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Abstract: A general issue in climate science is the handling of big data and running complex and
computationally heavy simulations. In this paper, we explore the potential of using machine learning
(ML) to spare computational time and optimize data usage. The paper analyzes the effects of changes
in land cover (LC), such as deforestation or urbanization, on local climate. Along with green house
gas emission, LC changes are known to be important causes of climate change. ML methods were
trained to learn the relation between LC changes and temperature changes. The results showed
that random forest (RF) outperformed other ML methods, and especially linear regression models
representing current practice in the literature. Explainable artificial intelligence (XAI) was further
used to interpret the RF method and analyze the impact of different LC changes on temperature. The
results mainly agree with the climate science literature, but also reveal new and interesting findings,
demonstrating that ML methods in combination with XAI can be useful in analyzing the climate
effects of LC changes. All parts of the analysis pipeline are explained including data pre-processing,
feature extraction, ML training, performance evaluation, and XAI.

Keywords: climate science; explainable artificial intelligence; land cover changes; machine learning;
uncertainty quantification

1. Introduction

One of the peculiar features of climate science is the accumulation of an enormous
amount of data [1,2]. The estimated size of climate data exceeds ten petabytes and continues
to grow exponentially [3]. Furthermore, the number of different and diverse data sources
is also increasing. Initially, information is collected by thousands of ground-based weather
instruments all over the world, such as weather stations, as well as by a large number of
satellites that perform measurements from kilometers above the ground. These data need
to be processed and transformed to formats that are comparable with each other. Climate
science multimedia systems exists, but are still underinvestigated compared to other areas
such as social media or medicine [4,5].

Motivated by the big data challenges and the need for multimedia systems within
climate science, we will in this paper address the important, yet less studied, problem
of analyzing the climate effects of land cover (LC) changes, such as deforestation or
urbanization. We will go through all the steps of the multimedia pipeline to handle and
gain knowledge from the large amounts of climate data to address this problem.

Nowadays, climate changes and global warming are indisputable facts [6–10]. Global
surface temperature has been methodically collected since 1850. According to these records,
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the last 30 years exceed any previous decade in temperature. Furthermore, in some regions,
the temperature has been reconstructed over the last 1400 years, and the period between
1983 and 2012 was the warmest 30-year period during this time [6,7,10,11].

Climate changes and temperature growth have a huge impact on natural and an-
thropogenic systems on all continents and oceans: melting of snow and ice, sea level rise,
decrease in fresh water volume and quality, changes in precipitation patterns, behavior
alterations of marine organisms and animals, negative effects on agriculture, and many
other effects [9].

Anthropogenic factors, such as CO2 emission, are considered as the main cause of
global warming in the second half of the 20th century [9]. LC changes are also known
to influence the regional climate because they alter biophysical mechanisms, such as
evapotranspiration, albedo, and surface roughness [12–14]. LC type transformation has
various causes. On the one hand, it can be caused by natural factors such as floods, sea
level rise, or wildfires. Climate change is also causing LC changes, such as favoring tree
expansion in mountain areas, or greening, or forest degradation [15–17]. Anthropogenic
factors, such as deforestation or expansion of agricultural land, also have a significant
and often dominant impact on an LC transition. LC plays a significant role in energy and
water exchange between atmosphere and the Earth’s surface. The terrestrial areas not
only produce the greenhouse gases (such as CO2), but also absorb them [7]. Therefore,
sustainable land management is an important tool for climate change mitigation. The
Intergovernmental Panel on Climate Change (IPCC) [7] states in a recent report that the
development of appropriate policies can considerably contribute to the climate change
adaptation and affect the rate of temperature rise. Some of mechanisms that have already
been implemented, confirm the efficiency of this approach [7]. Good examples of these
measures are sustainable food production and forest management, food waste reduction,
and avoidance and prevention of deforestation and land degradation. Even more political
actions can be adopted. Nevertheless, in order to develop efficient policies, it is important
to understand how different changes in LC affect local and global climate [18]. Researchers
pay special attention to the importance of long-term monitoring of various types of LC
transformations and their relation to climate changes [7,9,14,19].

Nowadays, simulations based on numerical climate models are the largest source of
climate information [3]. They allow researchers to model a climate response to some specific
changes in a climate system. To perform an experiment, one should run a climate model
with different input variables a few times, and then compare the results to understand
the impact of these input parameters. For instance, a climate model can show what kind
of changes occurs in a climate system if the input data differs only in LC. Nevertheless,
a result obtained from the climate model can have complex non-linear patterns that are
difficult to identify, but can help to get new insight and spare costly simulations. For
example, machine learning (ML) is of special interest to researchers as a powerful tool
for such kind of tasks, as well as for other problems within climate science. However,
while ML is widely used in different scientific fields, it still has a limited application within
climate science [20].

