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The prediction uncertainty in simulators for industrial processes is due to uncertainties in the input variables and
uncertainties in specification of the models, in particular the closure laws. In this work, the uncertainty in each closure
law was modeled as a random variable and the parameters of its distribution were optimized to correctly quantify
the uncertainty in predictions. We have developed two methods for optimization, based on the integrated quadratic
distance and the energy score.
The proposed methods were applied to the commercial multiphase flow simulator LedaFlow with the liquid volume
fraction and pressure gradient as output variables. Two datasets were analyzed. Both describe two-phase gas-liquid
flow, but are otherwise fundamentally different. One is gas-dominated stratified/annular flow and the other is liquid-
dominated slug flow. The closure law for the gas-wall friction factor is decisive for the gas-dominated predictions, and
the estimated relative standard deviation is 4.5% or 8.0% depending on method. The liquid-dominated study showed
that the liquid-wall friction factor and the slug bubble velocity are the closure laws with the greatest impact. Moreover,
the estimated relative standard deviation in the liquid-wall friction factor is 5%, and the deviation in the slug bubble
velocity is 4%. We used direct measurements of the slug bubble velocity to validate the estimated uncertainty.
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1. INTRODUCTION

Closure laws are approximate relationships used to remove unknowns from a model. They appear in most sciences.
In electrical circuits Ohm’s law is used to relate voltage and current as part of a larger network analysis [1]. It is an
empirical law which can also be derived by applying classical mechanics to electrons in a microscopic model [2]. In
fact, many closure laws are macroscopic averages of simplified microscopic models which are additionally supported
by experiments. Another example is the ideal gas law which is used in thermodynamic processes [3]. It was discovered
by experiments, but can be derived from kinetic theory. The ideal gas law is most accurate for gases of small molecules
at high temperature and low pressure. Similarly, Ohm’s law is most accurate for ohmic materials like metals. Another
example is Darcy’s law for flow through a porous medium [4], where the pressure gradient is proportional to flux,
but where a quadratic term is required for large Reynolds numbers [5]. Closure laws can still be useful when the
assumptions are slightly violated. To quantify the uncertainty of predictions when assumptions are violated, we need
to be able to quantify how much the truth deviates from the closure law. When the closure laws are part of a larger
model, the effect of the deviations in prediction can be modeled with uncertainty propagation. More examples of
closure laws are described in Section 3.1 when introducing case studies.
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We considered two case studies of pipe flow with oil, water and gas combined. This is an example of multiphase
flow because the flow is simultaneous in two thermodynamic phases [6]. Multiphase flow occurs in both nature and
industry. In rain, sea waves and sedimentation, water interacts with air or particles. Blood flow is a mixture of plasma,
red blood cells and more. Industry examples are cooling systems for nuclear reactors and the exhaust of cars.

Multiphase flow simulators are essential for design and operation of pipelines for petroleum transport. The ma-
jority of commercial software is based on simplified zero- or one-dimensional physical descriptions and are tuned to
large amounts of data. Prediction errors are inevitable, and describing them is imperative. The prediction errors can
be described using an uncertainty framework combining uncertainty in input and model.

In 1988, the Nuclear Regulatory Commission deployed the Code Scaling, Applicability, and Uncertainty evalua-
tion methodology for emergency core cooling systems of power plants [7], which was demonstrated on a large break
loss of coolant accident in a pressurized water reactor and published as a collection of papers [8–12]. They produced a
phenomena identification and ranking table [8,13] according to the expected effect on the response variable peak clad
temperature. Further screening from analytical sensitivity calculations [14] yielded a set of 28 inputs/parameters [9].
The uncertainty distributions for each variable was determined from an extensive collection of laboratory experi-
ments, literature and was compared to operating plant experience. After another sensitivity study, 7 variables were
selected for uncertainty propagation. They used regression to make a surrogate model for the simulator, and produced
95 % lower confidence intervals for peak clad temperature.

Cremaschi et al. [15] explained the need for incorporating uncertainty into multiphase simulators. Specifically,
they made a call for researchers to accompany each input measurement with an uncertainty estimate to be propagated
through the simulator. The result is prediction uncertainty partitioned into contributions from each input through
its measurement uncertainty. However, model uncertainty was not discussed. Forward propagation of uncertainty
through two-phase models with Monte Carlo methods and polynomial chaos expansions have been applied [16,17].

Holm et al. [18,19] consider both input and model uncertainty for the multiphase simulator OLGA applied to
the Shtokman oil and gas field. The simulator uses several closure laws and the authors change the output from each
closure law by ± 30 % and measure how sensitive the model predictions are. They suggest that the impact of each
closure law depends on the flow regime, which indeed is confirmed in a later study with laboratory experiments [20].
The value of 30 % error is an estimate based on experience, but it is potentially conservative.

