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Abstract

NTNU SmallSat Lab is developing the HYPSO CubeSat, a satellite platform for observing the
ocean using a hyperspectral camera payload. Processing captured hyperspectral images on board
is to be done using a processing pipeline, developed prior to this thesis. Classification and clus-
tering of hyperspectral images can reduce the need to downlink full hyperspectral images over the
low capacity downlink to earth by only having to downlink pixel labels. Given the large amount
of data in a hyperspectral image and the modest computational power available, on board pro-
cessing requires special considerations. This thesis explores the computational limits of the payload
hardware, integrates the processing pipeline in the satellite platform and develops modules for clus-
tering, classification and dimensionality reduction subject to the computational constraints. The
modules have been verified and analysed with profiling tools, and tested on real hyperspectral data.

A method for clustering is proposed using Self Organizing Maps, by creating a dense representation
of hyperspectral data. It achieves partial on board clustering, where the map is trained on the
ground and uploaded before being used to cluster new captured images on board HYPSO. This
offloads a significant amount of computational work, resulting in a low memory usage and low
computational time on the target satellite platform. Various parameters for training and clustering
the Self Organizing Map are explored. It shows potential for clustering hyperspectral images with
competitive results to other algorithms.

For classification, the popular Support Vector Machine with the Radial Basis Function kernel has
been implemented. It is used as a benchmark against a Self Organizing Map based classifier. With
good classification accuracy and low memory usage, it is a suitable classification algorithm for
on board processing. Principal Component Analysis is used to speed up both classification and
clustering through reducing the dimension of the input data.
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Sammendrag

NTNU SmallSat Lab utvikler HYPSO, en kubesatellitt som skal overv̊ake havet ved bruk av et
hyperspektralt kamera. Prosesseringen av hyperspektrale bilder ombord blir gjort serielt i en
prosesseringskjede som ble utviklet før denne oppgaven. Klassifisering og gruppering av hyper-
spektrale bilder ombord kan redusere behovet for å laste ned hele hyperspektrale bilder over lavka-
pasitetslinken til jorden, men heller bare laste ned etiketten til hver piksel. Siden hyperspektrale
bilder inneholder store mengder data og det er begrenset med prosesseringskraft tilgjengelig krever
prosessering om bord spesielle hensyn. Denne oppgaven utforsker beregningsgrensene for maskin-
varen om bord, integrerer prosesseringskjeden i satellitten og utvikler moduler for gruppering,
klassifisering og dimensjonsreduksjon underlagt begrensningene i regnekraft. Modulene har blitt
verifisert og analysert med profileringsverktøy, og testet p̊a reell hyperspektral data.

En metode for gruppering er foresl̊att ved bruk av Selvorganiserende Kart, som lager en kompakt
representasjon av hyperspektrale data. Det oppn̊ar delvis gruppering ombord, hvor kartet trenes
p̊a bakken før det lastes opp og brukes til å gruppere nye bilder tatt av HYPSO. Dette avlaster store
deler av prosesseringsarbeidet, som resulterer i et lavt minneforbruk og lav beregningstid ombord.
Ulike parametere for å trene og klassifisere de Selvorganiserende Kartene er utforsket. Metoden
viser potensiale for gruppering av hyperspektrale bilder med konkurransedyktige resultater sam-
menlignet med andre algoritmer.

For klassifisering er den populære Støttevektormaskinen med en radial basis funksjon som kjerne
implementert. Den blir brukt som referanse til en Selvorganiserende Kart basert klassifikator.
Med høy nøyaktighet og lavt minnebruk er det en passende klassifiseringalgoritme for prosessering
ombord. Hovedkomponentanalyse brukes for a forbedre prosesseringshastigheten til gruppering og
klassifisering ved å redusere dimensjonen til dataen.
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1 Introduction

1.1 HYPSO

The HYPSO (HYPer-spectral Smallsat for ocean Observation) CubeSat is being developed by
NTNU Small Satellite Lab. The mission is to launch a satellite for observing oceanographic
phenomena along the Norwegian coast. Globally the ocean constitutes an important part of the
ecosystem and is central to human life [2]. However with rising climate change driven by human
industrial expansion, observing the ocean is of increasing importance. HYPSO is equipped with
a hyperspectral imager capable of capturing rich images for analysis, and both NASA and ESA
has launched hyperspectral imaging satellites in the past, with the EO-1 [3] and GomX-4B [4].
With a low earth orbit, HYPSO have fast revisit time, enabling rapid observation of the Ocean.
To avoid having to downlink the full image to earth using a low capacity radio link, some of the
image processing, such as sensor correction, target detection and compression, is done on board.

A specific use case of remote sensing is the observation and detection of algae blooms impacting
marine life. In 2020 the Norwegian aquaculture industry exported over 13 billion meals globally
[5]. High concentration of algae can be fatal for marine life [6] and in 2019 a single algae bloom
killed 10 000 tons of salmon along the Norwegian coast [7].

Launching a satellite enables rapid, autonomous and continuous oceanic observation. Traditional
methods with manned aircrafts and ships suffer from limited observation range, ground infrastruc-
ture requirements and manual operations. HYPSO and it’s planned successor HYPSO-2 are a part
of the NTNU AMOS (Autonomous Marine Operations and Systems) project. It aims to launch an
interconnected network of autonomous vehicles consisting of autonomous vehicles under, on and
above water illustrated in fig. 1. By employing real time processing of payload data, sensor fusion
and machine learning it will monitor and observe the ocean, giving insight and data for researchers.

Figure 1: AMOS project for mapping and monitoring of the oceans. From [1]

1.2 Hyperspectral Data

Traditional RGB imagers such as an ordinary smartphone cameras samples wavelengths for red,
green and blue light. A hyperspectral imager samples many wavelengths, often over 100 for each
pixel. Instead of three discrete RGB values foe each pixel, the result is a continuous spectrum
of values illustrated in fig. 2. Such a spectrum contains more information about the scene than
traditional images, which makes it a powerful tool for remote sensing.
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Figure 2: The spectral signature of a pixel taken by a hyperspectral imager

Unlike images taken by an ordinary digital camera which have two spatial dimensions, the HYPSO
hyperspectral imager captures lines of data, where each line consists of only one spatial dimension.
To capture full images with two spatial dimensions, the imager takes a series of lines, where the
imager is moved slightly for each captured line. This is called the pushbroom configuration of
hyperspectral imaging. They are then stacked together to form a 2D image. Since the resulting
data is a 3-dimensional object with two spatial dimensions (height h and width w) and one spectral
dimension (λ), it is commonly refereed to as a hyperspectral cube illustrated in fig. 3.

x

y

λ

Figure 3: Hyperspectral cube. The shaded area is a single hyperspectral frame captured by the
imager. The frames are then stacked along the x axis to form a 2D image

1.3 Classification and Clustering of hyperspectral images

Given the rich information available in hyperspectral cubes, they can be used for analysis of the
materials in the image. One such application is classification of pixels, which is concerned with
determining the material composition of each pixel, such as finding pixels of algae. A lot of work has
been done on the topic of classifying hyperspectral images, such as [8], which uses a neural network
to analyse the spatial and spectral information in the pixels for classification. By performing
classification on board, the classification results can be downlinked to earth, saving bandwidth
compared to downlinking the complete cube. However, performing it on board a satellite imposes
computational constraints on the amount of memory and power usage available. A survey of the
computational characteristics of on board classification methods of hyperspectral images was done
by [9], while [10] used classification on board an aircraft to detect methane gas.
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Clustering is a related problem to classification where the problem is to identify pixels of similar
material composition, not the source material of each individual pixel. It is equivalent to classifica-
tion trained in an unsupervised manner. Previous work includes [11] which performs clustering by
assuming each pixel is a mixture of Gaussian distributions. An approach based on segmentation
followed by KMeans [12] clustering is proposed in [13].

Clustering and classification algorithms can include techniques to reduce the data size before
analysis to improve computational time, which referred to as dimensionality reduction. Selecting
only a subset of the spectral bands for analysis was shown to improve results in [14]. Using
the Karhunen–Loève transform [15] the authors of [16] was able to very efficiently apply a linear
transformation to the pixels to reduce the spectral dimension.

1.4 Major contributions

This thesis implements algorithms for performing classification and clustering on board the HYPSO
SmallSat. A summery of the key contributions is listed below.

1. A key challenge with on board clustering and classification is the amount of data to be
processed: a hyperspectral cube can contain on the order of 107 individual sensor values,
which is challenging given the computational resources available on a SmallSat platform. This
thesis performs an analysis of existing algorithms and demonstrates through experiments and
theoretical calculations how most existing procedures are computationally unfeasible on the
HYPSO hardware.

2. A general approach using intermediate mappings is then proposed to speed up clustering
computations. This approach is realized using the Self Organizing Map (SOM) [17]. It
creates a compact representation of the underlying pixel distribution which can be clustered
on the ground using any state of the art clustering algorithm, and then transferred to new
images captured on board. The method is shown to provide competitive results with low
computational time and with minimal memory usage.

3. For classification, this thesis implements the Support Vector Machine (SVM) [18] classifier,
a commonly used classification algorithm for Hyperspectral Images. It is compared to a
SOM based classifier. They are shown to produce good classification results and generalize
well with only a small amount of labeled example data needed. They model parameters
are obtained on the ground before uploading them to HYPSO were they can be used for
classification.

4. Both the SOM clustering approach and the SVM classifier are further accelerated using the
Principal Component Analysis (PCA) [19] dimensionality reduction to reduce the number of
spectral bands to process. It is shown to only mildly affect the performance while leading to
a major reduction of required computational resources.

5. Finally the clustering, classification and dimensionality reduction procedures are incorporated
as modules in an image processing pipeline framework using the C programming language.
They are verified using tests and tools for debugging and profiling software. The pipeline
framework is then integrated with the existing payload software on HYPSO. The implemen-
ted design includes the pipeline as a separate executable program and how this increases
reliability and fault tolerance for software on a satellite platform is described.

1.5 Thesis structure

This thesis is structured as follows

• Section 2 covers various background material for HYPSO, software engineering and machine
learning.

3



• Section 3 introduces the Self Organizing Map and clustering algorithms commonly used for
hyperspectral images.

• Section 4 presents common classification algorithms and the SOM classification procedure.

• Section 5 analyses the computational resources available on HYPSO. Then the chosen meth-
ods for clustering and classification and the pipeline payload integration design are proposed.

• Section 6 describes the software implementation of the modules.

• Section 7 presents and compares the computational performance and algorithm results of the
chosen methods on four hyperspectral images.

• Section 8 lists some final remarks and conclusion, as well as future work to improve the
methods developed in this thesis.

4



2 Background

2.1 Hyperspectral Imager

The on board hyperspectral imager on HYPSO is the Sony IMX249 from IDS Imaging Development
Systems GmbH [20]. It supports capturing hyperspectral images with spatial width up to 1216
pixels and 1936 spectral bands. The standard cube size on HYPSO is (h,w, d) = (956, 684, 120),
where h is the number of captured frames, w is the number of rows in each frame while d is the
number of binned spectral bands in the cube. This gives in total n = h× w = 6.5× 105 pixels in
the cube.

2.2 On Board System on Chip

The HYPSO payload is controlled by a on-board System on Chip (SoC) is the Xilinx Zync-7030 [21].
It consists of the Processing System (PS) and a Kinex-7 based Programmable Logic (PL) module.
The main technical specifications for the PS are listed in table 1, while the main specifications of
the PL are listed in table 2. The PS will handle the main payload software tasks such as image
capturing, image processing, communications and file transfers. To accelerate the heavy workloads,
some of the algorithms used in image processing will be synthesised and programmed to the PL.

Component Specification
Processor 32-bit Dual Core ARM Cortex-A9 @ 667 MHz

Architecture Extensions NEON 128b SIMD coprocessor
L1 Cache 32 KB per processor
L2 Cache 512 KB shared

On-Chip Memory 256 KB

Table 1: Zynx 7030 SoC Proccessing System technical specifications

Component Specification
Logic Cells 125k

Look-Up Table 78.6k
Flip-Flips 157.2k

Total Block RAM 9.3Mb
DSP Slices 400

Table 2: Zynx 7030 SoC Programmable Logic technical specifications

ARM based SoCs are commonly used for low power embedded systems like mobile phones and
microcontrollers due to their high performance to power usage ratio compared to other CPU
designs [22]. The on board processing pipeline (section 2.5 frequently involves heavy workloads
of numerical calculations like matrix multiplication and vector dot products. To accelerate these
type of operations the SoC includes ARM NEON coprocessors [23]. They are capable of executing
128 bit Single Instruction, Multiple Data (SIMD) instructions which performs the same operation
on multiple data blocks in parallel. The standard ARM addition instruction is

add r1, r2, r3

where r1, r2 and r3 is 32 bit registers. This will add the 32 bit values of registers r1 and r2 and
store the result in register r3. In comparison the NEON cores features 128 bit registers q0 to q15.
The instruction

VADD.I32 q1, q2, q3

5



will add the 4 32 bit values in register q1 to the 4 in q2 and store the results in q3. Utilizing
the NEON engines will be core to optimize the performance of HYPSO image processing software.
In example, the popular media player VLC experienced a doubling in the decoding performance
when utilizing the NEON cores for the ARM based Apple A7 chip used in various iPhones and
iPads [24]. This workload and SoC is similar to the processing pipeline and HYPSO SoC, so it is
expected that similar performance gains can be achieved.

2.3 On Board System on Module

The SoC is located on the PicoZed [25] System on Module (SOM). It features 1 GiB of DDR3
SDRAM, which is the main working memory for the pipeline. A custom designed breakout board
is connected to the PicoZed for IO management. In addition it contains temperature sensors and
a heat sink.

2.4 On Board Software Infrastructure

HYPSO uses the PetaLinux Tools [26] to deploy an embedded Linux OS to the on-board SoC. It
features common operating system components such as the a boot loader, kernel, applications and
libraries. The payload software called opu-system runs on top of the embedded Linux OS and is
responsible for payload tasks such as controlling the hyperspectral and RGB imager, downlinking
data and handling image processing. The architecture of opu-system is composed of several
threads called service handlers, where each service-handler is responsible for a set of tasks. Of
interest for this thesis is the service handler hsi-service which handles requests related to
hyperspectral imaging.

Communication with opu-system is handled from the ground using the command line interface
tool hypso-cli. When issuing a command, it is sent to HYPSO and processed by the appropriate
service handler. The communication is based on the CubeSat Space Protocol (CSP) [27], a network
layer communications protocol designed for CubeSats.

2.5 On Board Processing Pipeline

The on-board processing framework is a software framework that allows processing hyperspectral
cubes in a pipeline. Each module applies some algorithm to the cube in series as illustrated in
fig. 4. Some modules like Smile and Keystone Correction[28] and Compression modifies the cube
as it propagates through the pipeline. Other modules such as Target Detection and Classification
performs some analysis of interest on the cube and saves the output of the module for downlinking.

Module 1 Module 2 Module 3 Module 4

Raw cube Processed cube

Module output

Figure 4: Pipeline modules

The pipeline framework was developed in the fall of 2020, and the current status of the pipeline
modules are given in table 3.

The pipeline framework executes in the following way
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Module Implementation Status
Lossless Compression Implemented (Hardware)

Smile and Keystone Correction Implemented (Software)
Target Detection Implemented (Software)

Classification Implemented in this thesis (Software)
Clustering Implemented in this thesis (Software)

Dimensionality Reduction Implemented in this thesis (Software)
Geo-referencing Not implemented
Super-resolution Not implemented

Atmospheric Correction Not implemented
Registration Not implemented

Table 3: Status of HYPSO pipeline modules

1. Load the pipeline configuration file. The configuration file specifies the sequence of modules
to be executed and the configuration file path for each module.

2. Load the hyperspectral cube and set the module index to 0.

3. Execute the module at the current module index. This starts with reading the configuration
file for the module. Then any necessary data structures are allocated and initialized. Lastly
the module algorithm is executed on the cube, before any allocated data structures are
deallocated.

4. Increment the module index and go to step 2 if there are still any modules remaining.

5. Save the processed cube to disk.

Apart from implementing modules, this thesis will also integrate the pipeline in the HYPSO soft-
ware payload opu-system for use during operations as it is currently a stand alone project.

2.6 Software Tools

Several tools has been used to develop the on board pipeline software. The following section
provide a short introduction to the most frequently used tools

2.6.1 Docker

Docker [29] is a container based technology that enables consistent environments across platforms.
It bundles code, libraries, tools and other dependencies together in a container and uses Linux
namespaces to isolate the container process from the host OS. This allows the container to function
as a standalone environment that will behave identically independent of the underlying platform.
Because the container still utilizes the host OS kernel, it is computationally more lightweight than
other isolation technologies such as virtual machines.

2.6.2 GNU Compiler Collection

The GNU Compiler Collection (GCC) [30] is a collection of compiler software for various languages.
It features a compiler toolchain for ARM architectures, including a C compiler for the ARM
Cortex-A9. Besides compiling source code to executable binaries, it is capable of providing debug
information, detecting possibly harmful code and optimizing code performance. This includes
generating the aforementioned SIMD NEON instructions from standard C code.
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2.6.3 Valgrind

Valgrind [31] is a toolbox for analysing computer programs such as the binaries developed for
HYPSO. It features a rich set of functionality such as heap and cache profilers, but the main tool
is the memory analyser. By instrumenting the compiled code it is able to detect memory leaks,
illegal memory access and similar memory related errors in code.

2.7 Machine Learning

Machine Learning is “to construct computer programs that automatically improve with experience”
[32] or “the automatic discovery of regularities in data through the use of computer algorithms”
[33]. Given some input data, a machine learning algorithm exploits the patterns in the data to
solve a predefined task.

Machine Learning can be divided in two main categories: unsupervised and supervised learning. In
supervised learning the algorithm needs examples of desired (input, output) pairs. It then attempts
to generalize from these examples to produce output for new, unseen inputs. Unsupervised learning
does not need labeled data and produces output without any prior knowledge. Classification
belongs to supervised learning, while clustering and dimensionality reduction are examples of
unsupervised learning [33].

Let X = {x1,x2, . . . ,xn} where xi ∈ Rn be the input data. Each xi is called a sample, data point
or data vector.

Classification is a method in supervised learning and is concerned with assigning each sample in
the input data to a value in a predefined set of discrete classes, also called labels L = {l1, l2, . . . , lk}.
An example application is the classification of images of animals. Each image (input data) belongs
to one class of animal (dog, cat etc). A classification model for this problem takes the image as
input and outputs an estimated label for which class the image belongs to. It is common to let
yi ∈ L denote the true (unknown) label and ŷi ∈ L denote the estimated label of input vector xi.

Clustering is an unsupervised machine learning task which discovers similar groups of data points.
This is done by partitioning the input data where the points in each partition have the same
characteristics. The set of all pixels in a partition is referred to as a cluster. If there is c clusters
the output of a clustering algorithm is y = {y1, y2, . . . , yn} where yi ∈ {1, 2, . . . , c} denotes the
assigned cluster of sample xi.

Dimensionality Reduction aims to transform the data to a lower dimension. Each data vector is
mapped to a vector in a lower dimensional space. Often this is done as a preprocessing step before
other algorithms to speed up computations or transform the data to extract desirable features.
Given some input data, the algorithm outputs the new data vectors for each point in the new
space X′ = {x′1,x′2, . . . ,x′n} where x′i ∈ Rm with m < d.

Machine Learning models commonly require a configuration, in practice a set of parameters called
hyperparameters and denoted by λ. An example would be the target dimensionm of dimensionality
reduction. Hyperparameters is not learned from the data directly, but given as an input to the
algorithm along with the input data X.

2.8 Asymptotic Notation

This thesis will use asymptotic notation to denote the computational efficiency of algorithms in
terms of memory usage and time usage. For a given input with n elements, if the scaling of the
worst case scenario of the algorithm is dominated by a term f(n), the asymptotic complexity is
O(f(n)). Formally it is defined as a set of functions given by

O(f(n)) = {g(n) : 0 ≤ g(n) ≤ αf(n)} (1)
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for some constants α, n0 and for all n > n0 [34]. Note that this ignores any constants in the driving
terms, for example 3n2 + 10000n = O(n2) and n3 + 2n = O(2n).
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3 Clustering

This section will first give an overview of clustering and it’s applications. Then a selection of
clustering algorithms is presented and some external metrics for measuring clustering perform-
ance. Finally the Principal Component Analysis (PCA) is introduced as a tool for speeding up
computations.

Data clustering is a procedure in which we make clusters of entities based on their similar features
[35]. It is also worth noting that clustering algorithms are a form of unsupervised machine learning.
They require no a-priori knowledge, such as existing data with known clusters or domain knowledge
from human experts.

A clustering algorithm partitions a set of data points into a set of disjoint sets. Each data point is
assigned a label, typically a number, indicating that this data point is a member of that set, called
a cluster. The set of these labels is referred to as a clustering of the data. Let X = {x1,x2 . . .xn}
be a set of n data points where each point xi =

[
x1,i x2,i . . . xd,i

]T
consists of d features. Then

a clustering algorithm is a function f that takes the input data X and a set of hyperparameters λ
such that

f(X,λ) =
[
y1 y2 . . . yn

]
(2)

where yi ∈ {1, 2, . . . , c} is the assigned label to data point i and c is the number of clusters to
partition the data into.

Clustering algorithms aim to retain the distribution properties of the input data, such that similar
points are grouped in the same cluster. The similarity of points within a cluster should be high,
while the similarity to points from other clusters should be low. Exactly how similarity is defined
varies, and is often a crucial parameter to determine in order to achieve good clustering results.

The objective of clustering the data is to extract semantically meaningful insight and patterns
from the data itself. Possible use cases are

• Detection of outliers or anomalies. If a clustering is good and a data point has low
similarity to the rest of the points in their assigned clusters, the point is “rare” or unchar-
acteristic with respects to the rest of the data. Some clustering algorithms also manually
detect outliers, like the DBSCAN clustering algorithm [36].

• Understanding and visualizing data. By clustering the data, the characteristics of each
cluster (segment) can be analysed to understand the data source better, emphasizing subtle
patterns in the data such as pixel correlation in a hyperspectral image.

• Contextualizing new data points with old data. If a new data point is obtained, then
a clustering of the complete data set will reveal how the new point relates to the existing
data.

With regards to hyperspectral images, the data points to be clustered are typically the pixels in
an image. The features are the pixel’s value in the various spectral bands. A good clustering
algorithm would group pixels that have similar spectral signatures, in other words pixels which are
likely the same material. For a remote hyperspectral imager such as HYPSO, a special use case for
on board clustering is to reduce the amount of data to be downlinked. Instead of downlinking the
whole cube, it would be possible to to cluster the pixels and then estimate the spectral endmember
(true spectral signature of the pictured material) of each identified cluster. By only downlinking
the clustering labels and their corresponding endmembers, the total amount of data is reduced
approximately proportional to the number of spectral bands, which for hyperspectral images can
be on the order of 100x.

The notation in table 4 will be used for the presented algorithms, and the algorithms will be
demonstrated on the synthetic datasets in fig. 5.
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n Number of pixels
d Number of spectral bands
c Number of clusters
y The clustering labels
yi Label for pixel i in y
X Input image
xi Pixel i in X
Cj The set pixels in cluster j
C {C1, C2, . . . , Cc} the partitioned set of pixels
t Number of algorithm iterations

Table 4: Clustering Notation

There clustering labels y and pixel partitions C is interchangeable as Cj = {xi ∈ X : yi = j}.
If an image consists of three pixels

[
x1 x2 x3

]
, then y =

[
1 2 1

]
or C = {C1, C2} where

C1 = {x1,x3}, C2 = {x2} are equivalent partitions.

Figure 5: Three 2D dimensional synthetic datasets. They will be used to illustrate the various
clustering algorithms presented in this section with c = 2 clusters.

3.1 Centroid based Clustering

Centroid based clustering is a clustering technique where each cluster is represented by a center,
and each data point xi is assigned to a center. KMeans [37] is one of the most popular centroid
based clustering methods, known for it’s simplicity and computational efficiency. The algorithm
aims to find a set of centroids M = {µ1,µ2, . . . ,µc} where µi ∈ Rd such that each centroid is a
prototype or mean member of a cluster. The formal objective is find M and cluster assignments
C = {C1, C2, . . . , Cc} that minimizes the sum of distances from points in the cluster to the cluster
centroid

min
M,C

c∑
j=1

∑
xi∈Cj

k(xi,µj) (3)

where k is the euclidean distance (L2 norm) as defined in appendix A. To find the global minimum
of the objective function in eq. (3) is a known NP-hard problem [38]. The standard heuristic
algorithm for minimizing eq. (3) is a generalized version of Lloyds Algorithm [12]. It converges to
a local minimum in an iterative fashion as follows:

1. Initialize M
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2. E-Step: Assign each point xi to the cluster Cj that minimizes k(xi,µj):

Cj = {xi ∈ X : j = argmin
v

k(xi,µv)}

3. M-Step: Compute the new cluster centroids as the mean of it’s assigned points

µj =
1

|Cj |
∑
xi∈Cj

xi

4. Repeat steps 2-3 until convergence. This occurs when the cluster assignments Cj does not
change during the E-step, or equivalently the estimated centroids µj does not change during
the M-step.