There are many ways to study the impact of LC transformations on temperature.
Some works on LC changes and their impact on climate are based on directly observed
data [21,22], while others use mainly simulations and climate models [12,23,24]. In general,
scientists agree that the climate system is very complex and depends on many factors. The
impact of LC change can vary on global and regional scale. Moreover, the same transfor-
mations can lead to different consequences depending on the region where it happened.
Obviously, different LC changes have a unique effect on climate [25]. Most publications are
focused on some individual LC changes, for example, deforestation [24,26] or urbanization
effects [27,28]. However, this question is rarely studied in a broad perspective, taking into
account all types of LC transitions simultaneously. Recently, Huang et al. analyzed the
regional impact of cumulative LC changes on European climate [14]. The key point was to
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take into account all types of LC simultaneously and further to distinguish the individual
impact of different LC changes in regional climate.

In this paper, we follow the same approach as Huang et al. but given the aforemen-
tioned complexities in how LC changes affect temperature, we will explore the potential
of using well working ML methods, such as support vector regression (SVR), random
forest (RF), multiple linear regression (MLR), and least absolute shrinkage and selection
operator regression (LASSO) to learn these complex relations [29]. The method that learns
the relations best, will further be used to study the effects of LC changes on temperature,
using a new suggested framework based on explainable artificial intelligence methods
(XAI) [30].

2. Data

The dataset used in this paper is the same dataset as used in [14]. We provide a
brief description of the most important properties of the data, and refer to [14] for further
details. The dataset consists of two parts: (1) land cover data described in Section 2.1 and
(2) temperature data described in Section 2.2. The dataset approximately covers Europe
from about 22° W to 45° E longitude and from 27° N to 72° N latitude [31]. The data have a
resolution of 467 cells in the south–north direction and 479 cells in the west-east direction.
By excluding grid cells over water, the dataset consists of a total of 121,849 grid cells.

2.1. Land Cover Dataset

The European Space Agency (ESA) has produced detailed global LC maps for the
period from 1992 to 2015 as a part of the Climate Change Initiative (CCI) [32]. These
maps have a spatial resolution of 0.002778 degree (around 300 m at the equator) at latitude
and longitude directions, and they contain 37 LC classes following the United Nations
LC Classification System (UNLCCS) [33]. To obtain the dataset used in this paper, the
37 UNLCCS LC classes were transformed to the IGBP-MODIS land cover classification
system following the cross-walking table given by Huang et al. [14]. The IGBP-MODIS
system consists of 21 categories that are described in Table 1. The spatial resolution of
the re-classified data was further aggregated to a 0.11 degree (approximately 12 km at the
equator) to agree with the climate model simulations described below. Each cell of the
aggregated LC dataset contains information about the portion of each of the 21 LC classes.

Table 1. IGBP-MODIS classification system.

Land Cover Categories

Evergreen Needleleaf Forest Cropland
Evergreen Broadleaf Forest Urban and Built-Up

Deciduous Needleleaf Forest Cropland/Natural Vegetation Mosaic
Deciduous Broadleaf Forest Snow and Ice

Mixed Forest Barren or Sparsely Vegetated
Closed Shrublands Water
Open Shrublands Wooden Tundra
Woody Savannas Mixed Tundra

Savannas Barren Tundra
Grassland Lake

Permanent Wetland

In the period from 1992 to 2015, some categories of LC underwent more substantial
changes than others. Figure 1 shows the most prominent LC changes in the dataset, such
as the expansion of urban and built-up cover and changes in Evergreen Needleleaf forest.
Different colors represent the proportion of a certain LC in each cell on the grid.
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(a)

(b)
Figure 1. (a) Urban and Built-Up LC in 1992 (left) and 2015 (right), (b) Evergreen Needleleaf Forest
LC in 1992 (left) and 2015 (right). White circles point at the regions with the biggest changes in LC.