There are several studies of closure law uncertainty in single-phase flow in the 2010s. A frequent example is
the Reynolds-averaged Navier-Stokes equation, where a Reynolds stress model describes turbulent fluctuations. The
uncertainty in the Reynolds stress model have been estimated through different models based on prior knowledge
and whether data is available [21,22]. It is also possible to build a rigorous framework incorporating input and model
uncertainty using probability logic and Bayes’ theorem [23,24]. The simulator is then described as a dynamic model
with unknown parameters. Data is used as evidence to estimate the parameters and the posterior distribution. In
principle, this approach is general and could also serve multiphase flow.

We have developed two accessible data-driven methods for estimating closure law uncertainty which in combi-
nation with input uncertainty yield predictions with realistic uncertainty. The methods were applied to the simulator
LedaFlow using two recent experiment series with different flow conditions. Additionally, we validated the methods
using direct closure law measurements. The framework and methods are presented in section 2, and two case studies
are demonstrated in section 3. In section 4 the methods and results are discussed, followed by conclusions.

2. METHODS

2.1 Probabilistic simulator with uncertainty in closure laws

We here describe how to construct a simulator incorporating uncertainty in both model and measurements of input
variables. Note that throughout the text, hat accent denotes estimates, bold letters are vectors or matrices and capital
letters are random variables. The random variables have inherent uncertainty and are used in place of unknown exact
values. For instance, measured variables are represented by random variables because of their inherent measurement
uncertainty.

Simulators apply a set of governing equations such as differential equations and algebraic expressions, including
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Nomenclature

◦ function composition

c number of closure laws

drδ r-dimensional volume differential

E · 1 expected value of the `1 norm

esi energy score for experiment i

ES average energy score

f true model

f̂ probabilistic simulator

f̂o deterministic simulator

F̂ empirical distribution of observed errors

F̂ s empirical distribution of sampled errors

gk true closure law

ĝk simulator closure law

Gk probabilistic closure law

i index for experiment

I indicator function

IQ integrated quadratic distance

j or l index for Monte Carlo sample

k index for model operation

m number of Monte Carlo samples for each vari-
able

n number of experiments

p number of inputs

r number of outputs

Rr r-dimensional real coordinate space

u state of the physical system

Wi error weights

xi physical value of input

Xi measured value of input

Yi measured value of output

Ŷo
i default predictions

Ŷs
ij sampled predictions

Greek Symbols

Γk sampled error in closure law

δ argument of empirical distribution function

∆i observed errors

∆s
ij sampled errors

εXi measurement error in input

εXij sampled measurement error in input

εYi measurement error in output

εYij sampled measurement error in output

θ parameters of the probabilistic simulator

θ̂ parameter estimates

µ closure law bias

σ standard deviation
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closure laws g = (g1, g2, . . . , gc). The state u of the system is the solution to the set of equations

R (u,g(u); x) = 0, (1)

which depends on input variables x = (x1, x2, . . . , xp). The quantities of interest, henceforth called output, are func-
tions q(u) of the state u. Because the state depends on input, we can also write the output as f(x) = q(u(x)). General
uncertainty quantification in the framework of (1) and Bayesian inference was discussed by Oliver et al. [25].

The closure laws g, input variables x and output f(x) are in practice unknown and instead represented by mea-
surements or approximations. For instance, the measured output denoted Y = (Y1, Y2, . . . , Yr) may be represented
as

Y = f(x) + εY, (2)

where εY = (εY1 , ε
Y

2 , . . . , ε
Y
r ) are random variables representing measurement error for output variables. Furthermore,

each gk in (1) is approximated by curve fitting or assumptions. Approximations ĝk(u,x) are the closure laws actu-
ally implemented in a simulator. Substituting ĝ = (ĝ1, ĝ2, . . . , ĝc) for g, changes the solution u. The resulting output
function f̂o(x) will be referred to as the deterministic simulator and may represent a commercial software for pre-
dicting output. Large model errors in approximating closure laws may cause the deterministic simulator output f̂o(x)
to deviate critically from the correct output f(x).

The main challenge we address is to quantify the model errors. The proposed solution is to introduce random
variables Gk(u,x,θ) as an extension of ĝk(u,x) with random errors incorporated, where θ are the distributional
parameters of G. The added errors represent epistemic uncertainty about the closure law due to limited knowledge.
Substituting G = (G1, G2, . . . , Gc) for g in (1) results in the probabilistic simulator f̂(x;θ). One example of a
probability model for a closure law is Gk(u,x,θ) = ĝk(u,x) + Γk(x,θ), where Γk(x,θ) is a uniform error variable.
Generally, the probability model is a qualified estimate for potential misspecification of the closure law and is in
general individual to each experiment.