5. Output C as the final clustering assignments

Since the algorithm only converges to a local minimum of eq. (3), an important choice is how to
choose the initial centroids M in step 1. The baseline approach is to choose c random samples
from X. There are however more appealing choices, like the kmeans++ algorithm proposed in
[39], which is currently the default initialization method in the popular machine learning library
scikit-learn[40]. It chooses the the first centroid uniformly from samples in X. The next centroids
are then chosen with probability weighted according to the distance to the closest already chosen
centroid:

p(µ1 = xi) =
1

n
(4)

p(µj = xi) =
D(xi)

2∑
x∈XD(x)2

for j ∈ {2, 3, . . . , c} (5)

where D(x) is the lowest euclidean distance to an already selected centroid. This is shown to
speed up convergence and get solutions closer to the global minimum. It is also common to run
the KMeans algorithm several times and output the best run as the final clustering output since
the found local minimum is heavily dependent on the initialization.

The objective function in eq. (3) is equivalent to minimizing the sum of variances within each
cluster

min
C

c∑
j=1

∑
xv,xu∈Cj

k(xv,xu) (6)

This illustrates a key assumption of Kmeans. Clusters are formed from points that are close
together in euclidean space which assumes that the clusters are spherical. Each data point will be
assigned to the closest centroid, and by considering the boundary of two clusters, i.e. where the
distance to the centroids are equal

||x− µi||2 = ||x− µj ||2
d∑
k=1

(xk − µik)2 =

d∑
k=1

(xk − µjk)2 (7)

After subtracting the the quadratic terms of x on both sides the resulting equation is on the form

d∑
k=1

αkxk = α0 (8)
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where αk are constants. This is the equation for a d dimensional hyperplane. So the separating
boundary for KMeans is linear. Figure 6 shows the obtained clusters on the synthetic datasets.
As expected the algorithm does not perform well on non linearly separable data.

Figure 6: KMeans clustering on synthetic datasets. The star marked indicates the final centroids
M

The time complexity of the standard KMeans algorithm is O(cdnt), while the extra memory
complexity is O(cd) or O(cd) +O(n) if KMeans++ initialization is used.

3.2 Spectral Clustering

Spectral Clustering (SC) [41] uses eigenvectors to nonlinearly transform the data into a lower
dimensional space in which clusters are more prominent. It then performs clustering in the lower
dimension using other clustering algorithms like KMeans.

An affinity matrix A ∈ Rn×n for a set of vectors X = {x1,x2 . . .xn} is a symmetric matrix with
positive elements. Each element Aij denotes the similarity between xi and xj , and is typically in
the range [0, 1] where 1 is most similar, and 0 is least similar.

The affinity matrix should be though of as a graph, where each index is a node and each element
Aij denotes how strongly linked node i and node j is. The clustering problem can then be solved as
a graph partition problem, where the graph encoded by A should be partitioned into c subgraphs.

A common way to construct a similarity matrix is using a pairwise similarity measure k

Aij = k(xi,xj) (9)

such as the radial basis function (RBF) kernel

k(xi,xj) = exp(−γ||xi − xj||22) (10)

where γ is a positive constant. A degree matrix D ∈ Rn×n for the matrix X ∈ Rn×n is a diagonal
matrix defined as

Dii =

n∑
j=1

Xij (11)
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It is used for computing the graph Laplacian matrix L ∈ Rn×n as

L = D−A (12)

where A is an affinity matrix of X and D is the degree matrix of A.

Spectral Clustering computes the Laplacian graph matrix of X and then exploits spectral properties
of the graph to solve the clustering problem. It can be summarized in the following steps

1. Compute the graph Laplacian matrix L from X using eq. (12).

2. Find the top c eigenvalues and the corresponding eigenvectors {z1, z2, . . . , zc} of L. Construct
the matrix Z ∈ Rn×c as Z =

[
z1 z2 . . . zc

]
.

3. Consider the n rows of Z as data points and cluster them using some other clustering al-
gorithm, typically KMeans.

4. Assign the clustering labels yi for each pixel i the clustering label of row i of Z

To obtain a good clustering with SC a good choice of affinity matrix is critical [42]. There can be
several sources of features for affinity matrix construction. Clustering of hyperspectral images can
for example exploit both the spectral signature of each pixel, in addition to spatial information
in the image. An algorithm for aggregating different affinity matrices constructed from the same
data was proposed in [43]. Figure 7 illustrates the different clustering obtained by using the
affinity matrix from eq. (9) with the RBF kernel from eq. (10) with γ = 100 (fig. 7a) and with
γ = 10 (fig. 7b). The difference in clustering quality can explained from the quality of the spectral
embedding, which is the rows of Z, in fig. 7c and fig. 7d.

(a) Clustering for γ = 100 (b) Clustering for γ = 10

(c) Embedding for γ = 100 (d) Embedding for γ = 10

Figure 7: Spectral Clustering and Spectral Embeddings on the synthethic datasets using the RBF
kernel

A key challenge with Spectral Clustering for HSI is the computational complexity. The time
complexity is O(dn2) and O(cn2) for constructing the Laplacian matrix L and the eigenvalue
decomposition of L respectively. The extra memory complexity is O(n2) for storing the Laplacian
matrix L.

To alleviate the the computational complexity of spectral clustering for hyperspectral images, [44]
proposed a variant of Spectral Clustering for HSI called Fast Spectral Clustering With Anchor
Graph (FSCAG). This variant improves both time and memory usage by using a set of m anchor
points U = {u1,u2, . . . ,um} where ui ∈ Rd. The idea is to construct a matrix W ∈ Rn×m instead
of the full affinity matrix A. Each element wij measures the similarity between point i and anchor
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j. They then show that the the affinity matrix A used for calculating the Laplacian L can be
approximated as WΛ−1WT where Λ is a diagonal matrix with Λii =

∑n
j=1 wji.

This work is further improved in [45] which introduces an optimized variant called Fast Spectral
Clustering (FSC) by including the work of [46] on Non-negative Matrix Factorization (NMF), which
allows Z to be obtained from the affinity matrix approximation WΛ−1WT through a multiplicative
update rule instead of an eigenvalue decomposition.

The time complexity of FSC is O(dnm) for constructing W, O(nm) for approximating Z by NMF
and O(cmnt) for the final KMeans clustering. Since typically ct < d, the overall complexity is
O(dnm). With respects to memory, the complexity of FSC is O(nm) for storing Z. However, [45]
observes that the clustering result is heavily dependent on the number of anchors m, with larger
m improving the results. They recommend using m = 0.1n, which means that in reality both the
time and memory complexity of FSC is quadratic in the number of pixels n, although with one
order of magnitude lower coefficients than SC.

3.3 Model Based Clustering

Model based clustering is based on forming a probabilistic model for how the pixels X are generated.
This typically involves considering the pixels as random variables drawn from some distribution
that depends on the latent, unobserved variables y. The clustering problem is then transformed
into an inference problem of estimating the latent labels y from the observed data X.

3.3.1 Gaussian Mixture Model

Model based clustering for Hyperspectral Images is typically based on the Gaussian mixture model
solved by the Expectation Maximization (EM) algorithm [47]. The Gaussian mixture model is a
probabilistic model that assumes that each pixel is drawn from one of c multivariate Gaussian
distributions. The intuition behind this model is that each pixel comes from some spectral end-
member, with the addition of some noise.

xi = µj + zj (13)

for some j ∈ {1, 2, . . . , c} and where zj is Gaussian noise, i.e. p(zj) = N (z; 0,Σj).

Every pixel x can therefore be though of as a independently drawn random variable with probability
density function

p(x) =

c∑
j=1

πjN (x;µj ,Σj) (14)

where πi ∈ [0, 1] = p(y = j) is the mixing variable with the constraint
∑c
j=1 πj = 1 and µj and Σj

is the mean and covariance matrix for the multivariate distribution of cluster j. The conditional
distribution of x then becomes the Gaussian

p(xi|yi) = N (xi;µyi ,Σyi) (15)

The observed data in this model is the pixels X, while the latent variables to be estimated are
y = {y1, y2, . . . , yn}, i.e. the clustering labels for each pixel. Let θ be the model parameters
{µ1,Σ1, π1 . . . ,µc,Σc, πc}. To solve the clustering problem, the objective is to find the Maximum
A Posteriori (MAP) estimate (appendix A) of y. The posterior distribution is given by
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p(y|X) =

n∏
i=1

p(yi|xi)

=

n∏
i=1

p(yi)p(xi|yi)
p(xi)

=

n∏
i=1

πyiN (xi;µyi ,Σyi)∑c
j=1 πjN (xi;µj ,Σj)

∝
n∏
i=1

πyiN (xi;µyi ,Σyi) (16)

Since each yi only appears once in this product, it is straightforward to maximise the value of this
probability by maximising p(yi|xi)

yi = argmax
k

p(yi = k|xi)

= argmax
k

πkN (xi;µk,Σk) for k ∈ {1, 2, . . . , c} (17)

where the proportionality in the last step of eq. (16) is exploited to simplify the equation. To
evaluate this posterior distribution, the model parameters θ must be known. They can be es-
timated using the Maximum Likelihood Estimator (MLE) from the log likelihood function l (see
(appendix A)). The likelihood of the observed data X is given by l(θ|X) = ln p(X|θ). However,
it is typically computationally intractable to find maximum likelihood estimates of θ from this
distribution [33].

Instead consider the joint log likelihood over all the variables (X,y)

l(θ|X,y) = ln p(X,y|θ)

=

n∑
i=1

ln p(xi, yi|θ)

=

n∑
i=1

ln p(yi|θ) + ln p(xi|yi,θ)

=

n∑
i=1

lnπyi + lnN (xi;µyi ,Σyi) (18)

From this distribution it is computationally tractable to obtain MLE estimates of θ, but it requires
knowing the latent variables y. This means there is a circular dependency, where estimating y
requires knowing θ and estimating θ requires knowing y.

Now assume there is an estimate of the posterior distribution of y from eq. (16) available with

some approximate parameters θ̂, i.e. p(y|X, θ̂). The expected value of eq. (18) with respect to
this distribution is then
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Ep(y|X,θ̂)[ln p(X,y|θ)] =
∑
y

p(y|X, θ̂) ln p(X,y|θ)

=

n∑
i=1

c∑
k=1

p(yi = k|xi, θ̂)(ln p(xi, yi|θ))

=

n∑
i=1

c∑
k=1

p(yi = k|xi, θ̂)(ln p(yi|θ) + ln p(xi|yi,θ))

=

n∑
i=1

c∑
k=1

π̂kN (xi; µ̂k, Σ̂k)∑c
j=1 π̂jN (xi; µ̂j , Σ̂j)

(lnπk + lnN (xi;µk,Σk)) (19)

By taking the expected value with respect to the posterior distribution of y using θ̂, the dependency
on y is removed from the likelihood function, and now MLE estimates for θ can be obtained.

The idea behind EM is therefore to alternately improve the estimates of the latent variables y
and model parameters θ by the using the current estimate of one to improve the estimate of the
other. This is done by generating a sequence of estimates {θ0,θ1, . . . } where the value of the
likelihood function will increase monotonically each iteration to some local minimum l∗ [48]. It
can be summarized in the following procedure

1. Initialize the model parameters θ0.

2. E-Step: Evaluate the posterior distribution p(y|X,θt) from eq. (16) using the current es-
timated model parameters θt. Use this distribution to evaluate the expected value of the
joint likelihood function in eq. (19).

3. M-Step: Obtain new MLE estimates of the model parameters θt+1 from the expected value
of the joint log likelihood function.

4. Repeat steps 2-3 until the parameters converge, i.e. |θt+1 − θt| < ε.

5. Output the final clustering labels y by maximising the posterior distribution using eq. (17).

The update rules for the MLE estimates in step 3 is given by [33]

Nk =

n∑
i=1

p(yi = k|xi) (20)

µk =
1

Nk

n∑
i=1

p(yi = k|xi)xi (21)

Σk =
1

Nk

n∑
i=1

p(yi = k|xi)(xi − µk)(xi − µk)T (22)

πk =
Nk
n

(23)

Figure 8 shows the GMM clustering results on the synthetic datasets. GMM has an implicit as-
sumption that the data clusters are higher dimensional ellipsoids, similar to how KMeans from
section 3.1 assumes that clusters are hyper-spheres. The plotted ellipses are contours of the estim-
ated Gaussian distributions where p(x|yi) is constant.

3.3.2 Label-dependent Spectral Mixture Model with Markov Random Field

An extension of this algorithm called Label-dependent Spectral Mixture Model with Markov Ran-
dom Field (LSMM-MRF) is proposed in [11]. It introduces two changes, and the first is to modify

17



Figure 8: GMM clustering on synthetic datasets.

the generative model in eq. (14) to instead consider every pixel xi as a mix of spectral endmembers
given by

xi =

c∑
j=1

sjiµj + z (24)

where sji > 0 is the abundance of endmember j in pixel i and z is uncorrelated Gaussian noise. They
argue that this model better captures the inner-class variation, as well as modeling mixed pixels

resulting from limited spatial resolution. Let M =
[
µ1 µ2 . . . µc

]
and si =

[
s1i s2i . . . sci

]T
and S = {s1, s2, . . . , sn}. The conditional distribution of x from eq. (15) then becomes

p(xi|yi = k) = N (xi; Msi,Λ), ski > sj 6=ki > 0 (25)

Note that the constraint imposed on the abundances si makes them coupled with yi in a convoluted
way. The second difference is to introduce a Markov Random Field (MRF) prior on the clustering
labels y. They consider every pixel as a node which is connected to its surrounding pixels as in
fig. 9.

Figure 9: Neighborhood system for the Markov Random Field prior. Every pixel i (black) is
connected to its spatially surrounding pixels (grey)

The energy function between two neighboring pixels {i, j} is given by β(1 − δ(yi, yj)), where δ
is the Kronecker function such that δ(yi, yj) = 1 if yi = yj and 0 otherwise and β is a positive
constant. This promotes a lower energy, i.e. a higher probability when yi = yj , and therefore
biases the labels towards to be spatially smooth. The full energy function for the prior is then

E(y) = β
∑
{i,j}∈N

1− δ(yi, yj) (26)
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where N is the set of all neighboring pixels. This gives the joint Gibbs distribution prior over all
the labels as

p(y) =
1

V
exp{−E(y)} (27)

where V =
∑

y p(y) is the normalizing constant. Note that this distribution is computationally
difficult to even evaluate as it requires summing over the cn different possible values of y. Let
θ = {M,S}, i.e. the model parameters as before. To optimize this model and solve the Maximum
A Posteriori problem required for estimating the labels y they propose the following EM like
algorithm

1. Initialize the model parameters θ0.

2. E-Step Find ŷ = argmaxy p(y|X,θ
t), the MAP estimate of y, using energy minimization.

3. M-Step Given ŷ, obtain new estimates Mt+1 from purified means and new estimates St+1

using non negative least squares (NNLS).

4. Repeat steps 2-3 until the parameters converge, i.e. |θt+1 − θt| < ε

5. Output ŷ as the final clustering assignment

Note the difference compared to the true EM algorithm presented in section 3.3.1. Instead of
finding the posterior p(y|X,θ), [11] insert the MAP estimate ŷ directly in the joint likelihood from
eq. (18). This is equivalent to assigning all the probability to the mode of the posterior as

p(y|X,θ) =

{
1, if y = argmaxy′ p(y

′|X,θ)

0, otherwise
(28)

The authors of [11] make no comment on, or justification for, this simplification. Presumably it
is intended, and a strategy to simplify calculations. It is however unclear how this affects the
correctness guarantee of EM and convergence properties as given in [48].

Energy Minimization

Energy Minimization formulates the MAP estimation problem as a minimization problem given
by minimizing the negative log posterior

ŷ = argmax
y

p(y|X,θ)

= argmin
y
− ln p(y|X,θ)

= argmin
y
− ln p(X|y,θ)− ln p(y) (29)

where the last equality comes from Bayes Theorem.

There are two competing terms in this minimization problem. The first term in eq. (25) is the
data energy Edata = − ln p(X|y,θ). It will decrease for choices of y that makes the observed
data X more likely based on the model in eq. (25). This biases the solution towards clusters that

have similar spectral signatures. If pixel i belongs to cluster j, it is expected that sji > sk 6=ji for
k ∈ {1, 2, . . . , c} since the abundance of endmember µj should be large. The likelihood that pixel

i belongs to cluster j is therefore expected to be inversely proportional to sji . For computationally
efficiency and simplicity [11] therefore uses the following approximation as the energy function for
Edata
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Edata =

n∑
i=1

1

syii
(30)

The last term in eq. (25) is called the smoothness energy Esmooth = − ln p(y) and it will decrease
for choices of y that are spatially smooth. So this term biases the solution towards clusters that
are spatially connected

argmin
y

Esmooth = argmin
y
− ln

{
1

V
exp(−E(y))

}
= argmin

y
E(y)

= argmin
y

β
∑
{i,j}∈N

1− δ(yi, yj) (31)

The resulting minimization problem is

ŷ = argmin
y

{
n∑
i=1

1

syii
+ β

∑
{i,j}∈N

1− δ(yi, yj)

}
(32)

The constant β can therefore be thought of as a hyperparameter that weights the relative import-
ance of spatial smoothness and fitting the observed pixels.

There exists many techniques for solving energy minimization problems and the authors of [11]
uses the α-expansion grid algorithm from [49]. This requires constructing a graph with vertices
for each pixel and vertices between each neighboring pixel that does not have the same label, and
then solving a min cut problem.

Purified Means

To estimate the endmembers M, the authors of [11] adopt the purified means approach from [50].
The idea is to consider all the pixels currently assigned to a cluster j and estimate the endmember
µj by removing the abundance of other endmembers in the pixels as

µj =
1

|Cj |
(
∑

xi∈Cj

xi −
c∑

k 6=j

skiµk) (33)

Non Negative Least Squares

To find the abundances S that best explains the observed data given the endmembers M, [11]
adopts the non negative least squares (NNLS) method from [51].

si = argmin
s′i

||xi −Ms′i||2 s′i > 0 (34)

Sub algorithm Time Complexity Space Complexity
Energy Minimization using α expansion [49] O(cn2) O(cn)
Purified Means O(cnd) O(1)
Non Negative Least Squares using fast NNLS [52] O(cnd) O(1)

Table 5: Computational complexity for the different steps in the LSMM-MRF algorithm
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Table 5 shows the asymptotic computational complexity for the sub algorithms for LSMM-MRF. In
addition there is an additional memory complexity of O(nc) for storing S. Running the algorithm
for t iterations and noting that d < n gives a total time complexity of O(cn2t) and memory
complexity of O(cn).

@Joe This is very long compared to the other ones, do you think I should try to make it shorter?

3.4 Density Based Clustering

Density based clustering is a clustering technique where the idea is to identify regions in the input
data space with high density of data points. The assumption is that high density regions consist
of similar points and that clusters should be formed from those regions.

DBSCAN [36] is a popular density based clustering algorithm. It aims to partition the data points
X into three sets

• Core Points Pc: Points in regions with high density

• Border Points Pb: Points on the edge of regions with high density

• Noise Points Pn: Points in regions with low density

and then form clusters from continuous regions of core and border points. Let Ni be the set of
neighboring points to xi given by

Ni = {x ∈ X : k(xi,x) < ε} (35)

where k is a metric such as the euclidian distance and ε is a positive constant. Note that xi ∈ Ni.

The number of neighbors |Ni| is an indication of density, where |Ni| is expected to be higher in
high density regions. Set membership is determined from a threshold parameter M where xi is a
considered a core point if it has at least M neighbors

Pc = {xi ∈ X : M ≤ |Ni|} (36)

A point xj is reachable from point xi if xj ∈ Ni. Since metrics are symmetric, k(xi,xj) = k(xj ,xi),
reachability is a symmetric relationship. Border points Pb are points that are not core points
themselves, but still reachable from a core point

Pb = {xi ∈ X : xi /∈ Pc ∧ Pc ∩Ni 6= ∅} (37)

where ∅ is the empty set. The noise points are then points that are not core points, and not
reachable from a core point

Pn = {xi ∈ X : xi /∈ Pc ∧ Pc ∩Ni = ∅} (38)

After the points is partitioned, clusters are formed from the core points Pc and border points Pb.
The clusters are core points that are reachable from each other, plus any border points reachable
from those core points. Construct an undirected graph G = (V, E) with the points as nodes and
edges between reachable points where at least one of the points is a core point

V = Pc ∪ Pb (39)

E = {(i, j) : xi ∈ Pc ∧ xj ∈ Ni} (40)
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Clusters are then the set of nodes in every connected subgraph. The number of clusters are in
other words determined by the algorithm itself. The key challenge with DBSCAN it to tune the
hyperparameters ε and M as the clustering results are very sensitive to their values. Figure 10
shows the DBSCAN algorithm on the synthetic datasets. Figure 10a uses ε = 0.05 and M = 5,
while fig. 10b uses ε = 0.045 and M = 4. With this small perturbation in hyperparameters, the
clustering of the circles dataset changes significantly. There has been significant work done on
automatic hyperparameter tuning for DBSCAN, such as [53] which uses an evolutionary algorithm
to generate good candidates forε and M .

(a) DBSCAN clustering on synthetic datasets with ε = 0.05 and M = 5

(b) DBSCAN clustering on synthetic datasets with ε = 0.045 and M = 4.

Figure 10: DBSCAN clustering with euclidean metric. The connected graphs are the core points,
the triangles the border points and the black stars are the noise points. The edges between core
points and border points are not drawn to help differentiate between the two sets

The time complexity of DBSCAN is claimed to be O(dn log n) in the original paper [36] since
each point would on average only calculate the similarity to O(log n) other points. However [54]
proved that it is really O(dn2) for d > 2. The memory complexity is potentially O(n) for storing
the set membership and Ni for each pixel xi. However this requires repeatedly computing the
distance metric for the same points, inducing a severe computational speed penalty. However
most implementations utilize some data structure to speed up computations in order to reuse the
calculations. The naive solution is to store the full O(n2) similarity matrix similar to spectral
clustering in section 3.2. As noted in [55], a more efficient approach is to store only the distance
to the neighboring points Ni, reducing the memory complexity to O(n|Nmax|) where |Nmax| is the
average number of adjacent vertices for each vertex in the graph.

22



3.5 Self Organizing Map

The self-organizing map (SOM) [17] is an unsupervised machine learning (section 2.7) model that
learns a dense representation of the input data. The input data is mapped to a low dimensional
space, typically consisting of far fewer data points than the original data. This is done by creating
a map of nodes that preserves the distribution of the input data while also representing the full
dataset well. While the map can have any structure, the most common is a finite two dimensional
rectangular grid as in fig. 11.

Figure 11: A 2D grid SOM with dimension 7

The number of rows and columns in the grid is called the dimension of the SOM. Each node is
represented by vector z with the same dimension as the input data points to be mapped. Let
X =

[
x1 x2 . . . xn

]
where xi ∈ Rd be the input data and Z =

[
z1,1 z1,2 . . . zm,m

]
where

zi ∈ Rd be the m×m grid of SOM nodes. The map revolves around the concept of a best matching
unit (BMU) given by

BMU(xi) = argmin
z∈Z

k(xi, z) (41)

for some similarity metric k like the euclidean distance. The BMU for a sample point xi can be
thought of as the representative node or encoding for that point. When the map is trained, any two
points that are close (in the sense of k) in the input data space will have their BMUs be identical
or spatially close in the SOM grid, therefore the grid preserves the topology of the input space.

Training the map is done by moving the nodes closer to the input data while preserving the relative
topology of the nodes as illustrated in fig. 12.

(a) Before training the nodes on the new sample (b) After training the nodes on the new sample

Figure 12: Training the SOM on a new input sample (red). The best matching unit (green) is
affected the most, while the neighboring nodes are less influenced. The distance between the nodes
is proportional to the similarity in the data space.

Training the map to learn the input data can be summarized in the following procedure

1. Initialize the nodes Z.

2. For each input sample xi in the input data X: Train the map nodes Z on xi.

3. Repeat step 2 for T iterations.

The core idea when training the map on an input sample xi is to update BMU(xi) to decrease
k(xi,BMU(xi)) to improve the BMUs representation of the input sample. The neighboring nodes
of the BMU in the SOM grid should also be updated, but with a smaller magnitude than the
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BMU. To decrease k(xi, zj) a numerical minimization algorithm can be used. Gradient Descent
[56] is a commonly used algorithm that reaches local minimums by using the local gradient of the
function. Since the gradient of a function gives the local direction of steepest ascent, gradient
descent performs minimization by stepping in the opposite direction of the gradient. Let f(x) be
the objective function to minimize. Gradient Descent then iteratively updates x according to

x←− x− α∇xf(x) (42)

where α is a positive constant often referred to as the learning rate and∇xf =
[
∂f
∂x1

∂f
∂x2

. . . ∂f
∂xd

]T
is the gradient.

