a strong scalar
measure, it takes on the role as leader and imposes a new
direction for the group, steering the whole group towards the
source. The new direction is computed by only this agent. In
order to achieve measurements of the gradient using only one
agent, we assume that it is equipped with three sensors. In
this way it can compute the gradient, and circular or dither
motion is not needed. The gradient is computed using the
method in [16], [17].

The main difference in this work compared to previous
works is that in our model the leadership is exchanged
according to the environment conditions, i.e. the proximity
to the source. In particular, the agents move along a definite
path assigned to the initial leader. But if during the motion
one of the agents detects a source they deviate from the initial
path. The sensing agent would take on the role as leader and
would compute a new path that points towards the source.
Being the new leader, it imposes the new trajectory to the
rest of the agents. Which is the current leader depends on
the current value of the investment parameter. This feature
makes sure that the group follows the agent that has the
best information available about the source they are seeking,
and is expected to provide more efficient source seeking
operations.

Another important feature of our approach is that it is not
necessary that each follower communicates with the leader.
It is only necessary that the graph for the communication
scheme among the agents is connected.

The controlled agreement protocol from [11] for the
Leader-Follower scheme is revisited with the addition of
a variable leader in order to shift the agreement. That is,
we have two leaders which can influence the other agents
in order to achieve an agreement on a given trajectory.
Switching between the leaders we switch the agreement
among the followers and therefore the direction which the
whole group follows.

The paper is organized as follows. Section II provides
a brief description of the desired behavior of the system.
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Fig. 1. Exchange of the leadership, the agent v1 is the initial leader, the
agent v2 is the the active follower, the red dots are the sensors

Section III gives a short description of the graph theory. In
Section IV the model is described. Section V presents the
main results. In Section VI some simulations are presented.
Section VII gives the conclusions.

II. DESIRED BEHAVIOR

The exchange of the leadership among the agents is
conceived for exploration and survey operations. At the
beginning of the mission, we want one agent to steer all
the others on a fixed initial path. This is typically the path
that the operators, based on their current information, expect
that the source will lie along. We call this agent the initial
leader. In the rest of the group there is at least one active
follower that is able to sense the environment. When it
detects a strong enough signal it takes on the role as leader.
In other words, while the active follower is following the
leader, it investigates the field. If it gets a relevant signal it
will compute the direction that points towards the source of
the signal and it will steer all the group in this new direction.
A simple illustration is given in Figure 1.

III. GRAPH THEORY

This section provides a brief description of the Graph
Theory, further information is given in [11].

An undirected graph G consists of a set of n vertices V
and an edge set E such that E = {vi, vj} with i 6= j
, i, j = 1, ..., n. A graph G is defined by G = (V, E). If
x, y ∈ V and (x, y) ∈ E then x, y are said to be adjacent. A
graph is called complete if any two vertices are adjacent. A
path of length r is a sequence of r+ 1 distinct and adjacent
vertices. If there is a path between any pair of vertices then
the graph is said to be connected. The adjacency matrix of a
graph G is the symmetric [n× n] matrix with 0-1 elements,
such that A(i, j) = 1 if (vi, vj) ∈ E and A(i, j) = 0 if
(vi, vj) 6∈ E . The degree matrix is the diagonal [n×n] matrix
such that D(i, i) = d(vi), where d(vi) gives the number of
vertices adjacent to vi. The Laplacian matrix is the [n× n]
matrix defined as L = D − A. The matrix L is symmetric
and positive semi-definite. Moreover its smallest eigenvalue
λ1 = 0 and if its second smallest eigenvalue λ2 > 0 then
the graph is connected.



Remark 1: In the following our considerations will be
focused on undirected graphs. This ensures to have sym-
metric Laplacian matrix with real eigenvalues. We will not
consider the more generic case of directed graphs, in which
a direction is associated to each edge of E . In the latter case,
the Laplacian may not be symmetric and the eigenvalues may
be complex.

