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These datasets have the potential to reveal undesired network behaviour and thus
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Abstract

The Internet keeps expanding and creates a higher performance demand
due to progressively emerging digital services. The Internet Service
Providers (ISPs) closely monitor their network infrastructure to provide
stable and reliable networks. In an attempt to further improve the
dependability, a collaboration project dubbed "Dragonlab”, where Uninett
is a contributor, has been initiated to measure the end-to-end quality
of network traffic. The probes in the network generate a vast amount
of monitoring logs. By analysing this data using traditional methods,
Uninett has uncovered an accumulation of micro outages that could
indicate network issues. This thesis investigates to what extent ML can
produce valuable output to contribute in Uninett’s monitoring system.
The thesis follows a design science research methodology, where we divide
the iterating cycles into several implementation approaches.

These approaches consists of investigating Uninett’s collected and
analysed data to gain knowledge of the current solution in production.
We apply Kibana’s ML-based anomaly detection to find anomalies in
the measured network delay, and conduct root cause analysis on these
findings. The other approaches manually inspect multiple resources whilst
evaluating possible ML solutions. The results show little information of
interest in the datasets and low potential for ML. Most features in the
datasets are derived from a single metric, nodal delay, and contribute
no context to observed deviations. Uninett’s monitoring system, as of
today, is primarily applicable in statistical analysis and threshold methods
for problem discovery. Proceeding with a statistical analysis approach,
we discover correlations between streams of packets on different paths.
These results indicate that unwanted events affect multiple parts of the
infrastructure. This discovery can be used in combination with other
sources to determine root causes in the future.

The conclusion deems ML not profitable for Uninett at the time being.
ML would introduce unnecessary complexity and would require expertise
to develop and maintain. We suggest expanding on their existing data
analysis by combining multiple sources of information and label known
root causes. Improving their log-formatting and developing an atomic
methodology while doing so is highly recommended. They will then
have easily accessible and dynamic resources ready for numerous analysis
methods in the future. If able to reliably combine multiple sources of
information to labelled events, a reevaluation of ML can be conducted.






Sammendrag

Internett fortsetter a utvide seg, og brukere forventer stadig bedre ytelse
ettersom nye og bedre digitale tjenester blir tilgjengelig. Internettleve-
randgrer overvaker nettverksinfrastrukturen sin ngye for a opprettholde
stabile og palitelige nettverk. I et forsgk pa & forbedre péaliteligheten
ytterligere, har et samarbeidsprosjekt kalt "Dragonlab”, der Uninett
er en bidragsyter, blitt initiert for & male ende-til-ende kvaliteten pa
nettverkstrafikk. Méalenodene i nettverket genererer enorme mengder over-
vakingslogger. Ved & analysere disse dataene med tradisjonelle metoder,
har Uninett avdekket en opphopning av mikrobrudd som kan indikere
nettverksproblemer. Denne oppgaven undersgker i hvilken grad maskin-
leering (ML) kan resultere i verdifull informasjon for & bidra i Uninetts
overvakingssystem. Oppgaven fglger en designvitenskapelig forskningsme-
todikk, der vi har delt iterasjonssyklusene inn i flere tilnserminger med
ulike metoder og implementasjoner.

Tilneermingene til oppgaven bestar av & undersgke Uninetts innsamle-
de og analyserte data for & fa innsyn i de naveerende Igsningene i systemet.
Vi bruker Kibanas ML-baserte anomaliedeteksjon for & finne uregelmessig-
heter i den malte nettverksforsinkelsen, og arsaksanalyserer disse funnene.
De andre tilnsermingene inspiserer flere ressurser manuelt mens mulighe-
ten for ML blir evaluert. Resultatene viser lite informasjon av interesse i
datasettene og lavt potensial for ML. De fleste beregningene i datasettene
stammer fra én enkel maling, pakkeforsinkelse, og bidrar ikke med noe
kontekst til observerte avvik. Uninetts overvakingssystem, per i dag, er
primaert passende for statistisk analyse og terskelmetoder for a oppdage
problemer. Vi fortsetter derfor med en statistisk analysetilnserming og
oppdager korrelasjon mellom strgmmer av pakker pa forskjellige ruter.
Disse resultatene indikerer at ugnskede hendelser gjenspeiles pa flere deler
av infrastrukturen. Oppdagelsen kan brukes i kombinasjon med andre
kilder for a fastsla arsakene i fremtiden.

Konklusjonen anser ML som ikke lgnnsomt for Uninett pa et navae-
rende tidspunkt. ML vil innfgre ungdvendig kompleksitet og vil kreve
ekspertise for & utvikle og vedlikeholde. Vi foreslar & utvide deres ek-
sisterende analyse ved & kombinere flere ulike datasett. I tillegg kan de
ta markere seg enkelte tilfeller med kjente arsaker. Det anbefales sterkt
a forbedre loggformateringen de bruker i dag, samt bryte ned loggene
i mindre enkeltstdende komponenter. De vil da ha lett tilgjengelige og
dynamiske ressurser klare for ulike analysemetoder i fremtiden. Hvis de
klarer & kombinere flere ulike informasjonskilder, kan ML revurderes.






Preface

This thesis was completed summer of 2021 and draws an end to our
course of study, Master of Science in Communication Technology, at
the Norwegian University of Science and Technology. The project is
conducted in cooperation with Uninett and is based on the preliminary
project thesis written during fall 2020. The master thesis’s main objective
is to investigate to what extent ML algorithms can handle Uninett’s
collection of monitoring data and generate valuable output for their
network operation centre. The end goal is to help understand losses
in data traffic and possibly mitigate them to increase reliability in the
network.

Reading through the list of available projects, solving a real-life problem
seemed intriguing to us. The initial problem description, given by the
ISP Uninett, raised an interesting issue of lost traffic. We chose this
project determined to contribute to a solution with meaning and usage.
Both of us have studied networking, but considering that neither of us
have experience in ML, the project has been challenging and a great
learning experience. It required a great deal of studying related work
and theoretical practices. This thesis will provide an overview of basic
concepts of ML and anomaly detection and how we implemented our
solutions to detect abnormal behaviour in the network.

This report assumes the reader has some background knowledge in com-
puter networking, machine learning, and statistical analysis. The theory
is lectured in the following courses at Norwegian University of Science and
Technology (NTNU): TTM4175 - Introduction to Communication tech-
nology, TMA4245 - Statistics, TTM4180 - Applied Networking, TTM4105
- Access and Transport Networks, TTM4150 - Internet Network Architec-
ture, and TDT4300 - Data Warehousing and Data Mining. The reader is
also assumed to have basic knowledge of programming.

Trondheim, Wednesday 30" June, 2021

Emil Telstad Mats Ove Sannes
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Introduction

The current chapter includes the thesis motivation and an introduction to Uninett’s
monitoring system. Additionally, the projects research questions, objectives, contri-
bution, and limitations are presented. Finally, an outline of the thesis is included,
providing an overview of the following chapters.

1.1 Motivation

In the last two centuries, the demand for communication technology has multiplied
as more and more digital services are emerging. It has been estimated that 25
billion devices would be connected to the Internet by 2020 [KR16]. Concerning the
popularity of new applications and internet trends, it is imperative for an ISP to
meet the demands in terms of reliance and service quality. In a market with several
competitors, unwanted quality degradation can become costly in revenue for providers.
In these modern times, customers are flooded with offers to change service providers,
and therefore a provider’s reputation among its customers is crucial. The users would
not appreciate neither delay nor outages. To prevent this, the ISP must monitor
their networks to detect and hopefully mitigate such events. The modern network
architecture is a packed-switched "best-effort” service-based network consisting of
millions of nodes. Throughout the evolution of Internet, routing protocols, buffer
management and scheduling have been added to direct traffic through a web of
possible paths. Based on the complexity of large networks, service providers are
looking for new ways to help them maintain their service quality.

Uninett is a large Norwegian Information and Communication Technology (ICT)
infrastructure company and network provider for the research and education sector
[Unic]. They offer services within cyber-security and is a supplier of the login service
Feide used by campuses nationwide. Maintaining such an extensive network is a
difficult task and requires monitoring to detect faulty behaviour. In an attempt
to improve their security and dependability, Uninett’s clients have allowed them
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to install monitor-nodes within their infrastructures. In essence, these nodes are
machines placed adjacent to the routers connected to an optical fibre network. These
nodes receive a copy of all traffic passing through the adjacent router. Initially,
Uninett used this data for intrusion detection with deep packet inspection. However,
they have since been motivated to utilise these nodes further by enabling probe-based
measurements to uncover unwanted behaviour in their network. With this approach,
Uninett has discovered a lot of "micro-outages”, labelled as ”gaps”, of undetermined
causes [TS20]. In September 2019, this accumulated to 1.5 hours lost in a single
month [Kvil9] !. In addition, a cooperative initiative between three National research
and education networks (NRENS), called Dragonlab, has been established. Uninett is
one of the contributors, and the current goals of the confederation are to measure end-
to-end quality and micro dependability of routing, interact with network operations
to diagnose problems, and promote data sharing with research to help understand
the Internet [Unib].

The underlying causes of these gaps could evolve into more detrimental issues
leading to outages. Internet outages are costly, and an outage preventing users to
connect to data centres can cost on average 50008 per minute [ABMT18]. A problem
of emerging incidents in network traffic flow is to determine the causes. The answer
to mitigating such gaps may be found in the field of ML. With ever-growing datasets
entering the domain of Big Data, traditional methods for analysing the data can
become complex. ML on the other hand tends to improve its performance as the
size of the dataset grows.

ML is about extracting knowledge from data [MG16]. It is the most popular part
of sub-field Artificial Intelligence, and the use of ML has quickly grown over the last
20 years. As stated in the preliminary project [T'S20], a general approach to ML
consists of a data collection phase, feature engineering phase, building/training a
model, apply the model, and finally validating the results. A general rule of thumb
says that approximately 80% of the time is spent working with and prepare the data,
whereas the implementation, application, and validation accounts for the remaining
20%. Sometimes, the feature engineering phase can even implement machine learning
itself in order to detect anomalies that can be used in a future model. This strategy
is relevant in this project as a means to drive the investigation further [T'S20].

Detecting ongoing network outages is essential to qualitatively and quantitatively
understand the type, scope, and consequences of a disruptive event and timely activate
mitigation and remediation activities [ABM™*18]. Today, Uninett use threshold
methods to uncover gaps and jitter in the network. This gives only a partial
picture of the paths’ states and does not determine the cause of the incident. By
investigating a broader scope, there might be discovered patterns between gaps and

1Details about this result is discussed in Section 8.3
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other monitoring data sources. In order to detect anomalies and better understand
current data, a variety of approaches to ML will be examined.

1.2 TUninett’s Probe Network

The active probing consists of inducing a constant stream of packets through the
network. The distributed machines have been instructed to simulate a continuous
flow of traffic to specific targets in order to generate data with representative coverage
of the topology. The selected machines can be found within the Norwegian intranet
and the global infrastructure Dragonlab.

An overview of the topologies can be seen in Figures 1.1 and 1.2. The screenshots
have been captured from a web tool developed by Uninett. Interested readers can
explore this tool at [Unia]. The tool visualises their stream analysis and displays
a given stream’s state at a certain point in time. The colouring does not serve a
purpose for these illustrations and can be ignored.

Figure 1.1 shows the numerous streams between machines in Uninett’s intra-
network. Note that only realistic locations of streams’ endpoints are shown. The
coloured graphs between nodes are for illustration only, and does not depict traversed
paths by streams. The circular symbols with numbers in them symbolises groups of
machines. For example, there are eight nodes around Trondheim. Note, there are
other nodes further north than shown in this figure.

Figure 1.2 shows the topology in Dragonlab. There are connections to Europe,
North America, South America, Australia and New Zealand.

The data in question is generated by a RUDE/CRUDE software [JLj], a simple
program that generates network traffic between pairs of Source (SRC) and Desti-
nation (DST). (C)RUDE stands for (Collector) Real-Time UDP Emitter, where
User Datagram Protocol (UDP) is a transfer protocol without any guarantees for
arrival contrary to Transmission Control Protocol (TCP). The designated monitoring
machines form a large set of RUDE/CRUDE pairs. Uninett has experimented with
several packet frequencies between them and settled for 100 p/s as a good trade-off
between informational gain and resource usage. Increasing the frequency makes the
system susceptible to glitches in the software, and could result in false positives
of disruptive behaviour for succeeding analysis. On the other hand, reducing the
frequency collects less information, resulting in datasets less likely to capture rapid
real-word events.

There are many components included in this system, both hardware and software
introduce an uncertainty. A feature of routers, for example, is to drop random
packets when it experience high load of traffic. The congestion avoidance mechanism
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Figure 1.1: Uninett topology.
For interested readers, this map is available at [Unial.

is known as Random Early Detection (RED) [FJ93] and accompanies network
transport protocols e.g. TCP. The routers intent is to indirectly warn the transport
protocols that they are about to reach maximum capacity, and that they should
reduce traffic. We must emphasise that this uncertainty permeates the project as a
whole.

The continuous network monitoring has resulted in several resources available
to us. To enable future detailed studies and analysis, they have chosen to store all
historical logs of network behaviour. At this point in time, they possess over a decade
worth of detailed data. We will look more into the raw CRUDE data in Chapter 5.

Uninett has further analysed CRUDE data. Written scripts run separately on
each machine to prepare and process raw data received, e.g. mapping them to
timestamps. They also register gaps and jitter, which will be introduced in Chapters
6 and 7. Together, all the nodes generate continuously increasing datasets. The
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Figure 1.2: Dragonlab topology.

For interested readers, this map is available at [Unial.

centralised server, called IOU2, hosts Elasticsearch and Kibana for visualisation. And
it is with this approach, Uninett discovered the aforementioned gaps of undetermined
causes.

Figure 1.3 is an overview of how the multiple datasets to be examined relate to
the monitoring system. This figure is a simplification of the current system. There is
included an example of a single RUDE/CRUDE pair from trondheim-mp (Norway)
to auckland-mp (Australia). As shown by the arrows, there is a flow of UDP packets
and traceroutes with different frequencies through a path in a simplified network
of four routers (R1, R2, R3, R4). The receiving end, auckland-mp, stores the raw
data and analyses the stream. At the end of the day, raw and processed data are
sent to the main server IOU2, which in turn feeds Elasticsearch with new data. Only
prepared datasets such as jitter, gap and traceroute are included in Kibana. Our
contribution comprises extracting data from I0U2, reading and analysing the multiple
datasets, and evaluating them with respect to ML. If a dataset shows promise, an
implementation of ML will be inquired.
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Figure 1.3: Active monitoring system overview.
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1.3 Research Questions

The following research questions was formulated based on the problem description
and the conducted background research:

1. Which requirements need to be fulfilled to facilitate machine learning?

2. Can Uninett utilise machine learning in its already existing network monitoring
system?

3. How can Uninett improve its network monitoring to determine root causes of
faults better?

1.4 Objectives

The following objectives have been defined as guidelines in the thesis work:

e Review related work on time series forecasting, anomaly detection using machine
learning, and root cause explanation.

e Evaluate the quality of available datasets from Uninett.
e Preprocess the chosen data to prepare for analysis.

e Implement and evaluate suggested approaches to obtain results for comparison
to simpler solutions.

e Evaluate the data with respect to machine learning to determine viability of
future real-life implementations.

By completing these chosen objectives, we research to what extent a machine
learning solution would produce useful information to a service provider monitoring
its network. In addition, we will gain deeper insight into the implementation of such
a solution and the challenges it may entail.
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1.5 Contribution

The thesis is mainly a test of concept to determine if machine learning is a possible
solution to enhance monitoring and analysis of network traffic. Based on the combi-
nation of such an experiment and the report, the main contribution of this thesis
will be:

e An investigation into existing machine learning algorithms for anomaly detec-
tion, time series forecasting, and root cause analysis.

e A review of the potential of machine learning as a solution to enhance service
providers quality of service.

e An evaluation of advantages and challenges of machine learning anomaly
detection compared to less complex solutions.

The project contributes to a positive development in the research topic by
evaluating advanced technological solutions to enhance ISPs quality of service. The
solutions and techniques in this thesis can be applied on datasets from domains other
than ICT as well.

1.6 Scope

The general purpose of the study is to investigate if ML can reveal patterns in the
observed gaps. The project targets explicitly raw CRUDE data, which has been
used to detect these gaps, and other derived datasets generated as an attempt to
understand them. This data has never been evaluated regarding ML, so the thesis’

scope is the initial survey to uncover their format and content.

Cross-matching of datasets from different sources is not performed in this project.
It is an interesting topic but has already been attempted earlier by Uninett. One
reason for not pursuing this approach is the limited duration of the project; more
reasons are elaborated in Section 10.2.
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1.7 Outline of Thesis

¢ Chapter 1: Presents the motivation for the project, the research questions, the
main objectives at focus, the contribution of the project, and the limitations
related to the work.

¢ Chapter 2: Introduces background theory within ML, anomaly detection,
ICT-infrastructure, and root cause analysis.

o Chapter 3: Presents related work within the research field.
o Chapter 4: Presents the research methodology used in the thesis.
¢ Chapter 5: Presents the approach of investigating Uninett’s CRUDE datasets.

¢ Chapter 6: Presents the approach of testing Kibana anomaly detection on the
datasets.

¢ Chapter 7: Presents the approach of investigating Uninett’s dataset and analysis
of Gap-events.

