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Abstract 

Energy harvesting based on transverse galloping of a square cylinder has been widely studied while the effects 

of angle of attack and corner shape remain unclear. This study proposes to explore the impacts of these two 

parameters on the characteristics and effectiveness of square-based galloping energy harvesting systems using 

a coupled fluid-structure-electrical model. It is demonstrated that the onset speed of instability is dependent on 

the electrical load resistance. Additionally, the load resistance value corresponding to the maximum onset 

speed of galloping is inversely proportional to the natural frequency of the energy harvester. Further, the onset 

wind speed of instability and the dynamic response of the energy harvester are largely affected by the angle of 

attack and corner shape. The rounded corners make the onset velocity less sensitive to the angle of attack. The 

considered square cylinders with different corner shapes exhibit the largest transverse displacements at the 

angle of attack α0 = 0°, while the displacements at α0 = 2° are only slightly lower than those at α0 = 0°. In 

general, the rounded corners slightly decrease the displacements and power outputs of the harvester. However, 

the rounded corners enhance the robustness of the harvester by making its performance less sensitive to the 

angle of attack within α0 = 0° ~ 6°. It is also shown that the type of instability is strongly dependent on the 

angle of attack and corner shape which may result in the presence of unexpected bifurcations, such as the 

subcritical and saddle-node ones. 

Keywords: Piezoelectric energy harvesting; transverse galloping; square cylinder; predefined angle of attack; 

corner shape
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1. Introduction 

Harvesting energy from mechanical vibrations is a promising technology for powering low-energy 

consumption devices including health monitoring and wireless sensor networks, actuators, and micro-

electromechanical systems [1, 2], etc. Energy harvesting from ambient vibrations has been largely investigated 

with considerable efforts conducted to broaden the effective bandwidth of harvesting energy from various 

vibration sources [3-5]. The following principles are often employed to harvest energy, e.g. piezoelectric [6], 

electromagnetic [7], triboelectric [8], and their combinations [9]. As a ubiquitous natural phenomenon, wind 

has already been working as a significant renewable energy resource [10, 11]. Thus, energy extraction based 

on wind-induced vibrations has raised considerable research attention [12-14]. 

Energy can be harvested from wind-induced vibrations through one of three well-known vibration 

mechanisms, i.e., vortex-induced vibrations [15-19], galloping [20-23], and flutter [24-26] although other 

vibration mechanisms also exist [27]. The transverse galloping of a bluff body, e.g., a square cylinder, has been 

widely studied as an energy harvester since it is effective once the onset wind velocity for galloping is achieved. 

Transverse galloping was first studied systematically by Den Hartog [28], who demonstrated that the onset 

velocity of galloping instability can be obtained using the quasi-steady aerodynamic theory. Parkinson and co-

authors [29, 30] showed that the vibration amplitude of transverse galloping can be well predicted by the quasi-

steady theory. Since then, the galloping of different structures, e.g., towers and power transmission lines, has 

been well studied. Barrero-Gil et al. [31] firstly demonstrated the possibility of harvesting energy from 

transverse galloping. They further carried out several theoretical studies on the performances of galloping-

based energy harvesters using a reduced-order model with the quasi-steady aerodynamic theory. Abdelkefi and 

co-authors [12, 20, 32-35] highlighted experimentally and numerically the influences on the effectivenesses of 

galloping energy harvesters of the tip body shape, the flow features (e.g., the Reynolds number), the accuracy 

of the aerodynamic force coefficients, and the inclined angle of the tip body relative to wind flow. Yang et al. 

[22] presented wind tunnel experiments to study the effectiveness of energy harvesters with several different 

cross-sections (e.g., square, rectangular, and triangular) as galloping bluff bodies. A comparison of these energy 

harvesters suggested that the one with a bluff body of square configuration has the greatest efficiency. Zhang 

et al. [36] conducted numerical simulations to study the effects of damping and mass properties on the 

effectiveness of a galloping energy harvester with a square bluff body. Based on wind tunnel experiments and 

numerical simulations, Wang et al. [17] designed a bluff body (composed of a half circular section and a half 

square section) for galloping-based energy harvesting. They showed that, compared with a suqare cylinder, 

their design can immensely reduce the threshold flow velocity for the occurrence of large vibrations and hence 
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beneficial for the output voltage. 

