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Abstract

In essence, spintronics aims to utilize the spins of electrons to store and process
information, either as a supplement to or as a replacement for electron charges.
Electron spins are particularly suitable for use in information technology because
they are binary in nature. Some spintronics applications are already commercially
available and have led to a revolution in magnetic storage technology, for instance,
with the invention of the hard disk drive. Several other spintronics applications are
either close to commercialization or still in the idea phase. An ambitious long-term
goal of spintronics research is to trigger a revolution in low-power information and
communication technologies to facilitate a more energy-efficient society.

The research in this thesis concerns two spintronic subfields: spin insulatronics
and superconducting spintronics. In spin insulatronics, information is sent through
magnetic insulators via spin waves. Information is sent without accompanying
charge transport and thereby has the potential to significantly reduce Joule heating,
the major source of energy waste in conventional electronics. Junctions consisting of
superconducting and magnetic materials are of significant importance in supercon-
ducting spintronics. Close to the interfaces of such junctions, the superconductor
and magnet influence each other, which can lead to the emergence of new physical
phenomena. In these superconducting heterostructures, the electron spin, charge,
and superconducting phase coherence can work together to increase the energy effi-
ciency, performance, and durability of novel state-of-the-art technologies.

This thesis represents my humble contribution to spintronics and perhaps pro-
vides a modest step towards a better understanding of spin and superconducting
transport via magnetic materials. Three [1–3] research papers form the backbone of
this thesis and investigate different aspects of spin insulatronics and superconduct-
ing spintronics. Concretely, [1] elucidates the role of disorder on spin-wave trans-
port, while [2] and [3] investigate local and nonlocal transport in antiferromagnet-
superconductor junctions. The main text in this thesis introduces the necessary
physics for understanding the papers and attempts to set the research in a scientific
perspective.
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1
Introduction

1.1 Electronics - fundamental limitations

Information and communication technology has become one of the cornerstones of
modern society. In most modern households, businesses, and industries, we are
surrounded by technology powered either entirely or mainly by electronics. An
essential building block in modern technologies is semiconductor-based integrated
circuits. In a simplistic sense, an integrated circuit is a large number of electronic
components, such as resistors, diodes, transistors, and capacitors, stacked together
on a single chip. The first integrated circuit was made in 1958, and its development
was awarded the Nobel prize in 2000 [4]. The usefulness of the integrated circuit
lies in that it can be programmed to act as a broad spectrum of different devices
such as microprocessors, oscillators, amplifiers, or random access memory (RAM).
It is not an understatement to say that the integrated circuit is the heart and brain
of modern electronic technology.

The processing and temporary storage of information in integrated circuits
utilizes only the electric charge of the electrons. The information is encoded in
a binary system of 0 or 1 bits. Typically, the low-current state and high-current
state represent 0 and 1 bits, respectively. To store a single bit, one memory cell is
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2 Chapter 1. Introduction

required, which means that a large number of memory cells are needed to meet our
technological demands. As a concrete example, consider a dynamic random access
memory (DRAM) cell consisting of a transistor and capacitor. Consider the storage
of the letter ”A”. In ASCII, ”A” can be written as 01000001. Consequently, 8 bits (or
1 byte) is required to store ”A”, which means that 8 DRAM cells, in total containing
8 transistors and 8 capacitors, must be embedded on the integrated circuit. To store
more complicated and useful information, the number of elements that need to be
included in the integrated circuit increases exponentially. This is encapsulated in
Moore’s law, which states that the number of transistors embedded on an integrated
circuit doubles every two years [5, 6]. An increase in transistor density typically
results in improvement in other aspects of technology, such as computer processing
speed. In essence, Moore’s law is an empirical observation and is used as a guiding
reference for technological development in the industry. Rather surprisingly, Moore’s
law has been accurate to date, and transistor counts as high as 1010 in CPUs have
been recorded [7]. Continuing to increase the number of transistors on sufficiently
small chips requires the transistor size to eventually reach the atomic scale, where
quantum effects dominate. At the atomic scale, conventional electronics, which are
based on classical physics, would no longer function as intended, facilitating the
need for an alternative.

In addition, since conventional electronics rely on the transport of electron
charges through systems of finite resistance, the heat loss known as Joule heating
is unavoidable. Joule heating represents a portion of the input energy that is lost
to the environment without producing any useful output. In blunt terms, it is an
unavoidable waste of energy in electronics-based technology. Joule heating is also
incompatible with the sought after miniaturization of technology. When a large
number of technological components are stacked on a chip, Joule heating creates
a significant local temperature increase, resulting in the corresponding technology
malfunctioning. The increasing importance of obtaining an energy-efficient, clean,
and sustainable society makes it worthwhile to pursue technologies fundamentally
different from electronics. One possible candidate for such a technology is spintron-
ics.

1.2 Spintronics - new spin on modern technology

Most of the inherent problems of electronics stem from the fact that information
is only transported or stored by moving electron charges through regions of finite
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resistance. The fundamental idea behind spintronics [8, 9] is to also utilize the
intrinsic electron spin. Each electron spin produces a tiny magnetic field, similar
to a bar magnet, and is responsible for the magnetic properties of a material. In
contrast to electric charge, electron spin is a pure quantum property with no classical
counterpart. The electron spin is binary in the sense that its direction can only
be parallel (spin up) or antiparallel (spin down) to the direction of measurement
specified by, e.g., a magnetic field. The binary and quantum nature of the electron
spin makes it compatible with use in high-density information technology, where
information is transported and stored using 0 and 1 bits over continuously decreasing
length scales.

Perhaps the most prominent commercial application of spintronics is the mod-
ern hard disk drive (HDD). The original HDD design is based on an effect known
as giant magnetoresistance (GMR) [10, 11], and its discovery was awarded the No-
bel prize in 2007. The Nobel committee justified the prize by saying that ”This
year’s physics prize is awarded for the technology that is used to read data on hard
disks. It is thanks to this technology that it has been possible to miniaturize hard
disks so radically in recent years. Sensitive read-out heads are needed to be able to
read data from the compact hard disks used in laptops and some music players, for
instance.” [12]. The development and commercialisation of HDDs also resulted in
a tremendous increase in disk storage density [13]. The experimental GMR design
is illustrated in Fig. 1.1. A nonmagnetic conductor is sandwiched between two

Figure 1.1. A conductor (GMR) or insulator (TMR) is sandwiched between two
magnets, and a bias voltage is applied to the junction. One of the magnetizations is
pinned [14], and the other is free to rotate. The angle of misalignment between the
magnetizations is denoted by θ. The total junction resistance depends on the angle of
misalignment and takes its minimum value R↑↑ when θ = 0 and its maximum value
R↑↓ when θ = π.



4 Chapter 1. Introduction

metallic magnets, and a voltage bias induces a current. If the magnetic fields of
the magnets are parallel or antiparallel, the junction exhibits a low-resistance (0)
or high-resistance (1) state, respectively. Quantitatively, this is encapsulated by
the magnetoresistance ratio (MRR), which is the percentage difference between the
resistances of the parallel and antiparallel configurations. A read head with a large
MRR is desirable because it enables higher storage density. Despite that it was the
discovery of GMR that commercialized spintronics; another effect with larger MRRs
has taken over its technological applications. The effect in question is called tunnel
magnetoresistance (TMR) [15]. The experimental design is identical except that the
conductor is replaced by a sufficiently thin insulator so that an electric current can
still pass through via quantum tunneling. Continuous experimental development of
TMR has enabled MRRs as large as 102–106% [16–20].

Another promising application of GMR or TMR is magnetic random access
memory (MRAM). It is advantageous over transistor-based RAM in the sense that
it is nonvolatile; MRAM does not require a continuous power supply to store infor-
mation and exhibits near zero leakage power. In contrast to flash memory, MRAM
can be written to without applying voltage pulses that degrade its writing capabili-
ties. This leads to MRAM exhibiting faster operation times, lower power consump-
tion, and, in principle, indefinite lifetimes. In MRAM, the information is stored via
small magnetic elements whose magnetic fields are either parallel or antiparallel to
a reference magnetic field used to read the memory by GMR or TMR; see Fig. 1.2.
In its early development phase, one of the main disadvantages of MRAM was that

Figure 1.2. A simplified sketch of the MRAM read out principle. A movable
read head detects whether the magnetization of a given magnetic element is parallel
or antiparallel to the intrinsic reference magnetization by measuring the resistance
through GMR or TMR. A low- or high-resistance state is interpreted as a 0 or 1 bit,
respectively.
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it required large amounts of power, making it unfeasible in low-power applications.
This problem has been greatly reduced by utilizing spin transfer torques (STTs)
[21, 22] to create so-called STT-MRAM [23, 24]. Currently, several companies have
manufactured commercially available STT-MRAM technologies varying from 256
MB to 1 GB [25–28].

A closely related spintronics memory technology is racetrack memory (RTM)
[29–31]. The setup is similar to that of MRAM, except that the magnetic elements
are moving, like cars on a racetrack, and detected by a stationary read head. The
motion of the magnetic elements is controlled by applying a current, as shown in Fig.
1.3. RTM combines the endurance of magnetic HDDs, the high density of flash, and

Figure 1.3. A simplified sketch of the RTM read out principle. The magnetic
elements, more specifically the domain walls, embedded on the U-shape can be moved
by applying a current. A stationary read head with a reference magnetization is used
to detect the relative magnetization orientations of the magnetic elements using GMR
or TMR. A U-shape is convenient because it enables high packing density, but a linear
shape is also possible.

the high latency rates of static random access memory (SRAM) and DRAM. In Tab.
1.1, we compare different memory technologies with respect to various parameters,
such as size, power leakage, retention cycles, and write endurance.

Table 1.1. Comparison of electronics and spintronics memory technologies [32–37].

Electronics Spintronics
SRAM DRAM V-NAND HDD STT-MRAM RTM

Cell size (F 2) 120− 200 4− 8 1− 5 0.5 6− 50 ≤ 2
Write endurance (P/E cycles) 1016 1016 103 − 105 106 1012 1016

Read time (ns) 1− 100 30 103 106 3− 15 3− 250
Write/Erase time (ns) 1− 100 50 105 − 106 106 3− 15 3− 250

Read energy low medium medium medium low low
Write energy low medium high medium high low
Leakage power high medium low low low low
Retention period power supply 64− 512 ms years years years years
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A spintronics technology, currently in development, is the spin field-effect tran-
sistor [38]. The conventional electronic transistor functions as a switch and can
be used to represent bits in memory applications or to control logic operations in
processors. The electron spin is permanent and can be detected without applying
electrical currents. Consequently, the spin field-effect transistor may present a more
sensitive, scalable, and nonvolatile alternative to the conventional transistor. To
the best of our knowledge, there are experimental realizations of the spin field-effect
transistor [39–41], but it has not yet reached the stage of commercial development.

The previous examples illustrate that spintronics is a viable candidate as a
potential successor or complementary technology to electronics. However, all of
the aforementioned spintronics applications involve charge transport in some capac-
ity. Therefore, the Joule heating problem remains unsolved in today’s commercially
available technology. However, spintronics has already provided technologies previ-
ously thought impossible, and there is still significant untapped potential [42]. For
spintronics to commercially outperform electronics, a balance between technological
performance, consumer demand, and market supply must be struck. Nevertheless,
the future of spintronics looks exciting not only with respect to commercial appli-
cations but also from the viewpoint of fundamental physics.

1.3 Spintronics - magnets and superconductors

As hopefully is apparent, spintronics is a field with significant variety and various di-
rections, making it impossible to concisely cover all aspects. The research performed
in this thesis focuses on two spintronic subfields: spin insulatronics and supercon-
ducting spintronics. Here, we briefly introduce both subfields but emphasize that
there are many more.

One possibility for eliminating Joule heating is by eliminating the charge de-
gree of freedom altogether as an information carrier. This is the subject of spin
insulatronics [43] where magnetic conductors are replaced by magnetic insulators.
In a magnetic insulator, charges cannot propagate; therefore, any charge transport
and accompanying Joule heating are suppressed. However, since magnetic insulators
contain coupled localized spins, information can still be transferred through the ma-
terial in fundamentally new ways. In a magnetic insulator, the spins are coupled so
that a disturbance of one spin leads to a perturbation that propagates through the
insulator. This wave-like perturbation is referred to as a spin wave. Experimentally,
it has been shown that spin waves can be both excited and detected [44–51] as well



1.3. Spintronics - magnets and superconductors 7

as propagate on the micrometer scale [52–54] with characteristic frequencies from
GHz to THz [55]. Devices based on spin insulatronics can often be controlled by us-
ing an external magnetic field to change the magnetic configuration. Consequently,
it is possible to use spin excitations to perform logic operations that are critical in
information technology. Examples include spin-wave transistors [56] and majority
gates [57].

The fusion of spintronics with superconductivity, known as superconducting
spintronics [58, 59], is considered a promising candidate for enabling high-density
and low-dissipation information technology. By placing a superconductor in contact
with a (magnetic) material, we obtain an interface that inherits properties from
both materials, which is known as the proximity effect [60–64]. The proximity ef-
fect enables the design of structures in which spin, charge, and superconducting
phase coherence work together to produce a whole new spectrum of technological
and experimental applications. Particularly famous commercial applications include
the superconducting quantum interference device (SQUID). At the time of writing,
SQUIDs are the most sensitive detectors of magnetic flux. In essence, a SQUID
operates as a flux-to-voltage transducer and can detect fields much lower than the
fundamental magnetic flux Φ0 = h/2e ≈ 2 · 10−15 Wb. SQUIDs are also incredibly
versatile, as they can be used to measure any physical quantity that can be con-
verted to a flux. Consequently, SQUID applications are plentiful. Concrete SQUID
applications include but are not limited to the detection of tiny magnetic fields in
the human brain, MRI in the microtesla range, oil and mineral exploration, and
detection of gravity waves [65–67]. Recently, the role of superconductivity in quan-
tum computers has gained momentum in media through several tech giants that
are currently pursuing quantum supremacy by using superconducting quantum bits
[68–71].

While applications are certainly useful and important to our society, the re-
search conducted in this thesis has primarily been driven by personal curiosity and
the desire to make a small contribution to science. Specifically, the research consists
of three research papers. In paper [1], we consider the effects of disorder on spin-
wave transport through magnetic insulators. In papers [2] and [3], we consider the
interplay between magnetism and superconductivity to control local and nonlocal
electrical signals. Structurally, this thesis is written such that Chapters 2 and 3
introduce the basic theory of magnetism and superconductivity. Chapter 4 intro-
duces the general framework for combining and studying the transport properties of
magnetic and superconducting hybrid structures. Chapters 5, 6, and 7 briefly dis-
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cuss research highlights from papers [1], [2], and [3]. Finally, Chapter 8 concludes,
reflects on, and summarizes the journey.



2
Magnetism and spin waves

Every substance is made up of atoms. Each atom contains electrons that, for our
purposes, have three important intrinsic properties: mass, electrical charge, and
spin. Spin is a quantum mechanical property that makes electrons behave like tiny
magnetic dipole moments, effectively producing magnetic fields. In nonmagnetic
(diamagnetic) atoms, the electrons are grouped into pairs of opposite spins according
to the Pauli principle, such that their net magnetic dipole moment is zero. Atoms
with unpaired electrons have a finite magnetic dipole moment, as shown in Fig.
2.1. In a magnetic material, the interactions between its magnetic dipole moments

Non-magnetic atom (Zn):

Magnetic atom (Fe): =

=

Figure 2.1. Electronic filling of the 3d-orbitals of a nonmagnetic atom (Zn) and a
magnetic (Fe) atom. The four unpaired electrons in iron result in the atom having
a total spin-angular momentum of S = 2~ and consequently producing a magnetic
field.

9



10 Chapter 2. Magnetism and spin waves

determine the type of magnetism that occurs. There are several different types of
magnetism. Some examples are paramagnetism, ferromagnetism, ferrimagnetism,
and antiferromagnetism. Our research has primarily focused on ferromagnetism
and antiferromagnetism, which is what we focus on in the following.

Before we proceed, we make a distinction between magnetic insulators and
magnetic metals. In a magnetic insulator, the electrons are localized close to their
parent atom, and no electricity can flow through the system. On the other hand,
a magnetic metal consists of both localized and itinerant electrons that can carry
electricity. Whether a magnetic material is insulating or metallic depends on the
position of the Fermi energy. If the Fermi energy is outside (inside) a gap in the
band structure, the material is metallic (insulating). For simplicity, in the following,
we focus on magnetic insulators.

2.1 Magnetic ordering

In ferromagnets and antiferromagnets, the localized magnetic dipole moments inside
the same domain are aligned either parallel or antiparallel, respectively, as shown in
Fig. 2.2. Consequently, ferromagnets produce large external fields, while antiferro-

Ferromagnet Antiferromagnet

Figure 2.2. Within a magnetic domain, the localized magnetic dipole moments are
parallel and antiparallel in ferromagnets and antiferromagnets, respectively.

magnets produce zero or small external fields. Since magnetic fields couple with each
other, there are both advantages and disadvantages in spintronics applications. On
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the one hand, ferromagnetic spintronics applications are easily controllable through
the application of external fields. However, in high-density applications, the intrinsic
magnetic field produced by ferromagnets can easily disturb surrounding components
or couple to unwanted stray fields. By instead utilizing antiferromagnets, we can
avoid both of the aforementioned problems since they produce negligible fields. In
addition, antiferromagnetic insulators typically exhibit spin dynamics on the GHz-
THz scale [72, 73], making them potentially faster than ferromagnets, which typically
operate on the GHz scale. However, the lack of magnetic field production is also
the Achilles heel of antiferromagnet-based spintronics because it makes antiferro-
magnets harder to control. That being said, it is hard to say whether the previous
statement will stand the test of time given that controlling antiferromagnetic spin-
tronics devices, e.g., through electrical switching, is certainly not impossible and is
currently a rapidly paced and active field of research [73–77].

On a fundamental level, ferromagnetic or antiferromagnetic ordering occurs due
to the exchange interaction between two magnetic dipole moments [78, 79]. The ex-
change interaction is usually short ranged, and a typical approximation accounts
only for coupling between nearest neighbor (n.n.) or next-nearest neighbor (n.n.n)
atoms. In a simple picture, the exchange interaction between electron spins arises
from the interplay of the Coulomb interaction and the Pauli principle [80]. The value
of the exchange interaction between two spins is determined by the overlap of the
two corresponding electron wavefunctions. Each wavefunction usually decays expo-
nentially for large distances, which leads to short-range behaviour. More rigorously,
the exchange interaction can be derived from the Hubbard model [81–83].

At finite temperatures, the exchange interaction competes with thermal fluc-
tuations. If the thermal fluctuations dominate, the magnetic dipole moments point
in random directions, and the system exhibits paramagnetic behaviour. The mag-
netic phase is therefore temperature dependent. Generically, a magnetic material
exhibits ferromagnetic (antiferromagnetic) behaviour if its temperature is below the
Curie temperature (Néel temperature). At higher temperatures, the system exhibits
paramagnetic behaviour. The paramagnetic phase is characterized by Curie’s law.

Physically, we often model magnetic materials as a system of spins embedded
on a lattice. In its simplest form, the lattice sites are labelled by i and have a spin
operator Si associated with them. The simplest description of a ferromagnet or
antiferromagnet is encapsulated by the isotropic Heisenberg Hamiltonian

H = −
∑
ij

JijSi · Sj, (2.1)
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where Jij is the exchange interaction between the spins Si and Sj. For simplicity,
in the following, we assume that the exchange interaction couples only the nearest
neighbor (n.n.) spins and that its strength is position independent

Jij =
 J, i and j n.n.,

0, otherwise.
(2.2)

Next, we demonstrate that in the quantum mechanical description, the system ex-
hibits ferromagnetism if J > 0 and antiferromagnetism if J < 0. The quantum
mechanical relationship between the sign of the exchange interaction and the type
of magnetic ordering is in agreement with the classical picture.

2.2 Holstein-Primakoff transformation

The spin operators in Eq. (2.1) are quite complicated objects that satisfy both
commutation relations [

Sαi , S
β
j

]
= i~δij

∑
γ

εαβγS
γ
i , (2.3)

and the coupled nonlinear differential equations of the form

d
dtSj = i

~
[H,Sj] = −Sj ×Hj. (2.4)

The Latin and Greek indices denote the site number and the (x, y, z)-components
of the spin operator, respectively. Here, we utilize both the Kronecker delta δij

and the Levi-Civita symbol εαβγ. In the classical picture, the nonlinear differential
equations describe spins precessing around an effective magnetic field denoted by
Hj = δH/δSj. In the following, we set Planck’s reduced constant to unity; ~ = 1.

To understand the ordering of magnetic systems in a quantum mechanical pic-
ture, it is often useful to utilize spin-wave theory. In general, spin-wave theory is an
expansion in terms of excitations close to the classical ground state. To study excita-
tions, it is useful to map the complicated spin operators to simpler boson operators.
The choice of the mapping depends on whether we want to study weak or strong
deviations from the classical ground state. Our research focuses on weak deviations
from the ground state, and hence, we choose the Holstein-Primakoff representation
[84].

For a general spin system, each spin operator can be decomposed into longi-
tudinal and transverse components. The longitudinal direction coincides with the
classical ordering of the spins, and the transverse components represent deviations.
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Mathematically, we write

Si = êz(i)Szi + êx(i)Sxi + êy(i)Syi , (2.5)

where êz(i) and {êx(i), êy(i)} are site-dependent unit vectors describing the lon-
gitudinal and transverse directions, respectively. In the Holstein-Primakoff (HP)
representation, we write

Szi = S − ni,

S+
i = Sxi + iSyi =

√
2S
√

1− ni
2S bi,

S−i = Sxi − iS
y
i =
√

2Sb†i
√

1− ni
2S .

(2.6)

Here, S is the dimensionless spin number, S±i are spin raising and lowering operators,
b

(†)
i is a bosonic annihilation (creation) operator on lattice site i, and ni = b†ibi

is the corresponding number operator. Since the allowed eigenvalues of Szi are
−S,−S + 1, . . . , S, the boson number must satisfy the constraint 〈ni〉/2S ≤ 1. The
HP representation satisfies the spin commutation relations

[
Sαi , S

β
j

]
= iδij

∑
γ εαβγS

γ

if b(†)
i satisfies the bosonic commutation relations where

[
bi, b

†
j

]
= δij and all other

commutators are zero. The quasiparticle excitations associated with the bosonic b(†)
i

operators are called magnons.
The square roots in Eq. (2.6) should be interpreted as a series expansion. The

HP representation is most useful if the parameter 〈ni〉/2S is small. In this case, we
can perform the low-order expansion

S+
i ≈
√

2S
(
bi −

nibi
4S + . . .

)
,

S−i ≈
√

2S
(
b†i −

b†ini
4S + . . .

)
,

(2.7)

which allows us to perturbatively study the spin-wave excitations and interactions
of Eq. (2.1). To determine the magnetic ordering and to study the low-order
excitations of a system, it is usually sufficient to keep only the lowest-order terms
in Eq. (2.7). Higher-order terms are interpreted as magnon interactions.

2.3 Ferromagnets

The simplest ferromagnetic insulator with isotropic nearest neighbor exchange cou-
plings is modeled by the Hamiltonian

H = −J
∑
〈ij〉

Si · Sj, (2.8)
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with J > 0. The angular brackets 〈·〉 denote summation over only nearest neighbors,
and we assume that the spins are embedded on a d-dimensional hypercubic lattice
with unit lattice spacing. We assume periodic boundary conditions in all directions
and that in total, there are N sites. To determine the quantum mechanical ground
state, we rewrite the Hamiltonian as

H = −J
∑
iδ

[1
2
(
S+
i S
−
i+δ + S−i S

+
i+δ

)
+ Szi S

z
i+δ

]
. (2.9)

Here, δ is a vector used to sum over all the nearest neighbors of lattice site i. As a
trial ground state, we use the state with maximal spin projection at each site,

|FM〉 = | ↑, ↑, . . . , ↑ 〉 = | ↑〉1 ⊗ | ↑〉2 ⊗ . . . | ↑〉N . (2.10)

All the spins are pointing in the same direction, similar to a classical ferromagnet.
Here, we introduce the short-hand notation

| ↑〉i = |S, Szi = S〉. (2.11)

The terms containing the raising operators annihilate the state because every spin
projection is already maximal. Thus, by letting H act on |FM〉, we obtain

H|FM〉 = E0|FM〉, (2.12)

where E0 = −cNJS2/2 is the classical ground state and c = 2d is the number of
nearest neighbors for a d-dimensional hypercubic lattice. Thus, |FM〉 is an eigenstate
of H. It is possible to show that E0 is the lowest possible energy, proving that it is
the ground state.

To study the spin-wave excitations around the ground state, we substitute the
lowest-order HP representation in Eq. (2.7) into Eq. (2.9). To diagonalize the
resulting Hamiltonian, we introduce the Fourier transformation

bi = 1√
N

∑
k
eik·ribk, (2.13)

where k are the wavevectors within the first Brillouin zone and ri is the real-space
position of a lattice site. Simplifying the Hamiltonian, we obtain

H = E0 +
∑

k
ωkb

†
kbk, (2.14)

where
ωk = cJS (1− γk) , (2.15)
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and
γk = 2

c

∑
δ

cos (k · δ) . (2.16)

Eq. (2.14) describes a set of independent harmonic oscillators with frequency ωk.
The quanta of the harmonic oscillators are magnons: they are quantized spin-wave
excitations. In Fig. 2.3, we plot the spin wave and its dispersion relation in one
dimension.

(a) The exact (solid) and long-wavelength
(dashed) dispersion relation.

(b) Each spin precesses around the same axis with a frequency ωk,
resulting in a spin-wave with wavelength λ.

Figure 2.3. The dispersion relation (left) and spin wave (right) in a 1D ferromagnetic
spin chain.

