Master's thesis

NTNU

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering

Department of Engineering Cybernetics

Marton, Per Amund Roaulsson

Satellite Communications Testing on
a Smallsat using Payload Hardware-
in-Loop

Master’s thesis in Cybernetics and Robotics
Supervisor: Johansen, Tor Arne
Co-supervisor: Garrett, Joseph

July 2021

@ NTNU

Norwegian University of
Science and Technology






Marton, Per Amund Roaulsson

Satellite Communications Testing on a
Smallsat using Payload Hardware-in-
Loop

Master’s thesis in Cybernetics and Robotics
Supervisor: Johansen, Tor Arne
Co-supervisor: Garrett, Joseph

July 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

@ NTNU

Norwegian University of
Science and Technology






Acknowledgment

This project was performed in cooperation with the NTNU HYPSO team. Special thanks to
Joseph Garrett for taking his time integrate me into the HYPSO team, and guiding me through
the process of writing this thesis. I also want to thank Line Ronning for always supporting me
throughout my studies, and especially while writing this thesis.

PA.RM

Remark:

Thanks to Professor Emeritus Marvin Rausand for creating and distributing the BIpX template
used for this thesis.



ii
Summary

English

This thesis discusses the testing of the HYPSO-1 cubesat using a Payload Hardware-in-Loop
Jenkins testing setup, with a focus on the testing of the communications of the satellite. In the
thesis, the implementation of a way to utilize a NNG connection to a flatsat in Vilinus in order
to simulate in-flight communication is developed for use with the preexisting Jenkins testing
setup. The result of the work was that new issues with the HYPSO software was identified and
addressed, and new avenues of improvement was discovered.

Norsk

Denne masteroppgaven diskuterer testing og implementering av HYPSO-1 cubsat-en ved bruk
aven Payload Hardware-in-Loop Jenkins testoppsett, med sokelys pd testing av kommunikasjon-
systemene til satellitten. I denne oppgaven ble det implementert en metode til 4 bruke en NNG
forbindelse til en Flatsat i Vilinus for a simulere in-flight kommunikasjon, utviklet for bruk med
det eksisterende Jenkins testoppsettet. Resultatet av arbeidet var at nye problemer med HYPSO
programvaren ble identifisert og adressert, og nye forbedringspotensialer ble oppdaget.



Contents

1 Introduction
1.1 The HYPSOProject . . . . . . . i e e e e e e e e e e

1.1.1

The HYPSO Mission Statement . . . . . . . . . . o o v v i e et e e e e e

1.2 Satellites . . . . . . . e e e e e e e e e

1.2.1
1.2.2
1.2.3
1.24
1.2.5

Agenericsatellite . . . ... ... L L

Smallsats & Cubesats . . . . .. .. .. ... . . e
The HYPSO-1 Satellite . . . . ... .. ... .. .. . . i
The HYPSO-2 Satellite . . . .. ... ... ... ... . ... .. ...
The Importance of Testing Satellite Software & Hardware . ... ... .. ..

1.3 HyperspectralImaging . . . . . . . .. ... . . e
1.4 The Hardware of HYPSO-1. . . . . . ... ... ... . .. . . ..

1.4.1
1.4.2
1.4.3
1.44
1.4.5
1.4.6

The Satellite Bus . . . . . .. . . . . .
The HYPSO Payload . .. ... ... ... . .. ... . ... ... ... ...
OPU — On-board Processing Unit . . . . .. ... .. .. ............
HSI— Hyper SpectralImaging . . . . .. .. ... .. .. ... .........
RGB—Red,Green&Blue . . . .. ..... .. ... .. .. .. .. .. .. ...
SDR — Software DefinedRadio . . . . . ... ... ... .. ...........

Testing using Satellite Communications

2.1 Communications Protocols and Connections . . .. .. .. .. .. ... .....

2.1.1
2.1.2
2.1.3
2.14
2.1.5

CAN — Controller Area Network . . . . ... ... .. ... ... .. ......
CSP — Cubesat Space Protocol . . . . . ... ... ... ... ... .......
NNG—nanomsg-next-gen . . . . . . . . . . . v i i i i i,
UltraHigh Frequency . .. ... ... ... .. .. . .. .. ...
S-Band . . .. e

2.2 Satellite Communications — Uplink & Downlink . . .. ... .............
2.3 Satellite Communications for Testing — Uplink & Downlink . . . . . ... ... ...

iii

10
10
11
11
11



CONTENTS

3 Software and Coding Practices in use at HYPSO
3.1 Software Used for Testingat HYPSO . . . . ... .. ... ... .. .. .. .. .....
3.1.1 Jenkins . . . . ...
3.1.2 GIOOVY . .ot e e e
3.1.3 Python3 . . . .. . e
3.1.4 PostgreSQL . . . . ..
3.1.5 Docker . ... .
316 GitandGitHub . ... ... ... .. .. ... .. .. ...
3.2 TheHYPSOSoftware . . ... ... ... .. ... .. . .
321 hypso-cli . . . .. e
3.2.2 OPU-SEIVICE . . . . . i i ittt e e e e e e e e e e e e
3.3 Coding Practices forthe HYPSO Testing . . . . . .. ... .. ... . ...
3.3.1 Consistent Naming of Files, Variables, and Functions . . . . ... ... .. ..
3.3.2 Library Hierarchy and Folder Structure . . . ... ... .............
3.3.3 The Advantages of Using Classes & Object Oriented Programming . . . . . .

4 The Software Testing at HYPSO
4.1 Hardware for Software Testing . . . . . .. ... ... . . .. ... ..
4.1.1 Flatsat& Lidsat . . .. ... ... ... ... . .. .
4.1.2 PHiL — Payload HardwareinLoop. . . . . .. .. .. ... .. ... ......
4.2 Software Testingat HYPSO . . . . . . .. . . .
421 UnitTesting . . . . . . . . e
422 RegressionTesting . .. ... ... .. i
423 AcceptanceTesting . . . . . . . . ... e
424 Hardware-in-LoopTesting . . ... ...... .. ... .. .. .. .......
43 Jenkins-TestingServer. . . . . . . .. .. .. e
4.3.1 QualificationModel . ... ... ... ... ... ...
4.4 Testing of Satellite Software usingthe PHIiL . . . . . ... ................
4.4.1 Communications, Softwareand Updates . . . . . ... ... ..........

5 The Development of the HYPSO Testing Infrastructure
5.1 Refactoring and Strengthening the Jenkins Test Scripts . . . . . .. .. .. ... ...
5.1.1 Refactoring the Jenkins Test Scripts . . . . . ... ... ... .. .. ......
5.1.2 Restructuring the Jenkins Declarative Pipeline . . . . . ... ... .......
5.1.3 Implementing Testing ThroughNNG . . .. ... ... ... ..........
5.2 IssuesldentifiedandCorrected . . . . . . ... ... ... ... .. .. .. ...
53 NewTestsImplemented . . ... ... ... ... ... .. . ...
53.1 opu_partial upload.py . . ... .. ... ... ...

iv

16
16
16
17
17
17
18
18
19
19
19
20
20
20
20

22
22
22
22
23
23
23
23
23
23
24
24
24



CONTENTS

5.3.2 opu_partial download.py-timeout . . ... ... ... ... .. .. ... ...

5.3.3 ping timeout.py . . . . . . . . i e

53.4 ping simple.py . . . . .. e

53.5 ping allpy . . . . . e

5.4 Issues FoundasaResultofTesting . . . .. ... ... ... ... .. .........

5.4.1 hypso-clinotWorkingover NNG . . . . ... ... ... .. ..........
5.4.2 Upload and Download not Workingover NNG . . . ... ... .........
5.4.3 Upload over NNG Unable to Upload Large FilestoOPU . . ... .......
5.5 Software for Mechanical Testing . . . ... ... .. ... ... .. .. .. .. .. ...

5.5.1 Implementation. . . . ... ... ... ... .. .. e

6 Discussion

7 Conclusion

Acronyms & Definitions

B Folder Structure of Jenkins Testing Setup
B.1 Common FolderStructure . . . . . . ... ... . . . e

B.2 Folder Structure Before Refactoring . . . . ... .. ... ... .. .. ... .....

B.3 Folder Structure After Refactoring . . . ... .. ... ... .. .. .. .. .. .. ...

C Code

C.1 The Jenkins Declarative Pipeline - Jenkinsfile . .. ... ... .............

C.2 connection_Settings.py. . . . . . . . i it e e

C.3 PSU Interface — Implementation . . ... .. ... ... ... .. ... .. ......
C.3.1 README.md—PSU . . . . ... e
C.3.2 PSU_Controller.py . . . . . . . e e
C.3.3 PSU_GULPY . . . oo e e e e

C4 Implemented Tests . . . . . . . . . i e

C4.1 ping timeout.py . . . . . . i i i i it e

C.4.2 ping simple.py . . . . . . e

C43 pingallpy . . . .. e

C.4.4 tools.py

Bibliography

30
30
31
31
31
31
32
32
33
33

36

38

39

42
42
43
44

45
45
52
54
54
55
66
76
76
77
78
79

83



Chapter 1
Introduction

When developing a Small Satellite such as the HYPSO-1 cubesat, it is crucial that the software
and hardware on-board the payload operates as intended, as there is no way to physically in-
spect or alter the payload once it is launched. However, it is still possible to write updates to
the software and upload it after launch, given that the communications can be upheld with the
satellite. This means that rigourusly testing the communications are one of, if not the most im-
portant, part of the system testing. HYPSO uses a Payload Hardware-in-Loop testing setup using
aJenkins server and a flatsat, and this thesis explains the work performed to improve this testing
setup, implement new tests and the testing of the communications of the HYPSO-1 satellite.



CHAPTER 1. INTRODUCTION 3

1.1 The HYPSO Project

Figure 1.1: The logo of the NTNU HYPSO smallsat team.

HYPSO stands for HYPer-spectral Smallsat for ocean Observation, and is a student driven small-
satellite team at the Norwegian University of Science and Technology (NTNU), made consisting
ofarround 30 students and staff. The team is developing a cubesat with a Hyper Spectral camera
as the main payload. The first satellite developed by the HYPSO team; the HYPSO-1, is currently
set to launch in the 4™ quarter of 2021, and the team are in the planning stages of the next
iteration of the satellite; the HYPSO-2.



CHAPTER 1. INTRODUCTION

HYPSO-1

SSO

Ground Station

Ground Station Mission Control Center/

Data Distribution Facility

End Users

Figure 1.2: An overview of the HYPSO mission. Credit; Mariusz E. Grotte



CHAPTER 1. INTRODUCTION 5

1.1.1 The HYPSO Mission Statement
The HYPSO mission is defined as;

The HYPSO mission shall provide and support ocean color monitoring and map-
ping through hyperspectral imaging, autonomously processed data, and on-demand
autonomous communications in a concert of robotic agents at the Norwegian
coast. (HYPSO Project Team 2020c, p. 18)

In simpler terms, the HYPSO team is launching a satellite carrying a Hyper Spectral Imaging
(HSI) camera into space in order to observe the hyper-spectrum of the coast of Norway. This
data will be processed on-board the satellite before down-linking the data, as this reduces the
size of the data. The data will be available for researchers, and the data will be used in coopera-
tion with autonomous drones for researching the ocean (HYPSO Project Team 2020c¢).

1.2 Satellites

1.2.1 A generic satellite

A general satellite can in broad strokes be divided into two parts; the satellite platform and the
payload; The satellite platform are all the subsystems required for the operation of the satellite,
while the payload is subsystems performing the mission of the satellite (Braun 2012). After all,
there is no point in launching a satellite with no purpose.

The satellite platforms are in large satellites usually custom made, but for smaller satel-
lites there exists commercial of-the-shelf satellite platforms called satellite busses. The payload
houses all the hardware related to the satellites mission, for example telescopes, communica-
tion devices or in the case of the HYPSO-1 payload; cameras.

1.2.2 Smallsats & Cubesats

A cubesat is a term elegantly defined by the National Aeronautics and Space Administration
(NASA) as "a satellite smaller than a fridge" (Mabrouk 2017). With such a broad definition a lot
of spacecraft fall into this category, but by far the most common one is the cubesat; a standard-
ized sizing of smallsats. The smallest cubesat is defined as 1 U; a cube with the sides of 10 cm
and a weight limit of 2 kg following the standards set by Wenschel Lan (2020). cubesat comes in
larger sizes as well, see fig. 1.3. In fact, the HYPSO-1 satellite is a 6 U cubesat.

Cubesats has grown in popularity since the first one was first launch in 2002. According to
the paper Villela et al. (2019), the 1000™ cubesat is expected to be launched in 2021, although



CHAPTER 1. INTRODUCTION 6

2U 3U 6U 12U

Figure 1.3: The standardized sizes of cubesats (Mabrouk 2017).

1U

this is probably a little behind the schedule due to COVID-19. One of the reasons for this is that
its relatively cheaper; by having standardized sizes and requirements multiple cubesats can pig-

1.5V

gyback a launched of another payload, and the cost thus goes down. Another reason for their
popularity is that they are aimed towards research, especially at universities, leading to smallsat
teams such as HYPSO being created (Villela et al. 2019).

However, the backside of the cheaper development is that the cubesats does not always get
tested as much as regular satellites. As seen in table 1.1, a growing percent of missions are
successful. This is partially due to improved launch techniques, lessons learned from previ-
ous cubesats, and the existence of commercial cubesat busses that gives a solid framework to
build upon.

Time range | No. cubesats | Mission success | Unknown | Launch failure | Cubesat failure

2005—2012 99 48% 0% 19% 33%
2005—2015 417 56% 0% 19% 22%
2005—2018 848 61% 2% 12% 21%

Table 1.1: The mission statuses of cubesats over time (Villela et al. 2019)

One major reason for cubesat failures are "infant mortality". This is when the cubesat does
not operate after deployment for whatever reason. It can be issues such as faulty software, bro-
ken hardware from the launch or plain old human error (Villela et al. 2019). But infant mortality
aside, the fact is that the main type of cubesat failure is still failure during flight, gives an indi-
cation that the cubesats have probably not been as rigorously tested as they should have been.



CHAPTER 1. INTRODUCTION 7

This highlights the importance of testing the cubesat software repeatedly and thoroughly to pre-
vent mission failure during flight.

1.2.3 The HYPSO-1 Satellite

HYPSO-1 a cubesat of the size 6 U, and is the first satellite developed by the HYPSO team. It is
further described in section 1.4, but for now it is important to note that all references to "the
satellite” in this thesis refers to the HYPSO-1, unless explicitly stated otherwise.

