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Abstract
Automotive design and engineering is a complex endeavor. Especially in racing. Engi-
neers need to deploy a wide range of software tools to build the fastest racecar possible.
One such tool is the lap time simulator. The lap time simulator allows a holistic simula-
tion of a vehicle design, meaning the entire vehicle is simulated driving around a track,
producing a simulated lap time. The goal is to simulate the vehicle and find the limit of
performance, producing the minimum lap time the vehicle is capable of around a repre-
sentative track.

In this thesis, a lap time simulator is implemented for use at the Formula Student team
Revolve NTNU. A free trajectory, minimum time maneuvering problem is defined as an
optimal control problem, that is transcribed into a nonlinear programming problem us-
ing a direct orthogonal collocation method. The transcription is done in MATLAB using
the open-source software framework CasADi, and the resulting NLP is solved using the
interior point method with the solver Ipopt.

A planar, double-track vehicle model is deployed for proper tire slip modeling, utilized in
a nonlinear tire model. The vehicle model also has load transfer, aerodynamics, and the
powertrain modeled. The track model is generated from interpolating GNSS coordinates
recorded at Formula Student competitions, creating a curvilinear abscissa. An optimal
control scheme is deployed to generate a smooth abscissa curvature for the minimum time
maneuvering problem. The results of the simulator are presented and compared to teleme-
try data, a different lap time simulator using the quasi steady state methodology, and two
vehicle designs are compared.

The simulator was shown to be an accurate representation of the real vehicle, and at a
higher computational cost, it yields a more accurate description of the vehicle dynamics
of a real vehicle than the QSS simulator.
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Sammendrag
Bildesign er en kompleks jobb, spesielt innen racing. Ingeniører bruker et bredt spekter av
programvare for å bygge en racerbil som er så rask som mulig. Et slikt verktøy er runde-
tidssimulatoren. Rundetidssimulatoren gjør det ulig å simulere et helhetlig kjøretøydesign,
noe som betyr at man simulerer at kjøretøyet kjører gjennom en bane og produserer en
simulert rundetid. Målet er å simulere kjøretøyet, finne ytterpunktet av ytelsen, og pro-
dusere den minimale rundetiden kjøretøyet kan ha rundt en representativ bane.

I denne masteroppgaven blir en rundetidssimulator implementert for bruk hos Formula
Student-laget Revolve NTNU. En fri bane, minimalt manøvreringsproblem blir definert
som et optimal control problem, som skrives om til et ikke-lineært optimaliseringsproblem
ved hjelp av en direkte ortogonal kollokasjonsmetode. Dette gjøres i MATLAB ved hjelp
av rammeverket CasADi, og det resulterende ikke-lineære optimaliseringsproblemet løses
ved hjelp av interior point-metoden med solveren Ipopt.

En plan, dobbeltsporet kjøretøymodell blir brukt for å oppnå god dekkmodellering, og
det blir brukt sammen med en ikke-lineær dekkmodell. Kjøretøymodellen har også las-
toverføring, aerodynamikk og drivlinjen modellert. Modellen av banen er generert ved å
interpolere GNSS-koordinater som er målt under kjøring i Formula Student-konkurranser.
Et optimal control problem blir brukt for å generere en jevn banekurvatur for simulatoren.
Resultatene av simulatoren blir presentert og sammenlignet med telemetridata, og en an-
nen rundetidssimulator som bygger på en quasi steady state metode. To kjøretøydesign
blir også sammenlignet.

Simulatoren ble vist til å være en god representasjon av det virkelige kjøretøyet, og med
en høyere beregningskostnad enn QSS-simulatoren, gir den en mer nøyaktig beskrivelse
av dynamikken til et ekte kjøretøy.
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Chapter 1
Introduction

1.1 Lap time simulation

The final judge in a competition between racecars is the time on the stopwatch. The time
a vehicle uses to complete a given number of laps around a course or track decides the
winners and the losers. The goal of a team building and running a racecar is therefore
fixed on making its vehicle as fast as possible, where fast is defined as able to minimize
the time spent traveling through a given track. Notice the two aspects of vehicle design and
vehicle control embedded in this process. To achieve minimum lap times the two aspects
need to be optimized. The vehicle must be designed and built to minimize the lap time,
and the driver must be able to control the vehicle to minimize the lap time when running.
This dual problem creates the need for a tool to quantify how a vehicle would perform in
these two aspects.

Engineers utilize many computer-based tools to achieve their tasks. Computer Aided
Design (CAD), Computer Aided Manufacturing (CAM), Computational Fluid Dynam-
ics (CFD), Finite Element Method (FEM), are all examples of this, and are common at
an engineering firm or establishment. In the world of vehicle design and racing, one such
tool is Lap Time Simulation (LTS). LTS software vary widely, but one major part of LTS
is to solve what is referred to in the literature as the Minimum Lap Time Problem (MLTP)
[3]. The objective is to simulate a vehicle driving around a representative track, and taking
note of how fast the vehicle was able to do that.

1



Chapter 1. Introduction

1.2 Formula Student

Formula Student (FS) is the world’s largest engineering competition for students. It has a
large presence in Europe, but is not as recognized in Norway. FS is about designing and
racing an open-wheel formula-style racecar, but the competition is about engineering. The
vehicle is just a good platform to build an engineering completion on. Building a racecar is
interdisciplinary, both in engineering, and academia at large. The bulk of teams are made
up of mechanical, and electrical engineering students, broadly speaking, but leadership
and economics also find their space on the teams.

The engineering focus becomes apparent when looking closer at the competition structure.
The FS competitions are divided into two main parts: Dynamic, and static events. The
dynamic events are driving events designed to push the vehicle and driver to the limit of
performance, and the time on the stopwatch is the judge. The dynamic events are Skidpad,
Acceleration, Autocross (AutoX), and Endurance. All performance aspects of the vehicle
are tested, on top of the efficiency and reliability. The static events are Business Plan
Presentation, Cost and Manufacturing, and Engineering Design (ED). In these events, the
economics and financial management of the vehicle design are evaluated, and the vehicle
design and its designers are evaluated and tested by judges from industry leaders, such
as major car manufacturers and racing teams. In short, the vehicle design must perform
well on the track, but the engineering choices made in the design of the vehicle are just
as important. The formula student engineers, therefore, need a keen eye on the stopwatch,
as well as the reasoning behind the vehicle design. LTS software fits into this narrative,
providing a holistic perspective on the vehicle design, with information about the lap time
and the vehicle dynamics that produced the result, without the need for physical testing.

1.3 Revolve NTNU

Revolve NTNU is an independent student organization from Trondheim that competes in
FS. Revolve was started in 2010 and completed its first racecar in 2012. Every year a new
racecar is designed and produced by Revolve. The racecar is conceptualized, designed,
built, tested, and raced, all in one year. With the excepting of the 2020 vehicle R20 that
was canceled due to the COVID-19 pandemic, Revolve has been able to join other FS
teams in competition’s every year, achieving a top 10 world ranking.

This achievement has come as a result of dedicated, innovative, and ambitious members,
with the help of great sponsors. To be in the front of the pack, cutting-edge technology
is needed. The racecar gained an aerodynamic package in 2013. The central chassis, or

2



1.3 Revolve NTNU

monocoque, has been made from carbon fiber and aluminum honeycomb since 2014. The
powertrain was made electric in 2014. In 2016 the one motor, rear-wheel drive power-
train, was replaced by four-wheel drive, with four hub mounted motors. This allowed the
introduction of a torque vectoring algorithm, to extract all available grip and control in
the vehicle, placing it on the edge of performance. In 2019 the in-house constructed mo-
tors were driven by an in-house developed inverter and controller. For 2021 Revolve has
produced its lightest racecar ever, with the adoption of a smaller tire than what has been
on our racecars for the last four years. This gives weight cuts in the unsprung, rotating
mass of the vehicle, less aerodynamic interference, and gives our drivers a more forgiving
vehicle to drive on the edge of grip and control.

The cutting-edge designs listed are backed by the cutting-edge software tools written about
earlier in the introduction. However, one area lacking has been the capabilities in LTS at
Revolve. No dedicated effort has been made to establish tools and procedures for LTS at
Revolve. Specific studies have been made, but not taken further and made as established
as our CAD or FEM software. For Team 2021 this changed, and a dedicated member
was hired to research and develop LTS tools at Revolve NTNU. The aim is to be able to
simulate vehicle designs to find potential performance increases, but also to better justify
design decisions made, as both are needed to achieve a good result in a FS competition.

Figure 1.1: Revolve NTNU’s 2021 racecar: Luna
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Chapter 1. Introduction

1.4 Thesis structure

Chapter 1: Introduction gives an overview of the origin of the project and establishes
the needed background for the utility of the work.

Chapter 2: Initial assessment and motivation is an audit of the relevant related work.
The research goals for the project are established, as a choice of methodology is made.

Chapter 3: Theory gives an overview of the relevant theory. Basic vehicle dynamics are
introduced to give the background for the modeling in the simulator. An introduction to
relevant Optimal Control (OC) theory is given, with a focus on the direct transcription
methods.

Chapter 4: Method presents the methodology and process used when building the simu-
lator. The vehicle modeling and track generation are presented, and the formulation of the
MLTP as an Optimal Control Problem (OCP) transcribed into an Non Linear Programming
(NLP) is covered.

Chapter 5: Results presents the resulting track maps from generating the tracks. The re-
sulting lap times, velocity, and acceleration profiles from the simulator are also presented,
and compared to both telemetry and the QSS LTS produced in the project thesis by [1].
Two different vehicle designs are also compared.

Chapter 6: Discussion evaluates the results presented in chapter 5, with special emphasis
on identifying limitations in the modeling and simulation methodology chosen. A discus-
sion over the pros and cons of an OC based simulator compared to QSS based simulator
is also made.

Chapter 7: Conclusion and Future Work summarizes what has been achieved through
this MAster of Science project, answering the research goals proposed in chapter 2. A
comprehensive list of possible future extensions to the work presented in this thesis is also
presented.
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Chapter 2
Initial assessment and motivation

2.1 Motivation

In the authors project thesis [1], a QSS LTS was produced. The simulator was built on
methodology well established in the relevant literature [4–10]. The methodology used is
based on a steady-state approximation of the vehicle dynamics, used to solve for the lon-
gitudinal acceleration on each segment of a discretized track. In [1] a double-track vehicle
model with an aerodynamic package and Pacejka tire model was used. The vehicle model
was used in a numerical optimization step, to build a performance envelope containing the
steady-state, longitudinal, and lateral acceleration information for a range of velocities.
The performance envelope was used to build a velocity profile for a given track centerline,
consisting of short segments of constant radius turns. It was shown to be a good approx-
imation to the real vehicle, though with some important caveats. The QSS method was
chosen as it represented an optimization approach to finding the minimum lap time, the
on-limit performance, at a relatively low computational cost. The QSS method does lack
actual vehicle dynamics, or the transient effects as a result of accelerating a rigid body. As
a result, a LTS capable of modeling transient effects is desired.
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Chapter 2. Initial assessment and motivation

2.2 Previous work and contributions

2.2.1 Transient simulation methods

Moving beyond the methodology of the QSS LTS, there are several relevant simulation
methods outlined in the literature, that take into account the transient effects of a vehicle.
The QSS method was expanded by Patton [9] to include transient effects.

A large subcategory of LTS is the Driver Model method of simulation [11–14]. There
are several different methods, but the commonality is that the methods try to emulate
the behavior of a driver. As in [1], these methods are deemed suboptimal, as the need of
Revolve NTNU is LTS software that finds the on-limit handling performance of the vehicle
under study. This is not the case with the driver model, as the behavior of a driver is not
trivial to emulate through automatic control. Vehicle performance analysis is therefore
often limited to just the vehicle [15, Chapter 5].

2.2.2 Optimal Control

The Optimal Control (OC) based LTS is the final large category of lap time simulation
software. The OC based LTS formulates the simulation as a large optimization problem,
where the aim is to solve for the optimal vehicle inputs that minimize the lap time. The
trajectory can be fixed or free, where the latter is commonly referred to as a Minimal
Time Manoeuvring (MTM) problem where the trajectory and control inputs are optimized
simultaneously. This produces the optimal racing line for a track that minimizes the lap
time. Much like the QSS method, this method finds the on-limit handling of the vehicle,
taking the driver out of the analysis. Unlike the QSS method, as the entire lap is solved as
one large optimization problem, dynamics and transient effects are included. This expands
the possibility for modeling in the LTS, as a more complete vehicle model can be used.

Using OC for LTS is well established in the relevant literature. One of the earliest contri-
butions was made by Casanova [16], as he applied a direct multiple shooting method to
transcribe the MTM OCP into an NLP. A full lap simulation used hours of CPU time. In
the simulation, he used a double track, planar vehicle model, with a nonlinear tire model,
and aerodynamic package. The effects of moving the Center of Gravity (CoG) and chang-
ing the yaw inertia of the vehicle were demonstrated on the MTM problem, validating
the underlying vehicle dynamics. Kelly [17] used a direct single shooting method, with
stability constraints applied on the maneuver. It was successful at modeling the nonlinear
model, including suspension dynamics. Much like Casanova, a CPU-time measured in
hours was reported.
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2.2 Previous work and contributions

Perantoni and Limebeer [2] used a direct collocation method to transcribe the MTM into an
NLP. The paper also outlines a method for generating a track centerline, formulating a sep-
arate OCP to create a smooth track centerline as an input to the OC LTS. The methodology
for vehicle parameter optimization was also shown. The CPU time was reported to be less
than 15 minutes. The reduction in CPU-time was due to the use of a curvilinear track de-
scription, eliminating stiff dynamics in the vehicle model, model non-dimensionalization
and scaling, approximating non-smooth model features with differentiable functions, and
the use of computer-generated analytic derivatives in combination with an open-source
sparse large-scale NLP solver. In two subsequent papers [18, 19] Perantoni and Limebeer
expanded their work and modeled the track in three dimensions using a ribbon. This fur-
thers the work done in [2], generating a smooth track centerline from GPS data, but now
including changes in elevation and attitude. The effects of the change in elevation and
vehicle attitude were demonstrated on a lap of Circuit de Catalunya in Barcelona, Spain.