Despite extensive existing investigations in terms of galloping energy harvesters with square cylinder bluff 

bodies, the square cylinders are placed at a 0° angle of attack relative to the oncoming wind flow in almost all 

these studies. The influences of the predefined wind angle of attack on the effectiveness of a galloping-based 

energy harvester with a square cylinder bluff body remain unclear. Therefore, the robustness of the considered 

energy harvester with changing the angle of attack is unknown. Indeed, the angle of attack of an operating 

energy harvester varies with the oncoming flow direction, and hence it is necessary to evaluate the effectiveness 

of an energy harvester within a range of angles of attack. As is well known, the vibration mechanism (i.e., 

galloping, vortex-induced vibration, or combination of two mechanisms) of a square cylinder is dependent on 

the predefined wind angle of attack, mass ratio, and damping ratio. For a low-mass square cylinder (i.e., m∗ = 

2.2), Nemes et al. [37] and Zhao et al. [38] experimentally demonstrated that this prismatic cylindrical structure 

performed galloping instabilities for angles of attack 0° ~ 10°, while it exhibited vortex-induced vibrations in 

the range of 15° ~ 45°. Tang and Zhou [39] demonstrated that the effect of the predefined wind angle of attack 

on the mechanisms of a square cylinder is dependent on its mass ratio and spring stiffness. Zhang et al. [40] 

investigated the galloping vibrations of a rectangular cylinder at varying predefined angles of attack with the 

quasi-steady aerodynamic theory. They showed that the angle of attack affected both the onset wind speed for 

galloping instability and the vibratory amplitudes after the onset wind speed. 

The wind-induced vibration of a square cylinder (and hence the performance of a square-shaped galloping 

energy harvester) may be also largely influenced by its corner shape. Optimization of the corner shape may 

improve the efficiency or robustness of an energy harvester. Several optimal designs of corner shapes have 

been designed aiming at modifying the galloping response of a square bluff body [41]. Carassale et al. [42] 

showed that the aerodynamics of a square cylinder can be affected largely by changing its sharp corners into 

rounded ones. More specifically, the rounded corners resulted in a remarkable reduction of the onset galloping 

velocity at non-zero predefined angles of attack, which might be a beneficial feature for energy harvesting. 

The present paper investigates numerically the influences of the predefined wind angle of attack and the 

corner shape on the piezoelectric energy harvesting based on the transverse galloping of a square cylinder. A 

coupled fluid-structure-electrical model is developed to represent the system being analyzed, in which the 

aerodynamic part is approximated by the quasi-steady theory. Three bluff body configurations are considered, 

i.e., an ideal square cylinder with sharp-edge corners and two modified square cylinders with different rounded 

corner radii. The aerodynamic coefficients of these configurations originate from the experiments of Carassale 

et al. [42]. The effectivenesses of the considered energy harvester are analyzed for different angles of attack 
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and corner shapes. The rest of this study is organized into few sections. In section 2, the representative 

piezoaeroelastic model is derived with a particular focus on the impacts of the corner shape and angle of attack 

on the aerodynamic force representation. A discussion on the limits of applicability of the quasi-steady 

assumption for the galloping force and the piezoaeroelastic model verification is performed. After that, an 

exploration of the effects of the angle of attack and the corner shape on the onset velocity for galloping 

instability of the coupled system is examined and discussed in section 3. Then, in section 4, the bifurcation 

diagrams and performance of the piezoaeroelastic energy harvester under consideration are determined with 

focusing on the influences of the predefined angle of attack and corner shape on the displacement and harvested 

power. Section 5 concludes the most important results of this investigation. 

2. Representative model for galloping systems with predefined angle of attack and corner 

shapes 

As schematically shown in Figure 1(a), a typical galloping-based piezoelectric energy harvester includes a 

square cylinder as a tip body that is subjected to a wind speed U, and a cantilever beam bonded with a 

piezoelectric transducer. Figure 1(b) defines the predefined wind angle of attack α0, i.e., the angle between the 

wind flow and the chord line of the tip body. The rounded corner shape is quantified by the radius r of the 

corner, as illustrated in Figure 1(c), in which d is the width of the square cylinder. 

 

 
Figure 1. Galloping-based energy harvester: (a) schematic of energy harvester, (b) definition of angle of 

attack, and (c) definition of corner radius. 

