
Robustness in Deep Reinforcement Learning

for quadrotor control

Martin Aalby Svalesen

Autumn 2020

PROJECT THESIS

Department of Engineering Cybernetics

Norwegian University of Science and Technology

Supervisor: Kostas Alexis



i

Preface

This project thesis presents a literature study on continuous state deep reinforcement learning algo-

rithms, alongside the results when one such algorithm is implemented on a quadrotor helicopter in a

simulator. It complements the work done by Eilef Olsen Osvik in his project thesis “Reward shaping in

quadcopter control using Deep Deterministic Policy Gradients” as we will use the same reinforcement

learning agent as baseline. We are both working towards the same core goal, namely to develop an un-

derstanding of how to navigate a quadcopter in geometrically confined environments without the aid of

Global Navigation systems using deep reinforcement learning. Our master theses will explore how to in-

tegrate machine vision and LiDAR scanners to gain knowledge about the environment, so that an agent

can efficiently navigate and explore said environment. Therefore, learning how to control the quadrotor

on its own is a crucial step towards achieving this goal, and is what we will be exploring in this project

thesis.

The core research on this topic is led by Prof. Kostas Alexis and the team at Autonomous Robots Lab

[3] in Nevada, US, and it originates from the DARPA Subterranean Challenge [7].

Trondheim, 2020-12-17

Martin Aalby Svalesen
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Executive Summary

In this project thesis, the necessary theoretical background about Deep Reinforcement learning algo-

rithms is developed. Then the necessary mathematics to understand the reinforcement learning algo-

rithm of choice, Deep Deterministic Policy gradients, is derived starting at the basic formulation for pol-

icy gradient methods. All necessary building blocks needed for the training of policy and value networks

are introduced and explained. The reinforcement learning problem is then formulated, using the insights

from the introduction of the dynamic system of a quadrotor and a reward function that encourages the

agent to learn the optimal behaviour of navigating to a goal.

To test the significance of the depth of the neural networks used for parametrizing the value and

policy functions, three different network topologies are trained and tested. In addition, a fourth network

with an integral effect is introduced to test if its architecture improves robustness. The main goal was to

find a network topology that matched the complexity in the policy features from the training data.

The key result of this study is that the agent with the most shallow network topology is able to gener-

alize and understand in which general direction it is expected to go, but not scale its acceleration vector

properly. This results in unstable behaviour which prevents the quadrotor from maintaining the goal po-

sition. The deepest network seems to be overparametrized, meaning that it did not generalize properly,

and thus contains many sub-solutions and is sensitive to goal points spawned in regions it has not seen

before. This is aligned with the fact that such a deep neural network presents an optimization space with

multiple local optima.

The mass is then changed by +10% without retraining the networks, to see how robustly they can

handle uncertainties in the model parameters. All of the network topologies experience a drop in perfor-

mance, with the exception of the shallowest network. It seems that making the quadrotor heavier, and

thus diminishing the magnitude of the acceleration vector, made this agent more stable. The network

topology which proved to be the most accurate in normal conditions, experienced the biggest drop in

performance by an order of magnitude. However, the network topology with integral effect experienced

a smaller drop in performance, suggesting that having integral effect in the state-space and reward func-

tion actually does improve robustness when mass is increased.

Lastly the mass was changed by −10%, which corresponds to decreasing the gravitational pull and

increasing the magnitude of the acceleration vector. All networks produced a trajectory diverging in the z-

axis, making the quadrotor rise uncontrollably. The increased magnitude of the acceleration vector made

all networks overshoot the goal coordinated in the x and y-axes without recovery within the simulation

time limit. The network with integral experienced a comparable deterioration in performance as the

other networks, suggesting that having integral effect in the state-space and reward function when the

dynamic behaviour is overshooting is not as helpful.
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Chapter 1

Introduction

1.1 Motivation

Autonomous flight of unmanned aerial vehicles (UAVs) in confined environments is an active field of

research. The motivation for having robust, agile and responsive autonomous UAVs navigating confined

environments is that it can have a big impact in problems where safety or accessibility is a concern.

Examples of this use case are search and rescue in dangerous environments, surveillance of structural

integrity and other situations where it is either difficult or dangerous to have a human operator.

Recent advances in computer processing power and power efficiency motivate us to try new ap-

proaches to UAV control which have been deemed infeasible until now. The control of aerial systems

has until now largely been done by traditional control theory approaches like Model Predictive Control

or the Proportional-Integral-Derivative controller (PID for short) and other fixed-gain schemes. How-

ever, as the field of machine learning is maturing, we need to ask ourselves if there is a learning-based

approach to UAV control that may work better. After all, if a Fairyfly as seen in figure 1.1 with its 7400

neurons is able to fly [28], there exists a way to have learning-based controlled flight, which removes the

need for solving complicated optimization problems in real time.

Figure 1.1: A fairyfly

1.2 Machine Learning

Machine learning is the field of computer science where one tries to fit statistical models to a set of data.

The goal is then for the computer to be able to make good predictions or actions given a sample set of

2
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data, without explicitly programming the computer how to do so. There are three main directions in the

field of machine learning; supervised learning, unsupervised learning and reinforcement learning.

Supervised learning

In supervised learning, there is a labeled data set. This means that for every data tuple, there exist a label

with the true association on it. When training a machine learning algorithm, this boils down to trying to

fit a statistical model to the dataset in such a way that one can do inference on a random sample, and

obtain the true answer [11, p.9].

Unsupervised learning

In this subset of machine learning, the goal is to spot trends in the data without explicitly knowing what

to look for [11, p.485]. In this case the data is not labeled, in contrast to the supervised setting. Now, the

computer is trying to discover trends and connections in the data that otherwise could not be seen by

the naked eye. This field is dominated by clustering algorithms that finds clusters of data with similar

characteristics, and classifies them accordingly.

Reinforcement Learning

Reinforcement learning, or RL for short, is the field of machine learning we will be looking at in closer

detail throughout this report. The big difference here is that the data we are training our statistical mod-

els on, have to be generated by the agent itself, and that the training labels are continually updated. This

means that both the distribution of training data and the distribution of labels for training are changing

simultaneously, which is a much harder problem to solve in comparison to the supervised learning set-

ting, where the distribution of training data and labels were fixed. Therefore, it is much harder to reach

convergence in a reinforcement learning problem, and much care has to be taken to not end up in local

maxima.

1.2.1 The perceptron

To begin the explanation of artificial neural networks, it is worthwhile to take a look at the perceptron

[25]. This is a binary classifier that, given the input data, will either activate an output y or deactivate

it. It works by doing a weighted sum of the input data and adding a constant bias, and then inputting

everything into an activation function φ as shown in figure 1.2. The output y can thus be expressed as:

y =φ(x1ω1 +x2ω2 + ...+xmωm +b) (1.1)
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Figure 1.2: Illustration of the perceptron.

In the case of the perceptron, this activation function is just a step function which is either true or

false.

1.2.2 Artificial Neural Networks

If we chain several perceptrons together into a fully-connected network and change its activation func-

tion, we now have an artificial neural network (ANN)[34]. Each node in this network is now called a

neuron. The activation function itself can be changed according to the task at hand (examples are ReLU,

leaky ReLU, Sigmoid, Tanh etc.)[31]. This type of classifier is able to learn more complicated classification

problems than binary classification, as it easily can handle non-linearities in the input data. Depending

on its size, it is also very good at finding features in the data without explicitly being told what they are,

and thus can do robust inference based on these features.

1.2.3 Gradient Based Training

The training of an ANN is all about adjusting its weights and biases. For each neuron we have a set of

weights for each input, and a bias. The goal now is to be able to accurately predict an output, given an

input. The training algorithm used for ANNs is called Stochastic Gradient Descent. Stochastic because we

are randomly sampling a batch of data to find a gradient to a loss function [10, p.177]. The loss function

can be defined as following:

L(~ω,~b) =
n∑

i=1
(ŷi − yi )2 (1.2)

where ŷi is the estimated output given by the network, and yi is the true label of the input data. Notice

that the number of outputs on this network is decided by the designer, and may as well be just one. In

that case we have that n = 1 and the summation in equation 1.2 disappears. These outputs may be doing

either some form of regression, for example predicting the price of a certain item, or classification, for

example predicting what type of flower the input data suggests. Either way, the network learns the same

way. We see that this loss function is small whenever the predicted ŷi is close or equal to the real yi .

Therefore we want to do a gradient descent on this loss function, meaning we want to find the gradient

of the function at each point, and do a step in the opposite direction to minimize the loss function.
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An important concept in the training of neural network is overfitting [10, p.110]. This is when a neural

network is so perfectly optimized for a training dataset, that it has basically begun to learn it by heart,

instead of actually generalizing and seeing the bigger trends. The symptom of overfitting is when the

validation loss starts to climb, instead of decrease like we want it to. The validation loss is a measure of

the performance of a neural network on a piece of the data set it has not been trained for, which is a better

metric of its true performance than the training loss which indicates the performance on its training data

set.

Backpropagation

So how exactly do we minimize this loss function? This is where the concept of backpropagation [18]

comes in. Let us focus on a single output ŷ1 and its corresponding true value y1. The magnitude of

the gradient of this output is proportional to how far ŷ1 is from the true value y1, and the direction of

the gradient tells us if ŷ1 needs to be increased or decreased. We now know how much we want this

output to change and the direction of the change, and we then look at the previous layer. The weights,

activations and bias that cause this activation in ŷ1 needs to be changed so that ŷ1 either increase or

decrease depending on the gradient direction. These weights are then changed proportionally to their

corresponding activations, and we note by how much we want to change the activation of each previous

neuron. Now this process repeats, as we know by how much and in which direction we want the activation

of the neuron to change. We thus see a recursive pattern that propagates gradients backwards throughout

the networks neurons, weights and biases.

When all these gradients have been propagated throughout the network, we can write the negative

gradient as:

−η∇L(~ω,~b) = [∇ω1,∇ω2, ...,∇ωm ,∇b1,∇b2, ...,∇bt ] (1.3)

where η is a proportionality constant. We now have found the gradient of the function 1.2 and can do a

gradient descent step by changing the weights and biases in the direction of their negative gradient.

A challenge with deep networks, is that the magnitude of these gradients gets smaller and smaller

the more layers the network has. This means that the first layers will learn slower than the last layers.

This is termed the vanishing of gradients [10, p.289], and is the reason big neural networks require longer

training times.

1.2.4 Deep Learning

When the width of each layer and number of layers increases, it is common to use the term “deep learn-

ing”. This term denotes the network’s ability to learn complex features and trends that shallower networks

are unable to capture, and has led to many important advances in the field of computer science like com-

puter vision [16].

It is easy to assume that the deeper the network, the more observant it is, and thus the better. How-

ever, this is not always the case. Apart from the problem of vanishing gradients, as explained in section

1.2.3, and the fact that larger networks require much more computation, there is also a trade-off between
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generalization and overparametrization. The best size of a neural network is the smallest one where it

can still accurately detect and learn the level of complexity in the features in the data set. As deep ANNs

are considered black boxes, meaning we are not able to understand with any confidence what happens

inside it, choosing the size of a network is more an art than a science.

1.3 Reinforcement Learning

Reinforcement learning (RL) is the study of how to teach an agent an optimal behaviour in a specific

environment, where the only feedback consists of a scalar reward signal [33, p.1]. Through experience

and repetition, the goal of the agent is to maximize this reward signal in the long run. The distinction

between the agent and the environment may not always be clear cut, but a general rule is that everything

the agent cannot control is considered part of the environment.

