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Summary
Neonatal mortality rate and vaccination coverage of measles-containing vaccine are impor-
tant health indicators of a nation. The Demographic and Health Surveys (DHS) program
is one major source for tracking health indicators to identify the need for interventions in
low- and middle-income countries. The DHS data is transformed to a standardized format
with the same structure across countries. The standardized format facilitates comparisons
across surveys and countries. Samples in surveys are often collected from a population
in a way that is time- and cost-effective. A complex design generally includes unequal
inclusion probabilities of the units in the population, stratified sampling, and cluster sam-
pling. DHS data is based on stratified multistage sampling. Mixed models to estimation do
not typically account for these design features. However, a common way to acknowledge
clustering is to include unstructured cluster-specific random effects. This adjusts the ap-
parent sample size for the intra-cluster correlation. The main goal of this thesis is to make
inferences about estimates of neonatal mortality rate and coverage of first dose measles-
containing vaccine among 1-year-olds using logistic mixed models on DHS data collected
in Nigeria and Kenya.

This study focuses on model estimates at the national level adjusting for explanatory vari-
ables such as maternal age, urban or rural residency, and cluster effects. The maternal
age groups are incorporated as unstructured and structured random effects to evaluate the
ability to borrow strengths from groups to improve the estimates, in addition, to reduce
the variance in the estimates. The explanatory and predictive strengths of the models are
investigated, and inference is conducted using the integrated nested Laplace approxima-
tion (INLA) with the package R-INLA in R. The methods are evaluated on a set of scoring
rules through a simulation study and on real survey data.

This analysis concludes that mixed effects models applied on DHS data manage to in-
corporate clustering for small cluster effects. Unstructured and structured random effects
succeed to limit variation in estimates between maternal age groups. The uncertainty in
the estimates of the outermost age groups, which consist of only a small amount of data,
is reduced. Mixed models should, however, be reconsidered when it is applied to com-
plex survey data because they fail to correctly account for important aspects of survey
methodology such as sampling weights.



Sammendrag
Nyfødtdødelighet og vaksinedekning mot meslinger er viktige helseindikatorer for en
nasjon. Demographic and Health Surveys (DHS) er en pålitelig kilde for å spore indika-
torer for å forbedre en nasjons helse i lav- og mellominntektsland. DHS dataene blir
transformert til et standardisert format med samme struktur på tvers av land. Det standard-
iserte formatet gjør det mulig å sammenligne estimater på tvers av undersøkelser og land.
Prøver fra en populasjon gjennom undersøkelser er ofte samlet på en tids- og kostnadsef-
fektiv måte. Undersøkelsedesign er typisk kompleks fordi det generelt inkluderer ulike
inkluderingssannsynligheter for observasjoner i befolkningen, stratifisert prøvetaking og
klyngesampling. DHS data er basert på stratifisert flertrinnssampling. Blandede modeller
til estimering tar vanligvis ikke hensyn til disse designfunksjonene. Imidlertid brukes us-
trukturerte klyngespesifikke tilfeldige effekter generelt for å anerkjenne klyngingen. Dette
justerer den tilsynelatende prøvestørrelsen for korrelasjonen innen klyngen. I denne mas-
teroppgaven anvendes blandede modeller for å estimere nyfødtdødelighet og vaksinasjons-
dekning mot mesling av første dose blant 1-åringer på DHS data samlet i Nigeria og Kenya.

Denne studien fokuserer på modellestimater på nasjonalt nivå, og justerer for forklarende
variabler som mors alder, urbant- eller landlig bosted, og klyngeeffekt. Aldersgrupper for
mødre er innlemmet i modellen som strukturerte og ustrukturerte tilfeldige effekter for å
evaluere evnen til å låne styrker fra grupper og for å redusere avviket i estimatene. De
forklarende og prediktive styrkene til de utviklede modellene undersøkes. Modellene er
estimert ved hjelp av den integrerte nestede Laplace-tilnærmingen (INLA) med pakken
R-INLA i R. Metodene blir evaluert ved hjelp av et sett av mål i et simuleringsstudie og
på reelle undersøkelsesdata.

Denne analysen konkluderer med at blandede modeller brukt på DHS data klarer innlemme
for klynging for små klyngeeffekter. Ustrukturerte og strukturerte tilfeldige effekter bidrar
til å begrense variasjon i estimater mellom mors aldersgrupper. Blandede modeller bør
imidlertid revurderes når de brukes på komplekse undersøkelsesdata fordi de ikke tar hen-
syn til viktige aspekter som inkluderingssannsynligheter.
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Chapter 1
Introduction
The United Nation’s 2030 development agenda is described by the Sustainable Develop-
ment Goals (SDGs) agreed by world leaders. The SDGs consist of 17 goals. The targets
include reducing extreme poverty, hunger and halting the spread of diseases such as HIV
and AIDS (UN, 2021). Two important health indicators of binary responses are neonatal
mortality rate (NMR: the proportion of children who die within the first month after live
birth) and coverage of the first dose of measles-containing vaccine (MCV1) among 1-year-
olds. Target 3.2 in SDGs about NMR reads, ”by 2030, end preventable deaths of newborns
with all countries aiming to reduce neonatal mortality ... to at least as low as 12 per 1,000
live births”. Measles is on the other hand, a highly contagious disease, and where unvac-
cinated children, particularly under the age of five, are at the highest risk of measles and
its complications, including death (WHO, 2019). A major proportion of child mortality is
today preventable and treatable by cost-effective interventions (Sharrow et al., 2020). The
tracking and coverage of these indicators are essential at a local, regional and global level
to see improvements in child and maternal health. Thereby, scarcity of resources can point
to where they are needed the most and is crucial in saving lives (Hancioglu and Arnold,
2013).

Estimating mortality rates, for instance, is complicated. Vital registration systems are nec-
essary to obtain exact estimates. Typically, low- and middle-income countries do not have
this system in place. If complete birth- and death data or vaccination status in a coun-
try cannot be provided, NMR and MCV1 must be estimated based on data arising from
surveys and censuses. A primary source for estimates and forecasts of health indicators
in low- and middle-income countries is surveys provided by the Demographic and Health
Surveys (DHS) program. Survey programs collect answers from questionnaires through
physical visits in selected households, and which include a wide range of topics related
to children and maternal health. The surveys are gathered from face-to-face interviews in
households and are often known as household survey data. The DHS program provides
data that is collected from household surveys in more than 90 countries. In this thesis,
DHS data from both Nigeria and Kenya is used to investigate if conclusions are consis-
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Chapter 1. Introduction

tent between countries. All DHS data passes through a standardization process where the
structure of the original raw data is transformed into a common format (ICF et al., 2018).
Hence, with some adjustments, the methods may apply to other low- and middle-income
countries that are covered by the DHS program, where measurements such as child mor-
tality must be estimated from survey data.

Survey data has in general a complex correlation structure, because the data cannot be
assumed to be collected by random sampling. The observations might have different prob-
abilities of being selected in the sample, i.e. different inclusion probabilities. A complex
sample consists of the individual observations together with the sample weights that are
related to the inclusion probabilities, and the design descriptors (Lee and Forthofer, 2006).
The complexity of a survey design is predefined and determined by the resource constraints
for planning, conducting, and processing the survey. Complex survey data often include
stratified multistage cluster sampling. Stratification ensures that the total sample repre-
sents all desirable subgroups, such as the inclusion of residents from each subnational
area. Cluster sampling is sampling in restricted areas called clusters, and which yields
to correlation among observations because of unobserved heterogeneity between clusters.
This may be a result of the clustering of subjects within groups due to their similarities.
A failure to address the complex sampling issues might result in biased estimates of the
model parameters. Mixed effects models typically do not fully account for the complex
survey design. However, unstructured cluster-specific random effects can generally be in-
corporated in regression models to account for the clustering. This adjusts the apparent
sample size for the intra-cluster correlation.

The DHS data used for this analysis is designed to produce representative estimates for a
majority of the survey indicators at the national level, for urban and rural areas separately,
at the regional level, and for selected indicators at the county level. Urban and rural clus-
ters can further be disaggregated into more specific groups, such as maternal age groups
within each type of cluster. Maternal age is an important explanatory variable for binary
outcomes related to child health indicators. Multiple groups like maternal age groups as
a categorical covariate might, however, be challenging because the oldest and youngest
groups generally represent a minority group of the observations. In such cases, methods
that allow borrowing strength from remaining groups can be helpful. Random effects are
one way to borrow information from groups in different manners. Independent and iden-
tically distributed random effects construct a shrinkage towards the common mean of the
estimates to account for unstructured variability in the data. The shrinkage is dependent
on the number of observations in each group. The estimates in groups of few observations
are forced towards the mean, otherwise, they remain unaffected when there is enough in-
formation. Structured random effects help to reduce the uncertainty in the estimates, in
addition to limit the variation between the estimates in the groups. The models are esti-
mated using the integrated nested Laplace approximation (INLA).

This thesis will focus on the estimation of NMR and coverage of MCV1 among 1- year-
olds while accounting for complex survey designs. NMR and MCV1 are two important

2



demographic and health indicators with either rare or very prevalent outcome. In particu-
lar, the associations between urban or rural areas and maternal age are explored as depen-
dent variables as they are believed to play a crucial role in vaccination coverage and child
mortality rates, respectively. Ignoring the survey design that involves clustering, assumes
that observations from the same cluster are independent. Sampling effort in rural areas for
complex sampling schemes might, for instance, be different than for urban areas. Mixed
models are applied to account for clustering by including unstructured cluster-specific ran-
dom effects. The goal of this thesis is to investigate methods that incorporate structured
and unstructured random effects to explore the ability to improve the estimates by borrow-
ing strength across groups for clusters and maternal age groups.

There is no simple way to account for survey design applied on mixed models. The sample
weights, for instance, are difficult to adjust for. In real survey data, the truth is, however,
not known, as that would require a census of the population. Simulation studies allow to
produce finite populations within a known and controlled framework. In this thesis, sur-
veys are independently and repeatedly drawn from three individual simulated populations
of different characteristics. The populations have different predefined cluster effects, and
the sampling frames consist of different inclusion probabilities of clusters. The purpose
of the simulation study is to investigate the ability to account for clustering by comparing
fixed effects and mixed effects, and the importance of accounting for inclusion probabili-
ties.

The structure of this thesis is as follows. Chapter 2 provides a brief review of prereq-
uisite material required for the analysis, while Chapter 3 describes the data sets utilized.
The simulation study is presented in Chapter 4 to assess the performance of the methods.
Chapter 5 presents the results of the methods applied to real surveys conducted in Nigeria
in period 2014-2018 and Kenya in period 2010-2014. Finally, findings are discussed in
Chapter 6.

3



Chapter 2
Background
In this section, the relevant background theory needed to understand the methods used in
this thesis is presented.