The aerodynamic load on the tip body may lead to the oscillation of the cantilever beam and hence an 

electrical energy production at the piezoelectric transducer. According to the quasi-steady theory [29, 30], the 

aerodynamic load acting on the square cylinder can be approximated as: 

𝐹𝐹𝑥𝑥 = 0.5𝜌𝜌𝑈𝑈2𝑑𝑑𝐶𝐶𝐹𝐹𝐹𝐹 = 0.5𝜌𝜌𝑈𝑈2𝑑𝑑�𝐴𝐴𝑗𝑗 �𝛼𝛼0 +
𝑥̇𝑥
𝑈𝑈
�
𝑗𝑗𝐽𝐽

𝑗𝑗=1

 (1) 

where CFx represents the aerodynamic lift force coefficient, 𝜌𝜌 is the density of the fluid, Aj (j = 1 ~ J) are 

aerodynamic damping coefficients (which should be calculated based on a polynomial fitting of the CFx(α) 

data). Additionally, x denotes the displacement and the overdot indicates the derivative relative to time t.  
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In the quasi-steady aerodynamic theory, it is assumed that the time length required for the wind flow to 

travel over the structure and convert enough distance downstream is much smaller than the one of the structural 

oscillation. Hence, the accuracy of the theory is guaranteed only for cylinders with relatively high onset wind 

speeds of instability, that is, its accuracy in terms of simulating the galloping increases with increasing the 

mass-damping parameter (often represented by the Scruton number, Sc = 4πmξn/ρd2) of the cylinder [43]. 

The CFx(α) curves for ideal square cross-sections with sharp-edge corners were experimentally measured 

by several authors (e.g., Parkinson and Smith [29], Laneville [44], and Carassale et al. [42]), as presented in 

Figure 2. The results of Parkinson and Smith [29] and Carassale et al. [42] were measured in smooth flows 

with Reynolds numbers around 22,300 and 37,000, respectively, while the results of Laneville [44] were 

obtained in a turbulent flow field with an intensity of around 6.7% and Reynolds number around 33,000. 

Clearly, it can be noted from the presented data in Figure 2 that the linear and nonlinear galloping force 

coefficients of a sharp-edged square cylinder are insensitive to the Reynolds number but remarkably dependent 

on the turbulence intensity. This observation indicates the significance of accurately determining the 

environmental conditions where the energy harvester will be implemented. Indeed, the linear coefficient of 

this aerodynamic force will directly affect the onset speed of galloping instability and hence changes the self-

excited motion occurrence and the harvesting capabilities of the galloping-based energy harvester. As for the 

nonlinear coefficients of the galloping force, they have direct impact on the type of instability (e.g., 

supercritical or subcritical) with possible presence of the saddle node bifurcation. All these kinds of instabilities 

will be deeply discussed later.  
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Figure 2. Experimental and fitted aerodynamic coefficients as functions of angle of attack for square 

cylinders with sharp-edge corners (Case 1 from [42], Case 2 from [29], Case 3 from [44]). 

The plotted curves in Figure 3 presents the variations of the galloping force coefficient, CFx(α), for the 

square cylinders with different rounded corner radii, i.e., r/d = 0, 1/15, and 2/15, as experimentally measured 



6 

by [42]. Polynomial representations of these aerodynamic coefficients are listed in Table 1. The coefficients 

for Case 1 and two round-edge cylinders are fitted as 19th-order polynomials, while those for Cases 2 and 3 

adopt the fittings in [29] and [45], respectively. The roles of the angle of attack and corner shapes on the 

aerodynamic coefficients (and hence galloping responses) are clearly highlighted in the plots shown in Figure 

3. By further inspecting Figure 3, it is clear that both the linear and nonlinear characteristics of the galloping 

are affected by the shape corner of the cylindrical structure. In fact, high values of the galloping force 

coefficient takes place at smaller angles of attack when the rounded corner radius becomes more important. 