In this section we will briefly explain the fundamental building blocks of traditional Reinforcement

learning algorithms and concepts. It is worth exploring these concepts, as the modern RL algorithms

build on the intuition and terminology coming from this field. Historically, this field has been dominated

by dynamic programming algorithms.

Terminology in reinforcement learning versus control engineering

Before delving into the field of reinforcement learning, it is worth making the connection between the

traditional terminology in control engineering and their corresponding terms in reinforcement learning.

In RL, our goal is to learn a policy for an agent, i.e. given a state, produce an optimal action. Control

engineers would use the word Controller instead of an Agent with a policy.

The environment discussed in RL is termed as the controlled system in control engineering.

And lastly, the word Action used by RL to describe what an agent does, is often termed Control Signal

by control engineers.

1.3.1 Markov Decision processes

Let us consider a Markov chain. This is a graphical representation describing dynamic behaviour in a

system, formalized through a transition matrix. In each node of the markov chain, the probabilities for

transitioning into another node or staying in the same node is denoted with a probability. The probability

of the different transitions in each node must sum to one.

From this we can define a Markov Decision Process (MDP). This consists in a Markov Chain when

actions and rewards are added to the mix.

Reinforcement learning is presented with the difficult setting in which no prior knowledge about the

MDP is available. It then has to interact and experiment in this unknown environment (i.e. the MDP) to

learn about how to optimize its behaviour. This process is guided by the reward feedback signal. We now

have a model-based setting, meaning that the full dynamics of transitions and distributions of rewards

are known. This field is characterized by the use of dynamic programming, as we will discuss in a later

section.
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States

The set of states S in the environment is the finite sets1, s2, ..., sn , with the corresponding size of the state

space being |S| = N . Each state contains a unique description of everything that matters in a state of the

given modelled problem. States can either be legal or illegal, with legal states being the ones the agent

can explore, like empty space, and illegal states being the ones the agent is not able to explore, like inside

a wall.

Actions

The set of actions A in the environment is the finite set a1, a2, ..., ak , where the size of the action space

is denoted |A| = K . The set of actions that can be executed in a given state s ∈ S is denoted A(s), where

A(s) ⊆ A. An action can be used by the agent to control the system state. An important side note is that

not all actions can necessarily be applied in every state.

The transition function

When applying an action a ∈ A in a given state s ∈ S, the system makes a transition from the state s to a

new state s′. This transition is based on a probability distribution over the set of possible transition from

the original state. The transition function T is defined as follows: T : Sx AxS −−> [0,1]. This symbolizes

the probability of ending up in state s′ after performing an action a in state s, and is denoted T (s, a, s′).

This transition function must fulfill the following two conditions.

1. The probability of a given transition T (s, a, s′) must be in the set [0,1]

2. The sum of transition probabilities in each state must sum to one, i.e.
∑

s′∈S T (s, a, s′) = 1

A very important property of markovian dynamics is that the current state s gives sufficient infor-

mation about the past to make an optimal decision in the current state. In essence, the information of

the past history is lumped into the previous state [33, p.49]. This is called the Markov Property, and this

assumption is a fundamental building block in all methods discussed in this project thesis.

The reward function

The state reward function is defined as: R : S × A × A → R, and often denoted R(s, a, s′). This reward

function is what the agent will use in the learning process to determine what actions to take, and thus it

implicitly specifies the goal of the learning. It is up to the designer of the reward function to determine in

which way the system, or rather the MDP, should be controlled.

This all wraps up into the definition of a Markov Decision Process (MDP). It is defined as a tuple

〈S, A,T,R〉 where S is a finite set of states, A is a finite set of actions, T a transition function and reward

function R as specified earlier. We say that the transition matrix T and the reward function R make the

model of the MDP.
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Policies

Given a Markov Decision Process 〈S, A,T,R〉, a policy π is a function that maps states into actions, i.e.

π : S → A. The policy interacts with the MDP in the following way:

1. First an initial state s0 is generated from the initial state distribution

2. An action a0 =π(s0) is then performed as decided by the policy π

3. Based on our models for T and R, a transition is made to the next state s1 with probability T (s0, a0, s1),

and a reward R(s0, a0, s1)

4. The process repeats and produces the tuples 〈s0, a0,r0〉, 〈s1, a1,r1〉 and so on

5. If we have an episodic setting, the process ends when the system reaches a pre-determined state

sg oal .

1.3.2 Dynamic programming

The core goal of a reinforcement learning algorithm is to find an optimal policy π(a|s) which for a given

state s indicates an optimal action a.

Optimality criteria

Every time we run our algorithm for T time steps and receive a reward, we can compute the total reward

as the sum of the rewards at each time step:

Gt = Rt+1 +Rt+2 + ...+RT (1.4)

An additional concept we need to introduce is discounting. This can be formulated as follows:

Gt = Rt+1 +γ1Rt+2 + ... =
∞∑

k=0
γk Rt+k+1 (1.5)

We can see that with γ= 1, we are weighing the future rewards the same as the rewards closer in time.

However if we set γ = 0, the sum only contains the first element. This value for γ is called the discount

rate and is always between zero and 1 (γ ∈ [0,1]). Thus we can interpret this discount rate as how far into

the future we are willing to look. With a small γ close to zero, we only see the very first time steps, but

when it approaches 1 the sum includes more elements into the summation and the approach is more

long-sighted.

However, this is not possible to calculate deterministically as our system is inherently stochastic. We

can only compute the expected future reward:

E

[ ∞∑
t=0

γt rt

]
(1.6)
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Value functions and Bellman equations

The value of a state s under policyπ, denoted V π(s), is the expected return when starting at s and following

π thereafter. Using the infinite-horizon discounted reward, it is expressed as:

V π(s) = Eπ
{ ∞∑

k=0
γk rt+k

∣∣∣st = s
}

(1.7)

The value functions are used to link together optimality criteria and policies, meaning that learning

algorithms for MDPs make their optimal policies by learning a value function. The value of being in

a specific state represents an estimate of how good it is for an agent to be in said state. This is again

expressed through the value function in 1.7, and is valid under a given policy π.

Another very important function is the Q-function. This is defined as the expected return of rewards

starting from a given state s, taking an action a and following the policy π thereafter:

Qπ(s, a) = Eπ
{ ∞∑

k=0
γk rt+k

∣∣∣st = s, at = a
}

(1.8)

Both value functions and Q-functions are hugely important within the frameworks of RL, and their

intuitive understanding is key for more complex deep RL methods we will look at later.

Value functions satisfy certain recursive properties:

V π(s) = Eπ
{ ∞∑

k=0
γk rt+k

∣∣∣st = s
}
= Eπ{rt +γrt+1 +γ2rt+2 + ...|s = st } =∑

s′
T (s,π(s), s′)(R(s, a, s′)+γV π(s′))

(1.9)

This shows us that the value of a given state is defined in terms of the immediate reward and dis-

counted values of possible next states weighted by their transition probabilities.

Thus, an optimal policy π∗ can be written as:

V π?(s) ≥V π(s) ∀ s ∈ S (1.10)

Now we are ready to formulate an important equation, the Bellman Optimality Equation [33, p.63].

This states that the optimal solution V ? =V π? satisfies:

V ?(s) = max
a∈A

∑
s′∈S

T (s, a, s′)(R(s, a, s′)+γ(V ?(s′)) (1.11)

This tells us that maximizing the expected sum of rewards with respect to the action a will result

in an optimal value function at that state. Note that the optimal value function also appears inside the

summation, meaning that to be able to calculate the optimal value function at a state s, V ?(s), one must

also know the optimal value function for the next state V ?(s′).

Since we know that the optimal action is the one that maximized the expected sum of rewards, we

can change the Bellman Optimality Equation to our own benefit by substituting the max()-operator with

the argmax()-operator. This function will then return the action with which the expected sum of rewards

is maximized:
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π?(s) = argmax
a

∑
s′∈S

T (s, a, s′)(R(s, a, s′)+γ(V ?(s′)) (1.12)

This is also called a greedy policy, as it tries to maximize the reward at every time step.

In the same way we also have an optimal state-action value, or Q-value, as follows:

Q?(s, a) =∑
s′

T (s, a, s′)(R(s, a, s′)+γmax
a′ Q?(s′, a′)) (1.13)

As we can see, Q? and V ? are closely linked. Their relationship is formalized through the following

two equations:

Q?(s, a) =∑
s′

T (s, a, s′)(R(s, a, s′)+γV ?(s′)) (1.14)

V ?(s) = max
a

Q?(s, a) (1.15)

Combining equation 1.12 and 1.13 we get the following equation for the optimal action

π?(s) = argmax
a

Q?(s, a) (1.16)

1.3.3 Model-based dynamic programming algorithms

When we know what the transition matrix and reward function is, we can use model-based solutions.

Here we will look at two important ones: Value iteration and Policy iteration.

Value iteration

This algorithm focuses solely on estimating the correct value function for each state. Value iteration is

guaranteed to converge in the limit towards V ?.

To make the value iteration algorithm, we just make the Bellman Optimality Equation 1.11 into an

update rule:

Vt+1(s) = max
a

∑
s′

T (s, a, s′)(R(s, a, s′)+γVt (s′)) = max
a

Qt+1(s, a) (1.17)

This is run through all the states until some convergence property is met. Once we have converged

on the optimal value function, we can calculate the optimal policy at each state using the equation 1.12.

Policy iteration

This algorithm consists of two steps: Policy evaluation and Policy improvement.
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Policy evaluation

This is considered the prediction problem. It involves finding the value function V π of a policy. This

update rule is almost exactly the same as in 1.17, however we remove the maxa and replace a with the

action given the current policy π(s)

V (s) :=∑
s′

T (s,π(s), s′)(R(s,π(s), s′)+γV (s′)) (1.18)

This update rule is then run until convergence.

Policy improvement

Now that we know the value function Vπ of a policy π, we can proceed to improving the policy. We

compute the value of all actions in a given state Qπ(s, a), and compare with the value function V π(s).

If Qπ(s, a) >V π(s)for some action a ∈ A, we know that we can improve our policy by choosing this action

instead of the current π(s), and the policy is updated.

To do this calculation we look back to the equation 1.12 and turn this into our update rule by replacing

the optimal V ?(s) with our own estimate for the value V (s′):

π(s) = argmax
a

∑
s′

T (s, a, s′)(R(s, a, s′)+γV (s′)) (1.19)

If the policy has not changed during this step, we know we have found our optimal policy. If the policy

has changed however, we repeat the whole process from the start with policy evaluation.

We will later see that the idea of approximating a value function to which one can compare a range of

actions to determine a policy is essential, as we will see in the section 1.4.1.

1.3.4 Model-free dynamic programming algorithms

Up until now we have looked at methods where we calculate an optimal policy given that a perfect model

is available. However, when doing Reinforcement learning, one has to assume that such a model is not

available. This means that we have to obtain an optimal policy by gathering information about the system

ourselves. This adds a focus on approximation and incomplete information, which in extension means

that we have to do sampling and exploration. Now we do not have a priori known transition and reward

models.

In model-free algorithms one has a choice between two types of algorithms:

1. Learning the transition and reward model through interacting with environment. When a model

is sufficiently accurate, we can use all the same methods from model-based section. This type of

method is called indirect or model-based RL

2. Direct RL is to step right into estimating values for actions without estimating the model of the

MDP itself
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Temporal Credit assignment

When the agent reaches the goal state, which ones of the previous actions were truly responsible for it?

How can we know the value of an action when the reward does not arrive until much later? This is the

problem of temporal credit assignment.