IV. MODEL DESCRIPTION

In this section a model is proposed that describes the
behavior of a fixed topology network of agents moving in
a source field, given in Section II. The network follows a
variable leader approach. That is, a certain agent takes on
the role of a leader or a follower depending on its sensing of
the strength of the field. In particular, the closer to the field
maximum/minimum the agent is, the more the agent takes
on the leader role. In order to make the group move into
the area of interest, a fixed initial trajectory is given. The
group should follow this path until any agent senses relevant
information about the source field.

In the following we consider reaching the maximum of
a given field F (x, y). But analogous considerations hold to
reach a minimum.

Each agent is characterized by a local coordinate system
{b}. The velocity in the local frame is ui along xb, θ̇ around
z and wi along yb. The velocity in the global frame {g}
is given by V = [ẋi, ẏi, θ̇i]

T . An illustration is given in
Figure 2 (By convention for marine vessels the z-axis points
downwards into the sea). We assume that each agent is
actuated only with a linear velocity ui along its xb axis, and
with a heading velocity θ̇i around its zb axis. The considered
kinematic model is:

ẋi = ui cos(θi)

ẏi = ui sin(θi)

θ̇i = ωi

(1)

The works [16], [17], [24] use the same kinematic model.
They control ui and θ̇i to make the agents move in formation.
However, in our work we decide not to focus on the
formation of the group. Our main attention is given to the
angular velocities ~̇θ = [θ̇1, θ̇2, . . . θ̇n]T in order to drive the
agents towards a source only if a source is present in the
area the agents are moving through. We decide to control
the linear velocities ~u = [u1, u2, . . . , un]T independently by
~θ, i.e. our method does not ensure that the agents reach the
source keeping an assigned formation. Anyway our model
require that the communication scheme among the agents
has to be only connected, so even if they spread out over
a larger area it is not necessary that the two most distant
agents communicate directly.

In the following we consider a set of n agents defined
by V , that are indexed as vi. We model them with a graph
G = (V, E). Without loss of generality we index the agents
such that the agent v1 is the initial leader of the group.
The initial leader’s role is to make the group follow the
fixed initial trajectory. This makes the agents move into

Y b

X b

XNED

YNEDO

u

v

ψ

Fig. 2. Global and body frames

the area of interest. As a first step, we consider the case
where only one agent is able to sense the environment. This
agent is denoted by v2, and in the following is called the
active follower. Finally the agents from v3 to vn are the
passive followers. These cannot sense the environment and
may represent agents with different sensors, for instance
cameras. Moreover they might be communication nodes to
allow communication among not directly connected agents.
This is particularly useful in our case because as we have
mentioned above, the model does not guarantee the agents
keep a formation during the motion. But our model requires
only a connected communication scheme among the agents,
therefore more agents allow to have communication over
larger areas. Because they cannot sense the environment, the
concept of investment parameter k does not apply to them.
In other words it is assumed that the investment parameter
of the n− 2 passive followers is always 0.

The following assumption is valid on G:

Assumption 1: The graph G, which characterizes the
agents, is connected and has a controllable structure with
respect to the nodes v1, v2.

Remark 2: Works [11], [18] demonstrate that connectivity
is a necessary condition for a network based on leaders-
followers scheme to be controllable. Furthermore, this kind
of graph scheme does not require an all-to-all communi-
cation, which is an advantage for practical implementation.
Conditions on the graph structure to be controllable are given
in [2], [11], [18]. For instance, a graph has not to be complete
or symmetric from the input node in order to be controllable.

Remark 3: We do not explicitly consider the case of
directed graphs, which can have a non-symmetric Laplacian
and complex conjugate eigenvalues. However, if the control-
lability condition with respect to v1, v2 is verified also for
directed graph, then the following considerations hold also
for this case.