This may result in a change of the nonlinear coefficients of the galloping force representation and hence the 

changes in the type of instability and system’s response. In a quantitative observation of the coefficients shown 

in Table 1, it is clear that the linear coefficient of the galloping force is the same for r/d = 0 and r/d = 2/15 and 

hence it is expected that the onset speed of galloping will not be affected for these two cases when the angle 

of attack is zero. On the other hand, the linear coefficient of the corner shape of r/d = 1/15 is higher than the 

other two, and consequently, lower values of the onset speed of instability should take place for this case 

compared to r/d = 0 and r/d = 2/15 configurations when the angle of attack is zero. 
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Figure 3. Experimental and fitted aerodynamic coefficients as functions of angle of attack for square 

cylinders with different rounded corner radii (experimental data from [42]). 

Table 1. Polynomial representation of the galloping force. 
 A1 A3 A5 A7 A9 A11 A13 A15 A17 A19 

Case 1 
(r/d = 0) 3.68 −3.02e2 1.70e4 −4.44e5 6.11e6 −4.93e7 2.42e8 −7.15e8 1.17e9 −8.07e8 

Case 2 2.69 −1.68e2 6.27e4 −5.99e5 0 0 0 0 0 0 
Case 3 2.83 9.08e1 −4.25e4 3.01e5 0 0 0 0 0 0 
r/d = 1/15 4.51 −6.26e2 6.08e4 −2.57e6 5.04e7 −3.84e8 −1.76e9 5.28e10 −3.50e11 7.99e11 
r/d = 2/15 3.68 −5.98e2 1.08e5 −8.12e6 3.08e8 −6.69e9 8.67e10 −6.65e11 2.79e12 −4.91e12 

After presenting the galloping force using the quasi-steady approximation and determining the influence of 

the corner shape and angle of attack on its linear and nonlinear coefficients, a representative reduced-order 

model for the piezoaeroelastic energy harvesting system can be expressed as [33, 46]: 
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𝑚𝑚[𝑥̈𝑥(𝑡𝑡) + 2𝜔𝜔𝑛𝑛𝜉𝜉𝑛𝑛𝑥̇𝑥(𝑡𝑡) + 𝜔𝜔𝑛𝑛2𝑥𝑥(𝑡𝑡)] + 𝜃𝜃𝜃𝜃(𝑡𝑡) = 𝐹𝐹𝑥𝑥(𝑡𝑡) (2a) 

𝐶𝐶𝑝𝑝𝑉̇𝑉(𝑡𝑡) +
𝑉𝑉(𝑡𝑡)
𝑅𝑅

− 𝜃𝜃𝑥̇𝑥(𝑡𝑡) = 0 (2b) 

where the mechanical parameters include the equivalent mass per unit length m, the natural frequency ωn, and 

the damping ratio ξn; the electrical parameters include the capacitance of the piezoelectric layer Cp, the 

electrical load resistance R, and the electromechanical coupling coefficient 𝜃𝜃 ; the aerodynamic force is 

represented by Fx; V is generated voltage to be calculated. 

The nonlinear reduced-order model presented in equations (2a) and (2b) for the galloping-based aeroelastic 

energy harvesting system has been verified by several authors, e.g., [45, 47]. Following these comparative 

studies between the developed model and the experimental results, it can be concluded that this model can 

evaluate the response of the galloping-based energy harvesting systems with various predefined angles of 

attack and corner shapes that are considered in this investigation. It should be stated that the aerodynamic 

coefficients (and hence galloping behavior) of a cylindrical structure may be affected by several other 

parameters, e.g., the Reynolds number, the surface roughness, and the turbulent intensity. The aerodynamic 

coefficients of [42] were measured for cylinders without extra surface roughness in smooth flows. The effect 

of Reynolds number is insignificant for a sharp-edge cylinder, while the effect may be remarkable for a round-

edge cylinder. The effects of these parameters are not further investigated since they are not the main focus of 

this study. 

3. Effects of predefined angle of attack and corner shape on the onset galloping 

Next, the influences of the predefined wind angle of attack and corner shape on the effectiveness of 

galloping-based energy harvesting systems are explored and discussed. To this end, three bluff body 

configurations are analysed in this study, i.e., an ideal square cylinder with sharp-edge corners and two 

modified square cylinders with rounded corner radii r/d = 1/15 and 2/15, respectively. Following [46], the 

mechanical and electrical parameters used in the numerical simulations are m = 440 g/m, ξn = 0.0013, d = 1.5 

cm, θ = 1.55 mN/V, and Cp = 120 nF. 