Van Koutrik [20] used a direct collocation approach to simulate a double-track vehicle
model, with load transfer, a basic aerodynamic package, and limited-slip differential,
through short maneuvers. The effects of the different model aspects were evaluated, show-
ing the importance of each aspect of the model. The removal of the fast wheel dynamics
from the model was shown to have little effect on the simulations, and the tire slip ratios
were used as model inputs instead of the more common wheel angular velocities. A com-
parison between the Sequential Quadratic Programming (SQP) method and Interior-point
method for solving the resulting NLP was shown, and the Interior-point was shown to be
advantageous as the size of the NLP grew.

Veneri and Massaro [7] produced a different type of LTS deploying an OCP formulation
using a performance envelope based on a QSS vehicle model much like in [1], but with a
free trajectory optimization step as is usually seen in OC based LTS. The method was used
to simulate both a four-wheel car model and a two-wheel motorcycle model. The solution
of a free trajectory problem was compared to solving the problem using a fixed trajectory
and also compared to a fixed trajectory apex-finding method like the one deployed in [1].
The results showed an increased CPU runtime for the free trajectory simulation compared
to the fixed trajectory and apex-finding methods. Their work opens the possibility to utilize
experimental performance envelopes from test data, as opposed to numerically derived
envelopes.

Christ et al. [3] have produced a series of papers on their work in the autonomous racing
series Roborace [21]. In [3] Christ et al. used a free trajectory OCP formulation solved
with a direct orthogonal collocation method to plan the time-optimal racing line for an
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Chapter 2. Initial assessment and motivation

autonomous racecar. Reduced CPU-runtimes were achieved using a curvilinear track de-
scription, algorithmic differentiation with the open-source software framework CasADi
[22], and track centerline smoothing by approximate spline regression. The NLP was
solved using the Interior-point method with Ipopt [23]. Both a single-track and a double-
track vehicle model were simulated. The effects on the final trajectory from variable road
friction coefficients were demonstrated, showing yet another example of the capabilities
in the modeling alternatives of the OCP simulation method.

2.3 Aim of the thesis

The aim of this thesis is to produce a LTS software much like in [1], but using a free trajec-
tory OCP formulation solved using a direct orthogonal collocation method and NLP solver.
This will give Revolve NTNU capabilities in LTS with two separate simulators using two
different, leading methodologies. The QSS apex-finding method in [1] provides a strong
modeling capability, simulating the vehicle at on-limit performance, at relatively low com-
putational cost. The work presented in this thesis on the other hand, provides a method-
ology for a more complete description of the vehicle dynamics, with a dynamic model
including transient effects, while still simulating the vehicle at on-limit performance.

The vehicle model used in this thesis is similar to the one used in [1]. It is a double track,
planar vehicle model, with load transfer and a nonlinear tire model. A basic aerodynamic
package is included, and a basic description of the powertrain is used. The wheel rotations
will be omitted in favor of using the tire longitudinal slips as control inputs, together with
steering and longitudinal and lateral load transfer. The track model used in [1] is discarded,
and a track model is produced from GNSS coordinates recorded at the 2019 Formula
Student Germany (FSG) [24] and Formula Student Austria (FSA) [25] competitions. A
track smoothing scheme will be implemented, using a direct multiple-shooting method
to create a smooth curvilinear abscissa for the OC LTS. The simulation results will be
compared to both telemetry from the stated competitions, and to the QSS simulator in [1].
Finally, two different vehicle designs will be compared.
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Chapter 3
Theory

The chosen methodology requires a description of the underlying theory. In this section, an
introduction to vehicle dynamics is presented. This is necessary for justifying the chosen
aspects of the model, and for the analysis of the results of the simulator. An introduction
to the relevant theory in OC is also presented, as a distinct choice is made regarding the
method, and as several techniques are utilized.

3.1 Vehicle dynamics

Vehicle dynamics is the study of vehicle design. At Revolve NTNU every team member
must have some knowledge about vehicle dynamics, as the field is the starting point for all
downstream decisions made regarding the vehicle design. A thing as trivial as minimizing
the center of gravity height of the vehicle has a clear basis in vehicle dynamics. To build a
good racecar, a good understanding of vehicle dynamics is a prerequisite.

A choice is made regarding the sign convention in this thesis. In the literature there are
several sign conventions presented [26, Appendix 1], and this thesis will use the ISO stan-
dard sign convention. A Cartesian coordinate system is defined in the vehicle Center of
Gravity (CoG) at the ground level. The x-axis points forward on the car, the z-axis points
up in the opposite direction of gravity, and the y-axis points out to the left of the vehicle
completing the right-hand coordinate system. This sign convention is shown in Figure 3.1.
The movement of the vehicle is defined by the vehicle frame. Surge, sway, and heave are
the linear motion along the x-, y-, and z-axis. Roll, pitch, and yaw are the rotations about
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Chapter 3. Theory

the x-, y-, and z-axis [15, Chapter 4].

E63

z

x

CoG

h

lr lf

wb
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(b) Top view of the vehicle showing the x- and y-direction

Figure 3.1: Vehicle sign convention displayed. Vehicle frame defined by CoG in x- and y-direction,
and ground level in z-direction

3.1.1 Tires

Apart from gravitational and aerodynamic forces, a racecar mainly interacts with its sur-
roundings through its tires. The tires are therefore the main decider of the performance of
a racecar [27, Chapter 3][28, Chapter 2]. The rest of the vehicle is in many ways designed
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3.1 Vehicle dynamics

to serve the dynamics of the chosen tire. As in [1], this thesis will not go into detail about
how a tire is constructed or how it produces grip. This work will focus primarily on how
the grip produced by the tire is modeled. For this work, the tire is viewed as a finite amount
of friction. A vertical load is put on the tire, and it produces a finite amount of longitudinal
and lateral grip that is used to control the racecar. This grip is produced in the tire contact
patch, the area of the tire that is in constant with the ground as a result of the soft rubber
tire deforming under the vertical load placed on it.

The tire is defined by the tire frame, a cartesian coordinate frame located at the center of
the contact patch, with the same orientation as the vehicle frame. The tire axis is parallel
to the tire frame y-axis, and the tire rotation or angular velocity is defined by the right-
hand rule about the tire axis. The tire angle and the slip angle are both measured in the
ground plane about the tire z-axis. The tire inclination angle is defined by the right-hand
rule about the tire frame x-axis.

x

z

rl

uij,tf

ωij

(a) Side view of the tire

x

y vij,tf

uij,tf

(b) Top view of the tire

Figure 3.2: Tire frame: Tire longitudinal, lateral, and angular velocity shown.

Slip ratio

A tire produces force through vertical load and tire slip: Slip ratio and slip angle. When the
moment is applied to a tire, from engine torque or braking, longitudinal slip is induced [26,
Chapter 1], and longitudinal force is produced. Longitudinal slip or slip ratio is defined as
the ratio between tire rotation for a driven tire and tire rotation for free-rolling tire:

κ =
ω

ω0
− 1 (3.1)

where κ is the slip ratio, ω is the angular velocity of a driven tire, and ω0 is the angular
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Chapter 3. Theory

velocity of a free-rolling tire.

Equation (3.1) is rewritten using the loaded radius of a vertically loaded, free rolling tire,
and the longitudinal velocity of the tire in the tire frame:

κij =
ωij rl − uij,tf

uij,tf
(3.2)

where rl is the loaded radius, and uij,tf the longitudinal velocity in the tire frame, where
the subscript ij designates the corner of the racer where the tire is located.

Slip angle

Lateral slip is the ratio between the longitudinal and the lateral velocity of the tire in the
vehicle frame [26, Chapter 1]. The slip angle for a given tire is defined by the relation:

αij = −arctan vij,vf
uij,vf

(3.3)

where α is the slip angle, and uij,vf and vij,vf are the longitudinal and lateral velocity of
the given tire in the vehicle frame.

Tire models and the Pacejka Magic Formula

With vertical load, slip ratio, slip angle, and inclination angle defined, the longitudinal and
lateral forces Fx,ij and Fy,ij produced by the tire are defined as shown in [26, Chapter 1]:

Fx,ij = Fx(κij , αij , γij , Fz,ij) (3.4)

Fy,ij = Fy(κij , αij , γij , Fz,ij) (3.5)

where γij is the inclination angle, and Fz,ij is the vertical load on the tire. This definition
is for the combined case, as slip ratio and slip angle are inputs to both functions. Again, the
tires are a finite amount of friction force, so it is trivial to point out that a tire that produces
a high amount of lateral force close to peak grip, is not able to produce an equally high
amount of longitudinal force.

There are many tire models published in the literature, spanning from friction coefficients
to large, transient models. As tires are complex constructions made from fibers, steel wire,
and vulcanized polymer, it is important to note that the way they produce grip, is not fully
understood [15, Chapter 2].
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3.1 Vehicle dynamics

One of the most well-established tire models in the literature is the Pacejka Magic Formula
(MF) [26]. It is based on a sin(arctan()) formula, with empirically derived coefficients.
It provides a good model of the steady-state forces and moments produced by the tire [26,
Chapter 2]. The model is non-linear and includes non-smooth and discontinuous functions.
The empirical nature of the formula, based on a finite amount of specific tire testing, puts
limits on its use, and good engineering judgment is required when drawing a conclusion
based on it.
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Figure 3.3: Magic Formula pure longitudinal and lateral version for different Fz

3.1.2 Tire vertical load

The final input to the tire model used in this work is the vertical load placed on the tire.
Several possible contributors to this load are omitted, and the focus is placed on the vehicle
mass, its distribution, the acceleration of the vehicle, and the aerodynamic loads on the
vehicle.

Center of Gravity and Weight Distribution

In this work, the vehicle mass is idealized to be located in an infinitesimally small point
called the CoG. All forces and moments attack in and about this point. The vertical force
on the tires from the gravitational weight of this mass is distributed between the four tires
based on the location of the CoG in the XY-plane of the vehicle coordinate system. This
distribution of weight is often referred to as the weight distribution of the vehicle. It is
often given as a percentage of the total vehicle mass that is on the front or rear axle or
distributed between the left and right tires.
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Chapter 3. Theory

Load Transfer

It is observed that peak force produced by a tire longitudinally and laterally, relative to the
vertical load, decreases with an increase in vertical load. In short, the coefficient of friction
decreases as the vertical load increases. This effect is shown in Figure 3.4 as peak Fx and
peak Fy , are shown for the input Fz .
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(b) Lateral force against vertical force

Figure 3.4: The coefficient of friction decreasing with vertical load Fz

This effect is an important characteristic of vehicle dynamics, as it means that the grip pro-
duced by equal tires that are equally loaded, is greater than the grip produced by unequally
loaded tires, at the same total vertical load. As the CoG is above ground level, a moment
is produced as the vehicle mass is accelerated, causing a shift of the load from one tire pair
to the other. This longitudinal and later shift of load is called load transfer, and it is the
reason for designing a racecar with a CoG that is as low as possible. The lower the CoG,
the less longitudinal and lateral load transfer, the more grip is produced for a given vertical
loading of the tires [28, Chapter 3].

Aerodynamic Forces

Just adding mass to get more grip is no good because of the effects shown in Figure 3.4,
but there is a way to add vertical load on the tires without increasing vehicle mass. This is
the aerodynamic component of the vertical loading of the tires. An aerodynamic package
adds several aspects to a vehicle. First, the aerodynamic package adds downforce (negative
lift), increasing grip through increasing the vertical loading of the tires. The aerodynamic
package can also reduce aerodynamic drag, the main decider of the efficiency and the
top speed of the vehicle. Also, depending on the relative significance of the aerodynamic
package, it can play a major role in vehicle handling and stability.
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3.1 Vehicle dynamics

Unlike the vehicle weight, the tire vertical loading from the aerodynamic package is de-
pendant on the velocity of the vehicle. Much like the vehicle mass, aerodynamic forces
can be idealized to attack in an infinitesimally small point called the Center of Pressure
(CoP). The aerodynamic lift and drag forces can be modeled as:

FL =
1

2
CLAρu

2 (3.6)

FD =
1

2
CDAρu

2 (3.7)

Where FL and FD are the aerodynamic lift and drag forces respectively, CL and CD are
the coefficients of lift and drag respectively, A is the frontal area of the vehicle, ρ is the
air density, and u is the vehicle longitudinal velocity. The coefficients of lift and drag are
usually derived from CFD or wind tunnel testing. It is also normal to include sweeps of
the different modes of the vehicle, producing the coefficients for different velocities, ride
heights, yaw, pitch, and roll angles.

3.1.3 Planar vehicle models

To build the equations of motion, a vehicle model is needed. In vehicle dynamics, planar
vehicle models are often deployed. These models simplify the vehicle dynamics by re-
moving the vertical motions of the vehicle, such as suspension kinematics and unsprung
masses like the tires, and remove most of the vehicle motions defined in the introduction to
Section 3.1. This simplification holds as racecars usually have very little suspension mo-
tion [15, Chapter 5], due to stiff springs and aggressive suspension kinematics, sacrificing
comfort and mechanical grip in favor of little body movement and a stable aerodynamic
platform.

Single track model

The single-track vehicle model often referred to as the Bicycle model, is an elementary
vehicle model found in many publications. It is applied to steady-state and transient anal-
ysis of vehicle motion, in both linear and nonlinear descriptions. The basic concept is to
explain the planar dynamics of the vehicle using an approximation of the vehicle by com-
bining the front and rear tire pairs, as single front and rear tires, neglecting the track width
of the vehicle. Milliken and Milliken [15, Chapter 5] outlines the simplifications that are
often made. The benefit of the single-track model is the low barrier to entry for modeling
proper yaw dynamics, and proper modeling of the slip conditions at the front and rear tires.
Figure 3.5 shows a the single track modeled.
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Figure 3.5: Single track vehicle model

Double track model

A small step up from the single-track model is the double-track model. The double-track
model can be viewed as two single-track models separated by the track width of the ve-
hicle. It increases the complexity of the model but is still a planar model. The step up
from the single track is the fact that all four tires are modeled independently, more accu-
rately modeling the slip conditions of the individual tires. Both longitudinal and lateral
load transfer is usually included, and the kinetics of the model is more complete, as the
rigid body models all four tires producing forces in their proper locations on the vehicle.
Furthermore, differential tire spin and torque can be modeled, as is the case when using a
mechanical differential or using independently driven tires. Van Koutrik [20, Chapter 2]
showed the importance of the load transfer and differential tire dynamics using a steady-
state analysis of the acceleration limits of the vehicle. Figure 3.6 shows a the double-track
modeled.
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3.2 Numerical Optimization

CoG

u
v

y

x

r

f

lr

lf

wb

Fy,fl

Fx,fl

Fy,fr

Fx,fr

Fx,rr

Fy,rr

Fx,rl

Fy,rl

Figure 3.6: Double track vehicle model

3.2 Numerical Optimization

3.2.1 Optimization

In mathematics, optimization is the maximisation or the minimization of a function, sub-
ject to constraints on its variables. A optimization problem is defined by its variables x,
also known as unknowns, its objective function f , a scalar function of x, to be minimized
or maximized, and constraint functions of x: g and h, that define equalities and inequali-
ties that x is subject to (s.t.) and must satisfy. The constraints define the feasible region,
defined as the set of points that satisfy all the constraints [29, Chapter 1].

min
x

f(x)

s.t. g(x) = 0

h(x) ≤ 0
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Chapter 3. Theory

Where x is the variables (scalar or vector), f is the objective function, g is the equality
constraint, and h is the inequality constraint. This minimization problem is trivial to turn
into a maximisation problem as:

min
x

f(x) = max
−x

f(x)

Constraints do not always apply, and unconstrained optimization is a large field of study.
For the purposes of this work, as physical systems are modeled, the constrained optimiza-
tion is most relevant.