¢ Chapter 8: Presents the approach of stream cross comparisons.

¢ Chapter 9: Presents the approach of performing a root cause analysis.

¢ Chapter 10: Presents a final discussion.

¢ Chapter 11: Presents the thesis conclusion.

¢ Appendix A, B, E, F, G: Contains additional figures to Chapters 6, 9, 7, and 8.
¢ Appendix C: Contains the projects environment setup.

¢ Appendix D: Contains utilised programming scripts.






Theoretical Background

The following sections will give an overview of the theoretical background for this
master thesis, including time series, machine learning, anomaly detection, and root
cause analysis.

2.1 The ICT Infrastructure Domain

Internet is described as a 'network of networks’. It relies on a physical infrastructure
consisting of a network of nodes, interconnecting computers and users of the Internet.
These nodes are routers or switches, with the main objective of guiding data packets
through the network from source to destination. Even though modern technology is
approaching lightning speed, end-to-end transportation over physical distances still
takes a certain amount of time.

Delay in a network consists of several types of delay. In equation 2.1, the different
types affecting a packet in transit are added up to a total nodal delay (dnodar). When
a packet arrives at a node, the header is examined to determine the next destination
in the path. The time it takes to perform this task is called processing delay (dproc)-
When the packet is processed, the router directs it to a queue to be transmitted into
the link. This adds queuing delay (dgueue). The length of the queue at the moment
the packet arrives determines the duration of the delay. It can vary from packet to
packet, and in a situation where ten packets arrive simultaneously, the first packet
transmitted will suffer no queuing delay. In contrast, the last packet will experience
queuing delay [KR16]. When the packet is ready to be transmitted into the link,
the transmission delay (dirans) is the time it takes to execute. Once the packet’s
bits are pushed into the link, it propagates to the next router. The time required
to propagate the link, denoted propagation delay (dprop), depends on its physical
medium and geographical distance.

dnodal = dproc + dqueue + dtrans + dprop (21)
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With increased traffic intensity in a network, several issues may emerge. Packets
may arrive faster than they can be processed and transmitted. As a result, queues
will fill up, and arriving packets may be dropped or lost because of limited queue
capacity [KR16]. The increase in data could congest the links and call for rerouting
to an alternative, possibly longer path, to redistribute the network load. Additionally,
external factors such as power outages, stormy weather or roadwork can disable
network nodes and cables, resulting in connection loss.

Jitter

Jitter, also called stuttering, is the average of differences between a sequence of values.
This thesis investigates network packets where a regular interval is expected, and
jitter becomes relevant in the gap analysis in Chapter 7. Higher jitter could indicate
issues in the network. Given an example of 5 packets with nodal delay {2,4,1,1,3},
jitter is calculated as follows: (|2 —4|+4—1|+ 1 -1+ |1 -3])/(b—1) = 1.4.
This is only a simplified example. The actual system in place calculates jitter on a
continuous stream of packets and utilises the method defined in RFC3550 [SCFJ03].

Gaps

Gaps - a missing segment in stream data [KR16]. Micro-outages, labelled as gaps,
are defined by Uninett as the time between correctly received packets in order and
when five packets are received in correct order again. The time lost during gaps in
Uninett’s system often ranges from 50 to 200 ms, but more severe cases do occur.
These events are easy to discover, and have already been identified and stored as a
dataset of gap-records. Only gaps where five or more packets were lost are included
in this dataset. Gaps become relevant in Chapter 7.

Traceroute

Traceroute is a tool for computer networks to trace traffic routes through the network
to their intended destination. There are sent a certain amount of packets to each
node in the path, called a hop. Traceroute records the time taken for each of these
hops, know as Round-Trip Time (RTT). It is therefore used to determine the response
delay and available pathways across the nodes in the network. If the sent packets
are lost more than two times, the connection is lost. Figure 2.1 displays an example
of traceroute results. It consists of a timestamp for when the trace was performed,
a destination Internet Protocol (IP) address, and lines of information about the
performed hops. The first bracket in the line represents the hop number based on
the node’s position in the path, followed by the node IP address. The six consecutive
values are the RTT, measured in milliseconds (ms), of the packets sent to the node.
Lines with a star symbol indicated no response from the node.
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Traceroutes are often used to identify problems in the network, such as bottlenecks
and points of failure in a route. However, there is some inaccuracy associated with
traceroutes, seeing that a protective firewall can block required messages to a node.
Traceroute data is one of the datasets collected by Uninett’s Dragonlab infrastructure
and is utilised to conduct root cause analysis in Chapter 9.

1614898808 starttime 00:00:08

traceroute to 128.39.65.26 (128.39.65.26), 30 hops max, 60 byte packets

1 130.216.51.254 1.821 ms 1.867 ms 1.711 ms 1.643 ms 1.540 ms 1.421 ms

2 172.18.0.54 1.967 ms 1.931 ms 1.813 ms 1.745 ms 1.615 ms 1.535 ms

3 ETE T S

4 130.216.252.161 3.302 ms 1.887 ms 2.154 ms 2.986 ms 2.627 ms 2.543 ms

5 210.7.39.177 1.226 ms 1.111 ms 1.285 ms 1.177 ms 1.131 ms 1.207 ms

6 207.231.240.33 132.547 ms 132.447 ms 132.344 ms 133.041 ms 132.941 ms 132.715 ms
7 207.231.240.8 132.757 ms 132.950 ms 133.146 ms 132.758 ms 132.948 ms 133.054 ms

8 162.252.70.173 165.753 ms 165.522 ms 165.663 ms 165.454 ms 165.455 ms 167.117 ms

Figure 2.1: Example of traceroute results.

2.2 Time Series

A time series is a set of observations x;, each recorded at a specific time t [BD02].
Time series has a wide area of use and can be found in several research areas such as
medicine, social science and economics [LA15]. Each point in the sequence typically
consists of two items - a timestamp and an associated value. Time series analysis
comprises statistical methods for modelling an ordered sequence of observations
to extract meaningful statistics [Mad07]. The model can reveal trends, cycles or
other pattern and approximate the probable development of the time series by either
prediction or forecasting.

Depending on the number of variables, time series can be split into two types. A
series with only one variable is a univariate time series, while more than one variable
is known as a multivariate time series. A time series is continuous if the observations
are recorded continuously over a given time interval. A discrete time series consists
of observations recorded at fixed time intervals.

A time series is stationary if the statistical properties of the series, mean, variance
and covariance, do not vary with time. In a non-stationary time series however,
any of the the properties can alter over time, individually or together. A series is
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non-stationary if it contains trends or seasonality but stationary if only cycles are
present.

2.2.1 Time Series Components

Time series can be decomposed into four main variations that affects them: seasonal
variation, trend, other cyclic variation and irregular fluctuations [Cha00]. Seasonality
is observed as short-term variation occurring due to seasonal factors. A trend is
present when there is a steady decrease or increase in the series over a longer period.
It can be loosely defined as ’long-term change in the mean level’ [Cha00]. Cyclic
variation is a medium-term variation caused by events that repeat at irregular
intervals. The reoccurring shutdowns during the global crisis caused by the COVID-
19 pandemic is an example of cyclic variation. The last category covers unpredictable
factors and is described as irregular fluctuations. It incorporates all variations not
included in trend, seasonality, or cyclicity. Irregular fluctuation can be caused by
incidents, e.g. natural disasters, which makes them difficult to forecast.

The components can be combined in two different ways, based on the trend in the
data. The additive model, where the time series is the sum of the component, can be
written as Y; = Ty + Cy + S; + I;. Whereas T; is the trend, Cy is cyclical variation, Sy
is seasonal variation, and I; is irregular fluctuations. Alternately, the multiplicative
model can be applied by multiplying the components; Y; = T; x C; x Sy X I;.

2.2.2 Cleaning the Data

The initial inspection of the data is done to determine the quality and decide if
there is a need to modify them. This action is called cleaning the data and can
include modifying outliers, identifying and correcting obvious errors, and filling in
any missing observations [Cha00]. It can be difficult to distinguish error outliers from
authentic outliers in the data. Still, the use of a time plot should help uncover any
abnormalities such as outliers and discontinuities. A found background knowledge of
the problem is essential in deciding how to clean the data [Cha00].

2.2.3 Time Series Analysis

The main objectives of time series analysis are to describe the data using summary
statistics or graphical models. It aims to find a suitable statistical model describing
the data-generating process, estimating the future values of the series by forecasting,
and consequently facilitate for the analyst to take action to control a given process
[Cha00]. Visualisation, such as time plots, is very useful in a time series analysis, and
aid the human eye to spot patterns or anomalies. A general approach to time series
analysis is to examine the main characteristics of the graph, searching for trends,
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a seasonal component, any apparent sharp changes in behaviour, or any outlying
observations [BD02].

2.2.4 Correlation

Correlation is a method of calculating the relationship between two variables con-
taining a set of values. The strength is given as a score between [-1,1]. A score closer
to 1 means that if one of the variables increases, the other one does similarly. If the
variables move in opposite directions, the score is closer to -1. 0 means no linear
relationship at all. Because the correlation is calculated using pairs of values, the
variables are required to be of equal length. This thesis use correlation during time
series analysis in Chapter 8.

2.2.5 Linear Regression

Linear regression is used to explain the relationship between an explanatory variable
z, and the dependent variable y. There are mainly two types, simple regression, and
multi-variable regression, where the former has only one explanatory variable. Linear
regression aims to minimise the total difference between all datapoints and the y
function. A line is best fitted to model the strength of the relationship, which is
displayed by the incline of the line. A simple linear regression can be written as
Equation 2.2. a is the slope of the line, and b is the interception on the y-axis. This
theory serves to explain multiple fields calculated for recorded gaps in Chapter 7.

y=a-z+b (2.2)

2.2.6 Moving Average

To estimate trend cycles, a useful method called moving average can be applied. It is
often implemented together with an autoregressive method to form the autoregression
moving average (ARMA) model. In equation 2.3, moving average of order m = 2k+1,
estimates the trend cycle at time ¢ by averaging values of observation in the time
series in k periods of time ¢ [HA18]. This method smooths input data and dampens
random variations and outliers. It also makes underlying patterns more visible.

k
|
T,=— ‘Zk Yesri (2.3)
=
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2.2.7 Forecasting

Time series forecasting is a technique to predict future observations based on historical
data. By analysing these historical data series, the prediction of future observations
can be based on detected trends and past behaviour. A fitting forecasting model is
chosen and prediction are made on the belief that future trends will stay similar to
previously observed trends [HA18]. The prediction fidelity increases with the amount
of available data, but may require resampling if frequency is too high. The minimum
required observation depends on the chosen modelling approach.

2.3 Machine Learning

This section presents content from Chapter 2 in the preliminary project [TS20]. The
content is to a large degree reused since the material is not publicly available and
the theory is still relevant to this project.

ML is a field within computer science that aims to fit the input data. Broadly
speaking, it is used to analyse unknown data, and there are many different approaches
and applications depending on the issue to be solved. To clarify, unknown data is
considered to not yet have been analysed for information other than raw values. An
example can be a table of one million rows with personal data. The format may be
known beforehand, let us define three columns as a persons name, age and gender.
We may have a certain idea of what the table contains, but it is still unknown if
for example only teenagers are included in this list, or other complex patterns exist.
We introduce another term labelled data, also called ground truth, by extending on
this hypothetical example. Another phrase for labelled data is known as the final
classification for a given observation. After analysing the table, the analyst can
create a fourth column where all the teenagers have been marked. The table is now
considered labelled data, and this characteristic is relevant when approaching ML
solutions.

Desired outcomes of ML are often a model that builds itself, i.e. learning from data
fed into it. The models can have certain characteristics like data grouping, pattern
detection, or predictive properties. The accuracy of these properties relies heavily on
the data provided. There are defined four main categories of ML: regression, rule
extraction, classification, and clustering. ML algorithms are also categorised into
several learning paradigms. They give an overview of how the respective algorithms
process and utilise input data. We have unsupervised, supervised, semi-supervised,
and reinforcement learning. Supervised learning methods require labelled datasets
for training the model. Reinforcement learning algorithms create iteratively learning
models. Semi-supervised learning is somewhat similar to supervised, but some of the
training data is unknown. Lastly, unsupervised learning can be applied to datasets
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where there are no known ground truths, thus highly relevant for this project.

Given a wide range of methods, there is still a generic approach to ML solutions.
Most of the work actually lies in the preparation. The initial stages consist of defining
the problem and choosing a solution method. Then begins the data collection phase
and feature engineering phase. As mentioned, ML models are heavily dependent on
input data. Usually one needs to generate a large enough dataset to be able to work
with ML. Features in the ML-domain is a term for an independent variable for an
observation. We use ’feature’ in this thesis as a synonym to familiar terms in other
domains such as: field, column or attribute.

2.3.1 Clustering

Clustering is a typical unsupervised learning method and is used for grouping similar
data. Because outcomes of such a model are unlabelled grouped data, an external
interpreter is required. Often humans are the ones to do post result analysis because
the classic goal of clustering is to reveal patterns. Clustering is discussed in Chapter
7.

2.3.2 Tree Based Methods

Tree based methods, often known as decision trees, are methods where the idea is
to build a model by growing one or multiple trees from the input data. Multiple
trees in a model is called a forest. Input data is typically a set of multidimensional
observations with or without labels. Oftentimes the general goal is to predict the
class of unlabelled data with a model, but it is also possible to approximate missing
features in an observation. For this reason, decision tree algorithms are categorised
as classification with supervised learning.

In the case of decision trees, a great example is a handful of people with or
without heart problems.! They all have individual characteristics such as age, gender,
height and weight. A decision tree will ask a series of questions in order to classify
an observation as best as possible. To do this, it needs to identify correlations
between the features and the labelled class used to train the model. It seeks the
most discriminative feature, e.g. if all the people in the sample over 50 years of age
had heart problems, it makes sense to ask this question first.

Random Cut Forest

An unsupervised learning approach to tree based methods, is Random Cut Forest
(RCF). It holds no classification abilities, but can be applied for anomaly detection

1A more comprehensive explanation is provided by StatQuest with Josh Starmer: https:
//youtu.be/7VeUPuFGJHk


https://www.youtube.com/channel/UCtYLUTtgS3k1Fg4y5tAhLbw
https://youtu.be/7VeUPuFGJHk
https://youtu.be/7VeUPuFGJHk
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(see Section 2.4 for more details). The idea is to continuously grow trees as input is
supplied, while underlying mathematical formulas decides how the trees are built.
It has been developed methods for calculating how much the trees change for each
datapoint. An outlier drastically changes the structure of the tree, hence we can mark
anomaly scores for every datapoint. As the name indicates, it utilises an ensemble
of trees to form a forest. Each tree is built by a random subset of training data.
Separately they vote an anomaly score for each datapoint. By themselves they are
weak predictors, but together they vote more accurate results by taking the average
of anomaly scores.

One such algorithm is RRCF, an open-source project especially designed for stream
data [BMT19] [BMT]. This algorithm is highly scalable and therefore suitable for
stream data. By setting a predefined max tree size, it is able to "remember” a set of
earlier observations as context for the next input. When max size is exceeded, the
oldest datapoint is omitted or "forgotten”. This specific algorithm has been used
in Chapter 8 for marking anomalies in an attempt to create a discrete univariate
dataset (good/bad) of network behaviour.

2.4 Anomaly Detection

Although an anomaly is defined differently in the many research areas, a generally
accepted definition is: ‘An anomaly is an observation which deviates so much
from other observations as to arouse suspicions that it was generated by a different
mechanism’ [BSLT18]. Anomaly detection is used to disclose data points that digress
from the "normal” behaviour patterns in the dataset and can widely be categorised
in: supervised and unsupervised anomaly detection. The input data is the deciding
factor of which category to be used [CBKO09], specifically the availability of labels
in the data, which supervised anomaly detection requires. Unsupervised anomaly
detection is more widely applicable since it does not require training data. It will
therefore be the natural choice of method in this thesis.

2.4.1 Anomaly Detection on Streaming Application

Early detection of anomalies can provide critical information that may be used to
prevent system failures. For the information to be usable, it must be accurate, which
is a significant trade-off with early detection [ALPA17]. An algorithm that quickly
marks anomalies might not be applicable if it results in many false positives.

In a streaming application, machine learning models have to continuously analyse
data in real-time, which entails that the entire dataset is not available. The learning
must be done in an online fashion, as data arrive [ALPA17]. When the systems
observes new data records, the algorithm must examine the current and previous
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behaviour to determine if the system is experiencing anomalies. It must be conducted
before the next input, in addition to performing retraining and updates. These
restrictions result in an algorithm that can not look ahead but only rely on historical
behaviour. In a real-world scenario, the defined normal behaviour might change over
time, a problem known as concept drift. Systems are often dynamic and affected by
environmental changes. Examples are maintenance work, hardware malfunctions, or
software configurations. To cope with this problem, the anomaly detection method
must automatically adjust to a new normal.

2.4.2 Anomaly Types

Anomalies can be divided into three categories [CBKO09]: point, contextual, or
collective anomalies. Point anomaly is a data instance that is anomalous compared
to the rest of the evaluated data. An example would be a single point lying outside
the boundaries of a group of normal data points. The distance from the group
can determine if the anomaly is global or local [GU16]. A global anomaly is very
different from a distinct gathered group, considering their attributes such as time and
measured values. Contextual anomalies are only anomalies in a specific context but
might be deemed normal in another. For this technique to be applied, the context
has to be able to be defined. Collective anomalies are a collection of related data
instances considered anomalies as a group compared to the entire dataset.