Inspired by [3], [4], [19], we propose the following model
for the heading velocities θ̇i(t) of the initial leader v1 and



the active follower v2 :

θ̇1(t) =k1(t)(θd1(t)− θ1(t))− (1− k1(t))
1

d(v1)
~L1
~θ

θ̇2(t) =k2(t)(θd2(t)− θ2(t))− (1− k2(t))
1

d(v2)
~L2
~θ (2)

where d(vi) is the degree number of the i − th agent, ~Li
is the i − th row of the Laplacian matrix. The parameters
k1(t), k2(t) ∈ [0, 1] are continuous functions that define the
investment of the initial leader v1 and the active follower
v2, respectively. If ki(t) = 1 the agent is a full leader, if
ki(t) = 0 it becomes a pure follower. Equation (2) is similar
to the one in [3], [4], [19], where the leadership is associated
with ki(t). Except that in this paper ki(t) varies according to
the scalar signal measured from the source in the field. When
the agent v2 takes measures that overtake a fixed threshold,
it becomes the new leader. Finally θd1 is the initial heading
assigned to v1, which is the initial leader. Then θd2 is the
desired heading of the active follower, and it depends on
current position of the agent v2.

In particular, we want to compute θd2 by the gradient of
the field, in fact it points towards the source. It is assumed
that the active follower is equipped with three sensors that
can get scalar measures of the field. One of the sensors is
located at the center of the body of the vehicle. The other
two are located at a distance d from this one on the axes
x and y, respectively (Figure 1). Notice that the assumption
that only one agent is equipped with several sensor in order
to get distributed measurements does not guarantees a good
computation of the gradient during real time operations. As
a first step, however, we consider an ideal situation in which
this kind of sensor is reliable.

We assume that at each instant the scalar measures are
available. We assume that the scalar measure is δ(x, y) =
hF (x, y), where h is a constant parameter which scale
the measurements from the field F (x, y) to the sensor.
According to [16] it is possible to express the scalar measure
of the field δ(xi, yi) at the generic position (xi, yi) according
to the following Taylor expansion:

δ(xi, yi) ≈ δ(x, y)+
∂δ(x, y)

∂x
(xi−x)+

∂δ(x, y)

∂y
(yi−y) (3)

Considering that the active follower is equipped with three
sensors it is possible to write:[

δ22 − δ21
δ23 − δ21

]
=

[
xg2 − x

g
1 yg2 − y

g
1

xg3 − x
g
1 yg3 − y

g
1

][∂δ21
∂x1
∂δ21
∂y1

]
(4)

where (xgi , y
g
i ) are the coordinates of the sensors on the agent

v2 expressed in the global frame. The index i ∈ {1, 2, 3}
refers to the i − th sensor. In particular, i = 1 indexes
the sensor in the center of the body of v2, i = 2 and
i = 3 refer to the sensors on the x and y local-frame axis
of v2, respectively. Finally δ2i is the scalar measure that
corresponds to the i − th sensor. From (4) it is possible
to write:

~G =

[
Gx

Gy

]
=
(
PTP

)−1

PT

[
δ2 − δ1
δ3 − δ1

]
(5)

where:

P =

[
xg2 − x

g
1 yg2 − y

g
1

xg3 − x
g
1 yg3 − y

g
1

]
(6)

The vector ~G is directed towards the source, so it is
possible to compute θd2 for the active follower according
to:

θd2 = arctan 2(Gy, Gx) = 2 arctan

(
Gy√

G2
x +G2

y +Gx

)
(7)

In this paper we consider a time-invariant field F (x, y) :
R2 → R+ that satisfies the following assumption:

Assumption 2: The field F (x, y) is continuous and con-
vex.

Remark 4: This assumption ensures that there is only one
global maximum on F (x, y), and therefore only one source
in the field. A field with several local maxima is equivalent
to having several sources in the environment.

Notice that (7) is not defined for (Gx, Gy) = (0, 0) and
0 ≥ θd2 ≥ 2π. We design the linear velocity such that the
agents stop before arriving to the maximum of the field,
where (Gx, Gy) = (0, 0).

The investment parameters k1(t) and k2(t) in Equation (2)
are chosen as follows:

k1(t) = k(t), k2(t) = 1− k(t) (8)

This property ensures that the initial leader and the active
follower cannot have their investment parameter equal to 1
or to 0 at the same time.