Finally, we comment on the validity of the low-order expansion of the HP
representation for the isotropic Heisenberg ferromagnet. We show that whether
ferromagnetic order exists depends on the dimensionality and temperature of the
system. The ferromagnetic order parameter is the magnetization and is defined as
M = S −∆M , where

∆M = − 1
N

∑
k
〈b†kbk〉. (2.17)

Since magnons are bosonic particles, their distribution function is given by the Bose-
Einstein distribution 〈b†kbk〉 =

(
eβωk − 1

)−1
, where β denotes the thermodynamic

beta. At zero temperature ∆M = 0, ferromagnetic order exists in all dimensions.
In the long-wavelength limit, the magnon dispersion is quadratic ωk = JSk2, and
for finite temperatures, the inequality JSk2 � kBT holds. The exact and leading
order fluctuations of the d-dimensional magnetization then take the form

∆M = 1
N

(
L

2π

)d ˆ dk
eβJSk2 − 1 , and ∆M ∼ 1

N

(
L

2π

)d ˆ dk
βJSk2 , (2.18)
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respectively. Consequently, for finite temperatures, the isotropic Heisenberg ferro-
magnet is not ordered in one and two dimensions since the magnetization diverges
in the long-wavelength limit |k| → 0. In three dimensions the magnetization con-
verges, and the isotropic Heisenberg Hamiltonian allows for ferromagnetic order to
exist, also for finite temperatures.

2.4 Antiferromagnets

We next introduce the antiferromagnet where, in the classical picture, the spins pre-
fer to align antiparallel to those of their neighbors. The antiferromagnetic Heisenberg
Hamiltonian reads

H = J
∑
〈ij〉

Si · Sj, (2.19)

with J > 0. We introduce two sublattices A and B. The spins associated with A
point in the opposite direction of the spins associated with B.

Based on the ferromagnetic case, we might naively expect for the quantum
ground state of the antiferromagnet to coincide with the classical Néel state

|N〉 = | ↑, ↓, ↑, ↓, . . . 〉. (2.20)

However, by acting with H on |N〉, we find that the Néel state is not even an eigen-
state of the Hamiltonian. Consequently, quantum fluctuations are more important
in the antiferromagnetic case because they change the ground state from the classical
result. However, even though the exact ground state is not |N〉, the spins may still
in some sense be antiparallel. For instance, the spins on the sublattice A may point
predominantly in the opposite direction of the spins on the sublattice B. In any
case, the HP representation has so far given predictions consistent with experiments.

Utilizing the spin decomposition and HP representation introduced in Eqs. (2.5)
and (2.6), respectively, we obtain

Szi∈A = S − a†iai, Szi∈B = −S + b†ibi,

S+
i∈A =

√
2S

√
1− a†iai

2S ai, S+
i∈B =

√
2Sb†i

√
1− b†ibi

2S ,

S−i∈A =
√

2Sa†i

√
1− a†iai

2S , S−i∈A =
√

2S

√
1− b†ibi

2S bi.

(2.21)

Here, we introduce the bosonic operators ai and bi acting on the sublattices A and
B, respectively. As before, we introduce the Fourier transformations

ai∈A = 1√
NA

∑
k
ek·riak, and bi∈B = 1√

NB

∑
k
ek·ribk (2.22)
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where the k-vectors are inside the first Brillouin zone. The numbers of spins present
on sublattices A and B are denoted by NA and NB, respectively. The total number
of lattice sites is denoted by N = NA + NB, and for simplicity we assume that
NA = NB.

Utilizing the lowest-order HP representation and performing the Fourier trans-
formation, we simplify the Hamiltonian to

H = E0 + JSc
∑

k

[
a†kak + b†kbk + γk

(
akb−k + a†kb

†
−k

)]
. (2.23)

To diagonalize the Hamiltonian, we perform a Bogoliubov transformation, which
was historically first employed in the context of superconductivity [85, 86],

ak = ukαk + vkβ
†
−k,

bk = ukβk + vkα
†
−k.

(2.24)

Here, α(β) are bosonic operators, and u(v) are scalars. The Bogoliubov transfor-
mation corresponds to a change of basis in the sublattice space. Since the bosonic
commutation relations must be satisfied, we have the constraints u2

k − v2
k = 1,

uk = u−k, and vk = v−k. Therefore, we choose the parameterization

uk = cosh θk, vk = sinh θk, (2.25)

introducing the hyperbolic rotation angle θk. The Hamiltonian is automatically
diagonalized if we choose the rotation angle such that

tanh 2θk = −γk. (2.26)

Utilizing the Bogoliubov transformation in Eq. (2.24), the parameterization in Eq.
(2.25), and the choice of rotation angle in Eq. (2.26), the Hamiltonian in Eq. (2.23)
simplifies to

H = EAF
0 +

∑
k
ωAF

k

(
α†kαk + β†kβk

)
. (2.27)

Here, we introduce the antiferromagnetic ground state energy

EAF
0 = −NJS2c/2−NJSc/2 +

∑
k
ωAF

k , (2.28)

and the magnon excitation energy

ωAF
k = JSc

√
1− γ2

k. (2.29)

The quantum ground state of the antiferromagnet is the state with zero α and β
magnons. The ground state energy is EAF

0 , which consists of a classical contribution



18 Chapter 2. Magnetism and spin waves

−NJS2c/2 and quantum corrections ∆EAF. The quantum corrections ∆EAF are
always negative,

∆EAF = −NJSc/2 +
∑

k
ωAF

k = JSc
∑

k

(√
1− γ2

k − 1
)
< 0. (2.30)

The true antiferromagnetic quantum ground state can be viewed as the classical
Néel state |N〉, with prevalent quantum fluctuations that reduce its energy. In the
ferromagnetic case, the quantum fluctuations are zero.

The excited states of the antiferromagnet can again be viewed as collective
excitations of the magnons, i.e., spin waves. The excitation energy is given by ωAF

k .
For each wavevector, there are two types of magnons corresponding to αk and βk. In
the absence of magnetic fields and anisotropies, the sublattices are equivalent, and
the magnons degenerate in energy. In the long-wavelength limit, we find a linear
dispersion

ωAF
k ∝ |k|. (2.31)

Finally, we consider the ordering of the antiferromagnetic ground state. Since
the total magnetization is zero, we choose the magnetization of sublattice A as the
order parameter; MA = S − ∆MA. The quantum mechanical correction to the
magnetization is

∆MA = 1
NA

∑
k
〈a†kak〉. (2.32)

The expectation value 〈a†kak〉 is in this case not given by the Bose-Einstein distri-
bution since the Hamiltonian is not diagonal in the ak-operator basis. We therefore
need to utilize the Bogoliubov transformation in Eq. (2.24) to replace 〈a†kak〉 with
the αk and βk operators, which satisfy the Bose-Einstein distribution. We find that
the correction to the magnetization is the sum of temperature-independent and
temperature-dependent parts

∆MA = ∆MA (T = 0) +∆MA (T 6= 0) , (2.33)

respectively. Explicitly, we have

∆MA (T = 0) = −1
2 + 1

NA

∑
k

1√
1− γ2

k

,

∆MA (T 6= 0) = 2
NA

∑
k

nk√
1− γ2

k

.
(2.34)

In three dimensions, both contributions are convergent. In two dimensions, the
temperature-independent part is convergent, and the temperature-dependent part
divergent. In one dimension, both contributions diverge.
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2.5 Dimensional dependence of magnetic order-
ing and anisotropies

Thus far, we have established that the spin-wave theory predicts ferromagnetic or
antiferromagnetic order in high dimensions. Our results are summarized in Tab. 2.1.
The lack of order in one and two dimensions is a consequence of the Hohenberg-

Table 2.1. The effect of dimension and temperature on the magnetic order in
isotropic Heisenberg ferromagnets and antiferromagnets.

Dimension Temperature Ferromagnet Antiferromagnet
Zero Order No order

1
Finite No order No order
Zero Order Order

2
Finite No order No order
Zero Order Order

3
Finite Order Order

Mermin-Wagner theorem: In one and two dimensions, continuous symmetries cannot
be spontaneously broken at finite temperatures in systems with sufficiently short-
range interactions [87–89]. The Hohenberg-Mermin-Wagner theorem can easily be
circumvented by introducing anisotropic terms in the Hamiltonian. Anisotropic
terms explicitly break a continuous symmetry such that the magnon dispersion be-
comes gapped, consequently removing the long-wavelength divergence in the order
parameters. With the inclusion of anisotropic terms, magnetic ordering in low di-
mensions is possible.

One way to circumvent the Hohenberg-Mermin-Wagner theorem is to add the
Zeeman interaction to the Heisenberg model:

HZ = −γ
∑
i

H · Si (2.35)

where the spins try to align parallel to an external magnetic field H. The strength
of the Zeeman coupling is given by the gyromagnetic ratio γ > 0. The interaction
is quite general and may be generalized to position- and time-dependent magnetic
fields. Nevertheless, it is not an intrinsic material property and therefore is not the
main source for the existence of two-dimensional magnetic materials.

Anisotropy may be intrinsically linked with the material through the symmetry
of the crystal axis and/or shape of electron orbitals. This may lead to specific
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directions where spin ordering is energetically favorable. A simplified mathematical
description encapsulating the possibility of anisotropic directions is given by

HA =
∑
α

Kα

∑
i

(Si · êα)2 . (2.36)

Here, Kα is the strength of the magnetic anisotropy along the anisotropy axis êα. If
Kα < 0 (Kα > 0), then it is energetically (un)favorable for the spin to point parallel
or antiparallel to the anisotropy axis. To distinguish the two cases, we say that the
anisotropy axis êα is either easy (Kα < 0) or hard (Kα > 0).

The experimental search for two-dimensional magnetic materials has been long,
and these materials were discovered only recently [90–101]. To date, the list of exper-
imentally reported two-dimensional magnets is large and continues to grow larger,
giving generous flexibility in the choice of two-dimensional materials for specific
applications. In addition, one-dimensional spin chains can manifest as effectively
decoupled spin chains within two- or three-dimensional materials. A well known
example is tetramethyl ammonium manganese chloride (TMMC), where the one-
dimensional decoupled chains exhibit antiferromagnetism [102]. There are of course
other realizations of (quasi) one-dimensional magnets [103–106], but they are cur-
rently more rare and less experimentally investigated than their two- and three-
dimensional counterparts.



3
Superconductivity

In broad strokes, materials in their superconducting state are characterized by two
properties: zero electrical resistance and the complete expulsion of magnetic fields
from their interior. Only after Onnes managed to liquify helium did it become
possible to reach sufficiently low temperatures to observe superconductivity in pure
elements [107]. In 1911, he found that the electrical resistance of mercury van-
ished abruptly when its temperature T fell below its critical temperature Tc of
approximately 4.1 K [108, 109]. On the other hand, the resistance of normal metals
decreases with temperature, but saturates as the temperature approaches absolute
zero. Bounds on the resistivity of superconductors are typically not found from
direct measurements but from the decay of persistent currents. Experimentally, a
current is set up by induction with a magnetic field in a superconducting ring and is
found to persist without measurable decay after the magnetic field has been turned
off [110].

Subsequently, in 1933, Meissner and Ochsenfeld observed that superconductors
not only prevent a magnetic field from entering but also actively expel the magnetic
field from its interior [111]. This is known as the Meissner or Meisner-Ochsenfeld
effect and explicitly differentiates a superconductor from an ideal conductor. From
classical electromagnetism, the general relation between the magnetic flux density

21
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B, applied magnetic field H, and induced magnetization M is

B = H + 4πM. (3.1)

In addition, if the induced magnetization is parallel or antiparallel to the magnetic
field, we have

M = χH, (3.2)

with the magnetic susceptibility χ. Combining Eqs. (3.1) and (3.2), we obtain

B = µH, (3.3)

where we introduce the magnetic permeability µ = 1 + 4πχ. The perfect expulsion
of B, exhibited by superconductors, thus requires χ = −1/4π. Since the magnetic
susceptibility of a superconductor is negative and its magnetic susceptibility reaches
the smallest value consistent with thermodynamic stability, superconductors exhibit
perfect diamagnetism.

The Meissner effect causes an external, initially uniform, magnetic field to be-
come nonuniform, with an associated energy cost. Thus, if the external field is
larger than a material-dependent critical field Hc, the energy cost is so large that
the superconducting state is not created; i.e., superconductivity breaks down for
large external magnetic fields.

3.1 Classification of superconductors

Depending on the context, there are several useful ways of classifying different types
of superconducting materials. Three common classification schemes are as follows:

• Low-temperature and high-temperature superconductivity, depending on
whether the critical temperature Tc is lower or higher than 77 K, the boil-
ing point of liquid nitrogen, respectively.

• Type I and type II, according to the Meissner effect.

• Conventional and unconventional, depending on the underlying microscopic
theory.

In the following, we briefly introduce type-I vs type-II and conventional vs uncon-
ventional superconductivity.
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3.1.1 Type-I vs type-II

The difference between a type-I and a type-II superconductor can be understood
by considering a superconducting material placed in a uniform external magnetic
field H. In this case, free charges in the superconductor induce magnetization M,
attempting to expel an external field from its interior [111].

In a type-I superconductor, the induced magnetization M precisely expels the
external field H as long as the magnitude of the external field is smaller than some
critical value Hc. For strong fields, where |H| > Hc, superconductivity breaks down,
and the material acts as a normal metal. The phase diagrams in the magnetization-
magnetic field plane and the temperature-magnetic field plane are shown in Fig.
3.1a and 3.1c, respectively. Type-I superconductors are mainly composed of pure
metals, e.g., mercury, aluminum, and lead, that show some conductivity at room
temperature and exhibit low critical temperatures.

Type-II superconductors are characterized by two critical external magnetic
fields Hc1 and Hc2. Type-II superconductors exhibit an intermediate phase where
the external field can penetrate the superconductor through magnetic field vortices
when the external field satisfies Hc1 < |H| < Hc2. In the vortex state, a phenomenon
known as flux pinning becomes possible, where the superconductor can ”levitate”
above a magnet and glide without friction. For strong fields, where |H| > Hc2, su-
perconductivity breaks down, and for weak fields, |H| < Hc1 the external magnetic
field is expelled. Fig. 3.1b and 3.1d shows these features. Metal alloys or com-

Figure 3.1. The phase diagrams in the (|H|, |M|) and (T, |H|) planes, illustrating
the qualitative difference between type-I and type-II superconductors. N, S, and MS
represent the normal, superconducting, and mixed states, respectively.
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plex oxide ceramics are typically type-II superconductors. Niobium, vanadium, and
technetium are elemental type-II superconductors. Other famous examples of type-
II superconductivity are found in cuprate-perovskite ceramic materials, typically
achieving very high critical temperatures.

3.1.2 Conventional vs unconventional

The dissipationless currents (supercurrents) flowing through superconductors are
carried by pairs of electrons known as Cooper pairs. The energy required for two
electrons to form a Cooper pair is called the superconducting energy gap ∆. The
electrons in the Cooper pair are bound together by an indirect attractive interac-
tion. In the conventional theory of superconductivity, this attractive interaction is
mediated by phonons, as described by the Bardeen-Cooper-Schrieffer (BCS) theory.
If the superconductivity cannot be described by BCS theory, then the supercon-
ductor is unconventional. Most conventional superconductors are low-temperature
superconductors or type-I superconductors, while unconventional superconductors
are typically high-temperature or type-II superconductors. A complete understand-
ing of unconventional superconductivity is considered by many to be the holy grail
of condensed matter physics. While unconventional superconductivity is an interest-
ing field of research, we only focus on conventional superconductors in our research
papers. We therefore next briefly summarize the BCS theory of conventional super-
conductors.

3.2 BCS theory

In 1957, Bardeen, Cooper, and Schrieffer proposed the first successful microscopic
theory of conventional superconductivity, aptly named BCS theory [112, 113]. At
the time, the challenge was to come up with a microscopic theory that could explain
the isotope effect, the mechanism behind supercurrents, and the Meissner effect,
which all had been discovered experimentally [114]. The underlying idea is that
electrons combine to form composite bosons called Cooper pairs, which exhibit su-
perconducting properties. The superconducting ground state can be viewed as a
Bose-Einstein condensate of a large number of Cooper pairs. For their discovery,
they received the Nobel Prize in physics in 1972.
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3.2.1 Attractive interactions between electrons

For two electrons to form a Cooper pair, an attractive electron-electron interaction
must exist. Here, we briefly explain how such an attractive interaction may occur.

In a metal, the positively charged ions are localized, and the negatively charged
electrons are itinerant. There is an attractive Couloumb interaction between elec-
trons and ions. In a simple picture, this interaction may lead to a slight displacement
of the ions that are in the vicinity of an electron. This displacement results in a
weakly net positive charge density in the path left behind by the electron. Since the
ion mass is much greater than the electron mass, it takes time before the ions are
pulled back to their equilibrium positions. Thus, the positive charge density has a
finite lifetime and can attract a second itinerant electron. The interpretation of this
is that there exists a retarded and indirect attractive interaction between electrons
mediated by phonons that may cause superconductivity. Electron-electron repulsion
is minimized if the electrons travel in opposite directions with opposite spins. This
classical explanation is schematically illustrated in Fig. 3.2. We emphasize that su-
perconductivity is an intrinsic quantum mechanical phenomenon and that the above
classical explanation should not be stretched much further. The main message is to
illustrate that attractive electron-electron interactions may exist.

Figure 3.2. The classical analogy describing the attractive interaction between
two electrons mediated by phonons that may produce superconductivity. Itinerant
electrons (red) drag positively charged ions (blue) out of their equilibrium positions,
creating a positive charge density. The positive charge density attracts other electrons,
allowing an indirect attractive electron-electron interaction. The gray color gradient
in the background indicates the strength of the positive charge density.

More rigorously, the electrons in a metal experience both Coulomb electron-
electron interactions mediated by photons and electron-electron interactions me-
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diated by phonons. Since photons are massless and phonons are massive, the
Couloumb electron-electron interaction is effectively instantaneous, and the electron-
electron interaction mediated by phonons is effectively retarded. Thus, the photon-
and phonon-mediated electron-electron interactions are frequency (ω) independent
and dependent, respectively. Taking both of these interactions into account, we can
show that the simplified effective potential between two electrons is given by

Veff = VC(q, ks)
(

1 +
ω2

q

ω2 − ω2
q

)
. (3.4)

Here, VC(q, ks), q, ks, and ωq are the screened Couloumb potential, the momentum
transfer between electrons, the inverse screening length, and the phonon frequency,
respectively. The scale of the phonon frequency is set by the Debye frequency ωD.
We emphasize that Eq. (3.4) is a simplification, where the metal is approximated
by a fluid of electrons and point ions, with complete neglect of the crystal structure
and finite ion-core size effects [115]. Nevertheless, it captures some of the qualitative
features of the possible attractive electron-electron interaction mediated by phonons.
The important point is that if the electron frequency is smaller than and sufficiently
close to the Debye frequency, the net electron-electron interaction can be attractive,
as shown in Fig. 3.3.

Figure 3.3. The effective electron-electron interaction potential Veff/VC as a function
of the frequency ω/ωq. The formation of Cooper pairs, and therefore superconductiv-
ity, is possible when the potential is attractive, as shown here for ω/ωq < 1. For higher
frequencies, the potential becomes repulsive, and superconductivity breaks down.
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3.2.2 Cooper instability

In 1956, Cooper presented the basic idea that an arbitrarily weak attraction can
bind electrons into bound states. Today, we recognize these bound states as Cooper
pairs [116]. Specifically, he demonstrated that the Fermi sea of electrons is unstable
against the formation of at least one Cooper pair, given that the electron-electron
interaction is attractive. To understand the formation of the Cooper pair, we con-
sider a simple model of two electrons added to a Fermi sea at zero temperature.
We allow the two electrons to interact with each other through a potential Ve−e but
not with the Fermi sea, except via the Pauli exclusion principle. For simplicity, we
assume that the two electrons have opposite momenta and spins.

The relevant two-body problem is governed by the eigenvalue equation

H|k,−k〉 = E|k,−k〉, (3.5)

where H is the total Hamiltonian and |k,−k〉 is the eigenstate, with eigenenergy E.
The total Hamiltonian is H = H0 +Ve−e, where the first term represents the kinetic
energy operator of the two electrons. In the absence of the interaction potential, the
eigenvalue problem is

H0|k,−k〉0 = εk|k,−k〉0, (3.6)

with solution |k,−k〉0 and kinetic energy εk.
We solve Eq. (3.5) by using the expansion

|k,−k〉 =
∑

q
aq|q,−q〉0, (3.7)

where q satisfies εq > 2εF, and εF is the Fermi energy of the Fermi sea. By substi-
tuting Eq. (3.7) into Eq. (3.5), we obtain

ak (εk − E) = −
∑

q
aqVk,q, (3.8)

where we use that 〈k,−k|q,−q〉 = δk,q and define Vk,q = 〈k,−k|Ve−e|q,−q〉. To
proceed, we must specify the potential Vk,q. Based on our discussion of the phonon-
mediated electron-electron interaction, we assume that the electrons interact in a
thin shell around the Fermi surface and neglect all other interactions

Vk,q =
 −V, |εk − 2εF|, |εq − 2εF| < 2~ωD,

0, otherwise.
(3.9)

By using this simplified potential and converting the momentum sum to an energy
integral, we obtain

a (ε) (ε− E) = V

ˆ 2εF+2~ωD

2εF
dε a (ε)N (ε) ≡ W, (3.10)
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where N (ε) is the density of states. Note that the right side of Eq. (3.10) is energy
independent. The coefficients in the expansion (3.7) therefore take the form

a (ε) = W
ε− E

. (3.11)

The eigenvalues can be determined by substituting Eq. (3.11) into Eq. (3.10), and
we then obtain

1
λ

= ln
(

1 + 2~ωD

∆

)
. (3.12)

Here, we assume that N (ε) ≈ N (εF) and define the binding energy ∆ = 2εF − E
of the electron pair, and λ = V N (εF). When, the right-hand side of Eq. (3.12) is
positive, it follows that we can obtain a bound-state solution only if the potential is
attractive V > 0. For an attractive potential, the binding energy becomes

∆ = 2~ωD

e1/λ − 1 ≈ 2~ωDe
−1/λ > 0, (3.13)

where we, in the last step, assume that λ� 1. Eq. (3.13) shows that regardless of
how small the attractive interaction is, the binding energy is always positive, and a
bound state is formed.

3.2.3 Diagonalizing the BCS Hamiltonian

In the previous section, we demonstrate that two electrons close to the Fermi surface
form a Cooper pair in the presence of an arbitrarily weak interaction. We there-
fore expect that a corresponding many-particle system of interacting electrons and
phonons may result in a new ground state consisting of a large number of Cooper
pairs.

The effective Hamiltonian describing phonon-mediated superconductivity is
[115]

H =
∑
kσ
ξkc
†
kσckσ + 1

N

∑
kq
Vkqc

†
k↑c
†
−k↓c−q↓cq↑. (3.14)

In general, the Hamiltonian describes N itinerant fermions c(†)
k , with kinetic energy

ξk, interacting with each other through a potential Vkq. The interaction couples
only fermions of opposite spin and momentum.

The quartic term in Eq. (3.14) can be decoupled by performing a BCS mean-
field approximation of the form

c†k↑c
†
−k↓c−q↓cq↑ ≈ 〈c†k↑c

†
−k↓〉c−q↓cq↑ + c†k↑c

†
−k↓〈c−q↓cq↑〉 − 〈c†k↑c

†
−k↓〉〈c−q↓cq↑〉, (3.15)
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where it is convenient to define the mean-field quantity

∆k = − 1
N

∑
q
Vkq〈c−q↓cq↑〉, (3.16)

commonly referred to as the superconducting gap. The mean-field BCS Hamiltonian
is then

H =
∑
kσ
ξkc
†
kσckσ −

∑
k

(
∆kc

†
k↑c
†
−k↓ + h.c.

)
+
∑

k
∆k〈c†k↑c

†
−k↓〉. (3.17)

To determine the ground state, we diagonalize the mean-field BCS Hamiltonian
by performing a Bogoliubov transformation. Concretely, we introduce new fermion
operators γ(†)

k and the coefficients uk and vk through the linear transformation:

ck↑ = u∗kγk↑ + vkγ
†
−k↓,

c†−k↓ = ukγ
†
−k↓ − v∗kγ

†
k↑.

(3.18)

To preserve the fermionic anticommutation relations, the normalization condition

|uk|2 + |vk|2 = 1 (3.19)

must be satisfied. In order to diagonalize Eq. (3.17), we need to choose coefficients
so that the requirement

vk

uk
=

√
ξ2

k + |∆k|2 − ξk

∆∗k
(3.20)

is satisfied. Combining Eqs. (3.19) with (3.20), we obtain the explicit form of the
coefficients

|uk|2 = 1
2

1 + ξk√
ξ2

k + |∆k|2

 ,
|vk|2 = 1

2

1− ξk√
ξ2

k + |∆k|2

 ,
(3.21)

that diagonalize Eq. (3.17). The mean-field BCS Hamiltonian in its diagonal form
is

H = E0 +
∑
kσ
Ekγ

†
kσγkσ, (3.22)

where
E0 =

∑
k

(
ξk − Ek +∆k〈c†k↑c

†
−k↓〉

)
(3.23)

is the ground-state energy and

Ek =
√
ξ2

k + |∆k|2 (3.24)
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is the excitation energy. In Fig. 3.4, we plot the excitation energy, with ξk =
~2

2m (k2 − k2
F). Here, kF and EF = ~2

2mk
2
F denote the Fermi wavevector and energy,

respectively. Note that the mean-field quantity∆k appears as a gap in the dispersion
separating the ground state from its excited states.

Figure 3.4. The BCS excitation energies Ek with ξk = ~2

2m

(
k2 − k2

F
)
in the super-

conducting and normal metal limits ∆k = ∆ > 0 and ∆k = 0, respectively. Note
that with the onset of the superconducting gap, the electron (red) and hole (green)
branches merge to form the quasiparticle (blue) dispersion.

From the Bogoliubov transformation in Eq. (3.18) and Fig. 3.4, we note that
the quasiparticle excitations of the system consist of a linear combination of electrons
and holes. For quasiparticles with |k| > |kF| or |k| < |kF|, we say that the particles
are electron-like or hole-like, respectively. This nomenclature can be understood
by considering the normal metal limit ∆k → 0, where the Bogoliubov coefficients
reduce to

|uk|2 =
 0, |k| < |kF|,

1, |k| > |kF|,
|vk|2 =

 1, |k| < |kF|,
0, |k| > |kF|.