To solve this problem, we can use similar mechanisms similar to what we saw in value iteration, i.e.

adjusting the value of state based on the immediate reward and the estimated discounted value of the

next state. However, this time we cannot allow the transition function T and the reward function R in our

update rules. This is called temporal difference learning, and uses a concept called bootstrapping. When

bootstrapping, we are using an estimate to compute another estimate.

The main difference between these methods and previous model-based methods is that we are no

longer doing full sweeps through the whole state space. We are discovering paths through the state space

ourselves, and finding the best ones through experimentation. This makes these algorithms much less

computationally expensive. The other advantage of temporal difference learning is that the policy is de-

veloped in an online (meaning that it updates its estimates after each experience) and incremental fash-

ion. This makes it learn continuously without having to wait until the end before updating its estimates.

Exploration vs Exploitation

When working with model-free algorithms, we have to explore the environment by interacting with it.

This means that we have to balance between selecting the currently estimated best action, and taking a

completely different action.

One such concept is the ε− g r eed y method. It chooses the currently best action a in a state s with

probability 1−ε and a completely random action with probability ε. The value for ε can thus be tuned to

balance exploration and exploitation.

TD(0)

The simplest temporal difference method is the TD(0) method. It solves the prediction problem, meaning

that it estimates V π for some policy π, in an online and incremental fashion. Its update rule is:

Vk+1(s) =Vk (s)+α(R +γV (s′)−V (s)) (1.20)

where α ∈ [0,1] is the learning rate that determines the rate at which the Value function is updated.

This update is done after experiencing the transition from state s to s′, based on action a, while receiving

reward r . While the policy π is not explicitly mentioned in the update rule, it is implicitly evaluated as

it is the policy that decides the next step s′. We can see that inside the parenthesis behind α, there is

a comparison. If r +γVk (s′) is larger than the current value Vk (s), the new value Vk+1(s) is increased.

This means that the update rule both uses the experienced reward and the bootstrapped future value to

update the value in the current state.

When it comes to finding the optimal policy itself, generally TD methods use some variation of gen-

eralized policy iteration (GPI), one example of which we saw earlier in section 1.3.3.
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Sarsa

Sarsa is an on-policy temporal difference method that is a control method, meaning that is finds an opti-

mal policy. It tries to estimate an action-value function qπ(s, a) for the current behaviour policy π for all

states s and actions a instead of a state-value function as seen earlier. The update rule is very similar to

TD(0):

Qt+1(st , at ) =Qt (st , at )+α(rt +γQt (st+1, at+1)−Qt (st , at )) (1.21)

The actions taken in each time step is taken using a policy derived from Q, for example using an

ε− g r eed y strategy. It has been shown that Sarsa converges with probability 1 to an optimal policy and

action-value function given that all state-action pairs are visited an infinite number of times and the

policy converges in the limit to the greedy policy.

Q-learning

Q-learning in contrast, is an off-policy TD control method, meaning it finds an optimal policy indepen-

dent of the policy being followed. The big difference from Sarsa is that it introduces the max-operator.

Thus the update rule can be formulated as follows:

Q(s, a) =Q(s, a)+α(R +γmax
a

Q(s′, a)−Q(s, a)) (1.22)

The actions chosen are derived from Q using an ε−g r eed y method. The policy is still included in the

algorithm even though it is an off-policy algorithm, as it determines which state-action pairs are visitied

and updated. All that is required for convergence is that all pairs continue to be updated, which is a

milder requirement than in Sarsa.

1.3.5 Problem of Continuous State and Action Space

We can quickly see the problem with the methods proposed so far; they are tabular methods. This means

that for any given state there is a specific action. To implement this we have to have one memory cell

for every combination of state and action, but what if we have continuous state spaces? Or what if the

action space is continuous as well? It is evident that this would require infinitely many memory cells as

the experience of the agent was gathered.

One solution to this problem is to discretize the state and action space. But this brings with it its own

problems; how finely grained do we have to do the discretization? It is expected that the smaller dis-

cretization steps, the better the model. However, we quickly run into the problem of having an enormous

table for the action-state values. It is clear that we need a radically new approach to solve this kind of

problem.
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1.4 Deep Reinforcement Learning

1.4.1 Policy gradient methods

When working with continuous state and action spaces, we need a new class of methods, as discussed

in section 1.3.5. There we turn to a class of methods that learns a parametrized policy that can select

an action based on observations without consulting with a value function, as previous reinforcement

learning algorithms have done as explained in section 1.3.2. This parametrization of policy can be done

with many types of models, but here we only consider models consisting of Artificial Neural Networks, as

explained in section 1.2.2. We use the symbol θ ∈Rd ′
to denote the policy’s parameter vector, in our case

the weights and biases in the neural network. We can then write:

π(a|s,θ) = Pr (At = a|St = s,θt = θ) (1.23)

for the probability that an action a is taken at time t, when the environment is at state s at time t with

parameter vector θ.

The core idea of policy gradient methods, is that we want to increase the performance of the parametrized

policy. This performance is measured using some performance measure function J (θ) that returns a

scalar with respect to the policy parameters. These methods work by maximizing the performance of a

given parametrized policy, which is done by an approximate gradient ascent in J:

θt+1 = θt +α ˆ∆J (θt ) (1.24)

Here∆ Ĵ (θ) is a stochastic estimate whose expectation tries to approximate the gradient of the perfor-

mance measure function J (θ) with respect to the policy’s parameter vector θt .

This can be expressed by the following maximization problem:

max
θ

E

[
H∑

t=0
R(st )

∣∣∣πθ
]

(1.25)

where we want to set the parameters in the parameter vector θ such that we maximize the expected

sum of rewards R(st ) for the whole trajectory given a policy πθ.

An important property about the now parametrized policy πθ(a|s) is that it is stochastic: we can read

it as the probability of taking action a in state s. This makes it a smooth, continuous differentiable func-

tion, in contrast to the policies presented in section 1.3.2. Another important property of this policy

changing smoothly as a function of the learned parameter, is at very sudden and dramatic changes are

much less likely. This contrasts the previously mentioned methods where ε− g r eed y was used, where

the selection of action probabilities could change dramatically for an arbitrarily small change in the esti-

mated action values. This also brings with it better convergence guarantees.

How do we change the policy parameters in a way that ensures improvement? The problem is that

the performance of a policy is dependent on both the action selection and the distribution of states in

which those actions are made. Both of these are affected by the policy parameters. If we isolate one state,

it is simple to see the effect of the parameter changes on the actions and thus the rewards, as this is just
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a simple matter of feeding forward the different parameters in our policy approximation network. But

knowing the effect of the policy on the state distribution, i.e. what states the agent will see if a parameter

is changed, will be a function of an unknown environment.

The policy gradient theorem provides an answer to this problem. It gives us a theoretic and analytic

expression of the performance gradient with respect to the policy parameters, and it does so by not in-

cluding the derivative of the state distribution.

The policy gradient theorem for the episodic case is formulated as follows:

∇J (θ) ∝∑
s
µ(s)

∑
a

qπ(s, a)∇π(a|s,θ) (1.26)

The gradients are column vectors of partial derivatives with respect to the components of θ, and π

represents the policy corresponding to the parameter vector θ. We have that in the episodic case, this

theorem is true up to proportionality, where the constant of proportionality is equal to the average length

of an episode. In the continuous case, this theorem is an equality as the constant of proportionality is 1.

The function µ(s) denotes how much we care about the error in each state of s, and is thus a function of

the weight of the state, or rather how often a specific state occurs.

In the following subsections, the necessary algorithmic building blocks will be introduced one by one,

until reaching the DDPG algorithm.

Monte carlo policy gradient

To make the Policy gradient theorem 1.26 applicable to our algorithm, we need to develop it further.

We see that the Policy gradient theorem sums over all states weighted by how often they occur (µ(s)).

This term and the corresponding summation over all states s can be removed, as the agent following the

policy π will visit these states with the same probabilities. We thus replace s with St in the other terms

of the expression, which corresponds to the expectation under the policy π which will then be sampled.

Another key observation is that our sampled policy gradient only needs to be proportional to the real

gradient, since any proportional term will be absorbed into the learning rate α. We then have:

∇J (θ) = Eπ

[∑
a

qπ(St , a)∇π(a|St ,θ)

]
(1.27)

We can integrate this straight into our general policy gradient ascent framework in equation 1.24 and

have:

θt+1 = θt +α
∑
a

q̂(St , a)∇π(a|St ,θ) (1.28)

However, we see that now we are summing over all actions in each state, which is physically not

feasible in our use case. Therefore it needs to be changed such that we only consider the action actually

taken in a given state. We do the same trick as we did in 1.27, but with the summation over the actions

instead. The summation over possible values, is replaced with an expectation under π and then sampled:
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∇J (θ) = Eπ
[

qπ(St , At )∇π(At |St ,θ)
]

(1.29)

To compensate for the fact that the different actions have different probabilities, we will divide by

π(At |St ,θ). This will ensure that the gradient updates will not be skewed towards those actions that al-

ready are visited frequently. An action with twice the probability of being executed than a given action,

will have a gradient half the length. We also use the fact that Eπ[Gt |St , At ] = qπ(St , At ) to arrive at the

following equation:

∇J (θ) = E

[
Gt

∇π(At |St ,θt )

π(At |St ,θt )

]
(1.30)

This is the update rule for the RL algorithm REINFORCE [37]. It is worth noting that this update

rule is often presented using the more compact notation with a natural logarithm. Using the identity

∇ln(x) = ∇x
x , we can replace the fraction with ln(π(At |St ,θ)) resulting in the REINFORCE stochastic gra-

dient ascent:

θt+1 = θt +αGt l n(π(At |St ,θ)) (1.31)

The intuition behind this gradient ascent is the following: Every increment is proportional to the

product of the return Gt and a vector denoting the gradient of the probability of taking a specific action

divided by the probability of taking said action. Following the gradient of the probability of an action

means increasing the probability of that action happening again, and when this is multiplied with the

discounted sum of rewards, we can see that actions with higher returns will have their probability in-

creased proportionately. Since this is an algorithm that samples the rewards through a whole episode,

and then uses that sequence of rewards to calculate the discounted sum of future rewards at each time

step, this is a Monte Carlo based algorithm.

Baseline

We can generalize the Policy gradient theorem (1.26) to include a comparison between the action value

and an arbitrary baseline b(s):

∇J (θ) ∝∑
s
µ(s)

∑
a

(
qπ(s, a)−b(s)

)∇π(a|s,θ) (1.32)

The baseline function can be any function as long as it does not vary with a. This changes the stochas-

tic gradient ascent algorithm to the following:

θt+1 = θt +α
(
Gt −b(St )

)∇π(At |St ,θt

π(At |St ,θt )
(1.33)

The reason one would want to do this, is to reduce variance as explained in [33, p.329]. The baseline

is of approximately the same magnitude as the values of an action. This makes the magnitude gradient

correspond to some advantage of an action compared to its baseline. Actions with high value have high

baselines, and vice versa.
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This is where the intuition from 1.3.3 comes in. By comparing the Q-value (or in this case the dis-

counted sum of future rewards) with a baseline, or value of a given action, we have now arrived at the

advantage function:

A(s, a) =Q(s, a)−V (s) (1.34)

The baseline has now been replaced by a value function. This advantage function tells us how much

better taking an action in a given state is, compared to the estimated value of that given state.

