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Preface

The work for this master thesis was carried out in the spring semester of 2021 at the Department of

Engineering Cybernetics at NTNU [1] in Trondheim, Norway.

This master thesis presents a novel solution to the local path planning problem in geometrically

constrained and GPS-denied environments like caves and subterranean infrastructure. The problem

is formulated as a data-driven Imitation- and Reinforcement learning algorithm. Data is gathered in

simulation, using a LiDAR mounted on a quadrotor MAV. The learning based methods are executed by

imitating an expert and through reinforcement learning with a specially tailored reward function. The

thesis can be broken into two parts which have been explored by the authors in parallel: perception

and quadrotor control. This master thesis as a whole represents an End-to-end method for doing

collision-free navigation and flight control using learning-based methods. However, the two underlying

components, perception and control, can also be seen as two independent pieces of work.

The following master thesis is a continuation of two project theses written by the authors during

the fall of 2020. The title of these theses were: “Reward shaping in Quadrotor Control Using Deep

Deterministic Policy Gradients”[2] and “Robustness in Deep Reinforcement Learning for Quadrotor

Control”[3]. The experience gathered in these two projects plays a crucial role in developing the

methods in this project.

The previous research on this topic has been led by Prof. Kostas Alexis and the research team at

the Autonomous Robots Lab (ARL) [4], and it originates from the DARPA Subterranean Challenge

[5].

Our supervisor Kostas Alexis has, throughout the semester, guided our research through bi-weekly

meetings. In addition, Huan Nguyen has been a great help along the development process for under-

standing the existing code base from the NTNU Autonomous Robots Lab on top of which our own

software is written.

The software package corresponding to the Convolutional Variational Autoencoder is written from

scratch and is made available at [6]. The expert planner used for imitation learning is is part of the

workspace from ARL [7], and the reinforcement learning and imitation learning algorithms have been

forked from OpenAI [8]. The frameworks used for simulation is RotorS [9] and Gazebo [10]. All the

neural networks have been built using the Tensorflow framework [11] version 2.0, and the whole system

has been tied together with the Robot Operating System (ROS) [12].

Trondheim, 07.06.2021

Eilef Olsen Osvik

Martin Aalby Svalesen
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Executive Summary

This thesis explores a method of solving the local path planning and control problem in an End-to-end

fashion using learning-based methods.

We present a novel compression algorithm that substantially reduces the dimensionality of the raw

point cloud data from a 3D laser scanning sensor using a Convolutional Variational Autoencoder. The

strength of such a compression algorithm is a radical reduction in dimensionality, which results in the

data stream being reduced in size by three orders of magnitude. The weakness of the compression

algorithm is its limitation to only work in a subset of object types and environments. Further work

needs to be done to be able to generalize to more complex environments.

This compressed representation of the immediate environment is fed to a learning-based agent,

parametrised as a neural network, together with the direction of the desired setpoint and the MAV

speed. This agent is then taught through both Imitation Learning and Reinforcement Learning to de-

code this compressed representation of the environment to be able to execute collision-free trajectories.

Our work indicates that the agent is able to infer a geometric understanding of the environment from

the heavily compressed representation. Furthermore, the algorithm executes at a constant frequency

of about 12 Hz, as opposed to traditional graph-based methods where the frequency varies greatly

with both time and the complexity of the environment. However, several challenges are yet to be

solved in both the perception and the control part of this thesis before this algorithm is able to provide

collision-free trajectories as consistently as the graph-based local planner we use as baseline. We used

simulation to train and evaluate both the Convolutional Variational Autoencoder’s performance and

the agent’s ability to execute collision-free trajectories. This let us continually monitor the perfor-

mance of the CVAE by looking at the reconstructed point clouds, as well as observing the trarjectories

of the agent.
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Sammendrag

I denne mastergradsoppgaven presenterer vi en ny m̊ate å navigere et ubemannet flygende fartøy i

trange omgivelser ved hjelp av laserbaserte avstandsm̊alere. Vi bryter denne navigasjonsprosessen inn

i to deler, persepsjon og kontroll.

I den første delen som omhandler persepsjon, viser vi en ny m̊ate å komprimere punktskydata

ved hjelp av en lærings-basert metode. Denne punktskyen definerer hvordan de nære omgivelsene

til fartøyet ser ut topologisk, fra synspunktet til fartøyet selv. Den ubehandlede datastrømmen fra

den laserbaserte avstandsm̊alingen blir komprimert med 3 størrelsesordener etter å ha blitt behandlet

av v̊ar kompresjonsmetode. Målet med denne kompresjonen er å hente ut de viktigste topologiske

egenskapene til de nærliggende omgivelsene slik at en kontrollalgoritme ikke skal trenge å bruke tid p̊a

å finne disse egenskapene selv. Svakheten til denne kompresjonsalgoritmen er at den foreløpig kun har

høy virkningsgrad i et begrenset knippe med typer miljøer og objekter. Videre utvikling trengs for å

f̊a denne algoritmen til å generalisere til mer komplekse og usette miljøer.

N̊ar punktskyen har blitt komprimert av persepsjonsmodulen, blir dataen videreført til kontrollal-

goritmen. Denne modellen er parametrisert som et nevralt nettverk, og sammen med den komprimerte

punktskyen blir den matet fartøyets relative posisjon i forhold til m̊alet den skal til, samt dens egen

hastighet. Modellen blir s̊a lært å fly kollisjonsfritt gjennom to separate prosesser; læring gjennom

imitasjon og belønningsbasert læring gjennom utforskning. Gjennom disse læringsprosessene blir mod-

ellen implisitt lært til å unng̊a kollisjoner, ved å optimere kontrollfunksjonen for å fly uten å kollidere

med overflater i miljøet. V̊art arbeid indikerer at denne modellen er i stand til å hente en forst̊aelse

om de nærliggende omgivelsene fra den komprimerte punktskyen fra persepsjonsmodulen. Navigasjon-

salgoritmen vi presenterer i denne oppgaven kjører med en konstant hastighet p̊a rundt 12 Hz, i

motsetning til tradisjonelle metoder der hastigheten varierer mye med b̊ade tid og kompleksiteten til

miljøet fartøyet befinner seg i. Imidlertid er det fortsatt et sett med utfordringer som m̊a løses før

denne navigasjonsalgoritmen konsekvent leverer like gode resultater som de tradisjonelle metodene vi

bruker som sammenligningsgrunnlag.

For å trene og evaluere agentens evnen til å utføre kollisjonsfrie baner, samt generere datasett for

å trene kompresjonsalgoritmen, brukte vi simuleringsverktøy. Dette lot oss kontinuerlig monitorere

ytelsen til kompresjonsalgoritmen ved å kunne følge med p̊a den rekonstruerte representasjonen av

omgivelsene, i tillegg til å kunne observe hvilken bane den lærings-baserte agenten valgte.
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Chapter 1

Introduction

Autonomous exploration of GPS-denied environments is an active field of research. The two main

challenges in these types of environments are: how to map the surroundings in such a way that a local

representation of position is achieved, and how to use this representation to navigate safely without

colliding. Since we assume no prior knowledge of the map is available, the robotic agent itself needs to

understand the environment and be as being able to remember where it has gone in the past. Thus,

we can break the problem of exploration down to two parts; global exploration planning and local

path planning. In the global exploration planning, the agent remembers the whole trajectory it has

traversed. This makes it able to re-plan, should the robotic agent come to a dead end and need to

find a path towards a previously detected area far from its current location. The planner can then

remember a previous intersection where a branch remains unexplored and navigate the robotic agent

back through its traversed path to begin exploring this branch. In the local path planner however, the

objective is finding the immediate path or control action for the robotic agent, which fulfils some goal

in the short term. This goal may be to either reach a waypoint while avoiding obstacle on the way, or

finding a path that maximises the environment’s explored volume.

1.1 Background

1.1.1 Motivation

Autonomous exploration of geometrically constrained and GPS-denied environments has a broad ap-

peal outside the academic sphere. It enables exploration of environments that may either be dangerous

for humans or hard to reach. In addition, the autonomy ensures that the robotic agent can indepen-

dently explore without needing communication with a human operator, which further facilitates deeper

and more efficient exploration. This may be very useful for first-responders looking for human sur-

vivors, or inspecting underground or enclosed infrastructure like subway tunnels or mines.

The algorithms used for these scenarios today are very computationally expensive. This naturally

limits their speed and the rate at which the exploration is conducted. However, recent advances in the

fields of machine learning and its adaptation into high-performance edge devices motivate us to try

new approaches to this challenge. Instead of sampling the environment and running expensive path

optimisation algorithms, a learning-based way of navigating and controlling an Micro Aerial Vehicle

2
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(MAV) collision-free must exist. After all, even tiny insects with tiny brains can infer a geometrical

understanding about their immediate environment using just their eyes.

1.1.2 Background of the Thesis

The work in this thesis is based on two related projects conducted during the fall of 2020. These

projects aimed to understand and construct Reinforcement Learning-based methods for MAV control

in a collision-free environment. The first author investigated the impact the network structure had

on performance and robustness, and the second author investigated the impact the reward shaping

had on the learning process. The problem solved for both projects was basic waypoint navigation in a

collision-free environment. The knowledge obtained from these two projects was essential in developing

the strategies and methods used in this master thesis.

1.1.3 Problem Formulation

The problem of this master thesis is two-fold:

1. How do we infer a geometric understanding of the immediate environment using learning-based

methods?

2. How do we use this understanding of the environment to design a control algorithm which

executes a collision-free trajectory?

1.1.4 Related Work

We can broadly classify classic 3D path planning algorithms into categories, examples of which are

sampling-based methods, trajectory optimisation methods and motion primitives-based methods.

In [13], a simple on-line real-time approach to collision avoidance in an uncertain environment is

proposed. The path planning is based on polar coordinates, where the desired direction angle is used

as an optimisation index. At every planning window, the robot senses obstacles and orients the robot

direction of travel to generate a sub-goal. After the obstacle has been avoided, the robot will control

its direction of travel to coincide with the direction to the desired waypoint. This method keeps the

robot travelling straight towards the desired waypoint, and will only make detours to avoid objects.

In [14], the authors present two sampling-based algorithms for optimal path planning, namely the

PRM* and the RRT*. These algorithms are shown to be asymptotically optimal which means that the

cost of the return solution almost surely converges to the optimum, in contrast to their predecessors

PRM and RRT. Using a known global map, these algorithms are able to efficiently calculate paths

towards a desired waypoint.