The payload of HYPSO-1 is developed by the HYPSO team, and the satellite platform is a
satellite bus bought of-the-shelf from NanoAvionics (Tran 2019), and is further explained in sec-
tion 1.4.1. The payload has a HSI camera based of the design proposed by Sigernes et al. (2018),
as well as a RGB camera. The design of the payload can be seen in fig. 1.7 and is further explained

in section 1.4.2.

1.2.4 The HYPSO-2 Satellite

The HYPSO Team is currently in the planning phase of the next smallsat: HYPSO-2 of the size6 U.
This new version will build upon the HYPSO-1 design, but with some improvements, most no-
tably deployable solar cells to increase the power budget and a RS422 connection between be-
tween the payload and the payload controller.

1.2.5 The Importance of Testing Satellite Software & Hardware

In general, performing hardware maintenance is out of the window when it comes to satellites
in orbit, and uploading software updates can be dangerous and slow, even if the satellite is de-
signed for it. This means that in order to give the satellite mission the best chance as possible
the software and hardware of the satellite must be rigorously tested before launch. It is impor-
tant to note that testing can only find issues, not guarantee the absence of issues.

There are many ways to do testing on satellite software and hardware, for example using a
Payload Hardware-in-Loop testing setup such as the one at HYPSO, see section 4.1.2.

1.3 Hyperspectral Imaging

HSI is a special type of imaging where where optics are used to separate the different wave-
lengths from each other, making it possible to take a picture of an object and identify what
wavelengths we are actually seeing. This means that, if the spectrum is distinct enough, one



CHAPTER 1. INTRODUCTION 8

Figure 1.4: The principle of a HSI camera used at HYPSO. Credit; Fred Sigernes

can identify what materials the object the camera points at is made up of (Sigernes et al. 2018).

A design requirement of a HSI camera is that the light going into the camera has to go
through a narrow slit before using optics to refract and diffract the light through a narrow grate
and onto the sensor, fig. 1.4. This means that when taking an HSI image, one is actually just tak-
ing an 1 x n pixel "image" in the normal sense of the word; One of the axes normally reserved for
the image now represents the different intensities of wavelengths! In order to take a full width
image, the camera has to move; It can either rotate, move physically, or a combination thereof.
This is called the push broom technique, as the sensor is pushed over the object that is to be im-
aged, see fig. 1.5. This technique will be utilized in the HYPSO satellites to create hyper spectral
images of the ocean.

1.4 The Hardware of HYPSO-1

The hardware of HYPSO-1 is divided into two parts; the payload developed by HYPSO and the
satellite bus delivered by NanoAvionics, see fig. 1.6.

1.4.1 The Satellite Bus

The Satellite Bus is a 6U NanoSatellite Bus M6P, bought off-the-shelf from, built by, and deliv-
ered by NanoAvionics, see fig. 1.6a. It contains all the vital functions of a satellite, but without
the payload. It has an UHF antenna and transmitter, S-Band antenna and transmitter, and in-
terfaces with the payload using a subsystem called the Payload Controller (PC). There are a
few other subsystems worth mentioning in relevance to this thesis; the Flight Computer (FC) in
charge of the positioning of the satellite and the Electrical Power System (EPS) in charge of man-
aging power to the different subsystems of the payload and satellite bus (NanoAvionics 2018).



CHAPTER 1. INTRODUCTION

Three-dimensional
hypercube is
assembled by stacking
two-dimensional
spatial-spectral

" & Successive
.......... > scan lines

Moving sensor platform

scan lines
@ )
Man-made ~ 17e€S
objects

Spatial

pixels
.\ Scan line

L (x n, pixels)
(b) -
Spectral channels

Tree
Spatial
dimensions
Fabric
Paint
Grass il
[}
Q
c
5
[&]
2
"u‘>
(v

Paint

Grass
0.4 um Wavelength(4)

\—= \—=\ 2.5 um

() Water-vapor absorption bands

Figure 1.5: A demonstration of the push broom technique. Shaw & Burke (2003)



CHAPTER 1. INTRODUCTION 10

(a) The 6U NanoSatellite Bus M6P (b) HYPSO-1 without the solar cells.
Credit; NanoAvionics Credit; Elizabeth Prentice & Martine Hjertenaes

Figure 1.6: The outside and inside of the HYPSO-1 SmallSat

1.4.2 The HYPSO Payload

The HYPSO the payload of the system (payload) is the part of the satellite that performs the
HYPSO mission. It consists of several subsystems, but the major ones — the ones most dis-
cussed in this thesis — are the OPU, HSI, RGB and SDR.

1.4.3 OPU — On-board Processing Unit

The On-board Processing Unit (OPU) is the system in the top of the hierarchy of the payload.
It interfaces with the PC using the CAN1 netwrork, and with the HSI, RGB and SDR using the
CAN2 network. The OPU is housed in a PicoZed 7030 System-On-Module board (Pico) that has
a HYPSO-developed Breakout-Board (BOB) mounted on top. By hyphenation the the combined
system has been baptized the PicoBOB, and is housed mounted as seen in fig. 1.7a. (HYPSO
Project Team 2020b)

opu-system

The On-board Processing Unit system (opu-system) is the operating system of the OPU. It is
designed to perform the mission related computing, such as software compression, and it runs
the opu-service software (section 3.2.2) on top to interface with the payload and the Payload
Controller.



CHAPTER 1. INTRODUCTION 11

]

SAE

s J

A4
1MW uw[l

(a) OPU payload subsystem (b) HSI payload subsystem (c) RGB payload subsystem

Figure 1.7: Different subsystems of the HYPSO-1 payload. Credit; Elizabeth Prentice & Martine
Hjertenaes

1.4.4 HSI— Hyper Spectral Imaging

The Hyper Spectral Imaging (HSI) is a payload subsystem containing a HSI camera and its re-
quired hardware, see fig. 1.7b. The HSI camera will be used to capture hyper spectra images of
the ocean of the Norwegian coast. The design of the camera is explained in fig. 1.4 and is based
on the design proposed by Sigernes et al. (2018), and in fact, Sigernes has been of great help in
the development of the HSI camera of the HYPSO-1.

1.4.5 RGB —Red, Green & Blue

Red, Green & Blue (RGB) is a payload subsystem containing a RGB camera and its required hard-
ware. Note that the name RGB refers to the entire payload subsystem, not just the camera. The
RGB camera is a bare PCB camera of the type UI-1252LE-C with a resolution of 2 MP, and is
mounted to HYPSO-1 using a custom housing (Langer & Hjertenaes 2020), see fig. 1.7c. The
camera will be used for positioning and supplementing the HSI camera.

1.4.6 SDR — Software Defined Radio

Software Defined Radio (SDR) is the tertiary payload of the HYPSO-1, and is a containing a
RGB camera and its required hardware. Its mission statement is defined as; "To measure ra-



CHAPTER 1. INTRODUCTION 12

dio interference and perform downlink channel measurements for future communications in
the Arctic."(HYPSO Project Team 2019). The SDR is not further discussed in this thesis, but is
mentioned as it is a part of the HYPSO-1.



Chapter 2

Testing using Satellite Communications

2.1 Communications Protocols and Connections

This section describes some of the communications protocols and connections in use at HYPSO,
see fig. 2.1, as the they are used in the testing at HYPSO, see section 4.1.2.

2.1.1 CAN — Controller Area Network

Controller Area Network (CAN) is a communications network designed to allow multiple sys-
tems to share one connection to pass messages without using a master. The HYPSO-1 uses the
CANI1 network between the payload subsystems and the PC, and the CAN2 network between the
PC and the rest of the satellite bus (Di Natale 2012). The Payload Hardware-in-Loop (PHiL) test-
ing setup at HYPSO can be connected to the flatsat using either the CAN1 to communicate with
the payload directly, or CAN2 to communicate through the PC HYPSO Project Team (2020b).

2.1.2 CSP — Cubesat Space Protocol

The Cubesat Space Protocol (CSP) is a robust protocol developed to simplify the communi-
cation between distributed embedded systems in a small networks, such as in a Small Satel-
lite (smallsat). It is based on the CAN protocol, but has developed to support multiple other
protocols (Jahren 2015). All CAN networks at HYPSO are using the CSP protocol (HYPSO Project
Team 2020b).

2.1.3 NNG — nanomsg-next-gen

nanomsg-next-gen (NNG) is a library offering a API to solve reoccurring issues related to mes-
saging, such as connection management (Garrett D’Amore 2021). At HYPSO the NNG is used
to connect to the NanoAvionics Mission Control Software (MCS), who again routes the data to

13



CHAPTER 2. TESTING USING SATELLITE COMMUNICATIONS 14

....................................................................................................................................................................

HYPSO Spacecraft ] | HYPSO Spacecral
oPU SDR : H oPU SOR
opu-services sdr-services H H opu-services sdr-services

[ [ cana i cAN2
PC | : i PC
CAN1 | i ]

i [ | [
| S-Band | | UHF | | FC | | EPS ‘
T
AAAAAAAAAAAAAA . L A S
' '
WRF WRF
............................ esessssmssscateanssafassnenasanssas
i Ground Statons M M
| -NTNU s as
a S-Band UHF Abstraction of the Communications CAN1 or CAN2
| l Ground Station Server | Iy e N [
} ,,,,,,, Cloud-lntemet b ! Cloud - Intermet
{ NanoAvionics I Propagation Service & Potep ! Database “ Propagation Service & _iftke @ Database
Mission Control Software H Backend HE Migsion Control Software ) Backend
nng / tcp ; /J\ H nng /tcp : /_l\
""""""""""""""""""""""""""""""" ] S A S e A
: NTNU SmaliSat : H + 1 NTNU Smalisat ! H
Lab [ Direct CSP Access ] ¢ : Database P Lab [ Direct CSP Access ] i : Database
: PostgreSQL HE ] PostgreSQL
nanoMCS | I hypso-cli | \l_/ l nanoMCS | l nypso-cli | b \[_/
] : Icu‘hﬂpg . ] lcpmlmg
I SmaliSat Lab Operators Database API : | SmaliSat Lab Operators : Database API

HYPSO-1 mission HYPSO-1 mission

Figure 2.1: Detailed overview of the communications at HYPSO, and an abstracted version used
for testing. Credit for the figure these figures are based upon; Amund Gjersvik

and through the satellite bus and to the Payload Controller. The author of this thesis developed
a way for the PHIiL to use the NNG to run tests, see section 5.1.3.

2.1.4 Ultra High Frequency

Ultra High Frequency (UHF) is defined by the Institute of Electrical and Electronics Engineers
(IEEE) defines it as the range from 300 MHz to 3 GHz in the electromagnetic spectrum (Raab
et al. 2002). A common characteristic of these frequencies is that they propagate mainly by line-
of-sight, and is good at penetrating the ionosphere, meaning it a good pick for communicating
when HYPSO-1 is in line-of-sight.

2.1.5 S-Band

The short-band (S-Band) is defined by the IEEE as a range of the electromagnetic spectrum,
specifically the microwave band. It ranges in frequency from 2GHz to 4GHz, and is mainly used
for radar systems such as communication satellites. This is also the same wavelength band that
many commercial products use, for example WI-FI, but by the varying focus and power there is
no significant interference (Srinivas et al. 2011).



CHAPTER 2. TESTING USING SATELLITE COMMUNICATIONS 15

2.2 Satellite Communications — Uplink & Downlink

When HYPSO-1 is in orbit, the combined communications can be described as following; The
user uses the HYPSO client (hypso-cli) command-line interface to send a message to the MCS
using NNG. The MCS then sends the message to the Ground Station Server who passes the mes-
sage using either S-Band or Ultra High Frequencies (UHF). The HYPSO-1 receives the message
in the satellite bus, and passes the message to the PC, who finally sends the message from the
hypso-cli to the On-board Processing Unit service (opu-service) (HYPSO Project Team 2020a).
This is called uplinking, and when the order of operations are in reverse it is called downlinking.
See fig. 2.1a for reference.

2.3 Satellite Communications for Testing — Uplink & Downlink

The preexisting testing setup at HYPSO, section 4.1.2, is connected to the lidsat (lidsat) (sec-
tion 4.1.1) by CAN1 or CAN2 to the PC or payload respectively, but since the PC passes messages
to the CAN2 the end result is almost equivalent, but routing the message through PC is prefer-
able as this test more parts of the final system. This is shown by the red part of fig. 2.1b.

The newly implemented NNG connection in the testing setup takes this a step further; the
NNG connection is used to pass messages to the flatsat (section 4.1.1) by sending messages to
the MCS over NNG. When the message is recieved at MCS, NanoAvionics takes over the com-
munication between the MCS and the PC. This means that by testing over the NNG connection,
the UHF and S-Band can be abstracted away, as we have little to no control at that point, wether
we are testing or in-flight, we trust NanoAvionics to do their part correctly. This is shown by the
green part of fig. 2.1b.



Chapter 3

Software and Coding Practices in use at
HYPSO

3.1 Software Used for Testing at HYPSO

Among the software used at HYPSO, some are especially important to mention in relevance to
this thesis, as they are all in use in the Jenkins testing setup, see section 4.3.

3.1.1 Jenkins

Jenkins is an open-source, java based, Continuous Integration server that is most commonly
used for detecting issues in software at early stages. It can perform tasks like building the soft-
ware, testing the software and releasing the software if the tests pass and the user desires so. The
way Jenkins works is that the software is built at regular intervals, and then it runs tests on that
software to see if it passes or fails a set of criteria. If it fails it means that a recent change to the
software has created the issue, and this issue can quickly be addressed (Simpson 2015).

At HYPSO, a Jenkins Testing Setup has been built to test the HYPSO software, see section 3.2.
The server is configured to run whenever there is a change to the HYPSO software, testing the
software for a potential regression. This is done by declaring a "declarative pipeline" in a file
called the Jenkinsfile, written in Groovy. The Jenkinsfile starts by downloading the source files of
HYPSO software (hypso-sw) from a GitHub repository, then opens a Docker container to build
the source files. After this a set of python scripts is run in consecutive order, first to turn on the
power to the HYPSO-1, and then to test the software. The results of each test is are written to
a database using PostgreSQL. At the end of the pipeline the power is turned back off, and if the
Jenkins server has come this far without encountering an issue then the software is flagged as
passed.