Actor-Critic methods

If we parametrize this value function V (St ), meaning we have a separate neural network approximating

this function, we have arrived at the so called Actor-Critic methods. We now have two models, one for

generating an action given a state π(At |St ,θt ), and one for estimating a value function which we will use

as baseline, denoted v̂(St , w) where w denotes the parameter vector for the neural network. Again, as

previously mentioned, this does not necessarily have to be a neural network, but in our case it is. The

training of a value function is a standard supervised-learning problem, as it is trying to predict the value

of a given state, and is corrected by the discounted sum of rewards. Since we know that the output of a

neural network has some variance, depending on the time it has spent training, this value estimate will

thus be a noisy estimate.

The introduction of the estimation of the value function brings Bootstrapping with it, as explained

in section 1.3.4. The downside of introduction bootstrapping is that we now have introduced bias and

an asymptotic dependence on the quality of the function approximation. However it also reduces the

variance and accelerates learning [33, p.124]. We integrate these advantages into our Actor-Critic pol-

icy gradient method by using a bootstrapping critic. We further develop the general stochastic gradient

ascent framework:

θt+1 = θt +α
(
Gt − v̂(St , w)

)∇π(At |St ,θt )

π(At |St ,θt )

= θt +α
(
Rt+1 +γv̂(St+1, w)− v̂(St , w)

)∇π(At |St ,θt )

π(At |St ,θt )

(1.35)

The term Gt can be replaced by Rt+1 +γv̂(St+1, w) where γ denotes the discounting factor. Note the

similarities between equation 1.35 and the previously discussed TD(0) algorithm 1.20.

This is summed up in the method “One-step Actor-Critic episodic algorithm”, shown in algorithm 1.

1.4.2 The Deep Deterministic Policy Gradient Algorithm

We are now ready to derive the Deep Deterministic Policy Gradient (DDPG) algorithm [17] which is used

in this thesis.
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Critic network

We begin by defining a critic network Qc (s, a|θQ ). This is an state-action value function, like the Q-

function defined in 1.8. It denotes the value of taking an action a in a given state s and then following

a policy π afterwards. However, since we are working in an actor-critic continuous setting, we will use a

neural network to approximate this Q-function with the parameter vector θQ . The loss function for this

neural network should look familiar to equation 1.2, but using the Q-value gradient from Sarsa 1.3.4:

L(θQ ) = E
[

(Q(st , at |θQ )− yt )2
]

(1.36)

where

yt = r (st , at )+γQ(st+1,µ(st+1)|θQ ) (1.37)

Actor network

Now it is time to evaluate the actor network. We want the actor network to learn a policyµ(s|θµ) parametrized

by the parameter vector θµ, that gives an action that maximizes the Q-function Q(st , at |θQ ) approximated

by the critic network:

max
θµ

E
[
Q(st ,µ(st |θµ)|θQ )

]
(1.38)

To maximize this Q-function, we again turn to stochastic gradient ascent. In this case the gradient is

calculated as:

∇θµ J ≈ E
[
∇θµQ(s, a|θQ )|s=st ,a=µ(st |θµ)

]
(1.39)

By applying the chain rule to this expression, we get the following policy gradient:

∇θµ J ≈ E
[
∇aQ(s, a|θQ )|s=st ,a=µ(st |θµ)∇θµµ(s|θµ)|s=st

]
(1.40)

This is in fact very similar to the update rule of the basic actor-critic gradient ascent in equation 1.35,

even though it may look quite different. We recognize that equation 1.40 is a product of the gradient of

the Q-function with respect to the action and the gradient of the policy with respect to its own parameter

vector. This means that actions that gives an advantage compared to the value provided by the critic-

network will have its probability of being chosen again, increased, and vice-versa.

Replay buffer

An innovation introduced in the paper for Deep Q-networks [20], is the use of a replay buffer. This is

a cache that stores each tuple 〈st , at ,rt , st+1〉 and has a finite size. When it fills up, each new tuple will

delete the oldest one. Since we are dealing with an off-policy algorithm, this means that we separate the

learning process from the actions taken. Whenever a neural network is trained, the training data should

be independent and identically distributed. If one fed the experience tuples straight into training, there



CHAPTER 1. INTRODUCTION 19

would be a strong dependency between the data samples, which would cause problems when training

the network. DDPG solves this by randomly sampling a minibatch of experience tuples from the replay

buffer, ensuring that each experience tuple is as independent as possible. This replay buffer can be very

large, which enables the algorithm to learn from a set which will be very uncorrelated.

Random processes

How should we make our agent explore the environment? In the tabular methods we could use the ε−
g r eed y methods to choose a random action with a probability ε. In the continuous action-space setting

however, this does not work. We need a way of perturbing the actions chosen by the agent so as to make

the agent venture into unknown territory. To do this, we can add a sample from a noise process and add

it directly to our actor policy:

µ′(st ) =µ(st ,θµt )+N (1.41)

This can be done independently from the learning algorithm because DDPG is an off-policy algo-

rithm. An important property of the noise process N is that its variance does not grow infinitely, but is

bounded. This is because we want to balance exploration and exploitation. If the random process returns

0, it will be exploitation of the agents policy, while any other perturbations away from zero will result in

exploration of the state space. In our implementation we use a normal gaussian noise with expectation

µ= 0 and standard deviation σ= 0.1.

Target networks

A challenge when training the critic network is that the network Q(s, a|θQ ) is being updated at the same

time as it is used as a target in equation 1.37, and this has been shown to be unstable in many train-

ing environments [17, p.4]. To make sure there is a temporal gap between the network update and the

calculation of the target, DDPG introduces "soft updates" by creating a copy of the actor and the critic,

Q ′(s, a|θQ ′
) andµ′(s|θµ′

) respectively, with parameter vectors θQ ′
and θµ

′
. These networks are used for the

calculation of target values in equation 1.37, and their weights are constrained to change slowly, greatly

improving the stability of learning. Their parameter vectors are updated using the following method:

θ′ ← τθ+ (1−τ)θ′ (1.42)

with τ<< 1.

Batch normalization

To make sure that different observations with different units and magnitudes are considered equally,

DDPG implements batch normalization to normalize each dimension across the observation samples in

a batch to have unit mean and variance. To make sure that the data is normalized correctly during testing,

the algorithm keeps track of a running average of the mean and variance. This makes the algorithm learn

effectively in a range of different environments.
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The DDPG algorithm is illustrated in figure 1.3, and the pseudo-code is found in algorithm 2.

Figure 1.3: The structure of the Deep Deterministic Policy Gradient algorithm

In this thesis, the DDPG algorithm has been heavily utilized, and all the results presented later will be

relying this algorithm. However, this is not currently considered to be a state-of-the-art algorithm even

though it is relatively new (2016). Now, the focus has shifted more towards trust-region methods like

TRPO and PPO [23]. A short introduction to each of these two methods are included below.

1.4.3 The Trust-Region Policy Optimization Algorithm

The general motivation behind trust-region policy optimization algorithms is that the choice of step

length α when doing stochastic gradient ascent is a crucial element to having the algorithm converge

properly. In DDPG, a constant step length was chosen, which meant that the gradient ascent could stride

over and miss optimal solutions, or even diverge after having found an optimal solution. The rationale

behind this is that the direction of the gradient usually is well calculated, but the step length is not chosen

in such a way that it necessarily improves the overall function value. Trust-region methods chooses a step

length α in such a way that it guarantees monotonic improvement. This is analogous to the Levenberg-

Marquadt optimization algorithm, which takes the gradient from the Gauss-Newton method and chooses

a step length such that the objective function is monotonically decreasing [21]. However, choosing a bad

step size in reinforcement learning is more critical than in standard optimization problems, as out input
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data is non-stationary and depends on the actions of the agent. A step too far in the wrong direction will

lead the actor to a bad policy, which then will affect the next batch of observations.

Recall the general update rule from the stochastic gradient ascent framework in equation 1.35 which

is using the advantage function At from equation 1.34. This can be compactly written as:

∇θ J (θ) = Êt

[
∇θlogπθ(at |st )Ât

]
(1.43)

where we use hats .̂ to emphasize that we are working with estimates.

We can rewrite this policy gradient as a loss function that we want to maximize:

LPG (θ) = Êt

[
logπθ(at |st )Ât

]
(1.44)

which can be rewritten to use importance sampling where state-actions are sampled using θol d :

LI S
θol d

(θ) = Êt

[
πθ(at |st )

πθol d (at |st )
Ât

]
(1.45)

The core idea of Trust-region policy optimization (TRPO) is that this policy update should not move

too far from the old policy. To ensure that this is the case, we will include a constraint that limits the step

size. Kullback–Leibler (KL) divergence is a way of measuring how one probability distribution is different

from a second, reference probability distribution, and is exactly what we need for making sure that the

policy does not change too rapidly. The update rule for TRPO can thus be written as follows:

max
θ

Êt

[
πθ(at |st )

πθol d (at |st )
Ât

]
s.t . Êt

[
K L[πθol d (.|st ),πθ(., st )]

]≤ δ (1.46)

The pseudocode is found in algorithm 3. For further details, see the original paper [30].

1.4.4 The Proximal Policy Optimization Algorithm

The Proximal Policy Optimization (PPO) algorithm is an iteration of the TRPO algorithm that simplifies

implementation and decreases computational complexity in training, while having comparable perfor-

mance to other state-of-the-art algorithms [29]. This is an on-policy algorithm, as there is no replay buffer

as we saw in DDPG 1.4.2, and the agent learns directly from what it encounters in the environment.

The main contribution of PPO is eliminating the computationally expensive process of calculating the

KL-divergence, and doing backtracking line search (see algorithm 3). It instead includes this constraint

straight into the optimization objective, so that these extra steps can be avoided.

To derive this optimization objective we will define the probability ratio rt (θ) which hopefully will

look familiar:

rt (θ) = πθ(at |st )

πθol d (at |st )
(1.47)
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(a) The case when the advantage esti-
mate is positive

(b) The case when the advantage esti-
mate is negative

Figure 1.4: Clipped objective function visualized with respect to the clipped probability ratio

Thus we have that rt (θol d ) = 1. We recall the objective function from TRPO:

LC PI (θ) = Êt

[
πθ(at |st )

πθol d (at |st )
Ât

]
= Êt

[
rt (θ)Ât

]
(1.48)

As we saw in TRPO, maximizing this objective function may lead to an excessively large policy update.

This may push the policy network into a region of parameter space where it is going to collect the next

batch of data under a very poor policy causing it to never recover again. TRPO solved this by using the

KL-divergence constraint to make sure that the new policy did not stray too much from the old one. In

PPO, we will use a clipped objective function:

LC LI P (θ) = Êt
[
mi n

(
rt (θ)Ât ,cl i p(rt (θ),1−ε,1+ε)Ât

)]
(1.49)

This may look simple, but it has some interesting properties which are not immediately obvious. We

divide into two distinct cases: when the advantage estimate is positive 1.4a and when it is negative 1.4b.

Beginning with the case of having positive advantage function, we see that when the probability ratio

rt (θ) is positive it is clipped so that it only can attain values which are 1+ε larger than rt (θol d ). This limits

how far the gradient ascent will step in the direction of increasing the probability of the given action.