2.2 Simulator predictions

The method described below is driven by experiments i = 1, 2, . . . , n with measured input Xi and measured output
Yi. The measured input is different from the physical value xi and we assume that the difference εXi = Xi − xi

is measurement error with a probability distribution of mean zero. Predictions from the deterministic simulator are
made by evaluating the measured input, written as

Ŷo
i = f̂o(Xi), (3)

and is referred to as the default predictions. The default predictions are stochastic as the measurement error in input
variables is stochastic. The uncertainty brought to Ŷo

i is generally analytically intractable but can be simulated. In
fact, we produce independent and identically distributed Monte Carlo samples j = 1, 2, . . . ,m. Let εXij denote input
measurement errors sampled from the distribution inferred for εXi . Furthermore, the model uncertainty is described
by evaluating the probabilistic simulator which gives predictions f̂(Xi + εXij ;θ). In the next sections, predictions
are compared to measurements. For that comparison it is appropriate to also include sampled uncertainty in out-
put measurements denoted εYij . For convenience, this uncertainty is incorporated in the sampled predictions which
becomes

Ŷs
ij = f̂(Xi + εXij ;θ) + εYij , (4)

Here Xi +εXij simulates uncertain input and θ are the parameters that describes the uncertainty in closure laws. Even
though θ does not have direct physical analogies, it can be estimated through its impact on Ŷs

ij . The approach is to
determine θ such that Ŷs

ij compares to the measured output Y.
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2.3 Methods for parameter estimation

Using the framework outlined thus far, we will in this section propose two methods for estimating θ. We define
two scores, being the integrated quadratic distance (IQ) and the energy score (ES). The general method is the same;
for each candidate θ, sample from the corresponding model using Monte Carlo and calculate the score. Finally, the
estimate of θ is

θ̂= arg min
θ

score(θ), (5)

or in the other words the parameters that minimize IQ or ES. The desired result is a simulator f̂(X;θ) that gives
accurate predictions while expressing relevant sources of uncertainty. It is clear that f̂(X;θ) is good if it approximates
the true physical value of output f(x).

The parameters θ may be hard or computationally expensive to identify and it is useful to exclude the inconse-
quential parameters before commencing. If the predictions are not sensitive to closure law ĝk, it may be acceptable to
set Gk = ĝk. This reduces the number of parameters and without consequential change in the predictions. Thus, it is
desirable to identify the most influential closure laws as a first step of parameter estimation.

2.3.1 Integrated quadratic distance (IQ)

The difference between the default predictions and the measured output is

Ŷo
i −Yi = f̂o(xi + εXi )− f(xi)− εYi , (6)

which is stochastic due to the measurement errors εXi and εYi . This is an observed dispersion from the true model
output due to model error in the deterministic simulator and measurement error. A related quantity is the difference
between the sampled predictions and the default predictions, written as

Ŷs
ij − Ŷo

i = f̂(Xi + εXij ;θ)− f̂o(Xi) + εYij . (7)

The sampled predictions emulates dispersion due to model error and measurement error. The terms in (7) approx-
imates those of (6) in distribution. The distributions of measurement errors are assumed known such that the ap-
proximations εXij and εYij are accurate. The sign of εYij is opposite that of εYi , but symmetry about zero is expected.
Moreover, the measurement errors εXi are small such that Xi approximates xi. Similarly, the model errors are small
such that ĝk approximates gk.

In summary, (7) approximates (6) when the parameters θ are appropriate. Expressions (6) and (7) will be com-
pared across all experiments, but weights Wi are given to each. The weights are diagonal matrices of dimension r.
Henceforth, observed errors and sampled errors refer to

∆i = (∆i1,∆i2, . . . ,∆ir) = Wi

(
Ŷo

i −Yi

)
(8a)

and
∆s

ij = (∆s
ij1,∆

s
ij2, . . . ,∆

s
ijr) = Wi

(
Ŷs

ij − Ŷo
i

)
. (8b)

In the case study presented below, Wi = diag
(
Ŷo

i

)-1 was applied such that errors are relative. Furthermore,

F̂ (δ) = 1
n

n∑
i=1

I(∆i1 6 δ1)I(∆i2 6 δ2) · · · I(∆ir 6 δr) (9a)

and

F̂ s(δ;θ) = 1
nm

n∑
i=1

m∑
j=1

I(∆s
ij1 6 δ1)I(∆s

ij2 6 δ2) · · · I(∆s
ijr 6 δr) (9b)
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are empirical cumulative probability distributions and I is the indicator function. If measurement errors of differ-
ent experiments are independent, the observed errors are independent but not identically distributed in general. The
same applies to the sampled errors. Still, the distribution of ∆s

ij is similar to ∆i. The independence between experi-
ments further implies F̂ s is similar to F̂ . The distance between these distributions can be measured by the integrated
quadratic distance which is

IQ(θ) =

∫
Rr

(
F̂ (δ)− F̂ s(δ;θ)

)2
drδ, (10)

where Rr is the r-dimensional real coordinate space and drδ is the r-dimensional volume differential. This objective
function is a proper divergence and F̂ s is close to F̂ when IQ is small [26].