2.1 Generalized linear mixed models
In analysis of data with multilevel structure, groups in the data are treated as a random
sample from a population of groups. When applying a fixed effects model with categor-
ical covariates, some groups may not have sufficient information to make inferences due
to the small group size. Mixed models can borrow strengths between groups. Random
effects are added for the groups instead of fixed effects. This can also be interpreted by in-
troducing correlations among observations in the same group. For non-normal responses,
the framework of the generalized linear models (GLMs) can be used. Generally, a set of
coefficients and independent variables are incorporated in a linear function, called a linear
predictor. The linear predictor can consist of both fixed effects and random effects. As a
result, the generalized linear mixed models (GLMMs) is a synthesis of GLMs and linear
mixed models.

Multilevel models may contain both nested and non-nested factors. Non-nested factors are
individual-specific covariates that arise when individuals are characterized by overlapping
categories of attributes (Gelman and Hill, 2006). For instance, consider a simple study of
the association between NMR and maternal age groups. Then a non-nested factor is the
age of the mother. The individuals may be further nested within geographical areas, such
as urban or rural residency and clusters. A simple model allowing for between-cluster
variation is

ηij = xTijβ + γ0i = β0 + β1xij1 + · · ·+ βKxijK + γ0i, (2.1)

where i denotes the level-2-units (e.g. clusters) and j is the level-1-units (e.g. children),

4



2.1 Generalized linear mixed models

and i = 1, . . . ,M , j = 1, . . . , ni, with ni multiple measurements per individual within
cluster i. The coefficient of the fixed effects are βk, k = 1, . . . ,K, and which in this
context may be the coefficients separating urban and rural clusters. The fixed effects are
dependent variables of interest. The random effects in the model, γ0i, are random devia-
tions from the fixed intercept β0. Responses, yij , are usually assumed to follow a normal
distribution N (ηij , σ

2
γ), where σ2

γ indicates the variance, and therefore the degree of het-
erogeneity within clusters (Hedeker, 2005).

The model can be easily extended to include more random effects,

ηij = xTijβ + uTijγi + zTijδ, i = 1, . . . ,M, j = 1, . . . , ni (2.2)

where uij is typically a subvector of the covariates xij , and zTij in the third term denotes
the non-nested factors of covariates. The vector of random effects is assumed to be inde-
pendent and identically normal with γi ∼ N (0,Σ), and Σ is a positive definite covariance
matrix. An example is that γi accounts for random between-cluster variation. Further,
δ ∼ N (0,Σδ) may be coefficients of random effects on age groups across clusters. The
observations are assumed to arise from a distribution in the exponential family such as in
the framework of a GLM. The expected value of the response, µij = E[Yij |δ, γi,xij ], is
related to the linear predictor through a suitable link function

µij = h(ηij) or ηij = g(µij). (2.3)

The response function, h, is the inverse of the link function, g = h−1.

2.1.1 Mixed Logit Models
For binary response variables and multilevel data, the mixed effects logistic regression is
the most popular GLMM. The logit link function is utilized so that for individual j in
cluster i,

ηij = logit(µij) = log(
µij

1− µij
), (2.4)

where µij is the conditional expectation of a random variable, Yij , and equals the con-
ditional probability of a successful outcome, yij = 1, given the random effects, µij =
E(Yij |δ,γi,xij) = P(Yij = 1|δ, γi,xij). We assume Yij |µij ∼ Bernoulli(µij). The
linear predictor in (2.2) becomes

ηij = log
P(Yij = 1|δ,γi,xij)
P(Yij = 0|δ,γi,xij)

= xTijβ + uTijγi + zTijδ,
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Chapter 2. Background

and we attain

µij = expit(ηij) =
1

1 + exp(−ηij)
, (2.5)

where expit(x) = logit−1(x).

2.2 Bayesian hierarchical modelling
The Bayesian approach along with the frequentist approach are two major paradigms of
statistical inference. “In frequentist statistics, it is assumed that the data is distributed ac-
cording to a model with fixed and unknown parameters” Bolstad (2007). The parameters
are considered as unobserved and unknown but fixed constants. Inference about the param-
eters is based on likelihoods from the sampling distribution. Likelihoods are probabilistic
descriptions of how the data arises conditionally on parameters. They are not conditional
on the sample collected. Hence, prior belief about the parameters is not taken into ac-
count. An alternative approach is the Bayesian approach. In the Bayesian framework,
the parameters of interest are treated as random variables. To help understand Bayesian
hierarchical modeling, a brief introduction to Bayesian statistics is presented prior to the
theory of Bayesian hierarchical models. The theory here is primarily based on the book
by Gelman et al. (2014).

Bayesian inference is based on the posterior distribution containing all information about
the unknown parameter after having observed the data. Inference about the parameters of
interest, θ, is based on the posterior distribution of the parameters given the observed data,
y. To obtain the posterior distribution, the joint probability distribution is required. The
function of the joint probability distribution is the product of the prior distribution, π(θ),
and the sampling distribution, π(y|θ),

π(θ, y) = π(θ)π(y|θ). (2.6)

The prior belief of the parameter is incorporated in the model by assigning a prior dis-
tribution to the parameters. Bayesian inference apply the Bayes’ theorem to update the
knowledge about θ conditioning on the outcome, y,

π(θ|y) =
π(θ)π(y|θ)

π(y)
. (2.7)

π(y) is a normalization constant, independent of θ which means that

π(θ|y) ∝ π(θ)π(y|θ). (2.8)
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2.2 Bayesian hierarchical modelling

A statistical model may involve several parameters that are related in some way. Corre-
lation within groups of the observations, may be desired to be incorporated in the model.
Then it is appropriate to consider hierarchical models, which allow the parameters of the
prior distribution can themselves be estimated from data. Hence, problems of overfitting
can be reduced (Gelman et al., 2014). The parameters in hierarchical models are given a
probabilistic specification in terms of further parameters, known as hyperparameters.

A Bayesian hierarchical model is a Bayesian model with one or more layers of latent
structures and can be split into stages. Let yi be a measured quantity in observation i for
i = 1, . . . n. Further, assume that the distribution of yi is conditional on a set of latent
variables, and the distribution of the latent variables is conditional on a set of hyperpa-
rameters with prior distributions. Let x denote the unobserved latent field and let θ be the
parameters. Three-stage hierarchical models can be defined by the following stages.

Stage 1: y|x,θ ∼ π(y|x, θ)

Stage 2: x|θ ∼ π(x|θ)

Stage 3: θ ∼ π(θ)

The models used in this thesis belong to Latent Gaussian Models (LGMs), a subclass of
Bayesian hierarchical models. In a LGM, the prior distribution on a latent field must be
Gaussian conditioned on the parameters. Structure additive regression models, such as
the GLMMs are members of LGMs. The unified framework of structure additive models
assumes the distribution of the response variable, yi, to belong to an exponential family
conditional on the mean, µi, as described in (2.3) and likelihood parameters. The linear
predictor from the GLMM is now referred to as the structured predictor ηi, which is con-
nected with the mean µi through a link function, g(µi) = ηi. The structured predictor
accounts for the effects of covariates in an additive way,

ηi = β0 +

nβ∑
k=1

βkxki +

nf∑
j=1

f (j)(uji) + εi,

where β0 is the intercept, the {βk}’s represent the linear effects of covariates {xki} on
the response. {f (j)(·)}’s are random functions of the covariates {uji}, and {εi}’s are
unstructured random terms (Rue et al., 2009). In this analysis, maternal age groups are
considered as fixed effects or random effects, while cluster information are considered as
random effects. The maternal age groups are categorical covariates with seven distinct
groups, u = {1, 2, . . . , 7}. Then, the random effects are, f(u) = γu, for u = 1, . . . , 7,
where (γ1, . . . , γ7) ∼ N (0,Q−1). The cluster effect would be f(“cluster ” i) = γi where
γi, . . . , γM

iid∼ N (0, σ2
γ) for M clusters.

7



Chapter 2. Background

2.3 Structured and unstructured random effects
This thesis focus on categorical predictor variables such as maternal age groups and urban
or rural type of residency. In this context, observations are divided into groups accord-
ing to the categorical predictor variables. In a population study, the samples collected
from different geographical regions are often disaggregated by so-called clusters in which
responses tend to be correlated. However, by using fixed effects for each cluster, the esti-
mates may reproduce the exact observed values. To account for correlation among clusters,
we need to introduce some form of shrinkage to model the variation between the clusters
and from the main level of this multilevel data structure of limited data. Accordingly, ran-
dom effects are proposed to specify how some model parameters vary randomly across
groups, and to capture variability in response that is not explained by fixed effects and
response distribution.

There are several types of random effects, and which are implemented in INLA. The types
of random effects utilized in INLA for this analysis are presented primarily using Gómez-
Rubio (2020). The vector of random effects, u, in INLA is multivariate Gaussian distribu-
tion with

u ∼ N (0,Σ), (2.9)

where Σ = (Q/τ)−1 is a covariance matrix, τ2 is a generic variance parameter, and Q is
a precision matrix that defines the dependence structure of the random effects and that may
depend on further parameters (Gómez-Rubio, 2020). The structure of Q is quite sparse
when random effects are a latent Gaussian Markov random field and which prepares the
ground for fast computations (Rue and Held, 2005). In this analysis, independent and
identically distributed (iid) random effects and random effects of random walks of order
one (rw1), and random walks of order two (rw2) are utilized.

The simplest way to account for unstructured variability in the data is by assuming the
random effects to be iid. The precision matrix, Q/τ , of iid random effects is an identity
matrix, withQ = diag{s1, . . . sn} denoting scaling factors of a diagonal matrix. “Scaling
factors are defined by means of parameter scale within the f() function used to define
the latent effect in the formula” Gómez-Rubio (2020). Now, let u = (u1, . . . un) be a
vector of Gaussian observations. Then, rw1 assumes that increments ∆ui = ui − ui−1 ∼
N (0, τrw1). This is equivalent to assuming that the distribution of vectoru is Gaussian with
zero mean and precision matrixQ/τrw1, whereQ contains the neighborhood structure of
the model (Gómez-Rubio, 2020). Similarly, the rw2 for Gaussian vector u = (u1, . . . un)
is defined by assuming independent second order increments ∆2ui = ui−2ui−1+ui−2 ∼
N (0, τrw2).

Random effects on categorical covariates aim to limit the variation between groups in form
of shrinkage, sometimes called partial-pooling. The shrinkage is weighted by overall bal-
ance between groups in the random effects structures depending on the group size. Mixed
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2.4 Inference

effects models are very useful when there is a number of groups, but only very few data
in each groups. The parameters are estimated by maximizing a penalized log-likelihood.
“The log-likelihood of the model is a measure of the fit (or lack there of), while the penalty
helps us avoid fitting overly complex smooths” Simpson (2021).

The DHS data collected in Nigeria between 2014-2018 is used to illustrate the behavior of
the different random effects in model fits. A line between the expit of the mean estimates
of the NMR associated with maternal age groups as random effects of iid, rw1 and rw2 in
urban area is shown in Figure 2.1. Data in urban is further divided in seven age groups,
which means the data in each groups is limited. Moreover, the youngest and oldest age
groups do typically have fewer observations. The plots from left to right shows that the
smoothness of the line between the mean of the estimates increases in the order of iid, rw1
and rw2.
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Figure 2.1: Illustration of the behaviour of random effects of iid, rw1 and rw2 on DHS data from
Nigeria collected in period 2014-2018 for estimating NMR (per 1 000 live births) associated with
maternal age groups in urban area.