If the cost function and constraints are both linear functions, the optimization problem
is a Linear Programming problem. If the cost function or constraints contain at least on
nonlinear function, the problem is a Non Linear Programming (NLP) problem. This is
often the case in physical science and engineering [29, Chapter 1].

In optimization, particularly with NLP problems, the difference between a local and a
global optimum is important. A local minimum is as feasible point smaller than all feasible
points close by. A global minimum is a feasible point smaller than all feasible points.
[29]. In general it is not possible prove a solution to an NLP is a global solution, and it
comes down to the engineer or scientist who built and ran the optimization to evaluate the
solution. There is a large research field dedicated to finding global optimums, known as
global optimization, but this is beyond the scope of this thesis.

3.2.2 Ipopt

The nonlinear problems produced in this thesis are all solved using the Interior-point (IP)
method. The open-source software package Ipopt [23] is a solver for large-scale nonlinear
optimization. It uses the interior point line search method to find a local solution of an
NLP. Van Koutrik [20] showed Ipopt to outperform SQP methods implemented in Sparse
Nonlinear OPTimizer (SNOPT) [30, 31], as the size of the NLP problem got larger. The
interested reader may read more about the Interior-point method in [29, Chapter 19].
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3.3 Optimal Control

3.3 Optimal Control

3.3.1 General Optimal Control formulation

A general formulation for a controlled system is given as:

ẋ(t) = f(x(t), u(t), t) x(0) = x0 t > 0 (3.8)

The state xn will depend on the system dynamics f , the initial condition x0, and the input
u(t). A potential task may be to find the best input. Defining the best input is done with a
performance index or cost function given as:

J(x(t), u(t), t) = m(x(T ), T ) +

∫ T

0

l(x(t), u(t), t)dt (3.9)

where J is the cost, m is the terminal cost or Mayer term, and l is the running cost or La-
grange term. The terminal time T > 0 may be predefined or free. The purpose of optimal
control is to find the optimum control input to a dynamic system u∗(t) that minimizes the
cost function J . The input u∗(t) results in the state trajectory x∗(t) [32, Chapter 8].

A general formulation of an OCP constrained by a continuous Ordinary Differential Equa-
tion (ODE) may be:

min
x(.),u(.)

φ(x(.),u(.))

s.t. ẋ = F(x,u, t)

g(x(t0),x(tf ), t) = 0

h(x(t),u(t), t) ≤ 0

where φ is the cost, x is the system state, u is the system inputs, F are the system dy-
namics, g is the equality constraint, and h is the inequality constraint. The formulation is
very similar to a general optimization problem, but with the addition of time-continuous
dynamics.

3.3.2 Numerical methods for solving Optimal Control Problems

The numerical methods for solving OCPs are divided into indirect and direct methods [32,
Chapter 8]. Indirect methods find a solution using the first-order necessary conditions,
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Chapter 3. Theory

building a large set of algebraic equations that are solved using a root-finding scheme.
Direct methods use a discrete approximation of the OCP and solve a finite optimization
problem as an approximation to the original OCP formulation. These methods are often
described depending on the optimization and discretization of the system, where indirect
methods are first optimized then discretized, and direct methods are first discretized and
then optimized [33]. Direct methods are used in this thesis as their use is well documented
in relevant literature summarized in Section 2.2.2.

Direct shooting methods

A continuous ODE-constrained OCP is given:

min
x(.),u(.)

φ(x(.),u(.))

s.t. ẋ = F(x,u, t)

h(x(t),u(t), t) ≤ 0

x(t0) = x0

In the direct single-shooting method the infinite-dimensional (continuous) input u is dis-
cretized, often using piecewise constant inputs. Given the initial conditions of the OCP,
the system dynamics are simulated using an integration scheme, the cost evaluated, and
the NLP is solved as the numerical solver iterates on the input finding the optimum. This
method is simple and the problem size is small. However, the method struggles as the
time horizon is extended and the integration method is applied over a longer time horizon,
possibly failing to find a solution [32, Chapter 8].

In the direct multiple-shooting method the problem is handled by dividing the time horizon
into small local horizons [tk, tk+1], and the states included in the optimization parameters.
This produces a simultaneous approach where both the simulation and optimization is pro-
duced at the same time. This method effectively builds a structure consisting of multiple,
small simulations, hence the name. Continuity between each local trajectory is handle by
enforcing the constraints given as:

f(xk,uk)− xk+1 = 0, k = 0, . . . , N − 1 (3.10)

Where f is the integration function producing the end state for a local trajectory, and xk+1

is the initial starting point for the next local trajectory [33]. This constraint handles what
is referred to as shooting gaps. The structure of a multiple-shooting derived problem is
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3.3 Optimal Control

larger than that of an equivalent single-shooting problem, but the sparse structure of the
problem, and the fact that the error is spread out between the many local trajectories, yields
a problem that solves in comparable CPU-time to a single-shooting problem. The method
shows superior local convergence given unstable systems. The direct multiple-shooting
method also provides the opportunity to initialize the state trajectory, as it is a part of the
optimization variables [33, Chapter 14].

Direct collocation method

The shooting methods discussed above, both use embedded integrators to simulate the
state trajectory, often an explicit Runge-Kutta scheme. These methods can suffer when the
different modes of the dynamic system have significantly different time constants, meaning
some modes have very fast dynamics and some modes have very slow dynamics. This is
called stiff dynamics [33, Chapter 11].

A direct transcription method that handles this well, and also Differential-Algebraic sys-
tem of Equations (DAE), is the direct collocation method. Gros and Diehl [33] outlines
how a direct collocation method is applied. The OCP is discretized in both states and
inputs, much like when using the direct multiple-shooting method, but each local trajec-
tory is approximated by an interpolation polynomial Pk(t, θk). In the case of orthogonal
collocation methods, these are often made from Lagrange basis polynomials. On each
time interval [tk, tk+1] on the total time horizon t a set of collocation times are chosen:
tk,0, . . . , tk,d, and the integration polynomial is constructed:

Pk(t, θk) =

d∑
i=0

θk,ipk,i(t) (3.11)

Where θk,i are coefficients that become optimization variables in the optimization step.
The Lagrange basis polynomials of order d are defined as:

pk,i(t) =

d∏
j=0,i6=j

t− tk,j
tk,i − tk,j

∈ R (3.12)

The collocation points on the time interval [tk, tk+1] are chosen specifically to obtain a
high integration order. The integration polynomial is made to represent the dynamics of
the system by enforcing the starting point of the polynomial and by forcing the derivative
of the polynomial to equal the system dynamics. These collocation equations are passed to
the optimization solver as equality constraints [33]. The shooting gaps between the local

21



Chapter 3. Theory

trajectories are also handled in the optimization solver.

3.4 Algorithmic Differentiation and CasADi

Algorithmic Differentiation

Algorithmic Differentiation (AD) [33, Chapter 5] is a method deployed when comput-
ing the derivative of an arbitrary function in a computer. AD uses a computers ability
to evaluate elementary arithmetic and functions, and applies the chain rule to compute the
derivative of a function. It is distinct from both symbolic differentiation and numerical dif-
ferentiation. The former can yield inefficient symbolic derivatives as the functions grow in
size and amount of variables. The latter can suffer from round-off errors as the derivatives
as numerically derived.

CasADi

CasADi [22, 34] is an open source software tool built primarily for numerical optimization
and optimal control. The syntax is borrowed from Computer Algebra Systems (CAS)
and the tool was originally intended for performing AD, hence the name. CasADi has
become a software tool that provides a simple syntax to implement and solve numerical
optimization problem and OCPs. The solver used are not supplied in the framework, but
rather allows the use of solvers specified and provided by the user like IPOPT [23]. The
framework is available for MATLAB, Octave, Python, and C++.

22



Chapter 4
Method

4.1 Track modeling

The track is modeled using a curvilinear coordinate system, where the vehicle will follow
a centerline as the abscissa. An important simplification is to assume a flat track, without
changes in elevation or banking. This methodology is well established in the relevant
literature [2] and yields a compact notation to describe the vehicle’s progression along the
track.

y

x

nr

nl

s

xvf
yvf

n

1/C

θ

ξ
ψ

Figure 4.1: The curvilinear track model, adopted from Perantoni and Limebeer [2]
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The track model used in this thesis is shown in Figure 4.1 and is adopted from Perantoni
and Limebeer [2]. The track centerline length is measured from the track start line with
s(t). For each point s(t) the track curvature is known, denoted as C. The track orientation
angle, meaning the orientation of the track segment tangent, is described by the angle θ.

The progress along the curvilinear description of the track ds can be converted to a change
in a cartesian coordinate system as shown:

dx = ds cos(θ) (4.1)

dy = ds sin(θ) (4.2)

This description of the change in position on the track yields the following:

dy

dx
= tan(θ) (4.3)

Finally the track curvature can be derived from cartesian coordinates as given:

C =
dθ

ds
=

d

ds

(
arctan

(
dy

dx

))
(4.4)

The vehicle motion in the track model is defined by the vehicle’s CoG, where the distance
traveled along the centerline is denoted as s, the normal distance from the centerline is
denoted as n, and finally ξ defines the angle between the vehicle frame x-axis and the
track centerline tangent. The global yaw angle of the vehicle is denoted as ψ, and is
defined by the following equation:

ψ = θ + ξ (4.5)

The vehicle velocity along the track center line is derived using the curvelinear track
model, and the longitudinal velocity u and lateral velocity u of the vehicle:

ṡ− nθ̇ = u cos(ξ)− v sin(ξ) (4.6)

Using the relationship between the track curvature C and θ in Equation (4.4), Equation
(4.6) is rewritten giving the change in distance traveled along the track center line, using
just vehicle velocities, vehicle deviation from the track center line, and the track curvature:
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4.1 Track modeling

ṡ =
u cos(ξ)− v sin(ξ)

1− nC
(4.7)

To complete the dynamic modeling of the vehicle moving in the track model, equations
for ṅ and ξ̇ are given:

ṅ = u sin(ξ) + v cos(ξ) (4.8)

ξ̇ = ψ̇ − ṡC (4.9)

Where ṅ is derived geometrically, and ξ̇ is derived from differentiating Equation (4.5), and
using the aforementioned relationship between track curvature C and θ.

4.1.1 Generating a track racing line

Casanova [16] outlined how a racing line can be reconstructed using telemetry from a
track run and a basic kinematic model of a vehicle. The basic model used longitudinal
velocity and lateral acceleration to produce the curvature information for the racing line.
The time used to drive the track allowed the integration of the longitudinal velocity to get
the distance traveled. The method proved sensitive to the quality of the telemetry gathered,
as noise and drift diluted the accuracy of the result. The basic kinematic model also proved
limiting.

In Smith [1] a version of this method was used through the online tool OptimumLap
[35], where telemetry data containing vehicle longitudinal velocity and lateral accelera-
tion, given for distance traveled, was uploaded to generate the needed tracks. In [1, Chap-
ter 6] a comparison was made between a track made using telemetry, and a track made
using GNSS data. An obvious difference was observed, and for this thesis, the tracks are
generated using GNSS data.

It is important to note that this is still an approximation of the real track centerline, as both
telemetry and GNSS are measured during a competition run, and not a run made to map
the track in question. It is therefore important to note that the tracks used in this simulator
are close to what the racing line should be. This fact will determine how the constraints
are defined in the free trajectory simulator.

Revolve NTNU’s 2019 racecar Nova was equipped with the VectorNav VN-300 GNSS-
Aided Inertial Navigation System (INS) with Integrated GNSS-Compass [36]. Through
the onboard telemetry system, the GNSS data was recorded during every test run and
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competition. The recorded GNSS data was extracted, and the geodetic coordinates were
transformed to cartesian coordinates in a local North-East-Down (NED) frame using the
MathWorks Mapping Toolbox™ in MATLAB [37]. The cartesian points were interpolated
using spline interpolation in MATLAB with regards to distance traveled s to achieve the
wanted step length ∆s.

From the interpolated GNSS derived cartesian points the signed track curvature was de-
rived with following formula:

C(s) =
x′(s)y′′(s)− x′′(s)y′(s)

(x′(s)2 + y′(s)2)
3
2

(4.10)

Where x and y refers to the interpolated transformed GNSS points and their prime refer
to their first and second-order derivatives evaluated for distance traveled at the given step
length. The derivatives were produced using MATLAB to create cubic splines from the
points and differentiated using a differentiated function in the MathWorks Curve Fitting
Toolbox™ [38].

The track orientation angle θ was approximated using cumulative trapezoidal numerical
integration in MATLAB, integrating the track curvature C with respect to the chosen step
length. To get the same global orientation as in the NED-frame, an offset was applied,
found using Equation (4.3) on the first track segment:

θoff = arctan

(
y′(s1)

x′(s1)

)
(4.11)

where θoff is a scalar offset applied to the rest of the track orientation.