The effects of the angle of attack, the corner shape, and the electrical load resistance on the onset wind 

speed for galloping instability are evaluated based on a linear analysis of the fluid-structure-electrical system. 

To this end, some state variables are firstly introduced as following: 

𝐙𝐙 = �
𝑍𝑍1
𝑍𝑍2
𝑍𝑍3
� = �

𝑋𝑋
𝑋𝑋′
𝐼𝐼
� (3) 

For a specific initial angle of attack α0, the equations of motion, that is, equation (2), is expressed as follows: 

𝐙𝐙′ = 𝐀𝐀𝐀𝐀 + 𝐍𝐍𝐍𝐍𝐍𝐍 (4) 
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where A is a matrix having all linear properties of the galloping-based energy harvesting system and NLT 

represents the nonlinear terms of the system’s equations of motion. 

It follows from equation (4) that three eigenvalues (λj, j = 1 ~ 3) of matrix A can take place for this model. 

Two of those eigenvalues are complex-conjugate and one of them is always negative due to the presence of 

the piezoelectric equation. The first two eigenvalues should describe the oscillatory motion of the energy 

harvesting system. Indeed, when the real part of these eigenvalues changes sign from negative to positive, the 

onset of instability takes place and hence self-excited motion becomes present. To this end, studying the effects 

of the corner shape, predefined angle of attack, and electrical load resistance on the stability of the galloping-

based energy harvester are analysed by solving the eigenvalues of the system for various flow speeds.  

Figure 4 presents the influence of the electrical load resistance on the onset galloping velocity for the energy 

harvester with the r/d = 1/15 cylinder at a 0° predefined wind angle of attack. The natural frequency of the 

energy harvester is assumed as fn = ωn/2π = 5, 10, 15, 20, 30, or 40 Hz. The onset galloping velocity for a pure 

aeroelastic system (i.e., a fluid-structure system without piezoelectric coupling effect) is known to depend on 

the mass ratio, damping ratio, and A1, i.e., Ur = 4m∗ξn/A1. For a system with a very low or very high load 

resistance, e.g., R < 103 Ω or R > 107 Ω, the onset velocity is almost identical to that of a pure fluid-structure 

system since the influence of piezoelectric coupling is weak. As observed from Figure 4, the onset galloping 

velocity varies insignificantly with load resistance when the resistance is very low or very high. The variation 

rate becomes larger in the medium range of load resistance, and a peak value of the onset velocity is achieved 

within R = 5×104 ~ 5×105 Ω depending on the natural frequency. Finally, the onset velocity depends 

insignificantly on load resistance for a harvester with a higher natural frequency because the shunt damping 

effect reduces when the natural frequency is increased. It should be mentioned that an increase of the natural 

frequency is accompanied by a decrease of the electrical load resistance at which the onset speed of galloping 

instability is maximum. This is expected because the optimal value of the load resistance for maximum global 

damping is inversely proportional to the natural frequency and capacitance of the energy harvester. 
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Figure 4. Variation of onset velocity for galloping instability versus electrical load resistance for energy 

harvester with r/d = 1/15 cylinder at 0° angle of attack. 

Figure 5 presents the variation of the onset wind velocity for galloping instability versus angle of attack for 

energy harvesters with three different bluff body configurations. The natural frequency considered here is fn 

=10 Hz. Four electrical load resistances are considered, namely, R = 104, 105, 106, and 107 Ω. For each bluff 

body configuration, the onset velocity for galloping instability first increases with the increase of wind angle 

of attack and then decreases to a value close to that at α0 = 0°. This global trend is similar to that observed for 

a pure aeroelastic system [42]. In a range of small angles of attack (α0 = 0° ~ 2°), the onset velocities of the 

three configurations are very close. The linear analysis suggests that the energy harvester with the sharp-edge 

square cylinder is effective around α0 = 0° ~ 2° and 8° ~ 10° while less effective around α0 = 3° ~ 7° due to the 

higher onset galloping velocity. It is important to note that the rounded corners make the onset velocity less 

sensitive to the angle of attack. The effective α0 range of the harvester is also changed by the corner shapes. 

For the three configurations, the slopes of the CFx(α) curves become negative, and hence no galloping vibration 

occurs for α0 > 10°, 8°, and 6°, respectively.  
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Figure 5. Variation of onset velocity for galloping instability versus angle of attack for harvesters with (a) 
sharp-edge cylinder, (b) r/d = 1/15 cylinder, and (c) r/d = 2/15 cylinder. 