The estimates in groups with few observations are expected to shrink toward the common
mean for unstructured iid random effects. For limited data, rw1 and rw2 collect informa-
tion from their neighboring groups. In a rw1 and rw2 model, the variation between the
values of its neighbors has a penalty that increases with increased change. The rw1 model
has a first order penalty to limit the variation between the estimates of the groups. Sim-
ilarly, rw2 has a penalty, but of second order. Thus, for a model with rw2, it is not only
expected a decrease in the deviation between the group, but also a reduction in the change
between its neighbors. This aims to describe the change to be secondly derivable as illus-
trated in Figure 2.1. These penalties of orders 1 and 2 results in a smoother variation in
models rw1 and rw2 compared to the iid random effects model. Moreover, the smoothing
is stronger for rw2, which is not surprising as we expect realizations of higher order.

2.4 Inference
The posterior distribution of the parameters of a Bayesian model can be used for inference
about the model. The posteriors cannot be computed analytically for most Bayesian mod-
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els. Hence, there exist several approximations. The most common sampling method is
the Markov chain Monte Carlo (MCMC). The theory of the MCMC can be found in, for
example, in Chapter 11 of Gelman et al. (2014). In MCMC, the values of the parameter,
θ, are drawn from proposal distributions, and the draws are updates according to some
acceptance rule to improve the approximation of the target posterior distribution π(θ|y).
The sampling is done sequentially and each sample is drawn based on the previous value
drawn. This forms a Markov chain, which is a sequence of random variables, θ1, θ2, . . . ,
where the distribution of any θt for any arbitrary t, and given all θ′s only depends on the
latest value, θt−1. By increasing the number of steps in a Markov chain, the approximation
of the desired posterior distribution improves.

Highly accurate estimates with MCMC algorithms requires generating large samples. More-
over, MCMC methods perform poorly on LGMs as discussed in Section 1.4 in Rue et al.
(2009). The components of the latent field x are strongly dependent on each other, and x
and θ are dependent, which requires modifications of the algorithm. An alternative, deter-
ministic approach for estimating the posterior of LGMs called Integrated Nested Laplace
approximation (INLA) is introduced in the paper Rue et al. (2009). It outperforms MCMC
for LGMs for the computational cost. Rue et al. (2017) present three assumptions that
is required for accurate with high degree of uncertain city, and computationally feasible
approximations. The number of hyperparameters, θ is small and not more than around
20. Furthermore, the latent field, x|θ of a Gaussian distribution, and Gaussian Markov
random field (GRMF) for high dimension of x. The definition of GMRFs is provided in
Section 2.2.1 of Rue and Held (2005). Finally, the observations, y, are mutually condi-
tionally independent given x and y. To understand the theoretical aspect of INLA, a brief
presentation is given, for further reading, see e.g. Rue et al. (2009) and Martins et al.
(2009).

INLA is based on the Laplace approximation, which aims to approximate an integral

I =

∫ ∞
−∞

exp(f(x))dx, (2.10)

where f(x) is the density of a random variable X . Let x? denote the location of its
maximum, x? = argmaxxf(x). Then the second order Taylor approximation for f(x)
around x = x? is

f(x) ≈ f(x?) + (x− x?)f ′(x?) +
1

2
(x− x?)2f ′′(x?).

f ′(x?) = 0 eliminates the second term, and the approximation of the integral in (2.10) can
be expressed as

I ≈ C
∫ ∞
−∞

exp

(
− (x− x?)2

2σ2?

)
dx (2.11)
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where the constant C = exp(f(x?)) and σ2? = −1/[f ′′(x?)]−1. Hence we get the
integrand in a form of the density of a Gaussian distribution.

The posterior marginals of interest may be written as

π(xi|y) =

∫
π(xi|θ,y)π(xi|y)dθ, (2.12)

π(θi|y) =

∫
π(θ|y)dθ−j (2.13)

where θ−j is all θ’s but θj . The INLA approach aims to construct nested approximations,

π̃(xi|y) =

∫
π̃(xi|θ,y)π̃(xi|y)dθ,

π̃(θi|y) =

∫
π̃(θ|y)dθ−j .

Let π̃ denote the approximation of the posterior π(θ|y) and

π̃(θ|y) ∝ π(x,θ,y)

πG(x|θ,y)

∣∣∣∣
x=x?(θ)

(2.14)

and where π̃G(x,θ,y) is the Gaussian approximation to the full conditional of x, and
x?(θ) is the mode of the full conditional for x, for a given θ as stated in Rue et al. (2009).
According to Rue et al. (2009) the approximation in (2.14) the marginal distribution of xi
can be computed by using numerical integration:

π̃(xi|y) =
∑
k

π̃(xi|θk,y)π̃(θk|y)∆k, (2.15)

where ∆k is the weight with corresponding value θk.

π̃(θ|y) is primarily used to integrate out the uncertainty with respect to θ when approxi-
mating the posterior marginals of xi in (2.12). The INLA method can be divided into three
main steps as proposed in Section 3.1 in Rue et al. (2009). The first step is to optimize
log{π̃(θ|y)} with respect to θ to locate the mode of π̃(θ|y). For that, the quasi- Newton
method can be used to approximate the second derivatives of log{π̃(θ|y)}. The second
step is to compute the negative Hessian matrix H > 0, of log{π̃(θ|y)} at mode θ?, by
using finite differences. Let Σ = H−1 which is the covariance matrix of θ for Gaussian
density. Further, let Σ = V ΛV T be the eigen-decomposition of Σ. Define

θ(z) = θ? + V Λ1/2z (2.16)
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where z ∼ N (0, I) if π̃(θ|y) is a Gaussian distribution. The third step is to use z-
parametrization to explore log{π̃(θ|y)} to locate the majority of the probability mass.

A grid with all point of log π̃(θ|y) is constructed. Each point is considered as signifi-
cant, and which is used in the numerical integration in (2.15). Finally, an interpolant to
log(π̃(θ|u)) is created from the points estimated in the grid, and to compute marginals
π̃(θj |y). A more detailed explanation of the algorithms is found in Rue et al. (2009).
Now the set of weighted points θk is attained. We want further to obtain accurate approx-
imations for the posterior marginal for xi’s, with xi|θ. Rue et al. (2009) propose three
approximation methods; Gaussian-, Laplace- and simplified Laplace approximation. In
general, the Laplace approximation is preferred. However, a much smaller cost with the
simplified Laplace approximation compensates for the slight loss in accuracy.

INLA method is computationally beneficial because the approach can provide accurate
approximations in seconds or minutes. Moreover, an extensive variety of different LGMs
can easily be applied with the same general implementation with minor adjustments such
as changing the likelihood, model components, and priors. INLA is implemented in the R-
package INLA1. It can produce estimates in a matter of seconds. Hence simulation studies
may be performed with several different models. To assess the performance of models
and determine the most appropriate model for estimation and forecast, some assessment
criteria and scoring rules must be established. The next section outlines some common
choices.

2.5 Scoring predictions
There are several statistical scores for validating the accuracy of regression methods.
Model performance can be evaluated by conduction simulation studies with M repeated
simulations, and to estimate the ability to reproduce parameters of interest. Based on in-
ference for the M simulations, properties such as mean squared error, mean bias error,
coverage, and mean signed deviation can be measured. This section presents these scoring
rules for a single simulation. In addition, the continuous ranked probability score, which
is used to evaluate the predictive performance of the methods applied on real data set by
DHS is presented.

The mean bias error (MBE) is the first scoring rule considered. Let yi, i = 1, 2, . . . , n
denote the simulation rates, and let the predicted rates denote ŷi, i = 1, 2, . . . , n for n
predicted data points for which the true simulated points are known. Then the MBE of an
estimator, ŷ, is simply the average bias in the prediction,

MBE =
1

n

n∑
i=1

(yi − ŷi). (2.17)

1https://www.r-inla.org
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2.5 Scoring predictions

The bias of a predicted rate measures the tendency of a model to overestimate or under-
estimate the rate. The MBE is frequently used to determine whether any steps need to be
taken to correct the bias in the model. A negative MBE indicates that the predictions are
smaller in value than observations. The MBE is not commonly used as a measure of the
model error, because high individual errors in prediction may still produce low MBE.

The mean squared error (MSE) imply the average of the errors squared

MSE =
1

n

n∑
i=1

(ŷi − y)2, (2.18)

where y is the true rate and ŷ is the predicted rate. MSE of low values indicates a better
performing model.

For j = 1, 2, . . .M simulations, a total score are evaluated by the average of the scoring
rules, SR, for every singe simulations performed,

SR =
1

M

M∑
j=1

SRj . (2.19)

The coverage of a 100(1− α)% confidence interval satisfies

Coverage =
1

M

M∑
j=1

1{π̂α/2 < π < π̂1−α/2}, (2.20)

where the notation 1{π̂α/2 < π < π̂1−α/2} is the indicator function, which takes on
the value 1 if {π̂α/2 < π < π̂1−α/2}, and takes on the value 0 otherwise. π̂ is the esti-
mates of the lower and upper bounds in expit-scale. π is the observed point estimate of
the simulated data. In context of NMR and MCV1 as binary responses, π is the observed
proportion of deaths or vaccinated children, respectively.

The mean signed deviation (MSD) of the estimates of the cluster effects, σc, for M simu-
lations is

MSD(σ̂c) =
1

M

M∑
j=1

σ̂ci − σc. (2.21)

The continuous ranked probability score (CRPS) is a generalized version of the mean ab-
solute error that applies on probabilistic forecasts. Good probabilistic forecasts aim to
maximize the sharpness of the predictive distributions subject to calibration. Calibration
refers to the statistical consistency between the distributional forecasts and the observa-
tions, and sharpness is about the concentration of the predictive distributions (Gneiting
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and Raftery, 2007). CRPS measures the compatibility between the predictive distribution
and the observations. Thus, the CRPS not only accounts for the point predictions, but also
the associated uncertainty.

Given a probabilistic forecast with cumulative distribution function F (y), the crps may be
expressed as

crps(F, x) =

∫ ∞
−∞

(F (y)− 1{x ≤ y})2dy, (2.22)

where x is the observation and 1 is the Heaviside step function that is assigned to 1 if
{x ≤ y} is true and 0 otherwise. From (2.22), the crps is always positive, and the closer
the CRPS is to zero, the closer the predictive distribution is to the true value. The crps
captures the uncertainty in the predictions as well as the uncertainty in the observations.
Hence, the crps favors predicted value with a higher bias but much lower variance than a
predicted value with low bias and high variance.