Looking at the case of having a negative advantage estimate, we see that if the action becomes less

likely, we limit the decrease in probability for that given action by making sure that the probability ratio

rt (θ) does not decrease more than 1− ε. When the action taken was both bad (negative advantage esti-

mate) and also more probable, we see that we have now entered the case in equation 1.49 in which the

first value rt (θ)Ât is returned by the min()-operator. This corresponds to undoing the update that made

the bad action more probable in the first place, and the update step is proportional to how bad the update

was in the first place
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1.5 Quadrotor Dynamics

In this section, the dynamics of the quadrotor helicopter are discussed, as illustrated in figure 1.5. We will

use two coordinate systems to describe the attitude and position of the quadrotor, the inertial reference

frame {~e11,~e21,~e31} and a body-fixed frame {~e1B ,~e2B ,~e3B }. The origin of the body-fixed frame is placed at

the center of mass of the quadrotor, and we can see that the first and second axes ({~e1B ,~e2B }) of the body

frame points span out the plane on which all the rotors lie. The last axis~e3B is placed normal to this plane,

and in the opposite direction to the thrust vector.

Each rotor contributes with a thrust Fi , and they are all placed with equal distances to the center of

mass. To balance their torques, the rotors spin in the opposite direction of their neighbors.

F1F2

F4F3

ϕ Rollθ pitch

ψ yawr position
vector

e31
e21

e11

e3B

e2B

e1B

Inertial frame

Body frame

Figure 1.5: Dynamic model of the quadrotor

We define:

m ∈R the total mass of the quadrotor
J ∈R3×3 the inertia matrix with respect to the body-fixed frame

R ∈ SO(3) the rotation matrix from the body-fixed frame to the inertial frame
Ω ∈R3 the angular velocity in the body-fixed frame
x ∈R3 the location of the center of mass in the inertial frame
v ∈R3 the velocity of the center of mass in the inertial frame
d ∈R the distance from the center of mass to the center of each rotor in the~e1B ,~e2B plane
fi ∈R the thrust generated by the i -th propeller along the -~e3B axis
τi ∈R the torque generated by the i -th propeller about the~e3B axis
F ∈R the total thrust, i.e. F =∑4

i=1 Fi

M ∈R the total moment in the body-fixed frame

Table 1.1: Parameters of the quadrotor helicopter
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The configuration of our system is thus defined by the location of its center of mass and its attitude

with respect to the inertial frame. This means that it lies on the manifold of the special Eucledian group

SE(3).

To derive the equations of motion for the quadrotor, we assume that the thrust of each propeller is

directly controlled, and that the torque generated by each propeller is directly proportional to its thrust.

This means that we are not considering the dynamics of the rotors and propellers. The direction of the

thrust is defined to be normal on the quadrotor plane, and thus the total thrust f acts in the direction of

-~e3B . Since we now have the total thrust defined in the body frame, we only need to multiply the vector

e31 with the rotation matrix R to get the total thrust in the inertial frame: − f R~e31.

As previously mentioned, we have the propellers spinning in the opposite direction of its neighbors to

balance the torque. This means that the first and the third propellers are rotating clockwise, and the sec-

ond and fourth rotating counterclockwise when they are generating positive thrust. We write the torque

of the i -th propeller as τi = (−1)i cτ f Fi for a fixed constant cτ f . We are now ready to formulate the rela-

tionship between the total thrust F and the total moment M :


F

M1

M2

M3

=


1 1 1 1

0 −d 0 d

d 0 −d 0

−cτ f cτ f −cτ f cτ f




F1

F2

F3

F4

 (1.50)

This matrix is invertible when d 6= 0 and cτ f 6= 0, as its determinant is 8cτ f d 2. This means that for a

given F and M , we can find the corresponding thrust Fi for each rotor.

The equations of motion for the quadrotor is thus:

ẋ = v (1.51a)

mv̇ = mg~e31 −F R~e31 (1.51b)

Ṙ = RΩ̂ (1.51c)

JΩ̇+Ω× JΩ= M (1.51d)

where the hat map .̂ : R3 → SO(3) is defined as a cross-product operation such that x̂ y = x × y for all

x, y ∈R3
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DRL
Agent

[xgoal, ygoal, zgoal] PID low-level
attitude

controller
Quadrotor

[xcurr, ycurr, zcurr]

ax
ay

az

F1

F2

F3

F4

[vx,vy,vz]

[xdev, ydev, zdev]

Figure 1.6: The DRL agent in the control loop

1.6 Problem Formulation

The goal of the RL agent is navigating a quadrotor to a goal. The quadrotor itself is already stabilized

using a PID-controller. As stabilizing using reinforcement learning already has been solved in papers like

[12], we save time by skipping this complex problem. This thesis focuses on how well the RL agent is able

to navigate a quadrotor from a start position to a goal position, given information about the deviation

in its position and its speed. The DRL agent fits into the control diagram as illustrated in 1.6, where it

receives its current positional deviation and its speed, and outputs the desired acceleration vector. The

PID low-level controller turns that desired acceleration vector into the control signals for each of the four

quadrotor motors.

1.7 Related work

Our problem of flying from an initial position to a goal position is a path following problem, and differs

from a trajectory tracking problem in that it does not have a time dependence. In our case since we only

have one goal point, this can be seen as a path following problem with only one waypoint. There exists

several solutions to this problem. We will present the most relevant methods.

Backstepping is a path following technique based on Lyapunov theory, and its control objective is

to make sure a set of predefined errors converge to zero. This is done by defining a Lyapunov function

for each error such that their time derivatives are negative definite, thus assuring stability. The control

actions are then those actions that make these time derivatives negative definite for all the Lyapunov

functions. Using backstepping as a path following problem, it is possible to obtain global convergence

while keeping the control capability for quadrotors [4].

Lyapunov-based path following algorithms are similar to backstepping in that they are also based on

Lyapunov theory. They assure the Lyapunov stability condition which in turn assures the convergence of

the controller. Examples of control laws generated using this approach can be seen in [5]. In [6] the con-

trol is formulated using the rotation matrix and based on Lyapunov theory, and the controller generates

angular rates and thrust reference commands. Another similar and interesting method for path follow-

ing is using a Lyapunov-based controller together with a velocity observer and a constant disturbance
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estimator [19].

Feedback Linearisation is a very popular technique for quadrotor control. It works by linearising the

system in a given region in the state space by identifying the non-linearities and effectively cancelling

them out. This makes it possible to directly apply linear control methods. The advantages of choosing

such a method is the simplicity in the resulting controller and that we can do stability analysis to guar-

antee stability under a given set of conditions. Examples like [26] demonstrates how to solve a 3D path

following problem by using input-output Feedback Linearisation, and how it converges to its path and

stays there. Another interesting implementation of this method is in [2] where the authors show how to

do path following in the case when one of the rotors malfunctions.

Geometric methods are the methods that use simple geometric strategies to converge to a path. In

this categories we have algorithms like Carrot-chasing algorithm, Non-linear guidance law,Pure pursuit,

Line-of-sight and Trajectory shaping guidance law. They all have in common that they use geometric

principles like finding the tangent of the path, drawing circumferences, finding the closest point on the

path, minimizing the vehicle heading angle and the path heading etc. Their simplicity and intuitiveness

make them very appealing.

Model Predictive Control (MPC) is a popular technique that solves the control problem as an opti-

mization problem. At each time step, an optimization of the systems path is done by solving a finite

horizon optimal control problem, and the first step in said path is then executed. In the next time step,

exactly the same process repeats. This process requires more computational resources, depending on the

complexity of the optimization problem. It is also memory intensive as the necessary memory grows fast

as the time horizon is increased. The advantage of using such a method is that it can handle constraints in

state space and in action space, non-linear dynamics and non-linear reference paths. [22] is an example

of an implementation of a Nonlinear Model Predictive Control (NMPC) used for path following, which is

then integrated into a cascaded control architecture. A very interesting implementation is using the MPC

as an expert in an Imitation learning setting, where one trains a policy network using the control outputs

from an MPC [32]. This reinforcement learning approach is more computationally efficient than using

MPC, as it computes control commands directly from sensor inputs.

Using the concepts in Optimal Control, we can also solve the problem of path following. The goal of

optimal control is to actuate a dynamic system with minimum cost, which translates to following a path

with minimum error and control effort. The most common control techniques are the Linear Quadratic

Regulator (LQR) and the Linear Quadratic Gaussian (LQG). A general solution to the path following prob-

lem using optimal control is presented in [35], and depends on a geometric formulation based on the

concept of differential flatness. Another implementation of path following using optimal control can be

found in [15], where they use an adaptive LQR which is optimized using a genetic algorithm.

A solution to this problem using deep reinforcement learning is provided by the paper [27]. Here, the

problem of altitude, attitude and velocity control is solved by an external controller, and the RL agent

provides commands for altitude, yaw, and velocity commands in the x and y direction. This is similar to

the setup that we will be using in this thesis.
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1.8 Experimental setup

To do the training of the RL agent we ran the quadrotor using simulation. This frees us from having to

interact with a physical drone to gather data, which is crucial when trying to train a RL agent as one can

speed up the simulation and converge faster to a solution. It is also necessary from a safety perspective,

as the quadrotor inevitably will crash during training.

1.8.1 High-level RL agent

The DDPG algorithm used to train the agent is adapted from OpenAI baselines [8]. This agent receives

observations from the environment in the form of global position coordinates and velocity, and outputs

an acceleration vector which can span all three coordinate axes (x,y,z). It is written using Python 3.8, and

the backend for the machine learning processes is provided by Tensorflow [1].

1.8.2 Simulation environment

Gazebo is a simulation software which is designed to do 3D dynamic simulations in an easily adaptable

fashion [14], and is the simulation backend we will be using to simulate the quadrotor. The model and

dynamics of the quadrotor itself, is provided by RotorS [9], which is a Micro Aerial Vehicle simulation

framework that is made to make solving high-level problems like collision avoidance, path planning, and

vision based problems, like Simultaneous Localization and Mapping (SLAM), possible in simulation. On

top of it all, we use Rviz [13] for the visualization of the quadrotor Pose and goal position to be able to

turn off rendering in gazebo to save computation.

1.8.3 Software system overview

All the components of the system were tied together with the Robot Operating System (ROS) [24]. The

software architecture is visualized in the figure 1.7. Here the node r otor s_wr apper is a wrapper that

wraps the ROS and Gazebo framework into an environment in which the high-level RL agent is able to

interact with. \del t a is the quadrotor itself, with the roll-pitch-yawrate-thurst controller. It has inputs

from the high-level RL agent and outputs its commands into the Gazebo simulator. Finally, the state of

the quadrotor and the goal is sent to rviz for visual illustration.
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Figure 1.7: Software architecture of the experimental setup

1.9 Reward function

The performance of a RL agent is very dependent on the type of reward function used. This will guide

the agent to make optimal decisions, as the rewards will tell it if a given action was good or not. There are

mainly two types of reward functions: dense and sparse.

In dense reward functions, the agent gets a reward very often or at every time-step, and will thus be

guided carefully towards optimal behaviour. The opposite is the case for sparse reward functions: these

will reward the agent at the goal or any number of subgoals, and the agent will thus receive rewards

infrequently.

The reward function for this thesis will be a mix of the two. When the quadrotor is far from its target,

it uses a quadratic reward function as seen in equation 1.54. The control signal u and the positional

deviation and speed x are squared using the weighting in R and Q, and the reward is the negative sum

of these two. The squared penalty for deviation in position is illustrated as the blue surface in figure 1.8.

To increase the reward the agent will try to do gradient ascent on this blue surface, and we see that when

the quadrotor is far away from its target, this negative quadratic reward will give a strong indication as to

which direction to go. This means that far away from the goal we have a dense reward function.