4.1.2 Optimal Control Scheme for smoothing curvature

An important note in the relevant literature is the need for a smooth track curvature profile
for an efficient convergence of the MTM OCP. Christ et al. made this points in [3, Chap-
ter 3], and used an approximate spline regression to generate a smooth center line from
cartesian coordinates collected using a 2D LiDAR. The approach was outlined in [7]. In
[2] and [18], Perantoni and Limebeer outlined a method using a separate OCP in order
to smooth the track curvature profile. The method was further discussed in [32, Chapter
8]. This method was used to generate a smooth track curvature profile for the OC LTS
presented in this thesis.
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An OCP was defined using the change in curvature with regards to the distance traveled
along the track center line as an input u:

dC
ds

= u (4.12)

By integrating Equations (4.4), (4.1), and (4.2), the track orientation and track location in
cartesian coordinates is found:

dθ

ds
= C (4.13)

dx

ds
= cos(θ) (4.14)

dy

ds
= sin(θ) (4.15)

A performance index is defined as:

∫ sf

s0

((xc − x)2 + (yc − y)2 + cu2)ds (4.16)

where s0 and sf are the start and finish line segments respectively, xc and yc are the
original, constant track cartesian coordinates, x and y are states in the OCP and resulting
track cartesian coordinates, and u is the input. By minimizing the given performance
index a smooth track curvature profile is generated. The constant c in the performance
index weights the penalty for using the input, effectively regulating how much or how
little smoothing of the original track curvature profile occurs. It is chosen by balancing the
smoothness of the curvature profile, with the characteristics of a Formula Student AutoX
track as defined in the rules [39, Section D6].

In [2, Chapter 2], Perantoni and Limebeer also defined a closure condition for the track
and boundary conditions to be enforced in the OCP. This is not needed for the purposes of
this work, as the AutoX tracks used in Formula Student competitions are not closed.
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Track Smoothing Optimal control problem formulation

The following OCP is defined:

min
x(.),u(.)

∫ sf

s0

L(x(s),u(s))ds (4.17)

s.t.
dx

ds
(s) = F(x(s), u(s)), s ∈ [s0, sf ] (4.18)

−0.5 ≤ C ≤ 0.5 (4.19)

−3π ≤ θ ≤ 3π (4.20)
x(s0)− xc(s0)

y(s0)− yc(s0)

x(sf )− xc(sf )

y(sf )− yc(sf )

 = 0 (4.21)

Where the performance index is defined as in Equation (4.16), the system dynamics are
defined by Equations (4.12), (4.13), (4.14), and (4.15). Two constraints where defined for
track curvature C and track orientation θ to stop the track looping in on itself. The start
and end points of the track were both constrained to the same location as the GNSS points
defined.

Track Smoothing Transcription

A direct multiple shooting method was deployed to solve the track smoothing OCP. The
problem was deemed fairly simple, but direct access to the state trajectory for a good initial
guess was desired.

The trajectory was discretized for the chosen step length, creating the distance vector with
N steps: s0, . . . , sN , where sN = sf . The states and inputs were discretized for the given
distance grid, and the input was set as piecewise constant:

xk = [Ck, θk, xk, yk]T (4.22)

uk = u(s ∈ [sk, sk+1]) (4.23)

In order to structure the NLP the optimization variables w were ordered as follows:

w = {x0, u0, . . . ,xN−1, uN−1,xN}T (4.24)

The performance index was approximated as the sum of parts as defined by the distance
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vector:∫ sf

s0

L(x(s), u(s))ds ≈
N−1∑
k=0

(xc,k − xk)2 + (yc,k − yk)2 + cu2k = Φ(w) (4.25)

Giving the cost function for the NLP:

min
w

Φ(w) (4.26)

An explicit Runge-Kutta 4 integration scheme was used to simulate the dynamics of the
system, integrating the dynamics F(x(s), u(s)) with the integrator function f(xk, uk) for
the distance interval [sk, sk+1]. The shooting gaps and the initial and terminal conditions
of the OCP were handled by the equality constraint as follow:

g(w) =



x0 − xc,0
y0 − yc,0

f(x0, u0)− x1

. . .

f(xN−1, uN−1)− xN

xN − xc,N
yN − yc,N


= 0 (4.27)

The final NLP was formulated as follows:

min
w

Φ(w) (4.28)

s.t. g(w) = 0 (4.29)

−0.5 ≤ C ≤ 0.5 (4.30)

−3π ≤ θ ≤ 3π (4.31)

The NLP was formulated in MATLAB, using CasADi, and solved using the Interior-point
method with Ipopt. Tracks from both the 2019 FSG AutoX and the 2019 FSA AutoX
were generated and ran through the curvature smoothing scheme. The resulting tracks are
shown in Section 5.2.
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4.2 Initial small scale implementation

A preliminary study was conducted to create a Minimum Viable Product (MVP) of the
simulator as outlined in the problem statement. A single-track vehicle model, as shown
in Sub-section 3.1.3, was deployed, with a simplified Pacejka tire model, no load transfer,
and without an aerodynamic package. The track model was modeled using the curvilinear
description, but only small track segments, or ”snippets” were used, designed to test the
free trajectory OC based LTS, and to keep the problem size small.

Identifier Description Figure

Left hand turn 30m straight, 90deg left hand turn, 30m straight 1
Hairpin turn 30m straight, 180deg left hand turn, 30m straight 2
Lane-shift maneuver 30m straight, 90deg left turn, 90deg right turn, 30m straight 2

Table 4.1: Track snippets used in preliminary study

The MVP used a direct multiple shooting transcription method, and was implemented in
MATLAB, using CasADi, and solved with Ipopt. The implementation is not outlined in
this thesis, as the vehicle modeling was a simplified version of the one presented in this
thesis, and the transcription was very similar to the track smoothing scheme presented in
Subsection 4.1.2. The main objective was to get familiar with the CasADi syntax, the
transcription of the LTS OCP, and to experiment with the performance index and con-
straints. This preliminary work came as a consequence of the struggles experienced when
implementing the simulator as described in [1]. An important point made by the author
was to build complexity slowly, making sure to produce a working implementation every
time before adding more complexity. The free trajectory optimization results from this
preliminary study are presented in Section 5.3.

4.3 Shift from time to spacial dimension

The switch from using time t as the independent variable to using progression along the
track centerline s as the independent variable was made. This switch in the independent
variable is well established in the relevant literature. Using s and not t as the independent
variable reduces the problem size as s is removed from the state vector, and it allows the lap
time, that is to be minimized, to be a dependant variable. This switch holds if the vehicle
only travels in the positive s direction, which yields a unique relationship between s and
t. The following conversion factor, derived from the inverse of Equation (4.7), allows the
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transformation of time dependant dynamics to spacial dependant dynamics:

Sf =

(
ds

dt

)−1
=

1− nC
u cos(ξ)− v sin(ξ)

(4.32)

Using the above conversion factor the vehicles spacial dynamics, Equations (4.8) and (4.9),
are rewritten with s as the indepentant variable:

dn

ds
= Sf (u sin(ξ) + v cos(ξ)) (4.33)

dξ

ds
= Sf ψ̇ − C (4.34)

4.4 Vehicle modeling

A double-track vehicle model was implemented as presented in Sub-section 3.1.3 and
shown in Figure 3.6. The model uses wheel angle and tire slip ratios as inputs. Slip ra-
tios were favored over wheel rotation, as it allowed a more direct path to the longitudinal
forces produced by the tires, and it eliminates the need for modeling the wheel rations. The
vehicle model has the Pacejka Magic Formula 5.2 tire model supplied by Continental (Ap-
pendix B.1), longitudinal and lateral load transfer, and a basic aerodynamic model. The
limitations of the powertrain are handled in the constraints of the final OCP formulation.

4.4.1 Tire velocities

The longitudinal and lateral velocities of the four tires were modeled. The vehicle wheel-
base and track width, with the vehicle longitudinal, lateral, and angular (yaw rate) veloci-
ties yields:

ut,vf = u + 0.5


−τf
τf

−τr
τr

 ψ̇ (4.35)

vt,vf = v +


lf

lf

−lr
−lr

 ψ̇ (4.36)
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Where ut,vf and vt,vf are 4× 1 vectors containing the longitudinal and lateral velocities
of each of the four tires in the vehicle frame, u and v are 4× 1 vectors with the longitu-
dinal and lateral velocity contribution from the vehicle CoG for each tire, ψ̇ is the vehicle
yaw rate, τf and τr are the front and rear track widths, and finally lf and lr are the distance
from the vehicle CoG to the front and rear axles.

The longitudinal velocity of each tire in the tire frame was needed for the powertrain
constraints. The front wheels steer, giving the following tire longitudinal velocity in the
tire frame:

ut,tf =


ufl,vf cos(δ)

ufr,vf cos(δ)

url,vf

urr,vf

+


vfl,vf sin(δ)

vfr,vf sin(δ)

0

0

 (4.37)

Where ut,tf is a 4× 1 vector containing the longitudinal velocity of each of the four tires
in the tire frame, δ is the wheel angle from steering, and the subscripts fl, fr, rl, and rr,
denote the specific wheel on the vehicle: Front left, front right, rear left, rear right. Notice
that only the front tires are steered, hence only the tire longitudinal velocity in the vehicle
frame is used for the rear tires.

4.4.2 Tire slip angles

The slip angles were computed for each tire using the longitudinal and lateral tire velocities
in the vehicle frame. The front tires are steered, giving the contribution of the wheel angle:

αfl = δ − arctan

(
vfl,vf
ufl,vf

)
(4.38)

αfr = δ − arctan

(
vfr,vf
ufr,vf

)
(4.39)

αrl = − arctan

(
vrl,vf
url,vf

)
(4.40)

αrr = − arctan

(
vrr,vf
urr,vf

)
(4.41)

Where αij is the slip angle for the tire defined by the subscript ij: fl, fr, rl, or rr.
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4.4.3 Vertical tire forces

The tire vertical force has three main contributions: Vehicle mass, aerodynamic down-
force, and load transfer. The vehicle mass is distributed across the four tires, longitudinally
and laterally. An even lateral distribution is assumed, but the front to rear, longitudinal dis-
tribution is modeled. It is denoted through the mass fraction on the rear axle, commonly
referred to as weight distribution rear wdr. The same is assumed for the aerodynamic
downforce. Its distribution is denoted adr. The longitudinal and lateral load transfer are
both inputs to the model. The algebraic loop that arises from modeling load transfer is
broken in the constraints of the OCP.

The tire vertical forces are modeled as follows:

F̂z,fl =
1

2
(1− wdr)mg +

1

2
(1− adr)FL −

1

2
Γx −

1

2
Γy (4.42)

F̂z,fr =
1

2
(1− wdr)mg +

1

2
(1− adr)FL −

1

2
Γx +

1

2
Γy (4.43)

F̂z,rl =
1

2
wdrmg +

1

2
adrFL +

1

2
Γx −

1

2
Γy (4.44)

F̂z,rr =
1

2
wdrmg +

1

2
adrFL +

1

2
Γx +

1

2
Γy (4.45)

Where F̂z,ij is the sum of vertical load for the tire defined by the subscript ij: fl, fr,
rl, or rr. m is the vehicle mass, g is the gravitational constant, and Γx and Γy are the
longitudinal and lateral load transfers respectively. The aerodynamic downforce FL is
defined in Equation (3.6).

The vertical forces are never less than zero on the real vehicle. To model this, the following
redefinition of the vertical forces is made:

Fz = max(F̂z, 0) (4.46)

Where Fz is a 4× 1 vector containing the four tire vertical forces, and F̂z is a 4× 1 vector
containing the four sums defined in Equations (4.42)-(4.45).

4.4.4 Longitudinal and lateral tire forces

The longitudinal and lateral tire forces are derived from the Pacejka Magic Formula 5.2
(Appendix B.1). The model is supplied by the tire manufacturer and provides the com-
bined longitudinal and lateral forces produced by the tires. The tire models are used as
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shown below:

Fx,ij = cxmagicCombLong(αij , κij , γij , Fz,ij) (4.47)

Fy,ij = cy magicCombLat(αij , κij , γij , Fz,ij) (4.48)

Both the longitudinal and the lateral tire model take slip angle α, slip ratio κ, inclination
angle γ, and tire vertical load Fz as inputs. As these are experimentally derived models,
using data fitted to the model derived from physical testing, they overestimate the grip
produced by the tires. This is handled by scaling the output of the model by comparing
the longitudinal and lateral acceleration of the vehicle simulated, to test data from the
actual racecar. The constants cx and cy are the longitudinal and lateral scaling factors
respectively. The same approach was used in the preliminary project thesis for this project
[1].

4.4.5 Dynamic model

The vehicle is modeled as a rigid body, with four tires producing longitudinal and lateral
forces. Using the force balance in the longitudinal and lateral direction, and the moment
balance about the vertical axis, the equations of motion for the vehicle are produced. The
sum of forces and moments on the vehicle CoG are as follows:

Fx = (Fx,fl + Fx,fr) cos(δ)− (Fy,fl + Fy,fr) sin(δ) + Fx,rl + Fx,rr (4.49)

Fy = (Fx,fl + Fx,fr) sin(δ) + (Fy,fl + Fy,fr) cos(δ) + Fy,rl + Fy,rr (4.50)

Mz = lf ((Fx,fl + Fx,fr) sin(δ) + (Fy,fl + Fy,fr) cos(δ))

+
τf
2

((Fx,fr − Fx,fl) cos(δ) + (Fy,fl − Fy,fr) sin(δ))

+
τr
2

(Fx,rr − Fx,rl)− lr(Fy,rl + Fy,rr) (4.51)

Where Fx is the sum of longitudinal forces produced by the tires on the vehicle CoG, Fy
is the sum of lateral forces produced by the tires on the vehicle CoG, and Mz is the sum
of moments about the vehicle vertical axis as defined by the vehicle CoG.
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The vehicle equations of motion are produced:

u̇ =
1

m
(Fx − FD) + v ψ̇ (4.52)

v̇ =
1

m
Fy − u ψ̇ (4.53)

ψ̈ =
1

Iz
Mz (4.54)

Where u̇ is the change in longitudinal velocity, v̇ is the change in lateral velocity, ψ̈ is the
change in vehicle yaw rate, and Iz is the vehicle yaw moment of inertia. The aerodynamic
drag FD is modeled as defined in Equation (3.7).

The equations of motion are dependant on time t as the independent variable. Using the
conversion factor defined in Equation (4.32), they are expressed in terms of progression
along the track centerline:

du

ds
= Sf

(
1

m
(Fx − FD) + v ψ̇

)
(4.55)

dv

ds
= Sf

(
1

m
Fy − u ψ̇

)
(4.56)

dψ̇

ds
= Sf

1

Iz
Mz (4.57)

Including Equations (4.33) and (4.34), this completes the dynamic modeling part of the
simulator.

4.4.6 Powertrain

The four hub-mounted motors on the vehicle modeled, have torque and rotation limits,
and the Formula Student rules defined a maximum allowed power consumption for the
powertrain. These modeling characteristics were defined as constraints in the final OCP
formulation.