For a predictive distribution that is Gaussian with mean µ and variance σ2, the crps is

crps(N(µ, σ2), x) = σ

[
1√
π
− 2φ(

x− µ
σ

)− x− µ
σ

(
2Φ(

x− µ
σ

)− 1
)]
, (2.23)

where φ is the probability density function and Φ is the cumulative probability function
of a standard normal distribution. The crps is expressed in the same unit as the observed
variable and is in practice the average over n individual crps values. Let CRPS denote the
average of the crps values defined as

CRPS =
1

n

n∑
i=1

crps(Fi, yi), (2.24)

where y is an observed quantity, and F is the prediction of the corresponding y.

2.6 Complex survey designs
Many complex surveys are based on stratified multistage clustering design. Namely, clus-
ters are grouped into strata, often with several levels of stratification and several stages of
clustering. In particular, each sample from DHS data that is used for this analysis is based
on a stratified two-stage cluster design. In this section, aspects of survey methodology
relevant for understanding the concepts of stratification and one- and two-stage clustering
designs are briefly outlined. This section is primarily based on the methodology detailed
in the book “Sampling: Design and Analysis” by Lohr (2010).

Household survey data contains information that allows us to study characteristics in a
population such as child mortality rates. This information is retrieved from individual
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respondents in a survey that is representative of the general population. In a survey, the
observation units are the individuals, and the individuals that are included in a sample are
randomly chosen. These units can either be a specific number of people or the whole unit
in a given area of interest, like country, county, city, village, or similar. However, collect-
ing samples completely at random from a population is impractical and expensive. Thus,
the sample is not independently drawn. The inclusion probability, πi, for each individual i
is determined by the predefined survey design. The inclusion probability might be unequal
for each individual and generally lead to the construction of sampling weights for individ-
uals, which ensure unbiased estimation of descriptive parameters when incorporated into
an analysis (Heering et al., 2010). The sampling weight, wi for individual i, is the inverse
of the inclusion probability, wi = 1/πi.

In survey data, the population of interest is real and fixed with N individuals or units.
The particular sample that is included is a subset of the population. The sample included
consists of the indices of the units of the population containing n number of units. It is not
possible to compute the true population since information is only accessible from the units
in the sample. A population can further be divided into strata when additional information
is available, so it can be included in the sample to increase precision. A stratified sample
is a sample from subgroups from the population. The subgroups are called strata and are
mutually exclusive, where the estimates can be obtained from each stratum. In a stratified
sample, the population of N is divided into H strata, where each stratum, h, consists of
Nh sampling units. In stratified sampling, different inclusion probabilities of the units in
the different strata are considered.

Cluster sampling has the same concept as a stratified sample, but the subgroups are smaller
and often based on geographical location. By that, a sample from clusters limits the geo-
graphical spread of sampled observations. A unit in a population must belong to a cluster
that is selected to be included in the sample. In cluster sampling, each subgroup is called
a primary sampling unit (psu). Each cluster is further divided into secondary population
units, a such unit that is included in the sample is called secondary sample unit (ssu).

A simple random sample (SRS) is the most basic selection process of sampling from a
population and provides the theoretical basis for the more complicated forms such as one-
and two-stage cluster sampling. A SRS unit is randomly and independently selected from
the population, with an equal probability of being chosen. Hence, each unit i is equally
weighted, wi = N/n. In one-stage cluster sampling, we denote the number of clusters in
the population as N and as n psus in the sample. In the cluster sampling of the simplest
form, a SRS, S, of n psus is taken such that the inclusion probability is equal for each unit
in the population. LetMi andmi denote the number of secondary population units and the
number of ssus in psus i in respective order. Then, in one-stage cluster sampling, all units
within the psus from an SRS are included in the sample. In other words, Mi = mi if a psu
i is sampled, and mi = 0 otherwise. For the two-stage clustering, let N be the number of
clusters and M be the number of secondary population units from the population. For the
simplest form, an SRS, S, of n psus are taken from the population, and thereafter SRSs of
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m ssus from each of the n psus are conducted. These will be denoted by Si for psus i. In
two-stage clustering, the number of population units, Mi and the number of sampled units
mi in psus i can differ.
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Chapter 3
Descriptive analysis of the data

To access the DHS data, an application must be submitted through the DHS website1. The
DHS program processes the raw data into a recode data file. All variables in the recode
data file are in a standardized format. The data frame must be interpreted according to
the information from the associated recode data file, and subsequently extract the infor-
mation that is relevant for the analysis. The standard recode manual has a format with the
same structure across countries. The standardized format facilitates comparisons across
surveys. Specifically, a sampling manual called “Standard Recode Manual for DHS-7” is
used for the datasets collected in Nigeria and Kenya and is described in ICF et al. (2018).
The models implemented for this analysis focus on mortality rates and vaccination rates at
the national-, residence- and county/provincial level as the surveys provide enough data to
produce direct estimates at these levels.

The DHS program collects data from responses based on questionnaires gathered during
physical household visits. Data used in this analysis is designed to produce representative
estimates for a majority of the survey indicators at the national level, for urban and rural
residency separately, at the regional level, and for selected indicators at the county level
(Kenya National Bureau of Statistics et al., 2015b). Figure 3.1a and 3.1b provides a map of
Nigeria and Kenya in state and county level in respective order. Nigeria consists of total 36
states and 1 Federal Capital Territory, while Kenya has 47 counties. The states or counties
were further stratified into urban and rural groups. In Nigeria, each of the 36 states and
the Federal Capital Territory are separated into urban and rural residency. Thereby, 74
sampling strata in total were identified by DHS. In Kenya, each of the 47 counties were
stratified, totaling 92 strata because Nairobi and Mombasa are fully urban. The data we
will use can be considered as point measurements of trials and successes.

1https://www.dhsprogram.com
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Chapter 3. Descriptive analysis of the data

(a) Map of the 36 states of Nigeria and the Federal
Capital Territory, taken from National Population Com-
mission (NPC) (2019a), with permission from the DHS
program.

(b) Map of the 47 counties of Kenya, taken
from Kenya National Bureau of Statistics
et al. (2015a), with permission from the DHS
program.

The sampling design of DHS data is stratified followed by applying a two-stage proportional-
to size sampling cluster design. “Implicit stratifications were achieved at each of the lower
administrative levels by sorting the sampling frame before sample selection according to
administrative order and by using a probability proportional to size selection during the
first sampling stage” National Population Commission (NPC) (2019b). The strata are di-
vided into small geographical areas called enumeration areas (EAs). An EA is the same
as a psu. The DHS program selects a sufficient number of psus in each stratum. Then a
fixed number of households or ssus are selected from an up-to-date list of the households
for every psus. In the first stage of clustering, all ssus within the psus are included in the
sample. In a two-stage cluster sample, only a subsample of the units in psus are included
in the sample. The probability of sampling a psu is proportional to the estimated size of
the psu. Thereby, the inclusion probability of a household is approximately proportional
to the size of the EA and is approximately equal for all psus.

To ensure reliable estimates for all strata, the DHS program can oversample population
groups or geographical areas when needed. Oversampling some strata (such as urban
areas or selected regions or provinces) can increase the precision of estimates, besides
ensuring that the sample includes the units from every stratum. Hence, the final dataset
includes enough cases to produce reliable results. “In these cases, sampling weights need
to be applied to account for varying design weights and non-response levels”, Hancioglu
and Arnold (2013). Stratification requires well- defined and known strata. Accurate reg-
isters of inhabitants, however, might be difficult to obtain for low- and medium-income
countries.

In this study, we focus on two binary responses; NMR and MCV1. We investigate how
these responses separately are associated with maternal age groups, urban or rural type
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of residency, and cluster effects in the countries of Nigeria and Kenya. Each row in each
dataset represents a child, and the columns are the reported values of the variables from
the survey questionnaire. NMR (per 1 000 live births) is defined within this analysis as the
proportion of children who die within the first month after live birth. For estimating NMR,
data collected over a five-year period is utilized. The DHS dataset collected from Nigeria
in the period 2014-2018 is henceforth referred to as “NDHS14-18”. On the other hand,
the dataset collected from Kenya during 2010-2014 is referred to as “KDHS10-14”. The
relevant variables from the dataset for estimating NMR are presented in Table 3.1. In order
to estimate mortality rates, the function getBirths() implemented by Li et al. (2015)
is utilized. The function reformats full birth records into person-month format. Since
NMR estimation acquires information of newborns within 30 days after birth, a subset is
retrieved accordingly.

Table 3.1: Relevant variables from the DHS recode manuals for NMR.

v001 Cluster number
v013 Maternal age in 5-year groups from 15-49 years
v025 Type of place of residence (urban or rural)
b5 Child is alive
b7 Age at death of the child (months)

In this thesis, we study estimates of MCV1 (per 100 children) as the binary response
variable for coverage among 1-year-olds (12-23 months) who have known status about
whether the child has received the first dose of measles-containing vaccine or not. In
MCV1 analysis, the DHS data from the countries is read through the read dta() func-
tion to study the vaccination status in 2018 for Nigeria and in 2014 for Kenya. We
henceforth refer to the dataset for Nigeria as “NDHS18”, and the dataset for Kenya as
“KDHS14”. Table 3.2 shows the relevant variables that are used for estimating MCV1.
We filter out the relevant information by collecting the subset of all one-year-old children
that are alive.

Table 3.2: Relevant variables from the DHS recode manuals for MCV1.

v001 Primary sampling unit (cluster id)
v013 Maternal age in 5-year groups from 15-49 years
v025 Type of place of residence (urban or rural)
b8 Current age of child (years)
h9 Received MEASLES

All women aged 15-49 in a sampled household are interviewed. The maternal age groups
are given as v013 ∈ {[15-19], [20-24], [25-29], [30-34], [35-39], [40-44], [45-49]}. In the
context of NMR and MCV1, we consider one trial for each observation. A column is
added to count for one trial for each observation.
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3.0.1 Datasets for NMR
The NDHS14-18 has an overall representative sample of 40 427 households nationwide,
but the dataset reduces to 21 555 mothers and 32 982 newborns. Among newborns within
the first month of age, there are approximately 4.1% non-survivors observed in the data.
The plots in Figure 3.2 from left to right illustrate the distributions of the observations,
average observations per cluster, and the observed NMR between maternal age groups and
within the urban and rural areas in Nigeria. The left plot of the figure shows that the major-
ity of the observations belong to the age group of 25-29 years, and the number decreases
further away from this age group. The two outermost age groups, that is age group 15-19
years and 45-49 years, have few observations compared to the observations in the remain-
ing groups. They represent around 7% of the distribution. Moreover, observations from
rural areas dominate the distribution of the observations and represent approximately 66%
of the total observations.
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Figure 3.2: Distribution of newborns (observations) of mothers interviewed in Nigeria during 2014-
2018 by maternal age groups and between urban or rural residency. NMRs is the observed values.

The center plot in Figure 3.2 shows that the distribution of average observations per cluster
is similar to the distribution between the observations but on a considerably smaller scale.
The NDHS14-18 dataset contains a total of 1 389 clusters. As shown in the figure, there
is on average very few children from each cluster. The right plot shows that the observed
NMR is relatively higher in the two outermost age groups and where urban areas have
higher NMR than rural areas. However, towards the center age groups, the rural areas
have slightly higher observed NMR compared to urban areas.