2.2. Simulated Temperature Data

The Weather Research and Forecasting (WRF) model version 3.9.1 was used to make
simulations based on the input data that include the LC data for 1992 and 2015 and
the settings of the international Coordinated Regional Climate Downscaling Experiment
(CORDEX) initiative (EURO-CORDEX) [14,34]. The WRF model is one of the most accu-
rate models for region climate simulations and has been validated and widely used in
Europe [34,35]. Average climate data for 24 years (from 1 January 1992 to 31 December
2015) were produced from the ERA-Interim data and used as initial and lateral boundary
conditions [36]. The result of the WRF model simulations we focus on is the simulated
2-m air temperature in degrees Celsius for each day of the year [14]. The simulated tem-
peratures are a result of two runs of the WRF model. In these two independent runs, the
boundary conditions are the same, but the LC dataset is different: one is with the input
data of LC in 1992 and the other is with the input data of LC in 2015. Therefore, these
simulations illustrate how the temperature would change if only LC changed. We refer to
Huang et al. [14] for a detailed introduction of the setting of the simulations.
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3. Machine Learning and Explainable Artificial Intelligence

Let xi,j, i = 1, . . . , N, j = 1 . . . , p represent N observations of p features, and let
yi, i = 1, . . . , N represent some associated response. The aim of ML is to learn a function
that is able to predict the response from these features. In this paper we consider four
well-known models, namely MLR, LASSO, SVM, and RF.

MLR assumes a linear association between the features and the response

yi = β0 + β1xi,1 + · · · βpxi,p + εi, i = 1, . . . , N (1)

where εi represent zero mean Gaussian distributed error terms. The parameter estimates
are usually found by minimizing the least squares error

β̂0, . . . , β̂p = arg min
β0,...,βp

N

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxi,j

)2

(2)

Given many features, a potential challenge with linear regression is that the model
not only fits the signal in the data, but also the noise, usually resulting in poor prediction
performance on held-out data. The problem is referred to as over-fitting. Regularization is
a popular technique to address this issue. For example the LASSO model adds the sum of
the absolute value of the parameter estimates as a penalty term to the optimization [37]

β̂0, . . . , β̂p = arg min
β0,...,βp

N

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxi,j

)2

+ λ
p

∑
j=1
|β j| (3)

A positive property of the LASSO, is that the resulting model often will be sparse in
the sense that most of the parameter estimates are set to zero, making model interpretation
easier. A higher value of the regularization parameter λ results in a more sparse solution,
and less chance of over-fitting. In this paper, we adjusted the value of λ to optimize
prediction performance on held-out data.

We also consider two other very popular ML methods, namely the SVM and the RF.
When the response is continuous (as it is in this work), SVM is often referred to as support
vector regression (SVR). The idea behind SVR is to find the regression plane such that as
many of the observations are within a (support) region around the regression plane as
possible. The width of the support region is also part of the optimizing procedure.

The RF model consists of an ensemble of decision trees and, thus, is called random
forest. A decision tree is a flowchart-like structure in which each internal node represents
a decision based on a single feature or linear combination of a subset of features. The
classification or prediction decision is based on a series of such individual decisions. RF
is based on using different bootstrapping techniques to train multiple decision trees. RF
makes decisions based on all the trees, for example through the average output from the
trees or the majority output. In this paper, we based the decisions on the average outputs.

High dimensional data or a complex model, can make model interpretation difficult.
Regression models can to some extent be interpreted by studying the size of the regression
parameters β0, . . . , βp, and represent the core of statistical inference. However, other
models, such as the RF, are far more difficult to interpret. Recently the field of XAI has
received a lot of interest trying to provide explanations for such opaque models. The
core idea of XAI techniques is quite simple, and based on analyzing how changes in the
input features affect the model output, but more sophisticated methods have also been
developed [30]. In this paper, we will resort to a quite simple XAI approach based on
analyzing how changes in a single feature will affect the output. The analysis will be
explained in further detail in Section 4.2.
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4. Experiments

In this section, we will describe the experiments with the aim of measuring the effects
of LC changes on temperature. The section is organized as follows. In Section 4.1, we
describe how to extract features from the dataset, and in Section 4.2, we describe our
XAI-based method to analyze the effects of LC changes on temperature.

4.1. Feature Extraction

Our approach is based on using the difference in LC as features

xi,j = LC2015
i,j − LC1992

i,j , i = 1, . . . , N, j = 1, . . . , 21 (4)

where LC1992
i,j and LC2015

i,j refer to the portion of LC type j in grid cell i in 1992 and 2015,
respectively. Since the xi,j’s represent differences between two portions, it follows that

21

∑
j=1

xi,j = 0 ∀ i (5)

To be able to study the effects of LC changes on temperature we define the differences
in average temperatures

yi,D =
1
|D| ∑

d∈D
T2015

i,d − T1992
i,d , i = 1, . . . , N (6)

where N refers to the number of grid cells and T1992
i,d and T2015

i,d to the temperatures from
the simulations described in Section 2.2 in grid cell i at day d. D refers to some part of the
whole year, and |D| the number of days in this period. In the computer experiments, five
periods were used, namely winter (December, January, February), spring (March, April,
May), summer (June, July, August), and autumn (September, October, November), and the
whole year.