However when we approach the goal, we can see that the indications as to where to point our gradient

in figure 1.8 decrease quadratically. This means that the cost benefit of moving one unit of distance closer

to the goal is much greater far away from the goal compared to closer to the goal. This is where the

goal reward is introduced: whenever the quadrotor gets inside a given goal radius δpos , it receives a goal

reward of 1000, while the quadratic cost of the control signal remains the same, as seen in equation 1.54.
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In this sense, when we are looking at the close vicinity of the goal, the reward function acts more sparsely,

as the magnitude of the goal reward is much greater than the positional deviation cost from the quadratic

term.

This reward function is designed to give a big negative reward whenever the quadrotor is far away

from its target and give a big positive reward when inside a goal radius. The square cost of the control

signal is included to ensure that the quadrotor flies smoother, i.e. gets to the goal while using the minimal

amount of control signal. It also ensures that when inside the goal radius, the quadrotor is incentivised

to stay still.

R =


0.001 0 0

0 0.001 0

0 0 0.001

 (1.52)

Q =



0.6 0 0 0 0 0

0 0.6 0 0 0 0

0 0 1 0 0 0

0 0 0 0.15 0 0

0 0 0 0 0.15 0

0 0 0 0 0 0.25


(1.53)

rt =
1000−uRuT if ||posg oal −posquad ||2 < δpos and ||velquad ||2 < δvel

−uRuT −xQxT otherwise
(1.54)

where u = [
ax , ay , az

]
denotes the acceleration vector and

x = [
xg oal −xquad , yg oal − yquad , zg oal − zquad , vx,quad , vy,quad , vz,quad

]
denotes the deviation in position from the goal and the speed of the quadrotor.
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Figure 1.8: Illustration of the reward function in two positional dimensions
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Preliminary results and plots

As previously mentioned, the goal of the RL agent is to quickly navigate from an initial position to a goal

state in a rectilinear fashion. The ideal path is a straight line between these two positions, and to measure

the robustness of an agent we will measure the Root Mean Squared deviation from this line throughout

the quadrotors trajectory.

4 different topologies for the Actor and Critic Networks will be explored and tested to see if there

are any differences in the resulting behaviour in the quadrotor. These have all been trained in the same

manner to make direct comparisons possible. From now on we will use the term Agent to denote the

policy network.

To get a quantitative measure of the agents performance across several runs, we will set 10 goal posi-

tions which will be equal for all the agents, and measure the Average Root Mean Squared deviation over

all runs. This will enable us to look at a score for each network topology.

2.1 Deep Deterministic Policy Gradient (DDPG)

2.1.1 Network topologies

To test the differences in behaviour when modifying the topology of the neural networks, 4 different

topologies are proposed and analyzed. All the configurations have two hidden layers with the activation

function ReLu, and their widths are the same on both the Actor and the Critic network. The difference is

their input layers and output layers.

The Critic network takes as input both the observation (i.e. deviations in position and the quadrotor

velocity) and the action (acceleration vector) given from the Actor network, and outputs a single scalar

value to determine the value of a given state-action combination. There is no activation function in the

last output layer, it is just a linear combination of the activations in the last hidden layer. The critic

network is illustrated in figure 2.1

30
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Figure 2.1: Illustration of the Critic neural network

The Actor takes as input the observation, which is the deviations in position and the quadrotor ve-

locity, and gives an action, which is the acceleration vector, as shown in figure 2.2. The last layer uses the

t anh activation function. This ensures that the outputs of the neural network are in the range [−1,1],

and the resulting acceleration vector will then also be constrained. This ensures stability in training as

the acceleration vector has a realistic magnitude.

xdeviation

ydeviation

zdeviation

vx

vy

vz

Layer 1 Layer 2

ax

ay

az

Figure 2.2: Illustration of the Actor neural network

2.1.2 Training

The training consists in the quadrotor starting in the same position every time, and having a goal drawn

randomly. The goals are drawn using a spherical coordinate system, where the anglesφ,θ are drawn with

a uniform distribution between 0 and 2π. The radius r is drawn from a uniform distribution between 0

and 1, and transformed using a cubic root before it is multiplied with the goal generation radius of 3m:
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layer 1 width layer 2 width
Network configuration 1 64 32
Network configuration 2 64 64
Network configuration 3 128 64

Integral network configuration 128 64

Table 2.1: Network configurations in DDPG

x = r ∗ si n(φ)∗ cos(θ)

y = r ∗ si n(φ)∗ si n(θ)

z = r ∗ cos(φ)

where

r = g oal_g ener ati on_r adi us ∗ 3
p

d

d ∼ uni f (0,1)

φ∼ uni f (0,2π)

θ ∼ uni f (0,2π)

(2.1)

The cubic root ensures that the probability of generating a radius closer to 3 m is more probable than

a radius closer to 0 meters. The random sampling of goal points is very important to ensure that the

training samples are uncorrelated and that the neural networks are not overfitting on the training

data, as explained in section 1.2.3.

To make the results as consistent as possible, the training procedure is standardized to be equal over

all network topologies. The initial hyperparameters is set as in Table 2.2, with the reward function as

described in Section 1.9. The training progress of each network topology is illustrated in Section B.2.

Parameter Value
Learning rate actor 10−4

Learning rate critic 10−4

discount factor γ 0.99
target network update rate τ 0.001

goal radius δpos 0.4
maximum velocity at goal δvel 0.3

Table 2.2: Initial training hyperparameters

The progress of the different training sessions can be seen in appendix B. There is an important dis-

tinction between the training progress in the standard supervised learning setting, and in the reinforce-

ment learning setting. In standard supervised learning, one is looking for convergence by observing the

training loss, i.e. the rate at which the neural network learns in each epoch. When this training loss is

converging, one knows that the weights in the neural network are also converging on some optima. How-

ever, when we talk about convergence in reinforcement learning, we are talking strictly about the average
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rollout return converging. Since the input distribution is continually changing and dependent on the

current actor policy, the fact that the networks loss is high and thus learns, does not necessarily mean

that the network is not converging. If the networks are receiving bad training data, they will just as well

show a high training loss even though they may already be in some optima. Thus, when looking at the

Actor and Critic loss in each epoch, the only information we can extract from them is by how much the

parameter weights are changed after each epoch.

After the networks had converged in the first training session, the networks were trained another

round until convergence but with goal radius decremented to 0.2 and the input cost being increased

from 0.001 to 0.0015. To ensure optimal training progress, the network weights resulting in the highest

rewards were the ones transferred to the second round of training. When testing these networks, the

network weights with the highest score from the second training session were selected. My experience

when training these networks is that it is better to start width a wider goal radius such that the quadrotor

learns faster that it should go towards the goal. If the goal radius is too small to begin with, the quadrotor

seldom found this goal and the goal reward was thus not experienced. Because the magnitude of the

quadratic cost function diminishes quadratically when one approaches the goal, as explained in section

1.9, the agent needs to experience the goal reward to properly learn that it should go to the goal. The only

positive term in the reward function 1.54 is the goal reward.

Looking at the average rollout return per epoch in the first training sessions (Training session 1 for

all network configurations) in section B.2, we can see when the agent transitions from mostly learning

from the negative quadratic elements, and to learn more and more from the goal reward. When the

agent crosses the x-axis, the positive reward balances out the negative penalties, and the average rollout

return increases faster per epoch than when the agent mostly learns from the quadratic terms. Ideally the

rollout return should look like the figure B.3, where it flattens out and converges to an optima. However,

continuing to train the agent after it has reached is optimum may push it off its optimum, as we can see in

figure B.1. This is because DDPG is not a trust-region algorithm, and has a constant gradient step length.

We can therefore see why an algorithm like TRPO or PPO would do better in this regard.

Another interesting thing to note about the training process, is how information is propagated. Since

the Actor network uses the Critic network as baseline, it is depending on this network to give good value

estimates to be able to improve its own policy. This means that the information is propagated through

the Critic network first, before the information is passed on to the Actor. The Critic learns a good value

function using a supervised learning approach on the ever-changing distribution of incoming rewards,

and it is first when the Critic has learnt what constitutes a good action or not that the Actors policy actually

starts to converge.

It is interesting to note that each batch of 2000 epochs took about 24 hours to run on my computer

(the specifications of which are noted for reference in section B), making the computational time for the

networks presented in this project about 192 hours.
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2.1.3 Adding an integral effect

The idea for including integral effect in the observation space and cost function comes from this paper

[36]. They note that reinforcement learning algorithms in continuous state space have a tendency for

having a small steady state error as the penalties are very small close to the goal point. In classical control

theory, steady-state errors are solved using integral effect. The idea is similar in this case, but is formalized

through the change in reward function. This means that when the quadrotor is close to the goal, the

integrators will keep integrating the error and generating a bigger penalty, and thus forcing the agent to

keep minimizing the distance between itself and the goal. Another way to see it, is that for a changing

input in the neural network, the output should not be stationary and thus force the agent to action.

The idea is that we expand the observation space to include an integral of the deviations in the three

axes:

x =
[

xdev , ydev , zdev , vx,quad , vy,quad , vz,quad ,
∫ T

t=0
xdev d t ,

∫ T

t=0
ydev d t ,

∫ T

t=0
zdev d t

]
(2.2)

and we update the Q-matrix denoting the weighting of the elements in the observation vector x for pe-

nalizing accordingly:

Q =



0.6 0 0 0 0 0 0 0 0

0 0.6 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0.15 0 0 0 0 0

0 0 0 0 0.15 0 0 0 0

0 0 0 0 0 0.25 0 0 0

0 0 0 0 0 0 0.001 0 0

0 0 0 0 0 0 0 0.001 0

0 0 0 0 0 0 0 0 0.001



(2.3)

As this is a very different architecture than the three other networks, it is important to note that any

direct comparisons may not be well founded. However, adding integral effect may produce some inter-

esting findings.

2.1.4 Results

All of the examples below are generated using the same end goal position.

Average RMS Success rate
Network config. 1 2.588 0/10
Network config. 2 0.389 10/10
Network config. 3 1.141 7/10

Integral network config. 1.536 5/10

Table 2.3: Average Root Mean Squared distances to optimal trajectory for different network topologies
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(a) Quadrotor coordinaters vs goal radius
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Figure 2.3: Example of run from network configuration 1
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Figure 2.4: Example of run from network configuration 2
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(b) Quadrotor trajectory

Figure 2.5: Example of run from network configuration 3
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Figure 2.6: Example of run from integral network configuration

2.2 Testing for robustness

To test how robust the network topologies act when there are slight variations in the model parameters,

let us vary the mass by ±10%. All of the examples below are generated using the same end goal position.
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2.2.1 Results +10%

Average RMS Success rate
Network configuration 1 1.876 0/10
Network configuration 2 2.918 0/10
Network configuration 3 2.337 0/10

Integral configuration 2.748 0/10

Table 2.4: Average RMS values for +10% modified quadrotor weight
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Figure 2.7: Example of run from network configuration 1 with +10% modified mass
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Figure 2.8: Example of run from network configuration 2 with +10% modified mass
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Figure 2.9: Example of run from network configuration 3 with +10% modified mass
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Figure 2.10: Example of run from integral network configuration with +10% modified mass

2.2.2 Results −10%

Average RMS Success rate
Network configuration 1 7.392 0/10
Network configuration 2 3.665 0/10
Network configuration 3 5.659 0/10