Power use

The Formula student rules specify a maximum power use limitation by that powertrain of
80kW [39, Rule EV 2.2.1]. This limitation is met through an inequality constraint applied
to an approximation of the power use. The approximation uses the definition of slip ratio
as defined in Equation (3.2) to approximate the power used. The power used by a torque
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applied to a rotating object is given as:

P = T ω (4.58)

Where P is the power used, T is the torque doing the work, and ω is the angular velocity.
For a given tire ij on the vehicle, the torque is the longitudinal force produced by the tire
multiplied by the radius of the tire:

Pij = Fx,ij rl ωij (4.59)

By combining Equations (4.59) and (3.2) the following approximation of the power used
for a given tire ij on the vehicle is modeled:

Pij = Fx,ij (1 + κij)uij,tf (4.60)

Taking the sum of this term for all four tires yields the following inequality constraint:

Pfl + Pfr + Prl + Prr − Pmax = Pt − Pm ≤ 0 (4.61)

Where Pt is the total power used by the four tires, and Pm is the maximum allowed
power consumption. Only an upper bound is needed as it is assumed that braking with the
mechanical brakes is limited by the tires’ maximum grip.

Torque limit

The manufacturer of the motors specify a maximum torque Tm that the motors are able to
produce. This is handled by the following inequality constraint using the tire longitudinal
force Fx,ij , the tire radius rl, and powertrain gear ratio n:

Fx,ij rl
n

− Tm ≤ 0 (4.62)

The maximum grip of the tires are the lower limit for the max torque in braking (Fx,ij <
0), as the vehicle is equipped with mechanical brakes.

Rotation limit

Much like for torque, the motors can only spin so fast. Using the definition of slip ratio κ,
the tire longitudinal velocity in the tire frame uij,tf , and gear ratio n a maximum rotation
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limit is defined:
0 ≤ uij,tf

rl
(1 + κij)n ≤ ωm (4.63)

Where ωm is the upper rotation limit of the motors. The lower limit is there to stop the
optimization from spinning the tires in reverse.

4.5 Optimal Control Problem formulation

The OCP was defined for the vehicle and track model as defined. The goal is to minimize
the time used to drive the racecar through the track. The dynamics of the system are
defined in the Differential-Algebraic system of Equations (DAE) as defined by Equations
(4.33), (4.34), (4.55), (4.56), and (4.57). The OCP is subject to the constraints as defined.

4.5.1 General Optimal Control Formulation

A general OCP formulation is defined:

min
x(.),u(.)

∫ sf

s0

L(s,x(s),u(s))ds (4.64)

s.t.
dx

ds
(s) = F(s,x(s),u(s)), s ∈ [s0, sf ] (4.65)

g((s,x(s),u(s))) = 0 (4.66)

h((s,x(s),u(s))) ≤ 0 (4.67)

The Lagrange cost L defines the time used to travel through the track, the system dynamics
are defined by F, and g and h are the equality and inequality constraints respectively. s is
the distance traveled along the track centerline between the track start s0 and track finish
sf , x is the state vector, and u is the input vector to the system.

4.5.2 System states and inputs

During the preliminary study, oscillatory tendencies were observed in the vehicle inputs,
and as a result, the vehicle states. A cost was placed on the inputs and the change of the
inputs, but this did not give a satisfactory result, nor a stable OCP formulation as tracks
were varied. This method also ruins the advantageous structure of the NLP that is possible
to achieve using a direct transcription method [33].

Instead, an additional set of dynamic equations were introduced, as the inputs to the vehicle
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model were made part of the state vector, and their rates were used as inputs in the OCP
formulation. This gives direct access to the rate of change of each vehicle input, as they are
possible to box with the constraints in the OCP inputs. It also keeps the aforementioned
advantageous structure of the NLP intact. The downside is a significantly larger number
of optimization variables, which hurts the CPU time. The following additional dynamic
equations, with the change in the independent variable, were included in the vehicle model:

dδ

ds
= Sf δ̇ (4.68)

dκfl
ds

= Sf κ̇fl (4.69)

dκfr
ds

= Sf κ̇fr (4.70)

dκrl
ds

= Sf κ̇rl (4.71)

dκrr
ds

= Sf κ̇rr (4.72)

dΓx
ds

= Sf Γ̇x (4.73)

dΓy
ds

= Sf Γ̇y (4.74)

Scaling

An effort was made to keep the order of magnitude of the different optimization variables
similar. This was done to keep the significance of each variable similar and help the NLP
solver. Load transfer and load transfer rate were both significantly larger than the rest of
the variables in the problem. A scaling factor was introduced, effectively changing the
unit from Newton (N) to Kilo Newton (kN). This ensured a similar magnitude across the
different optimization variables.

The states and inputs as used in the OCP formulation are listed below in Table 4.2:
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4.5 Optimal Control Problem formulation

Identifier Type Description Symbol Unit

x1 State Normal deviation from track center line n m
x2 State Angle deviation from track center line ξ rad
x3 State Longitudinal velocity u m/s
x4 State Lateral velocity v m/s
x5 State Yaw rate ψ̇ rad/s
x6 State Wheel angle δ rad
x7 State Front left tire slip ratio κfl -
x8 State Front right tire slip ratio κfr -
x9 State Rear left tire slip ratio κrl -
x10 State Rear right tire slip ratio κrr -
x11 State Longitudinal load transfer Γx kN
x12 State Lateral load transfer Γy kN
u1 Input Wheel angle rate δ̇ rad/s
u2 Input Front left tire slip ratio rate κ̇fl 1/s
u3 Input Front right tire slip ratio rate κ̇fr 1/s
u4 Input Rear left tire slip ratio rate κ̇rl 1/s
u5 Input Rear right tire slip ratio rate κ̇rr 1/s
u6 Input Longitudinal load transfer rate Γ̇x kN/s
u7 Input Lateral load transfer rate Γ̇y kN/s

Table 4.2: States and inputs used in the OCP

4.5.3 Performance index

The performance index is the lap time used to travel through the track. As time t is re-
moved from the problem formulation, an equivalence is made between minimizing the lap
time and maximizing the progression along the track centerline. As the NLP solver used
is a minimizer, the inverse of track progression becomes the performance index. This is
written as follow:

min

∫ tf

t0

dt = min

∫ sf

s0

(
ds

dt

)−1
ds = min

∫ sf

s0

Sfds (4.75)

The Lagrange cost is written as follows:

min
x(.),u(.)

∫ sf

s0

L(s,x(s),u(s))ds = min
x(.),u(.)

∫ sf

s0

Sfds (4.76)
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4.5.4 Constraints

Load transfer

An algebraic loop is present in the vehicle model. Longitudinal and lateral load transfer
affects the vertical load on the tires, which in turn affects the grip produced by the tires.
The grip is what accelerates the vehicle, and load transfer is a result of that acceleration.
This was discussed in the theory in Sub-section 3.1.2. Two equality constraints are defined
and passed to the NLP solver to break the aforementioned algebraic loop:

Γx − Fx
hcog
wb

= 0 (4.77)

Γy − Fy
2hcog
τf + τr

= 0 (4.78)

Powertrain

The powertrain constraints are written as inequality constraints. The rotation limit of the
motors is a boxed constraint as the motors are only allowed to spin in the positive direction,
but are also upper bounded by the maximum allowed rotation.

Ptot − Pm ≤ 0 (4.79)

Fx,ij rl
n

− Tmax ≤ 0 (4.80)

0 ≤ uij,tf
rl

(1 + κij)n ≤ ωm (4.81)

Note that the torque and rotation limits are applied individually to all four motors.

Slip angle

The tire model used defines a maximum slip angle for which it is accurate. This is handled
with a box constraint on the calculated slip angle:

− αm ≤ αij ≤ αm (4.82)

State and input bounds

There are several bound placed on the states and inputs of the OCP. There are limits on
how much the vehicle is allowed to deviate from the centerline, defining the left and right
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4.6 Transcribing the OCP into an NLP

sides of the modeled track. To make the conversion from t to s hold, the vehicle is only
allowed to deviate +− 90deg from the track centerline, and the longitudinal velocity is
limited to be positive. The steering is mechanically limited, and like the slip angle, the
slip ratio is upper and lower bound due to the tire model working range. The upper and
lower bounds on the inputs were set through trial and error, balancing the authority of the
vehicle controls with smooth vehicle states, i.e. limiting the aforementioned oscillations
observed during the preliminary study. These bounds are summarized below:

nl ≤ n ≤ nr (4.83)

−π
2
≤ ξ ≤ π

2
(4.84)

1 ≤ u (4.85)

−δm ≤ n ≤ δm (4.86)

κij,lb ≤ κij ≤ κij,ub (4.87)

κ̇ij,lb ≤ κ̇ij ≤ κ̇ij,ub (4.88)

Γ̇x,lb ≤ Γ̇x ≤ Γ̇x,ub (4.89)

Γ̇y,lb ≤ Γ̇y ≤ Γ̇y,ub (4.90)

4.6 Transcribing the OCP into an NLP

A direct orthogonal collocation method was used to transcribe the OCP into an NLP. In
this transcription, s and not t is used as the independent variable. The transcription method
was adopted from the work done by Christ et al. [3].

4.6.1 Collocation method

The track center line was discretized for the chosen uniform step length ∆s, creating the
distance vector with N step: s0, . . . , sN , where sN = sf . The states x and inputs u were
discretized on the distance vector as xk and uk, using piece wise constant inputs:

uk = u(s ∈ [sk, sk+1]) (4.91)

In the direct collocation method every local state trajectory x(s) on the interval [sk, sk+1]

are approximated by a polynomial Pk(s,θk), built from Lagrange polynomials pk,i. The
polynomial is fitted to the trajectory with the multiplier θk,i, giving the definition of the
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polynomial Pk(s,θk) as follows:

Pk(s,θk) =

d∑
i=0

θk,ipk,i(s) (4.92)

Where the order of the polynomial is given by d. The Lagrange polynomials pk,i(s) are
calculated for the collocation points sk,j on the local trajectory [sk, sk+1]. They are chosen
corresponding to the zeros of the orthogonal Legendre polynomials. This gives a Legendre
collocation method:

pk,i(s) =

d∏
j=0,j 6=i

s− sk,j
sk,i − sk,j

(4.93)

The order of the Lagrange polynomial was chosen to be d = 3, giving an accurate inte-
gration of the state trajectory, while keeping the problem size as small as possible. The
multipliers θk,i are passed to the NLP solver, using the following constraints to enforce
the polynomial approximation of the system dynamics:

Pk(sk,θk)− xk = 0, k = 0, . . . , N (4.94)

∂

∂t
Pk(sk,i,θk)− F(Pk(sk,i,θk),uk) = 0, k = 0, . . . , N, i = 1, . . . , d (4.95)

As with the multiple shooting method, the shooting gaps between the local trajectories are
managed with the constraint between the end of the Lagrange polynomial and the starting
point of the next local trajectory:

Pk(sk+1,θk)− xk+1 = 0, k = 0, . . . , N − 1 (4.96)

The three equality constraint defined in Equations (4.94), (4.95), and (4.96), are passed to
the NLP solver and solved for θk. The optimization variables for the resulting NLP are
added to a single, large vector w as shown:

w = {θ0,0, . . . ,θ0,d,u0, . . . ,θN−1,0, . . . ,θN−1,d,uN−1}T (4.97)

Where the states extracted from the simulation are:

xk = θk,0, k = 0, . . . , N − 1 (4.98)
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4.6 Transcribing the OCP into an NLP

4.6.2 Cost function

The Lagrange cost of the original OCP was given in Equation (4.76):

min
x(.),u(.)

∫ sf

s0

L(s,x(s),u(s))ds

Christ et al. [3] used a numerical integration scheme to approximate the cost of their OCP.
This approximation is deployed to define the cost for the NLP:

∫ sf

s0

L(s,x(s),u(s))ds ≈
N−1∑
k=0

∆s

d∑
r=0

BrL (θk,r,uk)

Where ∆s is the step length, L is the performance index, and Br =
∫ 1

0
pr(τ)dτ is the

integral of the Lagrange basis polynomials. The cost is extracted as the resulting lap time
for the simulation.

4.6.3 Constraints

The constraints defined in the OCP formulation in Sub-section 4.5.4, are enforced for the
start point of each local trajectory [sk, sk+1], meaning for θk,0 and uk. These constraint
contain all the path constraints, the physical limitations of the vehicle, and the bounds on
the states and inputs:

g(θk,0,uk) = 0 (4.99)

h(θk,0,uk) ≤ 0 (4.100)

Where g are the equality constraints and h are the inequality constraints.

4.6.4 Measures for more stable convergence

Interpolation of the track curvature

The track curvature information is piecewise constant. As discussed the solver performs
best if the curvature trajectory is smooth. Linear interpolation is deployed on the collo-
cation points, to give a smoother curvature input to the NLP solver. On every collocation
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point the curvature is interpolated as shown below:

Ck,i = Ck,0 +
Ck+1,0 − Ck,0

∆s
(sk,i − sk,0) , (4.101)

where k = 0, . . . , N − 1, i = 1, . . . , d

Smoothing functions

The vehicle model contains several non-smooth and discontinuous functions. To improve
the performance and stability of the NLP solver, these functions were approximated using
smoothing functions. The smoothing functions that were applied are listed below:

max(x, 0) ≈ x+
√
x2 + ε

2
(4.102)

min(x, 0) ≈ −−x+
√
x2 + ε

2
(4.103)

sign(x) ≈ x√
x2 + ε

(4.104)

abs(x) ≈
√
x2 + ε (4.105)

These functions are defined in x = 0 and are differentiable. The approximation accuracy is
dependant on the magnitude of the constant ε. The smaller it is, the more accurate, but the
less smooth the approximation becomes. Perantoni and Limebeer [2] listed the constant to
be: 10−4 ≤ ε ≤ 10−2, so ε = 10−3 was chosen.

4.7 NLP formulation and solving

The NLP was formulated in MATLAB, using CasADi, and solved using the Interior-point
method with Ipopt. CasADi provides the solver Ipopt with all first and second-order
derivatives in analytic form, enhancing the convergence of the NLP. The simulation re-
sults are presented in Chapter 5.
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5.1 Step length investigation

Perantoni and Limebeer [2] showed the CPU-time, or solution time, to increase with the
step length ∆s with the approximate formula:

tNLP ≈ 5× 10−3N1.5 (5.1)

Where N is the number of steps in the distance vector [s0, sf ].