The onset galloping velocities for energy harvesters with a load resistance of R = 106 Ω are listed in Table 

2. For small angles of attack (α0 = 0° ~ 2°), the onset galloping velocity varies insignificantly with the corner 

shape. This is expected since the slopes of the CFx(α) curves are close for the considered cylinders within this 

range of angles of attack, as shown in Figure 3. The range of α0 within which the cylinder is able to gallop 

shrinks with increasing r/d. The rounded corner also makes the onset velocity less sensitive to the angle of 

attack within α0 = 0° ~ 6°. 

Table 2. Onset galloping velocities (m/s) for energy harvesters with load resistance R = 106 Ω. 

α0 (°) sharp-edge 
cylinder 

r/d = 1/15 
cylinder 

r/d = 2/15 
cylinder 

0 3.29 2.68 3.29 
1 3.55 3.05 3.80 
2 4.48 4.58 5.50 
3 6.81 9.32 6.77 
4 12.61 16.54 4.77 
5 23.13 9.40 3.16 
6 19.85 4.71 2.94 
7 10.37 3.43 stable 
8 6.21 3.97 stable 
9 4.70 stable stable 
10 4.56 stable stable 

4. Impacts of the predefined angle of attack and corner shape on the harvester’s performance 

The nonlinear feature of the fluid-structure-electrical system is further analyzed in this section to study the 

impacts of the predefined angle of attack and the corner shape on the vibrational response and energy-

generating of the present energy harvester. The mechanical and electrical parameters are m = 440 g/m, ξn = 

0.0013, fn =10 Hz, d = 1.5 cm, θ = 1.55 mN/V, and Cp = 120 nF. The equations of motion of the system are 

integrated in the time-domain using the standard Newmark-β algorithm. During the simulation, the wind speed 

is initiated from 0 m/s and increased to 10 m/s with a 0.1 m/s step. Hence, the simulations are conducted within 
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0 to 10 m/s. The initial displacement, initial velocity, and initial voltage at the first analyzed wind speed (i.e. 0 

m/s) are set as 0.01d, 0, and 0, respectively. To simulate the continuously increasing wind speed that is often 

conducted in a wind tunnel experiment, the initial displacement for any other wind speed is determined as the 

steady-state vibration amplitude of the formerly analysed speed while the initial velocity and initial voltage 

are 0. It is found that a normalized time step of Δτ = 1/100 is refined enough to ensure the simulation accuracy. 

The system response at each wind speed should be simulated for a sufficiently long duration so that the steady-

state response is achieved. It should be noted that the bifurcation behavior of the energy harvester may be 

different if the simulation is performed by increasing or decreasing the oncoming flow velocity. For example, 

a supercritical Hopf bifurcation occurs at the onset speed of instability. In this case, a smooth increase in the 

oscillatory amplitude takes place and the increasing/decreasing of the flow speed does not change the 

bifurcation diagram of the system under investigation. On the other hand, if the increasing/decreasing of the 

flow speed results in the presence of hysteresis region or an increase in the flow speed leads to a sudden jump 

at the onset of instability, a subcritical Hopf bifurcation takes place. A  saddle-node bifurcation may also occur. 

In fact, in this case, a supercritical instability with a smooth transition takes place at the onset speed of galloping 

and then a subcritical jump exists. Details of the bifurcation behaviors can be found in [35]. 

The bifurcation diagrams plots shown in Figures 6-8 present the effects of angle of attack and electrical 

load resistance on the transverse displacement of the energy harvesters with three bluff body configurations. 

As seen from the figures, both the onset velocity for instability and the increasing rate of the bifurcation curve 

may be affected by the angle of attack. All three cylinders exhibit the largest transverse displacements at the 

angle of attack α0 = 0°, while the displacements at α0 = 2° are only slightly lower than those at α0 = 0°. For the 

sharp-edge cylinder with R = 104, 105, and 106, no galloping vibration occurs at α0 = 4° and 6° within the 

considered flow velocity range. This is expected from the linear analysis because the onset galloping velocities 

for these angles of attack are much higher than 10 m/s, as shown in Figure 5. Galloping vibrations are again 

observed at α0 = 8° and 10°. Although the onset velocities at α0 = 2° and 10° are almost consistent, the cylinder 

has very different galloping responses at these two angles of attack. Furthermore, it is noted that the transverse 

displacements are considerably smaller for the medium values of load resistance, i.e., around R = 105 Ω. 