Integral configuration 5.531 0/10

Table 2.5: Average RMS values for −10% modified quadrotor weight



CHAPTER 2. PRELIMINARY RESULTS AND PLOTS 39

0 2 4 6 8
Time

0

2

4
x-
po

sit
io
n

0 2 4 6 8
Time

0.0

2.5

y-
po

sit
io
n

0 2 4 6 8
Time

10

20

z-
po

sit
io
n

Quadrotor coordinates vs goal radius

(a) Quadrotor coordinaters vs goal radius

Distance x

0
1

2
3

4 Dis
tan
ce 
y

−1
0
1
2
3
4

Di
st
an
ce
 z

10

15

20

25

Q adrotor trajectory vs optimal straight trajectory with RMS: 9.9563

(b) Quadrotor trajectory

Figure 2.11: Example of run from network configuration 1 with −10% modified mass

0 2 4 6 8
Time

0.0

2.5

5.0

x-
po

sit
io
n

0 2 4 6 8
Time

0.0

2.5

5.0

y-
po

sit
io
n

0 2 4 6 8
Time

10.0

12.5

15.0

z-
po

sit
io
n

Quadrotor coordinates vs goal radius

(a) Quadrotor coordinaters vs goal radius

Distance x

0 1 2 3 4 5 6
Dis
tan
ce 
y

0
1
2
3
4
5
6

Di
st
an
ce
 z

10
11
12
13
14
15

Quadrotor trajectory vs optimal straight trajectory with RMS: 4.1486

(b) Quadrotor trajectory

Figure 2.12: Example of run from network configuration 2 with −10% modified mass
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(b) Quadrotor trajectory

Figure 2.13: Example of run from network configuration 3 with −10% modified mass
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Figure 2.14: Example of run from integral network configuration with −10% modified mass

2.3 Discussion

2.3.1 Unmodified mass

Since ANNs are considered black-box algorithms, it is not possible to make very bold claims as to what

is happening inside them. Therefore, this report is careful about making any conclusions of the results

generated from the ANNs. However, we will discuss the tendencies that we can see from the results,

and make modest explanations for why they are that way. They key goal when experimenting with the

different network topologies, was to ensure that the networks feature extraction complexity matched the

actual policy feature complexity in the training data.

We begin with the results from the different networks when running without the modification in mass.
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As we can see from the table 2.3, the network configuration 2 works the best, with an RMS of 0.389 and a

100% success rate on the 10 goal points. If we look at one of the trajectories generated from this network

in figure 2.4, we see that the quadrotor quite confidently navigates to the goal, or rather to inside the goal

radius. It also stays within the goal radius once it has been reached. However, we do not see a critically

damped second order response in the plots which would be the ideal step response for our system. We

have to remember however, that this behaviour has been self-taught by the DDPG algorithm with only

our reward function as guidance. The low average RMS of 0.389 tells us that the network is able to follow

the optimal straight path pretty well, considering that the goal points are situated about 3 meters away

most of the time. It is also worth mentioning that the axes in the 3D plot have different step lengths, and

one has to keep this in mind when judging the trajectory. When looking at the training progress for this

network in figures B.3 and B.4, we see that it converges after about 1750 epochs during the first training,

and only needs about 150 epochs more in training session 2 to learn the smaller goal size.

We continue by looking at the results from the first network configuration. With an Average RMS of

2.588, it performs much poorer. This is a high value considering that the goal points are situated about

three meters away most of the time. But it does learn some general trends though, as we can see in the plot

for the trajectory in figure 2.3. The network understands in which general direction it is supposed to go,

but constantly overshoots and is not very good at maintaining a stable hover inside the goal radius. This

is consistent with what one may expect from a shallower neural network, as explained more in-depth

in section 1.2.2. The deeper the network, the more fine-grained its feature extraction and behavioural

learning is, whereas shallower networks only can encode information for the more general trends in the

training data. This suggests that this network topology may be too shallow to solve our problem, as its

ability to encode complex features lower than the actual policy feature complexity in the training data.

Looking at the training progress in figures B.1 and B.2, we can see that the average rollout returns per

training epoch converges on much lower values than using network configuration 2, as shown in figures

B.3 and B.4. It is also interesting to note that the network converges quicker than its deeper counterpart.

Looking at the network configuration 3, we again see a poorer performance than network configura-

tion 2, as shown in table 2.3. It does have a pretty good success rate at 70%, but with a significantly higher

average RMS. Looking at the training progress in figures B.5 and B.6, we see that convergence takes many

more steps than the previous network topologies. This is consistent with what we experienced in the

other two networks; the deeper the longer before convergence. A pitfall in having a neural network too

large, is that we can risk having an overparametrized function approximator. This essentially means that

we can end up having the network learning to solve the problem of navigation split up into several differ-

ent subproblems, i.e that it does not generalize properly to a global solution. This means that the network

is able to, and tries to, encode more complex features than the policy features in the actual data set, and

that the network easily overfits on its training data. The symptom of this is that the quadrotor sometimes

completely fails and flies off randomly, because it is spawned into a region in state space where the neural

network does not have a solution to the given subproblem. With a significantly higher average RMS and a

lower success rate than network configuration 2, it seems that this is the case. This also means that for the

subregions of state space where the network does have an optimal solution, it may be a very fine-tuned

and optimized one as we can observe in the example trajectory 2.5, with a very small RMS error and quick
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converge to withing the goal radius.

The integral network configuration being so different than the others, it is difficult to do direct com-

parisons to the other three networks. The state space is larger, and the reward function is therefore quite

different. Therefore the neural network has a harder job of learning how to extract important information

from the input. The result is a network with average RMS of 1.536 and a success rate of 50% which is not

particularly impressive in comparison to the network configuration 2. The learning progress as seen in

figure B.8 shows that the network converges to an optimum quite quickly in the second training session.

It may however mean that it is simply more difficult to learn on the basis of the new reward term. If this

network would have been trained better, it could be that it offers better results against parameter (e.g.,

mass) uncertainty.

An important observation is that choosing the correct topology for the networks in RL is more impor-

tant than in the standard supervised learning. In standard supervised learning, an overly complex neural

network can be taught to generalize by feeding it more independent and identically distributed training

samples. However when working with RL, we remember that the training data is generated by the agent

itself, and any step in the wrong direction will generate bad training data. This means that divergence

during training is a big problem, and we cannot assume that the overly complex neural networks will

continue receiving good training data for the longer period of time that they require.

2.3.2 Modified mass +10%

Looking at table 2.4, we can see the performance of the network configurations when the mass of the

quadrotor is increased på 10%. None of the network configurations manages to reach the goal properly,

but looking at the average RMS we can still get an indication of their performances.

The first thing to notice is that the network configuration 1 now does better than network configura-

tion 2. This is very unexpected. Why would the crude and shallow network outcompete the balanced and

accurate deeper network configuration 2? One property of the network configuration 1 that we noted in

the previous result section, is that it understood pretty well in which direction the quadrotor should be

moving. However, the magnitude of the desired acceleration vector was not changing properly accord-

ing to the distance away from the target. This resulted in an overshooting behaviour. Now that we have

changed the mass of the quadrotor, we have essentially done two things: increased the gravitational pull

and decreased the magnitude of the acceleration vector. Surprisingly this results in a lower average RMS

than in the case where we had not modified the mass. It seems that decreasing the magnitude of the

acceleration vector has resulted in a more stable behaviour. Another thing to note in the figure 2.7, is that

the increased gravitational pull does not seem to result in the quadrotor falling below the height of the

goal point.

The second thing to notice, is that the integral network seems to be handling this change in mass

quite well. The average RMS has only increased from 1.536 to 2.748. An example of this can be seen in

2.10. In this plot we see that the quadrotor is able to converge on the correct position in the x and y-axes,

however it struggles with the increased gravitational pull. In comparison, the network configuration 2

increases almost an order of magnitude in its average RMS from 0.389 to 2.918. It seems that having the
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integral effect does indeed make the network more robust to uncertainties in the model, as previously

suggested.

Looking at the network configuration 2 as exemplified in figure 2.8, we see that it is able to converge

somewhat to the goal position in the x and y-axes, but struggles with the increased gravitational pull just

like the network configuration 3 and the integral network configuration.

Lastly, the network configuration 3 has an increase in average RMS from 1.141 to 2.337, which is a

large value considering that the goals mostly are about 3 meters from where it spawns. The trajectory of

this network is exemplified in figure 2.9, where it struggles with converging on the goal in all three axes.

A possible explanation as to why the deeper networks fare worse when changing the mass, is that

the generality in the solutions within the networks is decreasing when increasing its depth. It learns

more fine-grained solutions, which are then more sensitive to changes in the initial parameters of the

quadrotor model. This does not necessarilly mean that using a deeper network cannot properly work for

our problem. It may simply mean that it is a matter of further and more robust training. Nonetheless, the

key point taken from this work is that we need to identify the network structure that allows us to learn a

good policy, while also maintaining as much simplicity as possible.

2.3.3 Modified mass −10%

When decreasing the mass by 10%, we do exactly the opposite of the previous section. The magnitude of

the acceleration vector has increased, and the gravitational pull has decreased. We notice straight away

that all network configurations diverge in the z-axis, as seen in figures 2.11,2.12,2.13,2.14. The quadrotor

suddenly becoming lighter, their altitudes increase rapidly without recovery. It seems that in the z-axis,

the networks are much less robust to negative changes in mass, than positive changes as we saw in the

previous section 2.3.2. Changing the magnitude of the acceleration vector also has a profound impact of

the dynamics of the system. In the previous section 2.3.2 we discussed how decreasing the mass made

the dynamics slower, as the acceleration vector got scaled back. Now we have the opposite challenge: the

magnitude of the acceleration vector is larger than what the networks intend them to be. We observe the

dynamics to be more unstable and consequently the average RMSes to be worse as seen in table 2.5.

Beginning with the network configuration 1, we see a significant degradation in performance as seen

in table 2.5. As discussed in the previous section, the network configuration 1 is pretty good at the general

direction in which the acceleration vector should point, but not as good at scaling its magnitude properly.

In the case of having unmodified mass, the network overshot and it seemed like the magnitude of the ac-

celeration vector was too great, and that increasing the mass made the behaviour of this network behave

more stable. It is therefore to be expected that its performance should drop as one decreases the mass.

The magnitude of the acceleration vector which is already too great, is increased. As we see in figure 2.11,

the quadrotor tries to converge on the x and y-axes, but overshoots when reaching the goal coordinates

without recovering.

When looking at the results from network configuration 2 in table 2.5, these results are combarable

to the case where the mass is increased as seen in table 2.4, with an average RMS of 3.665. In general, this

network suffers from the same problem as the network configuration 1. Making the magnitude of the
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acceleration vector greater, results in overshooting in the x and y-axes without recovery, an example of

which is seen in figure 2.12. The acceleration vector is pointing in the right direction in the x and y-axes,

but is not scaled back as it approaches the goal coordinates making it diverge.

The network configuration 3 also experience a significant drop in performance, as seen in table 2.5.

With an average value of 5.659, is considerably worse than the case in which the mass is increased, where

it had an average RMS of 2.337. The overshooting behaviour was also present in this network configura-

tion, although it at times did comparably well as seen in figure 2.13. Most of the time however, it did not

converge in the x and y-axes.

The integral configuration is only marginally better than the network configuration 3, as seen in table

2.5, and most certainly a lot worse than its performance when increasing the mass as seen in table 2.4.

This suggests that having an integral effect when the system dynamics become more unstable as a result

of increasing the magnitude of the acceleration is not as helpful as when the opposite is the case. A slowly

converging system will certainly gain from having an integral effect, where the integral effect will force

a faster convergence. However, when the system is already overshooting, it seems that adding integral

effect into the state-space is not as helpful.