In [15], the author presents a search-based path planning approach using motion primitives to plan

resolution complete and sub-optimal trajectories. This makes the proposed paths cognisant of the

dynamics of the MAV, which ensures that the proposed paths are feasible when navigating complex

3D environments. To explore the robot’s control space, this method employs a random sampling which

it then uses to determine possible paths in the known 3D map of the environment.

In [16], the authors present an algorithm called SPARTAN, which exploits the different levels of

spatial distributions of obstacles in the environments in which it is operating. The algorithm creates a
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sparsely connected graph across the tangential surface around obstacles, which lets it plan its trajectory

especially fast whenever traversing environments with sparsely distributed obstacles. Using only the

limited sensing capabilities on the MAV, and without a previously known map, the algorithm can find

paths in real-time through unstructured outdoor environments.

In [7], a graph-based global and local planner is developed for autonomous exploration. It consists

of a local planner which samples the surrounding space, constructs graphs, and calculates the path

in which no collisions occur while the discovered volume is maximised. A global planner maps and

incrementally builds a global map of the environment while remembering the traversed trajectory.

This makes it able to guide the robotic agent to a new area of exploration should it reach a dead end.

In [17], a local path planner based on motion primitives is developed. Instead of sampling points

in space, the planner samples possible control actions and their resulting trajectories. This enables

the planner to take advantage of the agility of flying robots, further increasing the range. For each

sampled control action, the paths generated are checked for collisions and the gain in newly explored

volume is maximised.

In [18], a local learning-based path planner is developed. Instead of sampling trajectories, it uses an

imitation learning framework for teaching a convolutional neural network agent to suggest exploration

directions. The main contribution to this path planner, is removing the expensive operation of path

sampling, collision checking and calculating the newly explored volume, as done in [17] [7].

In [19], the authors present a continuous-time polynomial formulation of a local trajectory opti-

misation problem for collision avoidance. This motion planning method is used as a local re-planner

which recomputes safe trajectories as new obstacles are discovered.

In [20], a local path planner uses the concept of a Safe Flight Corridor, a collection of convex

overlapping polyhedra that models free space and provides a connected path from the robot to the

goal position. This representation is built from a piece-wise linear skeleton obtained using a fast graph

searching technique and is input into a Quadratic Program (QP) for real-time re-planning on a receding

horizon planning problem.

In [21], the authors implements an anytime planner based on the Anytime Dynamic A* algorithm

that performs a graph search on a four-dimensional (x,y,z,heading) lattice. The graphs are constructed

using motion primitives to ensure feasibility and exploit the dynamics of micro UAVs, while the collision

checking may be done with arbitrary vehicle shapes.

In [22], the authors present a novel Nonlinear Model Predictive Controller (NMPC) for collision

avoidance and local path planning. The novelty of their implementation is the modelling of dynamic

obstacles using linear models, which permits the UAV to plan both its own trajectory and the obstacle

trajectory forward in time. Furthermore, the dynamic collision avoidance is coupled with the control

layer, which means that the trajectory of an obstacle is fed directly to the optimiser as a parameter,

together with the control parameters.

In [23], the authors model the UAV as a floating object and are thus not relying on full odometry

information as position information may drift over time in harsh environments. They develop a LiDAR-

based navigation system with collision avoidance capabilities using Nonlinear Model Predictive Control,

and use a geometric approach to obtaining the correct heading rate towards the open area to explore.

The resulting system is a local path planner.

In [24], the authors present a novel Nonlinear Model Predictive control framework for autonomous

navigation in indoor enclosed environments. Using the NMPC framework, the nonlinear dynamics of
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the UAV and the nonlinear geometric constraints of the objects in the environment may be taken into

account. To extract features from the LiDAR point cloud, a subspace clustering method is used. These

features are then incorporated into the nonlinear constraints of the NMPC for collision avoidance.

In [25], the authors present a framework for dynamic path planning for Unmanned Aerial vehicles.

This work combines the RRT* algorithm with the Dynamic Window Approach to solve dynamic

obstacle avoidance in a partially unknown environment. Using the RRT* as the global path planner

to avoid static objects in the map, commands are issued to a local path planner using the Dynamic

Window Approach, which works as the local path planner. As a result, the local path planner senses

dynamic obstacles and makes sure that the trajectory is collision-free.

In [26], the authors present a path and motion planner based on a local perception of the UAV to au-

tonomously generate safe 3D paths in dynamic cluttered environments. The path generation algorithm

is formulated as a multi-criteria real-time optimisation process that aims to minimise and objective

function while satisfying the dynamic constraints of the UAV as well as the safety requirements. The

safety constraints are implemented as a minimal-security distance.

In [27], the authors present a 3D path planning algorithm for UAV formation based on a compre-

hensively improved Particle Swarm Optimisation (PSO) algorithm. The initial distribution of particles

is determined using a chaos-based logistic map, and the particles also undergo a mutation strategy

where undesired particles are transformed into desired ones. The method is validated using simulation

in environments with the terrain and treat constraints.

In [28], the authors present an algorithm for collision-free trajectory planning of multi-rotor UAVs

in windy conditions based on modified potential fields. To overcome the local minima issue in artificial

potential fields, an augmented objective function is considered to find an optimal trajectory for the

UAV during point-to-point maneuvers in a region with apriori known wind speeds.

In [29], the authors show an efficient path planning algorithm for high-speed MAV in unknown en-

vironments. Their work proposes a computationally efficient algorithm using online sparse topological

graphs, which also integrates a notion of long-term memory into the planner. It may choose to navi-

gate to locations that are no longer included in the local map. To ensure that a path is collision-free,

a motion primitives-based local receding horizon planner that uses a probabilistic collision avoidance

methodology is implemented.

1.2 Objectives

The goal of this master thesis is to develop and test a local learning-based motion planner which

allows for fast navigation in confined environments. It should detect and safely avoid obstacles while

navigating to the desired waypoint while reducing the computational complexity substantially.

1.3 Approach

The algorithm will receive raw LiDAR point clouds generated by a lightweight mid-range LiDAR [30].

These point clouds will then be integrated into a local projective Truncated Signed Distance Field

(TSDF) representation using the fast method in Voxblox [31]. This TSDF representation will be com-

pressed using a Convolutional Variational Encoder, which has been trained as part of a Convolutional

Variational Autoencoder(CVAE). During training, the CVAE is optimised to reconstruct the TSDF
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point cloud, indicating the quality of the compression in the bottleneck layer. During inference, one

extracts this compressed representation from the encoder and feeds it as part of the observation space

to the learning-based agent.

This learning-based learning agent has been taught to navigate through imitation learning (IL)

with an expert planner and a Reinforcement Learning (RL) process. The agent makes decisions only

based on its inertial states, like distance to the goal point and speed, and using the latent space from

the encoder. The output of this agent is an acceleration vector which is then fed to the low-level

controllers of the MAV.

1.4 Contributions

The first contribution of this thesis is a novel framework [6] for training Convolutional Variational

Autoencoders on point cloud data from a Truncated Signed Distance Field (TSDF) representation.

This includes the full pipeline from the training process to the actual ROS-node running the encoding

operation, and multiple tools for monitoring and visualising the encoder performance.

To the best of the authors’ knowledge, this thesis presents the first attempt at doing learning-based

navigation using a 360◦ 3D TSDF representation from LiDAR scans and a Convolutional Variational

Autoencoder. This thesis will thus contribute to the understanding of how well a learning-based agent

is able to learn and generalise from the latent space of such a system.

1.5 Limitations

Our implementation is specific to a given class of environment. Therefore, our work is only applicable

to MAVs with similar LiDAR systems, and may have to be revised if a different hardware configuration

is to be used.

The Convolutional Variational autoencoder is trained using data samples collected in a very specific

environment with a limited set of different types of obstacles. Therefore, there is no guarantee that

this model will generalise to environments that are very different. However, as this is a very early

proof of concept for this system of algorithms, it is expected that future research will build upon our

results and experience and be able to generalise further.

1.6 Experimental Setup

For both the training process of the learning-based agent and the training of the CVAE, simulation

tools were fundamental for us to be able to gather enough data. Since these are both learning-based

methods, we needed a significant amount of realistic data samples to emulate a real-world situation.

Using simulation let us speed up gathering training data for the CVAE, and simulating the flight and

collisions of a quadrotor without damaging any equipment in the process. The software tools used for

simulation and visualisation are the following:



CHAPTER 1. INTRODUCTION 7

Robot Operating System (ROS)

ROS [12] is an open-source middleware framework used for simulating and controlling robotic applica-

tions, connecting the different software and hardware components. ROS integrates many features like

message passing, control of low-level components and package management, which are all important

for robotics. During the work on this thesis, we used the ROS Melodic Morenia version.

Rviz

Rviz [32] is a visualization toolkit that enables 3D renderings of environments, sensor data and coor-

dinate transforms. Throughout this thesis, this tool has been used to visualise the trajectories of the

learning-based agents, and visualise the point clouds in the CVAE pipeline.

Gazebo and RotorS Simulator

The simulation engine Gazebo[33] (version 9.0.0) was used together with RotorS for the simulation

of the quadrotor flight, LiDAR operation and the environment. Gazebo is a sophisticated 3D robot

simulation tool with an advanced physics engine and rendering capabilities. This simulator facilitates

accurate sensor and actuator simulation, allowing for safe and realistic robotics development.

RotorS [9] is Gazebo simulator package specifically designed for MAV simulation. It is developed

by the Autonomous Systems Lab at the ETH university in Zürich. The package contains mountable

sensors, controllers and environments relevant for multirotor simulation.

Tensorflow

The open-source machine learning library Tensorflow version 2.0 [11] was used for this project. Ten-

sorflow is developed by Google and is a highly optimised framework for training and running neural

network models. Both the learning-based agent and the Convolutional Variational Autoencoder were

implemented using this framework.

Voxblox

To make both global and local Truncated Signed Distance Field (TSDF) maps, we used the Voxblox

software package [31]. The CVAE is trained to operate on the local TSDF maps from this software

package, while the expert used for imitation learning used the global TSDF map.

Convolutional Variational Autoencoder library

Since no similar software library existed at the time of this research, a software library for training

Convolutional Variational Autoencoders on point clouds was created [6]. This software library con-

tains functionality for gathering datasets from point cloud streams with which it can later train a

given autoencoder structure. A ROS-node for integration into the complete learning-based navigation

pipeline was created. This node compresses the TSDF point cloud data stream from the Voxblox soft-

ware package and sends the compressed representation to the learning-based agent. The reconstructed

point cloud can optionally be continually monitored visually using Rviz.
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OpenAI

OpenAI Gym [8] is a toolkit designed for RL research. During the research for this thesis, we have used

version 0.13 to test different RL methods and to visualise their performance. Their implementation of

the PPO algorithm from their baselines repository [34] was used in this project.