A comparison of Figures 6-8 suggests that the galloping response is largely affected by the corner shape. 

For the cylinder with r/d = 1/15, no galloping vibration occurs at α0 = 4° within the considered flow velocity 

range. This is also expected from the linear analysis in section 3 since the onset galloping velocity for this 

angle of attack is much higher than 10 m/s. For the cylinder with r/d = 2/15, galloping vibrations are observed 

for all angles of attack within α0 = 0° ~ 6°. Therefore, the effective α0 range is expected to be larger for an 
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energy harvester with a round-edge cylinder if the cylinder is originally placed at a 0° angle of attack (as is 

usually done in previous studies). It is also noted that the rounded corners slightly decrease the transverse 

displacements of the energy harvesters.  

Inspecting the bifurcation diagrams in Figures 6-8, it is clear that the predefined angle of attack may change 

the instability of the energy harvester. Indeed, for the sharp edge square cylinder, a saddle-node bifurcation 

(not shown in the figures since only the responses of the increasing velocity simulation are presented) with the 

presence of a subcritical jump takes place when α0 = 0° and 2° and disappears when the predefined angle of 

attack is increased to higher values (α0 = 8° and α0 =10°), after which a supercritical Hopf bifurcation occurs 

at the onset velocity, as shown in Figures 6(a), (b), and (d). Some specific scenarios of the predefined angle of 

attack and corner shape results in the presence of the subcritical Hopf bifurcation, such as the case when α0 = 

4° for the sharp edge square cylinder and α0 = 2° for the energy harvester with r/d = 2/15 cylinder, as depicted 

in Figure 6(d) and Figures 8(a-d), respectively. This means that the predefined angle of attack and corner shape 

strongly affect the onset speed of galloping instability and the type of instability of the system.  
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Figure 6. Displacement bifurcation diagrams for energy harvester with sharp-edge cylinder at various 
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predefined angles of attack and load resistances: (a) R = 104 Ω, (b) R = 105 Ω, (c) R = 106 Ω, and (d) R = 107 
Ω. 
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Figure 7. Displacement bifurcation diagrams for energy harvester with r/d = 1/15 cylinder at various 
predefined angles of attack and load resistances: (a) R = 104 Ω, (b) R = 105 Ω, (c) R = 106 Ω, and (d) R = 107 

Ω. 
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Figure 8. Displacement bifurcation diagrams for energy harvester with r/d = 2/15 cylinder at various 
predefined angles of attack and load resistances: (a) R = 104 Ω, (b) R = 105 Ω, (c) R = 106 Ω, and (d) R = 107 

Ω. 

To examine the effects of the predefined angle of attack and corner shape on the energy harvester’s 

performance, Figures 9-11 show, respectively, the variation of power output versus flow velocity for the 

harvester with the sharp-edge cylinder, the cylinder with r/d = 1/15, and the cylinder with r/d = 2/15. The 

results show that the power outputs of all cylinders are largely affected by the predefined angle of attack. The 

considered energy harvesters yield the highest levels of power outputs around R = 104 or 106 Ω at relatively 

high flow velocities, which will be further studied later. The energy harvester with the sharp-edge cylinder is 

effective around α0 = 0°, 2°, 8°, and 10°, but it is ineffective around α0 = 4° and 6°. The harvester with the r/d 

= 1/15 cylinder is effective around α0 = 0°, 2°, 6°, and 8°, but it is ineffective around α0 = 4°. Finally, the 

harvester with the r/d = 2/15 cylinder is effective within the range of α0 = 0° ~ 6° but it is ineffective outside 

this range. It is also noted that the rounded corners slightly decrease the power outputs of the energy harvester. 
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Figure 9. Power output bifurcation diagrams for of energy harvester with sharp-edge cylinder at various 
predefined angles of attack and load resistances: (a) R = 104 Ω, (b) R = 105 Ω, (c) R = 106 Ω, and (d) R = 107 

Ω. 
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Figure 10. Power output bifurcation diagrams for energy harvester with r/d = 1/15 cylinder at various 
predefined angles of attack and load resistances: (a) R = 104 Ω, (b) R = 105 Ω, (c) R = 106 Ω, and (d) R = 107 

Ω. 
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Figure 11. Power output bifurcation diagrams for energy harvester with r/d = 2/15 cylinder at various 
predefined angles of attack and load resistances: (a) R = 104 Ω, (b) R = 105 Ω, (c) R = 106 Ω, and (d) R = 107 

Ω. 