16



CHAPTER 3. SOFTWARE AND CODING PRACTICES IN USE AT HYPSO 17

3.1.2 Groovy

Groovy is an open-source language created for the Java Virtual Machine, and has a syntax similar
to Java. One of the advantages Groovy has over Java is that it supports both dynamic and static
typing, instead if Java’s strict static typing. But the main advantage of Groovy, and the reason
for its use in the declarative pipelines of Jenkins, is that it is a testing oriented programming

language, having built-in support for unit testing (Davis 2019).

3.1.3 Python3

Python 3 is the newest iteration of the Python programming language, officially taking the place
of Python 2 after the support for Python 2 ended in 2020. The "core values" of python can be said
to be simplicity, explication and name-spaces. Python comes with standard libraries that cover
most of what an average user needs, and if not there are thousands of additional libraries one
can use. Another advantage of python is that it is a lean programming language, meaning that
it can do the same as what another language could do, but with fewer lines, resulting in faster
development and making it easier to learn. However an disadvantage of python is that it is not
optimized for fast execution, such as a programming language such as C (Stross-Radschinski
et al. 2014), which is why python is only used for testing the HYPSO-1 software, not to create it.

At HYPSO, python is used in the Jenkins testing setup as it makes the vast variety of tasks
required for the testing simpler to implement as there is "a library for everything". The Jenkins
testing setup for example requires ways of reading and writing to files, executing command line
arguments, running the hypso-cli as a subprocess, interacting with a database, communicating
using different protocols, creating and moving files. All of these are easy to implement using
python as there is an easy way to do all this in python.

3.1.4 PostgreSQL

PostgreSQL, often just reffered to as Postgre, is one of the most popular open-source relational
database management system (RDBMS), and it is well known for its reliability and extensebility.
Although having Structured Query Language (SQL) in its name, it does not conform perfectly
with the SQL standard, but it tries to do so when applicable (Maymala 2015).

At HYPSO, PostgreSQL is used in the testing of the hypso-sw. Every test run start by updating
the database-table of that test with all relevant information about the test, and after the test is
executed it updates the table with the result, if the test gets that far.



CHAPTER 3. SOFTWARE AND CODING PRACTICES IN USE AT HYPSO 18

3.1.5 Docker

Docker is a Platform as a Service (PaaS) platform used to create isolated environments, called
containers, for running a specific software. This means that all the dependencies of that soft-
ware is included in the container, such that the environment of the computer the docker con-
tainer is run onis abstracted away, eliminating dependency issues. While different types of PaaS
has existed for a while, Docker has become the leading PaaS on the market due to its many fea-
tures and ease of use (Anderson 2015).

At HYPSO, Docker is used for building the hypso-sw, meaning that any member of the team
can download the code through Git and build the software independent of operating system
and their virtual environment, and all of this right after downloading the code.

3.1.6 Git and GitHub

Gitis an open-source distributed version control program, and is used for tracking changes dur-
ing the development of a software. An important functionality of Git is the ability to branch a
repository, creating a new version of the software. This branch can be changed without affect-
ing the original branch, before being merged with the original when the development of the new
branch is done and approved. This means that multiple parts of the software can be worked on
and then combined together at a later date, increasing the number of people that can work on
the same project (Spinellis 2012).

By using a web-hosting service called GitHub to coordinate the Git repositories, the HYPSO
team can quickly download and edit code from all parts of the project. By the use of sub-
modules the team can quickly include other parts of the project into another project, as in
the hardware_in_loop repository. This repository is used for the Jenkins testing setup, and

by adding the hypso-c1i as a submodule it can be built and tested from this repository.

In the Jenkins testing setup at HYPSO the branching functionality is used to create different
branches of the hardware_in_loop repository. Each branch is used for testing different con-
nection types, and these branches are almost identical with the exception of some definitions.
This might seem like an over-complicated way of doing it, but by doing so the team can add
new connection types to test that might require larger changes without having to redo the entire
code-base in every branch, while at the same time keeping the common material up to date.

GitHub is also used by the HYPSO team due to a functionality called project boards. This is
a virtual notice board that can be used to create issues — a post-it-note with a feature to im-



CHAPTER 3. SOFTWARE AND CODING PRACTICES IN USE AT HYPSO 19

plement or problem to fix — and then organize and assign them to developers. This is exactly
the way the team uses the project boards, and it greatly assist in the agile development the team
uses. The GitHub boards is very helpful in the context of testing; every time an issue is encoun-
tered in the software testing an issue is created in the project boards, and then during next sprint
meeting a developer is assigned to fix the issue.

3.2 The HYPSO Software

The hypso-sw is a term used for the top level software developed for the HYPSO mission. The
hypso-sw is divided in two categories, the hypso-cli and the opu-system, and this section de-
scribes both of them as they are both heavily used in this thesis.

3.2.1 hypso-cli

The HYPSO client (hypso-cli) is the software used to operate the ground segment of the HYPSO
mission. It is a command-line interface that can communicate to the opu-service through CAN,
NNG, S-Band and UHF. It is used to issue commands to the payload, get mission data, down-
load files, upload files and update software on the the payload.

To summarize, hypso-cli is how the HYPSO team communicate with the HYPSO-1 satellite,
making the testing of this system extremely important, as all of the aforementioned tasks must
work exactly as intended to uphold communications with the satellite, otherwise the mission is
a failure. In fact, six of the most critical failure modes of the HYPSO mission is communication
related (Jordheim 2020), see table 3.1.

S-Band — Does not send data
S-Band — Can notresume transmitting the missing packets
S-Band — Sends corrupt data

UHF — Does notrecieve data at all

UHF — Recieve corrupt data

UHF — Does not send data

Table 3.1: FMECA — Critical failure modes of the HYPSO-1 related to communications (Jord-
heim 2020)

3.2.2 opu-service

The opu-service is the software that run on the opu-system, it is in charge of the communi-
cations of the space segment of the HYPSO mission as well as managing the payload. It com-



CHAPTER 3. SOFTWARE AND CODING PRACTICES IN USE AT HYPSO 20

municates internally with the payload and the PC using the CAN2 bus, and externally with the
hypso-cli over S-Band and UHF through the PC (HYPSO Project Team 2020a).

In regards to testing, this part of the HYPSO software has a many systems to test, as the
opu-service interfaces with the entire payload. Currently there are some tests for the HSI cam-
eras, as well as the upload and download of files from the satellite. Some more tests has been
implemented by the author, especially to further test the communications, see section 5.4.

3.3 Coding Practices for the HYPSO Testing

There are some steps one can take in order to keep a large programming project, organized,
expandable and reusable. This section talks about the coding practices the HYPSO team has
implemented in the Jenkins testing setup.

3.3.1 Consistent Naming of Files, Variables, and Functions

Itis a fact that each software developer have different coding style and preference when it comes
to naming files, variables and functions, and it is usually not a problem when only one developer
works on the same project. But when a software is developed by multiple people it is important
to keep it consistent. Therefore does all tests written for the Jenkins testing server require the
functions and files to be written in snake_case and the variables to be in camelCase. Note that

there are exceptions to this rule, but for the most part, this is the rules used.

3.3.2 Library Hierarchy and Folder Structure

A pitfall many developers fall into when starting a project is not setting up a proper folder struc-
ture. The files is put in the same folder and before you know it there are a lot of them. This
happened in the Jenkins testing setup at HYPSO, see appendix B.2. It quickly become hard to
navigate the files, and even harder to know which file uses another. Therefore it is important to
have a library hierarchy; The one used in the Jenkins testing setup is simplistic, it places the files
used by other files into the 1ib folder, and have two configuration files where the common data
can be fetched, see appendix B.3.

3.3.3 The Advantages of Using Classes & Object Oriented Programming

When programming large sets of code, re-usability is key. This is especially true when writing
software tests, as most of the code is repeated. This were not the case with the code written for
the HYPSO testing, see section 5.1.1. Many functions were repeated in different files, sometimes



CHAPTER 3. SOFTWARE AND CODING PRACTICES IN USE AT HYPSO 21

as exact copies, and other times as almost identical. By instead implementing these common
functions in a separate library, and using classes with default values a lot of repeated coding can
be avoided. For example; the opu_upload.py and the opu_partial_upload.py have almost
identical code, and by implementing a upload_test class that can be imported the tests can
use subclasses to modify the upload_test class to their purpose. This has now partially been
implemented in the Jenkins testing setup, but there is still a lot of work to complete.



Chapter 4

The Software Testing at HYPSO

Most of the software testing at HYPSO is performed on the Payload Hardware-in-Loop using
the Jenkins testing server. The main part of the testing performed are regression testing, as the
testing of the hypso-sw sadly does not have a full test suite and is nowhere comprehensive and
broad enough for acceptance testing.

4.1 Hardware for Software Testing

4.1.1 Flatsat & Lidsat

A flatsat is a board where the different components of a satellite is mounted, making it easy to
change or configure the components. At HYPSO there are two flatsats; The first one, with the
unoriginal name of just the flatsat, is located at NanoAvionics lab in Vilnius. The second one is
in use by the PHiL at HYPSO.

4.1.2 PHiL — Payload Hardware in Loop

The Payload Hardware-in-Loop (PHiL) is a Jenkins testing setup connected to the same hard-
ware that is used in the HYPSO-1. This means that ideally the system works the same as the
satellite will during its mission, as all components are the same. At the time the author joined
the HYPSO team the testing was only done locally over the CAN network, using the lidsat, but
one of the tasks he implemented was to be able to testing the flatsat over the NNG, see sec-
tion 5.1.3.

22



CHAPTER 4. THE SOFTWARE TESTING AT HYPSO 23

4.2 Software Testing at HYPSO

This section talks about the most relevant types of testing in relation to this thesis, and how it is
used at HYPSO.

4.2.1 Unit Testing

A unit test can be seen as the smallest test possible; Does a function do what it is supposed to
do? Writing unit tests can be done quickly, as a predetermined data-set going into the system
should give a predetermined result coming out for the test to pass (Myers et al. 2004, p. 91). At
HYPSO unit testing is implemented by the creator of the software that is to be tested creates the
test.

4.2.2 Regression Testing

Whenever a change is made to a software we risk that it breaks something that used to work.
Regression testing is to test for this; the new version of the software is only accepted if it at least
passes the same tests as before (Myers et al. 2004, p. 19). At HYPSO this is implemented in the
Jenkins testing server, as new versions of the hypso-sw is only accepted as long as it passes the
tests defined in the Jenkins pipeline.

4.2.3 Acceptance Testing

Acceptance testing is to test the entire system and measure it up against its initial requirements
set when it were designed Myers et al. (2004). At HYPSO this will be performed manually by
comparing the software and hardware of the satellite up against the design outlined in the doc-
ument HYPSO Project Team (20204).

4.2.4 Hardware-in-Loop Testing

Hardware in Loop (HiL) is a way to test software on its intended hardware by simulating inputs
to the model. By doing this one can get an idea on how the real system will react to a situa-
tion (Bacic 2005). At HYPSO, the HiL is implemented in the testing of the payload; the Payload

Hardware-in-Loop (PHiL), see section 4.1.2.

4.3 Jenkins - Testing Server

The Jenkins testing server is the software part of the PHiL that runs the hypso-cli which inter-
faces with the lidsat using the CAN network and the flatsat by using the NNG connection. It is



CHAPTER 4. THE SOFTWARE TESTING AT HYPSO 24

used to streamline the continuous integration, and is run every time a change is made to the
hypso-sw.

4.3.1 Qualification Model

Qualification is defined as a part of verification which shows that the system meets the qualifi-
cation margins (ECSS Secretariat 2012).

A Qualification Model (QM) is by the ECSS defined as a "model, which fully reflects all as-
pects of the flight model design, used for complete functional and environmental qualification
testing" (ECSS Secretariat 2012). It is in intended for use in the development and testing of the
system, and includes all parts of the system that is to be tested. The QM is not a part of the flight,
but a way to prepare for it.

At HYPSO the QM is used to run the software testing on. The desire is to have the QM as sim-
ilar to the payload as possible. This is done by using the same hardware and communications
as the satellite counterpart. In order to test the QM different parts of the system must be turned
on/off. This part of the QM has been automated by the author, see section 5.5.

4.4 Testing of Satellite Software using the PHiL

4.4.1 Communications, Software and Updates

It is extremely difficult to perform maintenance on a satellite once it leaves earth, as mainte-
nance is difficult when you have no wired connection. The the relatively low value of a SmallSat
means that once it enters orbit it will have to manage on its own. This means that the hardware
and software must be thoroughly tested before launch. There is however a little bit leniency
on the software of the satellite, because as long as one can communicate with it one can po-
tentially update the software. This means that in a way the most important part of satellite
software testing is to ensure we can uphold communication channels. Following this reasoning
one should focus more of the testing of the satellite software on the communications. This is not
to say that the rest of the software can be shipped early, there would be no point in launching
a non.functional satellite, but a bug in the communications software can likely mean mission
failure, whereas a bug in the payload software can be updated. But this update is still a costly
process, it will take valuable time and energy away from the mission.



Chapter5

The Development of the HYPSO Testing
Infrastructure

The work undertaken for this thesis were performed in cooperation and for the HYPSO team for

the purposes of testing the software and hardware of the HYPSO-1 satellite. The majority of the

work revolved around the Jenkins testing setup used at HYPSO, and can be summarized as;

5.1

Refactoring and restructuring the code base for the Jenkins testing server used to test the
HYPSO software.

Creating tests for the HYPSO software, with a focus on the communications.

Testing the HYPSO software, identifying issues and creating GitHub-issues for those issues
so the software team can work on them.

Creating a digital interface for multiple power supply units to program and monitor their
status for qualification testing.

Refactoring and Strengthening the Jenkins Test Scripts

The preexisting Jenkins testing setup at HYPSO clearly had room for improvement; There were

duplicate files, some temporary fixes had become permanent fixes, and the library were disor-

ganized due to the nonexistent folder hierarchy as seen in appendix B.2. There were sporadic

bugs that lead to failed pipelines, and it was apparent to the team that a major refactoring had

to be undertaken on the Jenkins testing setup.

25



CHAPTER 5. THE DEVELOPMENT OF THE HYPSO TESTING INFRASTRUCTURE 26

5.1.1 Refactoring the Jenkins Test Scripts

Thus, one of largest tasks I tackled this semester, in cooperation with co-supervisor Joseph Gar-
rett, was to refactor the code-base of the testing setup.