Let z∗i = BMU(xi) denote the (current) BMU for input vector xi from eq. (41). The gradient
descent update step for each SOM node zj is then given by

zj ←− zj − α(t)β(t, zj , z
∗
i )∇zi

k(xi, zj) (43)

where α(t) > 0 is the learning rate for iteration t, β(t, zj , z
∗
i ) > 0 is the neighborhood function.

The learning rate α(t) determines how fast the map learns the input data. It is a common strategy
to let α(t) be a monotonically decreasing function in order to first learn rough features, then fine
tune towards the end of training. Common choices for α(t) are

α(t) = α0e
−t/τ (44)

α(t) = α0 − α1t (45)

where α0, α1 and τ are positive constants.

The influence β(t, zj , z
∗
i ) preserves the topology by training nodes spatially far from z∗i with a

lower magnitude. It usually involves some neighborhood function σ(t) which decreases in a similar
fashion to α(t) to initially learn the rough distribution topology, then fine tune the local areas of
the distribution towards the end. Common choices for β are

β(t, zj , z
∗
i ) = e−d(zj ,z

∗
i )/σ(t)

2

(46)

β(t, zj , z
∗
i ) =

{
1, if d(zj , z

∗
i ) < σ(t))

0, otherwise
(47)

where d(zj , z
∗
i ) is the euclidean distance between the nodes positions in the grid and σ(t) is the

neighborhood function commonly taken to be the an exponential decaying function similar to
eq. (44).

Training the map itself is quite slow. For each training iteration t the each sample xi must apply
eq. (43) to each node zj resulting in O(dnz2t) with fairly large coefficients since it requires finding
the BMU, calculating the gradient for each node and multiplicating it with both the learning rate
and neighborhood function. The memory usage is on the other hand low since it only requires
storing the nodes Z.

The SOM can be used as a clustering algorithm where each SOM node is a cluster. This naturally
leads to a high number of clusters depending on the map size. Sensible map sizes could be 16×16 =
256 nodes in total, resulting in a one byte encoding of the data. In section 5 a method to use the
SOM as an intermediate stage for clustering is proposed as a means for speeding up clustering
computations.
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Algorithm Time Complexity Space Complexity
KMeans O(cdnt) O(cd) + O(n)
FSC O(dn2) O(n2)
LSMM-MRF O(cn2t) O(cn)
DBSCAN O(dn2) O(n)
SOM O(dnz2t) O(z2d)

Table 6: Computational complexity for various clustering algorithms

3.6 Summary

A summary of the presented clustering algorithms and their respective computational complexity
can be seen in table 6.

3.7 Evaluation Metrics

For evaluating the output of a clustering algorithm there exists several objective metrics as presen-
ted below. They require knowing the ground truth (real) clustering assignments, which will often
have to be created manually. One clustering can be preferred over another despite having an equal
metric based on the use case, but this is often a subjective judgment to be done by a human. As
before, let C = {C1, C2, . . . , Cc} be the clustered sets of n pixels and let T = {T1, T2, . . . , Tt} be
the ground truth clustering.

3.7.1 Purity

As the name suggests, purity measures the inter cluster coherency and is given by

purity(C, T ) =
1

n

c∑
i=1

max
j
|Ci ∩ Tj | (48)

it simply assigns each cluster the class of the most common ground truth class and calculates the
percentage of points that were assigned to the correct cluster.

3.7.2 Normalized Mutual Information

Normalized Mutual Information (NMI) measures the amount of information extracted by the
clustering algorithm [57] and is given by

NMI(C, T ) =
2I(C, T )

H(C) +H(T )
(49)

where I is the mutual information

I(C, T ) =

c∑
i=1

t∑
j=1

|Ci ∩ Tj |
n

log2

n|Ci ∩ Tj |
|Ci||Tj |

(50)

and H is the entropy

H(C) = −
c∑
i=1

|Ci|
n

log2

|Ci|
n

(51)
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3.8 Dimensionality Reduction for faster clustering

Principal Component Analysis (PCA) is a fast and powerful dimensionality reduction algorithm
that can reduce a complex set of data to a lower dimension to reveal simplified structures [19]. While
reducing the data to a lower dimension potentially discards some information in the data, it allows
for faster computations by decreasing the number of bands d in the input image. PCA exploits
eigendecomposition to identify the principle components in the data and projects the data down
into a lower dimensional subspace. Let X =

[
x1 x2 . . . xn

]
where xi =

[
xi1 xi2 . . . xid

]
be the input data. The objective of PCA is to find some matrix Z =

[
z1 z2 . . . zn

]
∈ Rn×m

where each xi ∈ Rd is transformed to some zi ∈ Rm where m < d in a manner which preserves
the information of interest in the data. Specifically consider the set of linear transformations

zi = Pxi (52)

where P ∈ Rm×d is some projection matrix. Let x̃i denote the centered vector xi as

x̃i = xi − x (53)

where x is the mean. Let X̃ denote the matrix of cenetered data points. The covariance of the
matrix X is then the symmetric matrix given by

ΣX =
1

n
X̃X̃T (54)

where (ΣX)ij denotes the covariance between feature i and j. PCA finds the projection P that
maximises the kept variance of Z = PX along each dimension, which is the trace of the covariance
matrix of Z and it can be found by considering the eigenvalue decomposition of ΣX [33]

ΣX = QΛQ−1 (55)

where Λ is a diagonal matrix with eigenvalues
[
λ1 λ2 . . . λd

]
along the diagonal and Q =[

q1 q2 . . . qd
]

are the corresponding orthogonal eigenvectors. Assume the eigenvalues are
sorted such that λ1 > λ2 > · · · > λd. Then the optimal projection matrix is

P =
[
q1 q2 . . .qm

]T
(56)

where qi is called the i-th principal component of X. The amount of variance explained by each
component is given by its corresponding eigenvalue λi. Increasing the number of components
therefore increases the kept variance in the data, or equivalently minimizes the amount of lost
information in the data from using z instead of x. Figure 13 shows an example of the how the
data is projected with m = 1 component. The input data and principal components are shown in
fig. 13a where the principal components is scaled with the eigenvalues. The data is then projected
on the first (largest eigenvalue) principal component and the result is fig. 13b.

Choosing the number of components m to project on is inherently a trade off between reducing the
dimension and preserving information of value in the data. The amount of variance explained by
the components typically drops in an exponential manner as illustrated in fig. 14, and thus there
are diminishing returns for each additional component kept.

Calculating the covariance matrix is computationally expensive with O(dn2) operations. However
once P is found the projection itself is quite fast and is done in O(dmn). Given the projection
matrix P and the mean x, projection is just a vector subtraction to center the vector (eq. (53))
and a matrix multiplication (eq. (52)). The memory complexity is also low with O(md) for storing
the projection matrix P.
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Figure 13: PCA dimensionality reduction from R2 to R
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Figure 14: Typical ratio of total variance explained by each PCA component
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4 Classification

This section will give a brief overview of classification, before classification algorithms is presented.
Lastly the Overall Accuracy evaluation metric is introduced.

Classification algorithms aims to assign each input vector in a dataset to one of a finite number of
discrete categories or classes [33]. Each datapoint is a pair (xi, yi) where yi is the label associated
with the input vector xi. In general the label yi is unknown and the objective is to correctly
estimate yi given xi. It is a form of supervised learning (section 2.7), meaning it requires a set
of known (y,x) pairs to be used as examples for classifying new input vectors x with unknown
labels. The labeled set of example data is called the training data. For hyperspectral images, the
input vectors are the spectra of the individual pixels, while the class to be estimated is typically
the material of which the pixel originates.

nt Number of pixels in the training set
d Number of spectral bands
k Number of classes
Xt Training data samples
yt The class labels for the training data

Table 7: Classification Notation

Many classification algorithms are separated into two phases. First comes the training (or learning)
phase in which a model is learned from the training data. The training procedure aims to find a
model that will learn the latent patterns in the data such that it can generalize the information
to correctly classify new, unseen samples. What constitutes the best model is typically decided by
some objective function, and the learning phase therefore involves searching the space of models
for parameters that maximize the objective function. Let θ be the set of all model parameters
and Xt = {x1,x2, . . . ,xnt}, yt = {y1, y2, . . . , ynt} be the training data where nt is the number of
training samples. The learning phase can then be considered as a function g that takes the training
data and hyperparameters as input and outputs the best set of model parameters θ∗

θ∗ = g(Xt,yt,λ) (57)

The second phase is the classification itself. Given a new data sample x, the objective is to estimate
the unknown class y. Using the learned parameters θ a classifier is a function h that outputs the
estimate ŷ

ŷ = h(x,θ∗) (58)

How computational efficient the training phase is does not have a large impact for the HYPSO
mission as it is done on the ground. The resulting model parameters θ∗ can then be stored on the
satellite to be used by the classifier. Naturally the computational efficiency of the classifier will be
important, both the time used for each point as well as the memory usage.

4.1 K Nearest Neighbors

K Nearest Neighbors (KNN) [58] is a simple algorithm which performs classification of a new input
x by directly identifying similar input vectors in the training data. This is based on the assumption
that if two input vectors are similar based on some distance metric , then it is likely that their
labels are identical. The idea is then to compare the new sample to the existing samples in the
training set and find the most similar points. The labels of these points are known and the label
of the new point it taken to be the most frequent label among these similar points. KNN therefore
makes no assumption of the functional relation between x and y.
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Let (Xt,yt) be the set of training data and x be the new datapoint to classify. Given the training
data (Xt,yt), the number of neighbors k, the new datapoint x and the similarity metric K the
KNN algorithm is given by

1. Compute dt = K(x,xt) for each xt ∈ Xt.

2. Find the top k training samples with the highest similarity score dt.

3. Output ŷ as most common class among these points.

The hyperparameters to choose in KNN are the number of neighbors k to be considered during the
label voting and how to determine the similarity between a training sample and the new point to
classify. While the similarity metric can be any valid metric (see appendix A) it is most commonly
taken to be the euclidean distance.

There are no model parameters θ in KNN, meaning there are no prior training phase before
classification. It is however common to arrange the training samples in a data structure such as a
K-D tree [59] in order to faster find the k most similar training samples during classification. The
naive implementation of KNN takes O(dnt) to classify each sample since it has to compute the
similarity for each training sample, while K-D trees reduces this to O(d log nt) [59] by only having
to consider O(log nt) samples on average. Since all the training samples have to be available during
classification, the memory complexity is O(dnt).

4.2 Support Vector Machines

Support Vector Machines (SVM) [18] are a type of classification algorithm which is common to
apply to hyperspectral images. SVMs generally achieve a high classification accuracy even with
relative small amounts of training data, and the classification is done at competitive speeds com-
pared with other methods [60]. SVMs find a hyperplane that separates two classes during the
learning phase. Classification is then done by computing on which side of the resulting hyperplane
the new sample is located. Note that the SVM is therefore a binary classifier, it solves classific-
ation problems involving only two classes. Methods for extending binary classifiers to multiclass
problems is discussed in section 4.3.

The equation for a d dimensional hyperplane that partitions Rd in two is given by

wTx + b = w1x1 + w2x2 + · · ·+ wdxd + b = 0 (59)

where w is the normal vector of the hyperplane and x is an arbitrary point on the hyperplane. Let
h(x) = wTx + b. If x0 is a point in the space above the hyperplane (in the sense that the normal
vector w points into the space) there must exist an x on the hyperplane such that x0 = x + kw
where k > 0. Then

h(x0) = h(x) + wT (kw) (60)

= kwTw > 0

and inversely for any point below the hyperplane. Meaning that for any point the sign of h(x)
indicates which side of the hyperplane x is. Let the two classes in the binary classification problem
be encoded by {−1,+1} such that yi ∈ {−1,+1} for each yi ∈ y. The SVM classifier is then given
by

h(x) = wTx + b (61)

ŷ =

{
+1, h(x) > 0

−1, h(x) ≤ 0
(62)
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h(x) = 0
h(x) = ±1

Figure 15: Maximum margin separating hyperplane

The classification problem is transformed into finding a suitable hyperplane that separates the
two classes such that the points belonging to different classes is placed on opposite sides. The
SVM finds the hyperplane that maximizes the separating margin between the two classes which
is the shortest distance between the separating hyperplane and any point. Consider the parallel
hyperplanes to h(x) = 0 given by h(x) = −1 and h(x) = 1 such that the planes intersect the closest
points as illustrated in fig. 15, which requires that yi(w

Txi + b) ≥ 1 for all training samples xi.
Then maximizing the separation margin is equivalent to maximizing the distance between these
two hyperplanes. Let x0 be a point on h(x) = −1 such that wTx0 + b = −1. The line orthogonal
to the plane is then given by x0 + kw for k ∈ R. At the intersection with h(x) = 1 the value of k
is

wT (x0 + kw) + b = 1

wTx0 + b+ kwTw = 1

kwTw = 2

k =
2

wTw
(63)

and the length of the line segment between the planes is ||kw||2. Since an orthogonal line is the
shortest distance between two parallel planes, the margin is given by the length

||kw||2 = k
√

wTw

=
2√

wTw
(64)

and the margin is therefore maximized by minimizing the quantity wTw. The resulting optimiza-
tion problem is given by

min
w,b

1

2
wTw (65)

yi(w
Txi + b) ≥ 1, i ∈ {1, 2, . . . , nt} (66)

This is a convex optimization problem belonging to the class of Quadratic Programming (QP)
problems for which there exists algorithms to obtain the global minimum directly like active set
methods[61]. The training samples in fig. 15 is separable since there exists a hyperplane that
can segment the two groups. If this is not the case, then the optimization problem in eq. (65) is
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infeasible. It is therefore common to relax the requirement of separating the data by introducing
a soft margin, originally proposed in [62]. The optimization problem to be solved is then

min
w,b,ζ

1

2
wTw+C

nt∑
i=1

ζi (67)

yi(w
Txi + b) ≥ 1− ζi, i ∈ {1, 2, . . . , nt}

ζi ≥ 0, i ∈ {1, 2, . . . , nt}

where ζi are slack variables and C > 0 scales the penalty for violating the margin. Since the
separating boundary is still a linear hyperplane, classification is still based on the assumption
that the underlying relation between the data vector x and the corresponding label yi is indeed
linear. To classify non linear data, [63] proposed a nonlinear version of SVM. It introduces a
nonlinear transformation φ that maps the data into a higher dimensional space in which the data
is separated by a hyperplane. When the hyperplane is projected back into the input space it is no
longer constrained to a linear boundary. The resulting optimization problem is then

min
w,b,ζ

1

2
wTw+C

nt∑
i=1

ζi (68)

yi(w
Tφ(xi) + b) ≥ 1− ζi, i ∈ {1, 2, . . . , nt}

ζi ≥ 0, i ∈ {1, 2, . . . , nt}

Note that w is no longer a d dimensional vector, but rather a vector in the same dimension as φ(x).
If there exists a function K (referred to as a kernel) such that K(x,y) = φ(x)Tφ(y) then it is not
necessary to compute the projection, but rather evaluate K. This follows from the observation
that if K exists then the solution to the optimization problem in eq. (68) is given by [63]

w =

nt∑
i=1

αiyiφ(xi) (69)

where αi are the solution parameters from the dual form of eq. (68). The classifier h is then

h(x) = wTφ(x) + b

=

nt∑
i=1

αiyiφ(xi)
Tφ(x) + b

=

nt∑
i=1

αiyiK(xi,x) (70)

The training samples for which αi 6= 0 is refereed to as the support vectors and (αy)i as the
coefficients for the support vectors. Common choices for the kernel K are [64]

K(x,y) = (1 + xTy)d (Polynomial) (71)

K(x,y) = exp(−γ||x− y||22) (RBF) (72)

K(x,y) = tanh(γxTy + r) (Sigmoid) (73)

where γ, d, r are kernel hyperparameters. Let S = {s1, s2, . . . , sns} denote the set of ns support
vectors and αy the set of learned coefficients. The full algorithm for the binary classification SVM
is then given by
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1. Solve the QP optimization problem in eq. (68) using the training data (Xt,yt) to obtain the
support vectors S and the coefficients αy.

2. Given a new sample x, compute the classifier h(x) using eq. (70).

3. Obtain the class estimate ŷ using eq. (62)

The time complexity of the SVM is O(nsd) for evaluating the kernel between the input sample
and each support vector si. The memory complexity is driven by storing the support vectors and
is therefore O(nsd).

4.3 Multiclass classification from binary classifiers

There are two general strategies when extending a binary classification algorithm to problems with
k > 2 classes, one versus one(OVO) and one versus the rest(OVR)[65]. In an OVO classifier, a
binary classifier is trained to separate each pair of classes. For each class pair (i, j) the classifier
is trained with the training data where y ∈ {i, j}. In total there are trained k(k − 1)/2 classifiers.
With the OVR strategy each classifier is trained to separate one class from the rest, resulting in k
classifiers.

For the OVR case, the classifiers naturally assigns a probability or score to each class. Let hi
denote the classifier that is trained to classify class i versus the remaining classes. The final output
can be taken as the maximum output over the k classifiers

ŷ = argmax
i

hi(x) (74)

However in the case of OVO, there are multiple strategies for deciding on a final output. Let hij
denote the classifier trained to separate classes i and j. A class i wins the classification against
class j if the classifier hij favors i over j. A proposed method from [40] seen in algorithm 1 is
to assign a score to each class, where the score is the based on the sum of the output from each
classifier, as well as a bonus score of +1 for each classifier it wins. The final output is taken as the
class with the highest score.

Algorithm 1: Multiclass classification using OVO classifiers

Input: hij(x) trained classifiers
x New datapoint
Output: The estimated label ŷ of x

1 CSi ← 0, i ∈ {1, 2, . . . , k}
2 scorei ← 0, i ∈ {1, 2, . . . , k}
3 for i ∈ {1, 2, . . . , k} do
4 for j ∈ {i+ 1, i+ 2, . . . , k} do
5 CSi ← CSi + hij(x)
6 CSj ← CSj − hij(x)
7 if hij > 0 then
8 scorei ← scorei + 1
9 else

10 scorej ← scorej + 1
11 end

12 end

13 end
14 for i ∈ {1, 2, . . . , k} do
15 scorei ← scorei + CSi

3|CSi|+1

16 end
17 ŷ ← argmaxi scorei
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As noted in [65], the OVO strategy generally slightly outperforms OVR in terms of accuracy for
SVM, and the methods tends to have the same number of support vectors in total.

4.4 Convolutional Neural Networks

Neural networks are a broad set of machine learning models capable of solving various tasks,
including classification. Especially a specific architecture called Convolutional Neural Networks
(CNNs), originally proposed to recognize handwritten digits [66], has been successful in image
classification. Even a simple CNN model was shown to achieve higher accuracy than SVM on
popular datasets for hyperspectral image classification [67]. These networks have also been shown
to exploit the correlation of spatially adjacent pixels for increasing classification accuracy [8].

The general idea behind a neural network used for classification is to assume some functional
relation between y and x as

p = f(x,θ) (75)

where θ is a set of parameters, p = {p1, p2, . . . , pk} and pi = P (y = i), the estimated probability
that x belongs to class i. Then the final estimated label is taken as

ŷ = argmax
i

pi (76)

The functional form of f is build from layers, where each layer fi applies some nonlinear transform
to the output from the previous layer fi−1 using a set of parameters θi

x1 = f1(x,θ1)

x2 = f2(x1,θ2)

. . .

xn−1 = fn−1(xn−2,θn−1)

f(x,θ) = fn(xn−1,θn) (77)

where θ = {θ1,θ2, . . . ,θn}. The total number of parameters |θ| can be on the order 107 or more
[68]. The large model space makes the neural network capable of approximating highly complex
functions, and was shown to be able to approximate any function arbitrarily well even with a
simple structure [69].

The network is trained in the learning phase by minimizing a loss function for each training sample
on the form L(p, y) such as the cross entropy loss [70]

l(p, y) = − log py (78)

which is 0 if the classifier assigns all the probability to the correct class (py = 1), and induces an
increasing loss the further py is from 1. The objective function to minimize is then given as the
sum of losses over all the training data

L(θ) =

nt∑
i=1

l(f(xi,θ), yi) (79)

In general this nonlinear objective function is not convex, and optimizing it directly like the SVM
objective in eq. (68) is therefore not feasible [61]. The parameters θ are trained to minimize the
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objective function eq. (79) using gradient descent (see appendix A) like numerical optimization
algorithms such as the Adam optimizer [71].

A challenge with neural networks is the computational efficiency. Due to the high number of
parameters and matrix multiplications involved in the classifier f , they typically require specialized
hardware such as Graphical Processing Units (GPUs) to accelerate the computation.

4.5 Self Organizing Maps for Classification

The Self Organizing Map introduced in section 3.5 has been used for supervised classification for
hyperspectral images. A Massive Self Organizing Map (MSOM) was proposed in [72], where SOM
maps with > 100, 000 nodes are trained as described in section 3.5. After training the BMU of each
pixel in the training set is calculated. Each node is labeled with the most frequent class among
the pixels with that node as the BMU. Classifying new samples is then done by finding the label
of the BMU, similar to the KNN classifier from section 4.1 with k = 1.

As an alternative [73] proposed training several smaller SOMs in a supervised manner. Their
method is to train one SOM for each class using the labeled training data. As a result, the SOM
trained on class i would then use the examples (xt, yt) where yt = i to learn a representation of
the conditional distribution P (x|y = i). The intuitive idea is that how well a new data point
belongs to a class i is given by how well it fits in the map trained on known members of class i.
Let BMUi(x) be the similarity between x and the best matching unit in the SOM trained on class
i. The proposed classifier is then

ŷ = argmax
i

BMUi(x) (80)

The estimated label for pixel x is the class specific SOM where the BMU best represents the
candidate pixel.

If z is the number of nodes in each SOM and k is the number of classes, the resulting time
complexity to classify a pixel is O(dkz) for computing the BMU for each of the k maps. And the
extra memory usage is simply the self organizing maps, resulting in O(dkz) for memory as well.

4.6 Evaluation Metrics

Given an estimated set of class labels ŷ and the ground truth classes y, the overall accuracy is the
percentage of correctly classified samples given by

OA(ŷ) =
1

|ŷ|

|ŷ|∑
i=1

δ(ŷi, yi) (81)

where δ is the Kronecker delta function.
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5 Method and Design

This chapter details the design choices for implementing Clustering and Classification modules on
HYPSO, as well as the proposed design for integration of the pipeline framework.

5.1 Computational Limits On-board

5.1.1 Central Processing Unit

The specifications and features of the on-board ARM CPU are described in section 2.2. It is,
however, often difficult to assess the computational power of a CPU purely based on specifications
such as clock frequency and core count due to the complexity of modern CPUs. A more common
method is to run a benchmark workload on the CPU, which in return provides a score which is
comparable across systems.

Dhrystone [74] is a computing benchmark that aims to mimic real CPU workloads like function
calls, variable assignments, arithmetic operations etc. The ARM Cortex-A9 achieves a Dhrystone
score (DMIPS) of 1667.5 [21]. In comparison, when running the benchmark on an Intel i5-6200U
which is a 6 year old medium end laptop CPU, the obtained result was a score of 18566. This is
about 11x the score of the Cortex-A9. The source code of the Dhrystone Benchmark is listed in
appendix B.6. However the workload in the on board processing pipeline will mainly consist of
memory I/O and various arithmetic operations on the hyperspectral pixels. To better understand
the processing power available, consider the toy problem of computing the vector dot product
between each pixel xi and some vector s

ri = xTi s = xi1s1 + xi2s2 + . . . xidsd (82)

In C this computation can be done in a loop as

float r = 0;

for (int i = 0; i < BANDS; ++i)

{

r += x[i] * s[i];

}

where x is the pixel array xi and s is an array corresponding to the vector s. The full test program
for the dummy example can be seen in appendix B.5. When compiling with optimization GCC
(section 2.6.2) is able to generate highly efficient assembly code for the target hardware where the
computation inside the loop consists of three SIMD instructions, fully utilizing the NEON cores

vldmia r0!, s0 ; Load 4 32 bit float values to s0

vldmia r1!, s1 ; Load 4 32 bit float values to s1

vmla.f32 s2, s0, s1 ; Multiply the floats in s0 and s1 and add the sum to s2

meaning the loop processes 4 values from xi and s at a time. For the standard cube of dimensions
(h,w, d) = (956, 684, 120) this corresponds roughly to 120/4 = 30 loop iterations per pixel, and
therefore 956 × 684 × 30 = 1.96 × 107 loop iterations in total. The target hardware takes 1.42
seconds to execute it. The Intel Laptop uses only 0.1 seconds, about 14 times faster, which is
similar to the difference in the Dhrystone score.