If k1 = k2 = 1 then they would both be leader. In this case
they would not influence each other. Each one would follow
its desired direction without caring about the direction of the
other one. If k1 = k2 = 0 they would both be followers. In
this case there would not be a leader in the group and all
the agents would get an agreement on a common direction
that would be the average of their initial direction of motion
[11].

We define k(t) as follows:

k(t) =
1

2
tanh(∆(t)) +

1

2
(9)

∆(t) = α
δ21(t)− δm
δM − δm

+ β (10)

where δm > 0 defines the minimum relevant level for
the measures, δM > δm is the maximum thresholds over
which v2 becomes a full leader, δ21(t) is the strength of the
measurement signal that the agent v2 currently receives to its
central sensor. Then α < 0 and β > 0 are two parameters that
define the function ∆. Notice that k(t)→ 1 for ∆(t)→ −∞
while k(t) → 0 when ∆(t) → +∞. So β is chosen such
that δ21(t) = δm ⇒ k = tanh(β) ' 1. Then it is obvious
that δ2 < δm ⇒ k ' 1. With the same reasoning α is
chosen such that δ21(t) ≥ δM ⇒ k ' 0. This choice for
k(t) and ∆(t) ensures that k(t) is bounded and continuous.
Notice that δm, δM are not the minimum and the maximum
of F (x, y), but only two tuning parameters.



The derivative of k is:

k̇ =
αδ̇21

2 cosh2(∆)
(11)

where δ̇2 is the velocity with which the signal from the
field to the agent v2 varies. We consider that the following
Assumption holds for our model:

Assumption 3: The velocity with which the signal from
the field to the agent v2 varies is bounded, i.e. ‖δ̇21‖ ≤ c,
where c > 0

Remark 5: This Assumption ensures that the agents move
with a finite velocity over the field, and that the field itself
has not discontinuities.

Following Assumption 3 k̇ is bounded because
min{cosh2(∆)} = 1 for ∆ = 0.

Recalling that for the other n − 2 passive followers
the concept of investment parameter does not apply, their
dynamics is given by the classic agreement protocol [11],
that is:

θ̇i = − 1

d(vi)
~Li~θ (12)

If the graph is connected the agents will agree on a com-
mon direction to follow [11]. In our case this direction is
suggested by the current leader.

Equations (2) and (12) can be rewritten in matrix form:

~̇
θ = K(~θd − ~θ)−D−1(I −K)L~θ (13)

where:

K =


k(t) 0

O2×(n−2)
0 1− k(t)

O(n−2)×2 O(n−2)×(n−2)

 (14)

~θd =

 θd1
θd2

~0(n−2)×2

 (15)

where Oa×b is a matrix [a × b] with all entries equal to
zero. The vector ~θd is the vector of the desired headings.
Finally notice that the last n− 2 elements of the vector are
conventionally assumed to be zeros. In fact the first term
K(t)(~θd(t)− ~θ(t)) couples only the dynamics of the agents
that can change their investment parameter ki. The desired
headings of the n−2 passive followers can assume whichever
value possible, but they are ignored because their ki is equal
to zero. The dynamics of the n − 2 passive followers are
coupled with the ones of the agents v1 and v2 via the term
D−1(I−K)L~θ. Notice that D−1 is the inverse of the degree
matrix. Finally I is the [n×n] identity matrix. The equation
can be rearranged and rewritten as:

~̇
θ = −M~θ +K~θd, M = [K +D−1(I −K)L] (16)

From the matrix K the necessity of our choice in (8)
is more clear. If both k1 and k2 were zero at the same
time, the model given by (13) would become the classical
agreement protocol ~̇θ = L~θ [11]. If both k1 = k2 = 1,

then both v1 ad v2 would be leaders, in this case each one
follows its desired direction ignoring the other one. The
passive followers follow a direction that depends on the
characteristics of the connection graph.

In our approach the control of the linear velocities ~u =
[u1 u2 . . . un]T is done independently from the angular
velocities ~̇θ.