The refactoring started off by sorting the testing files from the library files, and placing the
library files in its own folder, 1ib. By doing this the scripts folder was declared solely for the
files used for testing, making it easier to navigate the files. The next step were to rename files
and variables, and extracting common code and declarations to one file;
regression_test_settings.py. The final step was to tie it all together by restructuring the
Jenkins declarative pipeline, explained in section 5.1.2.

The resulting folder structure can be seen in appendices B.2 and B.3, and is based on the
coding practices outlined in section 3.3.

5.1.2 Restructuring the Jenkins Declarative Pipeline

At the time I joined the HYPSO team the main issues with the Jenkins Declarative Pipeline, the
Jenkinsfile, were as following;

* Indentation: Groovy, the language the Jenkinsfile uses, does not require specific indenta-
tion, making it hard to read the file when the indentation is not kept consistent, this was a
rather quick but noticeable fix.

» Syntax: The placement of brackets and variable names should be kept consistent, but were

unfortunately not, something I corrected.

* Static scripting: The Jenkinsfile was calling hypso-cli directly, instead of calling a script to
do so. This meant that if there were a change in a function call this had to be manually
changed at multiple places in the file. This was not an issue at the time of overtaking the
project, but posed an issue when implementing different connection types.

The end result can be seen in appendix C.1, the indentation and syntax is consistent, and all the
scripts called uses command line arguments when applicable, instead of calling hypso-cli.
Implementing Proper Cleanup of the Pipeline

Whenever a Jenkins Pipeline is built and run, it is assumed The OPU is turned off. To ensure this
the final stage of the pipeline is dedicated to turn off the power of the OPU and HSI.



CHAPTER 5. THE DEVELOPMENT OF THE HYPSO TESTING INFRASTRUCTURE 27

Unfortunately this did not turn out to be the case, as whenever the pipeline does not com-
plete this step is skipped and the OPU is never turned off, and thus must be turned of manually.

By changing it from a regular declarative stage to a post stage, the execution of the stage will
happen regardless of the exit condition of the pipeline.

5.1.3 Implementing Testing Through NNG

The importance of the last point in the previous section becomes apparent when considering
that the PHiL had been solely used for testing the hypso-cli and opu-system over the CAN net-
works. The team saw great potential in testing using the NNG connection, and I took it upon

myself to implement this.

By replacing the static scripting with dynamic scripts the testing setup could import the ad-
dress and connection settings of the opu-system from one file instead of having it defined mul-
tiple places.

I created a common file for all connection settings related information,
connection_settings.py as seen in appendix C.2, and changed the existing scripts to import
the variables from there. This meant that by just changing one variable different connection
settings can be selected. This led to the discoveries of multiple issues, as described in section 5.4.

5.2 Issues Identified and Corrected

Memory Issue - Infinite Print

To ensure uploads and downloads work for larger file-sizes, the opu_download.py and
opu_upload. py test scripts downloads relatively large files, up to the size of 55 MB. By modern
communication standards this is a small file, but for the satellite communications on a smallsat
this is a large file that will take multiple flybys to transfer. The size of the files are chosen as a
trade-off between time and ensuring that the transfer of the files works as intended. This means
that it can take from 10 to 30 minutes to run a single communications test, making the Jenkins
pipeline run slower.

A recurring issue during the development of the testsing was that hypso-cli lost contact with
the opu-system without an error message, leading to the test never finishing due to a faulty exit-
clause. If this happened and the pipeline were not manually terminated the pipeline would con-

tinue to run until the next time someone wanted to use the Jenkins server, leaving the hypso-cli



CHAPTER 5. THE DEVELOPMENT OF THE HYPSO TESTING INFRASTRUCTURE 28

and Jenkins server to continue logging the commands, printouts and timestamps of the mes-
sages.

Upholding Murphy’s law, this exact scenario happened on a Friday evening, leaving the test
to run over the weekend; The test hung and was not manually shut down, resulting in 54 GB of
logs and miscellaneous files. The issue were soon narrowed down to a blank line being printed
inside a polling function, meaning that the entire 67 hours the test run this line were printed
and logged on repeat by both hypso-cli and Jenkins. After removing the log-files and the print-
out from the code, it was clear that proper timeouts had to be implemented. The first solution
were to add a realistic timeout to the opu_download.py and opu_upload.py scripts, and by
adding a larger timeout to each stage using the stage property of the Jenkins pipeline syntax:

options{timeout(time: 30, unit: ’MINUTES’)}.

Memory Issue - Docker

Along with the previous issue there were discovered that there were still memory issues on the
Jenkins server, over 200 GB worth of files were unaccounted for. The obvious solution were to
look in the directories used by the Jenkins server, but this lead nowhere. So a closer examina-
tion had to be performed on each step of the Jenkins pipeline. The most obvious issue were the
amount of times the the tests had been run.

On the development branch used to develop the work performed in this thesis the pipeline
has been run over 400 times (to varying degrees of success), and at the time this issue were
examined, about 250 times. For every one of those 250 times, the entire git repository for the
testing setup and all its submodules had been downloaded, extracted and built. This seemed
like a good place to start, but was fruitless as the combined size of the software including the
logs was still so small that it took less than 5GB in total. This meant the culprit had to be the
way we build the hypso-sw using Docker.

It turned out that each time Jenkins started a docker container to build the hypso-cli it down-
loaded and initialized the containers, and kept that container saved. By running one command,
docker system prune, and being patient, this issue were closed.

In order to prevent this problem in the future an issue was created on GitHub; Docker
should overwrite the previous image using docker tag, not create a new one each

time hypso-cli is built.



CHAPTER 5. THE DEVELOPMENT OF THE HYPSO TESTING INFRASTRUCTURE 29

Workspace Directory Issue

A major issue that perplexed me and the team was that the pipeline just froze sometimes for no
apparent reason. Some of the tests started as normal but then when they started a sub-process
running hypso-cli the response from opu-system were notdisplayed, and no error message were
shown. This happened at an estimated 5% of the times hypso-cli were run, and the fact that it
just happened at seemingly random and when rerunning the pipeline the issue often disap-
peared made it hard to narrow down.

Iidentified the bug to be a workspace directory issue; The way Jenkins handles the execution
of the pipeline is by handing the resources to different agents, and there is no guarantee that the
same agent runs the entire pipeline. Each agent has a local copy of the code, so when hypso-cli
is built using docker in one stage it is just happenstance that the same agent runs the script at a
later stage.

The first fix were to disable concurrent builds in the Jenkinsfile so that there is just one
pipeline running at the same time. This had the positive side-effect of allowing queuing pipelines.
This improved the issue, but did not eliminate it. By using the Jenkins function stash in the
docker stage and then unstash in the stages requiring hypso-cli a copy of the built hypso-cli is
always available regardless of workspace directory, eliminating this issue.

Missing Hypso Client

One of the reasons the workspace directory issue took so long to identify were that it only ap-
peared when hypso-cli were in use, and the way the pre-exisitng python scripts were imple-
mented were in a working but silent way. In other words; when opening a subprocess in python
there are two pipes to listen to; the output - stdout, and the error messages - stderr. The ex-
isting implementation was only listening to the stdout pipe, and thus all warnings and error
messages were ignored for the entire pipeline.

I believe this was overlooked by the creator, judging by the code, and most likely rooted
in prioritizing other work. By routing the stderr to the stdout error messages were finally
actually being handeled and recorded in the logs, leading to the workspace directory issue being
identified.

Resuming Pipeline after Failed Stages

When running a testing pipeline it is in some situation desirable to resume the pipeline after a
stage has failed. In many situations one can learn from where a stage fails and where another



CHAPTER 5. THE DEVELOPMENT OF THE HYPSO TESTING INFRASTRUCTURE 30

does not, and I therefore rewrote the pipeline to continue after the non-essential tests fail. To
illustrate the difference better one can look at these situations:

* When pinging the OPU: If we do not get a response there is no use in running tests on it,
thus the entire pipeline should fail.

* When downloading a file from OPU: If the download fails it can be many reasons; it can
take too long so it times out, the file is not being found, etc. In this case it is desirable to
continue the pipeline, as the next test may still pass, meaning the issue is probably with
the download.

* In the case of my script opu_partial_download fail, and the opu_download passes then
we can assume the issue is most likely related to the stopping and resumption of the down-
load, not the upload itself.

5.3 New Tests Implemented

During my work at HYPSO I implemented multiple tests for the Jenkins testing server, this sec-
tion briefly describes them. All files can be found in the hardware_in_loop GitHub repository at
HYPSO.

5.3.1 opu_partial upload.py

This script is based upon the preexisting opu_upload. py script, but with one major difference,
every 3 minutes the upload stops and is then resumed. By doing this the resumption of the
upload can be tested. Only some of the tests are added in the appendix, as the length of the files
would have made this thesis very long. See appendix C.4.

Usage: opu_partial_upload.py [NODE]

5.3.2 opu_partial_download.py -timeout

This script is based upon the preexisting opu_download.py script, but with one major differ-
ence, every 3 minutes the download stops and is then resumed. By doing this the resumption of
the download can be tested.

Usage: opu_partial_download.py [NODE]

5.3.3 ping timeout.py

This script uses the CSP ping functionality of hypso-cli to ping a specific node and waits for 30
seconds before continuing the pipeline. See appendix C.4.1



CHAPTER 5. THE DEVELOPMENT OF THE HYPSO TESTING INFRASTRUCTURE 31
Usage: ping_timeout.py [NODE] -timeout [optional TIMEOUT]

5.3.4 ping simple.py

This script uses the CSP ping functionality of hypso-cli to ping a specific node, it is less robust
than the ping_timeout.py. See appendix C.4.2.
Usage: ping_simple.py [NODE] -timeout [optional TIMEQUT]

5.3.5 ping all.py

This script uses the CSP ping functionality of hypso-cli to ping all nodes on the network, and
will only pass if all pings come back. See appendix C.4.3.
Usage: ping_all.py -timeout [optional TIMEQUT]

5.4 Issues Found as a Result of Testing

When creating a test for a software, one often finds out that the software criteria are not met, and
although the test "fails" it is exactly this behaviour that desired as it highlights an area that must
be further improved. This section explains the different issues encountered with the hypso-sw
during testing in Q1 and Q2 of 2021, and to illustrate the importance of testing an example from
the previous semester is provided;

A potential mission critical bug were found in the hypso-sw using the PHiL testing in the
Q4 of 2020; Whenever packets were dropped between the hypso-cli and opu-service, the lost
packets would be transmitted again at the end of the download. This patching was performed
one dropped packet at a time, and if one of those patched packets were not sent correctly, then
the system would wait for the timeout to expire before attempting the next. This took a long
time, and the OPU were unreachable in the timeout period. This could have lead to exceeding
the power budget of the HYPSO-1 if this had happened in-flight, leading to a potential mission
failure. But not only that, if this bug persisted it would take tremendous long time to upload
a patch to the payload to fix this issue, leading to valuable mission time being wasted (Marton
2020).

5.4.1 hypso-cli not Working over NNG

After the implementation of the NNG into the PHiL hypso-cli were unable to establish contact
with the OPU using NNG.

After some investigation, made more difficult by the issue in section 5.2, the root of the issue
were identified to be the permissions of the computer running the Jenkins server, as well as the



CHAPTER 5. THE DEVELOPMENT OF THE HYPSO TESTING INFRASTRUCTURE 32

way the NNG address were passed to the hypso-cli. The hypso-cli has a flag -nng that will set the
address to the string following the flag, but if that flag is left empty the default address is chosen.
This default address had also changed.

The first part of the issue were quickly dealt with by Roger Birkeland and the second part
were implemented by me as soon as the issue were identified, but the team made a GitHub issue
to show progress in the sprint; Connect Jenkins to LidSat (and FlatSat) hardware --

update NNG permissions.

5.4.2 Upload and Download not Working over NNG

After the previous issue the opu_upload and opu_download still did not make contact with the
NNG. It is worth mentioning this happened before the changes made in section 5.1.1 had been
fully implemented.

The issue turned out to be rooted in the arguments passed when starting hypso-cli as the
way the script worked at the time were by directly using hypso-cli in the Jenkinsfile to ping the
opu-service over NNG. These pings connected, and so did the hsi_get_temp.py that were
using the common source files. It turned out that the issue was that the connection settings
were not actually imported in the faulty scripts.

This issue were addressed by me by importing the connection settings file.

5.4.3 Upload over NNG Unable to Upload Large Files to OPU

After the previous issue were addressed the opu_upload test still failed. It seemed as if the
opu-service just stopped responding to the upload, as it never responded back to the hypso-cli
that there were an error or that the upload were complete. This issue only happened by upload-
ing large files, and perplexed the team quite a bit.

Most likely the root of this issue is that the opu-service got flooded with messages faster
than it could handle, as the MCS can handle higher speeds than the OPU, making it go out
of synchronization. This is a valuable lesson, as it means that the team have to throttle the
NNG connection to the MCS to ensure this does not happen in the future, which makes sense,
the bandwidth from the MCS to the satellite bus will have be throttled anyways, as team had
assumed this was fully handled by the MCS.

Having identified the problem, and a probable root of the problem, a issue was created in the
GitHub board in order for the HYPSO team to assign during the next sprint; opu_upload does
not exit cleanly (throws an error/timeout) when run through NNG and uploading

large files



CHAPTER 5. THE DEVELOPMENT OF THE HYPSO TESTING INFRASTRUCTURE 33

5.5 Software for Mechanical Testing

In order to test the Qualification Model of the system, the team had created a manual setup of
using a set of Power Supply Unit (PSU)s to enable and disable power to certain subsystems of
the satellite. These subsystems are the OPU (requires 7.5V), the HSI (requires 12 V) and the RGB
(requires 5V). This temporary setup worked as intended, but the use of it had some drawbacks;

* Whenever the power of a subsystem had to be switched on/of it had to be performed
physically, requiring a person to be present in the room with the satellite during testing.

* Having a team-member turning power on/of introduces human error, and makes it diffi-
cult to ensure changes happens at exact times.

It can be incredibly difficult to reproduce issues that appear during the change of the
power state of the system.

This resulted in the need for the qualification model to have an automated way of for manag-
ing power. In order to automate this task the team ordered two Rs PRO SPD3303C Programmable
DC Power Supply units, one to use as the main power supply, and one as a backup. The specifi-
cations of the PSUs can be found here (RS PRO n.d.). One of the deciding factors of selecting this
model was that it has 3 channels, two of which are programmable, while the last one is limited
to a set of predefined voltages. This means that the subsystems can be turned on/off remotely
and independently at will.