This is in the best case scenario where the algorithm involves few calculations and the compu-
tational features on board is optimally utilized. Most algorithms of interest is considerably more
complex and computationally difficult than a simple dot product, and therefore considerably slower.
The number of sensor values in the standard cube is on the order of 7.8× 107, meaning any extra
computation for each value induces a considerable workload. Take the on board compression which
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is based on the CCSDS-123 standard [75]. The software implementation on the target hardware is
only able to process about 2.5 frames a second for the standard cube size, which results in about
330 seconds or 6.5 minutes for the whole cube. For a complete orbit, there is allocated power for
380 seconds of image processing (the full HYPSO power budget can be seen in appendix C). Mean-
ing any image processing pipeline should be completed in less than that, and therefore any single
module can not exceed this limit. Ideally each module takes considerable less time, i.e. less than
half, such that it is possible to apply several modules in a single orbit. As a result, the HYPSO
team decided to implemented the compression algorithm in hardware on the on-board FPGA [76]
which could process the same cube in about 0.2 seconds.

5.1.2 Memory

The available on board memory is 1 GiB of DDR3 RAM (section 2.3). Of the 1024 MiB available,
512 MiB is reserved for Direct Memory Access for the FPGA. The PetaLinux OS and various other
software components will typically use about 100 MiB, so there will be about 400 MiB free for
the processing pipeline. When using 4 byte single precision floating point numbers, the standard
hyperspectral cube itself is 956× 684× 120× 4 = 299 MiB. Therefore, any extra memory allocated
by the pipeline can at most be on the order of 100 MiB. Moreover, any algorithm that aims to
process a standard cube on board will have a hard requirement of only allocating an average of
under 100MiB/(956 × 684) = 160 bytes for each pixel in the input cube. This is the theoretical
maximum, but due to real world issues such as memory fragmentation [77], the available memory
during operations might be even lower. It is therefore ideal that the memory usage is well below
100 MiB to be safe, such that the pipeline is not forced to abort mid run.

The 100 MiB available could potentially be increased to 250 MiB by doing calculations using half-
precision (2 byte) floating point numbers. However this comes at the cost of decreased numerical
accuracy and a substantial risk of overflows. By the IEEE 754 standard [78], a half-precision
float only have 10 bit fractional, giving about 3 decimals in base 10. This is compared to 23 bit
fractional for single precision giving about 7 decimals in base 10. Furthermore, half-precision can
only store values with absolute value up to 65504 compared to 3.4× 1038 for single precision. The
cube pixel values themselves could have slightly higher values (up to 65536), but most algorithms
of interest commonly have the need to compute values that are significantly higher. Resolving
this issue would require storing any data that could potentially require numbers above this limit
with at least 4 bytes. This induces computational overhead in the form of casting values between
various data types and also makes development more error prone.

Max computational time (hard) 380 seconds
Max computational time (ideal) 190 seconds

Max memory usage (hard) 100 MiB
Max memory usage (ideal) 50 MiB

Table 8: Design requirements for HYPSO pipeline modules

The above considerations can be summed up to a list of design requirements in table 8.

5.2 Intermediate Variables

Intermediate variables can lower the computational demands of an algorithm. Consider the gen-
eral class of algorithms which take some input X and produce some output Y . To increase the
computational efficiency, the following general procedure for obtaining an approximate solution Ŷ
using intermediate variables is proposed as illustrated in fig. 16.

1. Map the input X to some intermediate variables Z by computing Z = f(X)

2. Apply the algorithm to Z and obtain output W

3. Map the intermediate output W to the final output Ŷ by computing Ŷ = g(W )
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(a) Original procedure

Algorithm
Z W

Z = f(X) Ŷ = g(W )
X Ŷ

(b) Modified procedure

Figure 16

If the computational savings of applying the algorithm to Z instead of X is more than the com-
putational cost of mapping X to Z and W to Ŷ , the overall computational efficiency is increased
at the cost of only having the approximate solution Ŷ instead of the true solution Y . Note that
the computational cost of the mapping involves both finding f and g, as well as evaluating f(X)
and g(W ). Dimensionality reduction (section 2.7) is an example of such a mapping f in which the
number of intermediate variables Z is the same as the number of input variables X, but the size
of each input vector is reduced.

In clustering the input is a set of data vectors X = {x1,x2, . . . ,xn}, while the output is a vector
y ∈ Rn with cluster assignments. As argued in section 5.1, the key computational challenge with
on board processing algorithms is that the number of pixels n is typically large. Thus reducing
n can have a significant impact on performance optimization, especially for algorithms that scale
more with n than d. A natural candidate for the intermediate variable mapping is therefore to
reduce the number of data vectors by taking Z = {z1, z2, . . . , zm} where m � n, with f being a
many to one mapping

f(xi) = zj (83)

for some j ∈ {1, 2, . . . ,m}. Let w = {w1, w2, . . . , wm} be the output from the algorithm on the
intermediate variables Z. The natural candidate for g is then to assign

yi = wj if f(xi) = zj . (84)

This reduces the problem of finding the mappings g and f to finding a suitable set of intermediate
variables Z and how to determine which zj each input vector xi should be mapped to. The SOM
(section 3.5) provides an intuitive solution to both, where the mapping is the best matching unit
(BMU) and the set of intermediate variables is the SOM nodes learned during training.

Using the SOM is fundamentally different from dimensionality reduction, since it does not reduce
the number of dimensions d of each data sample, but rather the number of samples n, since multiple
samples are represented by the same BMU. It does however achieve a the same goal as reducing the
amount of data to be processed typically increases the computational efficiency of an algorithm.

5.3 Clustering

As noted in the toy example of the dot product from section 5.1.1, a simple linear O(dn) algorithm
runs at the order of 1 second on the target hardware. This is a challenge for clustering as most
algorithms intrinsically requires O(dn2) operations since each input vector is in some way compared
against every other input vector as noted in table 6. In example, Spectral Clustering (section 3.2)
requires constructing the affinity matrix, which is precisely a pairwise comparison between each
sample. This gives an expected runtime on the order of 105 seconds for such algorithms, which
will obviously never be feasible within the constraints. Of the presented algorithms in section 3,
this includes all except KMeans. This can be partially alleviated with dimensionality reduction
such as the PCA algorithm (section 3.8), which will typically speed up an algorithm proportional
to the reduction in the number of bands d.
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However, most algorithms are also intrinsically linear O(n) or higher in terms of memory as they
require storing some information for each pixel. As noted in section 5.1.2, the available memory
for each pixel is theoretically at most 160 bytes, meaning any linear memory usage is borderline
possible and will depend on the coefficients of the peak memory usage of the algorithm. In order
to conservatively estimate the memory usage of each algorithm, consider the memory usage of the
major data structures of each algorithm assuming 4 byte floating points and c = 5 clusters

• KMeans Storing the probability array of choosing each point as the next cluster during
initialization gives 4× n = 2.6 MB.

• FSC The affinity matrix approximation Z is 0.1n2, which is 4× 0.1n2 = 171 GB.

• LSMM-MRF The largest data structure is the graph used during energy minimization.
A conservative estimate is that this graph has 1.5n vertices and an average of 3 edges for
each vertex. Assuming that a 4 bit integer for each vertex or edge is enough to store all
information needed about the graph, the memory usage is 1.5n× 4 + 1.5n× 4× 3 = 156 MB.

• DBSCAN Assuming the distance matrix only stores the neighboring vertices and not the
full n× n matrix, the memory usage is 4× n× |Nmax| = |Nmax| × 2.6 MB. Thus the limit of
the maximum number of average neighboring pixels |Nmax| in order to keep the total below
100 MB is about 38. However the actual amount of neighbors is given by the properties of
the data and is not something that can be decided beforehand. If the resulting graph from
the data does not adhere to this constraint, the algorithm will fail.

Again, the only algorithm well within the constraints is KMeans. Note that the analysis of the
memory consumption of the above algorithms does not depend on the number of features, i.e.
spectral bands d, meaning dimensionality reduction will not alleviate their challenges apart from
reducing the memory usage of the cube itself. To do clustering within the constraints and simul-
taneously leverage more powerful clustering algorithms such as Spectral Clustering, it is therefore
proposed to use the self organizing map (SOM) for clustering by the use of intermediate variables
to reduce the number of pixels n to be processed. HYPSO is set to be operational for 5 years, and
it therefore reasonable to assume that data from captured images will be available on the ground
soon after launch. Assuming that newly captured images follows the same distribution as existing
images, the following procedure can be applied

1. Train a self organizing map on the existing data as detailed in section 3.5.

2. Consider the nodes of the SOM as the intermediate variables Z introduced in section 5.2
and cluster them using any clustering algorithm, leveraging any programming language and
machine learning library, to obtain the clustering assignments w.

3. Upload the resulting map nodes Z with corresponding labels w to HYPSO.

4. Cluster newly captured images through eq. (84).

This can be thought of as a two stage clustering procedure. First the SOM is used to obtain a
rough clustering where each SOM node is its own cluster. It is then clustered again for the final
output.

The memory usage of this approach is trivial as if the dimension of the map is 20× 20, there are
400 nodes in the map, giving a memory usage of only 4× 400× 120 = 0.19 MB. The upper limit
on the dimension of the map to stay within the memory constraints is 456 which would use 99.8
MB.

The execution time scales as O(dnz2) where z is the dimension of the SOM, meaning the number
of nodes z2 will eventually become too large to handle within the computational constraints. The
main benefit of the resulting strategy it that it offloads most complex computational work of
obtaining the initial rough clustering to the ground. Besides making algorithms computationally
feasible, it also enables faster development as each algorithm does not have to be implemented in
C.
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5.4 Classification

The support vector machine (SVM) with the RBF kernel has been popular for classification of
hyperspectral images and is widely used as the benchmark when proposing new algorithms. It
typically has good classification performance, is relatively fast and has low memory usage. Even
with 105 support vectors the memory overhead is only about 4 × 105 × d = 4.8 MB for the
standard cube with d = 120. Moreover, the use of the kernel provides and easy way to modify and
experiment with the algorithm without much coding since the rest of the algorithm does not change.
Another benefit of the SVM is that it allows direct tuning of the trade off between computational
performance and classification accuracy. The driving computational cost is computing the kernel
for each support vector, so reducing the number of support vectors will lead to an (approximately)
proportional reduction in computational cost, at the potential expense of reduced accuracy. It is
therefore chosen as the classification algorithm to implement on HYPSO.

The multiple SOM classifier presented in section 4.5 is very similar to the proposed clustering
strategy. They can in fact be made identical except for the learning phase. By combining the
nodes of the maps for each class into a single large map as illustrated in fig. 17, the resulting map
can be treated as a map for clustering. However the cluster labels are in fact found in a supervised
manner using labeled data.

k = 1 k = 2 k = 3 k = 4

Figure 17: Combining a SOM classifier with k = 4 classes to a single map

Thus the code for clustering on HYPSO can be re-used to do classification using this method. It is
therefore included for comparison to the SVM and for evaluating how access to the ground truth
labels improves the capabilities of the SOM.

During operations, the model will be trained on the ground using available labeled data before
the trained parameters is uploaded to HYPSO for classification. This will of course require some
labeled data to use for training. Meaning the classification module will either require using labeled
data from another source or some initial manual labor of labeling images with classes before the
models can be trained.

5.5 Dimensionality Reduction

The dimensionality reduction module will implement the PCA algorithm from section 3.8. Since
computing the full symmetric covariance matrix ΣX requires 0.5n2 dot products, it is from the
toy example in section 5.1.1 expected to take on the order of 3 × 105 seconds, and therefore not
feasible to learn the components on board. However by the same argument as for the SOM, if the
underlying distribution does not change significantly, the projection can be learned on the ground
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and uploaded to HYPSO for use on board. This has the added benefit of not having to downlink
the projection as side channel data in addition to the dimensionality reduced cube since it will
already be known.

In order to speed up classification and clustering, PCA will be used as a preprocessing module.
This requires the classification and clustering models to be learned on PCA embedded data. The
amount of components m will represent a trade off between keeping information in the data for
the algorithms to exploit, and reducing the amount of data to a computationally feasible level.

5.6 Pipeline Integration

Regarding the on board processing pipeline presented in section 2.5, it is proposed to integrate
it on HYPSO as a separate separate binary executable. It should then be possible to issue a
new command called hsi pipeline, which in turn makes the service handler hsi-service in
opu-system apply the pipeline to a captured cube.

There are several benefits of such a modular design.

1. It increases the fault tolerance of the system because in the case that the pipeline should
have a flaw, like a module not handling an error correctly or a memory leak, the rest of the
system is not affected. This is especially important for a space mission where debugging and
redesigning components is costly and time consuming.

2. Updating or patching the pipeline is done by uploading a new executable, it is not necessary
to restart the payload system or configure anything else.

3. With separate code bases there is also less code bloating and easier to test and verify indi-
vidual software components for correctness.

The downsides are duplication of code, and there is also a slight performance overhead of starting
a new process compared to including the pipeline directly in the opu-system binary.

Figure 18 shows the proposed execution flow when executing the on board pipeline from the ground.
When the hsi pipeline command is executed the following steps are taken:

1. The ground command line interface tool hypso-cli parses the given pipeline arguments.
The proposed data fields to construct a valid configuration can be seen in table 9.

2. Next, the pipeline configuration parameters is serialized into a CSP packet and sent to the
satellite using the CSP protocol.

3. On board, the service handler hsi-service attempts to deserialize the CSP packet and
read the specified configuration file. If this is not successful, an appropriate error message is
sent back. If it is successful, it will initialize the pipeline data structure PipelineContext
and populate the data fields.

4. Before starting execution, the validity of the pipeline data structure is checked. This includes
checking that numerical fields have sensible values (e.g. the cube dimensions are within
reasonable limits), path fields point to files that exists and have necessary read permissions
and that each pipeline module entry corresponds to a known module. If any check should
fail, the execution is aborted and an error message is sent back with a descriptive error code.

5. To execute the pipeline, the service task uses fork, a Linux system call which spawns a new
child process by duplicating the current process. The child process then uses exec, another
Linux system call which replaces the current process with the pipeline executable binary.
The parent process on the other hand waits for the child process to terminate, either by a
normal system call to exit or from receiving a signal from the OS kernel.

6. Upon termination of the child process, the parent process sends the cause of termination and
corresponding value (exit code or signal) back to the ground using the CSP protocol.
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Return CSP packet with success or failure status

Success

Failure

Failure

Success

Child process Parent process

Ground

Satellite

Figure 18: Flowchart for issuing a new pipeline execution command

Argument Expected Value
-c Path to pipeline configuration file on board
-i Path to cube the pipeline should process
-o Path to write the processed cube
-b Number of spectral bands in the input cube
-y Spatial height of the cube (number of frames)
-x Spatial width of the cube (number of rows in each frame)
-n Process the cube in n partitions (optional)

Table 9: Arguments needed to initialize a pipeline execution on the HYPSO satellite
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6 Implementation

This chapter will present the implementation of the modules in the pipeline framework. For
each module, the configuration parameters and the code for the core execution algorithm will be
presented. Utility functionality like allocating and freeing memory, IO and error handling are
mostly left out. The full source code can be seen in appendix B.

The three modules (dimensionality reduction, Clustering and Classification) have the same general
flow:

1. Parse the module configuration file

2. Allocate memory for the necessary datastructures and populate them with the model binary
data from the disk as specified by the configuration file.

3. Apply the algorithm to the input cube.

4. Save any results and free up the allocated memory.

The configuration files consists of (field, value) pairs on the form

field = value

and is parsed using the Libconfig [79] library. This provides functionality for reading a configuration
file and looking up specific fields in the parsed file. Reading an integer value called example field
in the configuration file /configurations/example config file.config can be done as

config_t cfg;

config_init(&cfg);

// Attempt to read configuration file "config_file"

if (!config_read_file(&cfg, "/configurations/example_config_file.config"))

{

// handle configuration file error

}

int value;

// Attempt to get field "example_field"

if (!config_lookup_int(&cfg, "example_field", &value))

{

// handle missing field error

}

The model binary data files and the configuration files are automatically generated with the Python
scripts used for training the models.

6.1 Dimensionality Reduction Module

The configuration file of the dimensionality reduction module specifies the number of components
m as well as the location of the binary data for the PCA projection. A valid configuration could
be the following:

1 n_components = 10

2 basis_binary_file = "./pca/binary_10.bin"
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After parsing the configuration file, the binary file basis binary file is read. The standard
PCA implementation presented in section 3.8 is to first center the data and then calculate the
projection. However observe that

z = Px̃ = P(x− x)

= Px−Px

= Px− z (85)

so it is possible to first project, then subtract the projected mean. This is computationally cheaper
since the dimension of z is lower than the dimension of x. Therefore, the binary file needs to
contain the projected mean z and the m × d projection matrix P. The first 4 ×m bytes of the
binary file is z and the remaining 4×m× d bytes is P.

The code for the core algorithm can be seen below while the complete source code is listed in
appendix B.1. The first step is to allocate new memory for the the dimensionality reduced cube Z
called dr cube. If the allocation fails, an error code is returned. Next, the GNU Scientific Library
(GSL)[80] is used to compute Z = PX before the projected mean is subtracted. Finally the old
cube X is deallocated and the cube pointer is updated to the new cube Z.

int PCA_transform(PCA_Context* ctx, float** cube)

{

// Allocate the new cube Z

float* dr_cube = malloc(sizeof(float) * ctx->n_pixels * ctx->n_components);

if (!dr_cube)

{

printf("PCA: Could not allocate space for transformed cube\n");

return -1;

}

gsl_matrix_float_view cube_matrix =

gsl_matrix_float_view_array(*cube, ctx->n_pixels, ctx->n_bands);

gsl_matrix_float_view dr_matrix =

gsl_matrix_float_view_array(dr_cube, ctx->n_pixels, ctx->n_components);

// Calculate Z = PX

int ret = gsl_blas_sgemm(CblasNoTrans, CblasTrans, 1, &cube_matrix.matrix,

ctx->basis, 0, &dr_matrix.matrix);

if (ret != GSL_SUCCESS)

{

printf("Failed to do PCA computation: %d\n", ret);

free(dr_cube);

return ret;

}

// Subtract projected mean z_i = z_i - z_bar

for (size_t i = 0; i < ctx->n_pixels; ++i)

{

gsl_vector_float_view pix = gsl_matrix_float_row(&dr_matrix.matrix, i);

gsl_vector_float_sub(&pix.vector, ctx->means);

}

// Free the old cube X and update the pointer to the newly constructed Z

free(*cube);
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*cube = dr_cube;

return 0;

}

6.2 SOM Method

The SOM method uses the following configuration file fields

1 SOM_data_file = "./clustering/som.bin"

2 results_file = "results.bin"

3 SOM_dim = 7

• The binary file determined by the SOM data file field contains the SOM nodes and the
corresponding labels. The first 4× d× z2 bytes are the floating point node values, while the
remaining z2 are the integer labels. Each label is only stored as a single unsigned byte since
the number of unique classes or clusters are typically far below 256, which is the maximum
number of an unsigned byte.

• results file specifies the file path the cluster assignments or classification labels should
be saved to. After successful execution, the module will create a new file and write the output
to this file.

• The SOM dim field specifies z2, the size of the SOM grid

The core execution of the module is to compute the BMU using eq. (41) for each pixel, then
cluster or classify it using the label of the BMU by eq. (80). The outermost loop steps through
all the pixels in the input cube. For each pixel, it enumerates all the SOM nodes and computes
the distance to the node. If this distance is lower than the current lowest distance, it is set as
the current lowest distance and the current label estimate is updated. After all nodes have been
checked, the label is assigned. The full source code can be seen in appendix B.2.

int cls_som_classify(SomClassification* ctx)

{

// Iterate over all pixels

for (size_t p = 0; p < ctx->n_pixels; ++p)

{

uint8_t bmu_lbl = ctx->SOM_labels[0];

float min_bmu = FLT_MAX;

float* pixel = &(ctx->hsi_cube_f[p * ctx->n_bands]);

// Iterate over all SOM nodes and find best match

for (size_t i = 0; i < ctx->SOM_dim; ++i)

{

float bmu_tot = 0;

float* som_node = &(ctx->SOM_data[i * ctx->n_bands]);

// Calculate distance between node and pixel

for (size_t j = 0; j < ctx->n_bands; ++j)

{

bmu_tot += (pixel[j] - som_node[j]) * (pixel[j] - som_node[j]);

}

if (bmu_tot < min_bmu)
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{

min_bmu = bmu_tot;

bmu_lbl = ctx->SOM_labels[i];

}

}

// Assign the label/cluster of the best matching unit

ctx->cube_labels[p] = bmu_lbl;

}

return 0;

}

6.3 Support Vector Machine classifier

A valid configuration file for the SVM module can be

1 SVM_binary_file = "./classification/svm_data.bin"

2 results_file = "results_svm.bin"

3 n_classes = 4

4 gamma = 5.0505050505e-03

5 n_SV0 = 346

6 n_SV1 = 53

7 n_SV2 = 502

8 n_SV3 = 195

• The SVM binary file is the model file with the trained classifiers. It contains the support
vectors S and coefficients αy used in the classifier from eq. (70). The first 4× d× ns bytes
are the support vectors, where the support vectors arranged in increasing order by the class.
The next are the coefficients in the one versus one classifiers. There are k(k−1)/2 classifiers,
each requiring coefficients for each support vector for a total of 4 × k(k − 1)/2 × ns bytes,
also sorted by class.

Associated with each class i is the following: A set of nsi support vectors
Si = {si1, si2, . . . , sinsi

} and the set of coefficients for the classifier against every other class
j: αyij = {αyij1, αyij2, . . . , αyijnsi

} for i 6= j.

• results file specifies the file path the classification results should be saved to, similar to
the SOM method.

• n classes specifies the number of classes k.

• gamma gives the γ parameters for the RBF kernel in eq. (72).

• n SVi is nsi, the number of support vectors for class i.

Classifying a new sample is done as follows:

First the kernel K is evaluated between the new pixel and the support vectors S. The results are
stored in the array kernel results where the i-th entry in the array corresponds to K(x, si).
Precomputing the kernel to a temporary array results in about a 2x speedup against computing
them when needed since the kernel computation can be reused in the case that a support vector
is used in more than one classifier. Since the support vectors are stored sorted on class, the kernel
values for the support vectors of class k starts at the offset

∑k
i=1 nsi from the start at the array,

where nsi is the number of support vectors for class i.
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static void precompute_kernel(const SVM_Classification* ctx, const float* x)

{

size_t idx = 0;

for (size_t i = 0; i < ctx->n_classes; ++i)

{

for (size_t j = 0; j < ctx->n_support[i]; ++j)

{

kernel_results[idx] = 0;

const float* sv = ctx->classifiers[i].support_vectors[j];

for (size_t n = 0; n < ctx->n_bands; ++n)

{

kernel_results[idx] -= (x[n] - sv[n]) * (x[n] - sv[n]);

}

kernel_results[idx] = expf(ctx->gamma * kernel_results[idx]);

++idx;

}

}

}

With the kernel K computed, each one versus one classifier hij is evaluated according to eq. (70)
for each (i, j) class pair where i 6= j. Evaluating the support vectors of class i against class j is
done by finding the location of the precomputed kernel for class i in kernel results by adding
the array offset. Then the coefficients αyij are located based on class j and the series is computed.
Evaluating the support vectors of j against i is equivalent with i and j swapped. The final output
hij(x) is returned.

static float ovo_classifier(const float* x, int class_i, int class_j,

const SVM_Classification* ctx)

{

float value = 0;

for (int k = 0; k < 2; ++k)

{

int c1, c2;

// On first iteration evaluate the support vectors of class i

if (k == 0)

{

c1 = class_i;

c2 = class_j;

}

// Second iteration is support vectors of class j

else

{

c1 = class_j;

c2 = class_i;

}

const SVM_data* c1_data = &(ctx->classifiers[c1]);

// Find kernel computations for c1

const float* c1_kernel_results = kernel_results;

for (int i = 0; i < c1; ++i)

{

c1_kernel_results += ctx->n_support[i];
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}

// Find coefficients for c1 trained against c2

int c1_coeffs_idx = c1 < c2 ? c2 - 1 : c2;

const float* c1_coeffs = c1_data->coefficients[c1_coeffs_idx];

// Evaluate c1 trained against c2

for (int i = 0; i < c1_data->n_sv; ++i)

{

value += c1_coeffs[i] * c1_kernel_results[i];

}

}

return value;

}

Lastly the one versus one to one versus all procedure introduced in algorithm 1 is used to convert
the evaluated one versus one classifiers hij to a final score for each class stored in the array ovr.
The i-th entry in the array corresponds to the score for class i.

static void ovo_to_ovr(float* ovo, float* ovr, int n_classes)

{

// Reset arrays

for (int i = 0; i < n_classes; ++i)

{

confidence_sums[i] = 0;

ovr[i] = 0;

}

int k = 0;

for (int i = 0; i < n_classes; ++i)

{

for (int j = i + 1; j < n_classes; ++j)

{

confidence_sums[i] += ovo[k];

confidence_sums[j] -= ovo[k];

ovr[i] += (ovo[k] > 0);

ovr[j] += (ovo[k] < 0);

++k;

}

}

for (int i = 0; i < n_classes; ++i)

{

ovr[i] += confidence_sums[i] / (3 * (fabsf(confidence_sums[i]) + 1));

}

}

The final class label is then the argmax of the ovr array. After applying the procedure to every
pixel in the input cube, the result is saved to the file specified by the results file field. The
full source code for the SVM module can be seen in appendix B.3.
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6.4 Executing a new pipeline

Summing it up, the following steps is needed for executing a new pipeline consisting of one or more
modules

1. Train the module models on the ground. The scripts will automatically output the configur-
ation files and the learned binary model data.