A similar analysis was conducted using the 2019 FSG AutoX track [24], to determine what
step length to use in the simulations presented in this thesis. The results from this analysis
are presented in Figure 5.1. The analysis showed the CPU-time to be higher than what
Perantoni and Limebeer [2] predicted, and the revised approximate CPU-time function
became:

tNLP ≈ 4.8× 10−2N1.5 (5.2)

The analysis also showed that a step length of ∆s = 1m gave a good balance between
computational cost and accuracy in the simulated lap time. This step length is used in the
simulations presented in this thesis.
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Figure 5.1: Step length investigation: The resulting lap time, and CPU-time for a set of step lengths
is shown on a semi-log scale. The approximate CPU-time function is also shown.

5.2 Track models and smoothing track curvature

The track models used in this thesis are presented. The GNSS points from telemetry
taken during the 2019 FSG AutoX [24], and the 2019 FSA AutoX [25], were transformed,
interpolated, and the final track center line was produced with the track smoothing scheme
presented in Subsection 4.1.2. The CPU-time for the whole scheme was tCPU < 5 sec.

The constant c = 20 was used in the smoothing scheme. This was determined by looking
at the maximum track curvature after smoothing, and comparing it to the minimum track
corner radius listed in the Formula Student regulations [39, Section D6]: Cmax ≈ 0.3. The
gaps in the raw GNSS data are due to package loss in the telemetry system that occurred
during the competition. Notice that the curvature is significantly smoother after the track
smoothing scheme, but that the position data and track orientation is preserved.
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Track model: 2019 FSG Autox
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(a) 2019 FSG AutoX: Raw GNSS points
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(b) 2019 FSG AutoX: Interpolated and smoothed
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(d) 2019 FSG AutoX: Track orientation θ before/after track smoothing scheme

Figure 5.2: 2019 FSG AutoX: Results from track interpolation and smoothing scheme
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Track model: 2019 FSA Autox
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(a) 2019 FSA AutoX: Raw GNSS points
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(b) 2019 FSA AutoX: Interpolated and smoothed
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(c) 2019 FSA AutoX: Curvature C before/after track smoothing scheme
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(d) 2019 FSA AutoX: Track orientation θ before/after track smoothing scheme

Figure 5.3: 2019 FSA AutoX: Results from track interpolation and smoothing scheme
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5.3 Preliminary simulation results
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(a) Left hand turn: Longitudinal and lateral velocities u and v
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Figure 5.4: Left hand turn: Results from the preliminary study
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Out of the three manoeuvres listed in Table 4.1, only the left hand turn is presented. This is
to save on space in this thesis, and because the important aspects are all shown in the results
presented. The allowable normal deviation from the track center line is set to n = 1m.
The power limitation is also enforced at Pm = 80000W. The step length was: ∆s = 1m,
giving 3473 optimization variables. The CPU-time for the simulation was tCPU = 13 sec.

The longitudinal and lateral velocity profiles are shown in Sub-figure 5.4a. It shows the
starting longitudinal velocity u = 6m/s, the lateral velocity that occurs in turns, and an
increase in lateral velocity as the vehicle approaches maximum velocity vm. The latter
point is further discussed later in this thesis.

The vehicle uses all of the available track, as can be observed in Sub-figures 5.4b and 5.4d,
as the vehicle hits the track outer bounds nl/nr. This is to maximize the velocity taken
through the turn. This is in accordance with the concept of a ”racing line”. The power
limitation Pm is also enforced.

The vehicle inputs: Wheel angle δ and slip ratios κf/κr are shown. Only f/r as a single-
track vehicle model is deployed. The oscillatory behavior of these inputs is shown, and
this was limited carefully in the full simulator as discussed in Chapter 4.

5.4 Full simulation results: 2019 FSG Autox

The full simulator is used to simulate Revolves 2019 car Nova (parameters in A.1), around
the 2019 FSG AutoX track [24]. The allowable normal deviation from the track center line
is set to n = 0.01m. The step length was: ∆s = 1m, giving 60732 optimization variables.
The CPU-time for the simulation was: tCPU = 17.4 min. The simulated laptime was:
tf = 64.8615sec.

The longitudinal and lateral velocity profiles are shown in Sub-figure 5.5a. Like the prelim-
inary simulation, the figure shows the starting longitudinal velocity u = 6m/s, the lateral
velocity that occurs in turns, and an increase in lateral velocity as the vehicle approaches
maximum velocity vm. At around s = 150m the vehicle hits the maximum speed, but the
model combats this limitation as it turns the car, adding in some lateral velocity. This is
discussed further in Subsection 6.4.1.

The longitudinal and lateral acceleration profiles are presented. The maximum longitu-
dinal acceleration in the forward case is: a+x,m ≈ 16.87m/s2, and for the braking case:
a−x,m ≈ −26.46m/s2. The maximum lateral acceleration is: ay,m ≈ 27.02m/s2. Some
oscillations are observed in the acceleration data.
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(a) Full sim. 2019 FSG AutoX: Longitudinal and lateral velocities u and v

0 100 200 300 400 500 600 700 800 900 1000 1100

-30

-20

-10

0

10

20

(b) Longitudinal acceleration ax

0 100 200 300 400 500 600 700 800 900 1000 1100

-30

-20

-10

0

10

20

30

(c) Lateral acceleration ay

Figure 5.5: Full simulator: 2019 FSG AutoX results. Velocity and acceleration profiles

The vehicle inputs: Wheel angle δ and slip ratios κij are shown. For all four tires this
time. Not that many oscillations are present in the data, but the bounds on the input rates
are observed in the figures, as the vehicle inputs appear to be piecewise linear.

The limits on the powertrain are shown with both power used Pt and motor angular veloc-
ities ωi,j . The upper bounds on these two quantities are enforced. It is also visible in the
angular velocity data that the vehicle uses differential motor velocities to steer the vehicle
in low-speed corners. This is clearly visible in one of the slowest corners at s ≈ 200m.
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(a) Full sim. 2019 FSG AutoX: Wheel angle δ
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Figure 5.6: Full simulator: 2019 FSG AutoX results. Vehicle inputs and powertrain
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5.5 OC simulator compared to telemetry

The OC simulator was used to simulate Revolves 2019 car Nova (parameters in A.1),
around the 2019 FSG AutoX track [24], and the 2019 FSA AutoX track [25]. The resulting
velocity and acceleration profiles are compared to telemetry from the given competition.
The GG-diagrams for the simulator and the telemetry are also presented. The allowable
normal deviation from the track center line was set to n = 0.01m. The step length was:
∆s = 1m. This gave 60732 optimization variables and a CPU-time: tCPU = 17.4 min for
the 2019 FSG AutoX, and 48852 optimization variables and a CPU-time: tCPU = 7.9 min
for the 2019 FSA Autox.

5.5.1 Laptimes

The simulated lap times from the OC simulator and the lap times recorded during the
actual driven competitions are compared. The recorded lap times are taken from their
respective competition website: FSG [40, FSE19 Scoring Results Autocross] and FSA
[41, E-Autocross-Times-2019].

Competition Sim. laptime [s] Rec. laptime [s] Percentage diff. [%]

2019 FSG AutoX 64.862 68.074 4.72%
2019 FSA AutoX 50.163 54.685 7.4%

Table 5.1: Laptimes compared: OC simulator vs recorded

5.5.2 Velocity and acceleration profiles

The comparison between the OC simulator and the telemetry shows good agreement be-
tween the simulator and the real vehicle. The velocity and acceleration profiles for both
competitions are similar, with package loss in mind.

It is important to note the difference in peak velocity and peak braking (ax < 0). The
simulator reaches higher velocities and is able to brake harder. This fact is further empha-
sized in the GG-diagrams for the two competitions shown in Figure 5.9: Good agreement
between simulator and the real car for positive longitudinal acceleration a+x and lateral ac-
celeration ay , but clear difference between the negative (braking) longitudinal acceleration
a−x .
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(a) 2019 FSG AutoX: OC sim vs telemetry: Longitudinal velocity u
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Figure 5.7: 2019 FSG AutoX: OC simulator vs telemetry. Velocity and acceleration profiles

54



5.5 OC simulator compared to telemetry

0 100 200 300 400 500 600 700 800

0

5

10

15

20

25

30

35

(a) 2019 FSA AutoX: OC sim vs telemetry: Longitudinal velocity u

0 100 200 300 400 500 600 700 800

-30

-20

-10

0

10

20

(b) Longitudinal acceleration ax

0 100 200 300 400 500 600 700 800

-30

-20

-10

0

10

20

30

(c) Lateral acceleration ay

Figure 5.8: 2019 FSA AutoX: OC simulator vs telemetry. Velocity and acceleration profiles
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5.5.3 GG diagrams
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(a) GG diagram 2019 FSG AutoX
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(b) GG diagram 2019 FSA AutoX

Figure 5.9: OC simulator vs telemetry. GG diagrams compared for 2019 FSG and FSA AutoX

5.6 OC simulator compared to QSS simulator

To compare the two methodoligies, the OC simulator was compared to the QSS simulator
produced by Smith [1]. The same OC simulation results used in Section 5.5 was used in
the comparison, and the same vehicle parameters (Nova A.1) and step length was used
in the QSS simulator. The CPU-times for the QSS simulator were: tCPU = 53.2sec for
the FSG AutoX, and tCPU = 52.0sec for the FSA AutoX. Note that it would only be a
few second on top of one of those CPU-times to run both at the same time, as the time
consuming part is generating the performance envelope for the vehicle model. Running
the solver for a given track takes just a few seconds.

5.6.1 Laptimes

The lap times simulated by the OC simulator and the QSS simulator are compared below.

Competition OC laptime [s] QSS laptime [s] Percentage diff. [%]

2019 FSG AutoX 64.862 65.90 2.86%
2019 FSA AutoX 50.163 49.049 2.27%

Table 5.2: Laptimes compared: OC simulator vs QSS simulator
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5.6.2 Velocity and acceleration profiles
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(a) 2019 FSG AutoX: OC sim vs QSS sim: Longitudinal velocity u
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Figure 5.10: 2019 FSG AutoX: OC simulator vs QSS simulator. Velocity and acceleration profiles
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(a) 2019 FSA AutoX: OC sim vs QSS sim: Longitudinal velocity u
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Figure 5.11: 2019 FSA AutoX: OC simulator vs QSS simulator. Velocity and acceleration profiles

The comparison shows good agreement between the two simulators. The QSS simulator
achieves slightly higher lateral and positive longitudinal acceleration, but the major differ-
ence between the two is observed in the negative longitudinal acceleration. There is also a
difference in the peaks of the velocity profiles. The continuous nature of the OC simulator
is obvious compared to the QSS simulator when looking at the longitudinal acceleration
profile. The transitions between acceleration and deceleration are also distinct for the two
different simulators.
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5.7 Comparing overall vehicle designs - Nova vs Atmos

A comparison was made between two different vehicle designs: Revolve NTNU’s 2019 car
Nova (Parameters: A.1), and Revolve NTNU’s 2018 car Atmos (Parameters: A.2). They
were simulated on the 2019 FSG autoX track, with the same settings as with the other sim-
ulations done with Nova. The CPU-time were similar for the two cars, at tCPU ≈ 17 min.

5.7.1 Laptimes

The lap times simulated by the OC simulator for the two cars are compared below. For
reference and further discussion, the lap times recorded at competitions are also listed
below.

Vehicle Sim. laptime [s] Rec. laptime [s] Percentage diff. [%]

Nova 64.862 68.074 4.72%
Atmos 67.039 67.331 0.43%

Table 5.3: Laptimes compared: Nova vs Atmos

5.7.2 Velocity and acceleration profiles

The velocity and acceleration profiles are compared. Nova and Atmos are very similar
cars, but Nova has Atmos beat. The lap times and profiles plotted, show that Nova can
accelerate faster, both longitudinally and laterally, giving a faster overall lap, and resulting
in lower lap times.

The difference in lap time recorded during competitions is an important point that is fur-
ther discussed in Sub-section 6.4.1. Note that the run for which Atmos’ lap time is pre-
sented, received a penalty due to hitting a cone during the run, giving an actual best time
of T = 69.331. For this comparison, this fact is ignored.
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(a) 2019 FSG AutoX: Nova vs Atmos Longitudinal velocity u
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Figure 5.12: 2019 FSG AutoX: Nova vs Atmos. Velocity and acceleration profiles
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6.1 Data collection

6.1.1 Accuracy of the telemetry

The VectorNav VN-300 GNSS-Aided Inertial Navigation System (INS) with Integrated
GNSS-Compass [36] was used to produce the recorded data presented in this thesis. The
velocity profiles presented are not measured, but estimates produced with a Kalman filter
in the INS. In 2016 Revolve NTNU verified the velocity estimates from the INS, by taking
separate ground speed measurements with the Kistler Correvit SFII: 2-axis optical sensor
[42]. The comparison showed the INS to give an accurate velocity estimate for the vehicle
when compared to the optical sensor. A comparison of the two sensors from the 2016 FSG
AutoX is shown in Figure 6.1.

0 10 20 30 40 50 60 70

0

5

10

15

20

25

Figure 6.1: 2016 FSG AutoX: INS vs Kistler Optical sensor Longitudinal velocity u
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6.1.2 Package loss

The telemetry data suffers from package loss that occurred during the competition, as the
telemetry system failed to transmit all data packages from the vehicle to the base station.
In the track model, this loss of information is handled by the spline interpolation, but
this leads to a diluted final result. In the telemetry velocity and acceleration profiles, this
package loss makes a detailed comparison of the OC simulator and the real car difficult,
as the position data is inaccurate. An analysis of braking points, for example, is difficult.
The data is deemed decent enough for a comparison between the velocity and acceleration
magnitudes.

6.2 Track model

The trackmaker, consisting of spline interpolation of GNSS coordinates and OC based
curvature smoothing, makes it possible to take telemetry from a test or competition run
with a vehicle, extract the GNSS points, and create tracks for both the OC simulator and
the QSS simulator presented in [1]. That includes varying the step length as needed. The
trackmaker is simple and fast to deploy as a track is ready for the simulator after just a few
seconds.