5.5.1 Implementation

The digital PSUs were programmed in python3 using the PyVISA library, as it has functionality
for the USBTMC protocol the PSUs use. The way the program works is by having two threads,
one for the messaging, and one for the GUI. The GUI is implemented using the python library
curses and works in both Windows and Linux. Although the GUI is nice and simplistic, itis not
needed for the operation of the PSUs, as the script can be run from command-line to allow for
scripting the testing, for example using Jenkins. See appendix C.3 for the implementation.

However, it soon became apparent that there had been an oversight when selecting the PSUs,
as the third channel could not be switched on/off remotely. When buying the PSUs the team
had assumed that although selecting the voltage was manual the output could be controlled re-
motely, it could not. This meant that the team had to use both PSUs to do the work the one unit
were supposed to be used for, and it was good that the team had ordered an extra. This could
have increased the workload, but by implementing the PSU as a class in pyhton, a list of PSUs
could be spawned and managed with the only limit being the maximum amount of connections



CHAPTER 5. THE DEVELOPMENT OF THE HYPSO TESTING INFRASTRUCTURE 34

Figure 5.1: The PSUs in use during testing.

the USB-protocol allows for; 127. By implementing it this way it the system can quickly be scaled
if required, which can be useful for the HYPSO-2 smallsat.

The program automatically detects all PSUs connected to the computer, and will show them
in the GUI if the PSU_GUI.py script is run, or the script can be run from command line using
PSU_connection.py. In fig. 5.1 and fig. 5.2 the physical and digital representation of the PSUs
can bee seen, notice how the values are the same on both. See appendix C.3.1 for the different

commands that can be issued to the script, either from command-line or the GUI.



[+1 amund@AmundMartonPC: ~/HYPS...

CHAPTER 5. THE DEVELOPMENT OF THE HYPSO TESTING INFRASTRUCTURE

0093

RSPD 3303C

Power Supply Unit

0110

Power Supply Unit

RSPD 3303C

CH1 OFF

Target:
12.00 V
0.80 A

CH2 OFF

Target:
7.50 V
0.80 A

CH1 OFF

Target:
5.00 V
0.80 A

ci2 [

cV
Target:
1.23 V
0.13 A

Output:
1.24 V
0.00 A

Command: l

Figure 5.2: The digital representations of the PSUs during testing

35



Chapter 6
Discussion

As a disclaimer [ want to point out that the testing performed and implemented during this the-
sis is nowhere extensive enough to qualify as acceptance testing; there is too many testing suites
that are yet to be fully implemented. Indeed, testing in itself is not a perfect science, you are only
testing for issues you can predict or expect, so a thorough Software Verification and Validation
Plan is needed in combination with the PHIL testing, see (Orlandic 2019) for the HYPSO Soft-
ware Verification and Validation Plan.

As the previous chapters have mentioned the testing of satellite software is especially cru-
cial due to the nature of space missions and the lack of physical maintenance that can be per-
formed once they are launched. This is extra critical when it comes to the communications.
The Cubesat Space Protocol (CSP) creates a robust internal communication between the sub-
systems of HYPSO-1, but the communications between the space segment of the mission and
the ground control — using the NNG, UHF and S-Band — must be thoroughly tested.

By extensively testing the communications before launch the team are able to alter the soft-
ware at a later date if need be, but neglecting it can lead to mission failure. This can be seen in
that the testing performed in this thesis, chapter 5, led to the identification of issues that could,
at worst, have been mission critical.

Regression testing is a good tool for testing the development of software, as the tests can be
run frequent and autonomously using a testing server such as Jenkins. By doing this we enables
straight-forward testing on many systems, and the ability to re-use testing code. The fact that
regression testing tests if the software does not lose functionality between each new version
means that the development can only go in a positive direction, not regress. This, combined
with the use of GitHub repositories, makes it easier for multiple developers of the HYPSO team
to work on the hypso-sw, as all functionality must work before it is accepted.

36



CHAPTER 6. DISCUSSION 37

A drawback of mainly doing regression testing is that it makes it easy to proclaim that once
a program passes the test, it is working as intended. But that is not necessarily the case, the
behaviour might comply to the expected results, but that might just be because the specific in-
puts fed into the system are within a range giving expected results. During flight the inputs of
the satellite might be completely different to the simulated inputs and cause unforeseen issues.
This is the reason why the PHIL testing is performed at HYPSO, as the system runs on the same
hardware as used in the satellite, making the testing of the system as close to the in-flight sys-
tem as possible. The issue then is to fed realistic and challenging inputs to the PHiL to test if the
software can handle it. However, this does not eliminate the problem of creating tests for the

software, not tests of the software.

Take for example the test created to shut down the opu-system and then turn of the power
to the OPU, opu_shutdown.py. When the test was initially implemented it sent a message us-
ing hypso-cli to turn the opu-system off, then it pinged the OPU; if no reply got back then the
power were turned off and marked as passed. The issue with this implementation is that if for
some reason the ping did not get an answer it was marked as completed, as occurred due to the
missing hypso-cli described in section 5.2. There were no handling of a case where the ping fails
to send the message, the response is lost or the opu-service has frozen. By communicating with
the EPS we can get the power status of the system and ensure that we are actually testing that
the power of the OPU is off, not just the symptoms of it, as explained in section 5.4.

By implementing a way to test the flatsat in the PHiL using the NNG connection, a layer of
abstraction between the PHiL and the HYPSO-1 was removed, as the previous testing were ex-
clusively implemented over the CAN networks. The remaining layer of abstraction is between
the NanoAvionics Propagation Service & Mission Control Software and the PC. As mentioned on
section 2.3 this layer can for the purposes of HYPSO-1 be abstracted away as it is handled by the
satellite bus. This means that for all intents and purposes, communicating with the flatsat over
the NNG network, i.e. using the NNG connection for the PHiL testing, is very similar to how the
satellite communicates in-flight, the biggest difference being the faster bandwidth, as shown in
section 5.4.3. If this bandwidth were to be throttled to mission-level speeds, then the testing of
the PHiL using the flatsat and NNG connection could indeed be very beneficial to the team.

The many bugs and issues that has arisen during the software testing is a clear indication
that the testing is working. As previously stated, the lack of bugs does not a bug-free system
make, but the issues found could have threatened the mission, so it is good that they have been
addressed.



Chapter 7
Conclusion

The work performed and discussed in this thesis has highlighted different issues with the HYPSO
software, and those issues has been addressed or delegated to the appropriate developers. The
advantages of implementing a Payload Hardware-in-Loop testing system such as the one at
HYPSO is that it can both test for regression, while at the same time simulate the in-flight op-
eration of the satellite. If I were to change one thing done in this thesis, it would be to spend
less time on the Power Supply Graphical User-interface, as it turns out the team prefers the
command line version, and spend that time implementing new ways to regression test and per-
formance test the connection between hypso-cli and opu-service. Additionally, there exists a set
of unit tests for the hypso-cli that is not implemented in the testing setup, and if I had the time I
would like to implement those tests to be run after building hypso-cli and before the PHiL tests

in the Jenkins pipeline.

The work outlined in this thesis can be used to implement testing over multiple connections,
and can be built upon by other smallsat teams. Here are some tips to future smallsat teams wish-
ing to implement a PHiL Jenkins testing setup as the one discussed in this thesis; Testing takes
time, allocate enough for it and start early, it is hard to implement them when the software is
already finished. You can never test enough, so make sure you test the essential parts of the
system just a little bit less than enough. When writing unit and regression tests, try to get in-
put from another teammates if you are the one that wrote the software to be tested, or you can

quicly overlook something.

To summarize; the arguments and advantages presented on how the software and PHiL test-
ing is implemented at HYPSO there is great potential for further expanding the work and for
other smallsat teams to implement similar testings setups, especially focusing on, but not ex-
cluded to, the communications of the satellite.

38



Appendix A
Acronyms & Definitions

BOB Breakout-Board — A circuit making it easier to connect devices

CAN Controller Area Network — a communications protocol used between the subsystems
of HYPSO-1.

CAN1 CAN1 — the CAN network between the PC and the satellite bus.

CAN2 CAN2 — the CAN network between the PC and the payload subsystems.
cubesat cubesat — A standardized size of smallsats

CSP  Cubesat Space Protocol

EPS  Electrical Power System — the system in charge of the power of the HYPSO-1
ECSS European Cooperation for Space Standardization

FC Flight Computer — The subsystem of satellite bus in charge of the positioning of the
satellite.

flatsat flatsat — the components of a satellite mounted on a flat surface for easy access.
HiL  Hardware in Loop

HSI  Hyper Spectral Imaging — at HYPSO, this acronym is used for the payload subsystem
containing the HSI camera

HYPSO HYPer-spectral Smallsat for ocean Observation
HYPSO-1 HYPSO-1— The 1*' and current satellite being built and tested by the HYPSO team

HYPSO-2 HYPSO-2— The 2"¢ and upcoming satellite that the HYPSO team is working on

39



APPENDIX A. ACRONYMS & DEFINITIONS 40

hypso-cli HYPSO client

hypso-sw HYPSO software — this includes the hypso-cli and the opu-service

IEEE Institute of Electrical and Electronics Engineers

lidsat lidsat — A flatsat used for the PHiL at the HYPSO office.

MCS Mission Control Software

NASA National Aeronautics and Space Administration

NNG nanomsg-next-gen — a solution to avoid recurring messaging problems using sockets
NTNU Norwegian University of Science and Technology

OPU On-board Processing Unit — The main computation unit of the payload. It interfaces
with the payload subsystems and the PC

opu-service On-board Processing Unit service — this is the software used to interface with the
payload and the payload controller

opu-system On-board Processing Unit system — this is the operating system running on the
OPU

PaaS Platform as a Service

payload the payload of the system — the hardware and software on-board HYPSO-1 that is
developed by the HYPSO team

PC Payload Controller — The subsystem of the satellite bus that interfaces with the
payload.

PHIiL Payload Hardware-in-Loop — The HiL testing setup used to test the payload.

Pico PicoZed 7030 System-On-Module board — The hardware housing the opu-system
PicoBOB PicoBOB — the PicoZed with a Breakout-board mounted on top.

PSU  Power Supply Unit

QM  Qualification Model

RDBMS relational database management system

RGB Red, Green & Blue — at HYPSO, this acronym is used for the payload subsystem
containing the RGB camera



APPENDIX A. ACRONYMS & DEFINITIONS 41

satellite bus the Satellite Bus — A commercial off-the-shelf "6U NanoSatellite Bus M6P"
supplied by NanoAvionics, used to carry the HYPSO payload

S$-Band short-band — Frequencies between 2 GHz and 4 GHz

SDR  Software Defined Radio — The tertiary payload of the HYPSO-1 satellite.

smallsat Small Satellite

SQL  Structured Query Language

SQL  Structured Query Language

UHF Ultra High Frequencies— Frequencies between 300 MHz and 3 GHz



Appendix B
Folder Structure of Jenkins Testing Setup

On the following pages are the "scripts" folder structure of the Jenkins testing setup used at
HYPSO, before and after refactoring. The three folders extract-frames, fpga-modules and
hypso-sw are git submodules that are imported from other parts of the HYPSO project, and are
built and tested using the Jenkinsfile and the contents of the scripts folder.

B.1 Common Folder Structure

hardware_in_loop
| _extract-frames
O git submodule

................................................................. git submodule
................................................................. git submodule
.......................................... Testing files, see appendices B.2 and B.3

| .gitmodules

| Jenkinsfile. ...ttt Declaration of the Jenkins Pipeline
| README.md

42



APPENDIX B. FOLDER STRUCTURE OF JENKINS TESTING SETUP

B.2 Folder Structure Before Refactoring

scripts

| _collect_data.py

| _config.py

| database.ini

| database_update.py

| _download.py

| _eps_output.py

| hsi_capture.py

| hsi_get_temp.py

| _make_folder_and_cp.py

| _opu_download.py

| _opu_upload.py

| _read_DB.py
L_regression_test_settings.py
| _simple_ping.py

| _start_docker_python.py

| test_functions.py

| _tools.py

| _upload.py

| verification_hsi_capture.py
| _verification_opu_download.py
| _verification_opu_upload.py
|_write_DB.py




APPENDIX B. FOLDER STRUCTURE OF JENKINS TESTING SETUP

B.3 Folder Structure After Refactoring

scripts

| 1ib

| _collect_data.py

| _config.py

| _connection_settings.py

| database.ini

| _download.py

| _regression_test_settings.py
| _test_functions.py

| _tools.py

| _upload.py

| _verification_hsi_capture.py

| database_update.py
, _eps_output.py

| _hsi_capture.py

| _hsi_get_temp.py

| _opu_download.py

| _opu_exit.py

| _opu_partial _download.py ......coiiiiiiiiii
| opu_partial upload.py..... ..ttt
| _opu_shutdown.py

| _opu_upload.py

| _opu_update.py

o S V<= W 0 O o

44

| database_read.py......ueiiiiiiiiiiii i renamed from: read_DB.py
| _database_write.py........ciiiiiiiiiiiiiiiiii renamed from: write_DB.py

| _docker_start_python....................... renamed from: start_docker_python

| _verification_opu_download.py.........coviiiiiiiiinann. verification rewritten
| _verification_opu_partial_download.py..........c.covvvnn... verification added
| _verification_opu_partial _upload.py.............ccoiiinnn verification added
| _verification_opu_upload.py..........ccciiiiiiiiiiiiiiann verification rewritten

| _initialize_and_build.py................... renamed from: make_folder_and_cp.py

test added
test added

test added
| ping_simple.py.....cooiiiniiiiiiiiiiiiii i renamed from: simple_ping.py
L Ping_timeout.py . ...vuiriiiii i renamed from: timeout_ping.py



Appendix C

Code

In this appendix are parts of the code from the Jenkins testing setup that is referenced in the
text.