1.7 Outline

The master thesis is structured as follows: First, we have a chapter that establishes the theoretical

understanding needed for both of the later chapters. Then the perception part of the project is

presented in the second chapter, ”Feature Extraction From point cloud Data”. This chapter discusses

how the raw LiDAR point cloud is intelligently compressed by extracting features and smoothing out

sensor noise. The third chapter, ”Learning-based methods for Collision Avoidance”, discusses how

these LiDAR features are used to train a learning-based agent. The agent’s purpose is to propose low-

level control commands, which leads to a reliable collision-free navigation to reach a pre-determined

waypoint. This agent will be trained using both an Imitation Learning framework and a Reinforcement

Learning framework.



Chapter 2

Fundamental Theory

2.1 Machine Learning

Machine learning is a field of computer science where the goal is to fit statistical models to a dataset.

This will later make the computer able to do inferences with unseen data samples to generate a

prediction or action. This process is often executed as an algorithm that only depends on human

operators for basic parameters, and it thus has an interesting decoupling between the computer and

the human operator. Within the field of machine learning, there are three main directions: supervised

learning, unsupervised learning and reinforcement learning.

Supervised learning

In supervised learning, we are fitting a statistical model to a labelled dataset. Thus the model is

explicitly told what output a particular set of input data should generate. The result is a model that

for an input sample, should be able to infer what the output should be [35, p.9].

Unsupervised learning

In unsupervised learning, we are not working with a labelled dataset[35, p.485]. This means that it

is the job of the algorithm itself to find patterns in the dataset, which can then be used to classify

or segment the input. Since this process is independent of human interaction, apart from setting up

basic parameters, the process can yield interesting results previously unimagined by any human.

Reinforcement learning

Reinforcement learning (RL) is a sub-field of machine learning which differs from supervised and

unsupervised learning. This is because the model we are training, often called the agent, is exploring

the state space at the same time as it is learning[36, p.1]. This contrasts with the two earlier methods,

where a complete and balanced data set may be used to train the model. To generate good samples

to learn the model on, the model itself must explore the state space. This is a balance of exploration

and exploitation, where the agent will alternate between locally optimal and sub-optimal strategies to

ensure proper exploration.

9
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2.1.1 Artificial Neural Networks

The name of Artificial Neural Networks (ANNs) is inspired by the fact that their function is loosely

analogous to how a biological brain is constructed. At its core, ANNs are function-approximators that

map a specific input distribution to a desired output distribution. What makes them so influential

is their versatility in solving a very wide range of inference problems, and their complexity is easily

controlled through varying the topological design of the network. They are finding their way into

fields of science that historically have been dominated by clever hand-crafted mathematical models

like computer vision and fraud detection. Given a properly distributed and descriptive dataset, the

ANNs learn autonomously what features to look for in the data and may find subtle patterns, invisible

to humans, which have a large predictive value. At the same time, they are considered ”black box”

models. This is because as the complexity increases from just a few layers and a few neurons, it is

impossible to tell exactly what features and patterns the network is finding. We thus have little control

over what goes wrong and what goes right when the networks are doing their predictions; i.e. if the

network is confidently making a wrong prediction, it is impossible to know why it did this. The only

way to guarantee a certain success rate of the networks is to test them on previously unseen data

samples exhaustively.

Perceptron

The perceptron is the building block of the neural network model architecture, often called neuron in

the fully connected context when several are chained together. It is often called a neuron because of its

similarity to a biological neuron. In the real biological neurons, the dendrite receives electrical signals

from the axons which are modulated in various amounts in the synapses. The neuron only fires an

output signal if the total strength of the input signals exceeds a given threshold. All this behaviour is

modelled in the mathematical perceptron model, using weightings of input signals and an activation

function. This is illustrated in figure 2.1.

Inputs

x1

x2

xn

... ...

ω1

ω2

ωn

Σ

b

φ(.)

Weights

Sum Activation
Function

Output

y

Bias

Figure 2.1: The basic components of a perceptron

As we can see in equation 2.1, we have a vector of inputs xm with corresponding input weights

ωm and an additional bias term b. These weights are changed to reflect their predictive value to the
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desired output. The bias variable is used as a free variable with which the training is able to explore a

larger area of the solution space. When these terms are summed together, they are passed through an

activation function φ(.). Two commonly used activation functions are the ReLU activation function,

as seen in equation 2.2, and the Sigmoid activation function, as seen in equation 2.3. Depending on

the use case, we may choose different types of activation functions.

y = φ(x1ω1 + x2ω2 + ...+ xmωm + b) (2.1)

R(x) =

x if x > 0,

0 otherwise
(2.2)

S(x) =
1

1 + e−x
(2.3)

In the original paper on the perceptron by Rosenblatt in 1958 [37], a simple step function is used

as the activation function. By using only one perceptron, we can do classification based on linearly

separable regions in the input space. An example of this can be seen in figure 2.2a, where the linear

black line separate two regions in the input space.

(a) Linearly separable region in the
input space

(b) Non-linearly separable region in
the input space

(c) Non-linearly non-convex separa-
ble region in the input space

Figure 2.2: Separability of different complexities of input spaces

Even though this is a simplistic example, it shows the capabilities of a single neuron. Using a

nonlinear activation function, we are able to make a nonlinear line in the input space for the activation

of a single neuron, as seen in figure 2.2b. However, we are not able to solve problems where the solution

region in the input space is non-convex, i.e. if we have several separate regions, or a non-convex region,

in the input space that corresponds to the same output. For this, we will need the fully-connected

multilayer perceptron model architecture.

Multilayer Perceptron

The multilayer perceptron model (MLP) [38], or the neural network as it is often called, consists of

chaining together multiple neurons together and thus creating a fully connected network.

In figure 2.3, we can see an elementary neural network with one input layer, one ”hidden” layer,

and one output layer. Between each node, there is a connecting line that corresponds to a signal.

Each node in the hidden layer and the output layer receives a signal from all previous nodes, and the
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activation of a single node corresponds to the activation given by equation 2.1. Now we are able to

make predictions based on non-convex and nonlinear patterns in the input space, an example of which

can be seen in figure 2.2c.

Figure 2.3: An example of a basic neural network architecture

Let us consider the ReLU activation function in equation 2.2. This piece-wise linear function has

been extensively used throughout this thesis as it can overcome the vanishing gradient problem of deep

networks and capture highly nonlinear behaviour. Even though it can facilitate for deep network, the

ReLU function can have an issue of immobilising large parts of the network as the output of a neuron

is zero for any inputs less than zero. Still, it is found to allow for easy optimisation using gradient

descent as the gradients can flow through the layers for inputs larger than zero [39].

Gradient-based training

When we are ”training” a neural network, all it means is that we are changing the weights and biases of

all the inputs in the neurons. For a set of input samples, we want to generate an output that correctly

corresponds to a given value. To do this, we need to make sure that the values of all the weights and

biases are determined in such a way that if we pass a sample through the network, the mathematical

calculation yield values close to the ones we want.

When the network is initialised, all the values are scrambled, and the output should be pure noise

without much predictive value. The first step of training the network is comparing the output values

of the network to the desired output values. For this we use a loss-function. Depending on the domain,

we may use a loss function like the squared error as seen in equation 2.4 or the Binary Crossentropy

as seen in equation 2.5. What all the loss functions have in common is that they produce small values

if the output of the network ŷi is close to the correct value yi, and large values if the output deviates

too much. This now means that we know for each sample what the correct output value should be,

and thus in which directions the outputs of the network should move.

This algorithm is called stochastic gradient descent, and the stochastic part refers to the fact that

we do not know the true gradient, but we are estimating the gradient using sampling [40, p.177].

LMSE(~ω,~b) =
1

n

n∑
i=1

(ŷi − yi)2 (2.4)

LBinaryCrossentropy(~ω,~b) = − 1

n

n∑
i=1

yilogŷi + (1− yi)log(1− ŷi) (2.5)
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Backpropagation

Now that we know in which direction we want to change the output values of our neural network,

we can begin changing the weights and biases in our network. To do this, we use the algorithm

backpropagation [41]. This algorithm computes the gradient in the weight space of a neural network

with respect to a loss function. Or more intuitively; in what way do we need to push the weights and

biases inside the network to move the output values of the neural network closer to the desired ones.

When evaluating the network, the inputs and the outputs change, and the weights and biases are fixed.

When training, the inputs and outputs are fixed, and the weights and biases change. We denote the

neural network as:

g(x) := fL(WLfL−1 . . . f1(W 1x) . . . )) (2.6)

where:

• x: input data

• WL = (wljk): the weights between layer l − 1 and l, where wljk is the weight between the k -th

node in layer l − 1 and the j -th node in layer l

• f l: activation functions at layer l

When training, we have a set of input-output pairs (xi, yi), with the yi being the value we want the

network to predict. The loss is then the difference between this desired output and the actual output:

C(yi, g(xi)) (2.7)

Backpropagation calculates the gradient of this loss function with respect to the model weights,
∂C
∂wljk

, for a given input-output pair (xi, yi). Instead of doing this iteratively through the chain rule,

the algorithm computes the gradient for each layer which saves a lot of duplicate computation. The

fully connected nature of the model lets us do this, as every neuron in a given layer depends on all

neurons in the previous layer. This means that there will necessarily be many shared calculations.

After these gradients have been calculated using backpropagation, we apply a gradient descent step

with step size η as shown in equation 2.8. This process then repeats until some convergence criterion

is met.

− η∇C(~ω,~b) = [∇ω1,∇ω2, ...,∇ωm,∇b1,∇b2, ...,∇bt] (2.8)

An important property of this process is that the magnitude of these gradients gets smaller and

smaller as the gradients are propagated through the layers. Practically, this means that the last layers

in the network will learn faster, and as the gradient propagates backwards through the network, the

layers will learn at an increasingly slower rate. This property is called the vanishing of gradients, and

this is the reason that large networks require longer training times than shallower ones.

2.1.2 Overfitting and Underfitting

Two very important concepts in machine learning are overfitting and underfitting [40, p.110]. Overfit-

ting refers to the situation in which the neural network has learned the whole dataset by heart instead
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Figure 2.4: An illustration of a loss landscape from the paper [42]

of properly generalising. This means that it will be very good at predicting correct values to input

samples it has seen before or input values that lie very close to values seen before in the input space.

However, a sample which is not very close in the input space to something it has seen before will not

be classified correctly.

The opposite may also happen. If a model is underfitted to its training data, it does not accurately

predict the correct output values and thus has not captured enough of the fine-grained patterns in the

training data.