2.4.3 Anomaly Detection Output

Anomaly detection techniques can produce two types of output when reporting
an anomaly: scores, or labels [CBK09]. Scoring techniques are used to score the
evaluated test data, reflecting the degree of confidence that instance is an anomaly.
The results will provide a complete overview for an analyst to classify anomalous
behaviour in respect to context. This technique allows the analyst to choose the
most relevant instances based on their score or filter out low scoring instances with
a threshold. Techniques using labels assigns one to each instance in the test data
in a binary fashion. A decisive threshold is set to determine which are normal and
anomalous. This results in only two types of outcomes, and the threshold must
be tuned to prevent an unacceptable amount of false negatives and false positives.
Kibana’s anomaly detector, tested in Chapter 6, utilises a scoring technique to grade
the detected anomalies in the provided datasets.

2.5 Root Cause Analysis

Root Cause Analysis (RCA) can be simply stated as a tool designed to help identify
not only what and how an event occurred, but also why it happened [RHO04]. It
is meant to be used to solve a problem by determining the underlying cause, and
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find ways to eliminate these causes. Performing RCA over time and identifying
reoccurring root causes can result in major opportunities for improvements. In the
thesis, RCA is utilised in Chapter 9 to determine the cause of anomalous delay
in Uninett’s network. The process of RCA is further described in Section B.2 in
Appendix B.



Related Work

The following chapter presents related work in the thesis research field. Since the
thesis addresses the use of ML in a networking context, the work is grouped and
presented in two sections.

3.1 Network Behaviour

Because the importance and value of service quality for network providers, a great
deal of academic work on improving reliability and security in networks has been done.
Understanding the reasons for unwanted behaviour is crucial to be able to improve
the quality of service. There are several proposed ways of measuring traffic behaviour
in a network. To tackle the challenges of end-to-end delay, [AEJ12] purposes a
novel and straightforward approach of performing end-to-end measurements and
applying Compressed Sensing (CS) to estimate delay in path hops. By assessing
the service quality of an internet path, the origin of the problem could be found.
Measurements of delay and loss are utilised to detect abrupt changes using a sparse
matrix decomposition called Principal Component Pursuit (PCP) [AJHT14]. As
the networks have grown larger, a distributed and more complicated monitoring
architecture has been integrated. The nodes in the network generate vast amounts
of data in time series that can aggregate parameters as an average delay. The data
can be analysed to detect anomalies and determine the root cause [AJS18].

Even in modern networks, a perfect system without outages is not achievable in
practise. Issues and threats can not be prevented entirely. In survey [ABM™18], the
author presents a number of reasons for outages including accidental misconfigurations,
software bugs (in routers), network equipment hardware failure, and many other
factors. Clearly understanding how to prevent, detect, and mitigate Internet outages
is essential to ensure positive development in the future. The survey states that a
fast and accurate detection of an ongoing outage is the essential preliminary step to
trigger effective countermeasures. The primary goal is to mitigate as much impact

21
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as possible of the outages as perceived by the final users [ABM*18]. Online outage
detection can be divided into passive and active monitoring. Active probing can be
approached based on ping and traceroute, or based on tomography, where failures
on links are detected by sending coordinated end-to-end probes. Considering the
necessary trade-off between several targeted destinations and sampling period, relying
exclusively on outage detection systems, it is likely to only report significant and
long-lasting network outages [ABM™18].

In pursuit of global Internet availability of ”five nines”, i.e. being available
0.99999 of the time, an analysis of interdomain availability and causes of failures
based on active measurements were conducted [MHH'10]. Active measurements
were performed between Norway and China through the Global Research Network,
and end-to-end downtime statistics were collected. Examination of the collected data
(packet delay, loss, periodic traceroute and number of hops in a used path), enabled
identification of paths between end-points and causes of observed network failures.
The outages that were observed could be divided into three categories: lengthy
outages exceeding 10 seconds, medium outages 1-10 seconds, and short outages
less than 1 second. It was concluded that end-to-end availability is mainly affected
by extended service downtime (exceeding 10 s) caused by interdomain rerouting.
To improve the service availability further towards the goal of ”five nines”, the
interdomain rerouting time needs to be shortened. Additionally, removing cases
where no rerouting was executed presents considerable potential for improvements
in availability [MHH*10]. The lack of rerouting was caused by ”irregular events”,
link failures, operational activities in the network, or misconfigurations of routing
systems. The paper presents the basis of the ongoing Dragonlab initiative Uninett is
part of today, of which the data collection used in this thesis stem from.

3.2 Machine Learning

Anomaly detection in time series is a topic with extensive studies performed within
several areas. [ALPA17] presents an evaluation of real-time anomaly detection al-
gorithms by utilising the Numenta Anomaly Benchmark (NAB), an open-source
environment specifically designed for real-world use [LA15]. The Hierarchical Tem-
poral Memory (HTM) algorithm received a high score, indicating the algorithm’s
ability to learn continuously.

The recent years it has become more popular to use machine learning to analyse
the enormous datasets produced by measuring nodes. The anomaly detection
technique must be chosen based on the anomaly detection problem. The problems
can be divided into supervised and unsupervised. In some situations, a partially
supervised anomaly detection can be implemented. Still, it is deemed unsuited
for real-time anomaly detection, just like supervised classification that requires
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labelled data. In [GKRB13] the authors conclude that a hybrid solution of semi-
supervised anomaly detection significantly improved the prediction accuracy with
only a small amount of labelled instances, respectively combining the advantages of
both paradigms. In a comprehensive evaluation of 19 different unsupervised anomaly
detection algorithms on datasets from multiple application domains [GU16], the
paper investigates the anomaly detection performance, computational effort, the
impact of parameter settings, and the global/local anomaly detection behaviour.
The paper concludes with an advised algorithm selection based on real-world tasks,
where nearest-neighbour based algorithms are recommended if computation time is
not an issue. Clustering-based anomaly detection is better suited for larger datasets
when faster computation is needed.

Internet path changes can disrupt performance, cause high latency and congestion,
or even loss of connection. By using traceroute and machine learning techniques, the
paper [WCD16] study the problem of predicting the Internet path changes and path
performance. By building a learning system relying on supervised machine learning
algorithms, they predict path performance metrics such as RTT.

This thesis attempts to combine related work in investigating the applicability of
algorithms mentioned in Section 3.2, with datasets studied by work mentioned in
Section 3.1






Methodology

The method in this project is structured as a set of multiple approaches. ! Due to
the problem in question being the initial investigation of Uninett’s ability to utilise
ML, a broad scope is to be covered.

In order to evaluate ML applicability, the overall approach consists of a literature
study of the field in general, followed by iterations composed by closer inspections
of available datasets. The last step is a parallel process of getting familiar with
unknown data and evaluating them with respect to ML methods. It is necessary to
gain a basic overview of the data before defining a problem and exploring specific
algorithms. This chapter will elaborate on the chosen methodology for this thesis,
Design Science.

Design Science

Research is a logical and systematic search for new and valuable information on a
particular topic. It is an investigation of finding solutions to scientific and social
problems through objective and systematic analysis [RPV06]. Research is conducted
with a purpose, and sciences like computer science aim to solve a problem by applying
new technology to gain knowledge in contrast to natural sciences, which investigates
natural phenomena to better describe and understand the observations.

Research methodology is a systematic way to solve a problem. It is a science of
studying how research is to be carried out [RPV06]. Research methodologies work
as frameworks for researching in order to ensure valid and reliable results in line
with the research goals. Design science is the design and investigation of artefacts
in context [Wield]. The focus lies in developing and improving the performance of
the designed artefact in interaction with the context to solve the problem. In design
science it is referred to as Design Problem. It is only in the interaction with the

1We perform data exploration directly on Uninett’s server, and the environment setup can be
found in Appendix C.
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context that we can evaluate the quality of the artefact. The main objective of the
thesis will work as the design problem. The ML solution will serve as our artefact,
and Uninett’s datasets will be the context. Design science research can result in
different contribution types, from specific to more abstract knowledge [GH13]. This
project aims to contribute specific knowledge of level 1, situated implementation of
an artefact.

Engineering Cycle and Design Cycle

Our artefact will be subject to several iterations of designs and investigations to
determine a solution that provides the desired outcome. This aligns with the design
sciences problem-solving processes, the engineering cycle and the design cycle [Wiel4].
The design cycle can be broken into three tasks: problem investigation, treatment
design, and treatment evaluation. Figure 4.1 from [Wiel4] illustrates the engineer-
ing cycle, consisting of the design cycle and one additional task, implementation
evaluation.

Implementation evaluation /

Treatment implementation Problem investigation

. Stakeholders? Goals?
. Conceptual problem framework?
. Phenomena? Causes, mechanisms, reasons?
. Effects? Contribution to Goals?
Treatment validation Treatment design
. Artifact X Context produces Effects? . Specify requirements!
. Trade-offs for different artifacts? . Requirements contribute to Goals?
. Sensitivity for different contexts? . Available treatments?
. Effects satisfy Requirements? . Design new ones!

Figure 4.1: The engineering cycle.

Problem Investigation

Problem investigation is the initial phase of the design and engineering cycle and
is essential to prepare for the succeeding design and validation phases. The phase
consists of determining what phenomena must be improved and why. The pre-project
conducted Fall semester 2020 [T'S20] can be considered the beginning of the problem
investigation.

To acquire background knowledge, we conduct a comprehensive literature study,
continuing on the pre-project report [T'S20]. The study mainly focus on gaining a
deeper understanding of ICT infrastructure, machine learning fundamentals and
anomaly detection techniques. Platforms such as Google Scholar, ScienceDirect,
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NTNU Open and ORIA are used to obtain relevant literature. We assess publishing
date, author, citations, and publishing area to evaluate the most relevant literature’s
validity. Furthermore, the thesis supervisors are consulted to recommend state-of-
the-art literature worth reviewing. Professors and fellow students at NTNU with
experience in machine learning are contacted for guidance and insight in the domain.
Openly available tutorials are used for demonstration of how to build and implement
anomaly detectors. We choose python as the primary programming language based
on the amount of available open-source libraries, such as Pandas. They are used to
preprocess and analyse data.

The project involves testing several techniques to extract valuable output from
Uninett’s data. Therefore the redesign of the artefact in the design cycle iterations is
a new approach or an expansion on a previous one. As iterations are performed, the
problem investigation step is revisited to ensure the required understanding of the
problem at hand.

A significant task in the investigation is gaining a solid understanding of the
datasets and how they are produced. Uninett has already implemented a solution for
gathering measurements from the probes in their network. They have also developed
quantitative methods for calculating performance characteristics. An observational
case study [Wield] is performed to gain insight into their established system. To
evaluate this, we define a second design cycle. The project use the artefact as the
method to collect and store the measured network traffic. The context is still Uninett’s
network. The last step in the engineering cycle is implementation evaluation, where
the goal is to investigate how implemented artefacts interact with their real-world
context [Wield]. Seeing that an artefact will not be set into production during the
project, it will be evaluated in an artificial environment replicating real-world context.

Through an iterative process, programming scripts are crafted to improve the
way data from the network probes are labelled and stored. This treatment results
in a shorter loading time of datasets, which we validate by timed tests. It is
implemented in the project’s context and used as if it was in production at Uninett.
The implementation is evaluated by consulting experts and stakeholders at Uninett.

Treatment Design

The final design of the artefact, the treatment, is defined as treatment design. In
this project, the treatment is the recommended ML solution to improve Uninett’s
data analysis. For every iteration of this step, the problem investigation is revisited
several times to confer subject material. Thus, the model is designed based on the
updated understanding of the problem and results from previous iterations.
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Treatment Validation

An important part of the project is validating the design treatment to determine if
the model actually contributes to solving the problem. In this project, the treatment
is validated by consulting experts at Uninett over several meetings. This way, they
remain well-informed of the development and can contribute meaningful feedback
based on the defined validation criteria. Additionally, we validate by exposing the
artefact to different datasets in a closed environment to predict how it will interact
with the real-world context.

Method Assessment

Design science as a framework is well-suited for this project, given that splitting
the problem into smaller parts seems natural. Iterating through the cycles to
improve upon previous prototypes from errors and mistakes allows the researcher
to better evaluate the treatment before redesigning. The method facilitate a deeper
understanding of the problem and serves as a structure to guide the development of
an artefact prototype. The method can be used for further iteration, but the project
is limited on time.



CRUDE

This chapter, will introduce and discuss the dataset we choose as the main focus of
attention for this project. Uninett’s server contains approximately 70 TB of data.
The vast majority of these files stem from simulated traffic in the probe network. For
this reason, an investigation of ML applicability on this resource is of interest. What
information does it contain, and can it be used for more than it is today?

5.1 Implementation

All streams of UDP packets received at CRUDE nodes are written to a single .gzip
file per node every day.! A stream is a path from SRC to DST containing a varying
number of routers. Depending on the number of input streams, these files can
accumulate to several GigaBytes (GBs).

Preprocessing

We develop a simple way of locating desired files from their server, see Listing D.1.
This script was used extensively when we analysed the available resources during the
project. To read the compressed files, we use the gzip library provided by python
developers. An excerpt from a CRUDE log can be seen in Table 5.2. Each line in
the file represents a received packet and contains multiple fields of information. The
fields are explained in Table 5.1.

Familiarising with this resource require some preprocessing, seeing how the raw
format is slow and unpleasant to work with, see Figure 5.1. In certain cases, we
desire to look at specific streams over multiple days. With the current format, the
analyst is forced to process millions of packets unnecessary.

We limit the CRUDE data to be extracted within March of 2021. There is
not enough time to parse their entire server into new datasets, and this interval is

Lgzip is a (de)compression algorithm used to reduce memory usage.
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D
SEQ
SRC
DST
Tx

An auto-generated id for a stream between two IP addresses.

The sequence number for each packet in a given stream.

The source node for a stream, annotated as IP:PORT.

The destination node for a stream, annotated as IP:PORT.

Unix timestamp for transmitted packet from source node.
Unix time is measured in elapsed seconds since epoch time
(1970.01.01 00:00:00.000). Timestamps Tx and Rx are mea-
sured by two different clocks.

Unix timestamp for received packet at the destination node.

Table 5.1: Descriptions of fields in CRUDE records.

ID=6
ID=3
ID=6
ID=3
ID=6
ID=3
ID=6
ID=3
ID=6
D=3
ID=3
D=3
ID=3

SEQ=0
SEQ=0
SEQ=1
SEQ=1
SEQ=2
SEQ=3
SEQ=3
SEQ=4
SEQ=4
SEQ=6
SEQ=7
SEQ=2
SEQ=8

SRC=128.39.65.26:3106
SRC=13.82.53.167:3103
SRC=128.39.65.26:3106
SRC=13.82.53.167:3103
SRC=128.39.65.26:3106
SRC=13.82.53.167:3103
SRC=128.39.65.26:3106
SRC=13.82.53.167:3103
SRC=128.39.65.26:3106
SRC=13.82.53.167:3103
SRC=13.82.53.167:3103
SRC=13.82.53.167:3103
SRC=13.82.53.167:3103

DST=130.216.51.132:10001
DS 30.216.51.132:10001
DST=130.216.51.132:10001
DST=130.216.51.132:10001
DST=130.216.51.132:10001
DST=130.216.51.132:10001
30.216.51.132:10001
30.216.51.132:10001
DST=130.216.51.132:10001
DST=130.216.51.132:10001
DST=130.216.51.132:10001
DST=130.216.51.132:10001
DST=130.216.51.132:10001

Tx=1615330812.711761
Tx=1615330812.589545
Tx=1615330812.721264
Tx=1615330812.599427
Tx=1615330812.731267
Tx=1615330812.619449
Tx=1615330812.741244
Tx=1615330812.629408
Tx=1615330812.751262
Tx=1615330812.649443
Tx=1615330812.659413
Tx=1615330812.609424
Tx=1615330812.669453

Rx=1615330812.872090
Rx=1615330812.705517
Rx=1615330812.880612
Rx=1615330812.711252
Rx=1615330812.890540
Rx=1615330812.731192
Rx=1615330812.902948
Rx=1615330812.741181
Rx=1615330812.915790
Rx=1615330812.761059
Rx=1615330812.771785
Rx=1615330812.781229
Rx=1615330812.791250

SIZE=64
SIZE=64
SIZE=64
SIZE=64
SIZE=64
SIZE=64
SIZE=64

SIZE=64
SIZE=64
SIZE=64
SIZE=64
SIZE=64

HOPLIMIT=-1
HOPLIMIT=-1
HOPLIMIT=-1
HOPLIMIT=-1
HOPLIMIT=-1
HOPLIMIT=-1
HOPLIMIT=-1
HOPLIMIT=-1
HOPLIMIT=-1
HOPLIMIT=-1
HOPLIMIT=-1
HOPLIMIT=-1
HOPLIMIT=-1

Table 5.2: Raw CRUDE example excerpt.

relatively recent at the time of writing. Columns ID, SEQ, SRC, DST, Tx, and Rx
are extracted and saved as CSV files, separating the braided streams into individual
files. We parse the data because CSV format is supported by the analysis library
pandas we intend to use for data exploration. For convenience, we introduce another
field, delay, while parsing (delay = Rx — Tx). Delay represents the nodal delay of
any given packet. The script to parse raw CRUDE files into CSV files is displayed in
Listing D.2.