We will predict yi,D using LC changes in the same geographic location in line with the
recent literature [14,25]. For a given period D, the dataset used in the experiments therefore
were as follows

Output:


y1,D
y2,D

...
yN,D

, Input:


x1,1 x1,2 . . . x1,21
x2,1 x2,2 . . . x2,21

...
xN,1 xN,2 . . . xN,21

 (7)

4.2. Analyzing Effects of LC Changes on Temperature Using XAI

In this section, we explain our approach to analyze the effects of LC changes on
temperature. We suggest to use a XAI technique which is based on inserting different LC
changes into to the trained models to study the resulting effects on temperature changes.
We point out three important considerations when using this approach:

1. To analyze the effect of some LC changes, we must check that the given change is
frequently present in the training dataset to ensure that the ML method has learned
the relation between this LC change and the temperature change well. If a LC change
is not present in the training dataset, we cannot trust the model prediction related
to this change. We will, therefore, only show the effects for the most frequent LC
changes in the dataset.

2. In statistical inference, multicollinearity is a well-known issue, resulting in a range of
models that have about the same agreement with the data, but may represent different
inferential conclusions. The XAI technique used in this paper has to tackle the same
potential challenge. However, except from the "grand" collinearity in Equation (5), we
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did not observe any strong multicollinarity in the data, and we can, therefore, reliably
use the suggested XAI approach.

3. It is well-known that the association between LC changes and temperature is complex
and associated with noise. It is, therefore, important to quantify the uncertainty of
the ML prediction. We quantify uncertainty by using standard (1− α) · 100% model
output prediction intervals

ŷ± zα/2σ̂ (8)

where ŷ is the model prediction, zα/2 the α/2 quantile of the standard normal distri-
bution and σ̂ the estimated standard deviation prediction error [38]. The standard
deviation was estimated by the prediction error on unseen test examples in a ten fold
CV experiment over the data samples in Equation (7).

5. Results

In this section, we summarize the results from the experiments described above. In
Section 5.1, we compare the prediction performance of the different ML methods introduced
in Section 3, and in Section 5.2, we show the effects of LC changes on temperature.

5.1. Evaluation of ML Methods to Predict Temperature Changes from LC Changes

In this section, we represent the performance of MLR, LASSO, RF, and SVR to predict
temperature changes yi,D from LC changes xi,j. In addition, we evaluated the performance
of a baseline predicting the temperature without using the LC features, i.e., the baseline
predicted using the average temperature in the training data. The whole geographic area
was divided into sectors, sizes 25 × 25, 50 × 50, and 75 × 75 cells. The methods were
evaluated on a spatial cross validation (CV) procedure, where the methods were trained on
data from all sectors except one. The remaining sector was used as a test set. This approach
evaluates how well the methods can learn from some parts of the geographic area, and
predict on others. We also evaluated the algorithms where the cells used for training and
testing were randomly selected over the whole geographic area. The results from the sector
and the randomization experiments were consistent, and only the results for the sector
approach are shown. The prediction performance were measured using root mean squared
error (RMSE) between the temperature differences yi,D and model predictions. The results
are shown in Table 2.

Table 2. RMSE for the different methods. The values in boldface refers to the method that performed
the best.

Sector Size 75 × 75 50 × 50 25 × 25

Baseline 0.1727 0.1730 0.1638
MLR 0.1713 0.1726 0.1618
LASSO 0.1727 0.1729 0.1638
RF 0.1642 0.1631 0.1511
SVM 0.1718 0.1745 0.1634

We see that RF outperforms the other ML methods, especially the linear regression
models that represents the current practice in literature [14,25]. Using the 5× 2 CV test [39],
we verified that the RF performed significantly better than all the other algorithms with
p-values < 10−14. We further see that the other algorithms performed about equally well
to the baseline and thus had trouble taking advantage of the information in the LC features.
The performance of the methods are reduced with the larger sectors, and is as expected
since the difference between the properties of the training and test areas are greater and
the number of data samples used for training are reduced.
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5.2. Effects of LC Changes on Temperature

The analyses are based on the RF model which had the best performance in our
experiments. Since the RF model outperformed the linear regression models, that represent
current practice [14,25], it is reasonable to assume that our analysis will be more robust
and potentially reveal new insights from a climate science perspective. We will discuss
this further in Section 6. The analyses are based on the suggested approach in Section 4.2.
Table 3 shows the temperature change for the whole of Europe, if a grid cell completely
changed from one LC to another. The table shows the 15 most frequent LC changes
in the dataset ensuring reliability in our results (recall consideration 1. in Section 4.2).
Tables A1–A3 in Appendix A, show results for the northern, central, and southern regions
of Europe. The values in the parentheses in the tables, show 95% prediction intervals. Blue
and red cells show LC changes resulting in statistically significant cooling and warming,
respectively. Intense blue and red cells show cells where LC changes resulted in at least a
0.5 °C temperature change with 95% certainty. The column ’Event rate’ shows the number
of cells where the LC change was observed in the dataset.
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Table 3. Temperature changes in the whole of Europe depending on LC transformation. Blue and red cells represent LC changes resulting in statistically significant cooling and warming,
respectively. Intense blue and red cells show cells where LC changes resulted in at least a 0.5 °C temperature change with 95% certainty.