KDHS10-14 contains a data frame with a sample size of 40 300 households. The dataset
reduces to information from 14 399 mothers for estimating NMR. The binary response data
contains 19 509 births of which approximately 2.4% are non-survivors. For the extracted
dataset, the sampling is split into 1 593 clusters. The plots in Figure 3.3 from left to right
show the distributions of the observations, average observations per cluster, and the ob-
served NMR between maternal age groups and within the urban and rural areas in Kenya.
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As for the NDHS18 data, most of the observations belong to the age group 25-29 years,
and the number of observations decreases further from this age group. The distribution of
the average observations per cluster is similar to the distribution of the observations. In
general, there are few observations per cluster, with a highest of just below 4 children per
cluster in age group 25-29 years. In the age group, 45-49 there are approximately 0.25
children per cluster. The right plot shows that the late age groups 40-44 and 45-49 have
higher observed NMRs compared to the NMRs in the remaining age groups.
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Figure 3.3: Distribution of newborns (observations) of mothers interviewed in Kenya during 2010-
2014 by maternal age groups and between urban or rural residency. NMR is the observed values.

3.0.2 Datasets for MCV1
The NDHS18 data contains of total 6 059 one-year-old children where 53% of the chil-
dren have received measles vaccine and the remaining children have not received measles
vaccine. The plots in Figure 3.4 from left to right illustrate the distributions of the obser-
vations, average observations per cluster, and the observed MCV1 between maternal age
groups and within the urban and rural areas in Nigeria.
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Figure 3.4: Distribution of vaccination coverage of measles among 1-year-olds (observations) of
mothers interviewed in Nigeria during 2014-2018 by maternal age groups and between urban or
rural residency. MCV1s are the observed values.
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Observations from rural areas represent 65% of the dataset. The outermost age groups
have a lower number of observations and average observations per cluster compared to the
observations and in the remaining age groups. The dataset contains 1 300 clusters. More-
over, the observed average MCV1 is generally higher in the urban areas than for the rural
areas.

The KDHS14 dataset contains of total 4 047 one-year-old children where approximately
85% have received the first dose of measles-containing vaccine and the remaining 15%
have not received measles vaccine. The plots in Figure 3.5 from left to right illustrate
the distributions of the observations, average observations per cluster, and the observed
MCV1 between maternal age groups and within the urban and rural areas in Kenya. The
left plot shows that the majority of roughly 70% of the observations for each age group are
from rural areas as shown in the left plot of Figure 3.5. Likewise, the average observations
per cluster of a total of 1 406 clusters have a similar distribution with the outermost age
groups containing few observations compared to the remaining age groups. The observed
MCV1 is generally higher for the urban areas compared to the rural areas.
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Figure 3.5: Distribution of vaccination coverage of measles among 1-year-olds (observations) of
mothers interviewed in Nigeria during 2014-2018 by maternal age groups and between urban or
rural residency. MCV1s are the observed values.
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Chapter 4
Simulation study
The goal of this simulation study is to investigate the importance of accounting for clus-
tering and informative inclusion probabilities in the survey design.

4.1 Main objectives
In survey data, only a small proportion of the full population is observed. Without know-
ing the full population, it is challenging to evaluate methods. Simulated populations allow
us to compare and evaluate estimated rates obtained from the methods to the ’true’ sim-
ulated rates. The answers collected through survey questionnaires from residents in the
same cluster might be more similar than answers from residents in different clusters. It
can therefore be assumed that the NMRs, for instance within the same cluster are more
similar than rates between different clusters. Moreover, observations in the total sample
might have different inclusion probabilities. In this simulation study, multiple surveys are
drawn from simulated populations. The clusters in each fixed population have different
predefined cluster effects. For every survey drawn from a population, scoring rules from
mixed effects which accounts for correlation among clusters are compared with scoring
rules from fixed effects where this assumption is ignored. The average of the scoring rules
of all surveys drawn for every single population is calculated. The goal of this simulation
study is to evaluate the importance of accounting for clustering and inclusion probabilities
by comparing the average scoring rules to assess model performances. Simulations are
constructed based on the NDHS14-18 data with NMR as a response, however, the same
approach could be adopted to the other responses used for this analysis.

4.2 Simulated populations
In this study, three populations are constructed. Each population consists of 10 000 clus-
ters, where 7 500 clusters are assigned rural and the remaining 2 500 are urban clusters.
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Chapter 4. Simulation study

Each urban or rural cluster contains 20 children divided into maternal age groups accord-
ing to an approximate distribution as for the real data set. Accordingly, a data frame of
200 000 rows or children are created. A column is added to count for one trial for each ob-
servation. Let x ∈ {[15-19], [20-24], [25-29], [30-34], [35-39], [40-44], [45-49]} denote the
seven age groups and n ∈ {2, 4, 5, 4, 3, 1, 1} be the number of children. Then, the number
of children in each age group in every urban cluster and every rural cluster is described by
the Cartesian productX×N , that is, the set of the ordered pairs (x, n) with x ∈ X,n ∈ N .
The clusters are individually simulated with a cluster-specific effect γi

iid∼ N (0, σ2
γ) for

i = 1, . . . , 10 000. Let the linear predictor η̃ij = αage[i,j]+βarea[i] describes the coefficients
of a fixed effects model estimated from the real data set using INLA in R. Here age[i, j]
denotes the maternal age group in cluster i for child j, while area[i] denotes either urban
or rural area in cluster i. Assuming µ̃ij = expit(η̃ij) ∼ Bernoulli(µ̃ij), the coefficients
are

[α1 + βu, α2 + βu, . . . , α7 + βu] = [-2.85, -3.13, -3.40, -3.29, -3.14, -3.16, -2.68]

and
[α1 + βr, α2 + βr, . . . , α7 + βr] = [-2.75, -3.03, -3.30, -3.19, -3.04, -3.06, -2.59],

denoting the 7 · 2 categories for age groups, (α1, α2, . . . , α7), in urban area for βu or rural
area for βr in cluster i. For simulating the binary outcome for child j in cluster i, the
cluster effects, γi is included in the linear predictor,

ηij = αage[i,j] + βarea[i] + γi. (4.1)

The expected value of the response variable yij = E[Yij |µij ] ∼ Bernoulli(µij) is sim-
ulated as µij = (1 + exp(−ηij))−1 from (2.5). The three fixed populations differ with

the characteristics of the distribution of the cluster-specific effect, drawn γi
iid∼ N (0, σ2

γ).
The populations, p = {p1, p2, p3}, have ’true’ standard deviation of the cluster effects,
σγ = {0, 0.5, 1}, respectively.

4.3 Survey designs
Surveys are drawn from the simulated populations each containing 300 clusters from ru-
ral areas and 100 clusters from urban areas, corresponding to a total of 8 000 children.
The simulations consist of every child from the clusters that are included in the survey.
The inclusion probability of clusters with positive cluster effects or high NMR estimates
is proportional to the inclusion probability of the remaining clusters with a proportional
constant k, such that in each simulation j = 1, 2, . . . , N from a population

k · P (i included|γi > 0) = P (i included|γi ≤ 0). (4.2)
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4.4 Models and scoring rules

In this analysis, two different sampling designs are considered. That is sampling de-
sign with both equal- or unequal inclusion probabilities of clusters. Simulations with
k = {1, 2, 3, 4} are explored. For k = 1, the inclusion probability is the same for all
children, while for k > 1, different inclusion probabilities of clusters are considered. In
this thesis, surveys are drawn from all three populations, p1, p2 and p3 for equal inclusion
probabilities. In addition, simulations on sampling design with unequal inclusion proba-
bilities of clusters with k = {2, 3, 4} are considered for population p3. All six scenarios
are given in Table 4.1. The highlighted cells in the table show the surveys drawn from
an informative sampling design. The number of surveys N for every scenario is predeter-
mined to a number large enough. For this analysis N = 400 surveys are performed for
each scenario on the fixed populations.

Table 4.1: Surveys are drawn from the following scenarios for populations defined in Section 4.2
and k from (4.2). The highlighted cells shows the surveys drawn from sampling design of unequal
inclusion probabilities of clusters.

Scenario Population σγ k

1 p1 0 1
2 p2 0.5 1
3 p3 1 1
4 p3 1 2
5 p3 1 3
6 p3 1 4

4.4 Models and scoring rules

The simulation study aims to evaluate predictive strengths of the methods based on scor-
ing rules of a GLM model and a GLMM model. The models are fitted with the package
INLA in R, and which estimates posteriors with integrated nested Laplace approximations
as described in Section 2.4.

Let i = 1, . . .M denote the clusters for child j = 1, . . . ni and let age[i, j] represent the
maternal age group and let area[i] represent the type of residency (urban or rural) in cluster
i for child j. The GLM model which is referred to as M1 is

M1: yij |µij ∼ Bernouilli(µij), µij = expit(αage[i, j] + βarea[i]),

for α1, . . . α7. The GLMM model has additionally the cluster effects γi for cluster i as
random effects in the model. The model is referred to as M2 and is given following the
distribution of the intercept and the priors of the hyperparameters
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Chapter 4. Simulation study

M2: yij |µij ∼ Bernouilli(µij), µij = expit(αage[i, j] + βarea[i] + γi)

γi|σ2
γ
iid∼ N (0, σ2

γ)

1

σ2
γ

∼ Gamma(1, 5 · 10−5)

where the coefficients (α1, . . . , α7, βu, βr)
iid∼ N (0, 1000), and γ1, . . . γM |σ2

γ
iid∼ N (0, σ2

γ)
are the cluster effects with variance σ2

γ . INLA assigns by default the priors of Gamma(1, 5·
10−5) for the precision of the random effects γ.

The true simulation rates are determined by the empirical proportion of non-survived chil-
dren within the maternal age group and urban or rural areas. The prediction rates and true
simulation rates for are used to calculate the scoring rules of MBE, MSE, and coverage
presented in Section 2.5 for M1 and M2 from every 400 survey drawn from each popu-
lation. The averages of the scoring rules obtained from the surveys are determined using
(2.19). Moreover, (2.21) is used to evaluate the MSD value in M2 for each survey.

4.5 The importance of accounting for clustering
Simulations from sampling design of equal inclusion probabilities for all three populations
are studied. That is, scenarios 1, 2, and 3 from Table 4.1. Scoring rules for M1 and M2 are
compared. Notations MBEM1, MSEM1 and CoverageM1 are used for the average scoring
rules of M1, while MBEM2, MSEM2 and CoverageM2 are the average scoring rules of M2.
The average MSD for all surveys obtained from M2 are denoted as MSDM2(σ̂γ).