2. Upload the configuration files and the model binary data to HYPSO.

3. Issue the hsi pipeline command from the ground, starting the execution flow of the
pipeline as described in fig. 18.

Naturally the configuration files and model data can be reused for processing subsequent cubes. If
a single pipeline should exceed the computational time allocated for processing, it would have to
be separated in two pipelines and applied in steps during several orbits.
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7 Results

The following popular hyperspectral datasets will be used for testing the proposed algorithms

• Pavia University : This scene pictures the Pavia University in Italy and was captured by the
ROSIS-03 sensor. It is 610 × 304 pixels with 103 spectral bands. In the scene there are 9
targets available for classification given by

1. Asphalt

2. Meadows

3. Gravel

4. Trees

5. Painted metal sheets

6. Bare Soil

7. Bitumen

8. Self-Blocking Bricks

9. Shadows

• Indian Pines [81]: This dataset was captured by the AVRIS sensor and is 145 × 145 pixels
with 200 spectral bands. The scene pictures farm land in Indiana, USA. There are 16 ground
truth classes available for classification given by

1. Alfalfa

2. Corn-notill

3. Corn-mintill

4. Corn

5. Grass-pasture

6. Grass-trees

7. Grass-pasture-mowed

8. Hay-windrowed

9. Oats

10. Soybean-notill

11. Soybean-mintill

12. Soybean-clean

13. Wheat

14. Woods

15. Buildings-Grass-Trees-Drives

16. Stone-Steel-Towers

• Samson [82]: A simple scene from a coastline environment. It is 95 × 95 pixels with 156
spectral bands for each pixel. The 3 targets available are

1. Soil

2. Tree

3. Water

• Jasper Ridge [82]: Also captured by the AVRIS sensor, this scene is 100 × 100 pixels with
198 spectral bands. The 4 ground truth classes are

1. Road

2. Soil
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3. Water

4. Tree

Grayscale image approximations of the datasets and the corresponding ground truth pixel classes
can be seen in fig. 19. These hyperspectral datasets presents a varied set of testing data. Jasper
and Samson are both simple scenes with few and distinct classes. The number of samples from each
class is approximately balanced. On the other hand, the Pavia University and Indian Pines sets
are larger and more complex scenes. The number of samples available from some of the classes are
low, and the classes are partially overlapping such as 5. Grass-pasture and 7. Grass-pasture-mowed
in Indian Pines.

(a) Pavia University (b) Indian Pines (c) Jasper Ridge (d) Samson

(e) Pavia University (f) Indian Pines (g) Samson (h) Jasper Ridge

Figure 19: Grayscale images and pixel labels

7.1 Execution time analysis

The computational time of the models scale with the parameters of the model, e.g. the SVM
scales with the number of support vectors. In order to know under what parameters the models
are computationally tractable within the constraints from table 8, they were tested on the target
hardware. Then based on the measurements, runtime models are interpolated. They are interpol-
ated with only the highest order term in the asymptotic runtime to provide a simple and intuitive
equation. The runtime analysis is based on the standard cube size of (956, 684, 120).

First consider the PCA dimensionality reduction. As noted in section 3.8 the computational time
of projecting a cube is expected to scale linearly with the number of projected components m.
Figure 20a shows measurements of the computational time against the number of components, as
well as the interpolation. The resulting expected computational time in seconds is

EPCA = 0.8858m (86)

The driver of the computational time of the SVM is the RBF kernel calculation which is O(dns)
where ns is the number of support vectors. From the measurements and corresponding interpolated
model of the expected computational time is

ESVM = 0.0235dns (87)
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fig. 20b show the interpolated model for measurements with d = 10 and d = 120 bands. The
measurements support the linear model for the most part, however there are some deviance for
large number of support vectors, probably caused by increased amount of cache misses. For the
ideal requirement of < 190 seconds of computation and a cube with full dimension d = 120, the
upper limit on the number of support vectors is about 70, which is typically far below the number
of support vectors in a model. Reducing the dimension to d = 10 gives time for about 750 support
vectors.

The SOM method has a quadratic runtime in the dimension z and the driving quadratic term also
scales with the number of bands d. The interpolated model is as seen in fig. 20c.

ESOM = 0.0104dz2 (88)

With d = 120, the upper limit on z in the ideal case is about 11. Taking d = 10 allows for z to be
about 40.
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(c) Execution time for the SOM
method

Figure 20: Execution time for PCA, SVM and SOM for a standard image with (h,w) = (956, 684).
The ideal requirement and hard requirement on computational time are shown with dashed and
solid lines respectively.

Comparing with the memory usage analysis from section 5.3 and section 5.4, it is clear that the
limiting factor for both methods will be the computational time, and not the memory usage.

7.2 Clustering

The testing images are significantly smaller than the HYPSO cube of (956, 684, 120). Meaning they
would allow for a larger SOM map and still be within the HYPSO computational requirements.
While this could result in increased clustering performance, the models are restricted to sizes
that would be computationally feasible on HYPSO for a realistic evaluation. The SOM sizes and
corresponding computational times are therefore reported as if a hyperspectral image of the size
of a HYPSO cube was clustered, as opposed to the actual testing images.

Based on the runtime analysis in section 7.1, the SOM is set to have a dimension of z = 11 for
the full dimensional cube, resulting in about 190 seconds of computational time. To assess the
viability of a faster clustering, it will be compared to PCA reduction followed by clustering with
z = 20 and d = 10, which have an combined expected runtime of 9 + 42 = 51 seconds. Both sets
will train the SOM on the testing image, then attempt to cluster the same image. On HYPSO,
the training image and image to be clustered will however not be the same. Therefore a third set
of models are trained with the full dimension and z = 11 where the SOM is trained on half the
image, then attempt to cluster the other half. This verifies if the model is able to generalize the
learned embedding to new data. The three data sources for training will hereby be refereed to as
Full, PCA and Half.

For the SOM clustering method, the hyperparameters that must be chosen are the following

• Influence function and influence radius
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• Learning rate function

• Similarity function

• SOM topology

To restrict the number of models under consideration, the model space is limited to the most
common found in existing SOM literature. The influence radius and learning rate were both set
to the exponential decaying form of eq. (44), with the same time constant. The similarity function
is taken to be the euclidean distance, and the SOM topology as a rectangular grid as illustrated
in fig. 11. The parameters under consideration are therefore the influence function, as well as the
initial values and time constant of the learning rate and influence radius. The candidate values
explored are listed in table 10. Each SOM is trained for 50 epochs, at which point the learning
rate and update radius are both so low that further training will barely change the map.

Parameter Values
Influence function (β) Gaussian (eq. (46)), Bubble (eq. (47))

Learning rate (α0) 0.05, 0.1, 0.5, 1, 2
Influence radius (σ0) 2, 3, 4, 7, 10
Time constant (τ) 1, 2, 3, 4, 5, 6, 8, 10

Table 10: Hyperparameters for SOM classification

After training the map, it is clustered using each of the following clustering algorithms

• KMeans (section 3.1)

• Spectral Clustering with RBF affinity matrix (section 3.2)

• Spectral Clustering with nearest neighbor affinity matrix (section 3.2)

• Gaussian Mixture Model (section 3.3.1).

The evaluation metrics used will be the standard set of purity (section 3.7.1), normalized mutual
information (section 3.7.2) and overall accuracy (section 4.6). The best results for each algorithm
can be seen in table 11, table 12, table 13, table 14 for each of the four training images respectively.

Data SOM Cluster Algorithm Purity NMI OA

Full

KMeans 0.688 0.558 0.588
SC-RBF 0.661 0.497 0.541
SC-NN 0.480 0.506 0.434
GMM 0.707 0.539 0.597

PCA

KMeans 0.638 0.560 0.567
SC-RBF 0.968 0.533 0.599
SC-NN 0.502 0.540 0.462
GMM 0.667 0.551 0.518

Half

KMeans 0.612 0.546 0.540
SC-RBF 0.614 0.487 0.514
SC-NN 0.495 0.497 0.439
GMM 0.657 0.562 0.535

Table 11: SOM clustering results for Pavia University

The results show that the performance are not reduced dramatically when attempting clustering
on the other half of the image, indicating that the maps are actually learning some information
about the underlying distribution of the pixels. In addition, the combination of PCA reduction
and increasing the dimension of the MAP provides competitive results to clustering with the full
dimension at only 22% of the computational time. The results for the two simple scenes Samson
and Jasper are significantly better than for Pavia University and Indian Pines:
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Data SOM Cluster Algorithm Purity NMI OA

Full

KMeans 0.411 0.435 0.366
SC-RBF 0.550 0.380 0.411
SC-NN 0.394 0.419 0.337
GMM 0.404 0.439 0.373

PCA

KMeans 0.383 0.432 0.355
SC-RBF 0.497 0.432 0.385
SC-NN 0.347 0.426 0.337
GMM 0.392 0.427 0.358

Half

KMeans 0.394 0.432 0.365
SC-RBF 0.570 0.387 0.385
SC-NN 0.402 0.431 0.355
GMM 0.461 0.421 0.381

Table 12: SOM clustering results for Indian Pines

Data SOM Cluster Algorithm Purity NMI OA

Full

KMeans 0.867 0.623 0.867
SC-RBF 0.757 0.502 0.757
SC-NN 0.880 0.670 0.880
GMM 0.810 0.536 0.810

PCA

KMeans 0.770 0.433 0.662
SC-RBF 0.868 0.634 0.868
SC-NN 0.874 0.653 0.874
GMM 0.729 0.431 0.729

Half

KMeans 0.794 0.455 0.647
SC-RBF 0.781 0.557 0.781
SC-NN 0.874 0.631 0.874
GMM 0.747 0.514 0.726

Table 13: SOM clustering results for Samson

• The clustering problem with more clusters is intrinsically a harder problem since it is less
probable to choose the correct cluster.

• Since the SOM dimension is fixed, the average number of SOM nodes for each cluster is
lower. Thus there are fewer nodes for learning the underlying cluster distribution.

• The simple scenes have a balanced amount of samples for each class, while the complex scenes
do not. As a consequence the SOM is trained more often on samples from some clusters which
skews the map.

KMeans on the full image will be used as a benchmark since it is a fast algorithm with low memory
usage, making it a realistic candidate to run on HYPSO. The SOM will also be compared to Cluster
- Binary Partition Trees (CLUS-BPT), a hyperspectral image classification procedure proposed in
[13]. Table 15 shows the best SOM cluster results (for the Full data source) for each image
compared against standard KMeans without the SOM and CLUS-BPT. For fair competition the
KMeans algorithm was run 10 times with kmeans++ initialization and the best result is reported.

Comparing to CLUS-BPT the SOM is performing competitively on the simpler scenes, but the
shortcomings when the number of clusters grows are again apparent. Compared to KMeans, the
SOM performs well for all images. While it is difficult to directly compare computational times
without controlled tests on identical hardware, the computational times and hardware specifications
reported in [13] suggests that CLUS-BPT is 10x - 100x slower.

There is unrealised potential in the SOM. Since each SOM node is assigned one cluster label, it
will not be possible to a perfect clustering if two pixels from different classes have the same BMU.
The upper theoretical limit of clustering results would be achieved if each SOM node was assigned
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Data SOM Cluster Algorithm Purity NMI OA

Full

KMeans 0.877 0.705 0.877
SC-RBF 0.899 0.734 0.899
SC-NN 0.797 0.668 0.797
GMM 0.901 0.734 0.901

PCA

KMeans 0.910 0.726 0.856
SC-RBF 0.865 0.681 0.800
SC-NN 0.797 0.657 0.733
GMM 0.717 0.620 0.707

Half

KMeans 0.847 0.692 0.847
SC-RBF 0.903 0.746 0.903
SC-NN 0.732 0.648 0.732
GMM 0.770 0.650 0.770

Table 14: SOM clustering results for Jasper Ridge

SOM KMeans CLUS-BPT [13]
Image SOM alg. Pur NMI OA Pur NMI OA Pur NMI OA
Pavia GMM 0.707 0.539 0.597 0.578 0.537 0.510 0.700 0.581 0.824
Pines SC-RBF 0.497 0.432 0.385 0.355 0.343 0.429 0.576 0.603 0.578
Samson SC-NN 0.880 0.670 0.880 0.847 0.591 0.847 0.690 0.670 0.879
Jasper GMM 0.901 0.734 0.901 0.886 0.712 0.886 0.766 0.566 0.767

Table 15: Comparison of clustering performance

the cluster which maximised the accuracy. This can be thought of as the embedding quality of the
SOM, i.e. how well the SOM is able to represent the data. Table 16 shows the clustering results
if the maximum of the maps from table 15 is obtained. Comparing with table 15, the SOM image
embedding is not fully exploited by the clustering algorithms. The labels of the testing images for
the best SOM clustering, KMeans and maximum theoretical clustering is shown in fig. 21.

Image Pur NMI OA
Pavia 0.871 0.788 0.689
Pines 0.672 0.541 0.616

Samson 0.962 0.842 0.962
Jasper 0.947 0.832 0.947

Table 16: Maximum theoretical clustering results for the SOMs in table 15
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(a) Reality, Pavia (b) Reality, Pines (c) Reality, Samson (d) Reality, Jasper

(e) SOM GMM, Pavia (f) SOM SC-RBF,Pines (g) SOM SC-NN,Samson (h) SOM GMM, Jasper

(i) KMeans, Pavia (j) KMeans, Pines (k) KMeans, Samson (l) KMeans, Jasper

(m) SOM Max, Pavia (n) SOM Max, Pines (o) SOM Max, Samson (p) SOM Max, Jasper

Figure 21: Clustering results of hyperspectral images for the four testing datasets.

55



7.3 Classification

The methods are evaluated as follows. In the training phase 10% of the pixels are given as a
training set. After the model has been trained, it is tasked to classify the remaining 90% of the
pixels as an unseen test set. All models are given the same split between training and testing data
and the reported overall accuracy (using eq. (81)) is on the test set.

For obtaining the best results, the set optimal of hyperparameters for each method must be ob-
tained. This was done by searching every combination of the candidate values and using the testing
set for measuring accuracy. The hyperparameters for the SOM are the same as in for clustering
in table 10. The two hyperparameters to choose for the SVM classifier are the margin violation
parameter C and the γ parameter in the RBF kernel. For easier tuning of the γ parameter, it was
computed as

γ =
γ0

dvar(Xt)
(89)

where d is the number of spectral bands in the image and var(Xt) is the variance of the input
training data. The values of γ0 and C explored in the models are given by table 17.

Parameter Values
C 0.01, 0.1, 1, 10, 100, 500, 1000
γ0 0.1 0.5, 1, 2, 5

Table 17: Hyperparameters for SVM classification

Table 18 shows the best hyperparameters found and the corresponding accuracy for each of the
four datasets without any dimensionality reduction. The pixel labels can be seen in fig. 24e-fig. 24l.

Dataset SOM SVM
Influence α0 σ0 τ Accuracy C γ0 ns Accuracy

Pavia gaussian 0.5 3 6 0.862 100 2 1023 0.946
Pines gaussian 0.5 7 6 0.713 100 1 773 0.819
Samson bubble 0.5 3 6 0.978 500 0.5 49 0.985
Jasper bubble 0.5 3 4 0.974 500 0.5 62 0.977

Table 18: Optimal hyperparameters for classification for full cube

The confusion matrices for the testing datasets and the two classifiers can be seen in fig. 22. The
predicted labels are on the x-axis, while the true labels are on the y-axis. The columns of each
matrix has been normalized to 1. A perfect classification would therefore be the identity matrix.
When comparing the two classifiers, the general trend seems to be that they both behave equally
well for each class, relative to the overall performance. In other words, for the classes where the
SVM mixes some classes, the SOM mixes the same classes, only slightly more.

In Pavia University, the two most difficult classes to separate are 2. Meadows versus 6. Bare Soil
and 1. Asphalt versus 7. Bitumen (a type of hydrocarbons commonly used when constructing
asphalt). These classes are similar in material composition, so it is as expected as they are also the
most difficult classes to correctly classify. For Indian Pines the most difficult targets to classify are
also the classes of similar material. Fore example, the classifiers struggle with class 10. Soybean-
notill versus class 11. Soybean-mintill, and classes 2,3 and 4 (the three types of corn) also gets
mixed up by both classifiers. For both Jasper Ridge and Indian Pines, the overall performance is
good, although class 3. Water sometimes gets incorrectly labeled as class 4. Tree in Jasper Ridge.
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(c) SOM Classifier, Indian Pines
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(g) SOM Classifier, Jasper Ridge
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Figure 22: Confusion matrices for the SOM classifier and SVM on the four test datasets
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However as noted in section 7.1, the upper limit on the number of support vectors for a full cube
is about 75 in the ideal case and about 150 for the hard requirement. Both the complex scenes
Pavia University and Indian Pines greatly exceed this limit. And the self organizing maps are also
too large since there are one map for each class. Since the images captured by HYPSO is larger
than the testing datasets, it seems reasonable to assume that the models will be at least as large
as the models for the test sets. Models of these sizes would not be computationally feasible for a
full cube captured by HYPSO.
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(c) Jasper Ridge

2 4 6 8 10 12 14
Number of components

0.0

0.2

0.4

0.6

0.8

Ra
tio

 o
f e

xp
la
in
ed

 v
ar
ia
nc

e
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Figure 23: Ratio of explained variance of the first 20 PCA components for the 4 testing datasets

Looking at the explained variance for the PCA components of each datasets as seen in fig. 23
reveals that most of the variance is in the first few components, which suggests that a fairly
aggressive PCA dimensionality reduction can be done without losing much accuracy. Taking the
number of components to be m = 6 which reduces the computational time with a factor of about
25 with the same hyperparameters give the results in table 19 where the estimated computational
time is computed using the interpolated models in section 7.1. The pixel labels are shown in
fig. 24m-fig. 24t

SOM SVM
Dataset oa oa change est. time oa oa change est. time ns
Pavia 0.802 -0.060 126 0.878 -0.068 208 1477
Pines 0.638 -0.075 224 0.699 -0.120 100 708

Samson 0.950 -0.028 42 0.980 -0.005 7 55
Jasper 0.942 -0.032 56 0.967 -0.010 13 96

Table 19: Results with PCA dimensionality reduction with m = 6 and estimated computational
time in seconds

Comparing with table 18 the accuracy is about 2− 7% lower for all models and datasets. It could
be possible that the optimal hyperparameters for the models when using the PCA transformed
data is not equal to the optimal parameters for the full datasets. However it will always be the case
that exploring more candidate values for hyperparameters results in potentially improved accuracy.
The obtained results verifies that a significant PCA reduction can be taken without severe loss off
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accuracy.
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(a) Reality, Pavia (b) Reality, Pines (c) Reality, Samson (d) Reality, Jasper

(e) SOM, Pavia (f) SOM, Pines (g) SOM, Samson (h) SOM, Jasper

(i) SVM, Pavia (j) SVM, Pines (k) SVM, Samson (l) SVM, Jasper

(m) PCA+SOM, Pavia (n) PCA+SOM, Pines (o) PCA+SOM, Samson (p) PCA+SOM, Jasper

(q) PCA+SVM, Pavia (r) PCA+SVM, Pines (s) PCA+SVM, Samson (t) PCA+SVM, Jasper

Figure 24: Classification labels for the four testing datasets and SOM and SVM classification
algorithms, with and without PCA dimentionality reduction with m = 6 components
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7.4 Development Methodology

Going into development, a key design goal was designing code with high reliability. If it is going to
run on a satellite, it should be trusted to behave as desired. A way to increase reliability is to write
unit tests for individual functions and modules, as well as larger integration tests for the pipeline
framework. An excerpt of the pipeline tests is in appendix B.4. The standard tests gives valid
input to a function where the expected output is known, and verify that the output actually is as
expected. Another approach is to give invalid input, like a file path that does not exist, and make
sure that the code actually detects that the input is indeed invalid. Especially writing the last class
of tests were useful for finding errors in the code, several which could easily have occurred in flight
during the HYPSO mission. In addition to testing the developed modules and framework has been
analysed using compiler instrumentation and Valgrind, and no dangerous memory operations or
memory leaks were found.

It is however difficult to formally verify the correctness of software using testing since it requires
exhaustively testing every combination of input. Testing can therefore in practice only verify the
presence of bugs, not the absence of them. In an effort to minimize the amount of software bugs,
development has generally followed a fail fast principle. Errors, such as failing to allocate sufficient
memory or a binary file with model parameters not having the correct size, causes the pipeline to
output an error code signaling the source of the error and subsequently crash. This is opposed to
attempt error recovery methods such as falling back to default values or repeating the operation.
Recovery induces more complexity and software states to the code, increasing the likelihood that
some combination of input will make the module behave in an undesirable manner. On the other
hand, a crash immediately exposes the problem to the user or developer, effectively creating a
faster feedback loop to more quickly identify and fix errors.
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8 Conclusion and Future work

This section lists some conclusions and reflections from the work and results presented in this
thesis, as well as recommendations for future work.

8.1 Processing Pipeline

The pipeline framework provides a flexible and easy platform for processing hyperspectral images
on board HYPSO. With the integration in the on board payload software and ground control
system, it is easy to define pipelines for execution in space.

The separation of processing software and payload control software creates a more modular system
where the consequences of failures and software errors are reduced. Utilizing tests and profiling
tools were key for fixing bugs from early stages of development, as opposed to discovering them
during flight in space.

The hardware specifications of the payload SoC on HYPSO does limit the range of algorithms
available. HYPSO-2 is expected to have improved hardware, which will improve the viability of
further processing modules. However hardware synthesizing will still provide unparalleled compu-
tational speeds and power usage and future work should include placing more modules on the on
board FPGA.

There are still multiple opportunities for optimizing the software performance of the on board
pipeline. Many modules potentially compute similar intermediate values, such as the pixel correl-
ation matrix. Currently it is not easy to reuse such intermediate computations between modules.
Furthermore, the on board SoC has two cores which could be utilized to process pixels in parallel,
but there is currently no support for multi-threaded operations.

8.2 Clustering

Clustering large hyperspectral images in software with the limited resources available on a small
satellite is a challenging problem. An analysis of existing algorithms showed how both memory
usage and computation time severely limits the availability of traditional clustering algorithms
used for hyperspectral images such as Spectral Clustering. While the number of spectral bands
can be reduced fairly efficiently using dimensionality reduction techniques, the large number of
pixels n is still an obstacle.

The Self Organizing Map provides a solution to do partial on board clustering. It is computationally
efficient, particularly in terms of memory usage since is uses a dense representation of the input
image. The current limiting factor is the computational time, which restricts how large the SOM
can be.

While the main computational work still have do be done on existing data on the ground, the
clustering can be transferred to new images on board. Learning the map on board is currently
not feasible. Since it has to be trained on the ground using existing images, it assumes that the
pixel distribution of new images does not differ significantly. The results obtained shows that it
can generalize to new data, but did not account for images taken under varying weather conditions
and similar effects.

The flexibility of the SOM has both advantages and disadvantages: With a rich model space for
how the SOM is trained and configured it is able to capture and express a dense representation of
the underlying distribution. On the other hand it requires choosing a lot of parameters for optimal
results, as opposed to more simplistic algorithms like KMeans or GMM. As a result the SOM
models under consideration in this thesis had to be limited to a more narrow set of candidates.
However since the training is done on the ground, future operations can test a wider range of
SOMs. Furthermore, different SOMs could be used in different circumstances.
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SOM clustering shows promising results for simple scenes, but performance is reduced when the
number of ground truth clusters grows and sample balance is skewed. This is an inherent weakness
of the SOM since the number of nodes for each cluster is proportional to the number of clusters
for a SOM of fixed size. Analysing the SOM shows that it is not able to realize the full potential
of the embedding during clustering.

PCA is an efficient and powerful method for dimensionality reduction. The reduced number of
bands allows for larger maps to be trained and still maintain a significantly lower computational
time. This at minimal cost to the clustering results.