(3.25)

To some extent, we can therefore say that uk and vk determine the degree to which
a quasiparticle exhibits ”electron-like” and ”hole-like” properties, respectively.

Finally, we briefly comment on the form of the superconducting quantum
ground state |ΨBCS〉 in terms of the normal metal vacuum of electrons |0〉. The
superconducting quantum ground state is defined by the equation

γkσ|ΨBCS〉 = 0. (3.26)
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By utilizing the Bogoliubov transformation in Eq. (3.18), we can show that

|ΨBCS〉 =
∏
k

(
uk + vkc

†
k↑c
†
−k↓

)
|0〉. (3.27)

Physically, this means that the superconducting quantum ground state consists of
a combination of a large number of Cooper pairs.

3.2.4 The gap equation

In general, the superconducting gap must be determined self-consistently from its
definition in Eq. (3.16). Since the Bogoliubov quasiparticles are fermions, their
statistics are governed by the Fermi-Dirac distribution such that

〈γ†kσγkσ〉 = 1
1 + eEk/kBT

. (3.28)

By then utilizing the Bogoliubov transformation, we can rewrite Eq. (3.16) as the
self-consistent gap equation

∆k = − 1
N

∑
q

Vkq∆q

2Eq
tanh

(
Eq

2kBT

)
. (3.29)

To solve the gap equation, it is necessary to specify the potential. Based on
our discussion of phonon-mediated superconductivity, we choose the potential

Vkq =
 −V0, |ξk|, |ξq| < ~ωD,

0, otherwise.
(3.30)

We also assume that the superconducting gap is uniform and isotropic ∆k = ∆,
physically restricting us to s-wave superconductivity. With these two assumptions,
the gap equation becomes

1 = V0

N

∑
|k|<kD

1
2Ek

tanh
(
Ek

2kBT

)
. (3.31)

By introducing the density of states per spin ρ and assuming that the Fermi energy
is the largest energy scale in the problem, we can rewrite the gap equation as

1 = V0ρF

ˆ ~ωD

0

dε√
ε2 +∆2

tanh
(√

ε2 +∆2

2kBT

)
(3.32)

where we approximate the density of states by its value at the Fermi level ρF.
We can analytically calculate the zero-temperature gap ∆0 by assuming that

∆0 � ~ωD in Eq. (3.32), and we then obtain

∆0 = 2~ωDe
−1/V0ρF . (3.33)
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We can also use use Eq. (3.32) to analytically determine the critical temperature
TC where the gap vanishes. By assuming that ~ωD � kBTC, we obtain

TC = 2eγE

π

~ωD

kB
e−1/V0ρF , (3.34)

where γE is the Euler–Mascheroni constant. Since the squared Debye frequency is
inversely proportional to the phonon mass, the expression in Eq. (3.34) predicts
that TC ∝M−1/2, in agreement with the experimentally verified isotope effect [117,
118]. By combining Eqs. (3.33) and (3.34), we obtain the celebrated universal BCS
relation

∆0

kBTC
= πe−γE ≈ 1.76. (3.35)

3.3 The Bogoliubov de-Gennes equations

The research papers [2, 3] supplementing this thesis focus on transport through
superconducting heterostructures. To this end, a convenient framework is the
Bogoliubov-de Gennes (BdG) equations [61, 64, 119]. There are of course other
important frameworks such as the Usadel formalism [120], but here, we restrict
ourselves to the formalism utilized in the research papers.

To demonstrate one possible derivation of the BdG equations, it is convenient
to start with the simplest real-space mean-field Hamiltonian exhibiting supercon-
ductivity of the form

H = −t
∑
〈ij〉

c†i,σcj,σ − V0
∑
i,σ

c†i,σci,σ +
∑
iσ

(
σ∆c†i,σc

†
i,−σ + h.c.

)
. (3.36)

Here, t represents the kinetic energy of itinerant charges, V0 is an arbitrary constant
that determines the minimum of the dispersion, and ∆ is the superconducting gap.
The BdG equations derived from this Hamiltonian are used to model normal metal-
superconductor junctions in Chapter 6. For concreteness and simplicity, we choose
here to embed the Hamiltonian (3.36) on a square lattice with lattice spacing a.
Other choices, such as triangular-, hexagonal-, Kagome-, and 3D-lattices, are of
course also possible. To describe more complicated systems including interactions
such as ferromagnetism, antiferromagnetism, and spin-orbit coupling, we need only
to add appropriate interactions to Eq. (3.36) and to employ the same procedure
that we now demonstrate.

We utilize the Fourier representation of the fermion operators

cj = 1√
N

∑
k
eik·rjck, (3.37)
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where N is the number of lattice sites, k is a wavenumber within the first Brillouin
zone, and rj is the position vector of site j. The anticommutation relations of the
fermion operators guarantee that

1
N

∑
j

ei(k−q)·rj = δk,q. (3.38)

We then obtain the Hamiltonian

H =
∑
k,σ

γkc
†
k,σck,σ − V0

∑
k,σ

c†k,σck,σ +
∑
k,σ

(
σ∆c†k,σc

†
−k,−σ + h.c.

)
, (3.39)

where γk = −t∑δ e
ik·δ is the lattice-dependent structure factor and δ is a vector

connecting nearest neighbors. Since the superconducting gap couples electrons and
holes, it is natural to explicitly separate the electron and hole degrees of freedom by
utilizing the anticommutation relations to write∑

k,σ
c†kσckσ = 1

2
∑
k,σ

(
δi,j + c†k,σck,σ − c−k,−σc

†
−k,−σ

)
. (3.40)

The Hamiltonian then takes the form

H = H0 +
∑
kσ

[
c†k,σ c−k,−σ

] γk − V0 σ∆

σ∆∗ −γ−k + V0

 ck,σ

c†−k,−σ

 , (3.41)

where H0 is a constant that shifts the minimum value of the dispersion.
To obtain the continuum limit, we can expand the structure factor around the

minimum point in the Brillouin zone. For the square lattice, we expand around the
Γ -point. We then obtain

γk ≈
~2

2m
(
k2 − k2

0

)
, (3.42)

wherem is the effective mass and k0 is a constant. Specifically, we make the standard
identification a2t = ~2/2m and define k0 =

√
2/a. If we now introduce the electron

and hole operators as ψ†e,σ = c†k,σ and ψ
†
h,σ = c−k,−σ, respectively, the total continuum

BdG Hamiltonian becomes

H = H0 +
∑
σ

[
ψ†e,σ ψ

†
h,σ

]  He σ∆

σ∆∗ Hh

 ψe,σ
ψh,σ

 , (3.43)

where we absorb the constant ~2k2
0/2m into H0. Here, He = ~2k2/2m − V0 and

Hh = −~k2/2m + V0 are the Hamiltonians for free itinerant electrons and holes,
respectively. Finally, we use the first quantization prescription to replace the
wavenumber with the differential operator

k = −i∇. (3.44)



34 Chapter 3. Superconductivity

We then obtain the BdG equation He σ∆

σ∆∗ Hh

 ψe,σ
ψh,σ

 = E

ψe,σ
ψh,σ

 . (3.45)

where ψe,σ are wavefunctions and E is the excitation energy relative to the potential
V0.

The transport properties for superconducting heterostructures are described
well by the BdG equation (3.45). In principle, the BdG equation needs to be solved
self-consistently since the superconducting gap depends on the electron and hole
wavefunctions. However, a useful approximation is to assume that the gap acts
as a step-like potential describing an abrupt transition from a superconductor to
a nonsuperconducting material. We present explicit examples of solving the BdG
equation in Chapters 6 and 7.

3.3.1 Possible generalizations and extensions

As it is, the Hamiltonian in Eq. (3.43) can be used to study transport across
normal metal-superconductor interfaces. However, there are several natural ways
of modifying the starting point in Eq. (3.36) to generalize the BdG Hamiltonian
to describe more complicated systems. Here, we restrict ourselves to interactions
that are either related to the research papers or natural extensions that may be
interesting to pursue in future works.

Itinerant magnetism

To describe superconductors with either intrinsic or proximity to magnetic metals,
we can utilize the s-d interaction [75, 121–123]. Physically, the spin of itinerant
s electrons couples with the spin of localized d electrons. If we assume that the
localized spins have negligible deviations from their ordering direction mi, then the
isotropic s-d interaction is

HJ = J
∑
i,α,β

c†i,α (mi · σ)α,β ci,β. (3.46)

Here, J is the s-d exchange strength, and σ is a vector of Pauli matrices describing
the itinerant spins. If the order parameter mi is independent of the lattice sites,
then HJ describes the s-d interaction in a ferromagnetic metal. To describe collinear
antiferromagnetism, we introduce two sublattices (A and B) and require that

mi∈A = −mi∈B. (3.47)
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Transport through any other magnetic structure, such as noncollinear
(anti)ferromagnets, spin spirals, and skyrmions, can be described by choosing an
appropriate order parameter vector mi.

Nonideal and uncompensated interfaces

To model generic microscopic interface effects in the continuum limit, we phe-
nomenologically introduce a repulsive spin-independent delta-function potential

HV = V δ(x− x0), (3.48)

with strength V > 0 located at the interface x = x0. Examples of such interface
effects include intrinsic contact resistance across the interface, energy barriers, and
mismatches between Fermi wavevectors, effective masses, and lattice structures [124–
126].

For two-sublattice and collinear antiferromagnets, the effects of an uncompen-
sated interface may also be important. To include such an effect in our description,
we use a spin-dependent potential barrier, where only one of the sublattices gives a
nonzero contribution. By letting the Pauli matrices s and σ denote the spin and
sublattice degrees of freedom, the interaction takes the form

HUn. = h

2
[

(m · s)⊗ (σ0 + σz)
]
δ(x− x0). (3.49)

Here, h and m are the strength and direction of the uncompensated magnetic mo-
ment, respectively.

Spin-orbit coupling

An important interaction in solid-state physics is spin-orbit coupling (SOC) [127].
Formally, SOC can be understood as a relativistic effect for an electron moving
with velocity v in an electric potential V . By expanding the Dirac equation in the
parameter v/c, we obtain the Schrödinger equation with a relativistic correction of
the form [128]

HSOC = − ~
(2mc)2σ · (∇V × p) . (3.50)

Here, m, c, σ, and p are the electron mass, speed of light in vacuum, electron spin,
and electron momentum, respectively. Depending on the form of the potential, SOC
takes different forms. Physically, SOC can be thought of as a momentum-dependent
Zeeman coupling between the electron spin and the effective magnetic field generated
in the rest frame of the moving electron.

In broad strokes, SOC can be divided into two types:
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1. Symmetry independent SOC. Exists in all types of crystals and originates from
SOC in atomic orbitals.

2. Symmetry dependent SOC. Exists only in crystals without inversion symmetry.

• If the inversion symmetry is broken by an interface, it is known as Rashba
SOC [129, 130].

• If the inversion symmetry is broken in the bulk, such as in Zincblende
structures, it is known as Dresselhaus SOC [131].

• There are also other more general types of SOC, where the inversion
symmetry is broken by other means. A well-known example is the Kane-
Mele model [132, 133].

In the tight-binding framework, the general form of symmetry-dependent SOC
takes the form of spin-dependent hopping between lattice sites

HSOC =
∑
i,j,α,β

c†i,α (ω(p) · σ)α,β cj,β. (3.51)

The type of spin-orbit coupling that occurs is specified by the vector ω(p), which is
constrained by the symmetry properties of the system and acts like a momentum-
dependent magnetic field. For Rashba and linear Dresselhaus SOC, we have

ωR = λR (py,−px, 0) ,

ωD = λD (px,−py, 0) ,
(3.52)

respectively. Here, λR(D) denotes the strength of the Rashba (Dresselhaus) SOC. In
Fig. 3.5, we compare the texture of the momentum-dependent magnetic fields for
Rashba and Dresselhaus SOC.

Singlet and triplet pairing

In section 3.2, we discuss BCS theory and define the superconducting gap via the
mean-field parameter F↓↑(k) = 〈c−k↓ck↑〉. This gives a spin singlet Cooper pair with
zero centre of mass momentum. One can easily generalize to both k- and spin-
dependent pairing states Fαβ(k) = 〈c−kαckβ〉 [134]. The general superconducting
gap is then defined by

∆∗αβ(k) =
∑
qγδ

Vαβγδ(k,q)〈c−qγcqδ〉. (3.53)
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Figure 3.5. A comparison of the effective momentum-dependent magnetic fields ωR

and ωD for Rashba and Dresselhaus SOC, respectively.

The Pauli principle enforces the symmetry requirement Fαβ(k) = −Fβα(−k), which
again constrains the form of the superconducting gap ∆αβ(k) = −∆βα(−k). The
matrix structure of the superconducting gap then becomes∆↑↑(k) ∆↑↓(k)

∆↓↑(k) ∆↓↓(k)

 = i (∆kI + dk · σ)σy. (3.54)

This structure allows either singlet pairing or triplet pairing with a complex order
parameter ∆k = ∆−k or a vector order parameter dk = −d−k, respectively.

For singlet pairing, some common choices of the symmetry of the superconduct-
ing gap are either the isotropic s-wave or anisotropic d-wave of the form

∆k =


∆, s-wave,
∆
(
k2
x − k2

y

)
/k2

F, dx2−y2-wave,
∆ (2kxky) /k2

F, dxy-wave,
(3.55)

where ∆ > 0 is a constant. For triplet pairing, the more exotic anisotropic p-wave
symmetry is possible. We decompose dk = d(k)d̂, where d(k) is a momentum-
dependent scalar and d̂ is a unit vector in spin space. The p-wave symmetry can
then be represented as

d(k) =
 ∆kx/kF, px-wave,
∆ky/kF, py-wave.

(3.56)

Underlying lattice

The lattice on which the Hamiltonian (3.36) is embedded is important for the de-
scription in the continuum limit. An elegant example is given by considering the
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nearest neighbor hopping Hamiltonian

Ht = −t
∑
〈ij〉

(
c†icj + h.c.

)
(3.57)

embedded first on a square lattice and then on a hexagonal lattice.
For the square lattice, the dispersion reaches its minimum value at the centre

of the Brillouin zone (Γ -point), and the structure factor in the continuum approxi-
mation becomes

γk=Γ ≈ −
~2

2mk2. (3.58)

Particles embedded on the square lattice hence exhibit dynamics governed by the
Schrödinger equation. On the other hand, the dispersion for the hexagonal lattice
reaches its minimum value at the corners of the Brillouin zone (K-points). Only
two of these points are inequivalent; we denote them K and K ′. Close to these two
inequivalent points, the structure factor takes the form

γk=K ≈ ~vF (kx + iky) ,

γk=K′ ≈ ~vF (kx − iky) ,
(3.59)

in the continuum approximation. Hence, the low-energy dynamics of hexagonal lat-
tices are described by the Dirac equation with Fermi velocity vF = 3at/2~. These
Dirac-like dynamics have been intensively researched since the experimental dis-
covery of graphene [135, 136]. In Fig. 3.6, we plot the dispersion of the square
lattice and the hexagonal lattice as well as their Brillouin zones to highlight their
differences.
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(a) The tight-binding dispersion relation for the square (left) and hexagonal (right) lattices.

(b) The first Brillouin zone for the square (left) and hexagonal (right) lattices.

Figure 3.6. The dispersion and first Brillouin zone for the tight-binding model
embedded on square (left) and hexagonal (right) lattices.





4
Scattering theory

In the research papers accompanying this thesis, we describe transport through mag-
netic insulators and superconducting heterostructures. The previous chapters intro-
duce each component individually. In this chapter, we present a scattering matrix
formalism that allows us to describe transport through heterostructures composed
of these components. Depending on the context, the scattering matrix framework is
given different names, with slight variations in technical details, yet the formulations
are equivalent.

4.1 The scattering matrix formalism

Let us first discuss the general idea behind the scattering matrix, often alternatively
referred to as the Landauer-Büttiker [137–143], formalism in mesoscopic systems
[144–148]. The system under consideration is shown in Fig. 4.1. We consider two
leads attached to a mesoscopic sample (also called the scattering region), whose
transport properties are of interest. Each lead is in thermal equilibrium with and
attached to a reservoir that is large compared to the mesoscopic sample. Conse-
quently, the mesoscopic sample can be treated as a perturbation, and the reservoirs
can be described in terms of an equilibrium state characterized by the chemical po-

41
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tentials µL and µR and the temperatures TL and TR, respectively. The subscripts
L and R refer to the left and right reservoirs, respectively. In each reservoir, the
electron distribution is therefore given by the Fermi-Dirac statistics

fα = 1
1 + e

E−µα
kBTα

, with α = L,R. (4.1)

A charge current can be induced and propagate through the system by then applying
a voltage bias V = (µL − µR) /e between the two reservoirs, where e denotes the
electron charge. The goal is then to determine the transport properties, such as
the average current, conductance, and current fluctuations, as a function of the
voltage bias V or other typical parameters characterizing the mesoscopic sample. For
brevity and simplicity, in the following discussion, we restrict ourselves to spinless
fermions with normal metal leads. The scattering matrix formalism can of course
be straightforwardly extended to more general situations, including different types
and numbers of leads and heat-, thermoelectric-, and spin-transport.

Figure 4.1. A setup for a two-lead scattering problem. Each reservoir is character-
ized by a chemical potential µL,R and temperature TL,R. In each lead, there is a local
coordinate system (xL,R, yL,R) and local scattering operators for incoming aL,R and
outgoing bL,R modes.

In each lead, we introduce a coordinate system (xα, yα) such that the positive
xα-direction always points towards the scattering region. In general, the wavefunc-
tion in the scattering region is very complicated, but the wavefunction in the leads
is very simple. The wavefunction in a normal metal lead is the sum of left- and
right-moving plane waves and takes the form

ψα(r, t) = 1√
2π

ˆ dE√
~vα

e−i
E
~ t
(
aα(E)eikαxα + bα(E)e−ikαxα

)
φα. (4.2)

Here, α is the lead index, and φα(yα, zα) are the orthonormal transversal wavefunc-
tions. The energy and velocity of the propagating mode are denoted by E and
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vα, respectively. We also introduce fermionic annihilation operators describing the
incoming (aα) and outgoing (bα) modes; see Fig. 4.1.

The charge current operator in the normal metal lead α is given by

Iα(r, t) = i~e
2m

ˆ
dyαdzα

(
∂ψ†α
∂x

ψα − ψ†α
∂ψα
∂x

)
. (4.3)

To simplify the following discussion, we assume that the relevant energies, with the
dominant contribution to physical properties, are those in a narrow range around
the Fermi energy. By then substituting Eq. (4.2) into Eq. (4.3) and linearizing
around the Fermi energy, we obtain the current operator in the lead α as

Iα(t) = e

h

ˆ
dE dE ′eiE−E

′
~ t

(
b†α(E)bα(E ′)− a†α(E)aα(E ′)

)
. (4.4)

To evaluate the physically observable charge current, we need to perform
quantum-statistical averaging over the state of the incoming electrons, denoted by
〈·〉. If we assume that the electrons originating at different reservoirs are uncorre-
lated, we can write

〈a†α(E)aβ(E ′)〉 = δαβδ(E − E ′)fα(E) (4.5)

for the incoming electrons. The average over the outgoing electrons is not straight-
forward because the particles can have originated from any reservoir by a correspond-
ing reflection and/or transmission process in the scattering region. To proceed, we
therefore introduce the unitary scattering matrix relating incoming and outgoing
particles through the relation

bα =
∑
β

Sαβaβ. (4.6)

Utilizing Eq. (4.6), the average current takes the form [140, 141]

〈Iα〉 = e

h

ˆ
dE

∑
β

|Sαβ|2 (fβ(E)− fα(E)) . (4.7)

Generally, the current flowing in lead α is driven by the difference in the distribution
functions multiplied by the corresponding scattering matrix element modulus. If all
the reservoirs have identical chemical potentials and temperatures, then the current
is zero.

4.1.1 Linear response

From Eq. (4.7), we observe that a current can be caused by either a difference in
chemical potential or a difference in temperature. The corresponding differential
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conductance can be calculated by taking the appropriate derivative. However, to
obtain simple analytical expressions, the linear response regime, where we assume
small voltage or temperature biases, is useful. For completeness, we now consider
first a finite voltage bias and then a finite temperature bias.

Voltage bias

We assume that between the reservoirs, there is zero temperature bias and a finite
voltage bias such that

µα = µ0 + eVα,

Tα = T0.
(4.8)

In the linear response regime, we assume that the voltage bias is small such that
both eVα � µ0 and eVα � kBT0 are satisfied simultaneously. These assumptions
allow us to expand the distribution functions as

fα ≈ f0 − eVα
∂f0

∂E
, (4.9)

where f0 is the distribution function with chemical potential µ0 and temperature
T0. Substituting Eq. (4.9) into Eq. (4.7), we obtain

〈Iα〉 =
∑
β

Gαβ (Vβ − Vα) , (4.10)

where we introduce the conductance matrix

Gαβ = G0

ˆ
dE

(
−∂f0

∂E

)
|Sαβ(E)|2, (4.11)

with the conductance quantum G0 = e2/h.

Temperature bias

A charge current driven by a temperature bias is referred to as thermoelectricity.
To calculate the thermoelectric current, we assume zero voltage bias and finite tem-
perature bias between reservoirs as follows:

µα = µ0,

Tα = T0 + Tα.
(4.12)

In the linear response regime, we assume that Tα � T0 and perform the expansion

fα ≈ f0 + Tα
∂f0

∂T
. (4.13)
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By substituting Eq. (4.13) into Eq. (4.7), we obtain

Iα =
∑
β

Lαβ (Tβ − Tα) , (4.14)

where we introduce the thermoelectric conductance matrix

Lαβ = e

h

ˆ
dE

(
∂f0

∂T

)
|Sαβ(E)|2. (4.15)

4.2 Scattering theory of spin transport in mag-
netic insulators

The scattering theory can also be extended to the transport of bosons, which is
relevant for the study of spin-wave propagation through magnetic insulators. For
bosons, the distribution function is given by the Bose-Einstein distribution

nB,α = 1
e
E−µα
kBT − 1

. (4.16)

A typical setup consists of an arbitrarily complicated scattering region sand-
wiched between two ferromagnetic leads. In a ferromagnetic lead, the Holstein-
Primakoff representation in Eq. (2.6) can be utilized to define the magnon-spin
density operator at site i as Ni = ~a†iai. We can then obtain a continuity equation
for the spin current in the lead by using the Heisenberg equation to calculate the
rate of change of magnons. For a d-dimensional hypercubic lattice, we obtain

d
dtNi +

∑
δ

Ij,j+δ = 0, (4.17)

where the current operator connecting site j with its nearest neighbor j + δ is

Ij,j+δ = iJS~2
(
a†jaj+δ − a

†
j+δaj

)
. (4.18)

Note that here, we reinstate ~ such that the spin current has the appropriate di-
mension for the transfer of the angular momentum, ~/t. In this picture, the spin
current is carried by magnons hopping from site to site in a nearest neighbor ap-
proximation. In parallel to the previous section, we can introduce the scattering
matrix and obtain the thermal average with the appropriate statistics to obtain an
expression for the spin current. In a one-dimensional two-lead system, the average
spin current is

I = 1
2π

ˆ
dE T (E) (nB,L − nB,R) (4.19)

where T (E) is the transmission probability through the scattering region and nB,L(R)

denotes the Bose-Einstein distribution in the corresponding lead. A more detailed
derivation is given in paper [1].
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4.3 Scattering theory for superconducting het-
erostructures

To use the scattering formalism to describe transport through superconducting het-
erostructures, we need to incorporate the hole degrees of freedom. There are then
two properties that need to be included:

• Electrons and holes carry opposite charges, so they make opposite contribu-
tions to the average current.

• Electrons and holes have different distribution functions. For electrons, the
distribution function is the probability that a state with energy E is occupied,
fe,α = fα(E). For holes, the distribution function is the probability that a
state with energy −E is empty, fh,α = 1− fα(−E).

The opposite electron and hole charges can be straightforwardly implemented in the
charge operator as

Iα(r, t) = i~e
2m

ˆ
dyαdzα

(
∂Ψ†α
∂x

τzΨα −Ψ†ατz
∂Ψα

∂x

)
, (4.20)

where Ψ = (ψe, ψh)T is the electron and hole operators and τz is a Pauli matrix
in charge space. To account for the different electron and hole statistics, each lead
should be split into separate electron and hole leads attached to reservoirs with the
appropriate distribution functions, as shown in Fig. 4.2.

Figure 4.2. To include the hole degrees of freedom, it is convenient to split up the
lead (α) into one electron lead and one hole lead, each attached to a reservoir with
the appropriate statistics.
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The transport properties of superconducting heterostructures were first devel-
oped by Blonder, Tinkham, and Klapwijk. In their seminal paper, they consider a
superconducting bilayer, where a normal metal is connected to a superconductor and
a voltage bias is applied [149]. Today, their approach is so widely recognized that
the scattering matrix formalism is usually known as the Blonder-Tinkham-Klapwijk
(BTK) formalism in the context of superconducting spintronics. The BTK formula
for the current in a normal metal-superconductor junction is

IBTK = 2e
h

ˆ
dE (1−Re +Rh) (fN − fS) , (4.21)

where Re and Rh are the probabilities of electron and hole reflection, respectively,
and fN(S) refers to the electron-distribution function in the normal metal (supercon-
ductor). The hole reflection is known as Andreev reflection and has been essential
in the research papers accompanying this thesis. We introduce this concept in more
detail in Chapter 6. In a variety of papers, this formula has been extended to differ-
ent types and numbers of leads, higher dimensions, and heat currents [124, 150–154].
Of particular interest for the research conducted in this thesis, the BTK formula has
also been generalized to the three-terminal problem, where two spatially separated
leads are in contact with a common superconductor [155]. The geometry allows both
theoretical and experimental studies of nonlocal transport properties. We consider
the three-terminal problem in more detail in Chapter 7.