An example comparison of F̂ and F̂ s is given in Figure 1. There is one output named pressure drop. For now, let
us look only on the black solid curve which is F̂ and the blue dashed curve which is F̂ s. The IQ is the integral of the
squared distance between these curves.

2.3.2 Energy score (ES)

The energy score measures how far the measured output is from the sampled predictions compared to the distance
between sampled predictions themselves [27]. The energy score is separate for each experiment and is defined as

esi(θ) = E
∣∣∣∣Ŷs

ij −Yi

∣∣∣∣
1−

1
2 E
∣∣∣∣Ŷs

ij − Ŷs
il

∣∣∣∣
1 (11a)

≈ 1
m

m∑
j=1

∣∣∣∣Ŷs
ij −Yi

∣∣∣∣
1−

1
2m2

m∑
j=1

m∑
k=1

∣∣∣∣Ŷs
ij − Ŷs

il

∣∣∣∣
1, (11b)

where Ŷs
ij and Ŷs

il are distinct samples from the simulator and E · 1 is the expected value of the `1 norm. For
deterministic predictions, the energy score simplifies to the absolute prediction error. It is called the continuous
ranked probability score for univariate output. The average energy score over n experiments is

ES(θ) = 1
n

n∑
i=1

esi(θ). (12)

The optimal value of θ minimizes ES(θ). The energy score is strictly proper [28] in the sense that its expected
value for observed output has a unique minimum where the predictive distribution matches the observed output
distribution. When the output is multivariate, each component is standardized by the mean and standard deviation
across experiments in order to balance its influence [29].

3. CASE STUDIES

3.1 Simulator

Two case studies are presented, both steady-state two-phase flow in near-horizontal pipes. Slug flow is illustrated in
Figure 2, with liquid in blue and gas as transparent. The flow direction is to the right. Liquid covers the entire bottom
layer. The upper layer comprises pockets of gas separated by liquid slugs and moves with velocity Ub computed by an
empirical closure law. Gas is also entrained as bubbles in the slugs. The slug zone holdup Hs is the volume fraction
of liquid in the slugs. The steady-state model of choice is a momentum balance, where the main components are
gravity and shear stresses. Shear stress is proportional to a dimensionless friction factor that is separate for each type
of surface. The friction factor is fg for the shear stress between the wall and the gas, while the liquid-wall friction
factor is fl. The last factor fi applies to the interface between liquid and gas. In summary, the five closure laws listed
Table 1 are relevant. The unit of the slug bubble velocity is meter per second and the other laws are dimensionless. All
closure laws are restricted to be non-negative. Additionally the slug zone holdup cannot be greater than 1. Stratified
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FIG. 1: Empirical distribution of the observed pressure drop
error (black) and the sampled error with no model uncertainty
(blue dashed) and with σ(fg) = 8.0% (orange dotted).

FIG. 2: Slug flow. Liquid slugs separate gas pockets. Small
gas bubbles are also entrained in the slugs.

flow is essentially slug flow without the liquid slugs. Annular flow is characterized by a liquid film on the pipe wall
and gas flowing in the center.

The physical model is implemented in the commercial multiphase simulator LedaFlow [30]. The simulator is for
the purpose treated as a black box where we do not see or access the interior. It allows by default scaling of the closure
law outputs by different factors. Further information about the formulation of closure laws is restricted intellectual
property. A comparable flow model with all details disclosed is presented in Smith et al. [31].

3.2 Variables and measurement uncertainty

The output variables from the model are liquid holdup and the pressure drop along the pipe, where holdup is synony-
mous to volume fraction. The input to the model is pipe diameter, mass rates, densities, viscosities, surface tension
and pipe inclination. Additionally, we have the measured pressure drop in gas-only experiments in the same pipe as
an input because it is required for computing the hydraulic wall roughness. Furthermore, the superficial velocities
Usg (gas) and Usl (liquid) are latent variables of great importance for the characteristics of the flow. For each phase,
superficial velocity is defined as mass rate divided by density and cross-sectional area.

We label one case study as gas-dominated and the other as liquid-dominated according to superficial velocities. In
Figure 3 superficial velocities are plotted for gas-dominated experiments (crosses) and liquid-dominated experiments
(circles). The case studies also differ in instrumentation and consequently in standard deviations in the measurements
of the pipe diameter, liquid mass rate and densities. All variables are given in table 2, with units. The third column
gives the measurement standard deviation in gas-dominated flow and the last column gives the same number for
liquid-dominated flow. Gaussian distributions are assumed for all measurement errors.