We mainly perform manual inspections on this dataset. Visualisations are made
to show the development of packet delays during the day. Historical experience from
Uninett has established that streams to NGU are more troublesome than other nodes.
For this reason, we choose NGU for further exploration. Via Elasticsearch, the day
in March with the longest registered gap, is located as one of the samples to look
into. This exact day is shown in the results in Section 5.2. Why we choose not to
investigate the CRUDE dataset further is discussed in Section 5.3.
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In [21]: start_time = time.time()
fields = "id seq src dst tx rx size hoplimit"
fields = fields.split()

def get val(item):
"""item is of format: k=v"""
try:
return item.split('=")[1]
1@ except:
i return item

TP TP

_ip(item):
item is of format: k=ip:port"""
try:

return get_val(item).split(’:")[e@]
1 except:
return item

1o B W

funcs = {

8: get_val,
: get_val,
: get_ip,
get_ip,
: get_val,
: get_val,
: get_val,
: get_val,

15 B W

MO U R W e

}

df = pd.DataFrame()

for f in files:
tdf = pd.read_table(f, header=None, delimiter=' ', skiprous=4, converters=funcs, names=fields)
f = df.append( tdf, ignore_index=True)

elapsed = datetime.timedelta(seconds=time.time() - start_time)
38 print(f"\n===== Done! ({datetime.datetime.now()}), elapsed {elapsed} =====")

= Done! (2021-84-14 15:36:34.952215), elapsed ©:08:30.030383 =

Figure 5.1: Parse raw CRUDE file to dataframe.
Elapsed time to parse a compressed CRUDE file for Auckland is 8 minutes 40 seconds. The
file is 3.6 GB in size.
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5.2 Results

Transforming raw crude logs to CSV format enables us to read files data approximately
75% faster. From 8 minutes 40 seconds previously shown in Figure 5.1, down to 2
minutes 12 seconds, see Figure 5.2. The same streams were used in both examples.
Tables 5.3 and 5.4 show the new format of the extracted streams from Table 5.2.

start_time = time.time()

dfs = {}
for i, f in enumerate(files):
try:
dfs[i] = pd.read csv(f)
except:

continue

elapsed = datetime.timedelta(seconds=time.time() - start_time)

print(f"\n===== Done! ({datetime.datetime.now()}), elapsed {elapsed} =====")

===== Done! (2821-85-28 28:57:14.274669), elapsed 8:82:12.882442 =====

Figure 5.2: Read CSV file to dataframe.

CSV format reduced disk reading to 2 minutes 12 seconds.
id seq src dst tx rx delay
3 0 13.82.53.167 130.216.51.132 1615330812.589545 1615330812.705517  0.115972
3 1 13.82.53.167 130.216.51.132  1615330812.599427 1615330812.711252 0.111825
3 3 13.82.53.167 130.216.51.132  1615330812.619449 1615330812.731192 0.111743
3 4 13.82.53.167 130.216.51.132  1615330812.629408 1615330812.741181 0.111773
3 6 13.82.53.167 130.216.51.132 1615330812.649443 1615330812.761059 0.111616
3 7 13.82.53.167 130.216.51.132 1615330812.659413 1615330812.771785 0.112372
3 2 13.82.53.167 130.216.51.132 1615330812.609424 1615330812.781229 0.171805
3 8 13.82.53.167 130.216.51.132  1615330812.669453 1615330812.791250 0.121797

Table 5.3: Stream 3.

Stream 3 extracted from Table 5.2 into CSV format. Packet nr. 2 was delayed and packet
nr. 5 was lost.

Figure 5.3 shows the packet delays for the stream between Oslo and NGU on the
29th of March 2021. Approximately 8.6 million packets were sent throughout the
day, and the vast majority used under 0.1 ms in transit. We notice very few outliers
with spikes in delay. There is also no clear buildup of delay before these incidents.

The largest gap (410 ms) in March occurred at timestamp 00:26:43 in this stream.
We observe a sudden change close to the start of the stream, matching with the



id seq src

6 0 128.39.65.26
6 1 128.39.65.26
6 2 128.39.65.26
6 3 128.39.65.26
6 4 128.39.65.26

dst

130.216.51.132
130.216.51.132
130.216.51.132
130.216.51.132
130.216.51.132

tx

1615330812.711761
1615330812.721264
1615330812.731267
1615330812.741244
1615330812.751262

Table 5.4: Stream 6.
Stream 6 extracted from Table 5.2 into CSV format.
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X

1615330812.872090
1615330812.880612
1615330812.890540
1615330812.902948
1615330812.915790

delay

0.160329
0.159348
0.159273
0.161704
0.164528

registered gap. A slightly higher delay has been measured most of the day, followed
by a lower delay again after the 6 million mark.

Packet delays from Oslo to NGU (2021-03-29)
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Figure 5.3: Packet delays from Oslo to NGU.
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5.3 Discussion

By introducing CRUDE software for monitoring, the system generates a simplified
dataset compared to actual traffic data. A fixed packet frequency means a constant
expectation at the receiving end. The network has essentially been abstracted to a
level where disruptions are trivial to discover by threshold methods. Such analysis is
already performed by Uninett and is discussed in Chapter 7.

We suspect that the sudden change shown in Figure 5.3, followed by a period
of increased lower-bound delay, indicate a reroute to a sub-optimal path. However,
we do not know the reasons for this, nor have we confirmed this suspicion. The
results in Section 5.2 points out that the deviating interval is accompanied by a gap
at the very beginning. The Motivation, Chapter 1.1, mentions that gaps may lead to
more severe issues. This observation supports that gaps may be indicators of such
incidents.

Although there is an immense set of available data, each datapoint has low
informational value. The only field of interest is the transmit delay of packets. On
its own, it does not mean much. One must look at the surrounding packets for better
insights into the streams’ status at any point in time. For this reason, CRUDE data
is considered a time-series problem. ”Time series problems” is a complex branch
of machine learning. Datapoints are dependant on each other, thus, more complex
algorithms are required. We are interested in understanding the underlying causes of
disruptive incidents in the network. Considering that CRUDE data has only a single
dimension other than time, any context data of these occurrences is non-existent.
As it is, we see few benefits from applying any ML algorithm on it and we choose
not to investigate this dataset further. In other terms, we find this dataset to be a
continuous stationary univariate dataset with irregular fluctuations, and we struggle
to identify trends or extract patterns from lack of other variables. These terms are
documented in Section 2.2.

The stream shown in Figure 5.3, does to our knowledge, represents how most of
the streams behave. We feel the need to remind that vast amount of data is a limiting
factor, there is not enough time in this project to inspect them all. The recurring
traits of streams are stationary series with low delay, few delay spikes and few lost
packets. This supports the notion that Uninett has developed a robust network over
the years.



Kibana Anomaly Detection

This chapter introduces the implementation and testing of Kibana’s anomaly detection
on Uninett’s collected datasets. The main goal is to explore to what extent established
tools can extract patterns in Uninett’s available data.

6.1 Implementation

Kibana is an open user interface, and Uninett utilises it to visualise their stored
monitoring data. Combined with the search engine Elasticsearch, data is structured
with field names in indices, displayed in Figure A.1 in the appendix. This facilitates
the data to be used with Kibana’s range of functionalities such as charts, metrics, and
anomaly detection. The anomaly detection is automated and utilises the unsupervised
ML algorithm (RCF), introduced in Section 2.3. It differentiates an anomaly from
normal variations by grading each incoming data point based on a modelled sketch of
the incoming data stream [Ela]. Automated detection in changing data ensures the
configurations required in terms of specifying algorithms and models. This makes the
Kibana anomaly detector a ”black box” to the user, who only provides input data and
determines the desired fields of focus in the data. The index (dataset) uninett_ jitter,
which contains data relevant to monitor jitter in the network, is applied to test the
detector. The test focuses on the numerical field h_ ddelay, representing an average
of the 50 packets in the header minus the fastest of the 1000 packets. As shown in
Figure 6.1, the detector is configured to uncover anomalies based on the minimum
value in our data. The results are presented in Section 6.2.
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Features

Specify an index field that you want to find anomalies for by defining features.

~ Min-h_ddelay-anomaly

Feature name
Min-h_ddelay-anomaly

Enter a descriptive name. The name must be unique within this
detector. Feature name must contain 1-84 characters. Valid characters
are a-z, A-Z, 0-9, -(hyphen) and _(underscore).

Feature state

Enable feature
Find anomalies based on

Field value v

Aggregation method
min() v

The aggregation method determines what constitutes an anomaly. For
example, if you choose min(), the detector focuses on finding
anomalies based on the minimum values of your feature.

Field

h_ddelay [ < I

Figure 6.1: Configuration of features in Kibana’s anomaly detector.
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6.2 Results

The anomaly detector in Kibana score the datapoints with an anomaly grade and
a confidence grade. The confidence grade between 0 and 1 indicates the level of
confidence in the anomaly result, while the anomaly grade between 0 and 1 indicates
the extent to which a data point is anomalous. Higher grades indicate more unusual
data. As more data is fed into the anomaly detector, the confidence in the anomaly
classification has a logarithmic growth, as shown with the green plots in Figure 6.2.
The y-axis in the graph represents values in the interval [0,1] for both confidence
(green) and anomaly grade (red). Along the x-axis are the dates of the entered data

points.

Anomaly history [ ~2 months ago = ~ 21 days ago G Refresh I I Set up alerts
Anomaly occurrences Anomaly grade & Confidence © Last anomaly occurrence Alert Info
90 0.01-1.00 0-0.99 04/19/2103:14 AM 0

8 <

L

£ .

8 .

s os ¥

ie |f

E ! |i [ [ | ‘ | | [

Anomaly occurrence Feature breakdown

Anomaly occurrences (90)

1 2 3 4 5 9 >
Start time L End time Data confidence Anomaly grade
04/19/21 313 AM 04/19/21 3:14 AM 0.99 0.18
04/19/21 310 AM 04/19/21 3:11 AM 0.99 0.15
04/19/21 3:09 AM 04/19/21 3:10 AM 0.99 0.18
04/18/21 12:54 AM 04/18/21 12:55 AM 0.99 0.62
04/18/21 12:53 AM 04/18/21 12:54 AM 0.99 0.79
04/18/21 12:52 AM 04/18/21 12:53 AM 0.99 0.59
04/18/21 12:51 AM 04/18/21 12:52 AM 0.99 0.57
04/18/21 12:50 AM 04/18/21 12:51 AM 0.99 0.64
04/18/21 12:49 AM 04/18/21 12:50 AM 0.99 0.85
04/18/21 12:47 AM 04/18/21 12:48 AM 0.99 0.61

Figure 6.2: Anomaly detection in Kibana.

A slice of the results from the anomaly detector is presented in the figure. The
graph shows distinct plotted deviations in the data, with its affiliated score displayed
in the attached table. The table contains a start and end time for every occurred
anomaly, in addition to the anomaly and confidence grade. The anomaly grading
of the occurrences ranges from minor anomalies graded at 0.16 to more concerning
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grades of 1 with high confidence. Figure 6.3 shows a close-up view with highlighted
anomalies. We see that, within a 10-minute time frame, seven significant occurrences
have been highlighted.

Anomaly history

I I Set up alerts

B~  Aprs, 2021@17:30:00.000 + Apr 8, 2021 @ 18:30:00.000 l C Refresh

Anomaly occurrences Anomaly grade @ Confidence @ Last anomaly occurrence Alert Info
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Anomaly occurrence Feature breakdown

Anomaly occurrences (7)

Start time &

04/08/21 538 PM

04/08/21 5:57 PM

04/08/21 5:56 PM

04/08/21 5:55 PM

04/08/21 5:34 PM

04/08i21 553 PM

04/08/21 5:51 PM

End time

04/08/21 5:59 PM

04/08/21 5:58 PM

04/08/21 5:57 PM

04/08/21 5:56 PM

04/08/21 3:55 PM

04/08/21 5:54 PM

04/08/21 5:52 PM

Data confidence

0.98

0.98

Figure 6.3: A closer scope of anomaly detection in Kibana.

® Confidence

® Anomaly grade

Anomaly grade

[X:)



6.3. DISCUSSION 39

6.3 Discussion

The anomaly detection in Kibana is a practical tool for enterprises and private user
utilising Kibana indexing and visualising data. It has an intuitive interface and
configuration. The only requirements to get started are initiating a detector with a
defined interval and deciding which data field to aggregate and how. Open Distro for
Elasticsearch is an open-source distribution of Elasticsearch and Kibana. It is a free
alternative to the premium version and other costly data platforms such as Splunk.
Open Distro is continuously evolving and new plugins are periodically added and
improved. A first version of the anomaly detector plugin was included only one year
ago, and consequently, users and technician might not be familiar enough to fully
utilise the machine learning.

While we used this tool, we experienced issues with the detector caused by missing
data in the stream or data not being ingested correctly, which halted the detector.
Each detector is only limited to one index, which can be worked around using a
greater index pattern that merges several indices. The detector is initially limited
to only five features, but can be expanded by altering the configuration. From the
results of the implementation, we can see that distinct anomalies are detected. They
receive a high grade with an equal amount of confidence. They are point anomalies,
where a couple of them are close enough together to make out collective anomalies.
Considering the grouping and grading of the anomalies, it can indicate that larger
issues have occurred. By investigating the indices in Kibana, we can find the actual
measured values of h_ ddelay, highlighted in Figure A.2a in the appendix. These
values clearly stand out and support the classification of the anomalies. Four of these
anomalies occur in pairs of two, separated by milliseconds. Each entry in the index
can be expanded to retrieve further information that can be used in a root cause
analysis ! to determine the underlying cause of the incident. Figure A.2b displays
one of the routes with the longest delay from ytelse-osl.uninett.no to ngu-mp.ngu.no.
The other route was from ytelse-trd.uninett.no to ngu-mp.ngu.no. The source nodes
are located in Oslo and Trondheim, and the destination NGU is located outside Lade
in Trondheim. Since NGU is common between the two paths, root cause is suspected
to be related to this destination.

In the user Kibana interface, it would be useful to inspect the data instances
directly, not only the anomaly grade. By investigating the entered documents (data
elements) in the Uninett’s index in Kibana, shown in Figures A.2a and A.2b, we can
see that Uninett already detects and labels these anomalies binary by a set threshold.
The expanded document displays a report_ type threshold, highlighted in yellow,
which is generated when the measured value surpasses a defined threshold. The
graded anomalies found by Kibana might provide a more nuanced impression of the

1Introduced in section 2.5
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situation, but require manual inspection to determine its validity and to classify the
anomaly. The classification based on grading can be done automatic by a threshold,
which would then make the grading excessive.



Gaps

Gap-events, defined in Chapter 2, is another dataset available on Uninett’s server.
This dataset is derived from raw CRUDE data introduced in Chapter 5 and is
composed of individual gap occurrences. This data is only available for Uninett’s
intranet. We were recommended to explore gaps by our Uninett-employed co-advisers
during the preliminary project. The purpose of investigating this resource is to
uncover if Uninett’s analysis has resulted in data suitable for ML algorithms.

7.1 Implementation

Listing 7.1 seen below is an example of a registered gap record. Except for overlap,
h_n and t_n, all the numerical values are measured in milliseconds (ms). When gaps
are found, a fixed number of packets before and after is used for context analysis.
We call these head h and tail t. Most fields are calculated for both head and tail.
A star (*) has been inserted to represent both head and tail for the following field
descriptions in Table 7.1.

Because this dataset comprises individual gap events extracted from CRUDE
data, we no longer consider it a time series. We evaluate this dataset with the
assumption that gaps are independent of time. A traditional ML approach seems
suitable in this scenario. What is meant by traditional ML is using algorithms
designed for parsing input data, learn from it, and apply the gained knowledge for
some purpose. Acknowledged methods are clustering, classification, and regression
within unsupervised and supervised learning.

There are no labelled root causes for gap records, which scopes the study of this
dataset to unsupervised algorithms. To better understand the numerical features,
we make visualisations of coordinate systems. We choose to compare the numerical
measurements from head and tail with tloss and timestamp, attempting to uncover
correlation or patterns of gap-length with context metrics. Why we not pursue this
resource any further is explained in Section 7.3.

41
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from The source hostname for the path of packets.

to The destination hostname for the path of packets.

*n The exact number of packets used for head and tail, usually
set to 50.

*_delay The average transmit time.

*_ddelay Equals * delay minus the fastest packet in the current
window of 1000 packets. The sliding window method is
used when parsing raw data to reduce memory usage.

*_jit is the jitter value. See Chapter 2 for further explanation.

*_slope_ ** The value a in a linear regression y = ax + b for a given
number of packets (**) closest to the gap. Linear regression
is explained in Chapter 2.

overlap Sometimes gaps occur close enough together such that head
and tail overlap. This field displays those occurrences.
Usually the value is 1.

tloss The time lost in a gap.