There are however some important considerations with the trackmaker. The tracks that are
produced are not the actual tracks driven by the vehicle. The track centerline produced is
the trajectory taken by the driver when the telemetry was recorded. For this reason, the
simulations, except for the preliminary study, are produced with small boundaries nl/nr.
It is assumed that the track centerlines used in this thesis are the racing line. The Formula
Student tracks are cone tracks, where a large flat or parking lot is made into a track by
placing cones out on the flat, specifying the track boundaries. This makes reconstruction
of the track in question difficult without accurate imagining. An alternative to the track
model used in this thesis could be a manually generated track, where it would be possible to
ease the boundaries nl/nr, and allow the OC simulator to optimize the trajectory taken by
the vehicle. Note that it is limited how much a 1.4m wide car can maneuver on a track that
is only 3m wide [39, Rule D6.1.1.], so the cost-benefit analysis for this manual approach
is questionable. The spline interpolation and curvature smoothing scheme dilutes the track
further. The package loss is also an issue, and a better final result could be achieved,
meaning a more accurate representation of the real track, if the quality of the telemetry
was improved.

The discrepancy between the track model and the real track is not deemed a fatal flaw,
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however, as the simulator made in this thesis is meant as a tool for automotive engineers to
evaluate vehicle designs. The comparison between the simulator and the telemetry is just
an indicator of how well the simulation models the vehicle under study.

6.3 Preliminary Study - The Optimal Trajectory

One of the maneuvers simulated in the preliminary study was presented in Section 5.3.
The simple left-hand turn maneuver displays some of the important aspects of the OC
simulator built in this thesis. The simulator is a free trajectory simulator, where both the
vehicle inputs and the trajectory taken by the vehicle are determined by the optimization.
The way the track is modeled in this thesis (already the approximate optimal path), this
capability is limited as shown, but it is present in the simulator as a capability for future
work.

This optimal trajectory is displayed in Sub-figure 5.4b. The vehicle moves to the right side
of the track before turning into the corner. In the corner, the vehicle moves across the track
centerline to the left side of the track, as it hits the apex (the point of maximum curvature)
of the corner. As the vehicle accelerates out of the corner it again moves across the center
line to the right side of the track. This line is commonly referred to as the rasing line. The
racing line is distinct from the shortest path, as it is longer in distance, but maximizes the
progression of the vehicle through the corner. This method of driving is used by racing
drivers to minimize lap times, and the preliminary study captures and displays this aspect
of the OC simulator.

6.3.1 Challenges with the chosen methodology

The results from the preliminary study also display several challenges with the chosen
methodology.

The vehicle inputs show oscillatory behavior. The wheel angle shown in Sub-figure 5.4f
displays this behaviour after s = 80m. It is unclear why the optimization gives this input
as the vehicle travels in a straight line, as the intuitive input is no steering input: δ = 0. The
oscillatory behavior was mitigated, but not eliminated, by using the rates of the vehicle in-
puts as inputs, and letting the integration produce the actual vehicle inputs. This increased
the problem size significantly, and a need to determine the upper and lower bounds for the
rates. Further work is needed to analyze the oscillatory behavior, and possibly additional
remedies for it.
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After s ≈ 92m the vehicle begins to yaw and increase the lateral velocity v. This happens
as the vehicle approaches the maximum longitudinal velocity. This behavior displays a
shortcoming in the vehicle modeling, as the vehicle progression is increased by doing
this, and not decreased as would be the case for an actual vehicle. The vehicle model in
the preliminary study does not have an aerodynamic package, so the aerodynamic forces
present on a real vehicle at high speed, are not present. This effect is further analyzed in
Sub-section 6.4.1.

6.4 Full simulator

6.4.1 Vehicle Modeling

When dealing with optimization, it is important to watch for modeling errors, as these
can be exploited by the optimization solver, producing skewed results. The vehicle model
presented in this thesis is comprehensive, and the most important modeling aspects are
included: Tire model, load transfer, tire slip, and aerodynamics. All on a double-track
vehicle model. It becomes clear when comparing the simulation result to the telemetry in
Section 5.5 that the vehicle simulator captures a significant part of the real vehicle dynam-
ics. The lateral acceleration profile is very similar between the simulator and the telemetry.
The velocity profile is very similar, and so is the longitudinal acceleration profile. There is
a significant difference in braking performance between the simulated vehicle and the real
vehicle. It is believed that this in turn creates the opportunity for higher peak velocities, as
the simulated vehicle can accelerate for longer before braking. Potential reasons for this
are discussed.

The tire model

The tire model used in the vehicle model is complex. The Pajecka Magic Formula 5.2
provided by Revolve NTNU’s tire manufacturer Continental, is shown in the Appendix
B.1. The tire model adds significant complexity to the vehicle model, and this could be
reason for the increase in CPU-time observed in Section 5.1, when compared to Perantoni
and Limebeer [2] and Christ et al. [3] that used similar methodologies. The tire model is
accurate, but needs to be scaled to produce a realistic result. The scaling constant c = 0.55

applied to both the longitudinal and the lateral tire model, is simplistic, and could be
insufficient in dealing with the high vertical tire loads at high velocities. Looking at Sub-
figures 5.7a and 5.7b, peak braking (a−x ) occurs at points of high velocity. At s ≈ 850m
this is shown. It is possible that the high vertical loads on the tires at high velocities
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(from aerodynamic downforce), extrapolates the tire model past an accurate range. In
their documentation, Continental lists a range of vertical loads for which their tire model
is valid: Fz ∈ [230, 1600]N. The tire vertical loads for the 2019 FSG AutoX simulation
are presented below:
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Figure 6.2: 2019 FSG AutoX: Tire vertical loads Fz,ij

Figure 6.2 shows that the tire vertical loads do move outside the maximum, valid vertical
tire load. More specifically this is observed for the section of track described above, at
s ≈ 850m. The peak sits at Fz ≈ 1750N. Further work is needed to determine if this is
significant enough to overestimate the braking acceleration as observed in Section 5.5.

The aerodynamic modeling

The aerodynamic model used in the vehicle model is also simplistic. The coefficient of
lift and drag CL and CD are derived from CFD simulations, by simulating the vehicle at
u = 60km/h. This could lead to modeling error at higher velocities. The aerodynamic
package is also idealized, as the vehicle has no suspension and therefore no movement
in the aerodynamic package. It is unclear if this increases or decreases the aerodynamic
downforce, as braking tends to make the vehicle pitch forward giving more aerodynamic
downforce, but the vehicle is also under a lot of downforce, so the ride height is lowered,
limiting the airflow to the underbody of the car, limiting downforce.

Through expanding the QSS simulator, outlined in [1], an attempt was made to include
variable aerodynamic coefficients. The attitude of the vehicle was estimated using a ”meta-
suspension system”: The calculated spring stiffnesses of the suspension were combined
with velocity, for vertical load on the vehicle body through down force, longitudinal and
lateral acceleration for pitch and roll, and lateral velocity for vehicle side slip. Using a
lookup table, vehicle ride height, pitch, roll, and, side slip was used to find aerodynamic
coefficients derived from parameter sweeps conducted in CFD simulations. The perfor-
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mance envelope was generated, and compared to a performance envelope for a vehicle
model without the expanded aerodynamic model. The resulting performance envelopes
(GGV-diagrams), generated for Nova (parameters in A.1) are presented below:

(a) GGV top view: Constant aerodynamic coefficients (b) GGV top view: Variable aerodynamic coefficients

Figure 6.3: Performance envelope comparison showing longitudinal and lateral acceleration

The variable aerodynamic coefficients have a clear impact on the maximum longitudinal
and lateral acceleration a vehicle can produce, especially in combined longitudinal and
lateral acceleration, as is often the case on an AutoX track. Further work could determine
the impact of the simplification of the aerodynamic model used in the OC simulator.

Lateral velocity at high longitudinal velocity

In both the preliminary study in Section 5.3, and the full simulation study 5.4, a strange
increase in lateral velocity v was observed at high longitudinal velocities u. The longitu-
dinal and lateral velocity profiles are presented for both the OC simulator and telemetry,
from FSG 2019 AutoX:

This increase in lateral velocity is clearly observed at s ≈ 740m. The simulator increases
lateral velocity almost in tandem with the longitudinal velocity, while the telemetry shows
the lateral velocity decreasing as the local peak in longitudinal velocity is reached.

The lateral velocity observed could be a result of a lack of lateral sensitivity in the aero-
dynamic package. As the vehicle turns, side slip is introduced, which hurts aerodynamic
performance. The aerodynamic model only uses longitudinal velocity u to calculate aero-
dynamic downforce and drag, ignoring lateral velocity. The powertrain also ignores the
lateral velocity, as only the tire longitudinal velocity in the tire frame is used to calculate
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(a) Longitudinal and lateral velocities u and v from simulator
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(b) Longitudinal and lateral velocities u and v from telemetry

Figure 6.4: 2019 FSG AutoX: Longitudinal and lateral velocities u and v compared

power used Pt, torque produced by the motors Tij , and motor angular velocity ωi,j . Sen-
sitivity to lateral velocity should be included in future work, to remove this error in the
model.

Driver influence

The telemetry used in the comparison in Section 5.5 is recorded on a vehicle driven by
a human driver. The effects of the driver’s abilities and confidence in the car cannot be
overstated. It is telling that the lateral and positive longitudinal acceleration data for the
OC simulator agrees well with the telemetry, while the negative longitudinal acceleration
data does not. It is possible that the driver recorded was less confident in the stopping
power of the vehicle than in the lateral grip. The effects a driver has on the lap time of
a vehicle is observed in the comparison between Nova and Atmos in Section 5.7. Even
though Nova is the faster car in the simulator, Atmos achieved the fastest lap time at the
competition. A possible reason for the discrepancy between the simulated vehicle and the
recorded vehicle is the driver that produced the telemetry data.

This raises an important potential use case for the OC simulator produced: Driver evalua-
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tion. It is possible to use the simulator as a benchmark when evaluating where a driver is
doing well, and where a driver might be leaving performance on the table. Good judgment
is needed when doing this, as the simulator gives a theoretical optimum, and it is not given
that a driver can reach this.

6.5 OC compared to QSS

In Section 5.6 the OC simulator produced in this thesis was compared to the QSS sim-
ulator produced in [1]. The comparison is interesting as both simulators bring distinct
advantages.

The OC simulator provides a more complete description of the vehicle dynamics. Even
though the vehicle and track modeling are the same for the two simulators, the OC sim-
ulator provides a close approximation to the continuous dynamics of the vehicle. The
inclusion of yaw dynamics, where the change in yaw rate is produced through a yaw mo-
ment is important, as the acceleration of the vehicle in yaw can have a significant impact
on the final solution, especially considering the AutoX type tracks where this is an impor-
tant part of the vehicle’s performance. The modeling of transient effects is valuable as it
allows modeling suspension systems with springs and dampers. The two main drawbacks
are the CPU time and the stability of the optimization problem as the model complexity is
increased.

The QSS simulator on the other hand is shown to be a good approximation of the dynamics
modeled in the OC simulator. The velocity and acceleration profiles are very similar,
but the quasi steady-state approximation of the vehicle dynamics and lack of transient
effects, are visible in the longitudinal acceleration profile shown in Sub-figure 5.10b. The
maximum possible positive or negative longitudinal acceleration is applied for each step,
without continuity. A big advantage of the QSS simulator is the CPU-time, as it allows
quick investigation and iteration of vehicle designs, with good accuracy in the solution.
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Conclusion and Future Work

7.1 Conclusion

An Optimal Control (OC) based Lap Time Simulation (LTS) has been implemented and
presented. The simulator uses a double-track vehicle model, with a nonlinear tire model,
load transfer, aerodynamic package, and basic powertrain modeling. The MTM problem
was formulated as a free trajectory Optimal Control Problem (OCP), and solved with a
Non Linear Programming (NLP) solver, using a direct orthogonal collocation method to
transcribe the problem.

The important vehicle modeling aspects have been presented and implemented in the
MTM problem. The track model was created using a track maker, implemented using
spline interpolation and OC to transform GNSS coordinates into a smooth track center-
line. The trackmaker was used to produce track center lines from telemetry data, creating
track center lines for the 2019 FSG AutoX track, and the 2019 FSA AutoX track.

A preliminary study, using simplified vehicle and track models, was presented, showcasing
the free trajectory optimization capabilities of the chosen methodology.

The full simulator was presented, simulating Revolve NTNU’s 2019 racecar Nova around
the 2019 FSG AutoX track. Simulations on both the 2019 FSG AutoX track and the 2019
FSA AutoX tracks were compared to telemetry recorded at the given competition. The
comparison showed good agreement between the simulator and the real vehicle, except
for the braking performance. The simulator was able to brake much harder than what the
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telemetry showed the real car to do, producing a discrepancy in the negative longitudinal
acceleration and as a result faster lap times. Several potential reasons for this were identi-
fied, including the tire model, the aerodynamic modeling, and the driver influence on the
telemetry data.

The OC simulator was also compared to a QSS based simulator, using the same vehi-
cle and track models. The comparison help identify the advantages of the two different
methodologies.

Lastly, a comparison between the two vehicle designs was made. This showcased the
capabilities to use the simulator for its intended purpose: Evaluating vehicle designs. The
lighter, more agile, car Nova beat Revolve NTNU’s 2018 racecar Atmos around a lap of
the 2019 FSG AutoX.

7.2 Future Work

Several areas to improve and expand the work presented in this thesis have been identified.

7.2.1 Vehicle modeling

With the methodology for solving the MTM established, the modeling in the simulator
should be considered.

Tire modeling

The tire model used in the vehicle model is complex, and a potential reason for the high
computation cost of the MTM problem. There is potential for scaling back the complexity
of the model while retaining the important modeling aspects. A possible simplification to
make would be to use a simpler form of the semi-empirical Magic Formula, or use a Tire
Brush model [26, Chapter 3].

If increased modeling accuracy is desired, the tire model provided by Continental does
contain several tire modeling aspects that are not used in this thesis. Effects from rolling
resistance, aligning torque about the tire vertical axis, and overturning moment about the
tire longitudinal axis, are all presented in the Pacejka Magic Formula 5.2. By including
these modeling aspects in the vehicle model, an even more comprehensive tire model
could be achieved, at the expense of computational cost and less stable convergence of the
simulator OCP.
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Aerodynamic modeling

The potential modeling error in the aerodynamic model of the vehicle model has been dis-
cussed. Sensitivity to vehicle side slip should be included. A more comprehensive aerody-
namic model could be implemented, similar to what was presented in Sub-section 6.4.1.
If a multi-body vehicle model was implemented, then a dynamic aerodynamic model is a
natural extension.