4.4 The big picture

In this chapter, we show that by considering appropriate quantum-mechanical scat-
tering problems, we can determine the transport phenomena of, in principle, any
mesoscopic system. The main idea is that the system of interest is attached, indi-
rectly through leads, to appropriate reservoirs. The statistics of the reservoirs are
specified by the particles carrying the relevant information. The transport proper-
ties of the system can be understood by considering the scattering of the information
carriers. In each scattering event, a given particle can either be reflected into its
original reservoir or transmitted into a new reservoir. Therefore, the problem of cal-
culating transport properties such as the spin-, charge-, or heat-current is reduced to
solving a quantum-mechanical scattering problem, with a potential profile given by
the system. In general, all of the relevant transport properties are encapsulated by
the scattering matrix. In crude terms, the subject of the three research papers is the
determination of the scattering matrices of different systems and the calculation of
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the relevant response functions. In the next three chapters, we briefly introduce each
scattering problem and attempt to set them in an appropriate perspective within
each scientific community.



5
Disordered magnetic insulators and

Anderson localization

In this chapter, we introduce the physics necessary to understand disordered mag-
netic insulators, the research topic of [1]. Here, we focus on a concise introduction
and refer readers to our first paper for additional details. We first give a brief
overview of what a disordered magnetic insulator is, how they are usually mod-
eled, and their role in insulating spintronics. Finally, we briefly introduce Anderson
localization and discuss its relevance to our research.

5.1 Disordered magnets

In spin insulatronics, the research focus has mainly been on ideally ordered mag-
netic systems, where spin waves can propagate and transfer information over long
distances without significant Joule heating [54]. In realistic systems, the effects of
disorder are also important, as they strongly affect the transport properties of the
related technologies. In general, when the disorder of a particular system is suffi-
ciently strong, the eigenstates become trapped in a finite spatial region, completely
suppressing the relevant transport properties. This behaviour is generic for all trans-
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port phenomena related to electric currents, electromagnetic waves, and spin waves
and is known as Anderson localization [156, 157]. Nevertheless, the transport prop-
erties of disordered systems appear to be more subtle. Recently, an experimental
group claimed that a spin current could propagate tens of micrometers through
a sample of amorphous yttrium iron garnet without any long-range magnetic or-
der [158]. The underlying mechanism, limitations, and experimental procedure are
still intensely debated within the community [159–167]. Another class of materials
where the spin structure is strongly disordered are spin glasses [168], historically
exemplified through dilute magnetic alloys such as copper-manganese (CuMn). A
central characteristic property that distinguishes spin glasses from ordered magnets
and paramagnets is that below a characteristic ”freezing” temperature, the spins are
frozen in fixed random directions. A good historical perspective on theoretical and
experimental investigations of spin glasses can be found in several popular science
papers by Anderson [169–175].

In a disordered magnetic insulator, frustration is induced, meaning that the
system has greater difficulty finding a configuration that minimizes its energy. Con-
sequently, the energy landscape exhibits many local minima, and determining the
true quantum ground state and its transport properties are challenging. In strongly
disordered systems, such as spin glasses, this energy landscape can result in noner-
godic behaviour; the system becomes trapped in a subset of the available states due
to the complex energy landscape and high energy barrier separating states. However,
there are simplified Ising-like toy models such as the random field (RF) Ising model
[176–178], the spherical model [179, 180], the Edwards-Anderson model [181], and
the Sherrington-Kirkpatrick model [182, 183] that have been studied extensively.
A drawback of these models is that the spins are treated as scalars, making them
unsuitable for describing spin-wave transport.

5.2 Disordered Heisenberg models

To describe realistic spin-wave transport in disordered systems, it is necessary to
treat the spins as three-dimensional operators, as we do in Chapter 2. Two relevant
models that we study in [1] are the RF model and the random anisotropy (RA)
model, where the disorder is modeled by a site-dependent magnetic field and a site-
dependent anisotropy term, respectively. The direction of the site-dependent field
and anisotropy is modeled by a vector ni uniformly distributed on the unit sphere
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and varying from site to site. The Hamiltonian is

H = −J
∑
iδ

Si · Si+δ −K
∑
i

(ni · Si)κ+1 , (5.1)

where κ = 0 and κ = 1 represent the RF and RA models, respectively. The
term proportional to J > 0 attempts to align neighboring spins in parallel, and
the term proportional to K > 0 attempts to align each spin Si with the vector
ni. The result is a noncollinear disordered ground state, and the strength of the
disorder is parameterized by the ratio K/J . Other related works [166, 184, 185] have
demonstrated that the transport properties can often also effectively be investigated
by considering coupled classical spins embedded on a lattice, obeying atomistic [186]
Landau-Lifschitz-Gilbert equations [187–189].

5.3 Anderson localization

In [1], we use the scattering matrix formalism to study the one-dimensional prop-
agation of a spin current through the RF and RA Heisenberg models. We use
ferromagnetic leads, where the eigenstates are circularly polarized spin waves. In
the magnon picture, the spin current is carried by magnons hopping from site to
site. Concretely, spin disorder leads to both random hopping amplitudes and ran-
dom onsite potentials, which completely breaks the translational symmetry. This
allows us to physically understand the Anderson localization in a simple wavefunc-
tion picture, as shown in Fig. 5.1. There are three effects originating from the

Figure 5.1. The wavefunction in a periodic potential (left) and disordered poten-
tial (right). For sufficiently strong disorder, the wavefunction becomes completely
localized, a phenomenon known as Anderson localization.
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effectively aperiodic disordered potential. First, each individual wavefunction is
also aperiodic. Second, the individual wavefunction amplitudes generally decrease
with an increasing distance from the parent lattice site. Third, the relative phases
between individual wavefunctions are random. The net result is complete destruc-
tive quantum-wavefunction interference, giving a localized total wavefunction and
suppressing the transport properties. Consequently, the conductance for a system
of length L becomes exponentially suppressed

G ∝ exp
{
−L/L̃

}
(5.2)

on the length scale given by the localization length L̃. Furthermore, we investigate
the relationship between the localization length L̃ and the strength of disorder K/J
in the RF and RA models. In the limit of weak disorder, the localization lengths
obey power laws, and we calculate the relevant critical exponents. To avoid a lengthy
and rather technical discussion, we refer the reader to paper [1] for additional details.

An interesting research idea that we leave for future work is to investigate how
the Anderson localization of spin waves manifests in higher dimensions (d = 2, 3).
In electronic systems, this problem has been addressed using scaling theory, and
universal features have been determined [190, 191]. The scaling theory argument is
applicable to electronic systems of dimensionless length l and rests on the fact that in
the weakly and strongly disordered regimes, the dimensionless conductance g obeys
Ohm’s law g ∝ ld−2 and is exponentially suppressed g ∝ exp (−l), respectively. In
addition, it is assumed that the d-dimensional beta function

βd = d ln g
d ln l (5.3)

possibly connecting the conductive and localized regimes is continuous and mono-
tonic. If the beta function is positive or negative, the system is conducting or
localized, respectively. The Anderson localization for electronic systems depends on
the dimension in the following way:

• In one dimension, β1 < −1: Anderson localization occurs regardless of the
disorder strength.

• Two dimensions represent the critical dimension, and β2 < 0: Anderson local-
ization occurs for all disorder strengths, but the beta function approaches zero
in the ohmic regime.

• In three dimensions, the beta function can be both positive and negative β3 <

1, and it has one unique fixed point β3 = 0: There is a critical strength of
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disorder where a phase transition from the localized regime to the conductive
regime exists.

The aforementioned features are summarized in Fig. 5.2. We can only speculate

Figure 5.2. The simplest possible scaling behaviour of the beta function βd for an
electronic system in dimension d. In d = 1, 2 the beta function is negative and the
system is localized. In d = 3 the beta function changes sign, and hence a phase
transition from the localized to the conductive regime exists. The arrows indicate the
direction of the conductance scaling flow as a function of increasing system length.

about whether scaling laws similar to the above govern the spin-wave dynamics in
disordered magnets. In any case, a corresponding scaling law analysis seems to be
an interesting research direction.





6
Superconducting bilayers and Andreev

reflection

In this thesis, we refer to a superconducting bilayer as any structure of the form X-S,
where X can in principle be any nonsuperconducting material and S is a supercon-
ductor. In this chapter, we introduce the cases most relevant to our research in [2],
i.e., when X is a normal metal (N), ferromagnetic metal (F), and antiferromagnetic
metal (AF). In turn, we go through each example and elucidate the main physics.
The most central idea is the Andreev reflection (AR), which manifests uniquely
depending on the choice of nonsuperconducting material.

6.1 Normal metal

The interface between a normal metal and a superconductor can be modeled by the
Bogoliubov-de Gennes (BdG) equations, which we derived in Sec. 3.3,He − EF ∆

∆† EF −Hh

ψe
ψh

 = E

ψe
ψh

 . (6.1)

Here, He = − ~2

2m∇
2 and Hh = THeT

−1 = He are the kinetic energies of electrons
and holes, respectively. T is the time-reversal operator. For simplicity, we assume
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that electrons and holes have the same effective mass m and that the supercon-
ducting gap is a step potential ∆ = ∆0Θ(x). The superconducting gap couples the
electron ψe and hole ψh degrees of freedom in the superconductor. Since there is
only one superconductor, we choose ∆0 to be real. The Fermi energy and excitation
energy are denoted by EF and E, respectively. Experimentally, the excitation en-
ergy can be controlled by applying a bias voltage V between the normal metal and
superconductor. At zero temperature the exact relationship between bias voltage
and excitation energy is E = eV .

Let us comment on the step-function approximation that we utilize for the
superconducting gap. In reality, the superconducting gap has a potential profile
that changes from 0 to ∆0 across the N-S interface on a length scale set by the
corresponding coherence lengths. Therefore, on an atomic scale, ∆ is a continuous
position-dependent function. However, in bilayer structures, we are typically inter-
ested in larger mesoscopic length scales, where the N-S interface can be described
as a sharp boundary without losing essential physics [64, 147].

In the following, we also employ the Andreev approximation, which utilizes that
EF � ∆0, E. This assumption is justified in metals where EF is typically on the
scale of eV, while E and ∆0 are typically on the scale of meV. We emphasize that
we did not utilize the Andreev approximation in the research papers.

6.1.1 Retroreflective Andreev reflection

In the normal metal, the electron (k) and hole (q) wavenumbers are

k2 = 2m
~2 (EF + E) , q2 = 2m

~2 (EF − E) , (6.2)

respectively. The corresponding group velocities are

ve = ~2

m
k, vh = −~2

m
q. (6.3)

Note that the orientation of the hole velocity is opposite to the orientation of the
wavenumber, a consequence of the opposite curvatures of the dispersion relations.

Let us now consider a scattering problem with an electron incident from the
metal with E < ∆0. For mathematical conciseness, we consider two dimensions, but
the generalization to three dimensions is straightforward. The incident electron can
in principle either be reflected as an electron (normal reflection (NR)) or reflected
as a hole (AR) due to electron-hole coupling in the superconductor [153, 192–194].
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Therefore, the wavefunction

Ψ = ei|k|(x cosα+y sinα)

1
0

+ reee
i|k|(−x cosβ+y sinβ)

1
0

+ rehe
i|q|(x cos γ+y sin γ)

0
1

 (6.4)

is a solution of Eq. (6.1) for x < 0. The angles α, β, and γ denote the angle of inci-
dence, the angle of NR, and the angle of AR, respectively. Due to the translational
invariance in the y-direction, we have

|k| sinα = |k| sin β = |q| sin γ. (6.5)

Utilizing the Andreev approximation, Eqs. (6.3) and (6.5) imply that electrons and
holes are reflected specularly and retroreflectively, respectively. The two underlying
assumptions are i) that ∆0 � EF and ii) that the electron and hole dispersions have
opposite curvatures.

The physical interpretation of AR is that an electron above the Fermi sea
combines with an electron below the Fermi sea to form a Cooper pair propagating
in the superconductor. The process leaves a positively charged hole in the normal
metal (see Fig. 6.1). Thus far, we have neglected the electron spin. In the absence
of spin-orbit coupling, a reflected hole always has a spin pointing in the opposite
direction of the incident electron. If this were not the case, a spin current would be
generated through the application of a voltage bias to the N-S junction.

Energy

Specular NR

S

N

Retro-AR
S

N

(a) (b)

2∆0

N S

EF

Figure 6.1. (a) An illustration of AR. An electron above the Fermi energy combines
with an electron below the Fermi energy to form a Cooper pair in the superconductor.
The formation of the Cooper pair can be interpreted as an incoming electron being
reflected as a hole. (b) The NR is specular, while the AR is retroreflective.
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6.1.2 The matching condition and local conductance

The reflection coefficients ree and reh can be determined by requiring that the wave-
function and its derivative be continuous at the interface

(Ψ − ΨS)
∣∣∣
x=0

= 0, d
dx (Ψ − ΨS)

∣∣∣
x=0

= 0. (6.6)

Here, Ψ and ΨS are the wavefunctions in the normal metal and superconductor,
respectively. In Eq. (6.6), we assume a perfect interface. We can, to some extent,
lift this assumption by introducing, e.g., an effective potential barrier or spin-orbit
coupling at the interface, as illustrated in Sec. 3.3.1. Interface terms result in
the derivative of the wavefunction picking up a discontinuity. The discontinuity
is determined by the strength of the potential barrier and/or the strength of the
spin-orbit coupling.

As we show in Sec. 4.3, once we know the reflection coefficients, we can com-
pute the zero-temperature electrical conductance G by using the extended Blonder-
Tinkham-Klapwijk formula [149]

G = GN

ˆ
dα cosα [1−Ree (eV, α) +Rhe (eV, α)] , (6.7)

where we average over the angle of incidence α. The reflection probabilities are Ree =
|ree|2 and Rhe = |rhe|2. The Sharvin conductance GN is defined as the conductance
in the limit ∆0 → 0 [195, 196]. Charge conservation, relating electrons, holes, and
Cooper pairs, dictates that NR and AR suppress and enhance the conductance,
respectively. In the absence of a potential barrier, the AR completely dominates the
NR. A finite potential barrier blocks electrons from entering the superconductor.
Consequently, the conductance decreases as the potential barrier becomes stronger,
as shown in Fig. 6.2. Note that when the potential barrier is strong, the conductance
approaches the density of states of the superconductor.
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Figure 6.2. An illustration of the effect that a finite potential barrier has on the
conductance of the N-S junction. The conductance G is normalized with respect to
the Sharvin conductance GN . The conductance is plotted as a function of the voltage
bias eV/∆0. The figure shows three limiting cases, where the potential barrier is
weak, moderate, and strong.

6.2 Ferromagnet

Unlike a normal metal, the energy bands in a ferromagnetic metal are not spin degen-
erate due to the finite exchange interaction JFM. Since AR is a spin-dependent pro-
cess, the conductance depends on the dimensionless exchange strength P = JFM/EF.
More physically, we can understand this dependence by plotting the density of states
for spin-up and spin-down electrons in a ferromagnet, as shown in Fig. 6.3a. To
form a Cooper pair, an incoming spin-up electron must combine with a spin-down
electron below the Fermi energy. For a fixed voltage, spin splitting makes Cooper
pair formation impossible for a sufficiently large exchange strength. Consequently,
the AR and conductance decrease with increasing exchange strength, as shown in
Fig. 6.3b [150, 197–200].

Furthermore, with the introduction of spin-orbit coupling at the interface, spin
is no longer conserved. Spin-orbit coupling thus allows for spin-flipped AR, where
the Cooper pair forms a spin-triplet state [201–203]. Potentially, this can lead to
the capability to enhance and tune the conductance of the F-S junction with an
external magnetic field. However, ferromagnets also produce finite magnetic fields,
making them both sensitive to stray fields and disruptive in high-density quantum
applications.
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(a) A finite exchange strength P > 0 causes spin splitting in the density of states D↑,↓. Consequently, for certain
voltages, an incident electron with spin s cannot find a partner with spin −s to form a Cooper pair. The dashed
horizontal line is the Fermi energy.

(b) An increasing exchange strength P leads to a decreasing conductance because AR gradually becomes suppressed.

Figure 6.3. The density of states (a) and conductance (b) as a function of the
ferromagnetic exchange strength.
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6.3 Antiferromagnet

To eliminate the problems caused by the finite net magnetizations of ferromagnets, it
is natural to consider what happens if a ferromagnet is replaced by an antiferromag-
net. In a series of theoretical papers, [204–207], it is shown that an antiferromagnet
allows two unusual scattering processes: i) retro-NR and ii) specular AR. In Joseph-
son junctions, antiferromagnetism theoretically causes low-energy bound states that
lead to anomalous phase shifts and atomic-scale 0 − π transitions. The existence
of supercurrents in S-AF-S junctions has been experimentally reported [208, 209],
yet other theoretical predictions are relatively unexplored. In the second paper [2]
complementing this thesis, we investigated possible experimental signatures in the
electrical and thermal conductance of the AF-S bilayer.

An antiferromagnetic dispersion, with band gap 2JAFM, is sketched in Fig. 6.4a.
The antiferromagnetic exchange interaction produces a curvature in the dispersion
that allows both specular and retroreflective NR and AR to occur. As the exchange
interaction JAFM or voltage bias eV increases, the probability of both types of AR
decreases. Conservation of probability then dictates that both types of NR must
increase. In agreement with previous literature, an explicit calculation confirms
that for a transparent interface, the antiferromagnetic interactions favor retrore-
flective NR over specular NR. As the transparency of the interface decreases, both
retroreflective and specular NR eventually contribute equally. The net result of
these competitions among the various scattering processes is encapsulated in the
electrical conductance, as shown in Fig. 6.4b

Although the underlying physics is fundamentally different, the conductance
of the AF-S junction behaves similarly to that of the F-S junction as a function of
the voltage bias. From the application point of view, the important characteristic
of antiferromagnets is the complete lack of stray field production and coupling. In
some instances, antiferromagnets may therefore act as a suitable replacement for
ferromagnets in high-density quantum technology applications at the nanoscale.
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(a) The antiferromagnetic dispersion (left) and possible scattering processes (right) at the AF-S bilayer junction.
The colors give the correspondence between scattering processes and the dispersion branch, and pz denotes the
component of the wavenumber that is orthogonal to the interface.

(b) The electrical conductance as a function of the voltage bias and antiferromagnetic exchange strength for trans-
parent (left) and nontransparent (right) interfaces.

Figure 6.4. (a) The antiferromagnetic dispersion with possible scattering processes
at the AF-S bilayer, and (b) the corresponding electrical conductance.
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6.4 PCAR spectroscopy - experimental proposal

AR is frequently utilized in an experimental technique called point contact An-
dreev reflection (PCAR) spectroscopy [125, 126, 197, 210, 211]. Typically, a voltage
biased metallic or ferromagnetic tip is placed in contact with a single superconduc-
tor. The controllable voltage bias induces a measurable current with both electron
and hole contributions. Consequently, PCAR spectroscopy allows the determina-
tion of the current-voltage characteristics. In superconducting spintronics, PCAR
spectroscopy is commonly used to determine the spin polarization of a ferromagnet
or the temperature dependence and symmetry of the superconducting gap [212–
214]. An important milestone is the measurement of the zero-bias conductance
peak in high-temperature superconducting cuprates such as YBa2Cu3O7 [215–217].
The existence of the zero-bias conductance peak is often attributed to the fact that
high-temperature cuprates may exhibit d-wave pairing symmetry [218–222].

Figure 6.5. A proposed setup for measuring the contribution of retroreflective scat-
tering processes to the conductance. A voltage-biased point contact is attached to
an AF-S junction, forming a focused measuring point (beige) for the induced current
I. The left and right figures demonstrate that the contributions to the conductance
from the retroreflective and specular reflection processes are enhanced and suppressed,
respectively.

The total conductance of N-S, F-S, and AF-S junctions can be measured
straightforwardly by coupling the junctions to reservoirs, but it is then difficult
to distinguish between specular and retroreflective processes. This is an issue that
we did not address in our paper [2] on retroreflective NR in AF-S junctions. Here,
we propose an experimental setup in which it is possible to distinguish between
specular and retroreflective scattering processes that may be useful in the investiga-
tion of the AF-S junctions. The setup we propose has been used in an experiment
where the goal was to separate the contribution to the total conductance from the
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retroreflective AR and specular NR in N-S junctions [223]. The experimental pro-
posal is shown in Fig. 6.5. By attaching a point contact to an AF-S junction, we
can create a focus point for incoming electrons. We measure the conductance at the
same focus point. As shown in the figure, the dominant contribution to the mea-
sured conductance consists primarily of retroreflective NR and AR as the specular
processes become dispersed. Distinguishing whether the electrons or holes dominate
for a finite exchange interaction can in principle be done by subtracting the Sharvin
conductance and checking whether the measured conductance is positive or nega-
tive. We hope that this proposal may be useful to experimentalists wanting to test
our predictions.



7
Superconducting trilayers and crossed

Andreev reflection

The final research topic that we consider in our research is related to the nonlocal
transport properties in X-S-X trilayers. Here, X can be any conducting material,
and S is a superconductor. In this chapter, we briefly introduce some of the relevant
physics. Concretely, we focus on the nonlocal Andreev reflection between the two
leads. The central issue is designing a system that allows successful experimental
detection of this nonlocal process. The reciprocal process, where a Cooper pair is
split into its two constituent electrons, is considered a natural source for generat-
ing entangled particles that may be useful in quantum computing, communication,
and cryptography technology. The goal of this chapter is to motivate the research
performed in [3] and to put our main findings into perspective.

7.1 Nonlocal experimental signature

In this section, we consider the X-S-X geometry shown in Fig. 7.1. The lower and
upper leads are referred to as lead 0 and lead 1, respectively. The relevant experi-
mental setup is obtained by keeping lead 0 at a finite voltage V and grounding both
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the superconductor and lead 1. This geometry induces local and nonlocal conduc-
tance in lead 0 and lead 1, respectively. The local and nonlocal conductances can
be measured separately by probing the appropriate lead. To calculate the conduc-
tances, we can use the scattering matrix approach discussed in Chapters 4 and 6.

Figure 7.1. The possible scattering processes in the X-S-X trilayer system are i)
local NR, ii) local AR, iii) nonlocal CT, and iv) nonlocal CAR. We assume that lead
0 is voltage biased, while the superconductor and lead 1 are grounded. The voltage
bias V induces local and nonlocal currents in lead 0 and lead 1, respectively. The
local (nonlocal) current is determined by competition between NR and AR (CT and
CAR).

In the relevant scattering problem, an electron is incident from lead 0, and there
are four possible scattering processes:

i) Local normal reflection (NR), where the incident electron is reflected back into
lead 0.

ii) Local AR, where the incident electron is reflected as a hole into lead 0.

iii) Nonlocal electron cotunnelling (CT), where the incident electron is transmitted
into lead 1.

iv) Nonlocal crossed Andreev reflection (CAR), where the incident electron is trans-
mitted as a hole into lead 1.

We assume that the excitation energy eV is smaller than the superconducting gap
∆0, so both AR and CAR can be clearly associated with Cooper pair formation in
the superconductor. In the regime eV > ∆0, AR and CAR can also result from the
propagation of electron-like and hole-like quasiparticles in the superconductor.
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Since electrons and holes carry opposite charges, their contributions are oppo-
site in the conductance. Generally, the local GL and nonlocal GNL conductance can
be expressed as

GL = G0 −GNR +GAR, and GNL = GCT −GCAR. (7.1)

Here, G0, GNR, GAR, GCT, and GCAR are the contributions to the conductance
from the incident electrons, local NR, local AR, nonlocal CT, and nonlocal CAR.
Importantly, we note that if CAR dominates CT, then the nonlocal conductance
is negative. The sign of nonlocal conductance is a direct experimental signature of
CAR-dominant transport. Unfortunately, the CAR process is delicate and is often
masked by more robust competing scattering processes. Of special significance is
the CT process because it makes a direct contribution to the nonlocal conductance
in the same lead as CAR. NR and AR are somewhat less important because their
direct contribution goes to the biased lead. In any case, to unambiguously detect
CAR, the optimal solution is to design a geometry where CAR is enhanced and
the competing scattering processes are suppressed. Additionally, to measure a fi-
nite nonlocal conductance, the width of the superconductor LS must be close to or
smaller than the superconducting coherence length ξ. For larger LS, the nonlocal
conductance becomes exponentially suppressed. In the limit LS → ∞, the local
conductance of the X-S-X trilayer becomes identical to the conductance of the X-S
bilayer, a useful consistency check.

7.2 Unmasking the crossed Andreev reflection

Numerous superconducting heterostructures of the form X-S-X have been theoret-
ically proposed to enhance CAR signals. Some well-known choices for X are nor-
mal metals (N) [224–227], ferromagnetic metals (F) [155, 228–231], two-dimensional
graphene (G) [232, 233], and topological insulators [234–239]. The experimental
detection of CAR and the simultaneous preservation of the entanglement in the
corresponding Cooper pair splitting process remain challenging issues. However,
there has been successful experimental detection in both N-S-N [240–245] and F-
S-F [246–250] junctions. Furthermore, enhanced CAR signals have been detected
when quantum dots were utilized [251–257]. Very recently, the experimental de-
tection of CAR utilizing oppositely doped graphene-based leads has been fruitful
[258, 259].

Nevertheless, current state-of-the-art theoretical and experimental proposals
require incredibly precise fine-tuning of the electronic structure and bias voltage,
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which may limit their technological applications. Additionally, utilizing ferromag-
nets may destroy the entanglement between quantum spins. We elaborate on this
issue in Sec. 7.2.3. One especially important parameter in the fine tuning in the
aforementioned experiments is the local Fermi energy in each lead. This motivates
utilizing two-dimensional systems where the local Fermi energy can be tuned by
applying appropriate gate voltages to the leads. In the following, we briefly discuss
the G-S-G, F-S-F, and AF-S-AF junctions embedded on a two-dimensional hexago-
nal lattice, which is the subject of [3]. To keep our discussion general, we discuss a
model that is applicable to systems in which ferromagnetism, antiferromagnetism,
and superconductivity are either intrinsic to the materials or induced by proximity.

7.2.1 Model

For materials with hexagonal lattices, the equation of motion governing electrons
(e) and holes (h) is the 2D Dirac-Bogoliubov-de Gennes (DBdG) equation,He +Hs-d(x)− EF(x) ∆(x)

∆∗(x) Hh −HT
s-d(x) + EF(x)

Ψ(x) = EΨ(x). (7.2)

Here, EF(x) is the local Fermi energy, which is experimentally controllable by a gate
voltage, and T is the transpose operator. For convenience, we introduce the Pauli
matrices s and σ in spin- and sublattice-space, respectively.