As we have already mentioned a drawback of this ap-
proach is that we cannot ensure the keeping of a formation
during the motion. We choose the velocity controllers such
that agent v2 controls the linear velocity of the other agents
during the mission. In particular, this means that the active
follower v2 does not necessarily take on the role as leader of
the group with respect to controlling the headings, which is
the case if its sensor measurements never exceeds the lower
threshold. But v2 will always be the leader as regards the
linear velocity. The motivation for the choice of v2 to decide
the linear velocity of the group is that it is the only agent
which obtains measures from the field, and it is desirable
to adjust the linear velocity with the intensity of the signal
from the field. The velocity for v2 is chosen as:

ū2 = u0 − (1− kc)u0 (17)

where u0 is the initial assigned velocity, and
kc = 1

2 tanh(∆c) + 1
2 is a function similar to the one

used for k which takes into account the signal strength, and
where:

∆c = α
δ21 − δmu
δMu − δmu

+ β (18)

where α < 0 and β > 0 are chosen with the same reasoning
used for (10). Then δ21 is the current measure that v1 gets,
δmu defines the threshold which v2 starts to slow down, and
δMu is the level measure which v2 stops. Notice that we
want to choose δMu < max(F (x, y)). In fact if the agent
v2 arrived on max(F (x, y)), then Equation (7) would not be
defined.

The linear velocity of all the other agents are controlled
by v2, and we decide to use a model inspired by [2]:

u1
u2
u3
...
un

 = −


L11 L12 . . . L1n

0 0 . . . 0
L31 L32 . . . L3n

...
...

. . .
...

Ln1 Ln2 . . . Lnn




l1
l2
l3
...
ln

+


0
ū2
0
...
0

 (19)

where Lij is the element (i, j) of the Laplacian matrix L, li
is the measure of the distance which each agents has traveled.
Finally ū2 is the control input for the linear velocity of v2.

The dynamics of the linear velocities of the agents
v1, v3, . . . , vn is:

~u∗ = −L̄~l∗ − ~rū2 (20)

where L̄ is a matrix [(n − 1) × (n − 1)] obtained by the
Laplacian deleting the second column and the second row,
i.e. the row and the column that corresponds to v2. The vector
~l∗ is ~l∗ = [l1, l3, . . . , ln]T . Then the vector ~r is the [(n−1)×
1] vector obtained by the second column of the Laplacian



deleting the second element. With this dynamic we want the
agents v1, v3, . . . , vn move as long as the agent v2 moves.

V. RESULTS

In this section the conditions to have a stable exchange of
the leadership within the group are stated and demonstrated.
In the following Oa×b is used to indicate an [a × b] matrix
with all the elements equal to zero. The Investment Parameter
k(t) is simply rewritten as k without neglecting its time
variant behavior.

The following Lemma is important for the proof of the
main Theorem.

Lemma 1: For a connected undirected graph G the matrix
M = K +D−1(I −K)L is positive definite if K 6= On×n.

Proof:
We want to demonstrate that M is positive definite for

each value of k. We observe that M is not symmetric, but
according to [21] we know that the positive-definiteness
is a property that holds also for non-symmetric matrix.
Furthermore, even in the case a non-symmetric matrix is
positive definite, this guarantee that its eigenvalues are all
positive. So we focus on the following quadratic form:

~xT (K+D−1(I−K)L)~x = ~xTK~x+~xTD−1(I−K)L~x ≥ 0
(21)

We do not know what are the eigenvalues of K+D−1(I−
K)L, but if we can prove that there is not a vector different
from zero that makes (21) zero, then K +D−1(I −K)L is
strictly greater than 0, and so positive definite [21].