An interesting property of neural networks is that these training behaviours are closely related to

how the neural network is constructed. If we have a neural network with many layers and many nodes

in each layer, the network is generally able to detect more fine-grained patterns in the input data. If

the neural network is shallow, the granularity of the patterns and features it can learn to recognise is

coarser. Therefore, it is important to make sure that the complexity of the neural network matches

the complexity and feature granularity in the training data. This was explored and demonstrated in

the project thesis ”Robustness in Deep Reinforcement Learning for quadrotor control”.

To monitor under- and overfitting, we use a validation loss together with the training loss explained

in the previous section. The validation loss is calculated using a dataset with which the network has

not trained on. This serves as an indication of how well the model is able to generalise. As long as

the training loss and validation loss are decreasing, we can be sure that what the network is currently

learning is transferable to unseen data samples. However, when the two start to diverge, the network

is beginning to overfit. This means that the network is learning the training data by heart.

The reason that deeper networks are more prone to overfitting, is that as the complexity of the

architecture increases, so does the complexity of the loss landscape. Practically, this means that a

complex network will often have several local minima corresponding to the same loss value. It is

very difficult to know whether the minimum the network optimisation process has reached is a global

minimum. This is directly tied to the networks granularity as explained earlier. An example of a

highly non-convex loss landscape can be seen in figure 2.4.

Another result of overfitting, is the problem of overparametrisation. This refers to the process

in which too many parameters are describing a simple mathematical relationship. If a mathematical

relationship between two variables is linear, describing that linear relationship with more than two

numbers leads to overparametrisation. A consequence of this is that the learning outcome of the
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training process may become unstable, as the network is not able to generalise simple mathematical

relationships to outside certain regions it has trained for.

2.2 Kulback-Leibler Divergence

The Kulback-Leibler divergence DKL [43] (often abbreviated KL-divergence) is a mathematical mea-

sure of the similarity between two given probability distributions.

Definition

Let us define two probability distributions P and Q, which exist on the same discrete probability space

X . We then say that the relative entropy from Q to P is defined as:

DKL(P ||Q) =
∑
x∈X

P (x)log

(
P (x)

Q(x)

)
(2.9)

This can thus be interpreted as the expectation of the logarithmic difference between the probability

distributions P and Q, where the expectation is calculated using the probability distribution P . This

relative entropy is only defined if the two random distributions are absolutely continuous with respect

to each other. Practically, this metric can be used to precisely quantify the similarity of two different

discrete random distributions.



Chapter 3

Feature extraction from point cloud

data

3.1 Motivation

To enable autonomous navigation using a MAV in a confined space, we need a way to understand the

environment. Since there is no prior map or a Global Positioning System, we only rely on the onboard

sensors to develop some idea of where the MAV currently is in the 3D environment. Understanding

the environment in which the MAV is situated will help it make decisions that enables safe trajectory

planning and execution without collisions. There exist many discrete algorithms for creating a repre-

sentation of the environment for collision avoidance, however, getting a good 3D understanding of the

environment using these methods is very computationally expensive. This is why we turn to a learning-

based approach. If there exists an intelligent way of understanding the immediate environment based

on a learning-based method, this could save a lot of computation.

3.2 Problem Formulation

The data collected by the MAV is in the form of a point cloud from a LiDAR system. This data

contains a discretised description of the continuous 3D environment, and the resolution of the LiDAR

scan determines the coarseness in the detection of 3D textures. Each data point in the point cloud

represents a coordinate to an obstacle in 3D space, seen from the body frame of the MAV. This data

stream is a high-dimensional representation and is in itself computationally expensive to use directly

as input to a navigating algorithm. The challenge then is to extract the necessary features that the

navigating algorithm needs to fly without collisions. It is not necessarily the case that a reduced

dimensionality representation of 3D space has the features we need for collision avoidance. Therefore,

we need to extract the relevant features for collision avoidance, and discard all unnecessary information.

How we do this, is precisely the problem we will be looking at in this chapter.

16
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3.3 Related Work

In [44], the authors present a set of Visual-Inertial Odometry methods which estimates the position,

attitude, and velocity of a robotic agent by using one or more cameras and the internal Inertial

Measurement Units (IMUs). This enables the robotic agent to navigate without any global positioning

system like GPS, given that the environment in which the robotic agent operates contains a sufficient

amount of visually discernible features.

In [45], the authors propose an algorithm for 3D odometry and mapping for a robotic agent in

real-time using range measurements from a 2-axis LiDAR. They divide the algorithm into two parts;

the first subroutine performs odometry estimation at a high frequency but with low fidelity to estimate

the velocity of the robotic agent, while the second subroutine does fine matching and registration of the

point cloud for mapping at a lower frequency. The resulting system can provide the robotic agent with

both information about its own intertial states like position and velocity, and provide an incrementally

built global map that the agent can use for high-level path planning.

In [46], the authors present a multi-sensor fusion estimation algorithms for a MAV that will be

entering and exiting buildings. To enable the perception of the MAV position in a global map, the

estimation algorithm fuses data from an IMU, laser scanner, stereo cameras, pressure altimeter, and a

GPS receiver. This makes sure that when the MAV enters a building and loses GPS reception, it can

still estimate its global position as it will map its surrounding area using the laser scanner and stereo

camera.

In [47], the authors present an efficient probabilistic 3D mapping framework based on octrees

called OctoMap. It is an explicit representation that maps occupied, free, and unknown space. This

representation is compressed using an octree representation to minimise memory consumption and

efficiently update the 3D map incrementally. Since 3D range measurements have an inherent level of

uncertainty, the method employs a probabilistic approach to integrating new observations, ensuring

consistency in the incremental construction of the global map.

In [48], the authors present ”VDB”, a hierarchical data structure for efficient representation of

sparse, time-varying volumetric data discretised on a 3D grid. The representation exploits spatial

coherency of time-varying data to separately and compactly encode data values and grid topologies.

This results in a representation that supports fast random access with an average of O(1) to insert,

retrieve or delete data points.

In [49], the researchers propose a method called Voxblox. The representation of the map is a Eu-

clidean Signed Distance Field (ESDF), where each point of the map is the distance from the MAV.

This allows for efficient use path optimisation algorithms, while also being readable for humans. Fur-

thermore, the maps are efficiently constructed from TSDF point clouds allowing real-time applications

for MAVs.

In [50], the authors show how to teach a robotic hand to grasp objects in 3D space. They show

that it is possible to understand the 3D environment in a 3D convolutional neural network (CNN)

which applies to collision avoidance. Their CNN shows an ability to understand collision risks when

input a Truncated Signed Distance Function (TSDF) voxel representation of the 3D environment.

In [51], the authors propose a framework for extracting features from a 3D point cloud using voxel-

grid-based downsampling, kd-tree-construction for efficient 3D range searching and a novel modification

of the Euclidean clustering approach for computationally inexpensive object detection.
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In [52], the authors present a lossy compression method for compressing a TSDF voxel representa-

tion to a smaller dimension space. They use a Principal Component Analysis approach followed by an

autoencoder for the compression. They show that the latent space at the bottleneck contains sufficient

information to reconstruct a map enabling estimating the ego-motion of the camera.

In [53], the authors propose an efficient subspace clustering technique to extract planes or surfaces

that are presented in a point cloud. These are then fed as geometric constraints to a nonlinear Model

Predictive Controller for collision avoidance.

In [54], a compression method for 3D LiDAR point clouds is proposed. Residual blocks are used for

a near-lossless compression of the point cloud. Minimising the Symmetric Nearest Neighbor Root Mean

Squared Error (SNNRMSE) and the bits per point representation is used to train the encoder-decoder.

The residual blocks are found to allow for higher performance than other point cloud compression

techniques.

In [55], a framework is made to give hints to humans attempting to land a MAV. The framework

consists of a Cross-Modal Variational Auto-encoder (CM VAE) and a learned policy generated by

the TD3 algorithm. The policy receives as input the latent space of the CM VAE, and the authors

show that the policy can extract a geometric understanding of the environment using this compressed

representation.

In [56], a 2D point cloud representation is obtained using a LiDAR. This is then fed into a CNN,

which directly controls the steering commands of a ground-based robotic platform. It is able to robustly

navigate a cluttered environment to get to its goal.

In [57], the authors compressed a 3D voxel grid using first an octree representation and then later

a Variational Autoencoder. The compression method was tested and proven efficient by its scene

reconstruction as well as for its performance in path planning.

In [58], the authors present a Dynamic Graph CNN for learning point cloud representations called

EdgeConv. Instead of working on individual points, the algorithm exploits local geometric structures

by constructing a local neighbourhood graph and applies graph neural networks to the edges connecting

pairs of points.

3.4 Theoretical Background

A point cloud from a LiDAR scan represents a very fine-grained, high-dimensional 3D representation

of the immediate surroundings of the autonomous vehicle. When doing trajectory planning, operating

directly on these point clouds is currently a very computationally expensive process to do in real-time,

as the point cloud may include millions of points. This limits the speed at which a MAV can traverse

the environment. This section will discuss popular methods for down-sampling this high-dimensional

sensor input into representations that are useful for motion planning.

3.4.1 Convolutional Neural Networks

A central challenge faced by data scientist when working with visual data has always been the curse of

dimensionality. This refers to the fact that as the dimensions of the input data increases, the number

of needed training samples increase aggressively. Visual data is often of high dimensions, with a low-

resolution VGA video signal of 600x400 spanning 240000 discrete values. Having that many nodes
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(or more) in the first layer of a neural network makes it very hard and computationally expensive to

extract features and generalise the input data into different categories, which is often what we want

to do. This network would need to have many deep consecutive layers and would be cumbersome to

work with.

A Convolutional Neural Network solves this problem by introducing the concept of convolutional

layers. These layers have a set of filters that they learn. This represents a feature extraction process

that actively selects the relevant features from the input data necessary to do the prediction. These

convolutions can work on a range of different type of input data, from 1D time-series data to 2D

images, and in our case, 3D convolution on a volumetric environment representation. When these

features have been extracted, the fully connected neural network then learns to piece together what

combinations of features constitute whatever it is trying to predict.

Let us have a closer look at convolutions:

Convolution

Mathematically, convolution is defined as:

(f ∗ g)(t) =

∫ ∞
∞

f(τ)h(t− τ)dτ (3.1)

where f and g are two separate functions. This represents the integral of the product of the

functions after reversing and shifting one of the input functions. This operation has a very pleasing

intuitive explanation. Imagine one of the functions being fixed in place and the other function being

moved from −∞ to ∞. The value of a convolution in any given point in time is just the shared area

under their curves.

Discretising this into the 1-dimensional convolution case, we can represent this as a simple vector

of numbers, called a kernel, being passed over a string of numbers. The resulting convolution is the

dot product between the numbers of the kernel and the numbers the kernel has ”landed on”.