Future work in using the SOM for on board clustering could explore other choices of SOM topology,
similarity functions, learning rate and influence functions. Ideally a robust set of parameters would
be found that worked well for a wide variety of images. An alternative is to find heuristics for
automatically selecting parameters based on the input data.

The procedure for clustering a new image using the SOM could also be improved. A natural
enhancement is to exploit spatial information from the input image, since the material composition
of adjacent pixels tend to strongly correlate.

There might very well be better sources of dense representations and intermediate variables than
the SOM for solving the clustering problem. An approach could be to consider it as an optimization
problem by explicitly formulating an objective, e.g. minimizing some representation error. Another
potential technique is to replace or combine the SOM with density estimation models. Ideally the
solution should allow for the computation to be done on board in order to enable full on board
clustering.

8.3 Classification

An one versus one based SVM classifier was implemented. It provides high classification accuracy
with low memory usage. Utilizing a kernel it provides some flexibility in how the classifier behaves.
The commonly used RBF kernel was shown to provide good classification results, even for the
complex scenes, and outperforming the SOM based classifier.

Using the SVM on HYPSO requires utilizing dimensionality reduction to speed up the computa-
tions. PCA provides the necessary reduction in dimensionality in a an efficient manner, at the cost
of a small reduction in accuracy.

PCA is a generic dimensionality reduction technique. Future work in improving classification
accuracy with the SVM could therefore consider dimensionality reduction methods to produce
features geared towards classification. As with clustering, there is also potential for exploiting
spatial information in the correlation of adjacent pixels, for example by introducing a prior on the
label distribution.

The state of the art models in classification is deep learning bases models such as convolutional
neural networks. It is a rapidly developing field, and future work in on board classification should
explore the viability of employing light weight neural networks for classification. This would be
further enabled by the improved hardware specifications of HYPSO-2.
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Appendix

A Mathematical Background

Metric

A metric is defined as a function k : Rn ×Rn −→ [0,∞) for which the following properties hold

1. k(x,y) = 0⇐⇒ x = y

2. k(x,y) = k(y,x)

3. k(x,y) ≤ k(x, z) + k(z,y)

Lp Norm

The Lp norm of a vector x ∈ Rn is defined as

||x||p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p

Manhattan Distance

The Manhattan distance between two vectors x and y is defined as ||x− y||1, i.e. the L1 norm of
x− y.

Euclidean Distance

The euclidean distance between two vectors x and y is defined as ||x − y||2, i.e. the L2 norm of
x− y.

Cosine Similarity

The cosine similarity between two vectors x and y is defined as

xyT

||x||2||y||2

Radial Basis Function Kernel

The radial basis function (RBF) kernel between two vectors x and y is defined as

exp(−γ||x− y||2)

for some positive real number γ. Is is also equivalently defined with 2σ2 = γ−1 where σ2 is referred
to as the bandwidth or variance.
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Affinity Matrix

An affinity matrix A ∈ Rn×n for a set of vectors X = {x1,x2 . . .xn} is defined as

Aij = k(xi,xj)

where k is a similarity measure such as the RBF kernel.

Degree Matrix

A degree matrix D ∈ Rn×n for the matrix X ∈ Rn×n is a diagonal matrix defined as

Dii =

n∑
j=1

Xij

Laplacian Matrix

The Laplacian matrix L ∈ Rn×n for the matrix X ∈ Rn×n is

L = D−A

where A is a similarity matrix of X and D is the degree matrix of A.

Likelihood Function

Assume that a set of random variablesX = {x1, x2, . . . , xn} is drawn from a probability distribution
for which probability density function is parameterized by a set of variables θ = {θ1, θ2, . . . , θk}.
The likelihood function L is then given as the joint probability density f over X

L(θ) = p(X|θ) = f(x1, x2, . . . , xn; θ)

Maximum Likelihood Estimator

The Maximum Likelihood Estimator (MLE) aims to find the parameter values θ that will maximize
the probability of observing the data X. It given by

MLE(X) = argmax
θ

L(θ)

where L is the likelihood function.

Maximum A-posteriori Estimator

The Maximum A-posteriori Estimator (MAP) considers the parameter values θ as random variables
of their own, and aims to find the value of θ that is most probable given the observed data X. Let
g be the prior distribution over θ, i.e. the marginal distribution. Then the MAP estimator is given
by
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MAP(x) = argmax
θ

p(θ|X) = argmax
θ

L(θ)g(θ)

where the last equality comes from Bayes Theorem.

Gradient Descent

Gradient Descent is a method for numerical minimization of some objective function f(x) [61].
For non convex functions, it steps iteratively in the direction of steepest descent towards a local
minimum by the update rule

x← x− α∇xf(x) (90)

where α > 0 is a parameter regulating the step size.
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B Code

B.1 Principle Component Analysis

pca.h

#ifndef PCA_H_INCLUDED

#define PCA_H_INCLUDED

#include "gsl/gsl_matrix.h"

#include <stddef.h>

typedef struct

{

size_t n_components;

size_t n_bands;

size_t n_pixels;

gsl_matrix_float* basis;

gsl_vector_float* means;

char* binary_file;

} PCA_Context;

int PCA_Context_init(PCA_Context* ctx, size_t n_pixels, size_t n_bands,

const char* config_file);

void PCA_Context_free(PCA_Context* ctx);

int PCA_transform(PCA_Context* ctx, float** cube);

#endif

pca.c

#include "dr/pca.h"

#include "gsl/gsl_blas.h"

#include <gsl/gsl_matrix.h>

#include <stddef.h>

#include <string.h>

#include <libconfig.h>

static int allocate(PCA_Context* ctx)

{

ctx->basis = gsl_matrix_float_alloc(ctx->n_components, ctx->n_bands);

ctx->means = gsl_vector_float_alloc(ctx->n_components);

if (!ctx->basis || !ctx->means)

{

return -1;

}

return 0;

}

static int read_config(PCA_Context* ctx, const char* config_file)

{
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config_t cfg;

config_init(&cfg);

int ret = 0;

ctx->binary_file = NULL;

if (!config_read_file(&cfg, config_file))

{

printf("PCA: Could not read config file %s\n", config_file);

ret = -1;

goto free_cfg;

}

int n_comps;

if (!config_lookup_int(&cfg, "n_components", &n_comps))

{

printf("PCA: Could not read number of components in file %s\n",

config_file);

ret = -2;

goto free_cfg;

}

ctx->n_components = (size_t)n_comps;

const char* tmp;

if (!config_lookup_string(&cfg, "basis_binary_file", &tmp))

{

printf("PCA: Could not read basis binary file path in %s\n",

config_file);

ret = -3;

goto free_cfg;

}

ctx->binary_file = strdup(tmp);

free_cfg:

config_destroy(&cfg);

return ret;

}

static size_t get_file_size(FILE* file)

{

fseek(file, 0L, SEEK_END);

size_t sz = ftell(file);

rewind(file);

return sz;

}

static int read_binary_data(PCA_Context* ctx)

{

FILE* fp = fopen(ctx->binary_file, "rb");

if (!fp)

{

printf("PCA: Cant open file %s\n", ctx->binary_file);

return -1;

}
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// Basis and means

size_t n_basis = ctx->n_components * ctx->n_bands;

size_t n_means = ctx->n_components;

size_t e_size = (n_basis + n_means) * sizeof(float);

size_t size = get_file_size(fp);

if (size != e_size)

{

printf("PCA: File size not correct\n");

printf("Expected %d, got %d\n", (int)e_size, (int)size);

}

// Read PCA basis vectors

size_t nread = fread(ctx->basis->data, sizeof(float), n_basis, fp);

nread += fread(ctx->means->data, sizeof(float), n_means, fp);

int ret = 0;

if (nread != n_basis + n_means)

{

printf("PCA: Read unexpected number of elements: %d\n", (int)nread);

ret = -1;

}

fclose(fp);

return ret;

}

int PCA_Context_init(PCA_Context* ctx, size_t n_pixels, size_t n_bands,

const char* config_file)

{

ctx->n_pixels = n_pixels;

ctx->n_bands = n_bands;

int ret = read_config(ctx, config_file);

if (ret)

{

printf("Failed to parse PCA config: %d\n", ret);

return -1;

}

ret = allocate(ctx);

if (ret)

{

printf("Failed to allocate PCA Context: %d\n", ret);

goto free_ctx;

}

ret = read_binary_data(ctx);

if (ret)

{

printf("Failed to read PCA binary data: %d\n", ret);

goto free_ctx;

}
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return 0;

free_ctx:

PCA_Context_free(ctx);

return ret;

}

void PCA_Context_free(PCA_Context* ctx)

{

gsl_matrix_float_free(ctx->basis);

gsl_vector_float_free(ctx->means);

free(ctx->binary_file);

}

int PCA_transform(PCA_Context* ctx, float** cube)

{

float* dr_cube = malloc(sizeof(float) * ctx->n_pixels * ctx->n_components);

if (!dr_cube)

{

printf("PCA: Could not allocate space for transformed cube\n");

return -1;

}

gsl_matrix_float_view cube_matrix =

gsl_matrix_float_view_array(*cube, ctx->n_pixels, ctx->n_bands);

gsl_matrix_float_view dr_matrix =

gsl_matrix_float_view_array(dr_cube, ctx->n_pixels, ctx->n_components);

int ret = gsl_blas_sgemm(CblasNoTrans, CblasTrans, 1, &cube_matrix.matrix,

ctx->basis, 0, &dr_matrix.matrix);

if (ret != GSL_SUCCESS)

{

printf("Failed to do PCA computation: %d\n", ret);

free(dr_cube);

return ret;

}

// Subtract projected mean

for (size_t i = 0; i < ctx->n_pixels; ++i)

{

gsl_vector_float_view pix = gsl_matrix_float_row(&dr_matrix.matrix, i);

gsl_vector_float_sub(&pix.vector, ctx->means);

}

free(*cube);

*cube = dr_cube;

return 0;

}

B.2 Self Organizing Map Clustering

cls som.h
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#ifndef CLS_SOM_H_INCLUDED

#define CLS_SOM_H_INCLUDED

#include <stdint.h>

#include <stddef.h>

typedef struct

{

size_t n_pixels;

size_t n_bands;

size_t SOM_dim;

char* SOM_data_file;

char* SOM_label_file;

char* results_file;

float* SOM_data;

uint8_t* SOM_labels;

float* hsi_cube_f;

uint8_t* cube_labels;

} SomClassification;

int cls_som_allocate(SomClassification* ctx);

void cls_som_free(SomClassification* ctx);

int cls_som_classify(SomClassification* ctx);

int cls_som_read_config(SomClassification* ctx, const char* config_file);

int cls_som_read_SOM_data(SomClassification* ctx);

int cls_som_read_SOM_labels(SomClassification* ctx);

#endif

cls som.c

#include <stdint.h>

#include <math.h>

#include <stdio.h>

#include <float.h>

#include <libconfig.h>

#include <string.h>

#include <stdlib.h>

#include "classification/cls_som.h"

int cls_som_allocate(SomClassification* ctx)

{

ctx->SOM_data =

malloc(sizeof(float) * ctx->n_bands * ctx->SOM_dim * ctx->SOM_dim);

ctx->SOM_labels = malloc(sizeof(uint8_t) * ctx->SOM_dim * ctx->SOM_dim);

ctx->hsi_cube_f = malloc(sizeof(float) * ctx->n_bands * ctx->n_pixels);

ctx->cube_labels = malloc(sizeof(uint8_t) * ctx->n_pixels);

if (ctx->hsi_cube_f && ctx->SOM_data && ctx->SOM_labels && ctx->cube_labels)
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{

return 0;

}

free(ctx->SOM_data);

free(ctx->SOM_labels);

free(ctx->hsi_cube_f);

free(ctx->cube_labels);

return -1;

}

void cls_som_free(SomClassification* ctx)

{

free(ctx->SOM_data);

free(ctx->SOM_labels);

free(ctx->hsi_cube_f);

free(ctx->cube_labels);

free(ctx->SOM_data_file);

free(ctx->SOM_label_file);

free(ctx->results_file);

}

int cls_som_classify(SomClassification* ctx)

{

// Iterate over all pixels

for (size_t p = 0; p < ctx->n_pixels; ++p)

{

uint8_t bmu_lbl = ctx->SOM_labels[0];

float min_bmu = FLT_MAX;

float* pixel = &(ctx->hsi_cube_f[p * ctx->n_bands]);

// Iterate over all SOM nodes and find best match

for (size_t i = 0; i < ctx->SOM_dim * ctx->SOM_dim; ++i)

{

float bmu_tot = 0;

float* som_node = &(ctx->SOM_data[i * ctx->n_bands]);

// Calculate euclidian distance between node and pixel

for (size_t j = 0; j < ctx->n_bands; ++j)

{

bmu_tot += (pixel[j] - som_node[j]) * (pixel[j] - som_node[j]);

}

if (bmu_tot < min_bmu)

{

min_bmu = bmu_tot;

bmu_lbl = ctx->SOM_labels[i];

}

}

ctx->cube_labels[p] = bmu_lbl;

}

return 0;

}
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int cls_som_read_config(SomClassification* ctx, const char* config_file)

{

config_t cfg;

config_init(&cfg);

int ret = 0;

if (!config_read_file(&cfg, config_file))

{

printf("Could not read config file %s\n", config_file);

ret = -1;

goto free_cfg;

}

const char* som_data_file;

if (!(config_lookup_string(&cfg, "SOM_data_file", &som_data_file)))

{

printf("Could not read SOM_data_file path config in %s\n", config_file);

ret = -2;

goto free_cfg;

}

ctx->SOM_data_file = strdup(som_data_file);

const char* som_label_file;

if (!(config_lookup_string(&cfg, "SOM_label_file", &som_label_file)))

{

printf("Could not read SOM_label_file path config in %s\n",

config_file);

ret = -3;

goto free_cfg;

}

ctx->SOM_label_file = strdup(som_label_file);

const char* results_file;

if (!(config_lookup_string(&cfg, "results_file", &results_file)))

{

printf("Could not read results_file path config in %s\n", config_file);

ret = -4;

goto free_cfg;

}

ctx->results_file = strdup(results_file);

int SOM_dim;

if (!config_lookup_int(&cfg, "SOM_dim", &SOM_dim))

{

printf("Could not read SOM_dim config in %s\n", config_file);

ret = -5;

goto free_cfg;

}

ctx->SOM_dim = SOM_dim;
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int n_bands;

if (!config_lookup_int(&cfg, "n_bands", &n_bands))

{

printf("Could not read n_bands config in %s\n", config_file);

ret = -6;

goto free_cfg;

}

ctx->n_bands = n_bands;

free_cfg:

config_destroy(&cfg);

return ret;

}

int cls_som_read_SOM_data(SomClassification* ctx)

{

FILE* fp = fopen(ctx->SOM_data_file, "rb");

if (!fp)

{

printf("Cant open file %s\n", ctx->SOM_data_file);

return -1;

}

size_t n_elems = ctx->SOM_dim * ctx->SOM_dim * ctx->n_bands;

size_t nread = fread(ctx->SOM_data, sizeof(float), n_elems, fp);

if (nread != n_elems)

{

printf("Failed to read correct number of elements: %d != %d\n",

(int)n_elems, (int)nread);

return -2;

}

fclose(fp);

return 0;

}

int cls_som_read_SOM_labels(SomClassification* ctx)

{

FILE* fp = fopen(ctx->SOM_label_file, "rb");

if (!fp)

{

printf("Cant open file %s\n", ctx->SOM_label_file);

return -1;

}

size_t n_elems = ctx->SOM_dim * ctx->SOM_dim;

size_t nread = fread(ctx->SOM_labels, sizeof(uint8_t), n_elems, fp);

if (nread != n_elems)

{
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printf("Failed to read correct number of elements: %d != %d\n",

(int)n_elems, (int)nread);

return -2;

}

fclose(fp);

return 0;

}

B.3 Support Vector Machine

cls svm.h

#ifndef CLS_SVM_H_INCLUDED

#define CLS_SVM_H_INCLUDED

#include <stdint.h>

#include <stddef.h>

#define SVM_MAX_CLASSES 16

/* Holds data for the support vectors and coeffcients for each class */

typedef struct

{

// Support vectors: array[n_sv][n_bands]

float** support_vectors;

// Kernel coefficients for each support vector

// array[n_classes - 1][n_sv]

float** coefficients;

size_t n_sv;

} SVM_data;

typedef struct

{

size_t n_pixels;

size_t n_bands;

char* SVM_binary_file;

size_t n_classes;

size_t n_support[SVM_MAX_CLASSES];

SVM_data classifiers[SVM_MAX_CLASSES];

float* intercepts;

float gamma;

char* scaler_file;

float* means;

float* stds;

char* results_file;

uint8_t* labels;

int is_allocated;
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} SVM_Classification;

int cls_svm_init(SVM_Classification* ctx, const char* config_file,

size_t n_pixels);

void cls_svm_free(SVM_Classification* ctx);

int cls_svm_classify(SVM_Classification* ctx, const float* hsi_cube);

#endif

cls svm.c

#include <stdio.h>

#include <stdint.h>

#include <stdlib.h>

#include <string.h>

#include <libconfig.h>

#include <math.h>

#include "classification/cls_svm.h"

static int cls_svm_read_config(SVM_Classification* ctx, const char* config_file)

{

config_t cfg;

config_init(&cfg);

int ret = 0;

ctx->scaler_file = NULL;

ctx->results_file = NULL;

ctx->SVM_binary_file = NULL;

if (!config_read_file(&cfg, config_file))

{

printf("Could not read config file %s\n", config_file);

ret = -1;

goto free_cfg;

}

const char* svm_bin;

if (!(config_lookup_string(&cfg, "SVM_binary_file", &svm_bin)))

{

printf("Could not read SVM_binary_file path config in %s\n",

config_file);

ret = -2;

goto free_cfg;

}

ctx->SVM_binary_file = strdup(svm_bin);

const char* scaler_file;

if (!(config_lookup_string(&cfg, "scaler_file", &scaler_file)))

{

printf("Could not read scaler_file path config in %s\n", config_file);

printf("Skipping scaling");

}

else

{

ctx->scaler_file = strdup(scaler_file);

}
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const char* results_file;

if (!(config_lookup_string(&cfg, "results_file", &results_file)))

{

printf("Could not read results_file path config in %s\n", config_file);

ret = -4;

goto free_cfg;

}

ctx->results_file = strdup(results_file);

int n_bands;

if (!config_lookup_int(&cfg, "n_bands", &n_bands))

{

printf("Could not read n_bands config in %s\n", config_file);

ret = -5;

goto free_cfg;

}

ctx->n_bands = n_bands;

int n_classes;

if (!config_lookup_int(&cfg, "n_classes", &n_classes))

{

printf("Could not read n_classes config in %s\n", config_file);

ret = -6;

goto free_cfg;

}

ctx->n_classes = n_classes;

char buf[16];

for (int i = 0; i < ctx->n_classes; ++i)

{

sprintf(buf, "n_SV%d", i);

int nsv;

if (!config_lookup_int(&cfg, buf, &nsv))

{

printf("Could not read %s config in %s\n", buf, config_file);

ret = -7;

goto free_cfg;

}

ctx->n_support[i] = nsv;

}

double gamma;

if (!config_lookup_float(&cfg, "gamma", &gamma))

{

printf("Could not read rbf kernel gamma param from %s\n", config_file);

ret = -1;

goto free_cfg;

}

ctx->gamma = (float)gamma;

free_cfg:

config_destroy(&cfg);

return ret;

}
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static int cls_svm_check_config(SVM_Classification* ctx)

{

if (ctx->n_pixels > 1500 * 1500 || ctx->n_pixels == 0)

{

printf("Unexpected number of pixels %d\n", (int)ctx->n_pixels);

return -1;

}

if (ctx->n_bands > 2000 || ctx->n_bands == 0)

{

printf("Unexpected number of bands %d\n", (int)ctx->n_bands);

return -2;

}

if (ctx->n_classes > SVM_MAX_CLASSES || ctx->n_classes < 2)

{

printf("Unexpected number of classes %d\n", (int)ctx->n_classes);

return -3;

}

for (int i = 0; i < ctx->n_classes; ++i)

{

if (ctx->n_support[i] == 0 || ctx->n_support[i] > 20000)

{

printf("Unexpected number of support vectors for class %d: %d\n",

(int)ctx->n_support[i], i);

return -4;

}

}

return 0;

}

static int get_number_of_classifiers(const SVM_Classification* ctx)

{

return (ctx->n_classes * (ctx->n_classes - 1)) / 2;

}

static int cls_svm_allocate(SVM_Classification* ctx)

{

/* Allocate and check rows of support vectors */

for (int i = 0; i < ctx->n_classes; ++i)

{

size_t nsv = ctx->n_support[i];

ctx->classifiers[i].support_vectors = malloc(sizeof(float*) * nsv);

ctx->classifiers[i].n_sv = nsv;

}

for (int i = 0; i < ctx->n_classes; ++i)

{

if (!ctx->classifiers[i].support_vectors)

{

goto sv_malloc_error;

}

}

/* Allocate and check rows coefficients */
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for (int i = 0; i < ctx->n_classes; ++i)

{

ctx->classifiers[i].coefficients =

malloc(sizeof(float*) * (ctx->n_classes - 1));

}

for (int i = 0; i < ctx->n_classes; ++i)

{

if (!ctx->classifiers[i].coefficients)

{

goto coeff_malloc_error;

}

}

/* If rows of both support vectors and

coefficients are OK, then allocate columns

*/

for (int i = 0; i < ctx->n_classes; ++i)

{

int nsv = ctx->n_support[i];

for (int j = 0; j < nsv; ++j)

{

ctx->classifiers[i].support_vectors[j] =

malloc(sizeof(float) * ctx->n_bands);

}

for (int j = 0; j < (ctx->n_classes - 1); ++j)

{

ctx->classifiers[i].coefficients[j] = malloc(sizeof(float) * nsv);

}

}

ctx->intercepts = malloc(sizeof(float) * get_number_of_classifiers(ctx));

if (ctx->scaler_file != NULL)

{

ctx->means = malloc(sizeof(float) * ctx->n_bands);

ctx->stds = malloc(sizeof(float) * ctx->n_bands);

}

else

{

ctx->means = NULL;

ctx->stds = NULL;

}

ctx->labels = malloc(sizeof(uint8_t) * ctx->n_pixels);

// Now check everything

for (int i = 0; i < ctx->n_classes; ++i)

{

SVM_data* d = &(ctx->classifiers[i]);

for (int j = 0; j < d->n_sv; ++j)

{

if (!d->support_vectors[j])

{
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goto malloc_error;

}

}

for (int j = 0; j < ctx->n_classes - 1; ++j)

{

if (!d->coefficients[j])

{

goto malloc_error;

}

}

}

if (!ctx->intercepts || !ctx->labels)

{

goto malloc_error;

}

if (ctx->scaler_file != NULL)

{

if (!ctx->means || !ctx->stds)

{

goto malloc_error;

}

}

return 0;

malloc_error:

cls_svm_free(ctx);

return -1;

coeff_malloc_error:

for (size_t i = 0; i < ctx->n_classes - 1; ++i)

{

free(ctx->classifiers[i].coefficients);

}

sv_malloc_error:

for (size_t i = 0; i < ctx->n_classes; ++i)

{

free(ctx->classifiers[i].support_vectors);

}

return -2;

}

static size_t get_file_size(FILE* file)

{

fseek(file, 0L, SEEK_END);

size_t sz = ftell(file);

rewind(file);

return sz;

}

static int cls_svm_read_binary_data(SVM_Classification* ctx)

{

FILE* fptr = fopen(ctx->SVM_binary_file, "rb");
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if (!fptr)

{

return -1;

}

size_t sz = get_file_size(fptr);

size_t expected_size = 0;

for (int i = 0; i < ctx->n_classes; ++i)

{

SVM_data* d = &(ctx->classifiers[i]);

// Support vectors

expected_size += d->n_sv * ctx->n_bands * sizeof(float);

// Coefficients

expected_size += d->n_sv * (ctx->n_classes - 1) * sizeof(float);

}

// Intercepts

expected_size += sizeof(float) * get_number_of_classifiers(ctx);

if (expected_size != sz)

{

printf("Wrong file size for %s. Expected %d got %d\n",

ctx->SVM_binary_file, (int)expected_size, (int)sz);

}

int unused;

// First comes support vectors

for (int i = 0; i < ctx->n_classes; ++i)

{

SVM_data* d = &(ctx->classifiers[i]);

for (int j = 0; j < d->n_sv; ++j)

{

unused =

fread(d->support_vectors[j], sizeof(float), ctx->n_bands, fptr);

}

}

// Now Coefficients

for (int i = 0; i < ctx->n_classes; ++i)

{

SVM_data* d = &(ctx->classifiers[i]);

for (int j = 0; j < ctx->n_classes - 1; ++j)

{

unused = fread(d->coefficients[j], sizeof(float), d->n_sv, fptr);