3.3 Closure law assumptions

Assumptions specific to the case studies are made in order to incorporate relevant knowledge and arrive at estimates
for closure law uncertainties. The presented methods do not depend on these assumptions.

Probability model. Gaussian unbiased relative error Gk(u,x,σk) = ĝk(u,x) ·Γk(σk), with Γk ∼ N (1,σ2
k). All

information from experiments is used to quantify uncertainty parameters σk. If instead the focus is to tune the closure
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TABLE 1: Closure laws in LedaFlow with symbol.

Closure law Symbol
Slug zone holdup Hs

Slug bubble velocity Ub

Interface friction factor fi
Gas-wall friction factor fg
Liquid-wall friction factor fl

TABLE 2: Model variables with uncertainty. The first column gives the variable names of which the first two are out-
put. The second column gives the unit. Columns three and four contain the standard deviation used in the measurement
uncertainty models for the gas- and liquid-dominated experiments respectively, where x denotes the measured value,
i.e. when relative error is used.

Output Unit Standard deviation (σ)
Gas-dominated Liquid-dominated

Liquid holdup − 0.01 0.01
Pressure drop Pa/m max

(
6 Pa

m , x · 0.01
)

max
(
6 Pa

m , x · 0.01
)

Input

Pipe diameter m 3.5 · 10−4 m 5 · 10−4 m
Gas mass rate kg/s x · 0.015 x · 0.015
Liquid mass rate kg/s x · 0.02 x · 0.003
Gas density kg/m3 0.5 kg/m3 0.1 kg/m3

Liquid density kg/m3 2 kg/m3 1 kg/m3

Gas viscosity Pa s x · 0.07 x · 0.07
Liquid viscosity Pa s x · 0.02 x · 0.02
Surface tension N/m x · 0.1 x · 0.1
Pipe inclination deg 5 · 10−3 deg 5 · 10−3 deg
Gas-only pr. drop Pa/m x · 0.01 x · 0.01

TABLE 3: Fluid system. Physical properties at 20 °C. The liquid-dominated experiments are all at 45 bara system
pressure, while the gas-dominated experiments are either at 8, 45 or 90 bara.

Fluid Viscosity
[
Pa s

]
Pressure

[
bara

]
Density

[
kg/m3

]
SF6 1.50 · 10−5 8 52
Nitrogen 1.83 · 10−5 45 52

90 102
Exxsol D60 1.55 · 10−3 8 815

45 795
90 795

Tap water 1.00 · 10−3 8 1000
45 1000
90 1000
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FIG. 3: Superficial velocities of the experiments for the gas-
dominated study (crosses) and the liquid-dominated study
(circles).

FIG. 4: Numerical derivative of pressure drop with respect to
each closure law. The value is computed as a relative change
with unit equal to the reciprocal of the closure law unit. Dis-
tribution over 83 experiments by percentiles 5, 25, 50, 75 and
95.

laws, one option is to define flexible errors Γk(x,θ).
Independence. The closure laws may depend on each other, but errors Γk are assumed independent across closure

laws and experiments.
Universal. Each closure laws is interpolated smoothly between a laminar and a turbulent expression. The inter-

polated expression is the subject of the uncertainty analysis
Numerical derivative. Numerical derivatives are used to reduce the number of parameters θ to optimize. The

relative change in output is computed for a small change in each closure law. The computation is repeated for all
experiments and the closure laws with negligible influence overall are modeled as Gk = ĝk. The procedure may be
adjusted if the relative errors in the closure laws differ in orders of magnitude.

Fluid surfaces. The error estimate assigned to each friction factor may be understood as the error in the product
of the friction factor and the associated area.

3.4 Results for gas-dominated flow

This analysis regards a total of 83 gas-dominated experiments from two sites with different nominal pipe diameters.
These are 4 inches (101.5 mm) in the Well Flow Loop at IFE and 8 inches (193.85 mm) in the Large Scale Facility
at the SINTEF Multiphase Flow Laboratory. The experiments performed in the two facilities were otherwise similar.
The pipe inclination was 2.5° upwards in both setups. In the 8-inch experiments, nitrogen was used as the gas phase,
and the tests were conducted at 45 and 90 bara system pressure. In the 4-inch experiments, SF6 was used as the gas
phase at a pressure of 8 bara. At this pressure, the density of SF6 is the same as nitrogen at 45 bara (around 52 kg/m3).
The liquids used were Exxsol D60 and tap water. An overview of the fluid properties is supplied in table 3. The flow
in these experiments was either stratified or annular.