Figure 3.1: An example of a 1-dimensional convolution

In figure 3.1 we can see an example of one such convolution example. Notice how the kernel f is

now working as a feature extractor on the input signal g; it generates a signal h which reflects the

derivative of the input signal g. Notice how the output signal h is 0 everywhere the input signal g stays

constant, positive when the input signal g increases, and negative when g decreases. This is therefore

a simple edge detector kernel.

If we generalise this to 2 dimensions, we are able to detect edges in 2 dimensional data like an
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image. A popular edge detection kernel is the Sobel operator:

Gx =

1 0 −1

2 0 −2

1 0 −1

 (3.2a)

Gy =

 1 2 1

0 0 0

−1 −2 −1

 (3.2b)

This edge detector extracts the magnitude of the horisontal and vertical component of edges in

images. If we want the total magnitude of an edge in an image we can use the following formula:

G =
√
G2
x +G2

y (3.3)

and for the angle of the edge, the following formula:

θ = arctan

(
Gy
Gx

)
(3.4)

This is just an example of a popular kernel used for edge detection and shows how combining

the output of several kernels can be used to extract higher-order features. This is precisely how the

Convolutional Neural Network operates, the only difference being that these kernels are often learned

through a gradient descent optimisation method instead of being hard-coded. The CNN will learn

to recognise the features necessary to fit the network to the training data. This makes the process

independent from prior knowledge about the input data as well as human intervention, which in itself

is a significant advantage.

Stacking many spatial convolutional layers after one another has the effect of approximating higher-

order features. The first layer of the network recognises small and finely-granulated features from

the input data, which then can be assembled into representations of larger areas by the following

convolutional layers. This concept of local connectivity ensures that features clustered close to each

other in the input data may be associated with each other in the following higher-order features, while

features collected at each end of the input image will not. This is in stark contrast to the case of

the fully connected neural network, where all input features are related to each and every other input

feature. This concept applies to both spatial (in the case of images) and temporal (in the case of time

series) dependencies in the input data. CNNs are thus much more efficient at extracting and combining

features.

As each filter is passed over the entire input image, the shared-weight architecture of the convolution

kernels ensures that its weight vector and bias stays the same. This means that the generated feature

map corresponds to a specific filter, and two equal features at different parts of the input image

will give the same response. The practical implication of this is that the resulting feature map is

equivariant under the shifts of the location of the input features. A specific feature may exist anywhere

in the input image, but its activation will still be the same. This shared-weight architecture will also

guarantee an implicit regularisation in the network architecture. Having a limited number of filters,

the convolutional layers will have to be designed to capture the most significant features in the input

data to make accurate predictions. Thus, they are much less prone to overfitting, as the model is
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incentivised to not capture the noise in the training data set, but rather the main feature structures.

The model is also incentivised to keep the magnitude of the values inside the filters bounded, as a

drastically high magnitude in one of the filters would extract unwanted features in other parts of the

image.

A vanilla CNN is illustrated in figure 3.2. An input image is convoluted with a set of filters, which

results in a new set of feature maps. These maps contain the most basic features collected from the

image through the first convolution layer. Subsequently, a new set of filters are applied to the first

layer of feature maps to produce the second, and so forth. Notice how the feature maps decrease in

dimension at every iteration, exactly like it did in our simple 1D example in figure 3.1. As the height

and width of the feature maps decrease, the depth of the feature map stack increases. In the end, we

have a vector of feature maps that only measure 1x1, and this can now be considered our extracted

feature vector. It is then the job of the fully connected neural network to learn what combinations of

features constitutes whatever it is trying to predict.

Figure 3.2: Standard setup of a Convolutional Neural Network

Pooling

As previously mentioned, when a convolution is applied to input data, the resulting convolved output

data often has reduced dimensionality. This is beneficial as it decreases the computational power

needed to process the data. We can also explicitly do dimensionality reduction through a process

called pooling. The goal of the pooling layer is to reduce the dimensionality of the feature space while

preserving the necessary features.

Practically, one first chooses a kernel size. In the example figure 3.3, we can see that the kernel

size is 2x2. We distribute the kernel over the input image without overlapping. Then we can either

choose the maximum value inside each box, or choose the average of the values. These operations

are called Max pooling and Average pooling. In both cases, the input data dimensionality is reduced

while preserving a portion of the data. In both cases, the noise levels are reduced. However, in practice

Max pooling is the most common of the two, as it will select the strongest activation, i.e the strongest

feature, to pass through. Average pooling however, will average the results inside each pooling area

and may thus diffuse strong activations resulting in a weaker feature map.

3.4.2 Point Cloud Measurements

The input to our overall learning-based local planner framework is point clouds. As the name suggests,

this is a data structure that consists of a set of discrete points in 3D space. These points may be encoded
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Figure 3.3: Illustration of a basic pooling operation

with information like intensity, or color in RGB. Sampling a point cloud of the immediate environment

will give a sparse representation of the 3D environment that the agent is currently in. A wall, for

instance, will produce a set of points that all span out a plane, while a rugged tunnel wall will give

a set of points that appear more chaotic. A collection of point clouds may be used to create a mesh,

which consists of creating polygon surfaces between neighboring points in the cloud. One can thus

build a coarse reconstruction of the 3D geometry of the environment.

LiDAR Scanning

Generating the point cloud may be done in several ways. However, in this master thesis we will focus

on generating point cloud data using a LiDAR (“light detection and ranging”). This device measures

the time of flight for a laser beam between emission from the device to the reception. Knowing the

time of flight of the laser beam, one can calculate the distance travelled. Knowing both the distance

travelled and the angles at which the beam was emitted, one can calculate the position of a point in

3D space.

The LiDAR device cleverly integrates this into a unit as we see in figure 3.4. Several laser beams

are placed on top of each other at different angles. These beams are then rotated 360 deg, and at a

given angular interval, the laser beams are fired and return distances to the objects at which the beams

are aimed. This ensures that the 3D environment around the robot is mapped. It is important to note

that the LiDAR has a limited field of view. In our case, the beams exiting the LiDAR unit has a field

of view of ±22.5◦. This means that objects outside of this field of view are not directly observable,

which has direct implications to how a robot may perceive its world.

Figure 3.4: Basic geometry of a LiDAR range scanner



CHAPTER 3. FEATURE EXTRACTION FROM POINT CLOUD DATA 23

(a) A tunnel environments with walls (b) The LiDAR point cloud scan

Figure 3.5: An example of how the point cloud is made

3.4.3 Occupancy Maps

The concept of occupancy maps is straightforward. First, a volume is discretised into cells that are

called voxels. Then, as the sensor input is received, the cells that happen to be at the same spot as an

obstacle or surface, are marked as black. These cells are thus ”occupied”, and after this process has

been repeated for all the cells in the volume, a map is created that represents the 3D volume. The size

of each voxel determines the resolution and granularity of the occupancy map, with high-resolution

maps being able to capture detailed 3D structures with higher fidelity. This occupancy map will then

be a much more useful representation of the 3D environment than the high-dimensional point cloud. It

is an explicit surface representation of the 3D volume, meaning that each black voxel directly represents

a surface.

In figure 3.6, we can see an example of an occupancy map in 2 dimensions. The undiscovered boxes

are grey, the discovered free space is white, and the discovered surfaces are black. The object that is

being discovered is dotted in red.
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Figure 3.6: A 2-dimensional example of an occupancy map

3.4.4 Signed Distance Fields

A Signed Distance Field (SDF) on the other hand, is an implicit surface representation. It is based on

a discretised volume of voxels just like occupancy maps, but each voxel is now colored according to the

distance to the nearest surface. This representation is implicit because it describes the space around

surfaces, meaning that surface positions and orientations can be inferred indirectly. While this may

seem counterintuitive, it is a very useful representation for computer graphics and motion planning,

as we will later see.

Truncated Signed Distance Fields (TSDF)

While an SDF is a very useful representation of 3D space, it is not trivial to construct. The reason

for this is the limited sensing capabilities that an autonomous vehicle has as it is traversing space.

From one point of view, it is impossible to know anything about an object other than what can be

observed directly. This includes the interior of the object itself and the backside. Thus, generic signed

distance fields need to be constructed using several sensor readings covering a sufficient amount of the

3D space.

An alternative to this is to make a projective signed distance field. This method consists of

measuring the distance from the sensor itself to the surface point measurement. A common way to

think about this process is that the sensor projects a ray towards the surface point, and all points

along that ray are encoded with the signed distance to the surface point. This means that we have

both positive values in front of the surface point and negative values behind the surface point. Each

sensor ray is assumed to be a one-dimensional case, and the adjacent measurements are ignored.

We now truncate the field to only include a particular set of values between Dmin and Dmax, which

produces the projective truncated signed distance field.

Let D̂(x) denote the approximation to the TSDF based on the projective line-of-sight distances,

and let this be added to the n-th estimate of the TSDF, Dn(x) with a corresponding measurement
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weight Ŵ (x). The update rules for the TSDF are thus:

Dn+1(x) =
Dn(x)Wn(x) + D̂(x)Ŵ (x)

Wn(x) + Ŵ (x)
(3.5a)

Wn+1(x) = min(Wn(x) + Ŵ (x),Wmax) (3.5b)

Dn+1 denotes the updated truncated signed distance at x based on the projective estimate D̂(x).

The weight Wn(x) is the accumulated sum of the measurement weights Ŵ (x), up to some limit Wmax.

This measurement weight varies based on the implementation and may take the form of many different

types of functions.

Voxblox [49], which is the library we are using in this master thesis, uses the following weighting

function:

wquad(x, p) =


1
z2 −ε < d

1
z2

1
δ−ε (d+ δ) −δ < d < −ε

0 d < −δ

(3.6)

where z is the depth of the measurement in the camera frame, the truncation distance δ = 4v,

ε = v and v is the voxel size. The intuition behind this weighting function is that the influence of

voxels that have not been directly observed is reduced. These voxels may be the ones behind walls or

inside objects, and their influence should be minimised as one cannot be sure that they are correct.

When merging a new sensor measurement into the TSDF, Voxblox groups all points in the sensor

cloud belonging to the same voxel together, calculates the mean intensity value and distance across the

grouped points. Instead of raycasting to every point in the sensor measurement to update the color of

all voxels in between, raycasting is done only once to the grouped points to save computation.