The kinetic term governing the free dynamics of the electrons and holes asso-
ciated with the K-point is

He(h) = ±vF p · σ. (7.3)

The possible magnetic s-d exchange interactions where the stationary spins have
order parameter m(x) are

Hs-d = J(x) (m(x) · s)⊗
 σ0, Ferromagnet,
σz, Antiferromagnet.

(7.4)

The mean-field superconducting gap coupling electrons and holes is given by

∆̃(x) = isy ⊗∆(x)σ0. (7.5)

The approximate size of the Cooper pairs is given by the superconducting coherence
length ξ = ~vF/∆. To ensure that the mean-field requirement of superconductivity
is satisfied, we assume that the Fermi energy in the superconductor is much larger
than the superconducting gap.
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For simplicity, we neglect the possible coexistence of magnetism and supercon-
ductivity close to the interfaces and assume step-function behavior

{J(x), EF(x), ∆(x)} =


{J,EF0, 0} , x < −LS

2 ,

{0, EFS, ∆0} , −LS
2 < x < LS

2 ,

{J,EF1, 0} , x > LS
2 .

(7.6)

Here, we introduced the constants {J,EFj, EFS, ∆0} and the subindex j = {0, 1},
which labels the lead. To justify the step-function behaviour of ∆(x) and J(x), we
assume that EFS � EFj. This requirement is equivalent to the Fermi wavelength
in the leads being much larger than the Fermi wavelength in the superconductor,
giving a large Fermi wavelength mismatch [154, 260]. In any case, we expect a
realistic spatial profile of the order parameters to result in only minor perturbative
quantitative changes to the nonlocal conductance.

To determine the local and nonlocal conductances, we consider a scattering
problem with incident electrons from lead 0. We then write the solution of the DBdG
equation in lead 0, the superconductor, and lead 1 and match the wavefunctions at
the interfaces. Concretely, we find the matching condition

i

s0 ⊗ σx 0
0 −s0 ⊗ σx

 [ψ(x+
0 )− ψ(x−0 )

]
=

ZV

s0 ⊗ σ0 0
0 −s0 ⊗ σ0

ψ(x0) + Zh
2

(m · s)⊗ (σ0 + σz) 0
0 − [(m · s)⊗ (σ0 + σz)]T

ψ(x0)

(7.7)

for the total wavefunction ψ(x), with an interface located at the position x = x0.
Here, ZV = V/~vF and Zh = h/~vF represent a potential barrier with strength V

and a potentially uncompensated magnetization h. In the following, we assume a
perfect interface with ZV = Zh = 0. We discuss interface effects in the supplemental
material of [3].

7.2.2 Graphene

To model the G-S-G junction where the leads are nonmagnetic graphene, we set the
s-d exchange interaction Hs-d to zero. To detect a CAR signal, it was theoretically
proposed to electron dope lead 0 and hole dope lead 1 by using a gate voltage [232];
the corresponding dispersion is shown in Fig. 7.2. At the Dirac points, the density
of states is zero. Consequently, if the bias voltage is tuned to exactly coincide with
the local Fermi energy, both AR and CT are blocked in favor of CAR, as sketched
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in Fig. 7.2. The dominant CAR signal leads to a resonant negative signal when
eV = EF < ∆0 in the nonlocal conductance, as shown in Fig. 7.2.

Figure 7.2. Left: The possible scattering processes in a G-S-G junction. The left
and right graphene layers are electron- and hole-doped, respectively. Note that when
eV = EF < ∆0, only CAR is possible in lead 1. Right: The resulting nonlocal
conductance as a function of the voltage bias and different gate-controllable local
Fermi energies.

Experimentally, it has been challenging to measure a CAR-dominant signal in
the G-S-G junction because of spatial fluctuations in the gate-controlled local Fermi
energy δEF, often referred to as electron-hole puddles. In monolayer graphene, the
local fluctuations are δEF ≈ 30 meV [261] or δEF ≈ 5.5 meV [262] when grown on
silicon oxide (SiO2) or hexagonal boron nitride (h-BN), respectively. The fluctua-
tions δEF usually exceed the value of the superconducting gap, of which a typical
value is ∆0 ≈ 1.1 meV in, e.g., niobium (Nb). Only recently has this problem been
circumvented by utilizing bilayer graphene instead of monolayer graphene [259] and
in a four-terminal geometry [258]. In addition to the fluctuations in δEF, a drawback
of the G-S-G junction is that the CAR-dominant signal is guaranteed only at the
specific voltage eV = EF.

7.2.3 Ferromagnets

In an F-S-F junction, it has been theoretically shown that a CAR-dominant voltage
is possible for all voltages eV < ∆0 [228, 263]. CAR dominates when the two
ferromagnetic magnetizations are antiparallel m0 = −m1 and the band structure
is tuned so that the density of states of minority spins is negligible compared to
majority spins. Specifically, the conditions JFM = EF and JFM � ∆0 > eV must be
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satisfied to obtain a negative nonlocal conductance where CT and AR are suppressed
in favor of CAR. Figure 7.3 shows the lead dispersions and nonlocal conductance in
the CAR-dominant regime for an F-S-F junction.

Figure 7.3. Left: The possible scattering processes in a hexagonal F-S-F junction
when the magnetizations in lead 0 and lead 1 are antiparallel and the bias voltage
is low eV � EF. Right: The resulting nonlocal conductance in lead 1. Completely
dominant CAR is possible only when eV < ∆0 � EF; when the inequality is violated,
CAR competes with CT.

However, utilizing ferromagnets may be unwanted, but not just because of their
coupling and production of stray fields. The CAR-dominant signal in an F-S-F junc-
tion rests on the suppressed density of states of minority and majority spins in leads
0 and 1, respectively. Effectively, this locks the spin orientation of the charge car-
riers, which in turn destroys their quantum entanglement [228, 233]. Nevertheless,
the F-S-F junction exhibits an experimentally realizable and controllable local and
nonlocal magnetoresistance that may have technological applications.

7.2.4 Antiferromagnets

To avoid the destruction of quantum entanglement and simultaneously obtain an
experimentally detectable CAR signal, the utilization of leads where the density of
states is spin degenerate is promising. Prominent candidates, with a large number of
possible experimental realizations, are two-dimensional, two-sublattice, and collinear
antiferromagnets. In paper [3], we investigate the possibility of CAR-dominant
transport in an AF-S-AF junction. The antiferromagnetic exchange interaction
induces a gap in the leads. The antiferromagnetic gap allows the possibility of
completely suppressing AR and CT in favor of CAR by electron doping lead 0 and
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hole doping lead 1, such that EF0 = −EF1 ≡ EF > 0. Specifically, we tune the local
Fermi energy such that EF = J > ∆0/2, resulting in CAR dominating the nonlocal
conductance for eV < ∆0. The relevant dispersion and resulting conductance are
shown in Fig. 7.4.

Figure 7.4. Left: the possible scattering process in a hexagonal AF-S-AF junction
when lead 0 and lead 1 are electron- and hole-doped, respectively. The induced
antiferromagnetic gap allows CAR to become the dominant scattering process when
the gate-controllable local Fermi energy is tuned appropriately. Right: The resulting
nonlocal conductance in lead 1 when EF = J > ∆0/2.

We also investigate the robustness of our result by lifting the specific condi-
tions EF = J > ∆0/2. By considering the possible band structures, we map out the
parameter space (EF, J) displaying where CAR is and is not masked by CT. The
complete parameter space is shown in Fig. 7.5. The figure shows that CAR domi-
nates the nonlocal conductance (blue region) when the deviation of the local Fermi
energy from the antiferromagnetic exchange energy is smaller than the voltage bias.
For larger deviations, the sign of the nonlocal conductance is determined by a com-
petition between CT and CAR (beige). If the exchange interaction is significantly
larger than both the local Fermi energy and the voltage bias, then the junction is
insulating, and the nonlocal conductance vanishes (red).

In contrast to a G-S-G junction, an AF-S-AF junction supports experimental
detection in the experimentally more accessible regime EF > ∆0. Additionally, a
dominant CAR signal in AF-S-AF junctions is predicted on a larger voltage interval
than that in G-S-G junctions.

Unlike ferromagnets, the density of states in antiferromagnets is spin degener-
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Figure 7.5. The parameter space (EF, J) of the total nonlocal conductance. The
CAR signal dominates in the blue region. CAR competes with CT in the beige
regions. The antiferromagnets are insulating, suppressing all transport properties in
the red region. In the special cases J = 0 and EF = 0, the leads are nonmagnetic
graphene and undoped antiferromagnets, respectively

ate. Consequently, we expect quantum entanglement between charge carriers to be
preserved in an AF-S-AF junction and destroyed in an F-S-F junction. Additionally,
in an F-S-F junction, it is necessary that J = EF and J � ∆0 so that the density
of states for minority spins is suppressed. To have CAR-dominant transport in an
AF-S-AF junction, these requirements are no longer as strict, as sketched in Fig.
7.5.

In contrast to the conclusions for G-S-G and F-S-F junctions, our results
suggest that an AF-S-AF junction exhibits electrically controllable, robust, and
entanglement-preserving CAR. The reciprocal Cooper pair-splitting process may
allow for the production of entangled electron pairs in solid-state quantum entan-
glement technologies. As a final remark, a recently published related work demon-
strated that it is also possible to enhance CAR in an AF-S-AF system without
opposite charge doping of the leads. Instead, the leads are subjected to an electric
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field and contain intrinsic SOC. Consequently, both the spin and valley degenera-
cies of the leads break, potentially allowing for an electric-field controllable nonlocal
conductance [264].



8
Conclusion and outlook

In the preceding chapters, we try to concisely introduce the physics necessary to
understand and motivate the attached research papers. After all, the research papers
[1–3] form the backbone of this thesis. The papers cover research within the subfields
of spin insulatronics and superconducting spintronics. A central and common theme
is how additional quantum mechanical degrees of freedom can be exploited to develop
new technologies in the future.

In our first paper [1], we investigated the role of disorder on spin-wave trans-
port. In one dimension, we found that disorder exponentially suppresses spin-wave
conductance, a hallmark of Anderson localization. It would be interesting to extend
our analysis to two and three dimensions, where we expect the Anderson localiza-
tion to become less pronounced. This expectation is based on the scaling theory of
Anderson localization in electronic systems [190].

We also developed a continuum theory for the transport properties of an
antiferromagnet-superconductor bilayer [2]. In agreement with previous literature
[204–207], we showed that the antiferromagnetic staggered field allows two unique
scattering processes: specular Andreev reflection and retroreflective normal reflec-
tion. The unique scattering processes have direct and observable consequences on
the electrical and thermal conductance of the system. Similar to the ferromagnet-
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superconductor bilayer, we showed that it is possible to tune the supercurrent with
a voltage bias. However, since the antiferromagnet produces a negligible magnetic
field, the antiferromagnet-superconductor bilayer may be more suitable for high-
density applications because it does not couple with stray fields or disturb other
surrounding components.

In a two-dimensional antiferromagnet-superconductor-antiferromagnet trilayer,
we showed that it was possible to suppress both Andreev reflection and electron
cotunnelling to enhance crossed Andreev reflection [3]. In this paper, we consid-
ered two-dimensional antiferromagnets with hexagonal lattices and gate-controllable
charge doping. If the two antiferromagnets are electron- and hole-doped, respec-
tively, we predict a robust and electrically controllable experimental signature of
crossed Andreev reflection in the nonlocal conductance. Enhancement of crossed
Andreev reflection has also been predicted using ferromagnets instead of antiferro-
magnets. However, when ferromagnets are used, spin entanglement is usually not
preserved because of spin splitting in the density of states [228, 233]. A promis-
ing technological application of crossed Andreev reflection is the reciprocal process
where a Cooper pair is split into two entangled electrons, which may be useful in
the development of solid-state quantum computers [265].

Papers [2] and [3] share possible extensions that would be interesting to explore,
which we briefly mention in Sec. 3.3.1. For instance, we used the approximation
that all energy scales are given by step functions. A fully self-consistent calculation
with interpenetrating antiferromagnetism and superconductivity may produce new
physics in devices where the length scales are on the order of the corresponding
coherence lengths. In addition, in both papers, we assumed the simplest type of
superconductivity, namely, the s-wave. It would of course also be interesting to study
more exotic forms of superconductivity, such as d-waves, which typically produce
zero-bias conductance peaks in superconducting junctions with normal metals or
ferromagnets.
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We present a scattering theory of transport through noncollinear disordered magnetic insulators. For con-
creteness, we study and compare the random field model (RFM) and the random anisotropy model (RAM).
The RFM and RAM are used to model random spin disorder systems and amorphous materials, respectively.
We utilize the Landauer-Büttiker formalism to compute the transmission probability and spin conductance of
one-dimensional disordered spin chains. The RFM and the RAM both exhibit Anderson localization, which
means that the transmission probability and spin conductance decay exponentially with the system length. We
define two localization lengths based on the transmission probability and the spin conductance, respectively.
Next, we numerically determine the relationship between the localization lengths and the strength of the disorder.
In the limit of weak disorder, we find that the localization lengths obey power laws and determine the critical
exponents. Our results are expressed via the universal exchange length and are therefore expected to be general.
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I. INTRODUCTION

In magnonics [1–8], the primary focus has recently been on
the propagation of spin waves through various types of mag-
netic insulators. A particular emphasis has been on ordered
systems, such as (anti)ferromagnets, and ferrimagnets. An
advantage is that the spin current may suffer less Joule heating
compared to electric currents, making insulator-magnonics
applications potentially much more energy efficient [3,9].
Numerous successful experiments have generated and manip-
ulated spin currents using the spin-Hall effect and the inverse
spin-Hall effect [10]. A common experimental setup consists
of sandwiching a magnetic insulator between two conductors
and using the spin-Hall effect to generate a spin current in the
left conductor that propagates through the magnetic insulator
and into the right conductor. The spin current in the right
conductor is converted into a charge current via the inverse
spin-Hall effect. This provides a useful method to measure
the spin current and infer the spin-transport properties of the
magnetic insulator [11–25].

A class of materials that has recently attracted attention in
the spintronics community is disordered magnetic insulators
[26–31]. Notably, a recent experiment claimed that a spin
current flowing through a sample of amorphous yttrium-iron-
garnet could travel tens of micrometers [32]. This distance
is comparable to the spin current propagation length in a
crystalline (anti)ferromagnet [25,33]. More generally, it is
crucial to study disordered magnetic materials because almost
all materials contain some degree of disorder, which will
affect the functional properties of magnonic devices. When
the disorder is sufficiently strong, the eigenstates become
trapped in a finite spatial region, completely suppressing the
transport properties. This phenomenon is known as Anderson
localization, and the first discussion of this phenomenon in
magnetic systems began in the 1960s [34–42]. Furthermore,
it has been shown that, even with a small onset of disorder,
the transport properties change from conductive to diffusive

[29,43], which has important consequences for magnonics
applications in low dimensions.

The common sources of quenched disorder in magnetic
insulators are (i) randomness due to anisotropies, local fields,
and amorphous structure and (ii) frustration due to competing
long-range exchange interactions. In this paper we focus on
magnetic insulators with quenched disorder due to (i). Two
models with these properties are the random field model
(RFM) and the random anisotropy model (RAM), where
the disorder is caused by the competition between the ex-
change interaction and the coupling to local random fields
and anisotropies, respectively. The RFM and RAM is used to
model quenched spin disorder and amorphous magnets, re-
spectively [44–49]. Experimental realizations of such systems
are plentiful [50–54].

Furthermore, there are two types of RFM/RAM spin
models. The first is the Ising model, where the spins are
scalars Si = ±1 and are randomly pointing either parallel or
antiparallel to each other in the ground state [55–62]. The
second type is the Heisenberg model, where the spins are
vectors Si that in the ground state are pointing noncollinearly
in random directions [63–68].

Because the ground state in the RFM/RAM Ising model
is relatively simple, it can often be studied efficiently with
analytical methods. For example, one can either solve the
equations of motion by a transfer matrix approach paralleling
Anderson’s celebrated work on disordered fermionic systems
[69,70] or one can use field-theory methods, particularly
the replica trick, replica symmetry breaking, and mean-field
theory [54,71,72]. Although the RFM/RAM Ising models are
analytically accessible, they are only simplified idealizations
of a real disordered magnet where the spins are noncollinear.
In this work, we wish to focus on systems with noncollinear
spins that are harder to describe analytically but exhibit more
realistic spin-wave dynamics.

Disordered magnetic insulators with a noncollinear ground
state are a notoriously difficult system to describe. Due to their

2469-9950/2019/100(13)/134431(10) 134431-1 ©2019 American Physical Society
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complexity, it is often useful to study the classical spin waves
of the system. Our work is related to a recent study [29,73]
in which the micromagnetic Landau-Lifshitz-Gilbert (LLG)
equation was solved using a quasimonochromatic Gaussian
wave packet as the initial condition. They found that the width
of the wave packet increases in time until it saturates around
the localization length of the system, which is a hallmark
of Anderson localization. In systems that exhibit Anderson
localization, the localization length decreases as the system
becomes more disordered. However, the exact relationship
between the localization length and the strength of disorder
is far from being well established in noncollinear disordered
magnetic insulators. In this work, we attempt to shed some
light on these issues.

The localization effect in spin models depends on the
dimensionality of the system, similar to disordered fermionic
systems [74]. For fermionic systems in one dimension, there is
Anderson localization; in two dimensions, the effect remains
present but much weaker, while in three dimensions, there is
the possibility of both a localized and a delocalized phase. The
same observations have been established for disordered mag-
nets [50,75]. We focus on one-dimensional spin chains. With
more computational time, this method can also be applied to
two- and three-dimensional systems.

The numerical method that we develop is based on the
Landauer-Büttiker formalism [76,77], which has proven to
be extremely useful in studying the transport properties of
electronic systems. To the best of our knowledge, such a
method has not previously been applied to the RFM/RAM
Heisenberg model. In this paper, we investigate the effect of
Anderson localization on the spin-wave transport properties
of a disordered magnetic insulator. To this end, we first
determine the relationship between the system size and the
transmission probability for different strengths of disorder and
then calculate the spin conductance. With this knowledge,
we can investigate how the localization length of the system
scales with the strength of the disorder. In particular, we
calculate and compare the critical exponents of the RFM and
the RAM. These quantities provide us with direct insights into
how the transport properties of the spin waves are affected by
the localization phenomenon that is present due to quenched
disorder.

We hope that this theoretical investigation may inspire
an experimental investigation into the transport properties
of disordered magnetic nanowires [78–82]. In particular, it
would be interesting to compare the experimental relationship
between the localization length and strength of disorder to the
critical exponents that we determine in this work.

The paper is organized as follows. In Sec. II, we introduce
the RFM and the RAM Hamiltonians and discuss their ground
state. In Sec. III we find the linearized equations of motion,
and derive expressions for the spin current and the spin
conductance. Section IV contains our numerical calculations
of the scattering properties of the system. In Sec. IV we
summarize our results.

II. THEORETICAL MODEL

In this section we carefully introduce the model we are in-
terested in studying. We start by presenting the Hamiltonians

FIG. 1. Disordered magnet (blue) is sandwiched between two
ferromagnets (red). In regions (i) and (iii), ni = ẑ, while in region
(ii) ni is uniformly distributed on the unit sphere. Consequently, the
spins in region (ii) point in random directions, while the spins deep
inside regions (i) and (iii) point in the z direction. The spins close to
the two interfaces rotate similar to the spins in a domain wall. The
length of the domain-wall-like region is illustrated and given by the
exchange length lex = √

J/Kd .

for the RFM and the RAM, and introduce the geometry. We
conclude this section by presenting a method to calculate the
classical metastable states.

A. Hamiltonian

To investigate the transport properties of one-dimensional
disordered noncollinear spin chains, we use the Hamiltonian

Hκ = −J
∑

i

Si · Si+1 − K
∑

i

(Si · ni )
κ+1, (1)

where κ = 0 and κ = 1 represent the RFM and the RAM,
respectively.

The dimensionless spins Si are attached to a one-
dimensional lattice with lattice spacing d . The exchange
interaction with J > 0 attempts to align the spins. The terms
proportional to K encapsulate the quenched disorder of the
system, and we choose K > 0 without loss of generality. Each
spin Si is coupled to a local random vector ni. The competition
between the exchange and the random interactions in Eq. (1)
results in a noncollinear disordered ground state. We use the
parameter K/J to characterize the strength of disorder.

B. Geometry

We consider a one-dimensional chain with N lattice sites.
The chain is split into three regions that we call (i) the left
lead, (ii) the random region, and (iii) the right lead; see Fig. 1.

In regions (i) and (iii), we let the number of spins be equal
to NL and NR, respectively. In addition, we let ni point in the
ẑ direction. In region (ii), we let the number of spins be equal
to Nrand and ni to point in some random direction uniformly
distributed on the unit sphere. Note that far away from the
random region (deep inside of the leads), the spins point in
the ẑ direction, while in the random region, the spins are
oriented randomly. In the regions close to the interface, the
spins are rotating in a domain-wall-like fashion. The length
of this domain-wall region is given by the exchange length
lex = √

J/Kd .
The scattering problem that we are interested in studying

can now be realized by exciting coherent spin waves in the
left lead propagating towards the random region. As the spin
wave approaches the random region, it will be scattered either
back into the left lead (reflection) or into the right lead

134431-2



SCATTERING THEORY OF TRANSPORT THROUGH … PHYSICAL REVIEW B 100, 134431 (2019)

(transmission). We assume semi-infinite leads such that NL

and NR −→ ∞.

C. Ground state

Determining the true ground state of a disordered magnet
(collinear or noncollinear) is a very challenging problem.
The primary reason is that the randomness results in free
energy with many nearly degenerate minima, separated by
high energy barriers. The problem of determining the exact
ground state of disordered systems is its own research field,
and we do not wish to address that problem here [83–94].
However, due to the high energy barriers, the probability of
tunneling between different metastable states is small. Hence,
in an experiment, the disordered magnet becomes trapped in
a state that may differ from the exact ground state when the
system is cooled down, depending on the history. Thus, in this
paper, we study the transport properties of disordered magnets
around classical metastable states.

We can find a classical metastable state of the system
by treating the spins as classical vectors obeying the LLG
equation of the form

dSi

dt
= −γ Si × Hκ

i − λSi × (
Si × Hκ

i ). (2)

Here, the first term with γ > 0 describes the spin Si precess-
ing around its instantaneous effective field Hκ

i = −δHκ/δSi,
while the second term describes the damping towards the
direction of the instantaneous effective field. The metastable
state is then obtained by specifying some arbitrary initial
configuration and allowing the spins to evolve according to
this equation for sufficiently long times t −→ ∞.

III. SCATTERING THEORY

In this section we outline the theoretical approach that we
will use to determine the transport properties of the RFM and
the RAM. We start by determining the linearized equations of
motion, and formulate the scattering problem. Finally, we de-
rive the expressions for the spin current and spin conductance
in the linear response regime.

A. Hamiltonian in terms of spin-wave operators

To study the transport properties of the system, we can
perform a Holstein-Primakoff expansion around one of the
metastable states. Let us at each site i define a local coordinate
system {êx(i), êy(i), êz(i)} such that êz(i) is parallel to the spin
at site i in the ground state. The spin operator in a low-lying
excited state can then be written as

Si = êz(i)Sz
i + êx(i)Sx

i + êy(i)Sy
i . (3)

We perform a Holstein-Primakoff transformation of the form

Sx
i ≈

√
S

2
(ai + a†

i ), (4a)

Sy
i ≈ −i

√
S

2
(ai − a†

i ), (4b)

Sz
i = S − a†

i ai. (4c)

In Eq. (4), we have only included the lowest-order terms
because we are not interested in studying the interactions
between the spin waves. If we substitute Eqs. (3) and (4) into
Eq. (1) and introduce the notations ê±(i) = êx(i) ± i êy(i) and
n±

i = nx
i ± iny

i , we obtain a Hamiltonian of the form

Hκ =
∑

i j

Aκ
i ja

†
i a j + Bκ

i jaia j + H.c., (5)

where

Aκ
i j = δi, j

{
JS êz(i)êz(i + 1) + 1

2
Knz

i

+ κ

[
KS

(
nz

i

)2 − 1

2
KSn−

i n+
i − 1

2
Knz

i

]}

− JS

2
δi, j+1ê−(i)ê+( j),

Bκ
i j = −κ

KS

2
(n−

i )2δi, j − JS

2
ê−(i)ê−(i + 1)δi, j+1. (6)

In the following, we will study the spin waves associated with
the Hamiltonian of Eq. (5).

B. Equations of motion

The equations of motion for the spin-wave operators can
now be calculated from the Heisenberg equation

d

dt
a±

i = i

h̄
[Hκ , a±

i ]. (7)

For clarity, we reinstate the spin operators {Sx
i , Sy

i } using
Eq. (4) and cast the equation of motion in the form

h̄
dSx

j

dt
= JS

{
êz( j)[êz( j + 1) + êz( j − 1)]Sy

j

− êy( j − 1)êy( j)Sy
j−1 − êx( j − 1)êy( j)Sx

j−1

− êy( j)êy( j + 1)Sy
j+1 − êy( j)êx( j + 1)Sx

j+1

}
+ Knz

jS
y
j + κ

{
2KS

(
nz

j

)2
Sy

j − 2KS
(
ny

j

)2
Sy

j

− 2KSnx
jn

y
jS

x
j − Knz

jS
y
j

}
, (8)

h̄
dSy

j

dt
= JS

{−êz( j)[êz( j + 1) + êz( j − 1)]Sx
j

+ êx( j − 1)êx( j)Sx
j−1 + êy( j − 1)êx( j)Sy

j−1

+ êx( j)êx( j + 1)Sx
j+1 + êx( j)êy( j + 1)Sy

j+1

}
− Knz

jS
x
j − κ

{
2KS

(
nz

j

)2
Sx

j

− 2KS
(
nx

j

)2
Sy

j − 2KSnx
jn

y
jS

y
j + Knz

jS
y
j

}
. (9)

Equations (8) and (9) are identical to the linearized classical
Landau-Lifshitz equations expressed in the local coordinate
system {êx( j), êy( j), êz( j)}. Since we are only interested in
studying how the intrinsic disorder affects the transport prop-
erties of the system, we have not included a Gilbert damping
term.
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C. Scattering problem and solution Ansatz

Equations (8) and (9) can be solved numerically in the
classical regime, where we treat the spin operators as classical
vectors. The spin-wave solutions are the normal modes of the
system and precess with the same frequency ω. Therefore, we
can factorize out the time dependence of the spin operators as
e−iωt .