Table 7.1: Descriptions of fields in gap records.
Note, a single star (*) represents both head h or tail t.
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"datetime": "2018-05-16 18:06:25",
"from": "volda-mp.hivolda.no",
"h_ddelay": 0.042,

"h_delay": 2.278,

"h_jit": O,

"h_min_d": 2.249,

"h_n": 50,
"h_slope_10":
"h_slope_20":
"h_slope_30":
"h_slope_40":
"h_slope_50":
"overlap": 1,
"t_ddelay": 140.241,
"t_delay": 151.886,

-

-

O O O O O

"t_jit": -7.655,
"t_min_d": 2.221,

"t_n": 49,

"t_slope_10": -1,
"t_slope_20": -1,
"t_slope_30": -1,
"t_slope_40": -0.974,
"t_slope_50": -0.851,
"timestamp": 1526486785711,
"timestamp_zone": "GMT",
"tloss": 631070,

"to": "ntnu-mp.ntnu.no",
"event_type": "gap",

Listing 7.1: Example gap-record




44 7. GAPS

7.2 Results

Below are visualisations of the numeric features of gap records. We select a few
samples to discuss in Section 5.3. Most comparisons are available in Appendix E
because all possible combinations of comparisons do not provide more varying results.
These figures are a result of pattern searching in gap events. tloss and timestamp is
used as the x-axis and the other features on the y-axis. The gaps we use occurred on
streams to ytelse-trd.uninett.no from January 2019 to May 2021. A total of 5795
gaps were gathered during this period. We omit gaps with tloss over 4000 ms for
illustrative purposes, reducing the set to 5611 gaps. They are rare and extreme
outliers skewing the axis if included.

Datapoints compared with tloss mostly hug the x-axis, indicating no trend or
correlation when gaps get longer. Still, a minority of tiny gaps less than 500 ms tend
to have a broader range of values. Figures h_delay, h_jit, and h_slope_50 (7.1, 7.2,
7.3) have this behaviour in common.

Gap-events for ytelse-trd.uninett.no (2019-2021)
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Gap-events for ytelse-trd.uninett.no (2019-2021)
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The results for t_ jit in Figure 7.5 show that most jitter-measurements in tails
are close to either an upper band of 50 ms or the lower band of 0 ms, while the other
datapoints appear in between the two. Looking at jitter in tails over time (Figure
7.6) reveals two spikes before the 1.600 and 1.606 1e9 marks. We also see a sudden

change from the usual value of 50 ms before the 1.625 1e9 mark (beginning of March
2021).
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Regression measurements from t_slope 10 (Figure 7.7) appear to form horizontal
lines between the interval of 0 to 15 ms. The exception is a cluster of a few outliers
with approximately -55 ms with tloss of 1800 ms. The measurements over time in
Figure 7.8 appear similar to Figure 7.7.
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Figure 7.7: Gaps tloss/t_slope_10.
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Increasing the slope measurements to 50 packets shows a flat, uninteresting
comparison. This result means that the stream is relatively stable 50 packets after a
gap.

Gap-events for ytelse-trd.uninett.no (2019-2021)
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7.3 Discussion

The results point out several observations that will be explained in this section.

During the initial stages of the project, we envisioned ourselves utilising clustering
as a method to extract information on this dataset. This plan comes to a halt when
we with visualisation find little to nothing that spark more interest or can reveal more
about these mysterious gaps. Realising that most features are derived from a single
metric, namely delay from CRUDE data, the correlations add no new information.
On the surface, the dataset present itself like a multivariate dataset, but we know it
has poor informational value because the fields are related. We believe that to apply
ML algorithms, designed for multivariate data, on this dataset will likely not output
any great result.

Multiple lines that look like patterns in t_slope 10 (Figures 7.7, 7.8) can be
explained by the different geographical distances the multiple streams travel. We have
seen more examples like these, and they are not particularly interesting. However,
there are tendencies of recorded gaps with equal length and timestamp. This
observation is investigated further in Chapter 8.

The sudden shift in ¢ jit can be explained by a rework of Uninett’s analysis
algorithms in March 2021. Unix timestamp 1.615 1e9 matches this description.
Gaps after this timestamp are the reason for the divided graph shown in Figure 7.5
(tloss/t_jit). It goes to show that this is a real-life system. Things change over time,
and data is imperfect.

It is still unknown what happened during the two spikes seen in Figure 7.6. They
do not match any abnormal behaviour across the other feature comparisons. This
observation identify two distinct events that can be investigated in the future. To
achieve that, one must look for information in other datasets. We, therefore, believe
that applying ML on this resource alone will not produce valuable information. One
can also argue that discovering these incidents does not require ML either, seeing
how a simple diagram was sufficient.

To complement this dataset, we have some suggestions. The results highlighted
that small gaps (<500 ms), more often than longer gaps, have a wider range of
values. A step closer to understand gaps, could be to classify/label/link gaps to
typical root causes (if possible) such as "rerouting” or ”overloaded paths”. Without
evidence, smaller gaps could arguably fit the latter class. Measurements, e.g. jitter,
could indicate a stressed network. As gaps get longer, they appear to have fewer
context data. Not uncommonly, networks behave seemingly fine until they suddenly
do not. For this reason, we believe that larger gaps experience more severe and
sudden disruptions where there is no indication of buildup. We discuss this further
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in section 10.3.



Cross-Stream Comparisons

In this chapter, we introduce another approach. Instead of evaluating already existing
datasets, we derive a new one from raw CRUDE logs introduced in Chapter 5. In the
previous work, we mainly familiarise ourselves with the data and ML in parallel. With
this approach, we aim to investigate if traditional statistical analysis can produce
interesting results. The idea is to compare multiple streams contrary to earlier
analysis performed on a per-stream basis. The ultimate goal is to better understand
the system as a whole by widening the scope.

8.1 Implementation

This section is divided into two sub-implementations. The former subsection describes
the primary analysis, and the latter describes an ML implementation.

Preparatory Steps and Statistical Analysis

We choose to focus on streams from Dragonlab. These streams travel over longer
distances through a global infrastructure and are known to be less reliable than
in Uninett’s network. Thus they are more likely to contain interesting behaviour.
Using the renowned library pandas' in python, mean_ delay and packet count values
are aggregated from each stream. We divide packets into equally sized bins before
calculations, and store the results as "resampled” CSV files. Because of the nature
of CRUDE data, multiple preparatory steps are needed in order to achieve this.

Firstly, we sort each CRUDE file by the packets’ sequence numbers. Lost packets
are reinserted as dummy rows with the correct sequence number, while the rest of
the features are populated with Not a number (NaN) values. Pandas provides a
rolling method that allows for computations on a sliding window over the data. A
specific method we use is called moving average, explained in Chapter 2. CRUDE
data contains series of nodal delays; for simplicity, we call it ”"delay” in this chapter.

Lhttps://pandas.pydata.org/
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Mean-delay, as well as packet-count are calculated for bin sizes (BINSIZE): 100,
500 and 1000. Note, pandas does not include NaN values during calculations. The
rolling method does not support a step-size argument, so we slice the dataframes? by
selecting every BINSIZE value starting from BINSIZE. An example can be seen in
Table 8.1. The code used for resampling can be found in Appendix D.3.

seq mean_delay packet_ count
100 0.1207615 100

200 0.1618642 100

300 0.1378201 96

400 0.4387954 100

Table 8.1: Example excerpt from a resampled stream with BINSIZE=100.

We suspect that common root causes reflect on multiple streams. Assuming that
streams start approximately simultaneously each day, the resampled datasets should
capture the streams’ behaviour during fixed intervals and be comparable to others.
The method we choose for comparing aligned streams is correlation, described in
Section 2.2.4.

To simplify and prepare the new dataset for correlation analysis, we perform a
type of normalisation.? The first step increments the aggregated mean-delay series
by their minimal value to mitigate negative delays. Given the speed of networking,
unsynchronized hardware clocks sometimes result in negative nodal delay for packets.
The second step subtracts the mean-delays by their new minimal value to move the
stream as close to 0 as possible. This eliminates the varying minimum delays caused
by the different geographical distances.

Our dataset is composed of multiple individual streams of unequal lengths.
Sometimes errors occur while collecting the stream of packets, which result in
incomplete datasets. A mitigation to this issue is needed. We want all streams to
match the longest one. We therefore populate shorter streams with NaN values. This
is automatically handled by pandas when adding new columns into dataframes. The
missing values are then replaced by values considered to be normal behaviour in
order to not create a false correlation. In essence, no packets are delayed or lost. The
streams’ mean-delays replace NaN delays. We name the preprocessed mean-delays
for pmeans. The current bin size replaces NaN packet counts. Additionally, we
calculate the packet loss ratio per bin ppackets = 1 — (packets,eceivea/ BINSIZE).
We create a variable ppackets to annotate preprocessed packet-counts. ppackets is

2Dataframe is a class in the pandas library that organises data in 2-dimensional tables.
3Not to be confused with normalisation in statistics where the entire dataset is mapped to the
interval [0,1].
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normalised in the interval [0,1] where a value of 0 represents no packet loss and a
value of 1 represents maximum packet loss.

A simple function to capture both negative behaviours is the summation sdf
of pmeans and ppackets, see Equation 8.1. alpha and beta can be used to bias the
components. We choose to set them both equal to 1 because we want to weight them
equally. The prior transformation will with this function create significant spikes if
one or both values are abnormal. Finally, we calculate correlation based on scores
from Equation 8.1 with the Pearson method, see Equation 8.2. Pandas provides a
correlation method on dataframes for all possible combinations of variables. The
code can be seen in Listing 8.1.

sdf = alpha - pmeans + beta - ppackets (8.1)

L aEa) - (Ca(Ey) 52)
VIS — oA - (L)
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[

BINSIZE = 1000
means = pd.DataFrame ()
packets = pd.DataFrame ()

5/ for i, f in enumerate(files):

NN NN
R W N

df = pd.read_csv(f)
df = df.set_index('seq')
means [i] = df .mean_delay

packets[i] = df.packet_count

pmeans = means.replace( np.nan, means.mean() )
pmeans = pmeans.replace( O, pmeans.mean() )
pmeans += pmeans.min() # ensure always positive
5| pmeans -= pmeans.min() # move to 0
7| ppackets = packets.replace(np.NaN, BINSIZE)
3| ppackets = 1 - (ppackets / BINSIZE)
alpha =1
beta = 1

sdf = alpha*pmeans + beta*ppackets
sdf -= sdf.min()

corrdf = sdf.corr ()

Listing 8.1: Correlation script

Machine Learning Anomaly Detection

Instead of creating the anomaly score with the approach above, we let an unsupervised
ML algorithm attempt to mark anomalies. Robust Random Cut Forest (RRCF) is a
tree-based method, described in Chapter 2. This open-source algorithm is able to
"remember” prior observations when analysing the next input it receives [BMT19]. Tt
supports large datasets generated from streams, which fits our problem. The output
from RRCF is an anomaly score per input datapoint. The configuration parameters
are set to create a forest of 40 trees, each capable of "remembering” 256 datapoints.
In other words, the trees have a max size of 256 datapoints. At this threshold, they
throw away the oldest datapoint when they receive new input.

As an initial performance test, we feed the model with a simplified dataset of
only packet loss. The implementation is the same setup as the developers’ example
in their source code [BMT]. The code can also be seen in Listing D.4. We choose
an arbitrary stream and day that has experienced significant losses: the resampled
stream with BINSIZE=1000 from Zurich to Auckland during the 8th of March 2021.
The input can be seen in Figure 8.1. Why we choose not to continue with this
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approach will become apparent in the results in Section 8.2. Finally, the result is
discussed in Section 8.3.

Input data for RRFC (Zurich to Auckland, 08.03.2021)
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Figure 8.1: Input to RRCF (Zurich to Auckland, 2021.03.08).

Note, the y-axis unit is wrong. It is packet-loss ratio [0,1], not percent (%).
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8.2 Results

With manual inspection, we select a few nodes from Dragonlab to display the results
from correlation analysis. Their purpose is to show varying results that is discussed in
Section 8.3. There are four types of figures. One type is a visual matrix representation
of all-to-all correlation-scores* between streams. An example of this can be seen in
Figure 8.2, with colours ranging from dark blue to bright yellow. A correlation score
is in the interval [0,1], as displayed by the colour-bar on the right-hand side. Negative
correlation is not included because we are only interested in common spikes. The
other three types are coordinate systems where the x-axis represents the sequence
number of packets, and the y-axis is some value for the respective bin of packets.
Examples of the three plot types can bee seen in Figures [8.7, 8.8, 8.9]. This section
begins with an overview of all streams, followed by a specific example from Amazon.
For interested readers, the exact source and destination IP addresses can be found in
Appendix G.

To avoid confusion when looking at the figures, we must explain the x-axis. The
sequence number does not change even though the bin size is different. The raw
CRUDE streams usually contain between 8 and 9 million packets. The resampled
datasets have kept the original sequence numbers. For example, will the first row in
a resampled file with BINSIZE=1000 be indexed with a sequence number equal to
1000. This causes the figures to have seemingly the same amount of datapoints when
they do not.

Bin Size Comparison

The correlation with the resampled datasets of bin sizes 100, 500 and 1000 packets
can be seen in Figures 8.2, 8.3 and 8.4, respectively. Due to minimal difference
between these figures, we choose bin size 1000 in further studies (see Section 8.3 for
elaboration). All available Dragonlab streams during the 10th of March 2021 is used
in this analysis. As expected, there is 100% correlation along the diagonal. There
are also larger groups of higher correlation around the diagonal. The majority of the
other comparisons have low scores, except for a few yellow dots and strips. The basis
for correlation-scores can be seen in Figure 8.5. The figure displays the development
of the Dragonlab-streams throughout the day.

4The basis for correlation scores is annotated as sum(pmeans, ppackets). pmeans are the
preprocessed packet mean-delays and ppackets are the preprocessed packet-losses (decimal ratio
[0,1]) for a given stream and BINSIZE.
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Figure 8.2: Correlation-scores for Dragonlab during 2021.03.10 with BINSIZE=100.
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Figure 8.3: Correlation-scores for Dragonlab during 2021.03.10 with BINSIZE=500.
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Figure 8.4: Correlation-scores for Dragonlab during 2021.03.10 with BINSIZE=1000.
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Figure 8.5: Plot of sum(pmeans, ppackets) (Dragonlab, 2021.03.10, BINSIZE=100).
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Correlations for Amazon

Correlation scores for Amazon during 2021.03.10 can be seen in Figure 8.6.°> More
figures can be found in Appendix F. Amazon (Figure 8.6) displays three pairs of
strongly correlated streams (0-5, 0-6 and 5-6). Similar behaviour can also be seen in
Figure 8.7 due to both higher mean-delay and packet-loss ratio around sequence 6
million.
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Figure 8.6: Correlation-scores for Amazon during 2021.03.10 with BINSIZE=1000.

5Any calculations ”for” a node means that the node acted as the destination for gathered
streams.
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amazonuw2-mp (2021-03-10, BINSIZE=1000)
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Figure 8.7: Plot of sum(pmeans, ppackets) (Amazon, 2021.03.10, BINSIZE=1000).
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Figure 8.8: Plot of packet mean-delays (Amazon, 2021.03.10, BINSIZE=1000).
The y-axis is measured in (ms).
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Figure 8.9: Plot of packet-loss (Amazon, 2021.03.10, BINSIZE=1000).

The y-axis represents the packet-loss ratio [0,1].
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RRCF Result

In Figure 8.10 we see the plot of anomaly scores marked by RRCF with packet-loss
from Zurich to Auckland (2021.03.08).

Anomaly score RRFC (Zurich to Auckland, 08.03.2021)
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Figure 8.10: RRCF anomaly scores (Zurich to Auckland, 2021.03.08).
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8.3 Discussion

The idea of this approach was provided by Yuming Jiang through multiple consulta-
tions in the duration of the project. It is inspired by his previous research on similar
datasets [AEJ12, AJS18, AJH"14]. Locating issues is one of the first steps in RCA.
This chapter, and the listed papers are also relevant to Chapter 9.

Key findings from cross-stream comparisons show that some streams do correlate
with one another. These streams are often on the path to a common destination,
but other incidents have also been found. This section will discuss possible reasons
for these correlations. Uncertainties and how the analysis could have been improved
is discussed in Section 10.2.

We have previously referred to Uninett’s loss of traffic per month. Those results
are relevant to this discussion, and we use the opportunity to enlighten details about
how they are measured. Uninett analyses on a per-stream basis. That means the
total loss is aggregated from each stream’s perspective. If an outage of 10 seconds
(caused by e.g. a router reboot) affects six separate streams, the aggregated loss
equals a whole minute. In other words, the current measurements do not represent
the duration of root causes. This distinction is important when analysing loss in the
future. Findings from this chapter show that one must also be vary of the possible
number of streams that are affected by disruptions.

In this chapter, we compare three different bin sizes of 100, 500 and 1000 packets.
Given the frequency of 100 packets per second, each bin equals 1, 5 and 10 seconds,
respectively. Ten seconds is considered to be a long time in networking. To put it
in perspective, routers can handle millions of packets per second. Because of this
reason, it is questionable whether or not such a low packet frequency accurately
represents the network’s behaviour.

With the obtained results, we notice that the difference in correlation between 1s
and 10s bin sizes is marginal (see Figures 8.2, 8.3, 8.4). Larger bin sizes tend to be
slightly stronger correlated than smaller bin sizes. We expect this result because a
larger window has a higher probability of capturing common behaviour, especially if
streams have time unit lags. We choose to only include result figures with bin size
equal to 1000 packets given the negligible difference. The project is more interested
in proof of principle than precise numbers. One could also argue that a larger bin
size is beneficial with respect to memory, as only a fraction of space is needed.