C.1 The Jenkins Declarative Pipeline - Jenkinsfile

The Jenkinsfile is the file used for declaring the Jenkins Declarative Pipeline. It is written in the
language Groovy, and is used for defining the stages

pipeline
{
agent any
options { disableConcurrentBuilds() }
stages
{
stage ('copy new hypso-cli and opu-services')
{
agent any
steps
{
sh 'rm -rf hypso-sw'
sshagent (credentials : ['REDACTED'])

{
sh 'git clone git@github.com:NTNU-smallsat-lab/hypso-sw'
}
dir("scripts")
{

45



APPENDIX C. CODE 46

sh 'python3 initialize_and_build.py'

// Stash hypso-cli so it can be used in a later workspace

stash includes: 'hypso-sw/build/x86/hypso-cli', name: 'hypso-cli-stash'

¥
stage('make CCSDS Compression Software')
{
agent any
steps
{
sshagent (credentials : ['REDACTED'])
{
sh 'pwd'
sh '1s -1'
sh 'git checkout regression_tests'
sh 'git fetch'
sh 'git pull'
sh 'git submodule update --init --recursive'
}
dir ("fpga-modules/compression/ccsds123/SOFTWAREA")
{

sh 'make'

}
stage('make extract_frames')
{
agent any
steps
{
dir("extract-frames")
{
sshagent (credentials : ['REDACTED'])
{

sh 'git checkout master'



APPENDIX C. CODE 47

sh 'git fetch'

sh 'git pull'
sh 'git submodule update --init --recursive'
X
sh 'make'
}
}
¥
stage('Setup CAN')
{
agent any
steps
{
sh 'sudo ip link set canO down'
sh 'sudo ip link set can0O type can bitrate 1000000’
sh 'sudo ip link set canO up'
script
{
try
{
sh 'echo checking vcanO'
sh 'sudo ip link show vcanO'
¥
catch (err)
{
sh 'echo no virtual can bus exists. Adding.'
sh 'sudo ip link add vcanO type vcan'
sh 'sudo ip link show vcanO'
b
}
sh 'sudo ip link set vcanO up'
}
}
stage('EPS Test Ping')
{
agent any

steps



APPENDIX C. CODE

// Load hypso-cli in case it is not in the current workspace
unstash 'hypso-cli-stash'

dir("scripts")

{
sh 'pwd'
sh 'python3 -u ping_simple.py 4 --timeout 30'
}
}
X
stage ('Deployment ')
{
agent any
steps
{
// Load hypso-cli in case it is mot in the current workspace
unstash 'hypso-cli-stash'
sh 'echo turning on power to OPU and HSI'
dir("scripts")
{
sh 'pwd'
sh 'python3 -u eps_output.py 7 --s 1'
sh 'python3 -u eps_output.py 9 --s 1'
sh 'python3 -u ping_timeout.py 12 -t 30'
//sleep 15
sh 'python3 -u opu_update.py'
sh 'python3 -u opu_exit.py'
sh 'python3 -u ping_timeout.py 12 -t 60'
}
echo 'Copying opu-services to zedboard eventually\n'
}
¥
stage('Check table in database')
{
agent any
steps

{

48



APPENDIX C. CODE

dir("scripts")
{
sh 'pwd'
sh 'python3 database_update.py'

}
stage ('HIL Test Ping')
{
agent any
steps
{
// Load hypso-cli in case it is mot in the current workspace
unstash 'hypso-cli-stash'
dir("scripts")
{
sh 'pwd'
// Ping OPU
script{
try {
def exit_code = sh( 'python3 -u ping_all.py --timeout 30' )
} catch(Exception e) {
echo 'e'
echo e.toString()
echo exit_code
stageResult.result = 'FAILURE'
if (exit_code != '1')
{
currentBuild.result = 'FAILURE'
unstable('Ping failed')
echo 'first'
echo ('first')
} else {

echo 'else'

echo ('else')

}

if (exit_code == '1')



APPENDIX C. CODE 50

echo ('Ping failed')
echo 'Ping failed'

}
sh 'python3 -u ping_simple.py 12 --timeout 30'
// Ping the rest of the nodes to ensure they are present

sh 'python3 -u ping_all.py --timeout 30'

X
stage('Run test hsi gettemp')
{
agent any
steps
{
// Load hypso-cli in case it is not in the current workspace
unstash 'hypso-cli-stash'
//sh 'git submodule update --init --recursive’
dir("scripts")
{
sh 'pwd'
sh 'python3 hsi_get_temp.py'

X
stage('Run test opu upload')
{
agent any
options {
timeout (time: 30, unit: 'MINUTES')
}
steps
{
// Load hypso-cli in case it is not in the current workspace, and show current u

unstash 'hypso-cli-stash'



APPENDIX C. CODE 51

catchError (buildResult: 'SUCCESS', stageResult: 'FAILURE')

{
dir("scripts")
{
sh 'python3 -u opu_upload.py'
}
}
}
¥
stage('Run test opu download')
{
agent any
options {
timeout (time: 30, unit: 'MINUTES')
}
steps
{
// Load hypso-cli in case it is not in the current workspace, and show current u
unstash 'hypso-cli-stash'
catchError (buildResult: 'SUCCESS', stageResult: 'FAILURE')
{
dir("scripts")
{
//sh 'python3 -u opu_download.py'
}
}
}
}
stage('Run test hsi capture')
{
agent any
options {
timeout (time: 30, unit: 'MINUTES')
}

steps



APPENDIX C. CODE 52

// Load hypso-cli in case it is mot in the current workspace, and show current u
unstash 'hypso-cli-stash'
catchError (buildResult: 'SUCCESS', stageResult: 'FAILURE')
{
dir("scripts")
{
//sh 'python3 -u hsi_capture.py'’

}
post {
cleanup {
// Load hypso-cli in case it s not in the current workspace
unstash 'hypso-cli-stash'
dir("scripts")
{
sh 'pwd'
sh 'python3 -u opu_shutdown.py'
sh 'python3 -u eps_output.py 7 --s 0 --d 10'
sh 'python3 -u eps_output.py 9 --s 0 --d 10'

echo 'TODO: Copying opu-services to zedboard eventually\n'

C.2 connection_settings.py

The common code used for switching between the different connection types.

#this file 1s to quickly switch between testing different connections.

from os import path, getcwd

#Change this to CAN, NNG or (yet to be implemented) UHF
connectionType = "NNG"



APPENDIX C. CODE 53

__hypsoCliPath__ = "./../hypso-sw/build/x86/hypso-cli"

if path.isfile(__hypsoCliPath__) == True:

print ("hypso-cli found at {}\nrelative to {}".format(__hypsoCliPath__, getcwd()))
else:

print ("ERROR: hypso-cli NOT found at {}\nrelative to {}".format(__hypsoCliPath__, ge

if connectionType == "NNG":
__hypsoCliAddrCSP__ = "8"

__hypsoCliConnectionAddress__

"mcs-serv.hypso.ies.ntnu.no:5015=0/0 \n"
elif connectionType == "CAN":
__hypsoCliAddrCSP__ = "15"
_-hypsoCliConnectionAddress__ = "can0=0/0 \n"
elif connectionType == "UHF":
# Yet to be tmplemented, but the opiton is here
pass
else:

pass

hypsoCliLogin = __hypsoCliPath__ + " " + __hypsoCliAddrCSP__ + " -n" + __hypsoCliConnect
print ("hypsoCliLogin using {}:\t{}".format(connectionType, hypsoCliLogin))



APPENDIX C. CODE 54

C.3 PSU Interface — Implementation

The implementation of the digital PSU units. The PSU_Controller.py handles the reading and
writing of the PSUs as well as the parsing, while PSU_GUI . py creates the user-interface if desired

C.3.1 README.md — PSU

# psu-control-interface

# Thanks to Clay McLeod for publishing the example code for a GUI using curses
# That this curses is built upon

Python tool to control multiple RSPD 3303C PSUs using the USBTMC protocoll.

All scrupts must be run as root.

How to use the PSU_Controller.py to issue commands to the PSUs:
$ sudo python PSU_Controller.py

usage: PSU_Controller.py [-h] [--status] [--1list] [--reset]
[--recall {1,2,3,4,5}] [--save {1,2,3,4,5}]
[--voltage SET_VOLTAGE] [--current SET_CURRENT]
[--power SET_POWER] [--device PSU]
[--channel CHANNEL]

This script is used toconnect to one or multiple RSPD 3303C Power Suply Unit
through USBTMC.Must be run as root

optional arguments:

-h, --help show this help message and exit

--status, -s Display the current status of the connected PSUs

--list, -1 Display the currently connected PSUs

--reset, -r Reset the given device or a channel on the device if
provided

--recall {1,2,3,4,5}, -R {1,2,3,4,5}

Recall a saved set of values from the device, [1 - 5]
--save {1,2,3,4,5}, -S {1,2,3,4,5}

Recall a saved set of values from the device, [1 - 5]
--voltage SET_VOLTAGE, -v SET_VOLTAGE



APPENDIX C. CODE

Set the Voltage of a PSU channel, [0.0 - 32.0] V
--current SET_CURRENT, -a SET_CURRENT

Set the Current of a PSU channel, [0.00 - 3.20] A
--power SET_POWER, -p SET_POWER

Set the Power status channel, ["ON"/"OFF"]
--device PSU, -d PSU The PSU device to select in order to change values
--channel CHANNEL, -c CHANNEL

The Channel on the selected PSU device

Or you can use the GUI! The commands are the same as above,
so "-d 0110 -R 1" will recall saveslot 1 on PSU 0110
$ sudo python PSU_GUI.py

C.3.2 PSU_Controller.py

import pyvisa
import time
import sys
import os
import argparse

import logging

MSG_DELAY = 0.03
MUTE_PRINT = False

if MUTE_PRINT:
sys.stdout = open(os.devnull, 'a')

#Helper function to send a message over USBTMC
def write_USBTMC(instrument, message, delay=MSG_DELAY):
instrument.write (message)

time.sleep(delay)

#Helper function to send AND recieve a message over USBTMC
def read_USBTMC(instrument, message, delay=MSG_DELAY):
instrument.write(message)

time.sleep(delay)

55



APPENDIX C. CODE 56

data = instrument.read_bytes(100, break_on_termchar='\r\n')
data = str(data) [2:-3]
time.sleep(MSG_DELAY)

return data

# Class to represent the
class Channel:
def __init__(self, parrent, ID, instrument):

#read the current status of the PSU to avoid reseting it when starting
self.parrent = parrent
#self.instrument = instrument
self.ID = ID
#self.powerStatus, self.CVCC =
self.powerStatus = "INIT"
self.powerStatus, self.CVCC = self.get_status(instrument)

self.outputVoltage = self.get_output_voltage(instrument)

self.outputCurrent = self.get_output_current(instrument)

self.targetVoltage = self.get_target_voltage(instrument)

self.targetCurrent = self.get_target_current(instrument)

def reset(self, instrument):
self.set(instrument, O, O , "OFF")
def set(self, instrument, voltage, current, powerStatus):
self.set_target_voltage(instrument, voltage)
self.set_target_current(instrument, current)
self.set_power_status(instrument, powerStatus)
def print(self):
print (self .parrent+'-'+self.ID+':\t'+self.powerStatus)
print(
"Target\t"+str(self.targetVoltage) +'V\t'
+ str(self.targetCurrent) + 'A\t'
)
print(
"Output\t"+str(self.outputVoltage) +'V\t'
+ str(self.outputCurrent) + 'A\t'
)
def poll(self, instrument):
self.get_target_voltage(instrument)



APPENDIX C. CODE 57

def

def

def

def

def

self.get_target_current (instrument)
self.get_status(instrument)
self.get_output_voltage(instrument)
self.get_output_current (instrument)
get_target_voltage(self, instrument):
data = float(read_USBTMC(instrument, self.ID+':VOLTage?'))
self.targetVoltage = data
return data
get_target_current(self, instrument):
data = float(read_USBTMC(instrument, self.ID+':CURRent?'))
self.targetCurrent = data
return data
get_output_voltage(self, instrument):
if self.powerStatus == "ON":
#only poll the output voltage and current 2f the channel is ON
data = float(read_USBTMC(instrument, 'MEASure:VOLTage? '+ self.ID))
else:
data = 0O
self.outputVoltage = data
return data
get_output_current(self, instrument):
if self.powerStatus == "ON":
#only poll the output voltage and current if the channel is ON
data = float(read_USBTMC(instrument, 'MEASure:CURRent? '+ self.ID))
else:
data = 0O
self.outputCurrent = data

return data

set_target_voltage(self, instrument, voltage):
if voltage < O:
print(
"error: you are trying to set a negative voltage."
+ " Defaulted to O [V]"
)
voltage = 0
if voltage > 32:



APPENDIX C. CODE 58

def

def

def

print(
"error: you are trying to set a voltage "
+ "over 32 V. Defaulted to 32 [V]"
)
voltage = 32
self.targetVoltage = voltage
write_USBTMC(instrument, self.ID+':VOLTage ' +str(voltage))

set_target_current(self, instrument, current):
if current < O:
print(
"error: you are trying to set a negative current."
+" Defaulted to O [A]"
)
current = 0
if current > 3.2:
print("error: you are trying to set a current over 3.2 A."
+" Defaulted to 3.2 [A]")
current = 3.2
self.targetCurrent = current
write_USBTMC(instrument, self.ID+':CURRent ' +str(current))

set_power_status(self, instrument, powerStatus):
if powerStatus == "ON" or powerStatus == "OFF":
self .powerStatus = powerStatus
write_USBTMC(instrument, 'OUTPut '+self.ID+", "+powerStatus)
else:
print(
"error: you are trying to set a powerStatus that "
+ "does not exist. [ON/OFF]"

get_status(self, instrument):

# Function to get the CC/CV and the status of the PSU
powerStatus = "77"

cvee = "77"

data = read_USBTMC(instrument, 'SYSTem:STATus?')