Deep inside the leads, the spins at neighboring sites are
pointing in the z direction; see Fig. 1. This considerably
simplifies the equations of motion in the leads:

−ih̄ωSx
j = JS

(
2Sy

j − Sy
j−1 − Sy

j+1

)
+ K[1 + κ (2S − 1)]Sy

j ,

−ih̄ωSy
j = JS

( − 2Sx
j + Sx

j−1 + Sx
j+1

)
− K[1 + κ (2S − 1)]Sx

j . (10)

The system behaves as a ferromagnet with an external field
or intrinsic anisotropy in the z direction. The solutions are
therefore circularly polarized plane waves traveling with a
fixed wave number q and frequency ω. The dispersion relation
can be determined by substituting the Ansätze S j

x = eiq jd and
S j

y = −i eiq jd into Eq. (10). The result is

ε = h̄ω = 2JS(1 − cos qd ) + K[1 + κ (2S − 1)]. (11)

Let us now formulate the scattering problem. Deep inside
the regions (i) and (iii) in Fig. 1, we know that the solution
must have the form

Sx
j = eiq jd + rxe−iq jd , Sy

j = −i(eiq jd + rye−iq jd ) (12)

and

Sx
j = txeiq jd , Sy

j = −itye−iq jd , (13)

respectively. Inside region (ii), we know that the spin com-
ponents must satisfy Eqs. (8) and (9). Using the Ansätze as
boundary conditions, we have found a finite set of algebraic
equations that we can solve numerically to determine the
reflection and transmission amplitudes {rx, ry, tx, ty} as func-
tions of ε.

D. Spin current and conductance

Once we know the reflection and transmission amplitude,
we can calculate the spin conductance of the disordered
magnet utilizing the Landauer-Büttiker formalism in the linear
response regime. In this section, we derive the expression for
spin conductance.

In the leads, the Hamiltonian in Eq. (5) simplifies to

Hκ =
∑

i

{2JS + K[1 + κ (2S − 1)]}a†
i ai

− JS(a ja
†
j+1 + a†

j a j+1). (14)

From the equation of motion,

d

dt
Ni = i

h̄
[Ni, Hκ ]

= −iJS{(a†
j+1a j − a†

j a j+1) + (a†
j−1a j − a†

j a j−1)},
(15)

FIG. 2. Disordered magnet (blue) is sandwiched between two
ferromagnetic leads (red). The leads are connected to two spin
reservoirs (green) with spin accumulations μL and μR. The reservoirs
are in thermodynamic equilibrium such that the magnon population
is characterized by the Bose-Einstein distribution. A spin current is
induced when there is a nonzero spin bias δμ = μL − μR.

where Ni = a†
i ai is the number operator, and we can extract

the spin current from site j to j + 1 as

I j, j+1 = iJS(a†
j+1a j − a†

j a j+1). (16)

Now consider the situation in Fig. 2, where two reservoirs
in thermodynamic equilibrium are attached to two leads with
a scattering region between them. If the spin accumulation in
the left reservoir μL is greater than the spin accumulation in
the right reservoir μR, the spin current in Eq. (16) will flow
from the left to the right reservoir. We define the operators
αL,R(q) and βL,R(q) injecting and removing magnons with
wave numbers q into the leads, respectively. The relationship
between these operators is given by the scattering matrix(

βL(q)
βR(q)

)
=

(
r t ′
t r′

)(
αL(q)
αR(q)

)
, (17)

where r (r′) and t (t ′) are the reflection and transmission
amplitudes, respectively, for a spin wave originating from the
left (right) lead.

In the left lead, we can express aj as [95]

a j =
∫ π/d

0

dq

2π/d
[eiq jdαL(q) + eiq jdβL(q)]. (18)

If we substitute Eq. (18) and its complex conjugate into
Eq. (16) and utilize that the leads are in thermal equilibrium
with the reservoirs such that 〈α†

L,R(q1)αL,R(q2)〉 = 2π
d δ(q1 −

q2) fL,R(q1), we find that

〈I j, j+1〉 = 1

2π

∫ εmax

εmin

dε T (ε)[ fL(ε) − fR(ε)]. (19)

In this expression, fL,R(ε) represents the Bose-Einstein dis-
tributions in the left and right reservoirs, respectively, and
T (ε) = |t |2. The integration limits are obtained from Eq. (11).

Assume that the spin accumulation in the left lead is
μL = μ + δμ and that the spin accumulation in the right
lead is μR = μ, where δμ/μ 	 1. We find that, in the linear
response, the spin conductance is given by

G = 1

2π

∫ ε̃max

ε̃min

d ε̃ T (ε̃)

(
−df

d ε̃

)
. (20)

This result can also be derived using Green’s functions [96].
In Eq. (20), we are integrating over the dimensionless energies
ε̃ = ε/J . Energies outside of the integration interval result in
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FIG. 3. Behaviors of 〈T 〉 and 〈ln T 〉 as a function of ε̃ and K/J .

the spin waves in Eqs. (12) and (13) becoming evanescent
waves that do not contribute to the spin conductance.

IV. RESULTS AND DISCUSSION

For each realization of the system, we find that rx = ry ≡ r
and that tx = ty ≡ t , reflecting the fact that, inside the leads,
the spin waves are circularly polarized. Furthermore, we
define R = |r|2 and T = |t |2 as the reflection and transmission
probabilities, respectively, and find that R + T = 1. Since R
and T depend on the realization of the system, we must
perform an ensemble average 〈. . . 〉 to obtain physically mean-
ingful quantities. In our calculations, we used 103 different
realizations for the random vectors ni. In Fig. 3, we plotted
〈T 〉 and 〈ln T 〉 as a function of ε̃ for different values of K/J
and a fixed system length L = Nrandd . In the remainder of this
paper we set d = 1 for convenience.

A. Transmission probability

As the system becomes more disordered, the transmission
probability decreases for both the RFM and the RAM. How-
ever, Fig. 3 demonstrates that the quantitative behavior of
the localization is significantly different in the two models.
In both models, as K/J increases, the maxima 〈T 〉max and
〈ln T 〉max shift towards higher ε̃, but in the RAM, this shift
is greater than that in the RFM. In addition, the peak in the
transmission probability is wider in the RAM compared to the
RFM for small K/J . Thus a broader range of spin waves can
pass through the RAM compared to the RFM in the limit of
weak disorder.

We can understand the difference in width from the Hamil-
tonian in Eq. (1). In the RAM, the term causing disorder is
(Si · ni )2; thus the spin Si wants to point either parallel or
antiparallel to ni. The spin is also coupled to its neighbors
through the exchange interaction. Therefore, in the RAM,
whether the spin Si chooses to point parallel or antiparallel
to ni depends on the neighboring spins. Meanwhile, in the
RFM, the term causing disorder is Si · ni, and the spin wants
to only point parallel to ni. The ability to select whether to
point parallel or antiparallel to ni leads to the spin chains in
the RAM being less disordered than the spin chains in the

FIG. 4. Length dependence of the relative variances RVG, RVln G,
RVT , and RVln T for the RFM and the RAM. The strength of disorder
is K/J = 0.4.

RFM, which in turn leads to a broader peak in the transmission
probability.

B. Self-averaging

In disordered systems, certain quantities are not self-
averaging in the thermodynamic limit. This is well known in
disordered fermionic systems and is expected to be a general
feature of a broad spectrum of disordered systems [97]. A
test to determine whether a quantity O is self-averaging is
to check whether the relative variance RVO = Var(O)/〈O〉2

vanishes (or is sufficiently small) in the limit L −→ ∞. For the
fermionic 1D Anderson model with on-site disorder, one finds
that the transmission probability and hence the conductance
are not self-averaging [98]. In two and three dimensions,
one finds that the logarithms ln(T ), ln(G) are self-averaging
such that RVln G ∼ L−D (D = 2, 3) [97,99]. In one dimension
at finite temperature, one finds that ln G is only marginally
self-averaging because RVln G decays logarithmically with L
[99–101].

As expected, we find similar results in this work. Figure 4
shows that the relative variances RVT and RVG increase with
the length of the system. In addition, the relative variances
RVln T and RVln G decrease with the length of the system.
Hence, as the length of the system increases, the fluctuations
in T and G become much greater than the corresponding
expectation values, meaning that they are not representative
variables in the thermodynamic limit. Therefore, we use
{ln(T ), ln(G)}, rather than {T, G}, to calculate the localization
lengths of the system.

C. Localization length

In this work, it is natural to define two types of localization
lengths. The first is based on the maximum of the transmission
amplitude 〈ln T 〉max in Fig. 3. The second is based on the
conductance 〈ln G〉. We refer to these localization lengths as
L̃ln T and L̃ln G, respectively.
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FIG. 5. Length dependence of 〈ln G〉 and 〈ln T 〉max for the RFM
can be approximated with a linear fit. The strength of disorder is
K/J = 0.4 and the temperature is T̃ = 0.05.

In Fig. 5, we plotted 〈ln T 〉max and 〈ln G〉 as a function
of the system length L for a fixed K/J and temperature T̃ =
kT/J . We have performed a curve fit with the functions

〈ln T 〉max = L

L̃ln T
+ A (21)

and

〈ln G〉 = L

L̃ln G
+ B (22)

such that the localization length can be extracted as the
gradient of the straight lines in Fig. 5. In this particular case,
we found a coefficient of determination R2 with the value
R2 = 0.95 indicating a good fit. To determine the localization
lengths as a function of K/J , we performed straight line
curve fits for graphs such as those found in Fig. 5 but with
different K/J and T̃ . In all cases, we found that the coefficient
of determination was in the range (0.9,1) and that the aver-
age coefficient was 〈R2〉 = 0.95, indicating reasonably good
straight-line fits. By then calculating the gradient of these
straight lines, we can estimate the localization lengths as a
function of K/J .

1. Localization length from transmission

In Fig. 6, we plot the localization length L̃ln T and the 95%-
confidence interval for the RAM and RFM, respectively. In
both cases, we have performed a curve fit with the function

L̃ln T = η

(
K

J

)ν

+ ξ . (23)

The parameters (with confidence intervals) are displayed in
Table I. Similar to fermionic systems [102], we find that the
localization length decays monotonically as a power law as
we increase the strength of disorder. Our result can be made
more universal by introducing the exchange length such that

L̃ln T = η(lex)−2ν + ξ . (24)

FIG. 6. Behavior of L̃ln T as a function of K/J for the RAM
and the RFM, respectively. The line represents the numerical fit in
Eq. (23), the dashed lines represent the 95% confidence interval, and
the points with error bars represent the localization length calculated
from Eqs. (8) and (9) with standard error.

Note that, for weak disorder, the localization length is
greater in the RAM than in the RFM. This is a consequence
of the fact that the spin chains are less disordered in the RAM
compared to the RFM, as we discussed at the end of Sec. IV A.

2. Localization length from conductance

In Fig. 7, we plot L̃ln G as a function of K/J for different
temperatures T̃ . There is an interval K/J ≈ (0.5, 2) where
the localization length increases for small T̃ . Furthermore, for
sufficiently large T̃ , this interval vanishes such that the local-
ization length decays monotonically for all K/J . This nontriv-
ial behavior arises because there is a competition between the
temperature dependence of the broadening function −df /d ε̃

and the disorder dependence of the transmission probability
T (ε̃) in Eq. (20). As the temperature increases, the broadening
function excites an increasing number of magnons, which
in turn leads to a greater conductance. Meanwhile, as the
system becomes more disordered, the transmission probabil-
ity T (ε̃) decreases, resulting in a smaller conductance. On
the interval K/J ≈ (0.5, 2), the increase in conductance due
to temperature is greater than the decrease in conductance
due to disorder, which results in an increase in localization
length. Furthermore, in this interval, the localization length
is comparable to the lattice spacing d , which means that there

TABLE I. Numerical values of the parameters in Eq. (23) for the
RFM and the RAM. The brackets (. . . ) give the 95% confidence
interval.

RFM RAM

η 1.3 (0.7, 2.0) 0.2 (0.1, 0.3)
ν −1.2 (−1.4, −1.0) −2.2 (−2.4, −2.0)
ξ 1.1 (0.3, 1.9) 1.6 (1.0, 2.1)

134431-6



SCATTERING THEORY OF TRANSPORT THROUGH … PHYSICAL REVIEW B 100, 134431 (2019)

FIG. 7. Temperature dependence of L̃ln G for strongly disordered
magnetic insulators.

may be complicated microscopic details of the model that may
further enhance this effect.

Due to the complicated temperature and disorder depen-
dence, it is numerically challenging to determine a closed
formula such as the one in Eq. (23) for the localization length
L̃ln G. However, in the weak-disorder limit K/J −→ 0, it is
reasonable to assume that the localization length decays as
a power law of the form

Lln G ∼
(

K

J

)γ

= (lex)−2γ , (25)

where γ is the critical exponent. Figure 8 shows the result
of such a curve fit for the RFM and the RAM for different
temperatures. The corresponding critical exponents γRFM and
γRAM are given in Table II.

In our simulations, we kept the temperature below the
Curie temperature T̃ = 1, where the temperature fluctuations

TABLE II. Numerical values of the critical exponent for the RFM
and the RAM for different temperatures. The brackets (. . . ) provide
the 95% confidence interval.

T̃ γRFM γRAM

0.05 −3.8 (−4.3, −3.4) −1.9 (−2.3,−1.6)
0.1 −3.7 (−4.2,−3.2) −1.7 (−2.0,−1.4)
0.2 −3.6 (−4.1, −3.1) −1.3 (−1.6, −1.0)
0.5 −3.3 (−3.8,−2.8) −0.7 (−1.0, −0.4)

FIG. 8. Temperature dependence of L̃ln G in the limit of weak
disorder K/J −→ 0.

of the spins are negligible. For temperatures T̃ ≈ 1, there
will be additional temperature-induced disorder. This issue
has previously been investigated [73,103,104] by including
a temperature-dependent stochastic field in the effective field
Hκ

i in Eq. (2), and it was found that temperature fluctuations
shorten the localization length and enhance the Anderson
localization.

V. SUMMARY AND CONCLUSIONS

In this paper, we have applied the Landauer-Büttiker for-
malism to noncollinear disordered magnetic insulators. We
have considered both amorphous magnets and magnets with
spin disorder modeled by the RAM and the RFM, respec-
tively. We calculated the self-averaging quantities 〈ln T 〉 and
〈ln G〉 as a function of system length L for a broad range
of disorder strengths K/J . Consistent with the literature, we
found evidence for Anderson localization such that 〈ln T 〉
and 〈ln G〉 were linear functions of the system length L. This
allowed us to define two localization lengths L̃ln G and L̃ln T

based on the conductance and the maximum transmission
probability, respectively. In the limit of weak disorder, the
localization lengths obeyed power laws, and we calculated the
relevant critical exponents. We expect our results to be general
because they are expressed through the universal exchange
length lex.

We found that the Anderson localization is more prominent
in the RFM than in the RAM. The reason for this result is
that the competition between the exchange interaction and the
disorder term leads to more disordered spin chains in the RFM
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than in the RAM. The spin chains in the RAM are less disor-
dered because the disorder arises from a random anisotropy,
where the spin can point either parallel or antiparallel to the
anisotropy with the same energy cost. Whether the spin points
parallel or antiparallel to the anisotropy is determined by
the neighboring spins through the exchange interaction and,
consequently, the configuration with the least disorder will be
chosen by the system.

The results obtained here are valid in the limit of quenched
disorder, i.e., T̃ 	 1, where the random field and anisotropy
are temperature independent. If the temperature is close to
the Curie temperature of the system, one must include tem-
perature fluctuations in the Landau-Lifshitz equations. Such
effects have been considered in other works, and it has been
shown that temperature fluctuations decrease the localization
length.

To experimentally verify the critical exponents obtained
in this paper, we propose a setup in which a disordered
magnetic nanowire is sandwiched between two normal metals.
Similar setups for ordered magnets have been considered in
other works [11–25]. By applying a charge current in the left
metal, the spin-Hall effect generates a spin current through the
disordered nanowire and into the right metal. This will give

rise to a spin wave propagating through the hybrid structure
and into the right metal, where the spin current is converted
into a charge current via the inverse spin-Hall effect.

Alternatively, we can instead sandwich a disordered mag-
net between two ferromagnetic leads. We can excite spin
waves in the left ferromagnet by applying a microwave with
the ferromagnet resonance frequency. This spin wave will
then propagate through the disordered insulator and into the
right ferromagnet, where the resulting spin current can be
measured. By measuring the spin current propagating through
the disordered region, one should be able to characterize the
localization length in terms of the critical exponents of the
system.
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We demonstrate that antiferromagnet-superconductor (AF-S) junctions show qualitatively different transport
properties than normal metal–superconductor (N-S) and ferromagnet-superconductor (F-S) junctions. We at-
tribute these transport features to the presence of two different scattering processes in AF-S junctions, i.e.,
specular reflection of holes and retroreflection of electrons. Using the Blonder-Tinkham-Klapwijk formalism,
we find that the electrical and thermal conductances depend nontrivially on antiferromagnetic exchange strength,
voltage, and temperature bias. Furthermore, we show that the interplay between the Néel vector direction and
the interfacial Rashba spin-orbit coupling leads to a large anisotropic magnetoresistance. The unusual transport
properties make AF-S interfaces unique among the traditional condensed-matter-system-based superconducting
junctions.

DOI: 10.1103/PhysRevB.102.140504

Introduction. Heterostructures composed of superconduc-
tors and nonsuperconducting materials exhibit technologically
relevant quantum phenomena [1–8]. Examples include super-
conducting qubits [9–11], microwave resonators [12], single-
photon detectors [13], and AC Josephson junction lasers
[14]. Superconducting heterostructures also form the basis
for experimental methods such as point-contact spectroscopy
[15–17] and scanning tunneling spectroscopy [18,19], en-
abling the determination of the superconducting gap and
investigations of the phase diagram in unconventional super-
conductors [20–22].

The simplest superconducting heterostructure is a normal
metal (N)–superconductor (S) junction. The low-bias trans-
port is dominated by Andreev reflection (AR) [8,23,24]. In
conventional AR, an incident electron is retroreflected as a
hole of the opposite spin, and a Cooper pair is transmitted into
the S layer. Since the Cooper pair carries a charge of 2e and
zero heat, AR enhances electrical conductance and suppresses
thermal conductance [25–27]. In a Josephson junction (S-N-
S) [28], AR can occur repeatedly, resulting in Andreev bound
states that carry a supercurrent across the junction. Josephson
junctions enable technologies such as electrical and thermal
interferometers [29,30].

The spin dependence of AR at superconducting interfaces
causes the transport properties to change drastically when
ferromagnetic (F) layers are introduced [31]. The exchange
interaction splits the majority- and minority-spin bands in the
F layer, which reduces the AR amplitude and consequently
the conductance in a F-S junction [21,32]. However, finite
spin-orbit coupling (SOC) at the interface enables tunable
anisotropic spin-flipped AR, which can increase the electric
and thermal conductance [33–36]. S-F-S Josephson junctions
have been shown to exhibit spin-triplet pairing, potentially
enabling superconducting spin currents and qubits [2,3,37–

41]. However, the finite net magnetization of ferromagnets in
superconducting spintronics presents a significant drawback
for applications in nanoscale devices.

Antiferromagnets (AFs) are magnetically ordered materi-
als with zero net magnetization and negligible stray fields,
as well as intrinsic high-frequency dynamics. Thus, AFs are
promising candidates for novel high-density and ultrafast
spintronic-based nanodevices [42]. Based on these charac-
teristics and recent experimental developments, the emerging
field of antiferromagnetic spintronics has attracted intensive
interest [43–52]. Additionally, the possible coexistence of an-
tiferromagnetism with superconductivity [53–55] shows the
great potential of antiferromagnetic materials for application
in superconducting spintronics [31].

AF-S junctions have been theoretically shown to exhibit
additional scattering processes that differ from those in N(F)-
S junctions [56]. In Josephson junctions, these scattering
processes create low-energy bound states [57] that lead to
anomalous phase shifts [58] and atomic-scale 0-π transitions
[59–62]. However, although the existence of Josephson super-
currents in S-AF-S junctions has been experimentally reported
[63–68], other theoretical predictions have yet to be explored.

To our knowledge, the effect of these additional scattering
processes on the electrical and thermal transport in AF-S
bilayers remains an open question. In this Rapid Communica-
tion, we address this issue and point out unique experimental
signatures in the electrical and thermal conductance.

Model. We consider a collinear, two-sublattice AF metal
on a cubic lattice attached to a conventional s-wave supercon-
ductor. The AF and S are both semi-infinite and occupy the
regions z < 0 and z > 0, respectively. We assume a compen-
sated interface at z = 0.

To investigate the electrical and thermal transport, we use
the Blonder-Tinkham-Klapwijk (BTK) scattering formalism

2469-9950/2020/102(14)/140504(6) 140504-1 ©2020 American Physical Society
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[25], where the conductances are determined by the reflection
coefficients of the scattering matrix. We obtain the reflec-
tion coefficients by solving the Bogoliubov–de Gennes (BdG)
equation.

The BdG Hamiltonian of an AF-S junction in the con-
tinuum limit consists of a Hamiltonian for itinerant charge
carriers He, an antiferromagnetic exchange coupling HAF, an
interfacial barrier potential HI, and a Hamiltonian modeling
the S layer HS,

H = He + HAF + HI + HS. (1)

The Pauli matrices s, σ, and τ denote the spin, sublattice, and
charge degrees of freedom, respectively. We also define τ±

4 =
diag(1,±K ), where K represents complex conjugation, and
τ± = (τx ± iτy)/2.

The Hamiltonian governing the motion of the itinerant
charge carriers is [48,69,70]

He = γ (p) τz ⊗ σx ⊗ s0 − μτz ⊗ σ0 ⊗ s0, (2)

where γ (p) = (p2 − h̄2k2
0)/2m is the kinetic energy, p =

−ih̄∇ is the momentum operator, m is the effective mass of
the charge carriers, k0 is the wave vector at which γ (h̄k0) = 0,
and h̄ is the reduced Planck constant. The chemical potential is
μ = μAF�(−z) + μS�(z), where �(·) is the Heaviside step
function.

The s-d exchange interaction between localized antiferro-
magnetic moments and itinerant spins reads [48,69,70]

HAF = J τ−
4 ⊗ σz ⊗ (n · s), (3)

where J = J0�(−z) denotes the interaction strength and n =
(sin θ cos φ, sin θ sin φ, cos θ ) is the uniform Néel vector. We
assume strong anisotropy sets the direction of spins and sup-
presses quantum fluctuations. The interfacial potential is

HI = V τz ⊗ σ0 ⊗ s0 + λR τ+
4 ⊗ σx ⊗ [(s × q) · ẑ], (4)

where V = V0δ(z) is the strength of the spin-independent po-
tential barrier and λR = λ0δ(z) is the strength of the Rashba
SOC (RSOC) [71] due to the inversion symmetry breaking in
the z direction. These terms permit spin-conserving and spin-
flipped reflection processes, respectively. AR and spin-flipped
AR result in spin-singlet and spin-triplet Cooper pairs in S,
respectively.

Finally, we model the S layer using a mean-field BCS
Hamiltonian,

HS = �(T ) τ+ ⊗ (σ0 ⊗ isy) + H.c., (5)

where �(T ) = �0 tanh [1.74
√

(Tc/T ) − 1]�(z) is an interpo-
lation formula for the temperature-dependent gap of an s-wave
superconductor with a critical temperature Tc [72–74]. �0 is
the constant bulk value of the gap [57].

To determine the reflection coefficients, we solve the BdG
eigenvalue problem,

Hψ = Eψ, (6)

where ψ is an eigenvector with eigenvalue E > 0 (see the
Supplemental Material [75]). The x and y directions are trans-
lationally invariant. Hence, the eigenvector takes the form
ψ = χeiq‖·reiqzz, where q‖ = (qx, qy, 0) is the conserved com-
ponent of the wave vector parallel to the interface and qz is the

FIG. 1. (a) The allowed scattering processes [see Eq. (8)]. Elec-
trons (holes) are drawn as solid (open) circles. Incoming (reflected)
particles are represented by rightward (leftward) arrows. (b) A sketch
of the possible scattering processes that can occur at an AF-S
junction.

wave-vector component normal to the interface. The spinor χ

is expressed in the basis [75]

χ = (Ae↑, Ae↓, Be↑, Be↓, Ah↑, Ah↓, Bh↑, Bh↓). (7)

Here, A (B), ↑ (↓), and e (h) refer to sublattice, spin, and
charge degrees of freedom, respectively. Substituting the
eigenvector into Eq. (6) for z < 0, gives the wave vectors
qz = q±

e(h) in the AF layer,

q±
e(h) =

√
k2

0 − q2
‖ ± 2m

h̄2

√
[E + (−)μAF]2 − J2. (8)

Figure 1 shows a plot of the dispersion relations of the AF
layer given in Eq. (8), where the possible scattering processes
are identified. In contrast to an N(F)-S junction, an AF-S
junction permits both specular AR and retro normal reflection
(NR) [56–58].

In the following, we show how these two scattering mech-
anisms, i.e., retro NR and specular AR, affect the transport
properties of AF-S junctions.