}

}

// Intercepts

unused = fread(ctx->intercepts, sizeof(float),

get_number_of_classifiers(ctx), fptr);
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(void)unused;

fclose(fptr);

return 0;

}

static int cls_svm_read_scaler_data(SVM_Classification* ctx)

{

FILE* fptr = fopen(ctx->scaler_file, "rb");

if (!fptr)

{

return -1;

}

size_t file_size = get_file_size(fptr);

size_t expected_size = 2 * sizeof(float) * ctx->n_bands;

if (expected_size != file_size)

{

printf("Wrong file size for %s. Expected %d got %d\n", ctx->scaler_file,

(int)expected_size, (int)file_size);

}

int unused = fread(ctx->means, sizeof(float), ctx->n_bands, fptr);

unused = fread(ctx->stds, sizeof(float), ctx->n_bands, fptr);

(void)unused;

fclose(fptr);

return 0;

}

int cls_svm_init(SVM_Classification* ctx, const char* config_file,

size_t n_pixels)

{

ctx->n_pixels = n_pixels;

ctx->is_allocated = 0;

int ret = cls_svm_read_config(ctx, config_file);

if (ret)

{

printf("Parsing configuration file %s failed\n", config_file);

return ret;

}

ret = cls_svm_check_config(ctx);

if (ret)

{

printf("Invalid configuration file %s: %d\n", config_file, ret);

}

ret = cls_svm_allocate(ctx);

if (ret)

{

printf("Failed to allocate SVM buffers: %d\n", ret);

return ret;

}
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ctx->is_allocated = 1;

ret = cls_svm_read_binary_data(ctx);

if (ret)

{

printf("Failed to SVM binary data from %s\n", ctx->SVM_binary_file);

return ret;

}

if (ctx->scaler_file != NULL)

{

ret = cls_svm_read_scaler_data(ctx);

}

if (ret)

{

printf("Failed to read SVM scaling data from %s\n", ctx->scaler_file);

return ret;

}

return ret;

}

void cls_svm_free(SVM_Classification* ctx)

{

free(ctx->SVM_binary_file);

free(ctx->scaler_file);

free(ctx->results_file);

if (ctx->is_allocated == 0)

{

return;

}

for (int i = 0; i < ctx->n_classes; ++i)

{

SVM_data* d = &(ctx->classifiers[i]);

for (int j = 0; j < d->n_sv; ++j)

{

free(d->support_vectors[j]);

}

free(d->support_vectors);

for (int j = 0; j < ctx->n_classes - 1; ++j)

{

free(d->coefficients[j]);

}

free(d->coefficients);

}

free(ctx->intercepts);

free(ctx->means);

free(ctx->stds);
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free(ctx->labels);

}

// Temporary arrays

// Allocated and freed in cls_svm_classify

static float* confidence_sums;

static float* ovo_results;

static float* ovr_results;

static float* scaled_pix;

static float* kernel_results;

// Compute the learned kernel for pixel x in the ovo classifier for i vs j

static float rbf_kernel(const float* x, int class_i, int class_j,

const SVM_Classification* ctx)

{

float value = 0;

for (int k = 0; k < 2; ++k)

{

int c1, c2;

// On first iteration evaluate the support vectors of class i

if (k == 0)

{

c1 = class_i;

c2 = class_j;

}

// Second iteration is support vectors of class j

else

{

c1 = class_j;

c2 = class_i;

}

const SVM_data* c1_data = &(ctx->classifiers[c1]);

// Find coefficients for c1 trained against c2

int c1_coeffs_idx = c1 < c2 ? c2 - 1 : c2;

const float* c1_coeffs = c1_data->coefficients[c1_coeffs_idx];

// Find support vectors for c1

const float* c1_kernel_results = kernel_results;

for (int i = 0; i < c1; ++i)

{

c1_kernel_results += ctx->n_support[i];

}

// Evaluate c1 trained against c2

for (int i = 0; i < c1_data->n_sv; ++i)

{

value += c1_coeffs[i] * c1_kernel_results[i];

}

}

return value;

}

static void precompute_kernel(const SVM_Classification* ctx, const float* x)
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{

size_t idx = 0;

for (size_t i = 0; i < ctx->n_classes; ++i)

{

for (size_t j = 0; j < ctx->n_support[i]; ++j)

{

kernel_results[idx] = 0;

const float* sv = ctx->classifiers[i].support_vectors[j];

for (size_t n = 0; n < ctx->n_bands; ++n)

{

kernel_results[idx] -= (x[n] - sv[n]) * (x[n] - sv[n]);

}

kernel_results[idx] = expf(ctx->gamma * kernel_results[idx]);

++idx;

}

}

}

// Compupte the SVM decicion function for each OvO classifier

// https://scikit-learn.org/stable/modules/svm.html#svc

static void decicion_function(const SVM_Classification* ctx, const float* x,

float* results)

{

int idx = 0;

precompute_kernel(ctx, x);

for (size_t i = 0; i < ctx->n_classes; ++i)

{

for (size_t j = i + 1; j < ctx->n_classes; ++j)

{

results[idx] = rbf_kernel(x, i, j, ctx) + ctx->intercepts[idx];

++idx;

}

}

}

static void ovo_to_ovr(float* ovo, float* ovr, int n_classes)

{

// Reset arrays

for (int i = 0; i < n_classes; ++i)

{

confidence_sums[i] = 0;

ovr[i] = 0;

}

int k = 0;

for (int i = 0; i < n_classes; ++i)

{

for (int j = i + 1; j < n_classes; ++j)

{

confidence_sums[i] += ovo[k];

confidence_sums[j] -= ovo[k];

ovr[i] += (ovo[k] > 0);

ovr[j] += (ovo[k] < 0);
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++k;

}

}

for (int i = 0; i < n_classes; ++i)

{

ovr[i] += confidence_sums[i] / (3 * (fabsf(confidence_sums[i]) + 1));

}

}

static void scale_pixel(const float* pixel, float* scaled, const float* means,

const float* stds, size_t length)

{

for (size_t i = 0; i < length; ++i)

{

scaled[i] = (pixel[i] - means[i]) / (stds[i]);

}

}

static uint8_t classify_single(SVM_Classification* ctx, const float* pix)

{

if (ctx->scaler_file == NULL)

{

decicion_function(ctx, pix, ovo_results);

}

else

{

scale_pixel(pix, scaled_pix, ctx->means, ctx->stds, ctx->n_bands);

decicion_function(ctx, scaled_pix, ovo_results);

}

ovo_to_ovr(ovo_results, ovr_results, ctx->n_classes);

// Label is argmax of ovr

uint8_t label = 0;

float max_val = ovr_results[0];

for (int j = 1; j < ctx->n_classes; ++j)

{

if (ovr_results[j] > max_val)

{

max_val = ovr_results[j];

label = j;

}

}

return label;

}

int cls_svm_classify(SVM_Classification* ctx, const float* hsi_cube)

{

scaled_pix = NULL;

if (ctx->scaler_file != NULL)

{

scaled_pix = malloc(sizeof(float) * ctx->n_bands);

}

// One vs one
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ovo_results = malloc(sizeof(float) * get_number_of_classifiers(ctx));

// One vs rest

ovr_results = malloc(sizeof(float) * ctx->n_classes);

confidence_sums = malloc(sizeof(float) * ctx->n_classes);

size_t n_support_total = 0;

for (int i = 0; i < ctx->n_classes; ++i)

{

n_support_total += ctx->n_support[i];

}

kernel_results = malloc(sizeof(float) * n_support_total);

for (size_t i = 0; i < ctx->n_pixels; ++i)

{

const float* pix = &(hsi_cube[i * ctx->n_bands]);

ctx->labels[i] = classify_single(ctx, pix);

}

free(scaled_pix);

free(ovo_results);

free(ovr_results);

free(confidence_sums);

free(kernel_results);

return 0;

}

B.4 Tests

test classification.c

#include <check.h>

#include <math.h>

#include <stdio.h>

#include <stdint.h>

#include <stdlib.h>

#include <string.h>

#include "pipeline/PL_runner.h"

#include "pipeline/PL_builder.h"

#include "classification/cls_som.h"

#include "classification/cls_svm.h"

#define TEST_DATA_DIR "./tests/test_data/classification/"

#define SOM_CLASS_CONFIG_FILE_PATH TEST_DATA_DIR "class_som.config"

#define SVM_CLASS_CONFIG_FILE_PATH TEST_DATA_DIR "class_svm.config"

#define SOM_DATA_FILE TEST_DATA_DIR "jasper_som.bin"

#define SOM_LABEL_FILE TEST_DATA_DIR "jasper_som_labels.bin"

#define RESULTS_FILE TEST_DATA_DIR "results"

#define CLASS_TEST_CUBE TEST_DATA_DIR "jasper.bip"
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#define CLASS_GT TEST_DATA_DIR "jasper_gt.bip"

#define CUBE_OUTPUT_PATH TEST_DATA_DIR "NOT_USED"

// Test cube dims

static int n_bands = 198;

static int h = 100;

static int w = 100;

static void setup(void)

{

}

static void teardown(void)

{

remove(CUBE_OUTPUT_PATH);

remove(RESULTS_FILE);

}

static int read_results(uint8_t* buf, char* file)

{

FILE* fp = fopen(file, "rb");

if (!fp)

{

return -1;

}

size_t nread = fread(buf, sizeof(uint8_t), h * w, fp);

if (nread != h * w)

{

printf("Did not read expected number of elements: %d - %d\n",

(int)nread, (int)(h * w));

return -2;

}

return 0;

}

START_TEST(test_som_classification_config)

{

SomClassification ctx;

cls_som_read_config(&ctx, SOM_CLASS_CONFIG_FILE_PATH);

ck_assert_msg(ctx.SOM_dim == 7, "Wrong som dimension");

ck_assert_msg(ctx.n_bands == n_bands, "Wrong number of bands");

ck_assert_str_eq(ctx.SOM_data_file, SOM_DATA_FILE);

ck_assert_str_eq(ctx.SOM_label_file, SOM_LABEL_FILE);

ck_assert_str_eq(ctx.results_file, RESULTS_FILE);

free(ctx.SOM_data_file);

free(ctx.SOM_label_file);

free(ctx.results_file);

}

END_TEST

START_TEST(test_som_classification_module)
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{

PipelineContext pl_ctx;

pl_ctx.input_path = strdup(CLASS_TEST_CUBE);

pl_ctx.output_path = strdup(CUBE_OUTPUT_PATH);

pl_ctx.n_bands = n_bands;

pl_ctx.spatial_height = h;

pl_ctx.spatial_width = w;

pl_ctx.num_partitions = 1;

pl_ctx.pl = PL_builder_new_pipeline();

PL_builder_add_module(pl_ctx.pl, PM_CLASSIFICATION_SOM,

SOM_CLASS_CONFIG_FILE_PATH);

int ret = PL_runner_execute(&pl_ctx);

ck_assert_msg(ret == 0, "Failed to apply classification pipeline");

uint8_t* results = malloc(sizeof(uint8_t) * h * w);

uint8_t* gt = malloc(sizeof(uint8_t) * h * w);

ret = read_results(results, RESULTS_FILE);

ck_assert_msg(ret == 0, "Failed to read results file correctly %d", ret);

ret = read_results(gt, CLASS_GT);

ck_assert_msg(ret == 0, "Failed to ground truth file correctly %d", ret);

float n_corr = 0;

for (size_t i = 0; i < h * w; ++i)

{

results[i] == gt[i] ? n_corr += 1.0f : 0;

}

float tot_acc = n_corr / (h * w);

printf("SOM Classification accuracy: %.2f\n", tot_acc);

ck_assert_msg(tot_acc > 0.5, "Classification accuracy unexpecdedly low\n");

free(results);

free(gt);

free(pl_ctx.input_path);

free(pl_ctx.output_path);

PL_builder_free_pipeline(pl_ctx.pl);

}

END_TEST

START_TEST(test_svm_classification_module)

{

PipelineContext pl_ctx;

pl_ctx.input_path = strdup(CLASS_TEST_CUBE);

pl_ctx.output_path = strdup(CUBE_OUTPUT_PATH);

pl_ctx.n_bands = n_bands;

pl_ctx.spatial_height = h;

pl_ctx.spatial_width = w;

pl_ctx.num_partitions = 1;

pl_ctx.pl = PL_builder_new_pipeline();

PL_builder_add_module(pl_ctx.pl, PM_CLASSIFICATION_SVM,

SVM_CLASS_CONFIG_FILE_PATH);
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int ret = PL_runner_execute(&pl_ctx);

ck_assert_msg(ret == 0, "Failed to apply classification pipeline");

uint8_t* results = malloc(sizeof(uint8_t) * h * w);

uint8_t* gt = malloc(sizeof(uint8_t) * h * w);

ret = read_results(results, RESULTS_FILE);

ck_assert_msg(ret == 0, "Failed to read results file correctly %d", ret);

ret = read_results(gt, CLASS_GT);

ck_assert_msg(ret == 0, "Failed to ground truth file correctly %d", ret);

float n_corr = 0;

for (size_t i = 0; i < h * w; ++i)

{

results[i] == gt[i] ? n_corr += 1.0f : 0;

}

float tot_acc = n_corr / (h * w);

printf("SVM Classification accuracy: %.2f\n", tot_acc);

ck_assert_msg(tot_acc > 0.5, "Classification accuracy unexpecdedly low\n");

free(results);

free(gt);

free(pl_ctx.input_path);

free(pl_ctx.output_path);

PL_builder_free_pipeline(pl_ctx.pl);

}

END_TEST

Suite* make_classification_suite(void)

{

Suite* suite = suite_create("classification_suite");

TCase* tcase = tcase_create("classification_case");

tcase_set_timeout(tcase, 100);

tcase_add_test(tcase, test_som_classification_config);

tcase_add_test(tcase, test_som_classification_module);

tcase_add_test(tcase, test_svm_classification_module);

tcase_add_checked_fixture(tcase, setup, teardown);

suite_add_tcase(suite, tcase);

return suite;

}

test pca.c

#include <math.h>

#include <check.h>

#include <stdio.h>

#include <stdint.h>

#include <stdlib.h>
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#include <string.h>

#include "dr/pca.h"

#include "pipeline/PL_builder.h"

#include "pipeline/PL_runner.h"

#include "pipeline/PL_utils.h"

#define TEST_DATA_DIR "./tests/test_data/"

#define PCA_CONFIG TEST_DATA_DIR "pca/jasper_pca.config"

#define TEST_CUBE TEST_DATA_DIR "classification/jasper.bip"

#define CUBE_OUTPUT_PATH TEST_DATA_DIR "out.bip"

#define JASPER_EXPECTED_CUBE TEST_DATA_DIR "pca/jasper_pca.bip"

static int n_bands = 198;

static int h = 100;

static int w = 100;

static int nc = 10;

static void setup(void)

{

}

static void teardown(void)

{

remove(CUBE_OUTPUT_PATH);

}

START_TEST(test_pca_module)

{

PipelineContext pl_ctx;

pl_ctx.input_path = strdup(TEST_CUBE);

pl_ctx.output_path = strdup(CUBE_OUTPUT_PATH);

pl_ctx.n_bands = n_bands;

pl_ctx.spatial_height = h;

pl_ctx.spatial_width = w;

pl_ctx.num_partitions = 1;

pl_ctx.pl = PL_builder_new_pipeline();

PL_builder_add_module(pl_ctx.pl, PM_DIMENSIONALITY_REDUCTION, PCA_CONFIG);

pl_ctx.hsi_cube = malloc(sizeof(cube_t) * h * w * n_bands);

PL_utils_read_cube(TEST_CUBE, h * w * n_bands, pl_ctx.hsi_cube);

int ret = PL_runner_apply_pipeline(&pl_ctx);

ck_assert_msg(ret == 0, "Failed to apply pca pipeline");

ck_assert_msg(pl_ctx.n_bands == nc, "Incorrect number of dimensions");

float* expected = malloc(sizeof(float) * h * w * nc);

FILE* fd = fopen(JASPER_EXPECTED_CUBE, "rb");

ck_assert_msg(fd, "Failed to read cube file correctly");

int unused = fread(expected, sizeof(float), w * h * nc, fd);

++unused;
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int error = 0;

for (size_t i = 0; i < h * w * pl_ctx.n_bands; ++i)

{

if (fabsf(pl_ctx.hsi_cube[i] - expected[i]) > 1e-1)

{

error = 1;

}

}

ck_assert_msg(error == 0, "Error in PCA tranformation");

free(expected);

free(pl_ctx.input_path);

free(pl_ctx.output_path);

PL_builder_free_pipeline(pl_ctx.pl);

free(pl_ctx.hsi_cube);

}

END_TEST

Suite* make_pca_suite(void)

{

Suite* suite = suite_create("pca_suite");

TCase* tcase = tcase_create("case");

tcase_set_timeout(tcase, 100);

tcase_add_test(tcase, test_pca_module);

tcase_add_checked_fixture(tcase, setup, teardown);

suite_add_tcase(suite, tcase);

return suite;

}

test pl runner.c

#include <check.h>

#include <stdint.h>

#include <stdio.h>

#include <time.h>

#include <stdlib.h>

#include "common/types.h"

#include "pipeline/PL_builder.h"

#include "pipeline/PL_runner.h"

#include "pipeline/PL_utils.h"

static char test_cube_path[] = "./tests/test_data/TEMP_CUBE.bip";

static char test_cube_out_path1[] = "./tests/test_data/TEMP_CUBE_OUT1.bip";

static char test_cube_out_path2[] = "./tests/test_data/TEMP_CUBE_OUT2.bip";

static char test_config[] = "./tests/test_config1.config";

static void setup(void)

{

}
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static void teardown(void)

{

remove(test_cube_path);

remove(test_cube_out_path1);

remove(test_cube_out_path2);

}

// Test that an invalid pipeline is not accepted

START_TEST(test_invalid_pipeline_module)

{

Pipeline* pl = PL_builder_new_pipeline();

PL_builder_add_module(pl, 1000, "");

PipelineContext ctx;

ctx.pl = pl;

ctx.input_path = "NOT_A_CUBE";

ctx.output_path = "UNUSED";

cube_t tmp[1] = { 0 };

ctx.hsi_cube = tmp;

ctx.n_bands = 1;

ctx.spatial_height = 1;

ctx.spatial_width = 1;

ctx.num_partitions = 1;

ck_assert_msg(PL_runner_execute(&ctx) != 0, "Zero return code on invalid "

"cube\n");

ck_assert_msg(PL_runner_apply_pipeline(&ctx) != 0, "Zero return code on "

"invalid "

"pipeline\n");

PL_builder_free_pipeline(pl);

}

END_TEST

START_TEST(test_pipeline_partitioning)

{

PipelineContext ctx1;

ctx1.pl = PL_builder_from_config_file(test_config);

ck_assert_msg(ctx1.pl != NULL, "Config is NULL\n");

// Generate some random data for testing

srand(time(NULL));

size_t h = 100;

size_t w = 50;

size_t nb = 100;

cube_t* buf = malloc(sizeof(cube_t) * h * w * nb);

for (size_t i = 0; i < h * w * nb; ++i)

{

buf[i] = rand() % (UINT16_MAX);

}

PL_utils_write_cube(test_cube_path, w * h * nb, buf);

ctx1.spatial_height = h;
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ctx1.spatial_width = w;

ctx1.n_bands = nb;

ctx1.input_path = test_cube_path;

ctx1.output_path = test_cube_out_path1;

ctx1.num_partitions = 1;

PipelineContext ctx2 = ctx1;

ctx2.num_partitions = 3;

ctx2.output_path = test_cube_out_path2;

int ret = PL_runner_execute(&ctx1);

ck_assert_msg(ret == 0, "Pipeline failed to execute\n");

cube_t* out_buf = malloc(sizeof(cube_t) * h * w * nb);

PL_utils_read_cube(test_cube_out_path1, w * h * nb, out_buf);

int is_eq = memcmp(buf, out_buf, w * h * nb * sizeof(cube_t));

ck_assert_msg(is_eq != 0, "Processed cube should not be equal to input "

"cube\n");

ret = PL_runner_execute(&ctx2);

ck_assert_msg(ret == 0, "Pipeline failed to execute with multiple "

"partitions\n");

// Reuse buf

PL_utils_read_cube(test_cube_out_path2, w * h * nb, buf);

is_eq = memcmp(buf, out_buf, w * h * nb * sizeof(cube_t));

ck_assert_msg(is_eq == 0, "Processed cubes should be equal\n");

free(buf);

free(out_buf);

PL_builder_free_pipeline(ctx1.pl);

}

END_TEST

Suite* make_pl_runner_suite(void)

{

Suite* suite = suite_create("pl_runner_suite");

TCase* tcase = tcase_create("pl_runner_case");

tcase_add_test(tcase, test_invalid_pipeline_module);

tcase_add_test(tcase, test_pipeline_partitioning);

tcase_add_checked_fixture(tcase, setup, teardown);

suite_add_tcase(suite, tcase);

return suite;

}

test pl builder.c

#include <check.h>

#include <malloc.h>

#include <stdio.h>
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#include "pipeline/PL_builder.h"

#include "pipeline/PL_utils.h"

static char* dummy_path1 = "/tmp/config/snk";

static char* dummy_path2 = "/tmp/config/td";

static char* test_config_file = "./tests/test_config2.config";

START_TEST(empty_pipeline)

{

Pipeline* pl = PL_builder_new_pipeline();

ck_assert(pl->num_modules == 0);

ck_assert(pl->modules == NULL);

PL_builder_free_pipeline(pl);

}

END_TEST

static void add_dummy_modules(Pipeline* pl)

{

PL_builder_add_module(pl, PM_SMILE_AND_KEYSTONE, dummy_path1);

PL_builder_add_module(pl, PM_TARGET_DETECTION, dummy_path2);

char* dummy_path3 = "/tmp/config/compression";

PL_builder_add_module(pl, PM_COMPRESSION, dummy_path3);

}

static int is_pipeline_eq(Pipeline* pl1, Pipeline* pl2)

{

if (pl1->num_modules != pl2->num_modules)

{

return 0;

}

for (size_t i = 0; i < pl1->num_modules; ++i)

{

if (pl1->modules[i].module_type != pl2->modules[i].module_type)

{

return 0;

}

if (strcmp(pl1->modules[i].config_file_path,

pl2->modules[i].config_file_path))

{

return 0;

}

}

return 1;

}

START_TEST(add_module)

{

Pipeline* pl = PL_builder_new_pipeline();

add_dummy_modules(pl);

ck_assert(pl->num_modules == 3);

ck_assert(pl->modules[0].module_type == PM_SMILE_AND_KEYSTONE);

ck_assert(pl->modules[2].module_type == PM_COMPRESSION);
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ck_assert_str_eq(pl->modules[0].config_file_path, dummy_path1);

ck_assert_str_eq(pl->modules[2].config_file_path, "/tmp/config/"

"compression");

PL_builder_free_pipeline(pl);

}

END_TEST

START_TEST(pipeline_size)

{

Pipeline* pl = PL_builder_new_pipeline();

add_dummy_modules(pl);

size_t sz = sizeof(size_t) + 3 * sizeof(PipelineModuleTypes) +

3 * sizeof(size_t) + 15 + 14 + 23;

ck_assert_msg(sz == PL_builder_get_pipeline_size(pl), "Incorrect pipeline "

"size\n");

PL_builder_free_pipeline(pl);

}

END_TEST

START_TEST(serialize_pipeline)

{

Pipeline* pl = PL_builder_new_pipeline();

add_dummy_modules(pl);

size_t sz = PL_builder_get_pipeline_size(pl);

size_t buf_size = sz + 1;

char* buf = malloc(buf_size);

memset(buf, 0, buf_size);

size_t num_written = PL_builder_serialize_pipeline(buf, pl);

buf[buf_size - 1] = '\0';

ck_assert_msg(num_written == sz, "Did not write expected number of "

"bytes\n");

Pipeline* pl_deserialized = PL_builder_deserialize_pipeline(buf);

ck_assert_msg(is_pipeline_eq(pl, pl_deserialized), "Pipelines is not "

"equal\n");

ck_assert_msg(sz == PL_builder_get_pipeline_size(pl_deserialized),

"Pipeline sizes does not match\n");

ck_assert_msg(pl_deserialized->modules[2].module_type == PM_COMPRESSION,

"Wrong "

"expected "

"pipeline "

"type\n");

ck_assert_str_eq(pl_deserialized->modules[1].config_file_path, dummy_path2);

ck_assert_str_eq(pl_deserialized->modules[2].config_file_path, "/tmp/"

"config/"

"compressio"
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"n");

PL_builder_free_pipeline(pl);

PL_builder_free_pipeline(pl_deserialized);

free(buf);

}

END_TEST

START_TEST(test_pl_config_reader)

{

printf("Attempting to read config file %s\n", test_config_file);