LC Change Event Rate Year, °C Winter (DJF),
°C

Spring
(MAM), °C

Summer
(JJA), °C

Autumn
(SON), °C

Cropland to Urban and Built-Up 29,694 [0.0074,
0.6232]

[−0.3763,
0.3403]

[−0.743,
0.6816] [0.131, 1.3258] [−0.5429,

0.2748]

Cropland/Natural Vegetation Mosaic to Open Shrublands 21,539 [−0.2683,
0.3475]

[−0.5078,
0.2088]

[−0.9844,
0.4402]

[0.1809,
1.3757]

[−0.4492,
0.3685]

Evergreen Needleleaf Forest to Open Shrublands 16,561 [−0.3856,
0.2302]

[0.2147,
0.9313]

[−0.8066,
0.6179]

[−0.3429,
0.8519]

[0.2222,
1.0399]

Cropland to Open Shrublands 13,891 [−0.4164,
0.1994]

[−0.5177,
0.1988]

[−0.6879,
0.7367]

[0.1593,
1.3542]

[−0.4127,
0.405]

Cropland/Natural Vegetation Mosaic to Evergreen Needleleaf Forest 12,671 [−0.3734,
0.2425]

[−0.4416,
0.275]

[−0.8785,
0.546]

[0.0558,
1.2506]

[−0.5779,
0.2398]

Barren or Sparsely Vegetated to Urban and Built-Up 12,350 [−0.1896,
0.4262]

[−0.3071,
0.4095]

[−1.0188,
0.4057]

[−1.2128,
−0.018]

[−0.6348,
0.1829]

Deciduous Broadleaf Forest to Urban and Built-Up 10,773 [0.0911,
0.7069]

[−0.433,
0.2836]

[−0.1756,
1.2489]

[0.0826,
1.2774]

[−0.2724,
0.5453]

Evergreen Needleleaf Forest to Urban and Built-Up 10,629 [0.0343,
0.6501]

[−0.1379,
0.5787]

[−0.444,
0.9805]

[−0.2144,
0.9804]

[−0.4064,
0.4113]

Deciduous Broadleaf Forest to Cropland 10,587 [−0.943,
−0.3271]

[−0.3909,
0.3257]

[−1.3147,
0.1098]

[−1.7565,
−0.5617]

[−0.8687,
−0.051]

Grassland to Urban and Built-Up 10,448 [0.0068,
0.6227]

[−0.3413,
0.3753]

[−0.6201,
0.8045]

[−0.2194,
0.9754]

[−0.4165,
0.4012]

Barren or Sparsely Vegetated to Open Shrublands 10,131 [0.1269,
0.7427]

[−0.1964,
0.5202] [1.1181, 2.5427] [−0.7157,

0.4791]
[−0.5438,
0.2739]

Evergreen Needleleaf Forest to Cropland 9983 [−0.9488,
−0.3329]

[−0.1522,
0.5643]

[−1.2604,
0.1642]

[−1.7591,
−0.5643]

[−0.5507,
0.267]

Permanent Wetland to Open Shrublands 9935 [−0.1733,
0.4425]

[−0.4717,
0.2449] [0.2164, 1.6409] [−0.3666,

0.8282]
[−0.7281,
0.0897]

Mixed Forest to Open Shrublands 9320 [−0.2837,
0.3322]

[−0.617,
0.0996] [0.1774, 1.602] [−0.359,

0.8359]
[−0.627,
0.1907]

Cropland to Mixed Forest 8943 [−0.2976,
0.3182]

[−0.3925,
0.3241]

[−0.7132,
0.7113]

[0.4207,
1.6156]

[−0.6425,
0.1752]
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6. Discussion

Despite the substantial amount of uncertainty in the predictions, the results reveal
several statistically significant temperature changes. They also show that the most frequent
LC changes result in mainly warming in northern and central Europe and primarily cooling
in the southern Europe. The most frequent LC changes are largely different for the different
parts of Europe, which makes sense since the different parts of Europe mainly consist
of different types of vegetation. However, for the LC changes that are frequent in more
than one part of Europe, we observe a consistency in temperature change. For example
cropland to urban built-up result in significant warming in all three parts of Europe and for
the whole of Europe. There is also a consistency between seasons of the year in the sense
that a LC change either results in warming or cooling for every season, and interestingly
this observation was not detected by Huang et al. [14] with the regression based approach
(there are no rows with both red and blue cells). For example, for the whole of Europe,
deciduous broadleaf forest to cropland results in statistically significant cooling for both
summer and autumn and no statistically significant warming (or cooling) for the other
seasons.