From a practical point of view, the TSDF representation offers many advantages. It is fast to

construct, which means that it can be run at a high frequency without significant computational

penalties. This is crucial to the overall learning-based agent, as we, in general want to reduce the

computational complexity and thus be able to run the algorithm with less latency and at a higher

frequency. The second benefit of choosing a TSDF representation is that it filters out LiDAR sensor

noise when merging new point clouds into the TSDF map. Reducing the noise of the observation input

to the compression algorithm is a key benefit. The compression algorithm then does not need to learn

how to filter it out explicitly. The third benefit of this representation is that we can make a radius

around the robot where the local objects that fall within this radius are integrated. This means that

we have a fixed-size observation space for the local vicinity around the robot, which is ideal for doing

local motion planning.



CHAPTER 3. FEATURE EXTRACTION FROM POINT CLOUD DATA 26

(a) A simple environment with two walls (b) The TSDF representation

Figure 3.7: An example of how the TSDF is made

Figure 3.7 demonstrates what the TSDF looks like in practice. Here we can see empty space

encoded in purple, and the solid wall encoded in yellow. We see that most of the free space is not

encoded with distance information but rather remains encoded as empty space. Inside the truncation

radius from the walls, we can see a gradient of colours protruding from the surface of the walls. This

indicates the distance from the wall at any given point inside the truncation radius. At the wall’s

surface, the signed values cross from positive to negative, which means that the wall is encoded with

zeros. Note that in this example, the TSDF is in 3D.

An important consequence of the geometry of the LiDAR, as shown in figure 3.4, is that the space

directly above the MAV is not directly observable. The TSDF-map does not include anything outside

the visible region of the LiDAR, which means that objects passing over and under the MAV will be

lost from view. However, because the TSDF assumes object permanence, objects that move inside the

visible region of space, but behind other obstacles, will be remembered. This means that the TSDF can

encode how objects look from the other side as it moves around the object itself. For the navigation

of a robot, this means that there is an accumulation of data with which the autoencoder will be able

to work with, instead of only being able to see what is directly observable in a given instance.

3.4.5 Compression Methods

As previously stated, the main challenge discussed in this chapter is how to reduce the dimensionality

of the incoming LiDAR data stream so that intuition about the surrounding environment can still be

inferred from the data. Generally, this dimensionality reduction is either done by selecting the relevant

features and discarding the rest (selection), or by extracting new features which are created based on

the old features (extraction).

To discuss dimensionality reduction, we can define some basic concepts. An encoder is the process

that extracts the new features from the old representation (either by selection or extraction), and a

decoder is the exact opposite. Thus, the dimensionality reduction process consists of the encoder

compression of the data from the initial space to the encoded space, or latent space. From this

compressed representation, the decoder decompresses the data and tries to reconstruct the original
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Figure 3.8: Dimensionality reduction using an encoder and decoder

representation. This process can either be lossless or lossy. In a lossless process, no information is lost

during compression, and the full representation can be reconstructed later. In a lossy process, some of

the information is lost during compression. Depending on the size of the latent space, and the method

with which the data is compressed, the amount of lost data varies.

Let e(∗) define the encoder function, and d(∗) define the decoder function, as illustrated in figure

3.8. We can thus define lossless encoding as:

x = d(e(x)) (3.7)

and lossy compression as:

x 6= d(e(x)) (3.8)

In general, we can define the dimensionality reduction problem as finding the best pair of en-

coder/decoder which keeps the maximum of information when encoding, which then results in

the minimum reconstruction error when decoding. This can then be formulated as:

(e?, d?) = arg min
(e,d)∈E×D

ε(x, d(e(x))) (3.9)

where ε(x, d(e(x)) denotes the reconstruction error between the input data x and the compressed

and decompressed data d(e(x)).

We can see that using the TSDF representation we have already heavily compressed the LiDAR

observation space dimensionality significantly while retaining the most essential features.

Autoencoder

The autoencoder [59] is an encoder-decoder structure just like described in the previous section, and

uses neural networks, as illustrated in figure 3.9. The encoder is a neural network that compresses the

input space into a smaller latent space representation, and the decoder network tries to decompress

this latent space into the original representation. This set of networks are trained using an iterative

optimisation process, in which the autoencoder is fed a set of data, and the output of the autoencoder

is trained to replicate the given data. This is done by measuring the reconstruction error and back-

propagating the error through the network structure to update the weights of the networks. The loss
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Figure 3.9: Neural network autoencoder

can thus be defined as:

loss = ||x− x̂|| = ||x− d(e(x))||2 (3.10)

As seen in the figure 3.9, the autoencoder structure creates a latent space at the “bottleneck”,

where the dimensionality of the data is reduced. This bottleneck guarantees that the dimensionality

of the data is reduced to a certain size through the compression in the encoder.

It is important to note that we do not necessarily need a perfect reconstruction of the input

data at the end of the autoencoder. The goal is to reduce the dimension in the bottleneck layer in

such a way that the irrelevant information is discarded and the major structures within the data is

preserved. Depending on the use-case for the autoencoder, the optimal size of the bottleneck layer

varies accordingly. For our use case, we want to reduce the size of the LiDAR point cloud data in such

a way that the general geometric structures are coarsely represented and that the euclidean distance

data is preserved in the bottleneck layer. We do not need to know all the fine-grained details of an

object to be able to do effective collision avoidance.

3.4.6 Variational Autoencoders

The downside of the standard vanilla autoencoder, is that the latent space may be unstructured and

overfitted. When the autoencoder is only trained by minimising the reconstruction error between

the input and output, it may take advantage of all overfitting possibilities to achieve its goal. This

means in practice that two points that are very close in the latent space might be decoded completely

differently. This makes the latent space unpredictable and unorganised, and any network trying to

learn anything useful from this latent space representation will have a more difficult job. Ideally, we

want two similar input data sets to be represented as points close to each other in the latent space. To

do this, Variational Auto Encoders (VAEs) [60] introduce explicit regularisation of the latent space.

Intuitively, this creates a “gradient” over the information encoded in the latent space, which means that

one can traverse a path in the latent space, and the output of the decoder network will be continually

changing.
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Figure 3.10: Process of the variational autoencoder
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Figure 3.11: Structure of a variational autoencoder

The training process of a VAE is similar to a standard autoencoder. However, in order to introduce

regularisation of the latent space, we encode the input as a distribution over the latent space, rather

than as a single point. This is illustrated in figure 3.10, and the complete VAE structure is illustrated

in figure 3.11.

The encoded distributions are chosen to be gaussian distribution, which means that the encoder can

be trained to return the mean and covariance matrix that describes this gaussian distribution. This

gives a natural latent space regularisation, as the distributions will be forced to resemble a standard

normal distribution. The loss function that the training algorithm is minimising when training the VAE

is thus comprised of two terms; the first is the reconstruction error like in the plain-vanilla autoencoder,

and the second is the regularisation term expressed as the Kulback-Leibler (KL) divergence between

the returned distributions and a standard Gaussian distribution, as explained in section 2.2.

loss = ||x− x̂||2 +KL[N(µx, ρx), N(0, 1)] = ||x− d(z)||2 +KL[N(µx, ρx), N(0, 1)] (3.11)

If the latent space distribution strays too much from the standard normal distribution, this cost

will increase and thus increase the loss function. Therefore, during training, the network is therefore

incentivised to keep the latent space distribution close to a normal distribution.
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Variational Autoencoders From a Statistical Point of View

When we are training a model, we want it to be representative of the dataset that we are feeding

it. This means that we want every data point X in our dataset to have at least one latent space

representation, which then causes our model to generate an output very similar to the input X.

Mathematically speaking, this is represented as a vector of latent variables z which exists in the high-

dimensional latent space Z. From this latent space, we can sample according to a given probability

density function P (z). Following this latent vector, let us say we have a set of deterministic functions

f(z; θ) parametrised by the parameter vector θ in some parameter space Θ, which maps from the

latent space to the input space: f : Z × Θ → X . f(z; θ) is then a random variable in the original

input space X , as z is a random sample, and the function f is deterministic with a fixed parameter

vector θ. Our goal is to optimise the parameter vector θ in such a way that we can randomly sample z

from the distribution P (z) and, with high probability, end up in the original input space X using our

deterministic function f(z; θ).

Thus, during training, we aim to maximise the probability of each sample z to resemble the training

data X:

P (X) =

∫
P (X|z; θ)P (z)dz (3.12)

where f(z; θ) is replaced by the distribution P (X|z; θ). The rationale behind this maximum likeli-

hood formulation is that if the model is likely to generate training data samples, it will also be likely to

produce similar samples to the training data samples and unlikely to produce dissimilar ones. It is com-

mon to use the Gaussian distribution as the choice of output distribution in Variational Autoencoders:

P (X|z; θ) = N (X|f(z; θ), σ2 ∗ I), where I is the identity matrix.

By using the Gaussian distribution, we can use common optimisation techniques like gradient

descent to increase P (X) by changing the parameter vector θ in such a way that the function f(z; θ)

approaches X for some sampled z.

To make the output of our Variational autoencoder similar to the data samples in the training set,

i.e. solving equation 3.12, we have to solve two problems:

1. How do we define the latent variables z, and decide what information they represent?

2. How do we integrate over z, i.e. how do we make sure for all latent space samples z we end up

with data samples that are similar to the ones in training set X?

Defining the latent variables in z boils down to choosing what features to look for in our input

data. We know we cannot encode the complete input sample into z, and therefore some selection of

features from the input data needs to be done. These features may be correlated and dependent on the

structure of the latent vector z. What variational autoencoders do, is make sure all samples of z can

be drawn from a simple Gaussian distribution N (0, I) where I is the identity matrix. This is exactly

the regularisation we were talking about earlier. It makes sure that the latent space is organised so

that the pool of possible latent space vectors is known.

This is possible because any distribution can be generated by taking a set of normally distributed

variables and mapping them through a sufficiently complex. The same is then the case for the input;

any input distribution may be mapped to a normal distribution using a sufficiently complex function.
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Therefore we may use powerful function approximators to map the independent and normally dis-

tributed z values to a suitable set of latent variables and then be mapped back to the input data space

X.

Reparametrisation Trick

Figure 3.12: Illustration of the reparametrisation trick

A challenge with Variational autoencoders is that the architecture contains a node that does a sampling

operation. This sampling node does not permit a backpropagation operation to run through it because

of the stochastic nature of the sampling operation. Let us look into why this is the case and what can

be done to remedy this.