Let us consider first the case 0 < k < 1. The matrix K
is diagonal and with n − 2 null elements on its diagonal,
so it is positive semi-definite because k and 1 − k are non
negative. Its eigenvalues are k, 1− k and 0. The eigenvalue
0 has algebraic and geometric multiplicity n−2, so there are
n−2 eigenvectors that correspond to the eigenvalue λk = 0.
We call ~e1 and ~e2 the eigenvectors that correspond to the
eigenvalues 1−k and k. Then we call ei, with i ∈ {3, ..., n},
the n−2 eigenvectors that correspond to λ = 0. The generic
vector ei has n−1 null elements and the value 1 in the i−th
position:

~e3 = {0, 0, 1, 0, . . . , 0}T (22)

~ei = {0, 0, . . . , 1, . . . , 0}T (23)

~en = {0, 0, 0, . . . , 1}T (24)

Now it is sufficient to show that none of the eigenvectors
~ei makes the quadratic form (21) zero. For this purpose, we
consider (21) with ~x = ~ei where i ∈ {3, . . . , n}. We obtain:

~eTi D
−1(I −K)L~ei = Lii = d(vi) > 0 (25)

where Lii is the i− th element on the diagonal of L that is
equal to d(vi), that is the number of neighbors of vi. Since
we have a connected graph, each agent has to have at least
one neighbor, so d(vi) > 0.

When k = 0 we have e1 = {1, 0, . . . , 0}T and ~eT1M~e1 =
d(v1) > 0.

When k = 1 we have e2 = {0, 1, 0, . . . , 0}T and
~eT2M~e2 = d(v2) > 0.

So we can conclude that there is not a vector that is
different by ~0, which can make zero both the terms of (21)
at the same time. Consequently we have proved that M is
positive definite, and so its eigenvalues are all positive [21].

Now it is possible state the main theorem:
Theorem 1: Consider a group of agents that move ac-

cording to (16) in a time-invariant field F(x,y), and assume
that Assumptions 1-3 are satisfied. Then (16) is Input to
State Stable (ISS) with respect to the input K~θd. And if
the eigenvalues of L̄ are all distinct and the corresponding
eigenvectors are not orthogonal to ~r, then (19) is controllable
by u2.

Proof: We want to demonstrate that (16) is Input to
State Stable (ISS) with input K ~θd. To this purpose we know
that M is positive definite according to Lemma 1 and we
want to focus on the norms of M and Ṁ . First we focus on
M :

M =


1 −L12(k−1)

d1
−L13(k−1)

d1
. . . −L1n(k−1)

d1
L21k
d2

1 L23k
d2

. . . −L2nk
d2

L31

d3
L32

d3
1 . . . L3n

d3
...

...
...

. . .
...

Ln1

dn
Ln2

dn
Ln3

dn
. . . 1


(26)

where Lij are the (i, j) − th elements of L. According to
[11] the sum of the elements on the rows of L is zero. So
using this property, the sum of the elements on the rows of
M are:

r1 =1 +

n∑
i=2

−L1i(k − 1)

d1
= 2− k (27)

r2 =
L21k

d2
+ 1 +

n∑
i=3

L2i

d2
= 1− k (28)

rj =

j−1∑
i=1

Lji
dj

+ 1 +

n∑
i=j+1

Lji
dj

= 0 (29)

where ri gives the sum of the elements of the i − th row,
and j ∈ [3, 4, . . . , n]. According to this we have:

‖M‖∞ = max {2− k, 1− k, 0} ≤ 2 (30)

because 0 ≥ k ≥ 1.
Now we focus on Ṁ :

Ṁ = (I −D−1)K̇ =



0 − k̇L12

d1
0 . . . 0

k̇L21

d2
0 0 . . . 0

k̇L31

d3
− k̇L32

d3
0 . . . 0

...
...

...
. . .

...
k̇Ln1

dn
− k̇Ln2

dn
0 . . . 0


(31)

According to the definition of the Laplacian we have Lij ∈
{0,−1} for i 6= j. So considering also Assumption 3 we



have:

‖Ṁ‖∞ = max

{
− k̇L12

d1
,
k̇L21

d2
,
k̇L31 − k̇L32

d3
, . . . (32)

. . . ,
k̇Ln1 − k̇Ln2

dn

}
(33)

<max

{
k̇

d1
,− k̇

d2
,± k̇

d3
, . . . ,± k̇

dn
, 0

}
(34)

≤ k̇

min{di}
for i ∈ [1, 2, . . . , n] (35)

≤ αc

2 cosh2(∆) min{di}
for i ∈ [1, 2, . . . , n]

(36)

where c is the bound on δ̇2. According to the properties of
M and Ṁ we can conclude that:

~̇
θ = −M~θ (37)

is Globally Exponentially Stable (GES), according to The-
orem [8.7] in [12]. Moreover 0 ≥ θd2 ≥ 2π because of its
definition. And we have:

‖K‖∞ = max{1− k, k, 0} ≤ 1 ∀k ∈ [0, 1] (38)

because of the definition of K. So (16) is ISS according to
Lemma [4.6] in [10].