To further verify the validity of our suggested approach, we now analyze how consis-
tent our results are with other studies based on statistical approaches and climate model
simulations. Many studies revealed a strong correlation between temperature increase
and growth in shrub species [6,40–43]. Some of these researchers discussed the positive
feedback loop when LC transitions affect climate, while temperature changes also influence
LC transformation [40,43,44]. Firstly, a warming increases a spreading of shrublands. Then,
LC transition to shrublands influences the energy exchange, increasing the absorption of
solar radiation due to lower surface albedo. This, in turn, results in a temperature rise.
However, it can be complicated to distinguish what is the main driver in this feedback
loop. In this paper, we analyze only the impact of LC on temperature change, ignoring the
effect of a warming on LC. We observed that transition to open shrublands alone leads to a
temperature increase in northern and southern Europe.

Some works demonstrate that shrubland increase in Arctic can lead to an annual
temperature increase [41,42,45], which is consistent with our own findings. However, most
articles only consider the growth of shrubs and do not pay attention to the initial cover.
Therefore, our approach can help in understanding how prominent is the effect of LC
transformation to shrubs depending on the initial LC. For instance, the replacement of
barren or sparsely vegetated cover to shrublands causes a more significant warming than a
temperature rise associated with transition from permanent wetland to open shrublands.

Urbanization and its impact on temperature is another subject which draws the interest
of climate scientists. In general, researchers conclude that the transition to urban and built-
up covers causes a warming [7,14,46,47]. Indeed, we also observed that most of the LC
changes to urban and built-up covers results in a temperature growth during the whole
year, as well as seasonally.

Deforestation and its contribution to a temperature increase, is an important research
subject that has been explored by many authors [14,48,49]. In this paper, we also observed
a similar trend. Most LC changes associated with deforestation observed in our work lead
to a significant temperature increase.

Afforestation is considered as a possible solution to the problem of the warming effect
of deforestation because of its contribution to cooling [7,48,49]. In this paper, we detected
such a trend in southern Europe where the shift from cropland or natural vegetation
mosaic to Evergreen Needleleaf or deciduous broadleaf forest results in a significant
cooling. However, in central Europe, we could not identify a clear pattern in temperature
change associated with afforestation. Moreover, the transition from permanent wetland to
any kind of forest contributes to a warming in northern Europe. This is consistent with
the results of Li et al. where a transition of any LC to forest leads to a cooling in tropical
regions but to warming in high latitudes [49].
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Summarizing, we can conclude that our predictions of the LC-change-impact on
temperature are consistent with the main trends described by the IPCC [6,7] and other
studies. Our analyses also revealed new insights which supports the assumption that the
ML techniques can be a useful tool in climate science, and it is possible to develop a model
that can make a meaningful prediction. In addition, our approach allows us to extract
more complex patterns and gain a more clear understanding of the effect of different LC
transitions. This demonstrates that the ML techniques can help to figure out the effect of
LC changes on surface temperature which opens up for a myriad of future work to explore
and exploit this further.

7. Conclusions

In this paper, we have presented a framework based on ML and XAI to analyze the
effects of LC changes on temperature. The results show that the RF model documented
better prediction performance that linear regression based models, that is the current
practice in the literature [14,25]. Our framework based on RF is able to find several
statistically significant relations that align with other research. Our analyses also revealed
new insight from a climate science perspective. For example the consistency between
seasons.

We train models that predict temperature changes using LC change at the same
geographic location as features. However, it is expected that temperature changes can
also be affected by LC changes at other geographic locations. An interesting direction
for future research is, therefore, to develop models to predict temperature using also LC
changes from other geographic locations as features. This will, however, complicate the
XAI analyses since temperature changes in the model now depend on LC change from
multiple geographic locations. Another interesting direction is to analyze the effects of
telecoupling, how LC changes in one place affect the climate in other locations
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Appendix A. Effects of LC Changes

Tables A1–A3 show temperature changes from the most frequent LC changes for the
regions northern, central, and southern Europe, respectively (Figure A1 shows the regions).
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Table A1. Temperature changes in northern Europe depending on LC transformation. Blue and red cells represent LC changes resulting in statistically significant cooling and warming,
respectively. Intense red cells show cells where LC changes resulted in at least a 0.5 °C temperature change with 95% certainty.