We look at an example. Let us say that we are trying to calculate the gradient with respect to θ

of the following expectation:

Ep(z)[fθ(z)] (3.13)

where p is a probability density function, and θ are the parameters with which the function fθ is

parametrised. If we can differentiate the function fθ(z), the gradient is easily computed:

∇θEp(z)[fθ(z)] =∇θ
[ ∫

z

p(z)fθ(z)dz
]

=

∫
z

p(z)
[
∇θfθ(z)

]
dz

=Ep(z)
[
∇θfθ(z)

]
(3.14)

We see that the gradient of the expectation is the same as the expectation of gradient. However,

this is assuming an independent probability density function p. In our case, we have that p is also

parametrised by θ.
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∇θEpθ(z)[fθ(z)] =∇θ
[ ∫

z

pθ(z)fθ(z)dz
]

=

∫
z

∇θ
[
pθ(z)fθ(z)dz

]
=

∫
z

fθ(z)∇θpθ(z)dz +

∫
z

pθ(z)∇θfθ(z)dz

=

∫
z

fθ(z)∇θpθ(z)dz + Epθ(z)

[
∇θfθ(z)

]
(3.15)

As we can see, we end up with two terms when calculating the gradient of the expectation of our

function f . We do not have any guarantee that the first term is an expectation. If there existed

an analytic solution to ∇θpθ(z) this would not be a problem, but since we are working with discrete

distributions, we have to use Monte Carlo methods. Monte Carlo methods require that it is possible

to sample from pθ(z), but not that it is possible to calculate its gradient.

Let us see what happens when we apply the reparametrisation trick to our example.

ε ∼ p(ε) (3.16)

z = gθ(ε, x) (3.17)

Epθ(z)[f(z(i))] = Ep(ε)[f(gθ(ε, x
(i)))] (3.18)

where vectors are denoted in bold and the ith sample of a vector v is denoted v(i) and l ∈ L denotes

the lth Monte Carlo sample. ε is now a random variable drawn from a distribution which does not

depend on the parameter vector θ, while our z is now calculated using a function gθ which depends

on both the random ε and a parameter x. It is important that the function gθ is differentiable for the

following to work. Let us calculate the gradient of this expectation:

∇θEpθ(z)[f(z(i))] =∇θEp(ε)[f(gθ(ε, x(i)))]

=Ep(ε)[∇θf(gθ(ε,x(i)))]

≈ 1

L

L∑
l=1

∇θf(gθ(ε(l),x(i)))

(3.19)

We have thus used the reparametrisation trick to express a gradient of an expectation as an expec-

tation of a gradient. A monte carlo method can then be used to estimate ∇θEpθ(z)[f(z(i))] using the

result of equation 3.19.

Let us put this into our Variational Autoencoder framework. The loss function in equation 3.11

can be re-written as follows:

LV AE = −KL[qθ(z|x(i))||pθ(z)] +
1

L

L∑
l=1

logpθ(x
(i)|z(l)) (3.20)
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qθ(z|x(i)) Encoder
pθ(z) fixed random distribution

pθ(x
(i)|z(l)) Decoder

We can interpret the equation 3.20 as follows:

Seen this way, the KL-divergence term will encourage the approximate posterior distribution

qθ(z|x(i)) to resemble the prior fixed random distribution pθ(z). If the approximate posterior ex-

actly matches both the real posterior and the prior, we would have that p(x) = p(x|z) using Bayes’

rule. Then one would only need to sample a z and condition on z to make a realistic sample x in the

same space as the input distribution.

A Pass Through the Computational Graph of the VAE

1. µx,σx = M(x),Σ(x) Pass x through the encoder

2. ε ∼ N (0, 1) Sample noise

3. z = εσx + µx Reparameterise

4. xr = pθ(x|z) Pass z through the decoder

5. recon. loss = BinaryCrossentropy((x,xr) Compute the reconstruction loss

6. var. loss = -KL[N (µx,σx)||N (0, I)] Compute variational loss

7. Total loss = recon. loss + var. loss Combine the losses

3.5 Proposed Method

The proposed method for point cloud feature extraction consists of learning a latent space using a

Convolutional Variational Auto-Encoder (CVAE). The input of the CVAE is a binarised version of

a local projective TSDF point cloud. The CVAE has then trained to re-project the binarised TSDF

point cloud, optimising the feature representation in the latent space. In the larger scope of this

project, the learning-based agent will map from this latent space to an acceleration vector. A TSDF

representation of the point cloud encodes the distance information between the MAV and the objects

within the cloud explicitly. Therefore, it is a valid candidate to ensure collision avoidance properties

in the latent space.
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3.5.1 Convolutional Variational Autoencoder

Figure 3.13: General structure of the 3-dimensional Convolutional variational autoencoder

The general structure of the Convolutional Variational Autoencoder can be seen in figure 3.13. Note

that the number of convolutional and dense layers are varied, as well as the size of the bottleneck, or

namely the latent space dimension.

The number of convolutional layers, as well as the number of learned filters in each layer, determine

how fine-grained the features we are extracting are. We can generally regard this part of the network as

a feature extractor, where the first convolutional layer recognises low-level features like edges, and the

following convolutional layers pieces together higher-order features made up of the low-level features.

After flattening the feature map from the convolutional layers, we get a feature vector from which

the following dense layers will learn from. The job of the dense layers is to recognise what combinations

of features in the feature vector corresponds to a given type of object in the input data and compress

this into a latent representation which retains only the most necessary information.

In the bottleneck layer, we have the latent space distributions. This is where we extract the latent

space vector, which we will send to the RL agent. We expect that by increasing the size of this layer,

more information can get through to the decoder. This will hopefully make the reconstructions better

and the latent space more descriptive.

It is important to note that more and denser layers will not necessarily make the encoder any

better. If we increase the complexity too much, we may end up with an overparametrised network.

This boils down to the network being much more complex than the data it is trying to encode and will

make the network very prone to overfitting. We need to make sure that the complexity of the CVAE

matches the feature-granularity in our input data, or else we may end up in a situation where input

samples that lie close to each other in the input space are treated completely different by the CVAE.

As explained in section 3.4.6, introducing an explicit regularisation of the latent space helps with the

overfitting problem, but it gives no guarantee.
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Internal activation function ReLU

Output activation function Sigmoid

Kernel size 3

Strides 2

Padding Same

Loss function Weighted Binary Crossentropy

Loss function weighting 60/40

Learning rate 0.001

Optimizer Adam

Table 3.1: The parameters of the Convolutional Variational Autoencoder

It is worth noting that the chosen loss function for the autoencoder, Weighted Binary Crossentropy,

as seen in table 3.1, plays an important role. For an agent traversing the environment, the most critical

factor is to ensure collision avoidance. If we look at this from a statistics standpoint, Type-II faults are

much worse than Type-I faults. This is because a model that cannot reproduce an object, may result

in a collision if the agent thinks the space is empty. However, a false positive will make the agent avoid

a region of empty space, and may in the worst case make the agent unsure as to where to go because

of clutter in its reconstructed map. The latter consequence can mean a deterioration in performance,

while the former consequence is potentially disastrous. During the training of the autoencoder, this

is compensated for by the fact that a false positive (a positive in this sense meaning an obstacle) is

penalised less than a false negative.

1. Insert point cloud from LiDAR into local TSDF representation using Voxblox

The first step in the dimensionality reduction process already starts here. For scanning the

environment an Ouster OS1 LiDAR system with 64 beams is used [61]. As we can see in the

technical specifications in table A.1, we receive 1.3 million points per second. This is a data stream

of very large dimensions. To reduce this dimensionality while preserving necessary features, these

point clouds are fed to the TSDF server of the Voxblox algorithm [31]. The TSDF representation

is constructed using the method explained in section 3.4.4, and as each new point cloud is received

from the LiDAR, it is integrated into the existing TSDF point cloud. It is important to note

that because this process integrates point clouds into an already existing representation, there

is a possibility of erroneous detections being propagated through several iterations of the TSDF

representations before it is corrected. This is especially true if an erroneous detection disappears

from the direct view of the LiDAR, as the TSDF server will assume object permanence and

therefore preserve the detection.

The most interesting property of the local TSDF representation is the fact that it has a fixed

size, in our case 64x64x16. This is hugely important as the input of our convolutional neural

networks expects a constant input dimension size. The local TSDF will thus in practical terms,

be a sliding window of the immediate local vicinity of the MAV, with the MAV position being in

the middle of the frame. Since we are doing local path planning and collision avoidance, knowing

the immediate vicinity should be sufficient for generating a local collision-free path.

2. Convert the TSDF point cloud into a binarised 4D-tensor
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(a) Unseen space classified as
grey

(b) Unseen space classified as oc-
cupied

(c) Binarised representation of
immediate environment

Figure 3.14: Different configurations of the input TSDF point cloud tensor shown in 2D

Now that we have a rich TSDF point cloud representation around the MAV, we will binarise

it. We are only interested in knowing if a pixel is empty or occupied, and thus binarising the

TSDF representation will enable us to generate a 3D occupancy map like the one illustrated

in section 3.4.3. However, we are considering unexplored space as occupied. This is because a

TSDF detection of an object inherently does not know what is inside an object, and the result

is that some detections are only represented as thin edges as seen in figure 3.14a. This is a

problem when training the autoencoder, as it will have a hard time learning thin objects as they

constitute a small fraction of the overall pixels in the input tensor. Ensuring that unexplored

space is considered occupied solves this problem and makes the autoencoder much better at

reconstructing a useful 3D map of the environment. It is worth noting that this means that

simple geometric objects initially are not represented by their geometry until the agent has had

the possibility of seeing this object from different angles.

We then binarise the tensor with a binarisation threshold of 0.1. This means that all space

that is occupied, and all space closer to 10cm to a wall is considered occupied, while the rest is

considered free space. Including 10cm of the area protruding from the surface of obstacles adds

a padding which does two things. Firstly it makes sure that the volume of the detected objects

is increased slightly to allow for easier learning for the autoencoder. Secondly, it adds a safety

margin for the agent making it less likely to collide during training.

Binarising the TSDF representation also has a very important practical advantage, as we are

able to encode each pixel with an 8-bit integer value instead of the 64-bit floating-point value

returned by Voxblox. The resulting reduction in the size of each set of TSDF point clouds is by

a factor of 8, which in turn significantly increases the size of the dataset available for training

later on.

3. Encode this 4D-tensor into a latent space

Now we pass the binarised tensor into the autoencoder. When doing inference, it is important to

note that we do not add noise as described in section 3.4.6; we only pass the mean value through

to the decoder. If we had not done this, we would have an output that would be varying for

a constant TSDF point cloud input. We both extract the reconstructed tensor and the latent

space from this process. The reconstructed tensor gives us a clue about how well the input image

features have been encoded. However, this is not a direct proof of what is encoded into the
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latent space. Suppose a TSDF point cloud is fed into the autoencoder which differs significantly

from anything it has seen before. In that case, we cannot be absolutely certain about what

gets encoded into the latent space. The decoder will try to reconstruct the features it sees in the

latent space, but this assumes that the decoder will be able to recognise the features in the latent

space.Looking at the reconstruction can serve as a good indication about what gets encoded into

the latent space.