Multi-body vehicle model

Lot and Dal Bianco [43] showed the significance of implementing a multi-body vehicle
model. A 14 Degrees Of Freedom (DOF) vehicle model was simulated using OC. 10
DOF and 7 DOF models were also implemented and simulated. The latter being a model
similar to the one implemented in this thesis. The multi-body models were shown to have
a significant impact on the final result. The 14 DOF model and the 10 DOF were very
similar, but the 10 DOF required much less computation time. A 10 DOF vehicle model,
like then one implemented by Lot and Dal Bianco [43], could be implemented in the OC
simulator presented in this thesis.

Powertrain model

The powertrain model implemented in this thesis is limited. It covers the basic limitations
of the powertrain, but a lot more can be modeled. The electric power train starts at the
battery pack that supplies high voltage current to the motor controllers and inverters. The
inverters run the hub-mounted motors, which produce torque through the gearboxes to
drive the wheels and tires. In all these steps, losses and efficiencies could be modeled.
Revolve NTNU’s vehicles use energy recovery through the motors in braking, to regain
some of the spent energy during acceleration. This can also be modeled for a more accurate
model for the power consumption. The motors do not produce the same torque across
the whole RPM range, as they drop in torque towards the end of the range. This has a
significant impact on the vehicle dynamics and could be implemented and studied.

7.2.2 Autonomous planning

The simulator implemented can be reconfigured for use in an autonomous racecar, as the
one Revolve NTNU has. The free trajectory optimization could be used to optimize a
reference line on an already mapped track. This could help the autonomous racecar achieve
faster lap times. To improve the computation time of the free trajectory optimization, a
more simplistic model could be deployed. A single-track model could be an alternative.
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7.2.3 Parameter Optimization

The direct transcription method deployed in the OC simulator is trivial to reconfigure for
simultaneous simulation and parameter optimization. This methodology is well estab-
lished and has been outlined in detail by Perantoni and Limebeer [2]. Note that this might
lead to a less stable convergence of the optimization problem.

7.2.4 Graphical user interface

As this simulator is meant as a tool for automotive engineers to evaluate and iterate on
vehicle designs, a Graphical User Interface (GUI) could be produced for the OC simula-
tor to make its use more accessible. As the simulator is implemented in MATLAB, the
MATLAB App Designer [44] could be used to implement the GUI.
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Appendix A
A.1 Vehicle Parameters - R19 Nova

Symbol Description Value Unit

m Vehicle mass (car and driver) 234.5 kg
Iz Vehicle moment of inertia (car and driver) 82 kgm2

wdr Mass distribution rear 0.514 -
hcog Center of mass height 0.273 m
wb Vehicle wheel base 1.530 m
τf/r Vehicle track front/rear 1.20/1.20 m
δm Max wheel angle 33 deg
Pm Max power 80000 W
Tm Max torque 29.2 Nm
Rl Loaded wheel radius 0.228 m
n Gear ratio 14.38 -
ωm Motor rotation limit 20000 rpm
ClA Coeff. of lift (and frontal area) 5.60 m2

CdA Coeff. of drag (and frontal area) 1.82 m2

adr Aerodynamic distribution rear 0.5 -
κm Max slip ratio 0.2 -
αm Max slip angle 10 deg
γf/r Inclination angle front/rear 0.0/0.0 deg
g Gravitational constant 9.81 m/s2

ρ Air density 1.184 kg/m3

cx Longitudinal tire scaling factor 0.55 -
cy Lateral tire scaling factor 0.55 -
ε Coefficient used in smoothing functions 10−2 -

Table A.1: Vehicle parameters for Revolve NTNU’s 2019 car: Nova
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A.2 Vehicle Parameters - R18 Atmos

Symbol Description Value Unit

m Vehicle mass (car and driver) 252 kg
Iz Vehicle moment of inertia (car and driver) 110 kgm2

wdr Mass distribution rear 0.505 -
hcog Center of mass height 0.288 m
wb Vehicle wheel base 1.530 m
τf/r Vehicle track front/rear 1.20/1.18 m
δm Max wheel angle 33 deg
Pm Max power 80000 W
Tm Max torque 21 Nm
Rl Loaded wheel radius 0.228 m
n Gear ratio 15.58 -
ωm Motor rotation limit 20000 rpm
ClA Coeff. of lift (and frontal area) 4.814 m2

CdA Coeff. of drag (and frontal area) 1.786 m2

adr Aerodynamic distribution rear 0.5 -
κm Max slip ratio 0.2 -
αm Max slip angle 10 deg
γf/r Inclination angle front/rear 0.0/0.0 deg
g Gravitational constant 9.81 m/s2

ρ Air density 1.184 kg/m3

cx Longitudinal tire scaling factor 0.55 -
cy Lateral tire scaling factor 0.55 -
ε Coefficient used in smoothing functions 10−2 -

Table A.2: Vehicle parameters for Revolve NTNU’s 2018 car: Atmos
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Appendix B

B.1 Magic Formula 5.2

The tire model used in this thesis is the Pacejka Magic Formula 5.2. The manufacturer of
Revolve NTNU’s tires: Continental, provides the model equations with fitted parameters.
The parameter file used in this thesis is for the C19 Continental Formula Student 205/470
R13 tire, at 80kPa. The model, as provided by Continental, is referenced below.

B.1.1 Inputs and Outputs

Description Symbol Unit

Inputs Nominal (rated) load Fz0 [N]
Unloaded tire radius R0 [m]
Longitudinal slip κ [-]
Slip angle α [rad]
Camber angle γ [rad]
Normal wheel load Fz [N]

Outputs Longitudinal force Fx [N]
Lateral force Fy [N]

Table B.1: Inputs and outputs from the Magic Formula 5.2

B.1.2 Normalized vertical load increment

dfz =
Fz − F′z0

F′z0
, F′z0 = Fz0 · λFz0

(B.1)
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B.1.3 Pure Lateral Slip

Fy = Fy0 (α, γ,Fz) (B.2)

Fy0 = Dy sin [Cy arctan {Byαy − Ey (Byαy − arctan (Byαy))}] + SVy (B.3)

αy = α+ SHy (B.4)

γy = γ · λγy (B.5)

Coefficients

By = Ky/ (CyDy) , (B.6)

Cy = pCy1 · λCy (B.7)

Dy = µy · Fz (B.8)

Ey = (pEy1 + pEy2dfz) · {1− (pEy3 + pEy4γy) sgn (αy)} · λEy(≤ 1) (B.9)

SHy = (PHy1 + PHy2dfz) · λHy + PHy3γy (B.10)

SVy = Fz · {(pVy1 + pVy2dfz) · λVy + (pVy3 + pvy4 · dfz) · γy} · λµy (B.11)

Where:

Ky =pKy1 Fz0 sin [2 arctan {Fz/ (pky2 Fz0λFz0
)}] · (1− pKy3 |γy|) · λFz0

· λKy

(B.12)((
= ByCyDy =

∂yy

∂αy
at αy = 0

)
(B.13)

µy = (pDy1 + pDy2 dfz) ·
(
1− pDy3γ

2
y

)
· λµy (B.14)
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Coefficients – Pure Lateral Slip

Name Name used in tire property file Explanation

pCy1 PCY1 Shape factor Cfy for lateral forces
pDy1 PDY1 Lateral friction Muy
pDy2 PDY2 Variation of friction Muy with load
pDy3 PDY3 Variation of friction Muy with squared camber
pEy1 PEY1 Lateral curvature Efy at Fznom
pEy2 PEY2 Variation of curvature Efy with load
pEy3 PEY3 Zero order camber dependency of curvature Efy
pEy4 PEY4 Variation of curvature Efy with camber
pKy1 PKY1 Maximum value of stiffness Kfy/Fznom
pKy2 PKY2 Load at which Kfy reaches maximum value
pKy3 PKY3 Variation of Kfy/Fznom with camber
pHy1 PHY1 Horizontal shift Shy at Fznom
pHy2 PHY2 Variation of shift Shy with load
pHy3 PHY3 Variation of shift Shy with camber
pVy1 PVY1 Vertical shift in Svy/Fz at Fznom
pVy2 PVY2 Variation of shift Svy/Fz with load
pVy3 PVY3 Variation of shift Svy/Fz with camber
pVy4 PVY4 Variation of shift Svy/Fz with camber and load

Table B.2: Coefficients – Pure Lateral Slip
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B.1.4 Pure Longitudinal Slip

Fx = Fx0 (κ, Fz) (B.15)

Fx0 = Dx sin [Cx arctan {Bxκx − Ex (Bxκx − arctan (Bxκx))}] + SVx (B.16)

κx = κ+ SHx (B.17)

γx = γ · λγx (B.18)

Coefficients

Bx = Kx/ (CxDx) (B.19)

Cx = pCx1 · λCx (B.20)

Dx = µx · Fz (B.21)

Ex =
(
pEx1 + pEx2 dfz + pEx3 df2z

)
· {1− pEx4 sgn (κx)} · λEx(≤ 1)

)
(B.22)

SHx = (pHx1 + pHx2 · dfZ)λHx (B.23)

SVx = Fz · (pVx1 + pVx2dfz) · λVx · λµx (B.24)

Where:

Kx =Fz · (pKx1 + pKx2dfz) · exp (pKx3 dfz) · λKx (B.25)(
Kx = BxCxDx =

∂Fx0

∂κx
at κx = 0

)
(B.26)

µx = (pDx1 + pDx2dfz) ·
(
1− pDx3 · γ2x

)
λµx (B.27)
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Coefficients – Pure Longitudinal Slip

Name Name used in tire property file Explanation

pCx1 PCX1 Shape faxtor Cfx for longitudinal force
pDx1 PDX1 Longitudinal friction Mux at Fznom
pDx2 PDX2 Variation of friction Mux with load
pDx3 PDX3 Variation of friction Mux with camber
pEx1 PEX1 Longitudinal curvature Efx at Fznom
pEx2 PEX2 Variation of curvature Efx with load
pEx3 PEX3 Variation of curvature Efx with load squared
pEx4 PEX4 Factor in curvature Efx while driving
pKx1 PKX1 Longitudinal slip stiffness Kfx/Fz at Fznom
pKx2 PKX2 Variation of slip stiffness Kfx/Fz with load
pKx3 PKX3 Exponent in slip stiffness Kfx/Fz with load
pHx1 PHX1 Horizontal shift Shx at Fznom
pHx2 PHX2 Variation of shift Shx with load
pVx1 PVX1 Vertical shift Svx/Fz at Fznom
pVx2 PVX2 Variation of shift Svx/Fz with load

Table B.3: Coefficients – Pure Longitudinal Slip

85



B.1.5 Lateral Slip (Combined Slip)

Fy = Fy0 ·Gyκ (α, κ, γ,Fz) + SVyK (B.28)

Fy = Dyκ cos [Cyκ arctan {Byκκs − Eyk (Byκκs − arctan (ByKκs))}] + SVyk (B.29)

κs = κ+ SHyK (B.30)

with weighting function:

Gyκ =
cos [Cyκ arctan {Byκκs − EyK (ByKκs − arctan (ByKκs))}]

cos [Cyκ arctan {ByKSHyK − EyK (ByKSHyK − arctan (ByKSHyK))}]
(B.31)

Coefficients

Byκ = rBy1 cos [arctan {rBy2 (α− rBy3)}] · λyk (B.32)

Cyκ = rCy1 (B.33)

Dyκ =
Fy0

cos [Cyκ arctan {ByKSHyκ − Eyk (ByKSHyκ − arctan (BykSHyκ))}]
(B.34)

DVyκ = µyFz · (rVy1 + rVy2dfz + rVy3γ) · cos [arctan (rVy4α)] (B.35)

Eyκ = rEy1 + rEy2dfz (B.36)

SHyκ = rHy1 + rHy2dfz (B.37)

SVyκ = DVyκ sin [rVy5 arctan (rVy6 K)] · λVyκ (B.38)
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Coefficients – Lateral Slip (Combined Slip)

Name Name used in tire property file Explanation

rBy1 RBY1 Slope factor for combined Fy reduction
rBy2 RBY2 Variation of slope Fy reduction with alpha
rBy3 RBY3 Shift term for alpha in slope Fy reduction
rCy1 RCY1 Shape factor for combined Fy reduction
rEy1 REY1 Curvature factor of combined Fy
rEy2 REY2 Curvature factor of combined Fy with load
rHy1 RHY1 Shift factor for combined Fy reduction
rHy2 RHY2 Shift factor for combined Fy reduction with load
rVy1 RVY1 Kappa induced side force Svyk/Muy*Fz at Fznom
rVy2 RVY2 Variation of Svyk/Muy*Fz with load
rVy3 RVY3 Variation of Svyk/Muy*Fz with camber
rVy4 RVY4 Variation of Svyk/Muy*Fz with alpha
rVy5 RVY5 Variation of Svyk/Muy*Fz with kappa
rVy6 RVY6 Variation of Svyk/Muy*Fz with atan (kappa)

Table B.4: Coefficients – Lateral Slip (Combined Slip)
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B.1.6 Longitudinal Slip (Combined Slip)

Fx = Fx0 ·GXα (α, κ,Fz) (B.39)

Fx = Dxα cos [Cxα arctan {Bxααs − Exα (Bxααs − arctan (Bxααs))}] (B.40)

αs = α+ SHxα (B.41)

with weighting function:

Gxα =
cos [Cxα arctan {Bxααs − Exα (Bxααs − arctan (Bxααs))}]

cos [Cxα arctan [BxαSHxa − Exα (BxαSHxα − arctan (BxαSHxα))]]
(B.42)

Coefficients

Bxα = rBx1 cos [arctan {rBx2 K}] · λxα (B.43)

Cxα = rCx1 (B.44)

Dxα =
Fx0

cos [Cxα arctan {BxαSHxα − Exα (BxαSHxα − arctan (BxαSHxα))}]
(B.45)

Exα = rEx1 + rEx2dfz (B.46)

SHxα = rHx1 (B.47)

Coefficients – Longitudinal Slip (Combined Slip)

Name Name used in tire property file Explanation

rBx1 RBX1 Slope factor for combined slip Fx reduction
rBx2 RBX2 Variation of slope Fx reduction with kappa
rCx1 RCX1 Shape factor for combined slip Fx reduction
rEx1 REX1 Curvature factor of combined Fx
rEx2 REX2 Curvature factor of combined Fx with load
rHx1 RHX1 Shift factor for combined slip Fx reduction

Table B.5: Coefficients – Longitudinal Slip (Combined Slip)
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