The most prominent difference between the scoring rules of M1 and M2 are from popula-
tion p3 and is presented in Table 4.2. The table shows the average scoring rules for every
seven age groups and within urban or rural areas. MBE and MSE measures are relatively
similar under both models. In particular, the assessment of the performance of the models
cannot be differentiated based on the MSE values. Although the MBE values of the models
are somehow different, it is of a minimal scale that may be neglected. The most interesting
difference, however, is the coverage for the models. In general, M1 has lower coverage
in each age group within urban and rural areas compared to the coverage of M2. A lower
coverage indicates that the observed values are covered fewer times relative to higher cov-
erage, because of narrower credible intervals. Since M1 does not incorporate the cluster
effects in the model, the standard deviation of the estimates is in general narrower. On
the other hand, high coverage in M2 is a result of wider credible intervals, as the effective
sample size decreases by assuming correlation within the clusters. In general, M2 gives
better scoring rules and indicates that it is an advantage to incorporate the cluster effects
in the model. The MSD for M2 for the estimated cluster effects is MSDM2(σ̂γ) = −0.052
or in other words, M2 underestimate the cluster effects by approximately 5%.
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4.6 The impact of informative sampling

Table 4.2: Scoring rules over 400 simulations with k = 1 in (4.2) and p3 (σγ = 1) for estimat-
ing NMR associated with maternal age groups and urban or rural area in Nigeria with M1 as as
fixed effects model, while M2 also includes cluster effects as iid random effects. The coverage are
calculated from a 95% credible interval. MSDM2(σ̂γ) = −0.052.

Maternal age Residency MBEM1 (10−4) MBEM2 (10−4) MSEM1 (10−5) MSEM2 (10−5) CoverageM1 CoverageM2

15-19 years urban 0 -10 19 18 0.865 0.932
rural -1 -10 11 10 0.840 0.920

20-24 years urban 5 -3 6 6 0.858 0.938
rural -25 -34 9 9 0.820 0.912

25-29 years urban -5 -14 10 10 0.877 0.945
rural 3 -7 17 17 0.935 0.940

30-34 years urban -44 -54 32 32 0.920 0.943
rural -2 -11 12 12 0.935 0.950

35-39 years urban 4 -4 5 5 0.917 0.953
rural -4 -11 3 3 0.927 0.963

40-44 years urban 9 2 4 4 0.925 0.963
rural 2 -6 6 6 0.950 0.968

45-49 years urban 27 16 17 17 0.938 0.943
rural 19 9 24 23 0.940 0.935

It is difficult to differentiate the models for populations p1 and p2. The similar tables of
MBE, MSE and coverage of M1 and M2, including the MSDM2(σ̂γ) from simulations
of populations p1 and p2 are therefore given in Table A.1 and A.2, respectively, in the
Appendix.

4.6 The impact of informative sampling
The framework of the real data consists of clusters with different inclusion probabilities.
Thus, scoring rules from simulations with different inclusion probabilities are considered.
By oversampling clusters with positive cluster effects, we manipulate to overestimate the
mortality rate. That is the scoring rules for scenarios 4, 5, and 6 from Table 4.1. The
scoring rules with the most extreme case of k = 4 are presented in Table 4.3. Notations
MBEM1, MSEM1 and CoverageM1 are used for the average scoring rules of M1, while
MBEM2, MSEM2 and CoverageM2 are the average scoring rules of M2. The average MSD
for all surveys obtained from M2 are denoted as MSDM2(σ̂γ).

The most interesting difference between the scoring rules of M1 and M2 are from popula-
tion p3 and is presented in Table 4.3. The table shows the average scoring rules for every
seven age groups and within urban or rural area. The results shows that by oversampling
clusters with higher mortality rates increases the MBE considerably in both models rela-
tively to the respective MBE values in Table 4.2. The error rates of the MBE and MSE
measures are indeed relatively similar for M1 and M2. This implies that mixed models
should be avoided if we suspect informative sampling design. According to the coverage,
however, M2 performs better, but underestimate the cluster effects with roughly 5% as
MSDM2(σ̂γ) = −0.048. The results from Table 4.3 shows that the model with cluster
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Chapter 4. Simulation study

effects performs better for the overall scoring rules. Moreover, the cluster effects does not
result in any negative impact.

Table 4.3: Scoring rules over 400 simulations with k = 4 in (4.2) and σγ = 1 for estimating NMR
associated with maternal age groups and urban or rural area in Nigeria with M1 as as fixed effects
model, while M2 also includes cluster effects as iid random effects. The coverage are calculated
from a 95% credible interval. MSDM2(σ̂γ) = −0.048.

Maternal age Residency MBEM1 (10−4) MBEM2 (10−4) MSEM1 (10−5) MSEM2 (10−5) CoverageM1 CoverageM2

15-19 years urban 27 23 17 16 0.890 0.938
rural 16 11 9 9 0.897 0.960

20-24 years urban 5 1 6 6 0.870 0.940
rural -5 -10 7 7 0.920 0.958

25-29 years urban 9 5 11 10 0.892 0.948
rural 18 12 20 19 0.907 0.920

30-34 years urban -116 -121 42 42 0.848 0.875
rural -2 -12 12 12 0.922 0.935

35-39 years urban -7 -17 5 5 0.943 0.960
rural -3 -11 3 3 0.917 0.940

40-44 years urban 0 -8 5 4 0.907 0.948
rural -10 -19 7 7 0.927 0.935

45-49 years urban -11 -20 16 16 0.950 0.950
rural 43 31 24 23 0.958 0.955

The difference in the scoring rules for M1 and M2 is too minimal to draw any clear con-
clusion about which model is preferable according to the scoring rules for scenarios 4 and
5. The scoring rules for the models are given in Table A.3 and A.4, respectively, in the
Appendix.
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Chapter 5
Data analysis
In this section, the results of the probability estimates of NMR and MCV1 at the national
level associated with maternal age, place of residency (urban or rural), and cluster effects
are studied. Different models are used, of which either fixed effects or random effects
for maternal age groups are compared. The cluster effects are included or excluded as
iid random effects. The urban or rural covariate is eventually added as fixed effects. We
introduce the models used for evaluating the estimates. Then the results of the estimates
of NMR in Nigeria and Kenya in respective order are presented. Further, the results of
estimates of MCV1 for the countries in the same order are given.

5.1 Model descriptions
For binary outcomes, we assume

yij |µij ∼ Bernouilli(µij), µij = expit(ηij),

from (2.5) and where i = 1, . . . ,M denotes clusters for child j = 1, . . . , ni. The cluster
effects are γi|σ2

γ
iid∼ N (0, σ2

γ), with priors, 1/σ2
γ ∼ Gamma(1, 5 · 10−5). Further, let

age[i, j] and area[i] represent the maternal age groups and the residency category, respec-
tively, for individual j in cluster i. Let αage[i,j] and βarea[i] be the coefficients in the fixed
effects models with Gaussian prior on (α1, . . . , α7, βu, βr) ∼ N (0, 1000) unless other-
wise specified.

The models with maternal age groups and cluster information as categorical covariates are

m1α is ηij = αage[i,j]

m1α+γ is ηij = αage[i,j] + γi

m1r(α)+γ is ηij = αage[i,j] + γi, (α1, ..., α7)|µij∼N (0,Σ)

(5.1)
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Chapter 5. Data analysis

where Σ = (Q/τ)−1 denotes the covariance matrix, τ2 i a generic variance parameter,
and Q is a precision matrix of iid random effects that defines the dependence structure as
in (2.9). m1α and m1α+γ are compared to observe the difference in the estimates when
cluster-specific effects are excluded or included.

Incorporating the cluster effects in the model results in a shift in the fixed effects that
depends on the true value. For a true value, y, of small quantity, the expit function can be
approximated as expit(y) = ey

1+ey ≈ ey . Let ηij = αage[i,j], (α1, . . . , α7) be the estimates
of a fixed effects model with maternal age groups as covariate. When including the cluster
information as random effects,

E[eαk+γi |αk, σ2
γ ] = eαk+σ

2
γ/2 (5.2)

for small values of αk will decrease estimates of αk when the cluster effects are included.
This is a result of a non-linear link function, where intercept and variance will affect each
other. Moreover, we expect a decrease in the effective sample size when accounting for
correlation among children within the same cluster. For example, a sample size of, say,
1000 children will only represent the amount of information for around 500, or perhaps
200 children. This results in an increase in the uncertainly of estimates of m1α+γ , be-
cause the model accounts for correlation among clusters. Now, m1α+γ and m1r(α)+γ are
compared to observe the difference in the estimates using fixed effects or random effects
on maternal age groups as covariate.

To explore the impact of type of residency on NMR or MCV1 in addition to the maternal
age groups and cluster effects, we model

m2α+β+γ is ηij = αage[i,j] + βarea[i] + γi

m2r(α)+β+γ is ηij = αage[i,j] + βarea[i] + γi, (α1, ..., α7)|µij ∼ N (0,Σ)
(5.3)

where Σ = (Q/τrw)−1 denotes the covariance matrix of rw1- or rw2 random effects de-
scribed in Section 2.3. By further disaggregating the maternal age groups on urban and
rural residency, the observations are distributed into more definitive groups, which results
in a smaller number of observations in each group. As discussed in Section 3, the distri-
butions of the datasets used for this analysis show that the outermost maternal age groups
have fewer observations relative to the remaining groups. Random effects of rw1 and rw2
are therefore expected to give more accurate estimates, because they have properties that
allow collecting information from neighboring groups when there are few observations in
the respective groups.

In this analysis, the CRPS values are measured for assessing the predictive performance of
the methods. In particular, each age group, αk, for k = 1, . . . , 7 is left out and the remain-
ing data is used to make predictions. Then, the posteriors of E[expit(αk +βu + γ)|αk, βu]
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5.2 Analysis of NMR coverage

and E[expit(αk+βr +γ)|αk, βr] are computed, i.e, we marginalize out the cluster effects.
The age groups (α1, ..., α7)|µij ∼ N (0,Σ) where Σ = (Q/τrt)

−1 denotes the covari-
ance matrix of iid-, rw1- or rw2 random effects described in Section 2.3. The empirical
proportions for each age groups within urban or rural areas are then computed. Finally, the
CRPS values are computed based on the predictive distributions and the observed values.
The CRPS is calculated at expit-scale in per 1000, and where the lowest CRPS value is the
most favorable model according to CRPS criteria.

5.2 Analysis of NMR coverage

5.2.1 Nigeria
Figure 5.1 shows the variation in NMR estimates between maternal age groups in Nigeria
on an expit-scale along with 95% credible interval. The left plot shows the estimates of
m1α and m1α+γ , and the right plot shows estimates of m1α+γ and m1r(α)+γ defined in
(5.1).
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Figure 5.1: Variations in NMR estimates between maternal age groups in Nigeria. The left plot
shows the estimates of expit(αage) and expit(αage + γiid), and the right plot shows estimates of
expit(αage + γiid) and expit(αage + γiid), (α1, ..., α7) as iid random effects described in (5.1). A
95% credible interval is given.

The left plot in the figure shows that the probability estimates of NMR associated with
maternal age groups and cluster effects have lower fixed effects in general compared to
the model that has no cluster-specific effects, but with a similar range in variance relative
to each other. Accordingly, there has been a shift between the cluster effects model and
the model with no cluster effects as expressed in (5.2). The 95% credible interval of the
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Chapter 5. Data analysis

clustering effects is calculated to be σ̂c = [0.42, 0.60] with median 0.50. The right plot
shows that when cluster effects is included in both fixed effects and iid random effects
models, the estimates NMR associated with maternal age groups are very similar.