Pipeline* pl = PL_builder_from_config_file(test_config_file);

ck_assert_msg(pl != NULL, "Could not read pipeline config file\n");

int expected_num_modules = 6;

char error_msg[100];

sprintf(error_msg, "Did not get expected number of modules: %d\n",

(int)pl->num_modules);

ck_assert_msg(pl->num_modules == expected_num_modules, error_msg);

PipelineModuleTypes expected_modules[] = { PM_SMILE_AND_KEYSTONE,

PM_COMPRESSION,

PM_TARGET_DETECTION,

PM_DIMENSIONALITY_REDUCTION,

PM_CLASSIFICATION_SOM,

PM_CLASSIFICATION_SVM };

for (int i = 0; i < expected_num_modules; ++i)

{

const char* expected_mod_string =

PL_utils_module_to_string(expected_modules[i]);

const char* actual_mod_string =

PL_utils_module_to_string(pl->modules[i].module_type);

ck_assert_msg(expected_mod_string != NULL, "Could not get module "

"name\n");

ck_assert_msg(actual_mod_string != NULL, "Could not get module name\n");

sprintf(error_msg, "Expected module %s (%d), got %s (%d)\n",

expected_mod_string, expected_modules[i], actual_mod_string,

pl->modules[i].module_type);

ck_assert_msg(expected_modules[i] == pl->modules[i].module_type,

error_msg);

}

PL_builder_free_pipeline(pl);

}

END_TEST

Suite* make_pl_builder_suite(void)

{

Suite* suite = suite_create("pl_builder");

TCase* tcase = tcase_create("case");
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/* Tests go here */

tcase_add_test(tcase, empty_pipeline);

tcase_add_test(tcase, add_module);

tcase_add_test(tcase, pipeline_size);

tcase_add_test(tcase, serialize_pipeline);

tcase_add_test(tcase, test_pl_config_reader);

suite_add_tcase(suite, tcase);

return suite;

}

B.5 Dot product toy experiment

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

#define B 120

#define W 684

#define H 956

float vec_prod(float* a, float* b, size_t size)

{

float res = 0;

for (size_t i = 0; i < size; ++i)

{

res += a[i] * b[i];

}

return res;

}

int main()

{

float* s = malloc(sizeof(float) * B);

float* img = malloc(sizeof(float) * B * W * H);

float* res = malloc(sizeof(float) * H * W);

srand(time(NULL));

if (img != NULL && s != NULL && res != NULL)

{

printf("Malloc OK\n");

}

else

{

printf("Malloc Failed\n");

goto free;

}

for (size_t i = 0; i < B; ++i)

{

s[i] = rand() % 30000;

}
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for (size_t i = 0; i < B * W * H; ++i)

{

img[i] = rand() % 30000;

}

clock_t start, end;

start = clock();

for (size_t i = 0; i < H * W; ++i)

{

res[i] = vec_prod(s, &img[i * B], B);

}

end = clock();

double time_taken = ((double)(end - start)) / CLOCKS_PER_SEC; // in seconds

printf("fun() took %f seconds to execute \n", time_taken);

free:

free(s);

free(img);

free(res);

return 0;

}

B.6 Dhrystone Benchmark

dhry.h

/*

****************************************************************************

*

* "DHRYSTONE" Benchmark Program

* -----------------------------

*

* Version: C, Version 2.1

*

* File: dhry.h (part 1 of 3)

*

* Date: May 25, 1988

*

* Author: Reinhold P. Weicker

*

*/

/* Compiler and system dependent definitions: */

#ifndef TIME

#undef TIMES

#define TIMES

#endif

/* Use times(2) time function unless */

/* explicitly defined otherwise */

#ifdef MSC_CLOCK
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#undef HZ

#undef TIMES

#include <time.h>

#define HZ CLK_TCK

#endif

/* Use Microsoft C hi-res clock */

#ifdef TIMES

#include <sys/times.h>

#include <sys/types.h>

/* for "times" */

#endif

#define Mic_secs_Per_Second 1000000.0

/* Berkeley UNIX C returns process times in seconds/HZ */

#ifdef NOSTRUCTASSIGN

#define structassign(d, s) memcpy(&(d), &(s), sizeof(d))

#else

#define structassign(d, s) d = s

#endif

#ifdef NOENUM

#define Ident_1 0

#define Ident_2 1

#define Ident_3 2

#define Ident_4 3

#define Ident_5 4

typedef int Enumeration;

#else

typedef enum { Ident_1, Ident_2, Ident_3, Ident_4, Ident_5 } Enumeration;

#endif

/* for boolean and enumeration types in Ada, Pascal */

/* General definitions: */

#include <stdio.h>

/* for strcpy, strcmp */

#define Null 0

/* Value of a Null pointer */

#define true 1

#define false 0

typedef int One_Thirty;

typedef int One_Fifty;

typedef char Capital_Letter;

typedef int Boolean;

typedef char Str_30[31];

typedef int Arr_1_Dim[50];

typedef int Arr_2_Dim[50][50];

typedef struct record {

struct record *Ptr_Comp;

Enumeration Discr;

union {

struct {

Enumeration Enum_Comp;
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int Int_Comp;

char Str_Comp[31];

} var_1;

struct {

Enumeration E_Comp_2;

char Str_2_Comp[31];

} var_2;

struct {

char Ch_1_Comp;

char Ch_2_Comp;

} var_3;

} variant;

} Rec_Type, *Rec_Pointer;

dhry 1.c

/*

****************************************************************************

*

* "DHRYSTONE" Benchmark Program

* -----------------------------

*

* Version: C, Version 2.1

*

* File: dhry_1.c (part 2 of 3)

*

* Date: May 25, 1988

*

* Author: Reinhold P. Weicker

*

****************************************************************************

*/

#include "dhry.h"

/* Global Variables: */

Rec_Pointer Ptr_Glob, Next_Ptr_Glob;

int Int_Glob;

Boolean Bool_Glob;

char Ch_1_Glob, Ch_2_Glob;

int Arr_1_Glob[50];

int Arr_2_Glob[50][50];

extern char *malloc();

Enumeration Func_1();

/* forward declaration necessary since Enumeration may not simply be int */

#ifndef REG

Boolean Reg = false;

#define REG

/* REG becomes defined as empty */

/* i.e. no register variables */

#else

Boolean Reg = true;

#endif

/* variables for time measurement: */
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#ifdef TIMES

struct tms time_info;

/* see library function "times" */

#define Too_Small_Time (2 * HZ)

/* Measurements should last at least about 2 seconds */

#endif

#ifdef TIME

extern long time();

/* see library function "time" */

#define Too_Small_Time 2

/* Measurements should last at least 2 seconds */

#endif

#ifdef MSC_CLOCK

extern clock_t clock();

#define Too_Small_Time (2 * HZ)

#endif

long Begin_Time, End_Time, User_Time;

float Microseconds, Dhrystones_Per_Second;

/* end of variables for time measurement */

main()

/*****/

/* main program, corresponds to procedures */

/* Main and Proc_0 in the Ada version */

{

One_Fifty Int_1_Loc;

REG One_Fifty Int_2_Loc;

One_Fifty Int_3_Loc;

REG char Ch_Index;

Enumeration Enum_Loc;

Str_30 Str_1_Loc;

Str_30 Str_2_Loc;

REG int Run_Index;

REG int Number_Of_Runs;

/* Initializations */

Next_Ptr_Glob = (Rec_Pointer)malloc(sizeof(Rec_Type));

Ptr_Glob = (Rec_Pointer)malloc(sizeof(Rec_Type));

Ptr_Glob->Ptr_Comp = Next_Ptr_Glob;

Ptr_Glob->Discr = Ident_1;

Ptr_Glob->variant.var_1.Enum_Comp = Ident_3;

Ptr_Glob->variant.var_1.Int_Comp = 40;

strcpy(Ptr_Glob->variant.var_1.Str_Comp, "DHRYSTONE PROGRAM, SOME STRING");

strcpy(Str_1_Loc, "DHRYSTONE PROGRAM, 1'ST STRING");

Arr_2_Glob[8][7] = 10;

/* Was missing in published program. Without this statement, */

/* Arr_2_Glob [8][7] would have an undefined value. */

/* Warning: With 16-Bit processors and Number_Of_Runs > 32000, */

/* overflow may occur for this array element. */

printf("\n");
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printf("Dhrystone Benchmark, Version 2.1 (Language: C)\n");

printf("\n");

if (Reg) {

printf("Program compiled with 'register' attribute\n");

printf("\n");

} else {

printf("Program compiled without 'register' attribute\n");

printf("\n");

}

printf("Please give the number of runs through the benchmark: ");

{

int n;

scanf("%d", &n);

Number_Of_Runs = n;

}

printf("\n");

printf("Execution starts, %d runs through Dhrystone\n", Number_Of_Runs);

/***************/

/* Start timer */

/***************/

#ifdef TIMES

times(&time_info);

Begin_Time = (long)time_info.tms_utime;

#endif

#ifdef TIME

Begin_Time = time((long *)0);

#endif

#ifdef MSC_CLOCK

Begin_Time = clock();

#endif

for (Run_Index = 1; Run_Index <= Number_Of_Runs; ++Run_Index) {

Proc_5();

Proc_4();

/* Ch_1_Glob == 'A', Ch_2_Glob == 'B', Bool_Glob == true */

Int_1_Loc = 2;

Int_2_Loc = 3;

strcpy(Str_2_Loc, "DHRYSTONE PROGRAM, 2'ND STRING");

Enum_Loc = Ident_2;

Bool_Glob = !Func_2(Str_1_Loc, Str_2_Loc);

/* Bool_Glob == 1 */

while (Int_1_Loc < Int_2_Loc) /* loop body executed once */

{

Int_3_Loc = 5 * Int_1_Loc - Int_2_Loc;

/* Int_3_Loc == 7 */

Proc_7(Int_1_Loc, Int_2_Loc, &Int_3_Loc);

/* Int_3_Loc == 7 */

Int_1_Loc += 1;

} /* while */

/* Int_1_Loc == 3, Int_2_Loc == 3, Int_3_Loc == 7 */

Proc_8(Arr_1_Glob, Arr_2_Glob, Int_1_Loc, Int_3_Loc);

/* Int_Glob == 5 */

Proc_1(Ptr_Glob);

for (Ch_Index = 'A'; Ch_Index <= Ch_2_Glob; ++Ch_Index)
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/* loop body executed twice */

{

if (Enum_Loc == Func_1(Ch_Index, 'C'))

/* then, not executed */

{

Proc_6(Ident_1, &Enum_Loc);

strcpy(Str_2_Loc, "DHRYSTONE PROGRAM, 3'RD STRING");

Int_2_Loc = Run_Index;

Int_Glob = Run_Index;

}

}

/* Int_1_Loc == 3, Int_2_Loc == 3, Int_3_Loc == 7 */

Int_2_Loc = Int_2_Loc * Int_1_Loc;

Int_1_Loc = Int_2_Loc / Int_3_Loc;

Int_2_Loc = 7 * (Int_2_Loc - Int_3_Loc) - Int_1_Loc;

/* Int_1_Loc == 1, Int_2_Loc == 13, Int_3_Loc == 7 */

Proc_2(&Int_1_Loc);

/* Int_1_Loc == 5 */

} /* loop "for Run_Index" */

/**************/

/* Stop timer */

/**************/

#ifdef TIMES

times(&time_info);

End_Time = (long)time_info.tms_utime;

#endif

#ifdef TIME

End_Time = time((long *)0);

#endif

#ifdef MSC_CLOCK

End_Time = clock();

#endif

printf("Execution ends\n");

printf("\n");

printf("Final values of the variables used in the benchmark:\n");

printf("\n");

printf("Int_Glob: %d\n", Int_Glob);

printf(" should be: %d\n", 5);

printf("Bool_Glob: %d\n", Bool_Glob);

printf(" should be: %d\n", 1);

printf("Ch_1_Glob: %c\n", Ch_1_Glob);

printf(" should be: %c\n", 'A');

printf("Ch_2_Glob: %c\n", Ch_2_Glob);

printf(" should be: %c\n", 'B');

printf("Arr_1_Glob[8]: %d\n", Arr_1_Glob[8]);

printf(" should be: %d\n", 7);

printf("Arr_2_Glob[8][7]: %d\n", Arr_2_Glob[8][7]);

printf(" should be: Number_Of_Runs + 10\n");

printf("Ptr_Glob->\n");

printf(" Ptr_Comp: %d\n", (int)Ptr_Glob->Ptr_Comp);

printf(" should be: (implementation-dependent)\n");

printf(" Discr: %d\n", Ptr_Glob->Discr);

printf(" should be: %d\n", 0);

printf(" Enum_Comp: %d\n", Ptr_Glob->variant.var_1.Enum_Comp);
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printf(" should be: %d\n", 2);

printf(" Int_Comp: %d\n", Ptr_Glob->variant.var_1.Int_Comp);

printf(" should be: %d\n", 17);

printf(" Str_Comp: %s\n", Ptr_Glob->variant.var_1.Str_Comp);

printf(" should be: DHRYSTONE PROGRAM, SOME STRING\n");

printf("Next_Ptr_Glob->\n");

printf(" Ptr_Comp: %d\n", (int)Next_Ptr_Glob->Ptr_Comp);

printf(" should be: (implementation-dependent), same as above\n");

printf(" Discr: %d\n", Next_Ptr_Glob->Discr);

printf(" should be: %d\n", 0);

printf(" Enum_Comp: %d\n", Next_Ptr_Glob->variant.var_1.Enum_Comp);

printf(" should be: %d\n", 1);

printf(" Int_Comp: %d\n", Next_Ptr_Glob->variant.var_1.Int_Comp);

printf(" should be: %d\n", 18);

printf(" Str_Comp: %s\n", Next_Ptr_Glob->variant.var_1.Str_Comp);

printf(" should be: DHRYSTONE PROGRAM, SOME STRING\n");

printf("Int_1_Loc: %d\n", Int_1_Loc);

printf(" should be: %d\n", 5);

printf("Int_2_Loc: %d\n", Int_2_Loc);

printf(" should be: %d\n", 13);

printf("Int_3_Loc: %d\n", Int_3_Loc);

printf(" should be: %d\n", 7);

printf("Enum_Loc: %d\n", Enum_Loc);

printf(" should be: %d\n", 1);

printf("Str_1_Loc: %s\n", Str_1_Loc);

printf(" should be: DHRYSTONE PROGRAM, 1'ST STRING\n");

printf("Str_2_Loc: %s\n", Str_2_Loc);

printf(" should be: DHRYSTONE PROGRAM, 2'ND STRING\n");

printf("\n");

User_Time = End_Time - Begin_Time;

if (User_Time < Too_Small_Time) {

printf("Measured time too small to obtain meaningful results\n");

printf("Please increase number of runs\n");

printf("\n");

} else {

#ifdef TIME

Microseconds =

(float)User_Time * Mic_secs_Per_Second / (float)Number_Of_Runs;

Dhrystones_Per_Second = (float)Number_Of_Runs / (float)User_Time;

#else

Microseconds = (float)User_Time * Mic_secs_Per_Second /

((float)HZ * ((float)Number_Of_Runs));

Dhrystones_Per_Second =

((float)HZ * (float)Number_Of_Runs) / (float)User_Time;

#endif

printf("Microseconds for one run through Dhrystone: ");

printf("%6.1f \n", Microseconds);

printf("Dhrystones per Second: ");

printf("%6.1f \n", Dhrystones_Per_Second);

printf("\n");

}

}

Proc_1(Ptr_Val_Par)

/******************/
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REG Rec_Pointer Ptr_Val_Par;

/* executed once */

{

REG Rec_Pointer Next_Record = Ptr_Val_Par->Ptr_Comp;

/* == Ptr_Glob_Next */

/* Local variable, initialized with Ptr_Val_Par->Ptr_Comp, */

/* corresponds to "rename" in Ada, "with" in Pascal */

structassign(*Ptr_Val_Par->Ptr_Comp, *Ptr_Glob);

Ptr_Val_Par->variant.var_1.Int_Comp = 5;

Next_Record->variant.var_1.Int_Comp = Ptr_Val_Par->variant.var_1.Int_Comp;

Next_Record->Ptr_Comp = Ptr_Val_Par->Ptr_Comp;

Proc_3(&Next_Record->Ptr_Comp);

/* Ptr_Val_Par->Ptr_Comp->Ptr_Comp

== Ptr_Glob->Ptr_Comp */

if (Next_Record->Discr == Ident_1)

/* then, executed */

{

Next_Record->variant.var_1.Int_Comp = 6;

Proc_6(Ptr_Val_Par->variant.var_1.Enum_Comp,

&Next_Record->variant.var_1.Enum_Comp);

Next_Record->Ptr_Comp = Ptr_Glob->Ptr_Comp;

Proc_7(Next_Record->variant.var_1.Int_Comp, 10,

&Next_Record->variant.var_1.Int_Comp);

} else /* not executed */

structassign(*Ptr_Val_Par, *Ptr_Val_Par->Ptr_Comp);

} /* Proc_1 */

Proc_2(Int_Par_Ref)

/******************/

/* executed once */

/* *Int_Par_Ref == 1, becomes 4 */

One_Fifty *Int_Par_Ref;

{

One_Fifty Int_Loc;

Enumeration Enum_Loc;

Int_Loc = *Int_Par_Ref + 10;

do /* executed once */

if (Ch_1_Glob == 'A')

/* then, executed */

{

Int_Loc -= 1;

*Int_Par_Ref = Int_Loc - Int_Glob;

Enum_Loc = Ident_1;

} /* if */

while (Enum_Loc != Ident_1); /* true */

} /* Proc_2 */

Proc_3(Ptr_Ref_Par)

/******************/

/* executed once */

/* Ptr_Ref_Par becomes Ptr_Glob */

Rec_Pointer *Ptr_Ref_Par;

{
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if (Ptr_Glob != Null)

/* then, executed */

*Ptr_Ref_Par = Ptr_Glob->Ptr_Comp;

Proc_7(10, Int_Glob, &Ptr_Glob->variant.var_1.Int_Comp);

} /* Proc_3 */

Proc_4() /* without parameters */

/*******/

/* executed once */

{

Boolean Bool_Loc;

Bool_Loc = Ch_1_Glob == 'A';

Bool_Glob = Bool_Loc | Bool_Glob;

Ch_2_Glob = 'B';

} /* Proc_4 */

Proc_5() /* without parameters */

/*******/

/* executed once */

{

Ch_1_Glob = 'A';

Bool_Glob = false;

} /* Proc_5 */

/* Procedure for the assignment of structures, */

/* if the C compiler doesn't support this feature */

#ifdef NOSTRUCTASSIGN

memcpy(d, s, l) register char *d;

register char *s;

register int l;

{

while (l--)

*d++ = *s++;

}

#endif

dhry 2.c

/*

****************************************************************************

*

* "DHRYSTONE" Benchmark Program

* -----------------------------

*

* Version: C, Version 2.1

*

* File: dhry_2.c (part 3 of 3)

*

* Date: May 25, 1988

*

* Author: Reinhold P. Weicker

*

****************************************************************************

*/

#include "dhry.h"
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#ifndef REG

#define REG

/* REG becomes defined as empty */

/* i.e. no register variables */

#endif

extern int Int_Glob;

extern char Ch_1_Glob;

Proc_6 (Enum_Val_Par, Enum_Ref_Par)

/*********************************/

/* executed once */

/* Enum_Val_Par == Ident_3, Enum_Ref_Par becomes Ident_2 */

Enumeration Enum_Val_Par;

Enumeration *Enum_Ref_Par;

{

*Enum_Ref_Par = Enum_Val_Par;

if (! Func_3 (Enum_Val_Par))

/* then, not executed */

*Enum_Ref_Par = Ident_4;

switch (Enum_Val_Par)

{

case Ident_1:

*Enum_Ref_Par = Ident_1;

break;

case Ident_2:

if (Int_Glob > 100)

/* then */

*Enum_Ref_Par = Ident_1;

else *Enum_Ref_Par = Ident_4;

break;

case Ident_3: /* executed */

*Enum_Ref_Par = Ident_2;

break;

case Ident_4: break;

case Ident_5:

*Enum_Ref_Par = Ident_3;

break;

} /* switch */

} /* Proc_6 */

Proc_7 (Int_1_Par_Val, Int_2_Par_Val, Int_Par_Ref)

/**********************************************/

/* executed three times */

/* first call: Int_1_Par_Val == 2, Int_2_Par_Val == 3, */

/* Int_Par_Ref becomes 7 */

/* second call: Int_1_Par_Val == 10, Int_2_Par_Val == 5, */

/* Int_Par_Ref becomes 17 */

/* third call: Int_1_Par_Val == 6, Int_2_Par_Val == 10, */

/* Int_Par_Ref becomes 18 */

One_Fifty Int_1_Par_Val;

One_Fifty Int_2_Par_Val;

One_Fifty *Int_Par_Ref;

{

One_Fifty Int_Loc;
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Int_Loc = Int_1_Par_Val + 2;

*Int_Par_Ref = Int_2_Par_Val + Int_Loc;

} /* Proc_7 */

Proc_8 (Arr_1_Par_Ref, Arr_2_Par_Ref, Int_1_Par_Val, Int_2_Par_Val)

/*********************************************************************/

/* executed once */

/* Int_Par_Val_1 == 3 */

/* Int_Par_Val_2 == 7 */

Arr_1_Dim Arr_1_Par_Ref;

Arr_2_Dim Arr_2_Par_Ref;

int Int_1_Par_Val;

int Int_2_Par_Val;

{

REG One_Fifty Int_Index;

REG One_Fifty Int_Loc;

Int_Loc = Int_1_Par_Val + 5;

Arr_1_Par_Ref [Int_Loc] = Int_2_Par_Val;

Arr_1_Par_Ref [Int_Loc+1] = Arr_1_Par_Ref [Int_Loc];

Arr_1_Par_Ref [Int_Loc+30] = Int_Loc;

for (Int_Index = Int_Loc; Int_Index <= Int_Loc+1; ++Int_Index)

Arr_2_Par_Ref [Int_Loc] [Int_Index] = Int_Loc;

Arr_2_Par_Ref [Int_Loc] [Int_Loc-1] += 1;

Arr_2_Par_Ref [Int_Loc+20] [Int_Loc] = Arr_1_Par_Ref [Int_Loc];

Int_Glob = 5;

} /* Proc_8 */

Enumeration Func_1 (Ch_1_Par_Val, Ch_2_Par_Val)

/*************************************************/

/* executed three times */

/* first call: Ch_1_Par_Val == 'H', Ch_2_Par_Val == 'R' */

/* second call: Ch_1_Par_Val == 'A', Ch_2_Par_Val == 'C' */

/* third call: Ch_1_Par_Val == 'B', Ch_2_Par_Val == 'C' */

Capital_Letter Ch_1_Par_Val;

Capital_Letter Ch_2_Par_Val;

{

Capital_Letter Ch_1_Loc;

Capital_Letter Ch_2_Loc;

Ch_1_Loc = Ch_1_Par_Val;

Ch_2_Loc = Ch_1_Loc;

if (Ch_2_Loc != Ch_2_Par_Val)

/* then, executed */

return (Ident_1);

else /* not executed */

{

Ch_1_Glob = Ch_1_Loc;

return (Ident_2);

}

} /* Func_1 */

Boolean Func_2 (Str_1_Par_Ref, Str_2_Par_Ref)
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/*************************************************/

/* executed once */

/* Str_1_Par_Ref == "DHRYSTONE PROGRAM, 1'ST STRING" */

/* Str_2_Par_Ref == "DHRYSTONE PROGRAM, 2'ND STRING" */

Str_30 Str_1_Par_Ref;

Str_30 Str_2_Par_Ref;

{

REG One_Thirty Int_Loc;

Capital_Letter Ch_Loc;

Int_Loc = 2;

while (Int_Loc <= 2) /* loop body executed once */

if (Func_1 (Str_1_Par_Ref[Int_Loc],

Str_2_Par_Ref[Int_Loc+1]) == Ident_1)

/* then, executed */

{

Ch_Loc = 'A';

Int_Loc += 1;

} /* if, while */

if (Ch_Loc >= 'W' && Ch_Loc < 'Z')

/* then, not executed */

Int_Loc = 7;

if (Ch_Loc == 'R')

/* then, not executed */

return (true);

else /* executed */

{

if (strcmp (Str_1_Par_Ref, Str_2_Par_Ref) > 0)

/* then, not executed */

{

Int_Loc += 7;

Int_Glob = Int_Loc;

return (true);

}

else /* executed */

return (false);

} /* if Ch_Loc */

} /* Func_2 */

Boolean Func_3 (Enum_Par_Val)

/***************************/

/* executed once */

/* Enum_Par_Val == Ident_3 */

Enumeration Enum_Par_Val;

{

Enumeration Enum_Loc;

Enum_Loc = Enum_Par_Val;

if (Enum_Loc == Ident_3)

/* then, executed */

return (true);

else /* not executed */

return (false);

} /* Func_3 */
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C Power Budget

Figure 25: Power Budget for HYPSO
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