LC Change Event Rate Year, °C Winter (DJF), °C Spring
(MAM), °C

Summer
(JJA), °C Autumn (SON), °C

Permanent Wetland to Open Shrublands 8444 [−0.1177,
0.4338] [−0.5883, 0.4403] [0.3553, 1.6446] [−0.5858,

0.9682] [−0.7983, 0.1586]

Evergreen Needleleaf Forest to Open Shrublands 7728 [−0.1976,
0.3539] [−0.5871, 0.4416] [0.6168, 1.9061] [−0.5377,

1.0164] [−0.7309, 0.226]

Permanent Wetland to Evergreen Needleleaf Forest 6685 [−0.0996,
0.452] [−0.5532, 0.4754] [0.0165, 1.3058] [0.1051,

1.6591] [−0.6916, 0.2653]

Barren or Sparsely Vegetated to Open Shrublands 5860 [0.1398,
0.6913] [−0.313, 0.7156] [1.1442, 2.4334] [−1.0866,

0.4674] [−0.6445, 0.3124]

Permanent Wetland to Mixed Forest 5450 [−0.1356,
0.4159] [−0.7163, 0.3123] [0.4486, 1.7379] [0.1063,

1.6604] [−0.5375, 0.4194]

Evergreen Needleleaf Forest to Permanent Wetland 5191 [−0.1806,
0.3709] [−0.775, 0.2537] [−0.5402,

0.7491]
[0.1807,
1.7347] [−0.661, 0.2959]

Mixed Forest to Open Shrublands 4935 [−0.2339,
0.3176] [−0.4794, 0.5492] [0.5399, 1.8292] [−0.5467,

1.0074] [−0.7691, 0.1877]

Permanent Wetland to Deciduous Broadleaf Forest 4648 [−0.166,
0.3855] [−0.4265, 0.6021] [0.174, 1.4633] [−0.1017,

1.4523] [−0.7823, 0.1746]

Deciduous Broadleaf Forest to Open Shrublands 4396 [−0.1111,
0.4405] [−0.6223, 0.4063] [0.5051, 1.7944] [−0.7121,

0.842] [−0.5298, 0.4271]

Cropland/Natural Vegetation Mosaic to Open Shrublands 4293 [−0.1426,
0.409] [−0.4483, 0.5803] [0.4013, 1.6906] [−0.7162,

0.8378] [−0.6488, 0.3081]



Big Data Cogn. Comput. 2021, 5, 55 13 of 17

Table A2. Temperature changes in central Europe depending on LC transformation. Blue and red cells represent LC changes resulting in statistically significant cooling and warming,
respectively. Intense blue and red cells show cells where LC changes resulted in at least a 0.5 °C temperature change with 95% certainty.

LC Change Event Rate Year, °C Winter (DJF),
°C

Spring
(MAM), °C

Summer
(JJA), °C

Autumn
(SON), °C

Cropland to Urban and Built-Up 23,387 [0.0373,
0.7504]

[0.0412,
0.7993]

[−0.8996,
0.7225]

[0.0409,
1.2777]

[−0.5651,
0.3416]

Cropland/Natural Vegetation Mosaic to Urban and Built-Up 18,211 [−0.1335,
0.5796]

[−0.4248,
0.3333]

[−0.5393,
1.0828]

[−0.0097,
1.2272]

[−0.5714,
0.3353]

Cropland/Natural Vegetation Mosaic to Open Shrublands 14,102 [−0.1972,
0.5159]

[−0.3326,
0.4255]

[−0.9703,
0.6518]

[−0.3001,
0.9367]

[−0.5031,
0.4036]

Cropland/Natural Vegetation Mosaic to Deciduous Broadleaf Forest 10,880 [−0.5925,
0.1205]

[−0.3238,
0.4344]

[−0.7084,
0.9137]

[−1.0207,
0.2162]

[−0.8381,
0.0686]

Cropland to Open Shrublands 10,420 [−0.2108,
0.5023]

[−0.2227,
0.5355]

[−0.492,
1.1301]

[−0.5929,
0.644]

[−0.4537,
0.453]

Cropland/Natural Vegetation Mosaic to Mixed Forest 9314 [−0.3991,
0.314]

[−0.4607,
0.2974]

[−0.3244,
1.2977]

[−0.925,
0.3118]

[−0.5842,
0.3225]