The variation between maternal age groups within urban and rural areas in NMR for mod-
els m2α+β+γ and m2r(α)+β+γ are given in Figure 5.2. A 95% credible interval is given.
The plot shows that the mortality rate is slightly higher for rural areas compared to urban
areas. The figure illustrates the advantage of assigning maternal age groups as rw1 and
rw2 random effects, as the outermost age groups with few data are shrunk towards the
mean of the estimates of the neighborhood groups. Thereby, the variation between ma-
ternal age groups is less pronounced in the random effects models compared to the fixed
effects model. Despite having relatively high mortality estimates in these age groups in the
fixed effects model, there is not enough information to conclude that they are convincingly
different from the other age groups. The figure shows that the estimates from rw1 and rw2
models stabilize more between the age groups compared to the fixed effects model. If a
line were drawn between the medians for each model as in Figure 2.1, the smoothness of
the lines would have increased in the order of fixed, rw1 and rw2.
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Figure 5.2: Variations in NMR estimates between maternal age groups within urban or rural areas
in Nigeria. The figure shows estimates of expit(αage + βarea + γiid), with αage as iid, rw1 or rw1
random effects described in (5.3). The estimates show a 95% credible interval.

The CRPS measures for predicting NMR in missing age groups in urban or rural area
in Nigeria are given in Table 5.1 CRPS shows the average CRPS in each category. The
highlighted cells in the table show the model type with the best CRPS value and best
average CRPS in total for both urban and rural areas. According to the table, the model
type of rw2 has the average best score of all groups and the best score for most age groups.
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5.2 Analysis of NMR coverage

Although rw2 is best for most age groups, the other models are better for some of the age
groups.

Table 5.1: CRPS values for predictions of NMR in missing age groups in urban or rural area in
Nigeria in expit-scale in per 1000. CRPS are the average values. The highlighted cells are the model
types with lowest (most favorable) CRPS.

Maternal age Residency iid rw1 rw2 CRPS

15-19 years urban 18.71 18.19 14.12 17.01
rural 14.57 14.05 9.44 12.69

20-24 years urban 2.68 2.90 3.54 3.04
rural 4.26 5.48 7.63 5.79

25-29 years urban 3.02 1.79 1.20 2.00
rural 2.98 1.78 1.02 1.93

30-34 years urban 2.73 1.48 2.07 2.09
rural 2.19 2.78 4.78 3.25

35-39 years urban 2.64 3.65 4.94 3.74
rural 3.98 6.14 8.64 6.25

40-44 years urban 7.98 4.43 3.62 5.34
rural 2.38 3.26 3.92 3.19

45-49 years urban 43.97 43.03 38.05 41.68
rural 15.52 14.17 11.06 13.58

CRPS urban 11.68 10.78 9.65
rural 6.53 6.81 6.64

5.2.2 Kenya

In Kenya, the NMR estimates are not affected by the inclusion of cluster effects as shown
in the left plot of Figure 5.3. Indeed, the 95% credible interval of the cluster effects is
σ̂c = [0, 0.04], with median 0.03. The estimates of m1α+γ and m1r(α)+γ are also very
similar as shown in the right plot of the figure. The NMR estimates fromm2α+β+γ against
m2r(α)+β+γ in Figure 5.4 show that the variation between the groups is less pronounced
in the random effects model compared to the fixed effects model. The maternal age groups
in the fixed effects model are treated as distinct groups, which makes the variance of out-
ermost age groups wider as they have very few observations. The random effects model
handles these groups by collecting strength from neighboring groups. The variation be-
tween maternal age groups is less pronounced in the order of fixed effects, rw1 and rw2,
for the same reason as discussed for Nigeria. There is a clear difference in the variance of
the estimates for each model. The variances in the random effects models compared with
the fixed effects model are smaller as expected.

33



Chapter 5. Data analysis

10

20

30

40

50

[15,19] [20,24] [25,29] [30,34] [35,39] [40,44] [45,49]

Maternal age

N
M

R
 (

‰
)

cluster effect no cluster effect

10

20

30

40

50

[15,19] [20,24] [25,29] [30,34] [35,39] [40,44] [45,49]

Maternal age

N
M

R
 (

‰
)

as fixed effects as random effects

Figure 5.3: Variations in NMR estimates between maternal age groups in Kenya. The left plot
shows the estimates of expit(αage) and expit(αage + γiid), and the right plot shows estimates of
expit(αage + γiid) and expit(αage + γiid), (α1, ..., α7) as iid random effects described in (5.1). A
95% credible interval is given.
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Figure 5.4: Variations in NMR estimates between maternal age groups within urban or rural areas
in Kenya. The figure shows estimates of expit(αage + βarea + γiid), with αage as iid, rw1 or rw1
random effects described in (5.3). The estimates show a 95% credible interval.
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5.3 Analysis of MCV1 coverage

The CRPS measures for predicting NMR in missing age groups in urban or rural area for
in Kenya are given in Table 5.2. The highlighted cells in the table show the model type
with the lowest CRPS in total for each age group. CRPS shows the average CRPS for the
age groups in urban or rural areas and each model type. The best CRPS on average and
for most age groups are the model with rw2 random effects.

Table 5.2: CRPS values for predictions of NMR in missing age groups in urban or rural area in
Kenya in expit-scale in per 1000. CRPS are the average values. The highlighted cells are the model
types with lowest (most favorable) CRPS.

Maternal age Residency iid rw1 rw2 CRPS

15-19 years urban 7.77 7.49 3.98 6.41
rural 4.90 4.74 1.56 3.73

20-24 years urban 1.87 2.41 3.79 2.69
rural 1.64 3.16 5.32 3.37

25-29 years urban 3.04 2.92 2.26 2.74
rural 4.97 5.18 3.73 4.63

30-34 years urban 2.53 3.00 1.93 2.49
rural 2.18 1.99 1.15 1.77

35-39 years urban 2.60 1.94 1.81 2.12
rural 2.12 5.08 6.00 4.40

40-44 years urban 4.57 4.32 3.03 3.97
rural 20.26 20.17 15.84 18.76

45-49 years urban 7.56 6.12 5.62 6.43
rural 2.66 3.12 5.83 3.87

CRPS urban 4.28 4.03 3.20
rural 5.53 6.21 5.63

5.3 Analysis of MCV1 coverage

5.3.1 Nigeria
The variation in estimates of the MCV1 coverage in Nigeria for m1α are in general higher
compared to the relative estimates in m1α+γ as shown in the left plot of Figure 5.5. The
uncertainty in the estimates of the cluster effects model from a 95% credible interval is gen-
erally wider, and especially for the outermost age groups. This is a result of the fact that
correlation across children from the same clusters has been taken into account. The right
plot in the figure shows the estimates of the vaccination rate from m1α+γ and m1r(α)+γ .
The model with maternal age groups as random effects have slightly narrower uncertainty
in the estimates. Moreover, the outermost age groups do in particular have higher vacci-
nation rate estimates relative to the rate of the fixed effects model. The random effects
model collects information from the remaining groups to limit the variation. There is,
however, no big difference between the estimates between the fixed effects and the ran-
dom effects model. Nevertheless, the impact of the type of residency on MCV1 in Nigeria
is remarkably strong as shown in Figure 5.6.
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Figure 5.5: Variations in MCV1 estimates among 1-year-olds between maternal age groups in Nige-
ria. The left plot shows the estimates of expit(αage) and expit(αage + γiid), and the right plot shows
estimates of expit(αage + γiid) and expit(αage + γiid), (α1, ..., α7) as iid random effects described
in (5.1). A 95% credible interval is given.
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Figure 5.6: Variations in MCV1 estimates among 1-year-olds between maternal age groups within
urban or rural areas in Nigeria. The figure shows estimates of expit(αage + βarea + γiid), with αage

as iid, rw1 or rw1 random effects described in (5.3). The estimates show a 95% credible interval.
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5.3 Analysis of MCV1 coverage

The coverage of MCV1 in urban areas are higher compared to in rural areas. In urban
areas, the vaccination rate gives estimates above 40% for children of all mothers for both
models, while the estimates in rural areas show all under 60% from Figure 5.6. Indeed,
the age groups 19-39 years in urban areas show median estimates around 70% − 80%.
On the other hand, the estimates for the very same age groups in rural areas show median
estimates of around 45%− 55%. The uncertainty in the fixed effects in the outermost age
groups are wider because of the few data to collect enough information in these age groups.

The following table shows CRPS measures for predicting MCV1 coverage in missing age
groups in urban or rural area in Nigeria. The rw1 and rw2 models are the preferable models
based on CRPS. However, overall, the rw2 model performs better on average, and for most
age groups.

Table 5.3: CRPS values for predictions of MCV1 coverage in missing age groups in urban or rural
area in Nigeria in expit-scale in per 100. CRPS are the average values. The highlighted cells are the
model types with lowest (most favorable) CRPS.

Maternal age Residency iid rw1 rw2 CRPS

15-19 years urban 15.19 15.00 12.53 14.24
rural 14.11 13.91 11.03 13.02

20-24 years urban 3.37 2.13 2.38 2.63
rural 2.57 2.33 1.57 2.16

25-29 years urban 2.60 1.44 1.70 1.91
rural 3.06 1.70 1.99 2.25

30-34 years urban 2.90 1.86 3.40 2.72
rural 3.59 2.18 4.09 3.29

35-39 years urban 1.77 1.53 1.85 1.72
rural 7.50 6.27 5.78 6.52

40-44 years urban 8.80 8.19 10.25 9.08
rural 2.56 1.88 1.64 2.03

45-49 years urban 35.68 32.83 27.91 32.14
rural 7.60 5.89 3.15 5.55

CRPS urban 10.04 9.00 8.57
rural 5.86 4.88 4.18

5.3.2 Kenya

The left plot in Figure 5.7 shows the estimates of MCV1 coverage in Kenya associated
with maternal age groups and when the cluster effects are included or excluded. The
uncertainty in the estimates in groups 40-44 and 45-49 years are relatively wider under the
models because of few data. The right plot in Figure 5.7 shows no strong difference in
the estimates between modelsm1f(α)+γ andm1r(α)+γ . The MCV1 coverage is generally
higher in urban area, but the association with type of residency is not as strong as in
Nigeria.
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Figure 5.7: Variations in MCV1 estimates among 1-year-olds between maternal age groups in
Kenya. The left plot shows the estimates of expit(αage) and expit(αage + γiid), and the right plot
shows estimates of expit(αage + γiid) and expit(αage + γiid), (α1, ..., α7) as iid random effects de-
scribed in (5.1). A 95% credible interval is given.
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Figure 5.8: Variations in MCV1 estimates among 1-year-olds between maternal age groups within
urban or rural areas in Kenya. The figure shows estimates of expit(αage + βarea + γiid), with αage as
iid, rw1 or rw1 random effects described in (5.3). The estimates show a 95% credible interval.
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5.3 Analysis of MCV1 coverage

The variation in MCV1 between maternal age groups as fixed effects or random effects
of rw1 or rw2, within urban or rural areas in Kenya, are given in Figure 5.8. The mod-
els compared are m2α+β+γ m2r(α)+β+γ . The standard deviation of the estimates from a
95% credible interval shows that rw1 and rw2 models are smaller than for the fixed effects
model as expected. If a line were drawn between the median estimates for each model, the
smoothness of the lines would have increased in the order of effects of fixed, rw1 and rw2.
In general, the MCV1 estimates are higher in urban areas than in rural areas.