As regards the linear velocities, the system (19) is con-
trollable by u2 if Theorem [IV.1] in [2] applies. According
to [2], [11] if Assumption 1 holds then the eigenvalues of
L̄ are all distinct and the corresponding eigenvectors are not
orthogonal to ~r. Therefore the conditions of Theorem [IV.1]
in [2] are satisfied and v2 can control the velocities of the
other agents.

The solution of (16) is ~θ = [K +D−1(I −K)L]−1K~θd.
Considering the chosen function for k we know that it
evolves over the field between the values 1 and 0. So when
k = 1 and v2 is the leader the matrix [K + D−1(I −
K)L]−1K gives ~θ = [θd2, . . . , θd2]T . When we have k =
0 the agent v1 is the leader and the solution is ~θ =
[θd1, . . . , θd1]T . The direction θd2 points towards the source
[16]. It is important notice that the convergence towards
the source depends on the tuning parameter α, β, δM , δm.
It is important to notice that the convergence to the source
strongly depends on the tuning parameters α, β, δm, δM .

VI. SIMULATION

In this section simulation results are presented to illustrate
the behavior of the presented model.

We consider a group of five agents described by a graph
(G,V). The graph is connected but without a directed con-
nection between v1 and v2. In other words we assume a graph
topology in which v1 and v2 do not directly exchange the
information about their relative position. The graph topology
for the communication scheme of the relative position is
illustrated in Figure 3. The following Laplacian matrix
corresponds to the illustrated topology:

v1

v4v5

v2
v3

Fig. 3. Topology of the agents’ graph
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Fig. 4. Path of the agents

L =


2 0 −1 −1 0
0 2 −1 0 −1
−1 −1 2 0 0
−1 0 0 1 0
0 −1 0 0 1

 (39)

We assign u0 = 1 m/s. The considered field is:

F (x, y) =e(−0.1A(0.055(x+130)−10)2−0.2B0.04(y+170)−11)2 (40)

z where A = e0.005(x+130), B = e(0.005(y+170). Notice that
F (x, y) respects Assumption 2. The thresholds for k are
δm = 0.08 and δM = 0.5. The thresholds for the variation
of the velocity u are δmu = 0.8 and δMu = 0.95. The initial
desired direction for the initial leader v1 is θd1 is 90◦. This
is the direction to which each agent agrees at the beginning.
The initial desired direction is assigned to steer the agents
towards an area that is supposed to be of interest. In our case
an area is defined of interest if it contains the source of a
vector field. Figure 4 shows the path that the agents follow.

VII. CONCLUSION

The objective of our work was to develop a kinematic
model to improve the performance for source seeking op-
erations using a multi-agent system. We have proposed a



Leader-Followers approach, where the leader changes ac-
cording to the condition of the environment. The group is
characterized by an initial leader and a follower that can vary
its leadership condition. In particular, we have considered
that one of the agents is able to sense the environment. When
it gets satisfactory measures of the source it takes on the role
as a leader and the initial leader becomes a simple follower.

Our result is based on a revision of the classic controlled
agreement protocol with the addition of a variable leader in
order to steer towards a source changing the direction of the
agreement among the agents.

In our model we assume that one agent is equipped
with three sensors and no specific formations are required.
A future development for our work will be the definition
of a proper linear velocities controller in order to have a
coordinated motion of the agents to keep a formation during
the motion. In this way it would be possible to equip more
agents with one sensor in order to compute the gradient of the
field by shared information among the agents. Furthermore,
equipping each agent with a sensor will give more reliable
measurements of the field F (x, y).
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