APPENDIX C. CODE

if (self.ID == "CH1"):
if ((0x0010 & int(data,16)) > 0):
powerStatus = "ON"
else:

powerStatus = "OFF"

if (self.powerStatus == "ON"):
if ((0x0001 & int(data,16)) > 0):
cvce = "ce"
else:
cvcee = "cv"
else:
cvcc = "--"
if (self.ID == "CH2"):

if ((0x0020 & int(data,16)) > 0):
powerStatus = "ON"
else:

powerStatus = "OFF"

if (self.powerStatus == "ON"):
if ((0x0002 & int(data,16)) > 0):
cvee = "ce"
else:
cvce = "cv"
else:
cvee = "--"

self.powerStatus = powerStatus
self.CVCC = CVCC
return powerStatus, CVCC

# Class used to represent each PowerSupply
class PowerSupply:
def __init__(self, ID, instrument):
#self.instrument = instrument
self.debug = "Nothing yet"
self.ID = ID

59



APPENDIX C. CODE 60

def

self.CH1 = Channel(ID[-4:], "CH1", instrument)
self.CH2 = Channel(ID[-4:], "CH2", instrument)
self.channels = {}

self.channels["CH1"]
self.channels["CH2"]
self.alias = ID[-4:]

def print(self, channel=True):
print (self.alias+'\t'+self.ID)

Channel (ID[-4:], "CH1", instrument)
Channel (ID[-4:], "CH2", instrument)

if (channel == True):
for ¢ in self.channels:

self.channels[c] .print()

def poll(self, instrument):
for ¢ in self.channels:
self.channels[c].poll(instrument)
def reset(self, instrument):
# Function to set all channels to zero/off
for ¢ in self.channels:
self.channels[c].reset(instrument)
def recall(self, instrument, slot):
# Function to recall saved values
write_USBTMC(instrument, '#RCL ' + str(slot))
def save(self, instrument, slot):
# Function to save the current values of the PSU
write_USBTMC(instrument, '#*SAV ' + str(slot))

get_PSUs():

print ("Fetching the devices")
rm = pyvisa.ResourceManager ()
devices = rm.list_resources()
print("Devices: "+str(devices))
PSU_dict = {}

instruments = {}

print ("->\nInitializing the devices")
for d in devices:

try:



APPENDIX C. CODE 61

instrument = rm.open_resource(d)
data = read_USBTMC(instrument, '*IDN?7', MSG_DELAY)
temp_ID = str(data).split(',')[0][4:]
instruments([temp_ID[-4:]] = instrument
PSU_dict[temp_ID[-4:]] = PowerSupply(temp_ID, instrument)
except Exception as e:

raise e

#return the list of the power supply units, and the list of devices

return PSU_dict, devices, instruments

def init_string_parser():
customParser = argparse.ArgumentParser(description='This script is used to' +
'connect to one or multiple RSPD 3303C Power Suply Unit through USBTMC.' +
'Must be run as root')

customParser.add_argument('——status' ,'-s',
dest='request_status',
action='store_true',

help='Display the current status of the connected PSUs')

customParser.add_argument ('--list' ,'-1",
dest='request_list',
action='store_true',

help='Display the currently connected PSUs')

customParser.add_argument('--reset' ,'-r',
dest='reset',
action='store_true',

help='Reset the given device or a channel on the device if provided')

customParser.add_argument ('--recall' ,'-R',
type=int,
choices=range(1, 6),
dest='recall_value',

help='Recall a saved set of values from the device, [1 - 5]"')

customParser.add_argument('--save' ,'-S',



APPENDIX C. CODE

type=int,

choices=range(1, 6),

dest='save_value',

help='Recall a saved set of values from the device, [1 - 5]"')

customParser.add_argument ('--voltage' ,'-v',
type=float,
dest="'set_voltage',
help='Set the Voltage of a PSU channel, [0.0 - 32.0] V')

customParser.add_argument ('--current' ,'-a',
type=float,
dest='set_current',
help='Set the Current of a PSU channel, [0.00 - 3.20] A')

customParser.add_argument (' --power' ,'-p',
type=str,
dest="'set_power',
help='Set the Power status channel, ["ON"/"OFF"]')

customParser.add_argument ('--device' ,'-d',
type=str,
dest="psu',
help='The PSU device to select in order to change values')

customParser.add_argument ('--channel' ,'-c',
type=str,
dest='channel',
help='The Channel on the selected PSU device')

return customParser

def parser_error_handling(message):
if __name__ == '__main__"':

pass

#parser. error(message)

return message

62



APPENDIX C. CODE 63

def parse_list(list):
pared_list = customParser.parse_args(list)
return pared_list

def handle_parsed_string(PSU_dict, instruments, args):
logging.info(args)
# If invalid device is given
if (args.psu is not None and isinstance(PSU_dict, dict)):
if args.psu not in PSU_dict.keys():
return parser_error_handling(
"--psu is an invalid device. "

+ "List off available devices: {}".format(PSU_dict.keys())

# If invalid channel 1s given
if (args.channel is not None):
if (args.channel != "1" and args.channel != "2"):

return parser_error_handling("--channel must be either 1 or 2")

# Check that all required arguments for setting woltage
if (args.set_voltage is not None):
if (args.set_voltage >= 0.00 and args.set_voltage <= 32.0):
if args.psu is None:
return parser_error_handling(
"--voltage requires --psu, "
+ "or the psu is not found "
)
if args.channel is None:
return parser_error_handling("--voltage requires --channel")
# Set woltage in device
PSU_dict [args.psu] .channels["CH"+args.channel] .set_target_voltage(
instruments[args.psu],
args.set_voltage

else:



APPENDIX C. CODE 64

return parser_error_handling(
"--voltage must be in the range"
+ " [0.00 - 32.0]"

# Check that all required arguments for setting current
if (args.set_current is not None):
if (args.set_current >= 0.00 and args.set_current <= 3.20):
if args.psu is None:
return parser_error_handling(
"--current requires --psu,"
+ " or the psu is not found "
)
if args.channel is None:
return parser_error_handling("--current requires --channel")
# Set current in device
PSU_dict[args.psu] .channels["CH"+args.channel] .set_target_current(
instruments [args.psu],
args.set_current
)
else:
return parser_error_handling(
"--current must be in the"
+ " range [0.00 - 3.20]"

# Check all required arguments for toggling power
if (args.set_power is not None):
if (args.set_power.upper() == "ON" or args.set_power.upper() == "OFF"):
if args.psu is None:
return parser_error_handling("--power requires --psu")
if args.channel is None:
return parser_error_handling("--power requires --channel")
# Toggle power in device
PSU_dict [args.psu] .channels["CH"+args.channel] .set_power_status(
instruments[args.psu],

args.set_power



APPENDIX C. CODE 65

)

else:

return parser_error_handling("--power must be \"ON\" or \"OFF\"")

# Check all required arguments for toggling power
if (args.reset is True):
if args.psu is None:
return parser_error_handling("--reset requires --psu")
if args.channel is not None:
# Reset the channel
PSU_dict [args.psu] .channels["CH"+args.channel] .set(
instruments[args.psu],
0,
0,
"OFF"
)
else:
for ¢ in PSU_dict[args.psu].channels:
PSU_dict[args.psu] . channels[c] .set(
instruments[args.psu],
0,
0,
"OFF"

if args.recall_value is not None:

PSU_dict[args.psu] .recall(instruments[args.psul], args.recall_value)

if args.save_value is not None:

PSU_dict[args.psu] .save(instruments[args.psul], args.save_value)

# Print the status of the different devices
if args.request_status == True:
for d in PSU_dict:
PSU_dict[d].print()

# Print the connected devices 1f the --list argument is given,



APPENDIX C. CODE 66

# or there is mo arguments
if args.request_list == True or len(sys.argv) ==
print ("Connected PSU devices")
for d in PSU_dict:
print(d)

return "ok"

# Always wnitialize the parser

customParser = init_string_parser();

def main():
# This function will only run 2f 4t 2s not inclued as a library

# parse the args
args = customParser.parse_args();
PSU_dict, devices, instruments = get_PSUs()

handle_parsed_string(PSU_dict, instruments, args)

L

if __name__ == '__main__

# Only run main 1f this is the top level script

main()

C.3.3 PSU_GULpy

# Thanks to Clay McLeod for publishing the example code for a GUI using curses
# That this curses %s built upon

import sys,os

import curses

import time

import logging

import multiprocessing

import PSU_Controller

def ChannelWindow(stdscr,height,width,y_offset,x_offset,CH_N):
# This 1s a curses box for each channel in a PSU
chanwin = stdscr.subwin(height,width, y_offset, x_offset)

chanwin.box ()



APPENDIX C. CODE 67

chanwin.addstr(1,1,CH_N.ID, curses.color_pair(3))

chanwin.addstr(7,1, 'Output:'.rjust(width-3), curses.color_pair(3))
if CH_N.power_status == "ON":
if CH_N.CVCC == "CC":
chanwin.addstr(2,1,CH_N.CVCC, curses.color_pair(4))
elif CH_N.CVCC == "CV":
chanwin.addstr(2,1,CH_N.CVCC, curses.color_pair(5))
else:

chanwin.addstr(2,1,"--", curses.color_pair(3))

chanwin.addstr(1,8,"[0N]", curses.color_pair(7))
chanwin.addstr(8,1,
"{:.2f} V" .format (CH_N.output_voltage).rjust(width-3),
curses.color_pair(5)
)
chanwin.addstr (9,1,
"{:.2f} A" .format(CH_N.output_current).rjust(width-3),

curses.color_pair(4)

)
elif CH_N.power_status == "OFF":
chanwin.addstr(1,7,"[0FF]", curses.color_pair(6))
chanwin.addstr(8,1,"' . V'.rjust(width-3), curses.color_pair(3))
chanwin.addstr(9,1,"' . A' .rjust(width-3), curses.color_pair(3))
else:
chanwin.addstr(1,9," [7]", curses.color_pair(3))

chanwin.addstr(3,1, 'Target:'.rjust(width-3), curses.color_pair(3))
chanwin.addstr (4,1,
"{:.2f} V".format(CH_N.target_voltage).rjust(width-3),
curses.color_pair(5)
)
chanwin.addstr (5,1,
"{:.2f} A".format(CH_N.target_current).rjust(width-3),
curses.color_pair(4)
)
chanwin.bkgd(' ', curses.color_pair(3))

chanwin.refresh()



APPENDIX C.

CODE 68

def PowerSupplyWindow(stdscr,height,width,y_offset,x_offset,PSU):

# This
psuwin
psuwin
psuwin.
psuwin.

psuwin.

psuwin.

1S a curses box for each PSU

= stdscr.subwin(height, width -2, y_offset, x_offset+1)
.box ()

addstr(1,2,PSU.alias, curses.color_pair(3))

addstr(2,2,"Power Supply Unit", curses.color_pair(3))
addstr(3,2,"RSPD 3303C", curses.color_pair(3))

bkgd(' ', curses.color_pair(3))

#ChannelWindow(stdscr,20,40,2,0, "PSU_ID")
ChannelWindow(

stdscr,

height-4,

int ((width-4)/2),

4+y_offset,

2+x_offset,

PSU.channels["CH1"]

)

ChannelWindow(
stdscr,
height-4,
int ((width-4)/2),
4+y_offset,
x_offset+int (width/2),
PSU.channels["CH2"]

)

psuwin.

refresh()

def polling_function(
PSU_shared_dict,

state,

exit_condition,

command_queue,
text_feedback

):

# Get the PSUs



APPENDIX C. CODE 69

PSU_dict_tmp, devices, instruments = PSU_Controller.get_PSUs()

# initialize the variables

tmpstate = state

for d in PSU_dict_tmp.keys():
PSU_shared_dict[d] = PSU_dict_tmp[d]

logging.info(devices)

# Errorhandling

if len(devices) == 0:

logging.info(

"ERROR - No power supply found\nNo power supply found."
" \nHave you remembered to run this command as root?"
" \nHave you remembered to turn the power on?"

" \nAlternatively you can try the command:"

+ + + o+

" \n$ lsusb\nAnd look if the power supply show up"
)
tmpstate[0] = "ERROR"
tmpstate[1] = "No Power Supply Found"
state = tmpstate
exit_condition.value = True
else:
tmpstate[0] = "IDLE"
tmpstate[1] = "Ready to poll / send"
logging.info("Initialization of devices complete.\nReady to poll / send")

state = tmpstate

# Start polling
while (exit_condition.value == False):
if (state[0] == "POLL"):
# If there 2s a command to send, send 2t
if (len(command_queue) > 0):
# get command and update command queue
tmp_command_queue = command_queue
command = tmp_command_queue.pop ()

command_queue = tmp_command_queue



APPENDIX C. CODE

logging.info("command: {}".format(command))

# Split command wnto a list

split_command = command.split(" ")
logging.info("split_command: {}".format(split_command))

# Parse the command

parsed_command = PSU_Controller.parse_list(split_command)
logging.info("parsed_command: {}".format(parsed_command))

# handle the command
PSU_Controller.handle_parsed_string(
PSU_shared_dict,
instruments,
parsed_command

)

else:

else:

# 1f there 1s mo command, continue polling
for d in PSU_dict_tmp.keys():
tmpstate = state
for ¢ in PSU_dict_tmp[d].channels:
tmpstate[1] = ("Polling " + PSU_dict_tmp[d].alias
+ "-" + PSU_dict_tmp[d] . channels[c].ID)
state = tmpstate
PSU_dict_tmp[d].channels[c] .poll(instruments[d])
PSU_shared_dict[d] = PSU_dict_tmp[d]
state = tmpstate
#update the state
tmpstate[0] = "IDLE"
tmpstate[1] = "Finished POLLing"
state = tmpstate
#info.logging (tmpstate)

pass

# When this thread stops the other thread must stop

logging.info("Turning off the POLLing function")

exit_condition.value = True

70



APPENDIX C. CODE

def queue_command(command, exit_condition, command_queue):
logging.info("Command entered: %s", command)
if command.upper() [0:4] == "EXIT":

exit_condition.value = True

# Get a local copy of queue

tmp_command_queue = command_queue

# Add to queue

tmp_command_queue . append (command)

# Update queue
if command_queue !'= tmp_command_queue:

command_queue = tmp_command_queue

def main():

# initialize the logging

logging.basicConfig(
filename='PowerSupplyGUI.log',
level=logging. INFO,
format='%(asctime)s J (message)s'

)

logging.info('Started %s',os.path.basename(__file__))

#1 nitialize manager for synchronizing variables between threads
manager = multiprocessing.Manager ()
PSU_shared_dict = manager.dict()
command_queue = manager.list()
state = manager.list(["INIT", ""])
exit_condition = multiprocessing.Value('b', False)
text_feedback = multiprocessing.Array(
'c', b"Type \'--help\' or \'-h\' "
+ " for help. Type \'exit\' to exit"

# Start the pricessing

71



APPENDIX C. CODE

POLL_process = multiprocessing.Process(
name="POLL",
target=polling_function,
args=(

PSU_shared_dict,
state,
exit_condition,
command_queue,
text_feedback,
),
daemon=True

)

GUI_process = multiprocessing.Process(
name="GUI",
target=curses.wrapper,
args=(

draw_menu,

PSU_shared_dict,

state,

exit_condition,

command_queue,

text_feedback,
),

daemon=True

GUI_process.start()
logging.info('The POLL_process is started')

POLL_process.start()

logging.info('The GUI_rocess is started')

POLL_process.join()

logging.info('The POLL_process is joined')
print ("POLL_process stopped")

GUI_process. join()

logging.info('The GUI_rocess is joined')

print ("GUI_process stopped")