Thermoelectric coefficients. To study electrical and thermal
transport, we assume that the AF is in contact with a biased
reservoir, and that the S is in contact with a reference reservoir.
Applying a bias voltage U or a temperature difference �T
through the junction induces an electric current or a heat
current, respectively. In the BTK formalism [25,26,76], the
differential charge (GC = dI/dU ) and heat (LQ = dI/d�T )
conductances read

GC = Ae2

4π3h̄

∫
dE d2q‖

1 − Re + Rh

4kBT cosh2
(

E−eU
2kBT

) , (9a)

LQ = AkB

4π3h̄

∫
dE d2q‖

E2(1 − Re − Rh)

[2kB(T + �T )]2 cosh2
[

E
2kB(T +�T )

] ,

(9b)

where A and T are the interfacial area and the thermal
equilibrium temperature, respectively. The total reflection
probabilities for electrons (e) and holes (h) are

Re(h) =
∑

s

(R+
e(h),s + R−

e(h),s). (10)

Here, R±
c,s is the reflection probability for particles with wave

vector q±
c , where c = e, h and s =↑,↓ [75]. AR results in a

net charge transfer of 2e, but zero heat transfer [77–79] across
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FIG. 2. The reflection probabilities as functions of the energy
E/�0, the barrier strength Z , and the exchange strength J0/μ. The
scattering processes associated with R−

e,h are absent at an N(F)-S
junction; they are the result of the additional degrees of freedom in an
AF. R−

e and R−
h correspond to retro NR and specular AR, respectively.

the interface; thus, AR increases the electrical conductance
and decreases the thermal conductance.

Numerical parameters. Before presenting our numerical
results, we introduce our dimensionless parameters: The
spin-independent barrier strength Z = V0m/h̄2q∗, the Rashba
strength λ = 2λ0m/h̄2q∗, and the exchange strength J0/μ.
Here, q2

∗ = k2
0 + q2

F, where q2
F = 2mμ/h̄2. For simplicity, we

set μAF = μS = μ and normalize the electrical and thermal
conductance with respect to the corresponding Sharvin con-
ductance [8]: G̃C = GC/GSh

C and L̃Q = LQ/LSh
Q . The Sharvin

electrical (thermal) conductance is the electrical (thermal)
conductance evaluated in the limit �0 = J0 = Z = 0, i.e., the
response functions of a normal metal with perfect transmis-
sion: GSh

C = e2q2
∗A/4π2 h̄ and LSh

Q = Ak2
BTcq2

∗/12h̄.
In our calculations, we estimate the effective mass to be

h̄2/2m = 0.5 eV nm2 based on a tight-binding model with
typical material parameters [48,69,70]. Furthermore, the su-
perconducting gap �0 is several orders of magnitude smaller
than the chemical potential μ. For concreteness, we set μ =
2 eV and allow the exchange strength to lie in the interval 0 <

J0/μ < 1, where the system is conducting. As J0/μ → 1, the
AF material becomes an insulator, and the transport properties
vanish. We consider the temperature range 0 < T/Tc < 1 so
that superconductivity does not break down.

Calculation of reflection probabilities. Figure 2 shows the
behavior of the reflection probabilities as functions of en-
ergy for different exchange strengths in both the transparent
(Z = 0) and tunneling (Z 	 1) regimes in the absence of
RSOC.

For simplicity, we first consider a transparent interface
(Z = 0) and the subgap regime (E < �0). In the normal metal
limit (J0 = 0), we find that retro AR is the dominant scatter-
ing process [25]. Retro NR and specular AR increase as the
exchange interaction J0 increases, because with the onset of
J0, the new scattering channels associated with the sublattice
degrees of freedom become available. In the supergap regime
(E > �0), electronlike and holelike charge carriers can prop-
agate in the S layer.

FIG. 3. The electrical conductance G̃C and the thermal conduc-
tance L̃Q as functions of the dimensionless voltage eU/�0 and
dimensionless temperature bias �T/Tc, respectively, for different
spin-independent barrier strengths Z and exchange strengths J0/μ.
The insets show the peak in the electrical conductance, and the per-
centage increase in the conductances as a function J0/μ, respectively.

If the interface is not transparent (Z 
= 0), AR is suppressed
while NR is enhanced, because fewer electrons are allowed to
enter the S layer to form Cooper pairs. Increasing J0 leads to
an increase in retro NR and a decrease in specular NR (see
Fig. 2).

Electrical and thermal conductance. In the following, we
elucidate experimental signatures in the response functions of
the system. To simplify the discussion, we only consider the
low-temperature limit T → 0 in Eqs. (9a) and (9b) in the rest
of this Rapid Communication. In Fig. 3, we plot the electrical
conductance and the thermal conductance as functions of the
voltage and temperature bias, respectively, for different ex-
change and barrier strengths in the absence of SOC.

First, we focus on the electrical conductance shown in
Fig. 3. In the absence of a barrier and exchange interaction,
the system behaves as a transparent N-S junction. In this
case, each electron incident from the N layer enters the S
layer and forms a Cooper pair, resulting in 100% retro AR;
consequently, the electrical conductance is G̃C = 2. As the
exchange strength increases, retro NR eventually becomes the
dominant scattering process. Thus, with increasing J0, less to-
tal charge is transported across the junction and the electrical
conductance decreases. In contrast to a F-S junction, we find a
sharp finite peak in the electrical conductance at eU/�0 = 1.

In the tunneling limit (Z = 10), the electrical conductance
is singular at eU/�0 = 1, which originates from the singular-
ity in the density of states (DOS) in the S layer.

In contrast to the electrical conductance, the thermal con-
ductance is suppressed by AR. The physical reason is that
Cooper pairs carry finite charge but zero heat across the junc-
tion. Therefore, for the thermal conductance to be finite, the
temperature must be so high that electronlike and holelike
particles can be transmitted into the S layer. Since higher
temperatures result in a greater transmission of particles, the
thermal conductance increases with increasing temperature
bias, as shown in Fig. 3.
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FIG. 4. Left: Zero-temperature electrical conductance G̃C of the
system as a function of the exchange strength J0/μ. The dashed-
dotted line represents the electrical conductance of a F-S junction
[32]. Right: The behavior of G̃C as a function J0/�0. The dashed
red line represents a numerical fit of the electrical conductance,
G̃C ∼ (J/�0 )−1.0.

In the transparent limit (Z = 0), the retro NR increases
with increasing exchange strength. Since less particles are
transmitted into the S layer, the thermal conductance de-
creases with increasing exchange strength. As the barrier
strength increases, even fewer particles are transmitted into
the S layer. In the tunneling limit (Z = 10), the thermal con-
ductance is strongly suppressed.

Figure 3 shows that, in the transparent limit, the increase
of exchange strength reduces both the electrical and thermal
conductance; by contrast, in the tunneling regime, the increase
in exchange strength increases both of them. This behavior oc-
curs due to the interplay between the exchange interaction and
the barrier in the supergap regime (E > �0), where tunneling
into the S layer is also allowed. In the tunneling limit, the
exchange interaction enhances the transmission of both elec-
tronlike and holelike particles into the S layer, consequently
increasing the electrical and thermal conductance.

To compare the AF-S junction with the F-S junction, we
plot the electrical conductance as a function of the exchange
strength in Fig. 4. In the F-S junction, the electrical conduc-
tance decreases linearly with increasing exchange strength,
G̃C ≈ 2(1 − J0/μ) [32]. However, in the AF-S junction, the
relationship between the electrical conductance and the ex-
change strength is more subtle. The electrical conductance
decays rapidly at small J0/μ, is almost constant for interme-
diate J0/μ, and decays as J0/μ → 1. We have checked that
these features are robust by varying m, μ, and �0 within the
experimentally relevant intervals. The right panel of Fig. 4
shows that the electrical conductance decays rapidly with
increasing exchange strength on an energy scale set by the su-
perconducting gap. In the regime where J0 
 �0, the system
behaves as an N-S junction, such that G̃C = 2. In the regime
J0 ∼ �0, we find that the reflection probabilities become de-
pendent on the angle of incidence [75]. For electrons close to
normal incidence, we find that retro AR dominates transport.
For electrons with an angle of incidence nearly parallel to the
interface, we find that retro AR is suppressed and specular NR
is enhanced. This sudden enhancement of specular NR leads
to the sharp decay of the electrical conductance observed in
Fig. 4. Numerically, we find that G̃c ∼ (J0/�0)−1.0 [75].

In the regime �0 
 J0 
 μ, the DOS in the AF layer is
approximately constant, and consequently, so is the electrical
conductance [75]. As J0/μ → 1, the AF layer starts to behave
as an insulator, suppressing all transport properties.

FIG. 5. The electrical AMR in an AF-S junction as a function of
the orientation θ of the Néel vector and the exchange strength J0/μ.
The inset show the dependence of the AMR maxima on the RSOC
strength λ.

Anisotropic magnetoresistance. So far, we have not con-
sidered the effect of finite interfacial RSOC, resulting from
the inversion symmetry breaking at the interface. For finite
interfacial RSOC, additional scattering channels are opened
in which spin-flip scattering is allowed. Spin-flipped AR al-
lows for the formation of spin-triplet Cooper pairs in the
S layer [33,36,80]. Recently, it has been found that in F-S
junctions, interfacial RSOC leads to a large anisotropic mag-
netoresistance (AMR) [33,81], while there is no AMR in N-S
junctions.

In the AF layer, the spin quantization axis is determined
by the Néel vector. Consequently, a finite interfacial RSOC
leads to anisotropy in the electrical and thermal conduc-
tance for an AF-S junction. Since we consider only an
interfacial RSOC with an inversion-breaking axis in the z
direction, this AMR depends only on the Néel vector’s polar
angle θ .

Figure 5 shows electrical AMR(θ ) = 1 − G̃(0)/G̃(θ ) as
a function of the Néel vector direction for a fixed RSOC
strength. We find that the minima and maxima occur at θ =
{0, π} and θ = π/2, respectively. The inset shows that the
maximum AMR increases with λ. The qualitative features of
the electrical and thermal AMR is identical. Thus, similar to
F-S junctions and in contrast to N-S junctions, AF-S junc-
tions show a strong AMR. In an AF-N junction (�0 → 0),
the electrical (thermal) AMR is approximately 75% smaller
(50% larger) than that in an AF-S junction. The simultaneous
enhancement of the electrical AMR and diminution of the
thermal AMR in an AF-S junction can be attributed to the
finite AR in the presence of the S layer.

Concluding remarks. We demonstrate that the electrical
and thermal conductance of AF-S junctions are qualitatively
different from those of N(F)-S junctions due to the emergence
of two scattering processes: Specular AR and retro NR. Fur-
thermore, we show that there is a large AMR in the presence
of a finite interfacial RSOC.

Our results reveal that superconducting spintronics based
on antiferromagnetic materials, opens a fascinating play-
ground for intriguing physical phenomena. We hope that this
theoretical study will inspire further experimental work on
AF-S heterostructures.
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and F. G. Aliev, Phys. Rev. Applied 13, 014030 (2020).

[82] C. González-Ruano, L. G. Johnsen, D. Caso, C. Tiusan, M.
Hehn, N. Banerjee, J. Linder, and F. G. Aliev, Phys. Rev. B
102, 020405(R) (2020).

140504-6



Supplemental Material:
Electrical and Thermal Transport in Antiferromagnet–Superconductor Junctions

Martin F. Jakobsen,1 Kristian B. Naess,1 Paramita Dutta,2, 3 Arne Brataas,1 and Alireza Qaiumzadeh1

1Center for Quantum Spintronics, Department of Physics,
Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

2Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden∗
3Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India

WAVEFUNCTION IN THE ANTIFERROMAGNET

The AF–S junction is governed by the Bogoliubov de-Gennes (BdG) equation

Hψ = Eψ, (1)

as given in the main text. Since the system is translationally invariant in the xy–plane the bulk eigenstates must be
of the form

ψ = χei(qxx+qyy)eiqzz, (2)

where qx and qy are unchanged upon reflection or transmission at the interface. By substitution of Eq. (2) into Eq. (1)
for z < 0 we obtain

qz = q±e =

√
k20 − q2

‖ ±
2m

~2

√
(E + µAF)

2 − J2, (3a)

qz = q±h =

√
k20 − q2

‖ ±
2m

~2

√
(E − µAF)

2 − J2, (3b)

where q‖ = (qx, qy), and

qz = q+e :

χ = χ+
e,↑ =

(
E + µAF + b, a,

√
(µAF + E)

2 − J2
0 , 0, 0, 0, 0, 0

)
,

χ = χ+
e,↓ =

(
a∗, µAF + E − b, 0,

√
(µAF + E)

2 − J2
0 , 0, 0, 0, 0

)
,

(4)

qz = q−e :

χ = χ−e,↑ =

(
−(E + µAF + b),−a,

√
(µAF + E)

2 − J2
0 , 0, 0, 0, 0, 0

)
,

χ = χ−e,↓ =

(
−a∗,− (µAF + E − b) , 0,

√
(µAF + E)

2 − J2
0 , 0, 0, 0, 0

)
,

(5)

qz = q+h :

χ = χ+
h,↑ =

(
0, 0, 0, 0, µAF − E + b, a∗,

√
(µAF − E)

2 − J2
0 , 0

)
,

χ = χ+
h,↓ =

(
0, 0, 0, 0, a, µAF − E − b, 0,

√
(µAF − E)

2 − J2
0

)
,

(6)

qz = q−h :

χ = χ−h,↑ =

(
0, 0, 0, 0,− (µAF − E + b) ,−a∗,

√
(µAF − E)

2 − J2
0 , 0

)
,

χ = χ−h,↓ =

(
0, 0, 0, 0,−a,− (µAF − E − b) , 0,

√
(µAF − E)

2 − J2
0

)
.

(7)
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Here a = eiφJ0 sin θ and b = J0 cos θ. Unlike the eigenvectors of F in the F-S junctions the eigenvectors depend on the
energy E, the chemical potential µAF, and the exchange interaction J0 [1–3]. In Fig. 1 we have plotted the branches
q±e,h, and the scattering processes we are considering.

FIG. 1. The dispersion relation and the allowed scattering processes in the AF. Electrons (holes) are drawn as filled (empty)
circles. The branches are parameterized as given in the figure. Incoming (reflected) particles are represented with a right (left)
arrow. The new scattering processes not present in N(F)-S junctions are the ones labelled by q−e,h. The processes contributing
to the conductances are the ones where E � µAF − J0. Higher energies are suppressed by the Fermi-Dirac distribution.

The wavefunction describing an incident electron from the AF is

ψAF =

{
eiq

+
e zχ+

e,↑ +
∑
σ e
−iq+e zr+e,σχ

+
e,σ + r−e,σe

iq−e zχ−e,σ + eiq
+
h zr+h,σχ

+
h,σ + r−h,σe

−iq−h zχ−h,σ, E < µAF − J0
eiq

+
e zχ+

e,↑ +
∑
σ e
−iq+e zr+e,σχ

+
e,σ + r−e,σe

iq−e zχ−e,σ + e−iq
+
h zr+h,σχ

+
h,σ + r−h,σe

iq−h zχ−h,σ, E > µAF − J0
(8)

where r±i represents the reflection amplitude for a particle being reflected to the branch q±i with i = e, h. For small
temperatures T < Tc the Fermi-Dirac distribution makes sure that only the scattering processes with E � µAF − J0
contributes to the electrical and thermal conductance. The sign in the exponents are determined by the z–component
of the group velocity vz = ∂E/∂qz of the corresponding branch in Fig. 1.

CALCULATING THE REFLECTION AMPLITUDES

By requiring that the wavefunction is continuous and integrating the BdG equation from z = 0− to z = 0+ we
obtain the matching conditions

ψAF

∣∣
z=0

= ψS
∣∣
z=0

,

~2

2m
τz ⊗ σx ⊗ s0

(
dψAF

dz

∣∣∣
z=0
− dψS

dz

∣∣∣
z=0

)
=
(
V τz ⊗ σ0 ⊗ s0 + λ0τ

+
4 ⊗ σx ⊗ [(s× q) · ẑ]

)
ψS(0).

(9)

Here ψAF and ψS denotes the wavefunction in the AF and S respectively. We use these equations to calculate the
reflection amplitudes in Eq. (8).

PROBABILITY AND CHARGE CURRENT

Let Φ be an arbitrary eigenvector of the Hamiltonian. By defining the probability and charge density as ρp = Φ†Φ
and ρC = e(|Φ1|2 + |Φ2|2 + |Φ3|2 + |Φ4|2− |Φ5|2− |Φ6|2− |Φ7|2− |Φ8|2) we evaluate dρp,Q/dt using the BdG equation
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to obtain the probability and charge currents

Jp =
~
m

∑

i=1,2

Im
(
Φ∗i ∂zΦi+2 + Φ∗i+2∂zΦi

)
− ~
m

∑

j=5,6

Im
(
Φ∗j∂zΦj+2 + Φ∗j+2∂zΦj

)
,

JC =
e~
m

∑

i=1,2

Im
(
Φ∗i ∂zΦi+2 + Φ∗i+2∂zΦi

)
+
e~
m

∑

j=5,6

Im
(
Φ∗j∂zΦj+2 + Φ∗j+2∂zΦj

)
.

(10)

We use Jp to evaluate the reflection probabilities R±i,σ in the main text. The heat current is identical to the probability
current except it includes a prefactor of E − µ, for a detailed discussion see [4]. The charge and heat conductances in
the main text are obtained from the charge and heat current by utilizing the BTK formalism [4, 5].

THE NORMAL METAL LIMIT

A crucial difference between the the N-S and AF-S junctions in our work is that the former has one physical lattice,
while the latter has two physical sublattices. This results in that taking the limit J0 −→ 0 can be subtle.

In Fig. 2 a) we have plotted the dispersion εN = ~2

2m (q2 − k20) which is valid in N. From the band diagram we can
see that there are only two reflection processes that are possible: NR (red) and AR (gray).

In Fig. 2 b) we have plotted the dispersions εAF = ±
√( ~

2m (q2 − k20)
)2

+ J2
0 in the AF, where there are two

sublattices. The gap is given by 2J0. From the band diagram we see that we obtain two additonal reflection processes
indicated by the empty blue and filled green circles.

When we naively take the limit J0 → 0 we obtain the two bands εAF = ± ~2

2m (q2− k20) shown in Fig. 2 c). However,

since the physics in Fig. 2 a) and c) should be the same it is clear that the band εAF = − ~2

2m (q2 − k20) is unphysical.
We confirm in the main text that the additional AR and NR associated with the unphysical band is zero in the limit
J0 → 0.

FIG. 2. The filled (empty) circles represents particles (holes). Incident (reflected) particles are represented by a right (left)

arrow. a) The dispersion relation εN = ~2
2m

(q2 − k20) in N. Here only specular NR and retro AR is possible. b) The dispersion

relation εAF = ±
√( ~

2m
(q2 − k20)

)2
+ J2

0 in AF, with two sublattices. In this case the additional scattering processes (green and

blue) are allowed, because there are no redundancies in the degrees of freedom associated with the lattice. Physically the green
and blue circles correspond to retro NR and specular AR. c) Naively taking the limit J0 → 0 gives the dispersion relations

εAF = ± ~2
2m

(q2 − k20) in the AF. Note that there is an additional band, due to the two sublattices compared to a). The crossed
out green (filled) and blue (empty) circles represents the scattering processes that are allowed in the AF-S junction but absent
in the N-S junction.

THE BEHAVIOR OF THE ELECTRICAL CONDUCTANCE

In order to understand the dependence of the angle of incidence it is useful to employ the Andreev approximation,
which utilizes that E and ∆0 typically is much smaller than µ and J0. In the AF the Andreev approximation reads
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q±e ≈ q±h ≈ q±, where

q± =

√
k20 − q2

‖ ±
2m

~2
√
µ2
AF − J2

0 . (11)

This equation result in two critical angles defined implicitly by the inequality

q2
‖ < k20 ±

2m

~2
√
µ2 − J2

0 ≡ k2±. (12)

We stress that the critical angle corresponding to k− plays no role in the N(F)-S junction because it originates from the

unphysical dispersion εAF (J0 = 0) = − ~2

2m (q2−k20), as discussed in the previous section. To elucidate the importance
of the additional critical angle we have plotted the reflection coefficients as function of q‖ and J0/∆0 in Fig. 3 for
Z = 0.

FIG. 3. Specular NR and retro AR as a function of q‖. Note that in the regime k− < q‖ < k+, specular NR is enhanced and
retro AR is suppressed when J0/∆0 6= 0, even in the transparent limit Z = 0.

Note that as soon as q‖ > k− and J0 6= 0 the retro AR decays, while the specular NR increases. This behaviour
results in the rapid decay of the electrical conductance shown in Fig. 4 in the main text. When Z 6= 0 this effect
vanishes because the barrier enhances specular NR and suppresses retro AR. In the case J0 = 0 the critical angle
defined by k− plays no role in the scattering problem, and we obtain perfect retro AR.

Note that in the regime where ∆0 / J0 � µ we can approximate the retro AR as

R+
h = 1−R+

e ≈
{

1, if q‖ < k−
k+−q‖
k+−k− , if q‖ ≥ k−.

(13)

This allows us to estimate the constant value of the zero-temperature conductance discussed in Fig. 4 in the main
text. In this regime we obtain

G̃C ≈
2

3

{
1 +

(
k−
k+

)
+

(
k−
k+

)2
}
≈ 1.71 (14)

where we made the approximation J0 � µ such that k± ≈ k20 ± k2F. We also provide an estimate for how quickly G̃c
decays as a function of J/∆0, by performing a curve fit with the function

G̃C ≈ α (J0/∆0)
β

+ ζ. (15)
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The results are provided in Tab. I.

TABLE I. The numerical values of the parameters in Eq. (15) for G̃C . The brackets (. . . ) give the 95% confidence interval.

Parameter Value 95%-Interval

α 0.118 (0.117, 0.119)

β −1.013 (−1.025,−1.001)

ζ 1.703 (1.702, 1.703)

DENSITY OF STATES

The density of states (DOS) in the AF is defined as

D(ε) =

∫
d3q

(2π)3
δ(ε− εAF(q)). (16)

In the AF εAF(q) = ±
√( ~2

2m (q2 − k20)
)2

+ J2
0 which gives

D(ε, J0) =
Θ(|ε| − J0)

2π2

m

~2
|ε|√
ε2 − J2

0

[√
k20 +

2m

~2
√
ε2 − J2

0 +

√
k20 −

2m

~2
√
ε2 − J2

0

]
. (17)

In Fig. 4 we have plotted the DOS in N and AF for J0/µ = 0.75. Note that the divergence at ε = J0 6= 0 induces a
strong asymmetry around the chemical potential, which increases with J0, in the DOS. The asymmetry comes from
the additional curvature of the dispersion in the AF, that we have sketched in Fig. 2 b). This growing asymmetry
results in that AR is reduced when J0 increases. We emphasize that the asymmetry present in the AF is fundamentally
different from the one present in F, which is induced by the exchange spin-splitting of the energy bands. For energies
ε < J0 the system behaves as a AF insulator, and no carriers are allowed to move.

FIG. 4. DOS in N and AF. The maximum energy is εmax =
√

(~2k20/2m)2 + J2
0 . We have normalized the DOS with respect to

its value in the normal metal at ε = 0. When J0 6= 0 there is a strong asymmetry caused by the non-parabolic band in the AF.
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INDIVIDUAL AMR CONTRIBUTIONS

In Fig. 5 we have resolved the total AMR, given in the main text, into its individual contributions. The specular

FIG. 5. The total and individual contributions to electrical AMR in an AF–S junction as a function of the orientation θ of the
Néel vector and the exchange strength J0/µ. The inset show the dependence of the AMR maxima on the RSOC strength λ.

NR and retro AR increases the AMR. The additional scattering processes retro NR and specular AR increases and
decreases the AMR respectively. The AMR occurs due to the complicated interplay between the interfacial Rashba
spin-orbit coupling and the direction of the Néel vector in the AF.