For this data set, the pressure drop is the quantity of interest. The derivatives of the pressure drop with respect to
each closure law are given in Figure 4. The derivative is computed as a relative change in pressure drop for a small
change in the closure law. Each box gives quartiles one, two and three across the 83 experiments. The whiskers are
the 5th and 95th percentiles. As expected, the slug zone holdup Hs and the slug bubble velocity Ub do not affect
the pressure drop as they are not used in stratified or annular flows. It is also clear that the dominating closure law
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FIG. 5: Integrated quadratic distance (orange) and energy
score (red dashed) with respect to uncertainty in fg for gas-
dominated experiments.

FIG. 6: Predicted versus measured pressure drop for 83 ex-
periments with no model uncertainty (blue), with 4.5% rel-
ative error in fg (red) and 8.0% (orange). The black line is
where the coordinates are equal. Means and 95% prediction
intervals are given for both predictions and measurements.

for this data set is the gas-wall friction factor fg. Thus, we estimate the uncertainty of fg using the pressure drop
measurements. The remaining closure laws are assumed known, which is Γk = 1.

Figure 5 shows the integrated quadratic distance (orange) and energy score (red dashed) with respect to σ(fg) for
gas-dominated experiments, based on 10 000 Monte Carlo predictions for each. The IQ is minimal at σ(fg) = 8.0 %
while ES is minimal at σ(fg) = 4.5 %. The uncertainties in the four other closure laws are taken as zero. Figure 1
provides a closer look at the IQ computation. The black line is the observed error distribution for pressure drop
defined in (9a). The blue dashed line is the sampled error defined in (9b) with no model uncertainty and the orange
dotted line is equivalent with σ(fg) = 8.0 %. This parameter value put the sampled distribution closest to the observed
distribution and is consequently minimizing IQ.

The quality of the estimate for model uncertainty may be assessed with Figure 6. The predicted pressure drops
are compared with the measurements. Due to their uncertainty, each prediction and measurement are distributions,
and they are represented by means and 95 % prediction intervals. The interval limits are percentiles 2.5 and 97.5 of
the output distributions, which for measurements are normal distributions with σ from Table 2, and for predictions
are Monte Carlo samples {Ŷs

ij}mj=1.
The black diagonal line is where predictions equal measurements. The blue points describe the situation with

no model uncertainty while red (ES) and orange (IQ) points are tuned by the optimal model uncertainty. For one
experiment, combining the horizontal interval and vertical interval to one wider interval yields the 95 % prediction
interval for a sampled prediction Ŷs

ij from (4). The coverage is defined as the fraction of experiments where combined
horizontal/vertical interval contains the measured pressure drop. The coverage of the deterministic simulator is 92 %
and the coverage of the probabilistic simulator is 94 % for ES and 96 % for IQ.

3.5 Results for liquid-dominated flow

The liquid-dominated study includes 152 experiments conducted in the Large Scale Facility at the SINTEF Multi-
phase Flow Laboratory. For a detailed description we refer to a previous experimental paper [32]. The fluids ran in
an 8-inch carbon steel piping with an internal diameter of 189 mm. There was one 359 m long horizontal section
connected to a 366 m long section of inclination 0.5°. The system pressure was 45 bara, and nitrogen was used for
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FIG. 7: Numerical derivative of pressure drop (gray) and holdup (white) with respect to each closure law. The value is computed
as a relative change with unit equal to the reciprocal of the closure law unit. Distribution over 152 experiments by percentiles 5,
25, 50, 75 and 95.

the gas phase. The liquids used in the experiments were Exxsol D60 and tap water. The fluid properties are listed in
table 3.

The computations for liquid-dominated flow are identical to those of gas-dominated flow. Consequently, some
results are presented more briefly in this section. Firstly, the derivatives of the predictions with respect to each closure
law were computed. Their distributions across the 152 experiments are drawn in Figure 7 for pressure drop (gray) and
holdup (white). The closure laws for Ub and fl have the greatest impacts. Their contributions to model uncertainty
are investigated further, while the other closure laws are treated as deterministic. For each pair of σ(Ub) and σ(fl)
investigated, 10 000 Monte Carlo predictions are produced. Figure 8 gives the IQ (left) and ES (right) of each com-
bination of standard deviations. The color of each square gives the score for the parameter values given on the axes.
The optimal parameters are σ(Ub) = 3.5 % and σ(fl) = 4.5 % for IQ and σ(Ub) = 4.0 % and σ(fl) = 5.5 % for ES.

Figure 9 shows the joint empirical distributions for pressure drop error and holdup error. The observed error
(gray) is compared with the sampled error from the deterministic simulator (blue) and the IQ probabilistic simulator
(orange). For each plot, the IQ is the squared integrated distance between the two surfaces. These IQ-values are found
in the left panel of Figure 8. A comparison of predictions and measurements are given in Figure 10 for pressure
drop (left) and holdup (right) for the deterministic simulator (blue), the probabilistic simulator with IQ-parameters
(orange) and the probabilistic simulator with ES-parameters (red). The coverage for the deterministic simulator is
86 % for pressure drop and 88 % for holdup. The coverages with IQ-parameters are 100 % for pressure drop and 96 %
for holdup, while the coverages with ES-parameters are 100 % for pressure drop and 97 % for holdup.