The results include plots of correlation analysis on streams to Amazon. Three
identified pairs are highly correlated, shown in Figure 8.6. Given the distinct
simultaneous pattern in Figure 8.7, there is a high probability that the streams
were affected by the same root cause. Around the 6 million mark, there is a sudden
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spike in both mean-delay (Figure 8.8) and packet-loss (Figure 8.9). Each datapoint
represents 10 seconds, so the issue has caused abnormal behaviour for a significant
amount of time. The most recognisable feature is the pattern in mean-delay. They
all display a decrease in delay before coming to an abrupt return to normal behaviour
at the same time.

Infrastructure is a keyword in these results. The Internet is a web of links and
routers transferring data with a best-effort protocol. Paths are constantly switched
for numerous reasons, e.g. congestion, severed wires or hardware reboot. Complex
networking protocols are capable of automatic rerouting when any of these events
occur. The streams in this project also utilise this network and are likely to share
the same components. Supported by a high correlation between streams of same
the destination, root cause relates to a failure in a component close to the paths’
endpoints. The self-healing ability of networks can be a slow process; therefore, it is
not unlikely that Uninett’s monitoring is capable of capturing disrupting events.

These results could be helpful in further analysis, based on for instance ML. This
information indicates that highly correlated stream-pairs could isolate a set of critical
components in the future. Especially interesting are highly correlated stream-pairs
without a common source or destination. Matching this information with context
data, e.g. traceroutes, might reveal the root cause of an incident.

The anomaly scores from RRCF implementation does not resemble the input.
Listing D.4 successfully identifies anomalies in the paper [BMT19] but struggles with
the dataset from Uninett. We see limited potential for further investigations with
this approach. One can also argue that the input data already is an anomaly score
by itself, meaning that anomaly detection methods are redundant.






Root Cause Analysis

In this chapter, a Root Cause Analysis (RCA) is conducted in order to determine
the root cause of the network delay detected by Kibana’s anomaly detector in
Chapter 6. The work performed in said chapter is an important step in the problem
understanding. The scope of the analysis will be the two paths from Oslo and
Trondheim to NGU, and the theory introduced in Section 2.5.

9.1 Implementation

Traceroute is introduced in Subsection 2.1 as a computer network diagnostic tool
that traces possible routes from source to destination and measures transit delay of
packets. Uninett performs traceroute on their links in the network regularly. Every
executed traceroute is timestamped and entered into a report for the individual
link. In the interest of discovering the root cause of the problem, an analysis of the
exposed paths is performed to determine if one or more shared nodes are responsible
for the anomalous behaviour. The traceroute reports from April 8th 2021, for the
links between Oslo and Trondheim to NGU serve as the problem cause data.

To map the nodes in the paths, the python script displayed in Listing D.5,
traverses the reports and registers the IP addresses. The measured transit delay and
maximum experienced delay is collected from the traceroutes’ output, and is used
to calculate the average delay for each node in the paths. The script appends the
addresses to a list representing the nodes in the path. The list is then entered into a
dictionary with the source address as key. The code displayed in Listing 9.1 takes
the dictionary as parameter and discovers shared nodes by comparing the list.
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import functools

dst_nodes = []
shared_nodes = []

for node in ipt:
dst_nodes.append (ipt [node])

def findCommon (L) :
def R(a, b, seen=set()):
a.update(b & seen)
seen.update (b)
return a
return functools.reduce(R, map(set, L), set())

print ('The paths share the following nodes: ')
print ('"')
for node_ip in findCommon (dst_nodes):
shared_nodes.append(node_ip)
print (node_ip)

Listing 9.1: Code snippet for determining shared nodes in paths.

Uninett has already implemented a tool to visualise the connection between
endpoints of a link, illustrated in Figure 1.1. By utilising traceroutes, topology
layouts of these connections are automatically generated. Investigating the topologies
can confirm the detected shared nodes from the programming scripts, and might
provide further insight.
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9.2 Results

Figure 9.1 presents the results from the script Listing D.5 introduced in Section
9.1. It lists the detected nodes shared by the two paths, with associated average
and maximum delay measured in milliseconds (ms). Closer inspection reveals a
significantly higher maximum delay for the node with IP address 193.156.55.218, in
addition to the highest average delay.

The paths share the following nodes:

Mode: 128.3%9.254.183 - Average delay: 4.8584 ms - Max delay: 12.891
Mode: 193.156.2.1 - Average delay: 4.825 ms - Max delay: 48.799

Mode: 193.156.55.218 - Average delay: 6.824 ms - Max delay: 147.183
Mode: 128.3%9.255.183 - Average delay: 4.646 ms - Max delay: 12.927

Figure 9.1: Shared nodes in paths discovered by Listing 9.1.

We select traceroutes based on the detected anomalies during the 8th of April.
From these records, Uninett has generated the path topologies [Unia] displayed in
Figure 9.2 and 9.4. The figures illustrate the paths utilised from Oslo and Trondheim
to NGU, with corresponding information in Tables 9.3 and 9.5. The hop sequence
starts from the left, and the arrows indicate the direction of the path. Two vertically
placed nodes indicate the same hop with alternative nodes, reflected in the tables
by an unnumbered hop. Routers are highlighted in the tables with their related IP
addresses, along with maximum measured delay.

ifi2-gw5.uninett.no -
ngu-mp.ngu.no

Figure 9.2: Path topology from Oslo to NGU.
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Hop

EST N )

Hop

Router
ifi2-gw5 . uninett.no
oslo-gwl.uninett.no
trd-gw.uninett.no
trd-gw2.uninett.no
trd-gw2.uninett.no
193.156.2.1

Ngu-mp.ngu.no

1.2
0.9
8.6
8.5
5.0
8.6
9.6

Avgms Min

0.3
03
7.8
8.1
5.1
82
82

Max Sdv

34.0
41.2
50.7
10.1
12.9
40.8
147.1

2.8
25
3.0
0.2
0.3
1.5
94

Loss%
0.00%
0.00%
0.00%
0.00%
0.00%
5.20%

11.76%

Seen
7794
8046
8040
3994
4052
7628
7100

Address
158.39.1.125
128.39.254.82
128.39.255.25
128.39.254.183
128.39.255.183
193.156.2.1
193.156.55.218

Start
08 00:00:07
08 00:00:07
08 00:00:07
08 00:00:07
08 00:00:07
08 00:00:07
08 00:00:07

Figure 9.3: Table of hops from Oslo to NGU.

Figure 9.4: Path topology from Trondheim to NGU.

Router
trd-gw.uninett.no
trd-gw2.uninett.ne
trd-gw2.uninett.no
193.156.2.1

NgU-mp.ngu.no

0.8
0.9
0.9
1.0
2.3

Avgms Min

0.2
0.5
0.5
0.5

Max
223
4.6
6.0
19.3

0.5 1443

Sdv
2.1
0.3
0.2
0.7

10.5

Loss%
0.00%
0.00%
0.00%
5.65%

12.76%

Seen
7992
3996
4037
7580
7009

Address
158.39.1.89
128.39.254.183
128.39.255.183
193.156.2.1
193.156.55.218

Start
08 00:00:07
08 00:00:07
08 00:00:07
08 00:00:07
08 00:00:07

Figure 9.5: Table of hops from Trondheim to NGU.

End
08 23:59:08
08 23:59:08
08 23:59:08
08 23:59:08
08 23:59:08
08 23:59:08
08 23:59:08

End
08 23:58:43
08 23:58:43
08 23:58:43
08 23:58:43
08 23:58:43
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9.3 Discussion

In the previous section, results, the Figure 9.1 shows that the implemented program
found four distinct common nodes. The two generated topology layouts, in Figures
9.2 and 9.4, contain the same nodes and support the results. The link from Oslo to
NGU utilises the same nodes as Trondheim to NGU, which explains why they both
experience anomalous behaviour in Chapter 6, almost simultaneously. The node with
IP address 193.156.55.218 stands out with the highest maximum measured delay and
calculated average delay. It is also highlighted in the tables shown in Figures 9.3 and
9.5. Uninett calculates the packet loss of each node, and ngu-mp.ngu.no displays a
significantly higher loss than the other nodes in the path. These results help isolate
the cause of the problem to a single node or its links. To conclusively determine the
cause, further investigation into more detailed information sources, such as SNMP
messages or router-logs, must be conducted.

The last two steps in the analysis are root cause identification and solution
recommendation before implementation. Identifying the cause can be difficult and
relies heavily on a comprehensive understanding and definition of the problem,
in addition to a solid data collection. In the conducted analysis, employees at
Uninett contribute valuable knowledge to gain an understanding of the problem.
The data collection mainly consists of traceroute reports, and all the information is
aggregated from them. The issue of using traceroute is its granularity compared to
the CRUDE implementation. Traceroutes are sent only once per minute. In other
words, a problem could occur and be resolved between two traceroutes without being
registered. CRUDE measurements, on the other hand, are performed 100 times per
second.






Discussion

The current chapter provides a final discussion of the applicability of machine learning
at Uninett. It also elaborates about the challenges we faced during the project before
wrapping up with recommended improvements and future work.

10.1 Applicability of Machine Learning at Uninett

To evaluate the implementations and results from the iterated approaches, we revisit
the problem description and the research questions (RQ) from Section 1.3.

The problem description describes the project’s objectives and end goal. Intended
methods have been applied, and most objectives fulfilled. However, due to the
challenges encountered and the limited amount of time available, some objectives
were not completed. We did, for example, not perform fine-tuning of the selected
algorithms we implemented. Forecasting is also mentioned as a possible approach,
but there was not enough time to thoroughly evaluate it. We briefly looked into
forecasting and single-step prediction for anomaly detection and saw little potential
to trigger further investigations. The reason for this is rooted in Uninett’s reliable
system that generates monotonous data without clear patterns related to detected
issues. Training a forecasting/prediction model with CRUDE data, means seeing
millions of packets where only a tiny proportion is abnormal. This means that any
such algorithm will likely always predict normal behaviour and will almost always be
correct. Anyhow, we believe we have succeeded in the problem description’s goal
of finding valuable results for Uninett’s engineers. The project contributes to the
evaluation of machine learning’s future in Uninett, finds interesting results in Chapter
8 and suggests further improvements in their system.

RQ1: Which requirements need to be fulfilled to facilitate machine learning? A
clear understanding of the datasets is essential before applying an ML algorithm.
Without knowledge of the input, the output can be incomprehensible. Often a set of
properties must be fulfilled in order to achieve meaningful results. If the applied data
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is time-dependent, we desire either distinct trends, patterns or cycles. The data has
to be prepared before it can be ingested into an algorithm. Timestamps are crucial
in time series data, and factors like time zones must be taken into consideration.

In examining the CRUDE data and gap logs in Chapters 5 and 7, we discover
limited informational value or context to categorise or predict gaps. It is evident
that most features available in the datasets are derived from nodal delay. Uninett
can extract information from a combination of different resources in their system to
counter the shortcomings in each of them. Its easier to analyse a dataset comprised
of independent variables with a set of standalone features. We elaborate on this in
Section 10.3. Machine learning is limited by the data fed into the algorithm, meaning
that its greatest strength is also its biggest weakness.

RQ2: Can Uninett utilise machine learning in their already existing network
monitoring system? The short and simple answer is, yes, Uninett can apply machine
learning in their existing system. But the quality of its output is questionable
and may not be worth much without undergoing the preparatory improvements.
Uninett’s available data is best suited for anomaly detection but less applicable to
root cause analysis because of its lacking context and low dimensionality. All the
data stem from a continuous stream of packets in a relative stable system, resulting
in few abnormalities, as discussed in Chapter 5. This makes fault detection easy but
causation ascertaining hard. In Chapter 6, Kibana’s ML-based anomaly detection
discover distinct outliers in the measured delay. These incidents are already uncovered
by Uninett’s analysis using thresholds, where the only difference is the labelling
of the anomalies. The detector can only monitor one data field and contribute no
context to its results. Automated machine learning solutions, such as Kibana’s, are
easy to implement and maintain but leaves little room for users to modify them. A
conventional ML solution is complex and demands experts with deep knowledge in
the field to fully exploit it. It entails manual inspection of the data and maintenance,
which makes for a costly affair.

RQ3: How can Uninett improve its network monitoring to determine root causes
of faults better? In Chapter 8, cross-stream comparisons are conducted to see if
traditional analysis could produce promising results. We find a noticeable correlation
between stream-pairs, information that could be used to isolate critical components in
the network. The root cause analysis performed in Chapter 9 uses traceroute reports
to look at average transit delay in paths. It points out a router, shared by two paths
that experience anomalous delay, as a possible cause of the problem. By combining
these two approaches, or match incidents with other datasets e.g. SNMP traps,
syslogs, router-logs, BGP-updates, the joint dataset might reveal new information.
This is a difficult task and has been attempted before with mixed success. In order
to match different logs, one must be able to match them on timestamps. Granularity,
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i.e. the level of details in the data, then becomes a critical factor. CRUDE data
have relatively low granularity compared to routers who experience state changes
millions of times per second. Other datasets, such as traceroutes and BGP-updates,
are measured even less often. Traceroutes are only sent by Uninett once a minute
and are very unlikely to capture gap-causing events in CRUDE data. Theoretically,
nearly 50 gaps can occur in between each time a traceroute is sent.

10.2 Challenges

One of the greatest challenges we faced during the project is the limited information in
the available datasets. In the early phase, we were introduced to previous work done
at Uninett by a summer intern. The project aimed to match multiple datasets on
timestamps to obtain context data of detected network issues. The data was gathered
from system-logs, router-logs, Simple Network Management Protocol (SNMP) traps,
traceroutes, gap-events and Border Gateway Protocol (BGP)-updates. Findings
from this approach would have been interesting to apply in our ML evaluation.
Unfortunately, this project was not made available to us. Therefore, an investigation
of ML applicability on such a resource still remains as future work.

This project experienced timestamp challenges related to asynchronous hardware
clocks. During manual inspections on CRUDE data, we found negative nodal delays.
For this reason, an uncertainty accompanies all comparisons between multiple logs
matched on timestamps.

The correlation analysis in Chapter 8 assumes that streams start simultaneously.
This is likely not the case every day and is a known source of error that should
be addressed in future studies. There are possibly more correlated streams not
discovered by our analysis. We recommend that future analysts are attentive to time
zones and timestamps when aligning streams. A possible solution is to utilise the
same approach we use, in addition to prepend missing segments as well.

One particular limitation in this thesis was the quality of the data used in the
research. The datasets consist of synthetic traffic produced by Uninett to monitor the
paths in their network. Due to strict General Data Protection Regulation (GDPR),
service providers are restricted insight into user data. Netflow data contains more
information and would have been a richer data source. Additionally, there was
a limitation in terms of assessing the quality of the provided anomaly detection
methods. Because of ML-methods’ complexity and the level of knowledge required,
the true quality of the solutions must be determined by experts in the field.

Considering Uninett’s position as an ISP, necessary security measures prolonged
the time to obtain the required access to their server and data interface. Some



76 10. DISCUSSION

features were only available for users with sufficient permission levels such as admins,
which we could not receive seeing we are not employees. This resulted in delaying
the practical implementation with respect to the initially planned schedule.

The large amount of data we evaluate in this thesis was a severe challenge. Manual
inspection by humans on network traffic data is an infeasible task. Due to the data
size to be prepared and analysed during the project, a simple mistake could result in
hours of rework. Quality assurance of the developed scripts was a time-consuming
task. For example, it was not always easy to validate that applied functions on
millions of data lines were performed correctly.

The thesis was conducted during the COVID-19 pandemic, which limited all
contact with the supervisor, academic staff, and between ourselves to strictly digital
interaction. In hindsight, the counselling would have been more productive in physical
meetings between the students and professors, considering the complexity of the
thesis’ subject.

10.3 Future Work

The thesis mentions combining multiple different types of datasets as future work.
This section elaborates details and suggestions for such an approach. We believe
that collecting the circumstances to known events and grouping them to independent
variables will result in a richer resource.

Uninett can use their historical experience to pinpoint a few known events that
caused issues in their network. From there, they can gather all available monitoring
data within a defined time interval and analyse them thoroughly. Let us say the
data is structured as a table. The goal is to achieve a single row per event with
many columns. The columns are the features that describe a single observation. This
project faced the issue of low dimensionality. Therefore, Uninett should consider
increasing it. One of the columns should optimally be the classification of the issue
(also known as the ’label’ or ’ground truth’). Creating a set of labelled data can
contribute in a semi-supervised algorithm. Related work in Section 3.2 finds semi-
supervised methods to improve the prediction accuracy with only a small amount
of labelled data. The other columns can contain a variety of information extracted
from multiple logs. Uninett can even consider binarisation as the initial approach.
That means to mark the presence of something. An example in this context: create
a column and mark if there was sent an SNMP trap within the interval or not. This
might reveal logs that frequently are present in certain issues.

Chapter 5 raises an issue regarding the data format in their CRUDE data. Their
current logging braids multiple streams into an impractically structured compressed
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file. There is a fixed set of attributes in this dataset, which makes it suitable
for CSV. CSV is a format where values are separated by either comma, space or
tab. The first line represents the header and contains the name of each column in
the data. Every new line of values conforms to the header and represents a row
in the table. This universal format enables the usage of multiple acknowledged
analysis tools such as pandas, numpy and ML libraries. We recommend adopting an
atomic mindset, breaking their information down into smaller and more consistent
components. Separating CRUDE streams into separate files, for example, facilitates
analysis on single streams over more extended periods. We also suggest that Uninett
be consistent with directories on their server. The paths to raw logs represent each
file’s metadata, such as domain, host, IP address or timestamp. Over time, Uninett
has changed the location and naming conventions of their data, making it challenging
to perform post analyses on historical data.