The vibrational displacement and power output of the fluid-structure-electrical system are then studied with 

varying electrical load resistances. Figure 12 presents the curves of the dimensionless vibration amplitudes 

versus the electrical load resistance for the harvesters with the sharp-edge cylinder, the cylinder with r/d = 1/15, 

and the cylinder with r/d = 2/15. The presented results correspond to a flow velocity of U = 8 m/s. It follows 

from Figure 12 that, with decreasing the electrical load resistance, the dimensionless vibration amplitudes first 

reduce and then enlarge for all bluff body configurations. The minimum vibration amplitudes are achieved 

around an electrical load resistance of R = 105 Ω. The observation is due to the largest piezoelectric coupling 

damping (and therefore larger onset galloping speed) around this value of load resistance. The transverse 

displacements for some cases are zero because the square cylinders for these cases do not gallop at U = 8 m/s. 
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Figures 12. Variation of the transverse displacement versus the load resistance for harvester with (a) sharp-
edge cylinder, (b) r/d = 1/15 cylinder, and (c) r/d = 2/15 cylinder. 

Figure 13 shows curves of the power outputs versus the electrical load resistance for the energy harvesters 

with the sharp-edge cylinder, the cylinder with r/d = 1/15, and the cylinder with r/d = 2/15. The presented 

results correspond to a flow velocity of U = 8 m/s. Similar to the transverse displacements, the minimum power 

outputs are achieved approximately at a load resistance of R = 105 Ω. For each bluff body configuration, two 

optimum values of the electrical load resistances can be found where peak power outputs are achieved. It is 

also noted that the higher values of power outputs and sharp variations of the vibration amplitudes both occur 

in the load resistance ranges around R = 105 Ω. This result is very useful to enhance the performance of 

galloping-based piezoelectric energy harvesters with various bluff body configurations at different angles of 

attack. The results also show that the rounded corners reduce the harvested energy around α0 = 0° ~ 2°. 

However, the rounded corners enhance the robustness of the energy harvester by making its performance less 

sensitive to the angle of attack within α0 = 0° ~ 6°. 
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Figures 13. Variation of the power output versus the load resistance for harvester with (a) sharp-edge 
cylinder, (b) r/d = 1/15 cylinder, and (c) r/d = 2/15 cylinder. 

5. Conclusions 

This paper studied numerically the influences of the angle of attack and the corner shape on the 

effectiveness of square-shaped galloping energy harvesters. A piezoaeroelastic reduced-order modeling was 

considered when the galloping force is approximated based on the quasi-steady theory. Three bluff body 

configurations were considered, i.e., a sharp-edge square cylinder and two round-edge square cylinders with 

corner radii of r/d = 1/15 and 2/15, respectively. Numerical results proved that the onset wind speed of 

instability depends on the electrical load resistance while this dependency reduces as the natural frequency of 

the harvester becomes higher. For each bluff body configuration, the onset galloping velocity first increases 

with increasing the angle of attack and then decreases to a value close to that at α0 = 0°. In a range of small 

angles of attack (α0 = 0° ~ 2°), the onset velocities of the three configurations are very close. The rounded 

corners make the onset velocity less sensitive to the angle of attack. Additionally, all three cylinders exhibit 

the largest transverse displacements at the angle of attack α0 = 0°, while the displacements at α0 = 2° are only 
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slightly lower than those at α0 = 0°. The effective α0 range of the energy harvester is changed by the corner 

shapes. In general, the rounded corners slightly decrease the transverse displacements and power outputs of 

the energy harvesters. However, the rounded corners enhance the robustness of the energy harvester by making 

its performance less sensitive to the angle of attack within α0 = 0° ~ 6°. These conclusions are useful for 

choosing an appropriate corner shape or a predefined angle of attack for a practical energy harvester based on 

its surrounding flow condition. 
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