The slug bubble velocity Ub was measured directly for these experiments, which serves as validation of the
method presented. Figure 11 gives the error distribution for Ub using the direct measurements. The distribution has a
mean of µ(Ub) = 96.4 % and a standard deviation of σ(Ub) = 3.5 %. The standard deviation assuming µ(Ub) = 1 is
σ(Ub) = 5.0 %.

4. DISCUSSION

Closure law uncertainties are integral to a probabilistic simulator. Two accessible methods for estimating uncertainty
in closure laws have been demonstrated on the commercial multiphase flow simulator LedaFlow. By evaluating a
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FIG. 8: Integrated quadratic distance (left) and energy score (right) for combinations of σ(Ub) and σ(fl). The optimal scores are
highlighted.

FIG. 9: Empirical distribution of the observed pressure drop and holdup error (gray) and the sampled error with no model uncer-
tainty (blue) and with σ(Ub) = 3.5% and σ(fl) = 4.5% (orange).
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FIG. 10: Predicted versus measured pressure drop (left) and holdup (right) for 152 experiments for the deterministic simulator
(blue), the probabilistic simulator with IQ-parameters (orange) and the probabilistic simulator with ES-parameters (red). The black
line is where the coordinates are equal. Means and 95% prediction intervals are given for both predictions and measurements.

FIG. 11: The predicted values of Ub divided by the direct measurements. The mean is µ(Ub) = 96.4% and standard deviation is
σ(Ub) = 3.5%.
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probabilistic simulator at input with sampled measurement error, we achieved predictions that incorporated both
model uncertainty and measurement uncertainty in input and output variables. The closure law standard deviation
was estimated using data from two recent experimental campaigns.

The integrated quadratic distance were used to match the distribution of sampled errors to the distribution of
observed errors across experiments. The energy score was computed separately for each experiment and is a measure
for the distance between the sampled predictions and the measured output. The IQ and ES behaved differently with
respect to θ in some manners. In fact, predictive distributions were sharper for the ES. However, there is a general
trade-off between sharpness and calibration. Two objective functions were investigated in this study because both are
intuitive and proper, which demonstrates the subjective aspect of probabilistic predictions. Thus, it is necessary to
tailor the objective function to the application.

Optimal parameters by IQ correspond to sampled error distributions close to the observed error distributions, in
the sense of minimizing (10). The predictions with optimal parameter values were plotted against measurements to
demonstrate the clear improvement in predictions when the model uncertainty was included. The improvement was
seen both visually and in terms of coverage, for both IQ and ES. The coverages were similar for IQ and ES and
generally higher than the expected 95 %.

We made a number of assumptions to achieve a statistical framework. The model uncertainty was attributed to the
closure laws entirely as the major approximations in the simulator are the closure laws. The closure law assumptions
specific to the case studies are listed in Section 3.3. The assumptions would be relaxed if proven inapt. The error was
modeled as relative to the closure law value, with the same distribution across all experiments. The framework is not
restricted to identically distributed relative errors. In fact, applications with different prior knowledge of the errors
can implement this knowledge into the assumed distributions, for instance by adding a bias to be tuned along with
the standard deviation [33]. An example of bias estimation is given in the appendix, but it is not evident that bias is
necessary for our case studies. LedaFlow is already expected to be carefully tuned from large amounts of data, and
uncertainty quantification seems more pressing than tuning.

The derivative of the outputs with respect to each closure law informed the optimization procedure in our appli-
cation. However, this procedure can fail if the realistic ranges of the closure laws are of different orders of magnitude.
Other preliminary analyses may then be considered. Trial and error for optimizing parameter values is acceptable
because we can check the closeness of the error distributions or the prediction coverage afterwards. The prelimi-
nary analysis indicated that the observed error in holdup for the gas-dominated experiments could be explained by
measurement uncertainty alone. Data with large measurement uncertainty compared to observed error naturally give
limited information about model uncertainty.

The methods are directly applicable to any number of closure laws, inputs and outputs. There may be practical
limitations such as computational cost. The parameter optimization applied was plainly to compute IQ or ES for
a series of plausible parameter values and chose the parameters of the optimum. This task grows combinatorially
with the number of closure laws involved. If the simulator is computationally expensive or many closure laws are
influential, it may still be feasible to find an optimum with an iterative algorithm.