The scripts that parse and resample CRUDE data in this project are executed
in a python environment without multi-threading. Because we do not utilise multi-
threading to spread processes on Uninett’s 64 core CPU, the files are parsed in a
sequential manner. This is a tedious task and is not recommended. Given the amount
of data on Uninett’s server, we suggest developing new scripts with threading to
parse their old data into better formats, e.g. CSV in the paragraph above.






Conclusion

In the duration of this thesis, we explore multiple datasets and evaluate them with
respect to ML. Through different approaches, we examine if available properties in
the datasets can facilitate ML algorithms. Kibana’s ML based anomaly detection is
tested to find anomalies in measured delay, and we perform root cause analysis to
determine the underlying cause.

We discover that there is little information to find in the datasets. Most features
are derived from a single metric, which leaves little context to work with for ML.
Uninett’s logs are not yet cross-matched nor labelled. By themselves, they do not
produce enough context data to reveal new information with more complex ML
algorithms. The correlation between stream-pairs yielded promising results. We
discover correlations between different paths, which indicate that unwanted events
affect multiple parts of the infrastructure. In combination with other sources, it may
enhance Uninett’s network monitoring to determine and label the root cause.

We have concluded that as of today, there are high costs with few benefits from
introducing ML to Uninett’s monitoring system. Our findings show that Uninett has
already established a solid and robust system capable of collecting data and detecting
issues by statistical methods. In this matter, they uncover unwanted behaviour
such as jitter, gaps, and delay that exceed acceptable tolerances. We find the same
anomalies Uninett do when we test anomaly detection, only with a grading score
instead of a label. Adding ML would introduce unnecessary complexity and would
require expertise to develop and maintain. Considering we achieve the same results
as threshold methods, the presented ML approach seems redundant, and we suggest
that Uninett instead expands on their existing data analysis.

Essential future work to facilitate a reevaluation of the applicability of ML is
improving the way data is stored and handled. For example, the way Uninett
stores data would be significantly enhanced by introducing CSV format. It would
increase the reading speed of the files and also allow for the use of advanced tools.
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In addition, to fully utilise the advantages of ML, more preparation of the data
needs to be conducted. By grouping data and labelling known incidents, a semi-
supervised machine learning method can be considered. It only requires a small
amount of labelled data combined with a larger amount of unlabelled data for training.
According to related work, it has an improved prediction accuracy compared to other

methods.
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Kibana Anomaly Detection

This appendix includes figures from Kibana’s anomaly detection in Chapter 6.

uninett_jitter 39 hits

Q

© Fiter by type 3

earch field names Apr 8, 2021 @ 17:51:00.000 - Apr 8, 2021 @ 18:00:00.000 Auto ~

Selected felds

Count

Avallable lelds:

[ [T] | = Il NN o i

# _score 2 2 5400 s s . .
¢ from @date per 10 seconds.
# h_delay Time + _source
i > 7:50:50.229 . 5 . .

# h.oeley > Apr 8, 26210 17:59:59.229  pessage: {"edate’:'2821-04-88T17:59:59.22910280" " datetine" i'2021-84-05T17159159,2291020", "event_type” " Jitter”,"fron’:"ytelse-
#/n.jit os1.uninett.no’ , "Fron_adr":"158.39.1.126","h_ddelay" .66, "h_ddelay_sd" :2.64266472422715, "h_delay" :4.657, "h_delay_sd" :2.64245771969304, "h_)1t" 0,889, "h_)1t_sd
# hming 1.57786576423562, “h_min_d" :3.997, “h_n" :**, “report_type” “interval, "tinestamp" 11617897599, 22951, tinestamp_zone” :“GHT" " tloss" 126000.0030994415, “to”  “ngu-
#hn p.gu.0", "o adr":*193.156.55.218°) to: ngu-mp.nou.no datetine: Apr 8, 2021 @ 17:59:59.229 hmin d: 3.997 to.adr: 193.156.55.218 hddelay: 0.86 h.n
e timestamp_ns: 1617897599229 event_type: jitter timestamp_zone: GHT tloss: 26060.0030994415 h_delay: 4.057 Odate: Apr 8, 2021 € 17:59:50.229
€ > Apr 8, 2021 © 17:59:58.229  adate: Apr 8, 2021 © 17:59:58.229 h_delay: 32.913 h_ddelay_sd: 28.861 from: ytelse-osl.uninett.no tloss: 999.99439535522 from_adr: 158.39.1.126
© index hojitisd: 2.422 hojit: 2.482 h delay sd: 28.861 report type: threshold timestamp: 1,617,897,598.23 to: ngu-mp.ngu.no message: {"edate’:'2621-64-
B tpe B8T17:50:58.209+0200°, datetine” 202104 5T17:50:58.229+0260", "event_type” :*jitter”, “fron": ‘ytelse
© edate osLuninett.no", *from_adr:*158.39.1.126", "h._ddelay" :28.922, “h_ddelay._sd" 26,861, "h_delay’ :32.913, *h_delay_sc* :26.861, "h_jit"12.482,"h_jit_sd" 12,422, "h_min_d

p 3.991,"hn":""  “report_type" : threshold","tinestanp® :1617897598.22952, "tinestanp_zone" :"GHT", "tloss" :999.994039535522, "0" : 'ngu
@ detetime

Figure A.1: Uninett’s data indexed and labelled in Kibana.
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86 A. KIBANA ANOMALY DETECTION

> Apr 8, 2821 @ 17:55:37.864 8.896 - -
~ Apr B, 2821 € 17:51:46.689 167.399

> Apr 8, 2021 @ 17:55:36.864 35.964
= Expanded document

> Apr 8, 2821 @ 17:55:35.838 8.889

Table JSON
> Apr 8, 2821 @ 17:55:35.488 ©.865 )
B @date Apr &, 2821 @ 17:51:46.689
> Apr 8, 2021 @ 17:55:33.892 1089.246 to.id HPHws3gBEaknIHlnpSq3
b _index uninett_jitter
> Apr 8, 2821 @ 17:55:33.729 65.863
# _score -
> Apr 8, 2821 @ 17:53:22.785 ©.142 t _type _doc
0 datetime Apr 8, 2821 @ 17:51:46.689
> Apr 8, 2821 @ 17:53:22.285 ©.228
t event_type jitter
> Apr 8, 2821 @ 17:53:85.871 8.865 t from ytelse-osl.uninett.no
t from_adr 158.39.1.126
> Apr 8, 2821 @ 17:52:59.316 ©.824
# h_ddelay 167.399
> Apr 8, 2821 @ 17:52:57.815 ©.074 o h_ddelay_sd /. 189.485275933831
> Apr 8, 2821 @ 17:52:57.815 ©.832 # hcelsy 173
@ h_delay_sd 4 1608.485275939831
> Apr 8, 2821 @ 17:52:56.161 ©.042 ‘i .
> Apr 8, 2021 @ 17:52:56.114 8.852 O hjitsd 7. 2050073654455
# h_min_d 3.9M
> Apr 8, 2821 @ 17:52:54.489 8.852 ;
# _n
> Apr 8, 2821 @ 17:52:53.847 ©.854 t message >
{"@date" :"2621-84-B8T17:51 :46.
ent_type":"jitter”, "from":"yte
> Apr 8, 2821 @ 17:51:51.189 ©.0886 V167,359, " h_ddelay_sd" 1169.¢
939631, "h_jit":"9.428", "h_jit.
ype":"thresheld”, "timestamp":1
> Apr 8, 2821 @ 17:51:50.852 ©.872 18623169, " to" :"ngu-mp. ngu.no"
t  report_type threshold
> Apr 8, 2821 @ 17:51:46.689 167.399
# timestamp 1,617, 897,186 .69
> Apr 8, 20821 @ 17:51:46.352 187.214 t timestamp_ms 1617807186680
t  timestamp_zone GMT
> Apr 8, 2821 @ 17:51:34.531 8.858
@ tloss £ 4508.88B810623169
> Apr 8, 2821 @ 17:51:33.559 ©.832 o [
t to_adr 193.156.55.218
(a) Documents with measurements in
Uninett’s index shown in Kibana. Anoma- (b) Expanded document in Uninett’s in-
lies with measured delay highlighted with dex shown in Kibana. Data of interest

yellow colour. highlighted with yellow colour.



Traceroute and Root Cause

Analysis

This appendix includes figures from RCA in Chapter 9, and theory expanding on

root cause analysis.

B.1 Traceroute

Time -

Apr 8, 2821 @ 17:54:58.0688
Apr 8, 2821 & 17:54:58.868
Apr 8, 2821 @ 17:53:568.6868
Apr 8, 2821 @ 17:53:56.0688
Apr 8, 2821 @ 17:52:46.068
Apr 8, 2821 & 17:52:46.868
Apr 8, 2821 @ 17:51:41.668

Apr 8, 2821 @ 17:51:41.068

from

ytelse-trd.
ytelse-trd.
ytelse-trd.
ytelse-trd.
ytelse-trd.
ytelse-trd.
ytelse-trd.

ytelse-trd.

Figure B.1: Traceroute in Kibana.
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88 B. TRACEROUTE AND ROOT CAUSE ANALYSIS

@ @date Apr 8, 2821 & 17:52:46.8606
@timestamp Apr 8, 2821 & 17:52:46.8606

t _id IjPU4ngBI1SyewilaXvgg

t _index uninett_traceroute-B668481

# _score -

t _type _doc

t agent.ephemeral_id b6552cae-d5d5-4c6c-bedB-3ccla2dd2e2

t agent.hostname iou2

t agent.id 59a694bd-77da-43ea-a272-2fed85930ed1

@ agent.name Ay iou2

t agent.type filebeat

t agent.version 7.18.2

t ecs.version 1.6.8

t event periodic

t event_type traceroute

t from ytelse-trd.uninett.no

t from_addr 158.39.1.98

# hopcount 4

t host.name iou2

t input.type log

t log.file.path /var/lib/microdep/mp-uninett/log/traceroute/traceroute.json.6
# log.offset 155,162,653

t path trd-gw.uninett.no trd-gw2.uninett.no 193.156.2.1 ngu-mp.ngu.no
t path_addr 158.39.1.89 128.39.255.183 193.156.2.1 193.156.55.218
t path_avg_rtt 8.3198 B8.7987 B8.7352 6.9127

t path_sd_rtt 6.681714 ©.85452 8.1178 8.4322

@ preferred_index M uninett_traceroute_latest

& timestamp Apr 8, 2821 & 17:52:46.808

t to ngu-mp.ngu.no

t to_addr 193.156.55.218

Figure B.2: Expanded Traceroute output in Kibana.
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B.2 Root Cause Analysis

When performing RCA, the ultimate goal is to produce a recommendation for an
effective solution. The investigator must strive to accurately identify the specific
underlying causes to make it easier to recommend a solution. The recommendation
should address the root causes directly to ensure a targeted solution to the experienced
problem. General cause classification should be avoided since it complicates the
further process of elimination. The culpable root causes must be something that can
be modified, i.e. not the weather, to be able to solve the problem [RHO04].

RCA consists of the following steps [AF06]:

— Problem understanding - Start by defining the problem and understanding the
nature of its occurrences, before generating ideas for causes.

— Problem cause data collection - Collect all the data related to the problem and
possible causes.

— Problem cause data analysing - Analyse the collected data with RCA tools to
determine the cause of the problem.

— Root cause identification - Identify the root causes as specific as possible so
the reason the problem occurred can be addressed.

— Solution recommendation and implementation - Produce a solution recommen-
dation to prevent recurrence and implement the solution.

To support the execution of the analysis a set of tools can be utilised [AF06].
In gaining understanding of the problem, brainstorming is practical to generate
multiple ideas and performance matrices can be used to determine the importance
of the suggested causes. Data can be collected through sampling or performing
surveys. Different charts, such as Pareto charts, and Scatter charts, can help
illustrate relationships between different causes when data is analysed. Utilising
Matrix diagrams can simplify the process identifying the biggest contributing cause
to the problem.






Environment Setup

In order to work on this project, one must gain permissions to the files on Uninett’s
data-centre. The tool used for this was Secure Shell (SSH), which is a widely used
tool for remote access. Private RSA! or SSH keys were generated and linked to
our personally made users at their proxy login-server and the main server JOU2. A
Jupyter notebook server was installed and hosted on a forwarded port, serving as
the primary development tool. This approach had quick and simple file access and
supported our preferred programming language Python.

Port forwarding, also called tunnelling, was enabled when connecting to IOU2
in order to reflect remote processes and Graphical User Interface (GUI) on our
local machines. This can be set by complementing the SSH command with the
flag -L port:addr:port. Example setup of Jupyter hosting and connection is shown
below in Listings C.1 and C.2. The -J and -A flag was used to proxy-jump through
login.uninett.no to iou2.uninett.no whilst maintaining authenticated.

Listing C.1: Local terminal

$ eval “ssh-agent’

ssh-add ~/.ssh/id_rsa

$ ssh -L 9988:127.0.0.1:9988 -J <username>Q@login.uninett.no
<username >Q@iou2.uninett.no -A

W N
@

Listing C.2: IOU2 terminal

[
1‘ $ pipenv run jupyter notebook --no-browser --port 9988 --notebook-dir=/ ‘
L |

Pipenv, used in Listing C.2, is a packet manager tool for the Python world.
Creating a virtual environment reduces the risk of affecting the system when installing
new packages. We used pipenv for installation of necessary python modules, see
Listing C.3.

1RSA is a public-key cryptosystem. It is an acronym of its creators: Ron Rivest, Adi Shamir
and Leonard Aman.
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92 C. ENVIRONMENT SETUP

Listing C.3: IOU2 terminal

$ py3 -m pip install pipenv
$ pipenv install statsmodels, tslearn, sklearn, pathlib,
matplotlib, numpy, rrfc

pandas,




=

V]

S

ot

Python Code

This appendix includes blocks of code written in Python that are used in this thesis’
multiple implementations. They are executed in the Jupyter environment explained
in Appendix C.

D.1 File Glob

This dynamic block of python code serves as a utility block for locating paths to files
based on a glob pattern. The variable files seen in the other blocks of code stems
from this script. See [dev] for documentation. The files from multiple sources are
sorted into a path of directories representing their metadata. node_pattern allows for
dynamic selection of hostnames, date pattern gather only files with specific dates,
finally file_pattern targets filenames.

import pathlib
root = pathlib.Path(f"... path to root of desired files")

node_pattern = f"*" # eg. "madrid-mp"

date_pattern = "*" # eg. "2021-03-%"

file_pattern = f"*.gz" # eg. "128.35.14.26%*.gz"

pattern = f"{node_pattern}/{date_pattern}/{file_patternl}"
files = sorted( list( root.glob(pattern) ) )

Listing D.1: File glob
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94 D. PYTHON CODE

D.2 To CSV

This code is used to parse raw crude data and store as CSV files.

import csv
import gzip
import time
import pathlib
import datetime

start_time = time.time ()
fieldnames = ['id', 'seq', 'src', 'dst', 'tx', 'rx', 'delay'l]
op = "path/to/output"

for file in files:
records = {}

with gzip.open(file, mode='rt') as f:
for line in f:
try:
# list of key-value pairs # ['ID=1', 'RX=15434"',
key_values = line.split ()

# parse line

stream_id = int(key_values[0].split('="')[1])
seq = int(key_values[1].split('=")[1])

# SRC=ip:port

src = key_values[2].split('=")[1].split(':"') [0]
# DST=ip:port

dst = key_values[3].split('=')[1].split(':") [0]
tx float (key_values [4].split('=") [1])

rx = float(key_values[5].split('="')[1])

delay = rx-tx

id = f£"{src} -> {dst}"

record = {
'id': stream_id,
'seq': seq,
'src': src,
'dst': dst,
'tx': tx,
'rx': rx,

'delay': delay,

if id not in records:
records [id] = []
records [id] . append(record)

except:
continue




# Write records to compressed csv
for id, recs in records.items():

D.2. TO CSV 95

# Create unique filename based on src and dst
output = pathlib.Path(f"{op}/some-filename.csv.gz")

# Make sure parent folders exists before

creating file

output.parent .mkdir (parents=True, exist_ok=True)

try:

with gzip.open(output, mode='wt') as csvfile:

writer = csv.DictWriter (csvfile,
writer .writeheader ()
writer.writerows (recs)
except Exception as e:
print (e)

fieldnames=fieldnames)

Listing D.2: To csv
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D.3 Resample

This code is used to resample crude data. Given bin size, mean__delay and packet__count
are calculated and stored as separate CSV files.

import time

import pathlib
import datetime
import pandas as pd

start_time = time.time ()
BINSIZE = 100

for i, f in enumerate(files):

# should create a unique filename based on current file and binsize
output = pathlib.Path("path/to/unique_filename.csv.gz")

# ensure that the path exists before proceeding
output .parent .mkdir (parents=True, exist_ok=True)

df = pd.DataFrame ()

try:

df = pd.read_csv(f)
except:

continue

df = df.set_index('seq')
df .sort_index (inplace=True)

# get rid of duplicate packets if exists
df = df [~df.index.duplicated(keep='first')]

# insert dummy rows for lost packets
df = df.reindex( range(len(df) ), fill_value=np.NaN)
df .sort_index (inplace=True)

csvdf = pd.DataFrame ()

csvdf [ 'mean_delay']l = \
df .delay.rolling (window=BINSIZE, min_periods=0) \
.mean () [BINSIZE::BINSIZE]

csvdf ['packet_count'] = \
df .delay.rolling(window=BINSIZE, min_periods=0) \
.count () [BINSIZE::BINSIZE]

csvdf.to_csv(output, compression='gzip')

Listing D.3: Resample
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D.4 RRCF

Implementation of RRCF. This code is originated from paper [BMT19], github
repository can be found here [BMT].

import r

# Set tr
num_tree
tree_siz

# Create
forest =
for _ in
tree
fore

# Create
avg_codi

# For ea

rcf

ee parameters
10
256

S

e

a forest of empty trees
[1

range (num_trees):

= rrcf.RCTree ()
st .append (tree)

a dict to store anomaly score of each point

sp = {2}

ch shingle...

for index, point in enumerate (data):

# Fo
for

all

r each tree in the forest...
tree in forest:
# If tree is above permitted size, drop the oldest point (FIFO)
if len(tree.leaves) > tree_size:
tree.forget_point (index - tree_size)

# Insert the new point into the tree
tree.insert_point (point, index=index)

# Compute codisp on the new point and take the average among
trees
if not index in avg_codisp:
avg_codisp[index] = 0
avg_codisp[index] += tree.codisp(index) / num_trees

Listing D.4: RRCF
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D.5 Traceroute

Analysing traceroutes to find average and maximum delay to each node.