Grassland to Urban and Built-Up 8993 [0.0328,
0.7458]

[−0.1802,
0.5779]

[−0.6771,
0.945]

[−0.1435,
1.0934]

[−0.4331,
0.4736]

Cropland to Deciduous Broadleaf Forest 8816 [−0.4883,
0.2248]

[−0.3208,
0.4374]

[−0.5455,
1.0766]

[−0.9398,
0.297]

[−0.6289,
0.2778]

Deciduous Broadleaf Forest to Open Shrublands 8406 [−0.4172,
0.2959]

[−0.659,
0.0991]

[−1.2918,
0.3303]

[−0.4992,
0.7377]

[−0.2814,
0.6253]

Cropland/Natural Vegetation Mosaic to Evergreen Needleleaf Forest 8231 [−0.4309,
0.2821]

[−0.5338,
0.2243]

[−0.6073,
1.0148]

[−0.7261,
0.5107]

[−0.5276,
0.3791]

Deciduous Broadleaf Forest to Urban and Built-Up 7977 [0.051, 0.7641] [−0.4977,
0.2604]

[−0.3922,
1.2299]

[0.1501,
1.3869]

[−0.3628,
0.5439]

Evergreen Needleleaf Forest to Urban and Built-Up 7406 [0.1921,
0.9051] [0.1358, 0.894] [−0.3556,

1.2665]
[−0.0935,
1.1433]

[−0.3311,
0.5756]

Barren or Sparsely Vegetated to Urban and Built-Up 5583 [−0.4757,
0.2373]

[−0.3166,
0.4415]

[−0.6784,
0.9437]

[−0.5866,
0.6502]

[−1.0893,
−0.1826]
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Table A3. Temperature changes in southern Europe depending on LC transformation. Blue and red cells represent LC changes resulting in statistically significant cooling and warming,
respectively. Intense blue and red cells show cells where LC changes resulted in at least a 0.5 °C temperature change with 95% certainty.

LC Change Event Rate Year, °C Winter (DJF),
°C

Spring
(MAM), °C

Summer
(JJA), °C

Autumn
(SON), °C

Barren or Sparsely Vegetated to Urban and Built-Up 5233 [−0.1294,
0.3696]

[−0.1071,
0.219]

[−1.0459,
0.0215]

[−0.0131,
0.7063]

[−0.1367,
0.4365]

Cropland to Urban and Built-Up 4473 [−0.1651,
0.3339]

[−0.0778,
0.2483]

[−0.8228,
0.2446]

[0.4718,
1.1912]

[−0.2072,
0.3661]

Barren or Sparsely Vegetated to Cropland 3455 [−0.6361,
−0.1371]

[−0.1009,
0.2253]

[−0.8968,
0.1706]

[−0.9814,
−0.262]

[−0.6312,
−0.0579]

Cropland/Natural Vegetation Mosaic to Urban and Built-Up 3417 [−0.2611,
0.238]

[−0.1155,
0.2107]

[−0.9243,
0.1432]

[0.4579,
1.1773]

[−0.2176,
0.3557]

Cropland/Natural Vegetation Mosaic to Open Shrublands 3071 [−0.2362,
0.2628]

[−0.2812,
0.045]

[−0.7906,
0.2769] [0.2316, 0.951] [−0.405,

0.1683]

Cropland/Natural Vegetation Mosaic to Cropland 2029 [−0.3848,
0.1142]

[−0.1325,
0.1937]

[−1.1184,
−0.051]

[−1.5166,
−0.7972]

[−0.3396,
0.2337]

Barren or Sparsely Vegetated to Open Shrublands 1926 [−0.2398,
0.2593]

[−0.2134,
0.1128]

[−0.7118,
0.3556]

[0.0753,
0.7947]

[−0.3321,
0.2412]

Cropland/Natural Vegetation Mosaic to Evergreen Needleleaf Forest 1424 [−0.2675,
0.2315]

[−1.1594,
−0.8333]

[−1.0964,
−0.029]

[−0.2992,
0.4202]

[−0.525,
0.0483]

Cropland to Open Shrublands 1422 [−0.313,
0.1861]

[−0.2122,
0.1139]

[−1.1058,
−0.0384]

[0.2722,
0.9916]

[−0.0905,
0.4828]

Cropland/Natural Vegetation Mosaic to Deciduous Broadleaf Forest 1412 [−0.4676,
0.0315]

[−0.1385,
0.1877]

[−1.1793,
−0.1119]

[−0.4408,
0.2786]

[−0.4877,
0.0856]
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Figure A1. Three regions used to predict the effect of LC changes on surface temperature: northern
(green), central (yellow), and southern (red) Europe.
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