2.3.4 Advantages and disadvantages of having a learning-based controller

The biggest challenge when implementing a learning-based controller is that there exists no convergence

proofs for neural networks. This is because the neural networks are black boxes; we cannot open them

up and understand what happens inside, and the neural networks may as well have reached a local min-

imum. At least not precisely yet. Similarly, we cannot do any formal consistency analysis either. We can

only train and test the network in a broad range of settings and hope that every point in state-space has an

optimal policy. This is in contrast to standard controllers, where consistency and stability can be proven

mathematically. When training a network, it is fitted to a set of training data which is completely depen-

dent on the parameters of the system with which that data is generated. If a value needs to be changed

in the model of the system, the neural networks have to be retrained. And again, there is no proof that

all its knowledge about the old model is correctly modified to fit the new one. When using mathemat-

ical models, one can change parameters and test for stability straight away. The design choices when

one constructs a neural network is largely experience based, and one has to extensively experiment with

what depth, width and activation functions works the best for the given problem. And because a neural

network may converge to different weights and biases each time it is trained with exactly the same initial

conditions, this process is not an exact science. All one has, are guiding principles and past experience.

And lastly, for the training of the neural network to really produce good results, one needs many samples.

Each network in this project thesis required about 8 million data samples each. One thus depends on a

fast and accurate simulator for getting data samples that are good, and realistically represents what the

controller will experience in real-life.

All those challenges aside, there truly are some benefits to choosing a learning-based controller. The

neural network may learn complex non-linear functions and tendencies that we humans never would

have managed to model mathematically, and discover features in the data set no one even knew existed.
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These methods can also be implemented and trained directly, without having to do extensive mathemat-

ical modelling and to formulate a fitting controller. As long as you have the necessary data, the neural

network may learn a mathematical model all by itself. The last reason to consider a learning-based con-

troller, is exactly the reason we are working on one for this project thesis, namely that it can be integrated

into an existing deep learning framework where one includes for example computer vision. When writ-

ing the master thesis in the next semester, we will integrate a similar quadrotor controller into a problem

that involves sensing and environment awareness using deep learning methods. The core idea is to use

exteroceptive modalities (e.g., LiDAR or vision) and solve end-to-end the problem of collision-free navi-

gation without necessarily making an explicit online 3D reconstruction of the environment. This has the

potential to lead to fast and safe navigation at a fraction of the computational cost currently required to

ensure collision-free flight.

In general, when working with low-order dynamical systems, we can derive an accurate mathematical

model from which we can make an optimal controller. Therefore, this path following problem can be

solved explicitly using methods as discussed in 1.7. If it were not for the fact that we will be integrating

this into an end-to-end solution using deep learning, it would have been better to use such methods.



Chapter 3

Conclusions and Further Work

3.1 Summary

In this project report we have developed the necessary theoretical background within the fields of ma-

chine learning and reinforcement learning to understand the building blocks of modern state-of-the-art

deep reinforcement learning methods. Then, a mathematical derivation took us from the basic policy

gradient formulation through all the necessary RL concepts until we arrived at the algorithm with which

this project report was developed, namely the Deep Deterministic Policy Gradient algorithm. The differ-

ence between DDPG and two trust-region methods, TRPO and PPO, were explained for context.

The dynamics for the quadrotor were then presented, together with a thorough explanation of the

way the DRL agent is integrated into the control loop. For reference, related work with similar problem

formulations were introduced. We then looked at both the experimental setup and the software architec-

ture used to train the neural networks and generate the results. The reward function was introduced and

its effect on the training progress explained.

Lastly, the hyperparameters and the method of training the neural networks were explained. To test

the networks for robustness, a change of ±10% in mass was introduced. The results from the experiments

were presented and discussed.

3.2 Conclusions

The most important conclusions of this project thesis are that the size and shape of the neural network

used for learning a good navigation policy do have an important impact on the behaviour of the quadro-

tor. There is a trade-off between generalization and overparametrization, where shallow networks tend

to generalize more, and deep networks tend to overparametrize. Striking a balance between these two ef-

fects produced satisfactory results. A policy network with two layers, having 64 as width in both, was able

to accurately and consistently reach the goal state with a comparatively low average RMS error from the

optimal linear path. This means it has the best topology out of all the configurations, matching its ability

to learn complex features with the actual policy feature complexity in the data set pretty well. With this,

we have provided an example of consistent behaviour using deep reinforcement learning for quadrotor

46
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navigation, which in itself is an interesting result for future work.

When testing for robustness, we began increasing the mass by 10%. This worsened the performance

of the network configurations 2 and 3, as the magnitude of the acceleration vector suddenly changed

unexpectedly. These acceleration vectors were finely tuned, and thus the resulting performance when

increasing the mass worsened. Surprisingly, the network configuration 1 improved. The agent had un-

derstood in which general direction it was supposed to go, but its acceleration vector was too aggressive.

Increasing the mass and thus decreasing the magnitude of the acceleration vector, made the behaviour of

this network configuration more stable. It was also interesting to observe that the deterioration in perfor-

mance of the integral network when increasing the mass, was not as significant. This suggests that there

may be some advantage to having integral effect when the system dynamics are made slower.

Interestingly, it seems that all network configurations were much less robust to decreasing the mass

by 10% compared to the case where it was increased. Since the gravitational pull is decreased, all net-

work configurations experienced rapid divergence in the z-axis, namely the height. The second effect of

decreasing the mass, is a corresponding increase in magnitude of the acceleration vector. This made the

behaviour of all networks deteriorate considerably. Their behaviour showed that they commanded the

quadrotor in the right direction in the x and y-axes, but overshot without recovery within the time limit.

3.3 Further Work

Ideally, the goal should have had a much smaller radius. The radius of acceptance was in this project kept

at a distance of 0.2m, as decreasing this radius proved to be a very computationally expensive endevour

as one had to run for a long time before the networks converged within the new radius. If one were to

perfect the results from the networks presented in this report, this radius should have been incrementally

decreased even further.

At the same time, we used a constant learning rate when training the networks. Ideally, this should

be adjusted to ensure monotonic decreasing steps, which is exactly what trust-region methods like TRPO

and PPO do. If one was to continue improving the DDPG agents, one would choose the network weights

from the highest scoring epoch, and training this further with a smaller learning rate.

This project report only deals with having one goal, but in a larger context it would have been inter-

esting exploring having these networks track a trajectory with several waypoints.



Appendix A

Acronyms

UAV Unmanned Aerial Vehicle

RL Reinforcement Learning

DRL Deep Reinforcement Learning

DDPG Deep Deterministic Policy Gradient

TRPO Trust-region policy optimization

PPO Proximal policy optimization

SLAM Simultaneous Localization and Mapping

PID Proportional-Integral-Derivative controller

ANN Artificial Neural Network

SGD Stochastic Gradient Descent

MDP Markov decision process
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Appendix B

Algorithms, training progress and computer

specifications

B.1 Algorithms

Algorithm 1 One-step Actor-Critic (episodic), for estimating πθ ≈π∗
1: Input: a differentiable policy parametrization π(a|s,θ)
2: Input: a differentiable state-value function parametrization v̂(s, w)
3: Parameters: step sizes αθ > 0, αw > 0
4: Initialize policy parameter θ ∈Rd ′

and state-value weights w ∈Rd (e.g., to 0)
5: loop forever (for each episode):
6: Initialize S (first state of episode)
7: I ← 1
8: loop while S is not terminal (for each time step):
9: A ∼π(·|S,θ)

10: Take action A, observe S’,R
11: δ← R +γv̂(S′, w)− v̂(S, w) (if S’ is terminal, then v̂(S′, w)

.= 0)
12: w ← w +αwδ∇v̂(S, w)
13: θ←αθ Iδ∇ln

(
π(A|S,θ)

)
14: I ← γI
15: S ← S′
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Algorithm 2 Deep Deterministic Policy Gradient (DDPG)

1: Randomly initialize critic network Qc (s, a|θQ ) and actor network µ(s|θµ) with weights θQc and θµ

2: Initialize target network Qc ′ and µ′ with weights θQc ′ ← θQc , θµ
′ ← θµ

3: Initialize replay buffer R
4: Initialize a random process N for action exploration
5: Receive initial observation state s1

6: for n = 1, Number of epochs do
7: for C = 1, Number of cycles do
8: for p = 1, Number of Rollouts do
9: Select action at =µ(st |θµ)+Nt according to the current policy and exploration noise.

10: Execute action at and observe reward rt and observe new state st+1

11: Store transition (st , at ,rt , st+1) in R
12: if Episode ends then
13: Restart a new episode
14: Reinitialize noise N for action exploration

15: for K = 1, Number of trainsteps do
16: Sample a random minibatch of N transitions (st , at ,rt , st+1) from R
17: Set yi = ri +γQ ′(si+1,µ′(si+1|θµ′

)|θQ ′
)

18: Update critic by minimizing the loss L = 1
N

∑
i (yi −Q(si , ai |θQc ))2

19: Update the actor policy using the sampled policy gradient:
20: ∆θµ J ≈ 1

N

∑
i ∆aQc (s, a|θQ )|s=si ,a=µ(si )∆θµµ(s|θµ)|si

21: Update the target networks:
22: θQc ′ = τθQc + (1−τ)θQc ′

23: θµ
′ = τθµ+ (1−τ)θµ

′

Algorithm 3 Trust-region Policy Optimization

1: Input: initial policy parameters θ0 and initial value function parameters φ0

2: Hyperparameters: KL-divergence limitδ, backtracking coefficientα, maximum number of backtrack-
ing steps K

3: for k = 0,1,2,... do
4: Collect set of trajectories Dk = {τi } by running policy πk =π(θk ) in the environment
5: Compute rewads-to-go R̂t

6: Compute advantage estimates, Ât (using any method of advantage estimation) based on the cur-
rent value function Vπk

7: Estimate policy gradient as: ĝk = 1
|Dk |

∑
τ∈Dk

∑T
t=0∇θlogπθ(at |st )|θk Ât

8: Use the conjugate gradient algorithm to compute x̂k ≈ Ĥ−1
k ĝk , where Ĥk is the Hessian of the

sample average KL-divergence

9: Update the policy by backtracking line search with: θk+1 = θk + α j
√

2δ
x̂T

k Ĥk x̂k
x̂k , where

j ∈ {0,1,2, ...,K } is the smallest value which improves the sample loss and satisfies the sample KL-
divergence constraint

10: Fit value function by regression on mean-squared error: φk+1 = argminφ
1

|Dk |T
∑
τ∈Dk

∑T
t=0

(
Vφ(st )−

R̂t
)2, typically via some gradient descent algorithm
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Algorithm 4 Proximal Policy Optimization, Actor-Critic style

1: for iteration = 1,2,... do
2: for iteration = 1,2,...,N do
3: Run policy πol d in environment for T timesteps
4: Compute advantage estimates Ât , ..., ÂT

5: Optimize surrogate L w.r.t θ, with K epochs and minibatch size M ≤ N T
6: θol d ← θ

B.2 Training progress
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Figure B.1: Training session 1 for network configuration 1
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Figure B.2: Training session 2 for network configuration 1
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Figure B.3: Training session 1 for network configuration 2
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Figure B.4: Training session 2 for network configuration 2
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Figure B.5: Training session 1 for network configuration 3
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Figure B.6: Training session 2 for network configuration 3
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Figure B.7: Training session 1 for integral network configuration
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Figure B.8: Training session 2 for integral network configuration

B.3 Computer specifications

The results for this project was computed on a Dell 9570 XPS 15 laptop with the following components:

• 8th Generation Intel Core i7-8750H Processor

• NVIDIA(R) GeForce(R) GTX 1050Ti with 4GB GDDR5

• 16GB, 2x8GB, DDR4, 2666MHz
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