ROWS = None
break0 = False

node_delay = {}
max_delay = {}

def stop(i, limit):

global breakO

if not limit:
return False

if i >= limit:
breakO0 = True # stop outer loop
return True

return False

def parse(line):

invalids = ['traceroute',

'starttime ']
if any(item in line for item in invalids):

return []
return line.split ()

for n, file in enumerate(files):
file_ip = file.name[11:-3]

if breakO:
break

with gzip.open(file, mode='rt') as f:
oldc = O
for i, file_line in enumerate (f):
if ROWS and i > ROWS:
break

line = parse(file_line)
if not 1line:
continue

### line is cleansed ###
if line[1] in shared_nodes:
if line[1] not in node_delay.keys ():
node_delay[line[1]] = [0,0]
max_delay[line[1]] = 0.0
print (max_delay)
for item in line:
if line.index(item)+1 > len(line)-1:
break
if line[line.index(item)+1] == 'ms':
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D.5. TRACEROUTE

node_delay[line [1]] [0]+=float (item)

node_delay[line [1]][1]+=1

if float(item) > float(max_delay[line[1]]):
max_delay[line[1]] = item

print ('The paths share the following nodes: ')

print ('"')

for node in node_delay:
node_delay[node]l] = node_delay[node] [0] / node_delay[node][1]
print ('Node: ' + str(node) + ' - Average delay: ' +
str(round(node_delay[nodel], 3)) + ' ms ' + '- Max delay: ' +
str (max_delay [nodel))

Listing D.5: Code for traceroutes







Gap Analysis

This appendix includes all comparisons between gap record fields not included in the
gap analysis in Chapter 7.
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E.1

GAP ANALYSIS

h__ddelay

Gap-events for ytelse-trd.uninett.no (2019-2021)
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Figure E.1: Gaps tloss/h_ ddelay.
h__ddelay show no correlation with tloss.
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Figure E.2: Gaps timestamp/h_ ddelay.
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E.2 h_ delay

Gap-events for ytelse-trd.uninett.no (2018-2021)
. * h delay
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Figure E.3: Gaps timestamp/h_ delay.
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E.3 h_min d

Gap-events for ytelse-trd.uninett.no (2019-2021)
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Figure E.5: Gaps timestamp/h_min_ d.
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E4. H _JIT

h_jit

Gap-events for ytelse-trd uninett no (2019-2021)
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Figure E.6: Gaps timestamp/h__jit.
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E.5 h_slope_d

Gap-events for ytelse-trd uninett no (2019-2021)
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Figure E.7: Gaps tloss/h_slope_ 10.
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Figure E.8: Gaps timestamp/h_slope_ 10.
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E.6. H SLOPE_50 107

Gap-events for ytelse-trd.uninett.no (2019-2021)
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Figure E.9: Gaps timestamp/h_ slope_ 50.
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E.7 overlap
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E.8 dTTL
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o Ful
8
6
E
S
E ¢
2
0 e p— e sees e ——————— -+ s+ 5= seamen e tm e
e
0 500 1000 1500 2000 =00 3000 3100 4000
tloss (ms)
Figure E.12: Gaps tloss/dTTL.
Gap-events for ytelse-trd.uninett.no (2019-2021)
o Ful
8
6
E
3
E ¢
2
0 el com - e = e e ——
13590 1595 1600 1605 1610 1615 1620
unix timestamp (ms) 1e9

Figure E.13: Gaps timestamp/dTTL.
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Figure E.15: Gaps timestamp/h_ ddelay.
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E.10 t_ delay
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Figure E.16: Gaps timestamp/t_ delay.
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E.11 t min d

Gap-events for ytelse-trd.uninett.no (2019-2021)
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Figure E.18: Gaps timestamp/t_min_ d.
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E.12 t_slope_50
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Correlation Analysis

In this appendix more interesting examples, found during cross stream correlation
analysis in Chapter 8, are included for interested readers. Same as results in Section
8.2, this appendix displays correlation matrices with the underlying addends and
sums used for calculations.

F.1 Runar

Runar’s figures show nearly 100% correlation of all streams. These results serve as a
sanity check for our simple method of capturing simultaneous deviations from normal
behaviour. Because this is an employee’s personal machine, we know beforehand
that all streams passes through the same infrastructure. Therefore all streams are
likely to have equal behaviour and a high correlation.
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Figure F.1: Plot of correlation-scores (Runar, 2021.03.10, BINSIZE=1000).
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runar-mp (2021-03-10, BINSIZE=1000)
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Figure F.2: Plot of sum(pmeans, ppackets) (Runar, 2021.03.10, BINSIZE=1000.)
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Figure F.3: Plot of packet mean-delays (Runar, 2021.03.10, BINSIZE=1000).
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Figure F.4: Plot of packet-loss (Runar, 2021.03.10, BINSIZE=1000).
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F.2 Madrid

Correlation matrix for Madrid shows numerous correlated streams. We see several
pairs of high correlation. The aggregated results show a fairly steady day with few
disruptions. There is a common spike at the very beginning of the day that likely
causes the correlation.
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Figure F.5: Plot of correlation-scores (Madrid, 2021.03.10, BINSIZE=1000).
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madrid-mp {2021-03-10, BINSIZE=1000)
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Figure F.6: Plot of sum(pmeans, ppackets) (Madrid, 2021.03.10, BINSIZE=1000).
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Figure F.7: Plot of packet mean-delays (Madrid, 2021.03.10, BINSIZE=1000).
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Figure F.8: Plot of packet-loss (Madrid, 2021.03.10, BINSIZE=1000).
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F.3 Sao Paulo

Sao Paulo has only a single pair (4-7) of strong correlation. The aggregated values
from Figure F.10 does not show many common spikes either.
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Figure F.9: Plot of correlation-scores (Sao Paulo, 2021.03.10, BINSIZE=1000).
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saopaule-mp (2021-03-10, BINSIZE=1000)
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Figure F.10: Plot of sum(pmeans, ppackets) (Sao Paulo, 2021.03.10, BINSIZE=1000).
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Figure F.11: Plot of packet mean-delays (Sao Paulo, 2021.03.10, BINSIZE=1000).
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Figure F.12: Plot of packet-loss (Sdo Paulo, 2021.03.10, BINSIZE=1000).






Streams

This appendix consists of the exact IP addresses used for cross stream correlation
analysis in Chapter 8. The streams are presented as dictionaries where the numeric
keys represent the numbers on the matrix-figures, and the string values are "SRC—
DST” addresses.

G.1 Streams used for BINSIZE comparisons

See Figures 8.2, 8.3, 8.4

{
'128.39.65.26---138.44.131.98",
'13.82.53.167---138.44.131.98",
'130.216.51.132---138.44.131.98"',
'192.148.201.15---138.44.131.98"',
'195.113.144.236---138.44.131.98",
'200.133.192.133---138.44.131.98",
'564.202.174.174---138.44.131.98"',
112181139816 /50 2 6= = =HISE IG5 N 5E2/0138
'13.79.144.22---18.195.175.203",
'192.148.201.15---18.195.175.203"',
'200.133.192.133---18.195.175.203",
11: '34.246.185.57---18.195.175.203"',
128 "8 .246E .6, 1l00===18,186, 175,208 " ,
13: '128.39.65.26---34.246.185.57"',
14: '13.53.187.135---34.246.185.57"',
15: '13.79.144.22---34.246.185.57"',
16: '18.195.175.203---34.246.185.57"',
17: '192.148.201.15---34.246.185.57"',
18: '194.68.13.71---34.246.185.57",
19: '35.228.220.215---34.246.185.57"',
20: '35.246.8.199---34.246.185.57",
2ilg V2. 80,66, 280===13.58, &7 . 135" 4

0 N O O W N = O

= ©
O e
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22: '13.79.144.22---13.53.187.135",
23: '15658.39.1.126---13.53.187.135",
zpiig VAl S el gl s L) = = Salel s el ks G alels

268 "iBE .80, 1 94===13,.B3, 87 . L35 " ,

26: '158.39.1.98---13.53.187.135"',

27: '185.71.209.4---13.53.187.135",
28: '192.148.201.15---13.53.187.135",
29: '194.68.13.71---13.53.187.135",
30: '34.246.185.57---13.53.187.135",
31: '35.246.8.199---13.53.187.135",
32: '128.39.65.26---54.202.174.174",
33: '13.82.53.167---54.202.174.174"',
34: '130.216.51.132---54.202.174.174",
35: '138.44.131.98---54.202.174.174",
36: '18.195.175.203---54.202.174.174",
37: '192.148.201.15---54.202.174.174",
38: '194.68.13.71---54.202.174.174",
39: '200.133.192.133---54.202.174.174",
40: '35.246.8.199---54.202.174.174",
41: '128.39.65.26---130.216.51.132",
42: '13.79.144.22---130.216.51.132"',
43: '13.82.53.167---130.216.51.132"',
44: '130.59.35.214---130.216.51.132",
45: '138.44.131.98---130.216.51.132",
46: '200.133.192.133---130.216.51.132"',
47: '35.246.8.199---130.216.51.132"',
48: '54.202.174.174---130.216.51.132",
49: '128.39.65.26---13.82.53.167"',

50: '13.79.144.22---13.82.53.167"',

bilg 130,216, 5l ld2===18.682,.63 . L67 ",
52: '138.44.131.98---13.82.53.167",
53: '192.148.201.15---13.82.53.167"',
54: '194.68.13.71---13.82.53.167"',

by 200,188,192, ldd===18,62.63 167" 4
BEg 135,246,868, 1880===15,.82.63 . 167",

57: '54.202.174.174---13.82.53.167"',
58: '128.39.65.26---13.79.144.22"',

59: '13.53.187.135---13.79.144.22",
GOz "i1d.62,.68.1687===18,79, 44 22",

61: '130.216.51.132---13.79.144.22",
62: '158.39.1.126---13.79.144.22"',

63: '158.39.1.90---13.79.144.22",

64: '158.39.1.94---13.79.144.22",

65: '158.39.1.98---13.79.144.22"',

66: '18.195.175.203---13.79.144.22",




67:
68:
69:
70:
71:
72:
(8K
74:
793
76:
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
@il g
92:
©)E) g
94:
95
96:
97 :
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:

'185.71

G.1. STREAMS USED FOR BINSIZE COMPARISONS

.209.4---13.79.144.22",

'192.148.201.15---13.79.144.22"',

'194.68

.13.71---13.79.144.22",

1200, 1388, 192, 188===13 , 79, L4422

'34.246.
'35.228.
'35.246.
'46.249.

'128.39

'130.59.
'158.39.
'158.39.

'158.39

'158.39.
'185.71.

185.57---13.79.144.22",
220.215---13.79.144.22",
8.199---13.79.144.22"',
255.10---13.79.144.22"',
.656.26---109.105.116.52",
35.214---109.105.116.52",
1.126---109.105.116.52"',
1,00===109,105.i1lilE. 62" ,
.1.94---109.105.116.52",
1.98---109.105.116.52",
209.4---109.105.116.52",

'192.148.201.15---109.105.116.52",

'194.68

L8, Til===108, 105,116 .52 ",

'195.113.144.236---109.105.116.52",

'46.249

.255.10---109.105.116.52",

'89.45.232.192---109.105.116.52",

'128.39

.65.26---35.246.8.199"',

'13.53.187.135---35.246.8.199"',
'13.79.144.22---35.246.8.199"',
'13.82.53.167---35.246.8.199"',
T80, 216 . Bil , L2 ===86 . 246 , &, 1 " ,

'138.44
'158.39
'158.39
'158.39
'158.39
'18.195
'185.71

.131.98---35.246.8.199"',
.1.126---35.246.8.199"',
.1.90---35.246.8.199"',
.1.94---35.246.8.199"',
il OB ===85 . 246 .8, 188" 4
.175.203---35.246.8.199 "',
.209.4---35.246.8.199"',

'192.148.201.15---35.246.8.199"',
'194.68.13.71---35.246.8.199"',
'200.133.192.133---35.246.8.199"',
'34.246.185.57---35.246.8.199"',
'35.228.220.215---35.246.8.199"',
'54.202.174.174---35.246.8.199 "',
'128.39.65.26---35.228.220.215",

'13.79

.144.22---35.228.220.215",

'192.148.201.15---35.228.220.215",
'194.68.13.71---35.228.220.215",
'34.246.185.57---35.228.220.215"',
'35.246.8.199---35.228.220.215",
'109.105.116.52---192.148.201.15",

125




126 G. STREAMS

112:
113:
114:
115 g
116:
117:
118:
119:
120:
121:
122:
123:
124:
1258
126:
127:
128:
129:
130:
131:
182 g
183 g
134:
118155:
136:
187 g
186 g
139:
140:
141:
142:
143:
144 :
145:
146:
147

'128.39.65.26---192.148.201.15",
'13.53.187.135---192.148.201.15"',
'13.79.144.22---192.148.201.15",
VilE .82, 538, 6T ===182 . 148 . 201,15 " 4
'138.44.131.98---192.148.201.15",
'18.195.175.203---192.148.201.15",
'194.68.13.71---192.148.201.15",
'195.113.144.236---192.148.201.15"'
'200.133.192.133---192.148.201.15"
'34.246.185.57---192.148.201.15",
'35.228.220.215---192.148.201.15",
'35.246.8.199---192.148.201.15",
'54.202.174.174---192.148.201.15",
'109.105.116.52---195.113.144.236"'
'128.39.65.26---195.113.144.236"',
'138.44.131.98---195.113.144.236"',
'192.148.201.15---195.113.144.236"'
'194.68.13.71---195.113.144.236"',
'109.105.116.52---185.71.209.4",
'13.53.187.135---185.71.209.4",
'13.79.144.22---185.71.209.4"',
'158.39.1.90---185.71.209.4"',
'1568.39.1.94---185.71.209.4"',
'168.39.1.98---185.71.209.4"',
'194.68.13.71---185.71.209.4"',
135112461 811910 == 8 BTN 210108 40
'128.39.65.26---200.133.192.133"',
'13.79.144.22---200.133.192.133"',
ISRISIZRIE 36 IS S 2l0/0RNIS SERIIO 2R ISIS
'130.216.51.132---200.133.192.133"
'130.59.35.214---200.133.192.133",
'138.44.131.98---200.133.192.133",
'18.195.175.203---200.133.192.133"'
'192.148.201.15---200.133.192.133"'
'35.246.8.199---200.133.192.133"',
'54.202.174.174---200.133.192.133"'

>
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G.2 Streams used for Madrid

See Figures [F.5, F.6, F.7, F.8]

{
0: '128.39.65.26---54.202.174.174",
1: '13.82.53.167---54.202.174.174",
2: '130.216.51.132---54.202.174.174",
3: '138.44.131.98---54.202.174.174",
4: '18.195.175.203---54.202.174.174",
5: '192.148.201.15---54.202.174.174",
6: '194.68.13.71---54.202.174.174",
7: '200.133.192.133---54.202.174.174",
8: '35.246.8.199---54.202.174.174"

}

G.3 Streams used for Amazon

See Figures [8.6, 8.7, 8.8, 8.9]

{

'128.39.65.26---54.202.174.174",
'13.82.53.167---54.202.174.174",
'130.216.51.132---54.202.174.174",
'138.44.131.98---54.202.174.174"',
'18.195.175.203---54.202.174.174",
'192.148.201.15---54.202.174.174"',
'194.68.13.71---54.202.174.174",
'200.133.192.133---54.202.174.174",
'35.246.8.199---54.202.174.174"
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G.4 Streams used for Runar

See Figures [F.1, F.2, F.3, F.4]

{

'109.105.116.52---185.71.209.4"',
VilE B8, 18T LdE===i8k . Vil , 209 4 "
'13.79.144.22---185.71.209.4"',
'168.39.1.90---185.71.209.4"',
'158.39.1.94---185.71.209.4"',
'158.39.1.98---185.71.209.4"',
'194.68.13.71---185.71.209.4"',
'35.246.8.199---185.71.209.4"
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