We find that the the new scattering processes R−e,h suppresses the conductance. This is another essential difference
when compared to the AMR in F–S junctions, and might lead to experimentally well-distinct variations of the AMR
amplitudes.
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We report generic and tunable crossed Andreev reflection (CAR) in a superconductor sandwiched
between two antiferromagnetic layers. We consider recent examples of two-dimensional magnets with
hexagonal lattices, where gate voltages control the carrier type and density, and predict a robust signature of
perfect CAR in the nonlocal differential conductance with one electron-doped and one hole-doped
antiferromagnetic lead. The magnetic field-free and spin-degenerate CAR signal is electrically controlled
and visible over a large voltage range, showing promise for solid-state quantum entanglement applications.
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Introduction.—In quantummechanics, identical particles
can form entangled pairs sharing a common wave function:
a measurement performed on one particle predetermines
the state of the other. Entanglement is a unique quantum
effect and was first experimentally verified using pairs of
linearly polarized photons [1,2]. Currently, entangled states
play a vital role in quantum computing, communication,
and cryptography technologies [3,4]. Nevertheless, large-
scale societal implementation requires entanglement in
solid-state devices over long distances.
Electrons in a Cooper pair can be spatially separated, but

remain spin and momentum entangled via a process called
Cooper pair splitting [5–7]. The time-reversed process
is called crossed Andreev reflection (CAR) or nonlocal
Andreev reflection. CAR is the nonlocal process of
converting an incoming electron from one voltage-biased
lead into an outgoing hole in another grounded lead via
Cooper pair formation in a grounded superconductor [8,9].
This process requires the distance between the two leads to
be comparable to or shorter than the superconducting
coherence length. A significant disadvantage in current
state-of-the-art technology is that two detrimental processes
often mask the CAR signal: (i) nonlocal electron cotunnel-
ing (CT) between the two leads and (ii) local Andreev
reflection (AR) in the voltage-biased lead. The optimal
solution, is to design a system that suppresses CT and AR
signals while enhancing CAR signals.
Presently, numerous superconducting heterostructures

have been proposed to enhance CAR signals utilizing
different leads, such as normal metals (NMs) [10–13],
ferromagnetic (FM) metals [9,14–17], two-dimensional
(2D) graphene [18,19], and topological insulators [20–25].
Conclusive experimental detection of CAR signals remains
challenging, but progress has been made by utilizing NM
leads [26–31], FM leads [32–36], quantum dots [37–43], and
very recently, graphene-based systems with opposite doping

levels in the two leads [5,44]. Nevertheless, most proposals
require fine-tuning of the electronic structure and bias
voltage. Furthermore, there are two additional disadvantages
associated with FM leads: First, stray fields limit the
potential use of FM systems in high-density applications.
Second, although in FM half metal leads, it is possible to
enhance the CAR signal when the magnetization of two
leads is antiparallel, the spin entanglement of the electrons is
simultaneously lost [14,19].
In this Letter, we propose utilizing 2D metallic anti-

ferromagnetic leads, to overcome these issues. Although
antiferromagnetic systems are magnetically staggered
ordered systems, they have negligible stray fields and their
degenerate spin states preserve entanglement.
Recently, antiferromagnets have revealed potential in

superconducting spintronics. For instance, at the antiferro-
magnet-superconductor interface, normal electron reflection
(NR) and AR have been demonstrated to be both specular
and retroreflective [45–59]. In heterostructures, these anoma-
lous processes fundamentally change the behavior of the
electrical and thermal conductance [45]. In Josephson
junctions, atomic-scale 0-π transitions [47–52] are predicted
to occur. The existence of Josephson effects has been
experimentally verified [53–59], but the remaining theoreti-
cal predictions have yet to be explored.
Herein, we investigate the suitability of an antiferromag-

net-superconductor-antiferromagnet (AF-S-AF) junction
with a 2D hexagonal lattice as a platform for experimental
detection and quantum applications of CAR signals. Our
model is general and applicable to systems in which
antiferromagnetism and superconductivity are either intrinsic
to the material or induced by proximity. We find a gate-
controllable window in parameter space, wherein both CT
and AR signals can be completely suppressed in favor of the
CAR signal. This robust experimental signature is expected
to be directly measurable over a wide range of applied bias
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voltages. Our prediction of enhanced CAR signals in
antiferromagnetic-based devices combined with recent
experimental advances in graphene-based junctions [5,44]
open a unique opportunity to realize efficient large-scale
Cooper pair splitters with immediate applications in solid-
state quantum entanglement technology.
Model.—We consider a superconductor of length LS

sandwiched between two semi-infinite 2D antiferromag-
netic metals with hexagonal lattices, forming a 2D AF-S-
AF junction along the x direction, as shown in Fig. 1. The
left lead (AF0), the superconductor (S), and the right lead
(AF1) occupy the regions x < −LS=2, −LS=2 < x < LS=2,
and x > LS=2, respectively. The dynamics of charge
carriers around the K point in the Brillouin zone are
governed by an eigenvalue problem HðxÞΨðxÞ ¼ EΨðxÞ,
where

HðxÞ ¼
"
He

AFðxÞ − EFðxÞ Δ̃ðxÞ
Δ̃†ðxÞ Hh

AFðxÞ þ EFðxÞ

#
ð1Þ

is the mean-field Bogoliubov–de Gennes (BdG)
Hamiltonian [60,61], and EFðxÞ is the local Fermi energy.
In 2D systems, EFðxÞ may be tuned by a gate voltage.
In the BdG Hamiltonian, the dynamics of low-energy

itinerant charge carriers in the hexagonal antiferromagnetic
leads around the K point are described by an effective
Dirac-like Hamiltonian for the electron subsector

He
AF¼HpþHsd and the hole subsector Hh

AF¼−Hp−HT
sd,

where T denotes the transpose operator. The kinetic
Hamiltonian of the antiferromagnet is

HpðxÞ ¼ vFs0 ⊗ ðσ · pÞ; ð2Þ

where vF, p ¼ −iℏð∂x; ∂yÞ, and ℏ denote the Fermi
velocity, 2D momentum operator, and reduced Planck
constant, respectively. In our notation, σ and s denote
the Pauli matrices in sublattice and spin space, respectively.
The antiferromagnetic s-d exchange interactions between
localized magnetic moments and itinerant electron spins are
described by

HsdðxÞ ¼ JðxÞ½nðxÞ · s� ⊗ σz: ð3Þ

Here, JðxÞ and nðxÞ denote the exchange strength and
staggered Néel vector direction, respectively. We consider
single-domain and collinear AFs with a uniform Néel
vector in each lead, nðxÞ¼nj, where the index j¼f0;1g
refers to the lead AFj. The misalignment angle between the
Néel vectors is δγ ¼ arccos ðn0 · n1Þ. The eigenenergies of
the 2D antiferromagnetic hexagonal Hamiltonian HeðhÞ

AF are

EAF ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏvFkÞ2 þ J2

p
, where k is the 2D wave vector

and þ and − refer to the conduction and valence bands,
respectively. Thus, the itinerant charge carriers around the
K point behave like massive Dirac particles with a band gap
of magnitude 2J induced by the antiferromagnetic s-d
exchange interaction (see Fig. 2).
We consider an s-wave superconductor described by

BCS theory where the superconducting gap in the two-
sublattice space is

Δ̃ðxÞ ¼ isy ⊗ ΔðxÞσ0: ð4Þ

The superconducting coherence length is given by
ξ ¼ ℏvF=Δ, which estimates the Cooper pair size. The
mean-field requirement of superconductivity is that the
local Fermi energy in the superconductor, EFS, is much
larger than the superconducting gap.
To illustrate the main concepts, and for clarity and

simplicity, we assume that all energy scales exhibit the
step-function behavior:

fJðxÞ; EFðxÞ;ΔðxÞg ¼

8>>><
>>>:

fJ0; EF0; 0g; x < − LS
2
;

f0; EFS;Δ0g; − LS
2
< x < LS

2
;

fJ1; EF1; 0g; x > LS
2
;

ð5Þ

where fJj; EFj; EFS;Δ0g are constants and j ¼ f0; 1g
refers to the lead AFj. We also assume that EFS ≫ EFj,
and that the interfaces are magnetically compensated and

FIG. 1. The scattering processes in the AF-S-AF junction. We
assume that AF0 is biased with voltage V, while S and AF1 are
grounded. An incoming electron in AF0 may undergo (i) NR,
(ii) AR, (iii) CT, or (iv) CAR. NR and AR contribute to the local
conductance measured in AF0, and CTand CAR contribute to the
nonlocal conductance measured in AF1.
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ideal. Interface effects are discussed in the Supplemental
Material (SM) [62].
Local and nonlocal conductance.—We consider that

AF0 is biased with voltage V, while S and AF1 are
grounded. Consequently, a local and nonlocal conductance
can be measured in AF0 and AF1, respectively. To
determine the local and nonlocal conductance, we consider
a scattering problem with an incident electron from AF0. In
general, the allowed scattering processes are (i) local NR,
(ii) local AR, (iii) nonlocal CT, and (iv) nonlocal CAR, as
shown schematically in Fig. 1. Using the Blonder-
Tinkham-Klapwijk formalism [63], the local conductance

GL ¼
X
s¼↑;↓

Z
∞

−∞
dε

�
−
∂f
∂ε

�
Gs

0ð2 −Gs
NR þ Gs

ARÞ ð6Þ

is determined by NR and AR, while the nonlocal
conductance

GNL ¼
X
s¼↑;↓

Z
∞

−∞
dε
�
−
∂f
∂ε

�
Gs

1ðGs
CT −Gs

CARÞ ð7Þ

is determined by CT and CAR. Note that CT and CAR
contribute with opposite signs in Eq. (7). Herein, s denotes
the spin degree of freedom, and Gs

j is the intrinsic
conductance of the lead AFj. The Fermi-Dirac distribution
of incident electrons in AF0 at temperature T is denoted by

f ¼ ðeβðε−eVÞ þ 1Þ−1, where β is the thermodynamic beta
and e is the elementary charge. Explicitly,

Gs
NRðARÞ ¼

Z
π=2

−π=2
dθ cos θRs

eðhÞ;

Gs
CTðCARÞ ¼

Z
π=2

−π=2
dθ cos θTs

eðhÞ; ð8Þ

where Rs
eðhÞ and Ts

eðhÞ are the spin-dependent probabilities

of NR (AR) and CT (CAR), respectively, and θ is the angle
of incidence for the incoming electron (see SM [62]). In the
following, we consider the zero temperature limit.
CAR enhancement.—As mentioned above, the antifer-

romagnetic s-d exchange interaction induces a band gap of
2Jj in each lead AFj. When a gate voltage is used to tune
the local Fermi energy EFj, it is possible to control the
contributions of different scattering processes to the total
nonlocal conductance. As an example, consider the case in
which EF0 ¼ −EF1 ¼ EF > Jj > 0, where AF0 is electron
doped and AF1 is hole doped, as depicted in Fig. 2. In this
case, CT is completely suppressed for bias voltages in
the interval EF − J1 < eV < EF þ J1. Furthermore, if we
set J0 ¼ J1 ¼ EF and EF=Δ0 > 1=2, then the CAR signal
becomes dominant for all voltages in the subgap regime,
eV=Δ0 < 1.
To study the CAR-dominant regime, we set J0 ¼ J1 ¼

J ¼ EF > 0, where both AR and CT processes are sup-
pressed simultaneously. For concreteness, we fix the length
of the superconductor to its coherence length LS ¼ ξ and
assume that the Néel vectors in the two leads are parallel
n0 ¼ n1. In Fig. 3(a), we plot the normalized nonlocal
conductance GNL ¼ GNL=

P
s G

s
1 at zero temperature as a

function of the voltage bias eV=Δ0 for the AF-S-AF
junction. If the applied voltage is less than the super-
conducting gap, that is, eV=Δ0 < 1, both the CT and AR
signals are completely suppressed due to the antiferromag-
netic exchange gap. In this regime, the nonlocal conduct-
ance is negative, and thus, the CAR signal is dominant. The
amplitude of the nonlocal conductance depends strongly on
LS=ξ; see the SM [62].
Thus far, we have considered the Néel vectors to be

parallel. We show in the inset in Fig. 3(a) that the amplitude
of the total nonlocal conductance varies with the misalign-
ment angle between the two Néel vectors, while its sign
remains unchanged. We attribute this anisotropic CAR
signal to the opening of spin-flip channels during the
scattering processes.
For completeness, we compare our result for 2D anti-

ferromagnetic hexagonal leads, as shown in Fig. 3(a), with
those of nonmagnetic graphene and 2D ferromagnetic
hexagonal leads, which have previously been reported in
the literature [14,18].
In Fig. 3(b), we plot the nonlocal conductance of an

NM-S-NM heterostructure, where NM is a graphene layer,

FIG. 2. The “relativistic” dispersions of itinerant electrons in
2D antiferromagnetic hexagonal lattices in the leads AF0 and AF1
are shown to the left and right, respectively. Electrons (holes) are
denoted by red (blue) circles. It is possible to block both AR and
CT signals to favor CAR signals by tuning the local Fermi energy
close to the gap induced by the antiferromagnetic exchange
interaction (gray region).
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by setting J ¼ 0 in the BdG Hamiltonian (1). In this
case, AR and CT are completely suppressed only at eV ¼
EF < Δ0 [18]. For other bias voltages, competition among
the AR, CT, and CAR signals occurs, which, for certain
parameters, can lead to a negative nonlocal conductance, as
shown in Fig. 3(b). In contrast, the nonlocal conductance in
the AF-S-AF junction is negative for all subgap voltages
under the conditions EF ¼ J and EF=Δ0 > 1=2. In the
NM-S-NM junction, the CAR dominant signal is predicted
only when the local Fermi energy is smaller than the
superconducting gap. In this regime, inevitable spatial
fluctuations in the carrier density, and consequently, the
local Fermi energy, in graphene layers are larger than the
superconducting gap and hinder experimental detection of
CAR signals [44,64]. In sharp contrast, in the AF-S-AF
junction, a CAR-dominant signal can be observed when the
local Fermi energy is larger than the superconducting gap.
We therefore expect experimental detection of the CAR-
dominant signal to be considerably easier in AF-S-AF
junctions than in 2D NM-S-NM junctions.

In 2D hexagonal FM-S-FM junctions, when the mag-
netization vectors in the two leads are parallel (antiparallel)
and both leads have the same charge doping, the CT (CAR)
signal dominates the total nonlocal conductance only if the
ferromagnetic exchange energy is equal to the local Fermi
energy and much larger than the superconducting gap [14].
These features are demonstrated in Fig. 3(c), where we plot
the nonlocal conductance of a 2D FM-S-FM junction in the
antiparallel configuration. As shown in the SM [62],
the sign of the total nonlocal conductance in FM-S-FM
junctions is very sensitive to the angle between two
magnetization vectors in the leads, in contrast to the
robustness of the sign of the total nonlocal conductance
in the antiferromagnetic case. We also emphasize that in 2D
hexagonal FM-S-FM junctions, a CAR-dominant regime is
only achieved when the exchange interaction is fine-tuned
to the Fermi energy of the ferromagnetic lead. However, in
this regime, the density of states for minority spins is
negligible, and thus, the electron spins in the two ferro-
magnetic leads cannot be totally entangled. In the anti-
ferromagnetic leads, the spins are degenerate and truly
spin-entangled particles can be generated in two spatially
separated leads.
Finally, we comment on the CAR-dominated signal in

the AF-S-AF junction when we relax the conditions EF ¼ J
and EF=Δ0 > 1=2 but still maintain J0 ¼ J1 ¼ J such that
both AR and CT are simultaneously nonzero. Figure 4
shows a sketch of the regions in the parameter space
ðEF; JÞ, where CT and CAR contribute to the nonlocal

FIG. 3. The total nonlocal conductance in CAR-dominant
configurations as a function of the applied voltage bias for
different 2D hexagonal heterostructures. (a) An AF-S-AF system
with parallel Néel vectors and opposite charge doping in the
leads, (b) an NM-S-NM system with opposite charge doping in
the leads, and (c) an FM-S-FM system with antiparallel mag-
netization vectors and the same charge doping in the leads. The
inset in (a) shows the angular dependence of the nonlocal
conductance versus the misalignment between the Néel vectors
in the two leads δγ ¼ arccos ðn0 · n1Þ, with an applied voltage
bias eV=Δ0 ¼ 0.5. In all figures, we have set the AF (FM) s-d
exchange interaction equal to the Fermi energy in both leads.

FIG. 4. Plot of the parameter space ðEF; JÞ of the total nonlocal
conductance. In the blue region, the CAR signal dominates. In the
beige regions, the CAR signal competes with CT. In the red
region, the antiferromagnetic leads are insulating, and the
conductance vanishes. J ¼ 0 and EF ¼ 0 represent limits in
which the leads are nonmagnetic graphene and undoped AFs,
respectively.
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conductance in the subgap regime eV=Δ0 < 1. We can
achieve perfect CAR if the deviation of the gate-controlled
local Fermi energy EF from the antiferromagnetic exchange
energy J is smaller than the voltage bias, as shown in the
light blue region. For larger deviations, as shown in the beige
region, competition between CT and CAR determines the
sign of the nonlocal conductance. Gradually, CT dominates,
resulting in positive nonlocal conductance for large devia-
tions. If the exchange interaction is significantly larger than
both the local Fermi energy and the voltage bias, then the
system behaves as an insulator with zero conductance, as
demonstrated by the red region. In the SM [62], we plot the
nonlocal conductance for specific material parameters,
demonstrating the general behavior shown in Fig. 4.
Concluding remarks.—We develop a general framework

for nonlocal transport in a 2D AF-S-AF heterostructure.
Perfect CAR is possible using a gate voltage to tune the
local Fermi energy close to the exchange strength, while the
two antiferromagnetic leads have opposite charge doping.
Our finding is quite generic for an important class of
collinear two-sublattice AF materials with either hexagonal
or square lattice structure. We propose a concrete exper-
imental requirement: the local Fermi energy deviation from
the antiferromagnetic exchange strength should be smaller
than the voltage bias. Typical values for the s-d exchange
interaction can vary from meV to eV [65,66], the super-
conducting gap is typically on the meV scale [44,67], and
the Fermi energy can be tuned by a gate voltage. Hence, 2D
antiferromagnetic-based heterostructures exhibit highly
electrically controllable Cooper pair splitting in a spin-
degenerate system and enable the production of truly
entangled electron pairs in solid-state quantum entangle-
ment devices.
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SCATTERING PROCESSES AND SNELL’S LAW

The local and nonlocal conductance in the main text is determined by the possible scattering processes available
in the junction. For brevity, we here consider only the antiferromagnet–superconductor–antiferromagnet (AF–S–AF)
junction where the spin is degenerate. The left (right) AF will be referred to as lead 0 (1).

Consider an incident electron (e) with angle of incidence θ in lead 0. The possible scattering processes are:

1. Reflected electron into lead 0 (NR) with angle of reflection θ0e .

2. Reflected hole into lead 0 (AR) with angle of reflection θ0h.

3. Transmitted electron into lead 1 (CT) with angle of transmission θ1e .

4. Transmitted hole into lead 1 (CAR) with angle of transmission θ1h.

Due to the translational invariance in the y-direction we can write down Snell’s law for the possible scattering processes,

k0e sin θ = k0e sin θ0e = k0h sin θ0h = k1e sin θ1e = k1h sin θ1h. (1)

Here the wavenumbers are

~vFkje(h) =
√

(EFj ± E)
2 − J2

j , (2)

and the index j = {0, 1} labels the lead. Equations (1) and (2) are used to determine the angles of reflection θ0e(h) and

transmission θ1e(h), for a given angle of incidence θ. Furthermore, the scattering processes AR, CT, and CAR have
the corresponding critical angles

θ0c,h = arcsin
k0h
k0e
, θ1c,e = arcsin

k1e
k0e
, and θ1c,h = arcsin

k1h
k0e
, (3)

respectively. For angles of incidence θ greater (smaller) than a given critical angle the corresponding scattering
processes is an evanescent (propagating) state, giving zero (finite) contribution to the relevant conductance.

SOLUTION ANSATZ OF THE BDG EQUATION

We can express the wavefunctions in lead 0, the superconductor, and lead 1 as

Ψ0 = ΨIn +
∑

s={P,AP}

(
re,sΨre,s + rh,sΨrh,s

)
,

ΨS =

8∑

i=1

aiΦi,

Ψ1 =
∑

s={P,AP}

(
te,sΨte,s + th,sΨth,s

)
,

(4)

respectively. Here Ψre(h),s
and Ψte(h),s

are the eigenstates corresponding to the scattering processes NR (AR) and CT
(CAR) in the leads. The eigenstates in the superconductor is denoted by Φi. The spin-index s = (A)P refers to the
spin polarization being (anti)parallel to the Néel vector. The reflection re(h),s and transmission te(h),s amplitudes are
then determined by requiring continuity of the wavefunction

Ψ0 (x = −LS/2) = ΨS (x = −LS/2) and ΨS (x = LS/2) = Ψ1 (x = LS/2) (5)

at the AF–S interfaces.



2

ROBUSTNESS OF THE CAR DOMINATED SIGNAL

In the main text we argued that a perfect CAR dominated signal can be obtained on the voltage interval (0,∆0) if
the gate voltage is tuned such that EF = J , and EF/∆0 > 1/2. We also discussed the robustness of deviations from
these assumptions. If the deviation of EF from J is greater than the voltage bias then CT dominates the sign of the
nonlocal conductance. In this section, we quantitatively demonstrate the competition between CT and CAR.

In Fig. 1 we have plotted the nonlocal conductance as a function of the parameters J and EF. Fig. 1 exhibits the
general behaviour of Fig. 4 in the main text. The system is insulating when J > eV +EF, and exhibits perfect CAR
when J > ± (eV − EF). When these inequalities are not satisfied there is a competition between CAR and CT, that
determines the sign of the nonlocal conductance.

FIG. 1. Nonlocal conductance as a function of J and EF. The figure is an example of the general behaviour discussed in Fig.
4 of the main text. We have used the concrete parameters LS/ξ = 1 and eV/∆0 = 0.8.

We can understand the general features of Fig. 1 analytically by considering the band structures of lead 1 and the
superconductor in the subgap regime eV/∆0 < 1 shown in Fig. 2. There are in total four cases to consider:

1. For ∆0 < EF − J , CT and CAR competes for all eV < ∆0.

2. For EF−J < ∆0 < EF +J , we find perfect CAR if EF−J < eV < ∆0, and competition between CT and CAR
if eV < EF − J .

3. For ∆0 > EF + J , we find perfect CAR if EF − J < eV < EF + J , and competition between CT and CAR on
the intervals eV < EF − J and EF + J < eV < ∆0.

4. For EF < J and eV < J − EF the system is insulating.

By solving these inequalities in terms of J we obtain Fig. 4 in the main text.
In Fig. 3 we have plotted the contributions from CT, CAR, and the total nonlocal conductance GNL as a function

of eV/∆0. We have parameterized the exchange interaction as

J = EF − l∆0. (6)

Here l is a numerical parameter that determines the deviation between EF and J in terms of ∆0. In Fig. 3 we have
performed a parameter sweep over l. Concretely we have let l be on the interval (0, 2). The figure shows that as
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FIG. 2. The possible scattering processes allowed in lead 1, depending on the relative values of J , EF, and ∆0.

the deviation parameter increases, CT gradually starts to dominate CAR resulting in a sign change of the nonlocal
conductance.

FIG. 3. A parameter sweep over the deviation parameter l. In the figure we have used the values l =
{0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2}, and fixed EF = 10∆0. The arrows indicate curves with increasing deviation pa-
rameter l. As the deviation parameter increases CT starts to gradually dominate CAR. Other choices of EF result in the same
qualitative behaviour.
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OSCILLATIONS IN THE NONLOCAL CONDUCTANCE

In Fig. 4 we have plotted the nonlocal conductance GNL as a function of the length of the superconductor LS/ξ,
for eV/∆0 = 0.5. We observe rapid oscillations, due to the formation of resonant transmission levels inside the
superconductor. The oscillation frequency is determined by the ratio ∆0/EFS. The oscillating behaviour is also present
in NM–S–NM and FM–S–FM junctions, as confirmed by previous studies referenced in the main text. Importantly,
CT is suppressed for all lengths LS/ξ, when EF = J and EF/∆0 > 1/2, resulting in a CAR dominant signal. The
nonlocal conductance is exponentially suppressed in the limit LS/ξ →∞, where the spatial separation of the electrons
in lead 0 and lead 1 is greater than the approximate length of a corresponding Cooper pair.

FIG. 4. Normalized nonlocal conductance GNL as a function of the length of the superconductor LS/ξ. Here ξ = ~vF/∆ is the
approximate length of a Cooper pair. We have set eV/∆0 = 0.5, EF/∆0 = J/∆0 = 10, and EFS/∆0 = 1000.
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ANISOTROPY IN CONDUCTANCE

In Fig. 5 we have plotted the normalized nonlocal conductance GNL as a function of the angle of misalignment
δγ = arccos (n0 · n1) between the order parameters n0 and n1 in lead 0 and lead 1 respectively. We have considered
the cases where lead 1 can be: electron (hole) doped (anti)ferromagnets. We have fixed J = EF = EF0 = −EF1,
LS/ξ = 1, and eV/∆0 = 0.5. In accordance with the literature mentioned in the main text we find a sign-change
effect for the electron doped FM1. Since, the energy bands are spin-degenerate in AF1 no sign-change effect is
observed. However, all magnetic junctions exhibit an anisotropy as a consequence of the misalignment between the
order parameters in lead 0 and lead 1. Notice that for the hole doped AF1 the nonlocal conductance is negative for
any misalignment.

FIG. 5. Normalized nonlocal conductance GNL as a function of the misalignment angle δγ between the order parameter vectors.
In all cases lead 0 is electron doped. These plots clearly show that the sign of the total nonlocal conductance is very sensitive
to the order parameter direction in FM leads, while it remains unchanged in AF leads.

INTERFACE EFFECTS

In the main text, we have assumed that the interface is i) ideal and ii) magnetically compensated. We here want
to investigate the effect of lifting these assumptions quantitatively. In the BdG Hamiltonian, interface effects can be
modelled by a delta-function-like potential. The interface Hamiltonian, incorporating i) and ii) is

HI =

[
HV +Hh 0

0 −HV −HT
h

]
δ(x− x0), (7)

where x0 is the position of the interface. We model a non–ideal interface with a spin-independent potential barrier of
strength V > 0,

HV = V s0 ⊗ σ0. (8)

To incorporate the effect of an uncompensated interface, we introduce the following spin-dependent potential

Hh =
h

2
(n(x) · s)⊗ (σ0 + σz) , (9)
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modelling a net magnetization with strength h. The Pauli matrices s and σ denote spin and sublattice degrees of
freedom.

Adding the interface potential, Eq. (7), to the BdG Hamiltonian of the main text, and integrating over the interface
at x0, we obtain the following continuity condition

i~vF τz ⊗ s0 ⊗ σx
[
ψ(x+0 )− ψ(x−0 )

]
=

[
V τz ⊗ s0 ⊗ σ0 +

h

2
τ4 ⊗ (n(x) · s)⊗ (σ0 + σz)

]
ψ(x0) (10)

where we introduced the Pauli matrices for charge degrees of freedom (electron/hole) τ and the matrix τ4 =
diag (1,−T ), where T represents the transpose operator.

To quantitatively investigate the effect of imperfect or uncompensated interfaces, we introduce the dimensionless
barrier strength ZV = V/~vF and the dimensionless uncompensated magnetic moment Zh = h/~vF respectively. In
Fig. 6, we demonstrate how the interface effects changes the non–local conductance.

An imperfect interface, modelled by spin-independent potential, does not suppress or qualitatively change the non–
local conductance, only a shift in the position of the conductance peak is observed. We attribute this behaviour to
the ”relativistic” effects associated with Klein-like tunnelling, masking the potential barrier for hexagonal lattices. In
non-relativistic Hamiltonians, like a square lattice AF system, we expect that the non–local conductance decreases
with increasing the barrier strength.

The effect of an uncompensated interface that leads to a net interface magnetization can be more dramatic. For
moderate net magnetizations at the interface, the amplitude of the non–local conductance is slightly reduced. For
larger net magnetizations at the interface, the conductance gradually decreases and vanishes completely in the limit of
very strong net magnetization. This occurs because a strong fixed-direction magnetization closes the spin-flip process
channels in the system. Since finite local and non–local ARs need a spin-flip channel, both are suppressed in the
strong magnetization regime. This leaves NR as the dominant scattering process and thus, both local and non–local
conductances are suppressed.

FIG. 6. Normalized nonlocal conductance GNL as a function of the potential barriers ZV and Zh parameterizing the transparency
of the interface and degree of uncompensated magnetic moments respectively.
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