72



APPENDIX C. CODE

logging.info('exit')

def draw_menu(
stdscr,
PSU_shared_dict,
state,
exit_condition,
command_queue,
text_feedback
):
timeout = 0
# wait for the Initialization to complete
while (state[0] == "INIT"):
timeout = timeout + 1
time.sleep(1)
if (state[0] == "ERROR"):
exit()
# Get local copy of the shared dictonary
PSUs = PSU_shared_dict

# ensure the terminal window 1s large enough do display the PSUs
height, width = stdscr.getmaxyx()
if (height < 20 or (width < (30 * len(PSUs)))):
exit_condition.value = True
print ("The terminal window is too small to show the PSUs!")

time.sleep(10)

tmpstate = state
k =0

# Start colors wn curses

curses.start_color()

curses.init_pair(1, curses.COLOR_CYAN, curses.COLOR_BLACK)
curses.init_pair(2, curses.COLOR_RED, curses.COLOR_BLACK)
curses.init_pair(3, curses.COLOR_BLACK, curses.COLOR_WHITE)
curses.init_pair(4, curses.COLOR_RED, curses.COLOR_WHITE)
curses.init_pair(5, curses.COLOR_GREEN, curses.COLOR_WHITE)



APPENDIX C. CODE 74

curses.init_pair(6, curses.COLOR_WHITE, curses.COLOR_RED)
curses.init_pair(7, curses.COLOR_WHITE, curses.COLOR_GREEN)

stdscr.timeout (100)
tic = time.time()

inputs = ""

while (exit_condition.value == False):
# Initialization

stdscr.clear ()

# Declaration of strings

title = "Power Supply Unit Controller"[:width-1]

# Rendering the tittle, input and feedback text
stdscr.addstr(0, 1, title, curses.color_pair(1))
stdscr.addstr(19, 1, text_feedback.value, curses.color_pair(1))

stdscr.addstr(18, 1, "Command: "+inputs)

# Update state
state = tmpstate

# render the PSUs

x_offset = 0

for d in PSU_shared_dict.keys():
#PSUs[d].poll()
PowerSupplyWindow(stdscr,15,30,2,0+x_offset, PSU_shared_dict[d])
x_offset = x_offset + 30

# Get inputs
k = stdscr.getch()

if k > 0:
if k == 263:
inputs = inputs[:-1]
elif k == 10:

logging.info("inputs\t" + inputs)



APPENDIX C. CODE 75

queue_command (inputs, exit_condition, command_queue)
inputs = ""

else:
inputs = inputs + chr(k)

# Refresh screen

stdscr.refresh()
if time.time() - tic > 0.8 * len(PSU_shared_dict) and state[0] == "IDLE":

# 1t 15 estimated to take 0.6 seconds to poll per machine,
# so 0.8 1s just to give 21t a bit extra timeout

# 1f i1t 1s idle for that 2t will start polling
tmpstate[0] = "POLL"

tmpstate[1] = "Polling"

state = tmpstate

logging.info("Setting state to POLL")

tic = time.time()

# When this thread stops the other thread must stop

exit_condition.value = True

if __name__ == "__main__":

main()



APPENDIX C. CODE 76

C.4 Implemented Tests

Due to the length of the files, only some tests are included here.

C.4.1 ping timeout.py

from lib.regression_test_settings import hypsoCliLogin
from 1ib.tools import (
send_system_command,
csp_ping
)
import subprocess
import argparse
import time

import sys

parser = argparse.ArgumentParser (description='Ping a CSP node.')
parser.add_argument ('node', metavar='loc', type=str,

help='which node to ping')
parser.add_argument('-t', type=int, default=10, help='timeout')

args = parser.parse_args()

hypso_cli = subprocess.Popen(
[hypsoCliLogin],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
universal_newlines=True,
shell=True,
bufsize=0)

start_time = time.time()
delta=0
while delta < args.t:
connection = csp_ping(hypso_cli, args.node)

print (connection)



APPENDIX C. CODE

if connection:
print("the booting took {}".format(time.time()-start_time))
break

hypso_cli.terminate()

delta=time.time()-start_time

print(delta, args.t)

hypso_cli = subprocess.Popen(
[hypsoCliLogin],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
universal_newlines=True,
shell=True,
bufsize=0)

if connection == True:
sys.exit(0)
else:

sys.exit(-1)

C.4.2 ping simple.py

from lib.regression_test_settings import hypsoCliLogin
from 1lib.tools import (
send_system_command,
csp_ping
)
import subprocess
import argparse

import sys

parser = argparse.ArgumentParser(description='Ping a CSP node.')
parser.add_argument ('node', metavar='loc', type=str,
help='which node to ping')
parser.add_argument ('--timeout','-t', metavar='timeout', type=int,
help='how long to wait for the ping', default=2 )

args = parser.parse_args()



APPENDIX C. CODE 78

print ("Pinging node {}, with a max timeout of {} seconds".format(
args.node,
args.timeout
)
hypso_cli = subprocess.Popen(
[hypsoCliLogin],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
universal_newlines=True,
shell=True,
bufsize=0)

result = csp_ping(hypso_cli, args.node, delay=args.timeout)
if result == True:

sys.exit(0)
else:

sys.exit(-1)

C.4.3 ping_all.py

from lib.regression_test_settings import hypsoCliLogin
from 1lib.tools import (
send_system_command,
csp_ping
)
import subprocess
import argparse

import sys

parser = argparse.ArgumentParser (description='Ping a CSP node.')

parser.add_argument ('--timeout','-t', metavar='timeout', type=int,
help='how long to wait for the ping', default=30 )

args = parser.parse_args()

print ("Pinging all nodes, with a max timeout of {} seconds".format(



APPENDIX C. CODE

args.node,
args.timeout
)
hypso_cli = subprocess.Popen(
[hypsoCliLogin],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
universal_newlines=True,
shell=True,
bufsize=0)

result = csp_ping_all(hypso_cli, delay=args.timeout)
print ("The result of the test:", result)
if result == "ALL":

sys.exit(0)

elif result == "SOME":
sys.exit(1)
elif result == "NONE":
sys.exit(-1)
elif result == "TIMEOUT":
sys.exit(-2)
else:
# If there is an error or the result == "ERROR"

sys.exit(-3)

C.4.4 tools.py

import time

import subprocess
import os

import datetime
import numpy as np

import re

from os import path
from PIL import Image
from lib.database_write import update_data

79



APPENDIX C. CODE

from lib.database_read import (
get_stored_data,
check_table_empty

)

from lib.regression_test_settings import (
SleepDuration,
picobobLoginShellRemote,
decompress,
camera_number,
opu_caminfo,

hypsoCliLogin

# some lines of code has been removed to reduce the number of lines

def csp_ping_all(hypso_cli, delay=30, wait=0.1):
start = time.time()
send_command (hypso_cli, "csp ping all")
flag="NONE"
while True:
lstart = time.time()
while time.time() - lstart < wait:
waiting = True
line = hypso_cli.stdout.readline() .strip('\n")
if "error" in line.lower() or "not found" in line.lower():
print(line)
return "ERROR"
if "Pinging node" in line:
print(line)
if "Ping received" in line:
print(line)
# Will only be encountered the first time a ping is received
if flag == "NONE":
flag = "ALL"
if "Failed to ping" in line:

print(line)

80



APPENDIX C. CODE 81

def

# If there has been a ping, but not on this one, then at least one
# has succeeded, and one has failed, this some has succeeded
if flag == "ALL":
flag = "SOME"
if time.time() - start > delay:
print("csp_ping timed out after",delay,"seconds.")
return "TIMEOUT"
if "exited with return value" in line:
duration = time.time() - start
print("duration: {}".format(duration))
return flag

return False

csp_ping(hypso_cli, id_str, delay=2, wait=0.1):
start = time.time()
send_command (hypso_cli, "csp ping" + id_str)
flag=False
while True:
lstart = time.time()
while time.time() - lstart < wait:
waiting = True
line = hypso_cli.stdout.readline().strip('\n')
if "error" in line.lower() or "not found" in line.lower():
print(line)
return False
if "Ping received" in line:
flag = True
duration = time.time() - start
print("duration: {}".format(duration))
return flag
if "Failed to ping" in line:
print(line)
return False
if time.time() - start > delay:
print("csp_ping timed out after",delay,"seconds.")
return flag

return False



APPENDIX C. CODE 82

# the rest of the lines of code has been removed to reduce the number of lines



Bibliography

Anderson, C. (2015), ‘Docker [Software engineering|’, IEEE software 32(3), 102-c3. Place: LOS
ALAMITOS Publisher: IEEE.

Bacic, M. (2005), On hardware-in-the-loop simulation, in ‘Proceedings of the 44th IEEE Confer-
ence on Decision and Control’, pp. 3194-3198. ISSN: 0191-2216.

Braun, T. M. (2012), ‘Satellite communications payload and system’. ISBN: 1-283-54966-2 Place:
Hoboken, N.J.

Davis, A. L. (2019), Learning Groovy 3: Java-Based Dynamic Scripting, Apress LP, Berkeley, CA.

Di Natale, M. (2012), ‘Understanding and Using the Controller Area Network Communication
Protocol : Theory and Practice’. Edition: 1st ed. 2012. ISBN: 1-4614-0314-6 Place: New York,
NY.

ECSS Secretariat (2012), ECSS system, Glossary of terms, Technical report, ESA-ESTEC Require-
ments & Standards Division, ECSS.
URL: http:/lecss.nl/get_attachment.php?file=standards/ecss-s/ECSS-S-ST-00-
01CI1October2012.pdf

Garrett D’Amore (2021), ‘NNG Reference Manual’.
URL: https://staysail.tech/books/nng_reference/

HYPSO Project Team (2019), SDR-DR-001 System Design Report, Technical report, NTNU, In-
ternal Report. Non-Published.

HYPSO Project Team (2020a), HYPSO-DR-001: System Design Report, Technical report, NTNU,
Internal Report. Non-Published.

HYPSO Project Team (2020b), HYPSO-DR-010 RGB Camera Payload, Technical report, NTNU,
Internal Report. Non-Published.

HYPSO Project Team (2020¢), HYPSO-MRD-001 Mission Requirements Document, Technical
report, NTNU.

83



BIBLIOGRAPHY 84

HYPSO Project Team (2020d), HYPSO-SRD-002 HYPSO System Requirements Document, Tech-
nical report, NTNU, Internal Report. Non-Published.

Jahren, E. R. (2015), ‘Design and Implementation of a Reliable Transport Layer Protocol for
NUTS,, p. 6.
URL: https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2371549/13673_FULLTEXT. pdf

Jordheim, O. (2020), ‘FMECA Review+Detection’.
URL: Internal Document. Non-Published

Langer, D. & Hjertenas, M. (2020), HYPSO-DR-010 RGB Camera Payload, Technical report,
NTNU, Internal Report. Non-Published.

Mabrouk, E. (2017), ‘What are SmallSats and CubeSats?’.
URL: http://www.nasa.gov/content/what-are-smallsats-and-cubesats

Marton, A. (2020), Satellite Software Testing with Hardware andHumans in the Loop, Technical
report, NTNU, Internal Report. Non-Published.

Maymala, J. (2015), PostgreSQL for data architects : discover how to design, develop, and main-
tain your database application effectively with postgreSQL, Community experience distilled,
1st edition. edn, Packt Publishing, Birmingham, England.

Myers, G. ]., Badgett, T., Thomas, T. M. & Sandler, C. (2004), The art of software testing, Vol. 2,
Wiley Online Library.

NanoAvionics (2018), ‘High-Performance multi-Purpose 6U nano-Satellite Bus’.
URL: https://nanoavionics.com/wp-content/uploads/2021/06/M6P-2021-06-online-single.pdf

Orlandic, M. (2019), HYPSO-TPL-002 Software Verification and Validation Plan, Technical re-
port, NTNU, Internal Report. Non-Published.

Raab, E, Caverly, R., Campbell, R., Eron, M., Hecht, J., Mediano, A., Myer, D. & Walker, J. (2002),
‘HF, VHF, and UHF systems and technology’, IEEE Transactions on Microwave Theory and
Techniques 50(3), 888—899.

RS PRO (n.d.), ‘Quick Start SPD3303CProgrammable DC Power Supply.
URL: https://uk.rs-online.com/web/p/bench-power-supplies/1236467/

Shaw, G. & Burke, H.-H. (2003), ‘Spectral imaging for remote sensing’, The Lincoln Laboratory
journal 14(1), 3-28.



BIBLIOGRAPHY 85

Sigernes, E, Syrjdsuo, M., Storvold, R, Fortuna, J., Grotte, M. E. S. & Johansen, T. A. (2018), ‘Do it
yourself hyperspectral imager for handheld to airborne operations’. Publisher: Optical Society
of America.

URL: http://hdl.handle.net/11250/2579680

Simpson, D. (2015), Extending Jenkins, Community Experience Distilled, Packt Publishing,
Birmingham, UK.
URL: http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1134493&site=ehost-
live

Spinellis, D. (2012), ‘Git’, IEEE software 29(3), 100-101. Place: Los Alamitos, CA Publisher: IEEE.

Srinivas, R., Nithyanandan, L., Umadevi, G., Rao, P. V. V. S. & Kumar, P. N. (2011), Design and
implementation of S-band Multi-mission satellite positioning data simulator for IRS satellites,
in ‘2011 IEEE Applied Electromagnetics Conference (AEMC)’, pp. 1-4.

Stross-Radschinski, A. C., Hasecke, J. U. & Lemburg, M.-A. (2014), ‘PSF Python Brochure Vol. I
final Download .pdf—"
URL: https://brochure.getpython.info/medial/releases/psf-python-brochure-vol.-i-final-
download.pdf

Tran, T. A. (2019), ‘Thermal Design Analysis and Integration of a Hyperspectral Imaging Payload
for a 6U CubeSat’. Accepted: 2019-10-18T14:01:47Z Publisher: NTNU.
URL: hittps://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2623206

Villela, T., Costa, C. A, Brandao, A. M., Bueno, E T. & Leonardi, R. (2019), ‘“Towards the
Thousandth CubeSat: A Statistical Overview’, International journal of aerospace engineering
2019, 1-13. Publisher: Hindawi Limited, Hindawi.

Wenschel Lan (2020), ‘CubeSat Design Specification’.
URL: https:/lorg.ntnu.nolstudsat/docs/proposal_1/A8%20-%20Cubesat%20Design%20Specification.pdf



@ NTNU

Norwegian University of
Science and Technology