The CRPS measures for predicting MCV1 coverage the different maternal age groups in
the urban or rural areas for estimating MCV1 in Kenya are given in Table 5.2. The best
CRPS on average is with the rw2 model. However, iid and rw2 dominates the best CRPS
values for the age groups.

Table 5.4: CRPS values for predictions of MCV1 coverage in missing age groups in urban or rural
area in Kenya in expit-scale in per 100. CRPS are the average values. The highlighted cells are the
model types with lowest (most favorable) CRPS.

Maternal age Residency iid rw1 rw2 CRPS

15-19 years urban 1.19 1.20 2.38 1.59
rural 0.72 0.68 2.86 1.42

20-24 years urban 0.43 0.44 0.65 0.51
rural 0.64 0.60 0.70 0.65

25-29 years urban 0.42 0.43 0.41 0.42
rural 0.37 0.42 0.47 0.42

30-34 years urban 0.65 0.63 0.52 0.60
rural 2.64 2.58 1.43 2.22

35-39 years urban 1.44 0.95 0.67 1.02
rural 3.26 1.80 0.73 1.93

40-44 years urban 12.28 12.25 9.59 11.37
rural 7.23 7.16 3.33 5.91

45-49 years urban 2.74 2.87 6.07 3.89
rural 1.97 1.90 3.31 2.39

CRPS urban 2.74 2.68 2.90
rural 2.40 2.16 1.83

39



Chapter 6
Discussion
Surveys and censuses are the primary data source for estimating health indicators such as
neonatal mortality rate and coverage of measles-containing vaccine in low- and middle-
income countries. Survey data is complex due to its sampling design of stratifications,
weights, and clustering. The observations might have different probabilities of being se-
lected, and each observation is weighted depending on the inclusion probability of the
associated observation. Moreover, correlation among clusters should be incorporated in
regression analysis because children in the same cluster tend to be similar. A failure to
account for the complex survey design is theoretically expected to give estimates and cor-
responding variances that are biased.

This thesis aimed to evaluate the importance of incorporating clustering by including
cluster-specific random effects in model estimation. Probability estimates for neonatal
mortality rate and first-dose measles-containing vaccine among 1-year-olds are investi-
gated from data provided by Demographic and Health Surveys collected in Nigeria and
Kenya. The associations between maternal age groups, urban or rural areas, and cluster
effects are explored as explanatory variables. Logistic mixed models for binary responses
are applied to the datasets to include unstructured cluster-specific random effects. The
results of the estimates evaluated in the data analysis indicate that the cluster-specific ef-
fects should be included in model estimation. Indeed, including the cluster effect generally
does not affect negatively the predictive strength of the methods for this particular analysis.

Incorporating the cluster effects as independent and identically distributed random effects
results in a shift in the fixed effects of the mixed model. The shift is, for instance, clear for
the results from the analysis of the probability estimation of NMR in Nigeria. The standard
deviation of the cluster effects for this particular dataset was calculated to be σ̂c = 0.5.
Although there is a shift between the estimates, the simulation study from population p2
with the same cluster-specific effects of σc = 0.5, shows that the predicted and the true,
empirical proportion rates are almost identical. However, a higher standard deviation such
as σc = 1 for the cluster-specific random effects results in a larger impact for the scor-
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ing rules under the models. The results from population p3, i.e, with σc = 1, shows that
that including cluster effects is a better choice. Mixed models do not yet eliminate the
mean bias error values and mean squared errors for any of the methods achieved from in-
formative sampling design in the simulation study. This indicates that different inclusion
probabilities in the sample should not be ignored, and mixed models for regression analy-
sis should be reconsidered when dealing with complex survey design.

The continuous ranked probability scores were calculated for assessing the predictive
strength of the methods for maternal age groups as structured and unstructured random
effects. Mixed models appear to be a good choice for predicting estimates of missing age
groups. The results in the data analysis show that random effects succeed to limit the varia-
tion of the estimates between the maternal age groups. In addition, the uncertainties in the
estimates of the outermost groups which consists of insufficient information, are reduced
in the random effects compared to the fixed effects. For this particular analysis, random
effects of random walk of order 2 give the best continuous ranked probability score for
the most age groups. It can be discussed that this might be a result of the distribution of
the observations and the observed rates for the age groups. Hence, a better performance
with higher order structured random effects may be related to its strength to limit variation
based on neighboring groups rather than arbitrarily groups such as for independently and
identically distributed random effects.

Several aspects of the survey methodology can be discussed. For example, if the inclusion
probability of the individuals in a specific area is twice as large as in another area, then the
weights of the individuals in the different areas are not the same. Models which account
for such interactions with various stratification variables can be developed. Stratification
at the urban and rural level, and where associations of maternal age groups are separately
studied for urban or rural type of residency. Additional work can include an assumption
about interactions between maternal age groups and urban or rural areas as well as model
estimation at county level.
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Appendix A
Additional Simulation Results
In this section, results from surveys drawn from additional simulated populations referred
to in Chapter 4 are displayed. The tables show the average scoring rules of MBE, MSE and
coverage for M1 and M2 obtained from multiple surveys drawn. M1 do not include the
cluster-specific random effects, while M2 incorporates for clustering in the mixed model.
The scoring rules are defined in Section 2.5, and the models are described in Section 4.4.
The results are shown in the appendix as the scoring rules for both models are very similar
to each other.

Table A.1: Scoring rules over 400 surveys with k = 1 in (4.2) from population p1 (σγ = 0) for
estimating NMR associated with maternal age groups and urban or rural area in Nigeria with M1 as
as fixed effects model, while M2 also includes cluster effects as iid random effects. The coverage
scores are calculated from a 95% credible interval. MSDM2(σ̂γ) = 0.009.

Maternal age Residency MBEM1 (10−4) MBEM2 (10−4) MSEM1 (10−5) MSEM2 (10−5) CoverageM1 CoverageM2

15-19 years urban -44 -44 10 11 0.930 0.927
rural 6 6 3 3 0.965 0.965

20-24 years urban 16 16 3 3 0.930 0.930
rural -14 -14 4 4 0.953 0.943

25-29 years urban 7 7 5 5 0.958 0.958
rural 35 35 12 12 0.948 0.948

30-34 years urban -26 -27 20 20 0.940 0.943
rural 19 19 7 7 0.960 0.958

35-39 years urban -6 -6 2 2 0.968 0.963
rural -6 -6 2 2 0.963 0.958

40-44 years urban 7 7 3 3 0.955 0.950
rural 7 7 4 4 0.935 0.940

45-49 years urban 2 2 10 10 0.968 0.958
rural 4 4 16 16 0.953 0.953
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Table A.2: Scoring rules over 400 surveys with k = 1 in (4.2) from population p2 (σγ = 0.5) for
estimating NMR associated with maternal age groups and urban or rural area in Nigeria with M1 as
as fixed effects model, while M2 also includes cluster effects as iid random effects. The coverage
scores are calculated from a 95% credible interval. MSDM2(σ̂γ) = −0.418.

Maternal age Residency MBEM1 (10−4) MBEM2 (10−4) MSEM1 (10−5) MSEM2 (10−5) CoverageM1 CoverageM2

15-19 years urban -5 -5 9 9 0.955 0.955
rural -2 -2 5 5 0.925 0.922

20-24 years urban -7 -7 3 3 0.932 0.935
rural 5 4 4 4 0.955 0.960

25-29 years urban -1 -1 5 5 0.968 0.963
rural 13 13 13 13 0.955 0.955

30-34 years urban -1 -1 20 20 0.943 0.945
rural -4 -4 9 9 0.943 0.943

35-39 years urban 0 0 3 3 0.960 0.960
rural 3 3 2 2 0.950 0.945

40-44 years urban 2 2 3 3 0.963 0.963
rural 6 6 4 4 0.963 0.963

45-49 years urban 3 3 12 12 0.955 0.955
rural 1 1 19 19 0.950 0.953

Table A.3: Scoring rules over 400 surveys with k = 2 in (4.2) from population p3 (σγ = 1) for
estimating NMR associated with maternal age groups and urban or rural area in Nigeria with M1 as
as fixed effects model, while M2 also includes cluster effects as iid random effects. The coverage
scores are calculated from a 95% credible interval. MSDM2(σ̂γ) = −0.069.

Maternal age Residency MBEM1 (10−4) MBEM2 (10−4) MSEM1 (10−5) MSEM2 (10−5) CoverageM1 CoverageM2

15-19 years urban 20 15 16 16 0.927 0.968
rural 6 1 8 8 0.900 0.945

20-24 years urban 9 5 5 5 0.910 0.958
rural 8 4 7 7 0.902 0.955

25-29 years urban -18 -22 8 9 0.915 0.960
rural 8 2 17 17 0.935 0.963

30-34 years urban -11 -16 26 26 0.927 0.945
rural 12 1 12 11 0.943 0.963

35-39 years urban 5 -3 5 5 0.940 0.960
rural 2 -5 4 4 0.890 0.938

40-44 years urban -5 -12 5 5 0.900 0.927
rural 9 1 6 6 0.927 0.948

45-49 years urban 8 0 16 16 0.955 0.955
rural -7 -18 20 20 0.955 0.945

48



Table A.4: Scoring rules over 400 surveys with k = 3 in (4.2) from population p3 (σγ = 1) for
estimating NMR associated with maternal age groups and urban or rural area in Nigeria with M1 as
as fixed effects model, while M2 also includes cluster effects as iid random effects. The coverage
scores are calculated from a 95% credible interval. MSDM2(σ̂γ) = −0.073.

Maternal age Residency MBEM1 (10−4) MBEM2 (10−4) MSEM1 (10−5) MSEM2 (10−5) CoverageM1 CoverageM2

15-19 years urban 3 -2 15 14 0.935 0.955
rural -8 -6 8 8 0.917 0.960

20-24 years urban 9 4 6 6 0.905 0.958
rural 7 2 7 7 0.892 0.948

25-29 years urban -22 -27 10 10 0.890 0.932
rural 5 -1 15 14 0.953 0.970

30-34 years urban -6 -12 30 29 0.925 0.945
rural 1 -9 10 10 0.955 0.973

35-39 years urban 5 -3 5 5 0.932 0.950
rural 6 -1 4 4 0.890 0.930

40-44 years urban -2 -9 5 4 0.940 0.955
rural 10 2 7 6 0.927 0.960

45-49 years urban 11 4 15 16 0.963 0.963
rural 6 -5 24 23 0.950 0.948
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