Ultimately, it matters how the methods perform for a real industrial process. The performance depends strictly
on what data is available. The optimal scenario is to have field data, and the second best scenario is to have laboratory
data that matches the most important dimensionless numbers of field [34]. In either case, the methods described
in Section 2 can be applied directly to obtain realistic prediction intervals incorporating measurement and model
uncertainty. Experimental validation of uncertainty estimates for full scale is still useful, but not yet available. In
contrast, if the data available does not match the dimensionless numbers of the field process, the uncertainty analysis
will not be representative.

Oliver et al. [25] studied a mass-spring-damper system, where closure law uncertainty estimates were supported
by qualitative information about model misspecification. They considered a scalar damping coefficient with an un-
known dependency on temperature. However, dimensional analysis proved that the rate of temperature change was
inversely proportional to mass. Consequently, the estimated uncertainty about the damping coefficient was conser-
vative when extrapolated to systems with larger masses. In summary, additional insight into model misspecification
may allow for extrapolation of uncertainty estimates. Extrapolation is a useful extension of the methods presented in
this paper or elsewhere.
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5. CONCLUSIONS

We have presented new methods to quantify uncertainty in the closure laws of a simulator. The methods are useful
for commercial simulators where the formulation of the closure laws are not disclosed in order to protect intellectual
property rights. The simulator is still required to have tuning capabilities such that the simulator output with respect
to the most important closure laws can be gauged. The purpose of estimating closure law uncertainties is to provide
predictions of real applications with realistic uncertainty estimates. For instance, in petroleum production systems,
where a quantified model uncertainty is strictly necessary for a robust design.

Monte Carlo simulations were used to propagate the uncertainties in regular input variables, which were known,
along with candidate values for uncertainty in the closure laws. Different parameter values yielded different distribu-
tions of predictions, and we selected the parameter values that gave the best agreement with measurements.

The methods were applied to the commercial multiphase simulator LedaFlow on two fundamentally different
data sets. The first comprises 83 gas-dominated experiments and the other 152 liquid-dominated experiments. For
the gas-dominated experiments describing model uncertainty by σ(fg) = 8.0 % optimizes IQ. The energy score is in
this case more conservative and yields σ(fg) = 4.5 % The model uncertainty in the liquid-dominated experiments is
σ(Ub) = 3.5 % and σ(fl) = 4.5 % for IQ, and σ(Ub) = 4.0 % and σ(fl) = 5.5 % for ES. The estimate of σ(Ub) is
admissible by validation with direct measurements of Ub.

We have demonstrated estimation of model uncertainty from laboratory experiments. The resulting probabilistic
simulator can be deployed in real processes with similar flow conditions. In general we recommend the following
steps for the design and work flow of an industrial process.

1. Build a model of the system using an appropriate simulation framework.

2. Establish the most important input variables and assess their individual ranges and uncertainties for the lifetime
of the process.

3. Find laboratory data that matches the relevant dimensionless numbers of the process, and apply the proposed
method to quantify the uncertainties in the most important closure laws.

4. Apply the estimated uncertainties in the closure law and the known uncertainties in the input variables through
Monte Carlo simulations of the real process to establish realistic probability distributions of the critical model
output.

5. Revise the system design as necessary based on the simulations in line with the organization’s risk management
guidelines such as compliance with the required confidence level.
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APPENDIX A. BIAS PARAMETERS

The analysis for the liquid-dominated experiments is repeated with additional parameters included. We allow for a
bias in both Ub and fl. The original value for Ub in LedaFlow is multiplied by normally distributed variable with
mean µ(Ub) and standard deviation σ(Ub), and fl is treated alike. The IQ values for 1000 Monte Carlo samples of
selected parameter values are given in Figure A.12. Each panel in the 4×4 grid corresponds to a value for σ(fl) (top)
and σ(Ub) (right). Within each panel, the values of µ(Ub) (left) and µ(fl) (bottom) ranges from 96 % to 104 % of the
flow model value. An unbiased model corresponds to µ= 100 % which is realistic for this application.
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FIG. A.12: Integrated quadratic distance for 152 liquid-dominated experiments in terms of four uncertainty parameters. Bias in
Ub (left), bias in fl (bottom), standard deviation in Ub (right) and standard deviation in fl (top). The top and right coordinates
refers to a panel in the 4× 4 grid.
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29. Möller, A., Lenkoski, A., and Thorarinsdottir, T.L., Multivariate probabilistic forecasting using ensemble bayesian model
averaging and copulas, Quarterly Journal of the Royal Meteorological Society, 139(673):982–991, 2013.

30. Kjølaas, J., De Leebeeck, A., and Johansen, S., Simulation of hydrodynamic slug flow using the ledaflow slug capturing
model, In 16th International Conference on Multiphase Production Technology. BHR Group, 2013.

31. Smith, I.E., Nossen, J., Kjølaas, J., and Lund, B., Development of a steady-state point model for prediction of gas/oil and
water/oil pipe flow, Journal of Dispersion Science and Technology, 36(10):1394–1406, 2015.
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