4. Feed this latent space representation to the agent

Once the encoder has generated this latent space representation, it is then fed to the learning-

based agent, which will learn to recognise features from this latent space to generate collision-free

paths.

3.5.2 Computational Graph

Figure 3.15: The computational graph for creating the latent space vector

The computational graph of the CVAE pipeline is illustrated in figure 3.15.

3.6 Results

3.6.1 Training Methodology

Figure 3.16: The generalised training environment
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(a) The easy environment with
only 1 cube

(b) The medium environment
with several obstacles

(c) The hard environment with a va-
riety of shapes and sizes of obstacles

Figure 3.17: The training environments which get progressively more difficult

The training procedure in chapter 4 uses the environments shown in figure 3.17. The first environment

3.17a is a room in which there exists only one large cube as an obstacle to the MAV. In the second

environment 3.17b we introduce more types of objects with different geometries. In the third environ-

ment 3.17c, the number and complexity of obstacles are increased even further. The obstacles in these

environments are shuffled at a certain interval to ensure generalisability. This serves as an excellent

way of testing the performance of a generalised autoencoder which is trained on a varied data set from

the environment in figure 3.16. We can test how much deterioration in reconstruction we get as the

environment we are testing in gets increasingly more difficult. This will give us an important clue as to

how well the autoencoder can generalise between different complexities in the environments in which

it is operating.

The training data for the generalised autoencoder is collected in a randomised environment, exem-

plified in figure 3.16. This is a 100m long corridor where obstacles are randomly placed. The MAV is

traversing the environment running the Dagger algorithm, as explained in chapter 4. For every 10 runs,

the obstacles in the environment are shuffled randomly inside the corridor. The walls of the corridor

always stay the same. The goal is then to have an encoder that generalises to unseen configurations of

this obstacle corridor. The shuffling should help prevent overfitting as the model will receive an input

dataset that is well distributed. We collect 100,000 TSDF point clouds from the training environment

for training, and 20,000 TSDF point clouds for validation. Other types of environments like caves and

urban tunnels were also investigated. However, to be able to assess the performance of the CVAE

precisely, an environment like the one exemplified in figure 3.16 gives a better indication as to what

types of objects the CVAE is able to understand or not.

We want to compress the input dimensions as much as possible. Therefore it is necessary to test

the limits to how accurate the CVAE can reconstruct point clouds with different dimensions of the

latent space, number and width of dense layers, and the number of filters and number of convolutional

layers. To know approximately where to start, we look to the paper [50], where they use a similar

approach of constructing a 40x40x40 TSDF which is then passed to a 3D CNN network. We note that

they construct a TSDF with a size that is in the same order of magnitude as ours at 64x64x16, and

that they use three convolutional layers in their encoder with the number of filters [16, 32, 64]. We use

this as a suggestion as to where to start in the parameter search.
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We are trying to capture the correct granularity of details from the dataset with the complexity of

our autoencoder model. This means that it is not interesting for us to capture a detailed representation

of the surfaces of objects, but only the coarse general geometric structure of the immediate environment.

This should be sufficient for doing collision avoidance. However, this needs to be tested to find the

right balance. We will therefore test the efficacy of a chosen autoencoder model in the chapter 4.

3.6.2 Metric

To directly compare the different network configurations, we will look at the loss of the training. As

explained earlier, this includes both the KL-divergence from a standard normal distribution and the

reconstruction loss. This means that we will get an idea about how well the latent space is regularised

and how good the network is at reconstructing the input data. It is important to have a validation

dataset with which the autoencoder may be continually validated during training. This will indicate

which point the model is starting to overfit to the input data, as the training loss and the validation

loss will start to diverge.

Each model will be evaluated at the point at which the validation loss and the training loss start

to diverge.

We will use the F1-metric evaluate each architecture’s performance. This is the geometric mean

between precision, as seen in equation 3.21, and recall, as seen in equation 3.22.

Precision =
true positives

true positives+ false positives
(3.21)

Recall =
true positives

true positives+ false negatives
(3.22)

F1 = 2× Precision×Recall
Precision+Recall

(3.23)

3.6.3 Performance of Different Network Configurations

Model architecture nr. 1 2 3 4 5 6 7 8 9 10 11 12

Total number of parameters 1180037 1601701 1902757 867333 952055 1218537 1640201 1979657 3030345 4447208 1646697 990825

Latent space dimension 50 50 50 50 50 100 100 100 100 100 100 100

Dense layer structure [512,256] [512,256] [512,512] [256,128] [256,256] [512,256] [512,256] [512,512] [512,512] [512,256] [512,256] [512,256]

Convolutional layer structure [8,16,32] [16,32,64] [16,32,64] [8,16,32,64] [8,16,32,64] [8,16,32] [16,32,64] [16,32,64] [32,64,128] [16,32,64] [8,16,32,64] [8,16,32,64]

Maxpooling Y Y Y N N Y Y Y Y N N N

Validation loss 236.6 283.6 259.6 221.4 235.5 237.2 272.8 247.4 294.5 217 240 240.6

Validation KL-loss 25.81 26.34 26.17 25.21 23.14 27.76 25.03 26.05 23.71 30.67 21.55 23.54

Validation reconstruction loss 210.8 257.3 233.4 196.2 212.4 209.4 247.2 221.4 276.1 186.3 218.5 219.7

Validation precision 0.95 0.923 0.9379 0.9512 0.9421 0.9453 0.9331 0.9458 0.9129 0.952 0.9414 0.9466

Validation recall 0.9605 0.9665 0.9634 0.9647 0.9684 0.969 0.9583 0.9626 0.9571 0.9703 0.9685 0.9623

Validation F1-score 0.9552 0.9443 0.9504 0.9579 0.9551 0.957 0.9455 0.9541 0.9384 0.9611 0.9547 0.9544

Table 3.2: CVAE parameter tuning

3.6.4 Effect of Compression on the Data Stream

We present the bandwidth of the different components of the CVAE pipeline.
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Data stream Bandwith @ 10 Hz

Raw LiDAR point clouds ∼ 4.09 MB/s

TSDF point clouds ∼ 5.54 MB/s

Latent vector ∼ 2.07 KB/s

Table 3.3: Bandwidth of the different data streams in the CVAE pipeline

3.6.5 Generalisability of Networks

The following illustrations show the reconstruction performance of the autoencoder in increasingly

more complex environments.

(a) The MAV in Gazebo simu-
lation

(b) The occupancy map gener-
ated by the TSDF server

(c) The reconstructed output TSDF
point cloud from the CVAE

Figure 3.18: Illustration of the performance of the CVAE in the easy environment 3.17a

(a) The MAV in Gazebo simu-
lation

(b) The occupancy map gener-
ated by the TSDF server

(c) The reconstructed output TSDF
point cloud from the CVAE

Figure 3.19: Illustration of the performance of the CVAE in the medium environment 3.17b
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(a) The MAV in Gazebo simu-
lation

(b) The occupancy map gener-
ated by the TSDF server

(c) The reconstructed output TSDF
point cloud from the CVAE

Figure 3.20: Illustration of the performance of the CVAE in the hard environment 3.17c

(a) The MAV in simulation close
to the wall

(b) The occupancy map gener-
ated by the TSDF server

(c) The reconstructed output
TSDF point cloud from the CVAE

Figure 3.21: Generalisation of a wall

(a) The MAV in sim-
ulation in front of a
cylinder

(b) The occupancy map gener-
ated by the TSDF server when
object is far away from the MAV

(c) The occupancy map generated by
the TSDF server when object is close
to the MAV

Figure 3.22: The occupancy map created when the MAV is approaching a cylinder head-on
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3.7 Discussion

3.7.1 Model Architecture

We begin by looking at table 3.2 where the results from exhaustive experimentation with CVAE

architecture parameters are presented. They centre around 50 and 100 as latent space dimensions,

as these have been found empirically through early trials to result in the best reconstructions for the

given problem. We remind the reader that this chapter aims to compress the input TSDF point cloud

as much as possible while retaining useful features. A smaller latent space means that a learning-based

agent will have an easier job of learning the patterns present, as they necessarily will be of lower

dimensions and be more general. Therefore we do not only look for the overall best reconstruction but

also a prudent balance between latent space dimensionality, network complexity and reconstruction

performance.

It is evident that the model performance is a balancing act between the three main components of

the CVAE architecture; the structure and depth in the convolutional layers, the structure and depth

in the dense layers, and the latent space dimensions.

The first part of the network consists of the convolutional layers and eventually a max-pooling

layer. As mentioned previously, this part of the network extracts features from the input TSDF point

cloud. The number of filters at each layer determines the complexity of features extracted at each

feature map, and reduces the feature map dimensionality. In table 3.2 we can see that we alternate

between having three convolutional layers and one pooling layer, four convolutional layers, and only

three convolutional layers. Observe the difference in the total number of parameters between model nr.

10 and 7. The only difference between these two architectures is the inclusion of a max-pooling layer

that decreases the feature map’s dimensionality before this is passed on to the fully-connected part

of the network. This means that the additional 2.8M network parameters can only be attributed to

the interface between the convolutional layers and the dense layers in the CVAE. Consequently, we do

see a benefit of these extra parameter weights in the F1-score between these two architectures at the

expense of the massive increase in computational cost. Instead of a max-pooling layer, model nr. 11

uses an additional convolutional layer to reduce the dimensionality of the last feature map before the

dense layers. Comparing nr. 7 and 10, we see a great advantage of using an extra convolutional layer

instead of a max-pooling layer, as the F1-score of the model nr 11 is now much closer to the F1-score

of model nr 10. This is also because the model nr. 11 has roughly the same number parameter weights

as model nr. 7, and a great number fewer than nr. 10.

An interesting comparison can be made between the model nr. 8 and 9. Here we see the effect of

overparametrisation in the convolutional layers, as the simpler convolutional architecture of model nr.

8 results in a substantially better F1-score with everything else being equal.

As explained in section 2.1.2, we know that a more complex fully connected network architecture

results in a more fine-grained learning of feature in the training data. We also remember that complex

networks are prone to overparametrise and get stuck at local minima. Therefore, it is very interesting

to observe the difference between Model nr. 4 and 5 in table 3.2, as we can see that they are identical

except for the depth in their dense layers. The model nr. 4 as a slightly simpler dense layer architecture

than model nr. 5, but despite this its F1-score is actually better. This may suggest that the granularity

of features presented by the Convolutional layers fits better with the simpler architecture of model nr.

4, and that model nr. 5 may overparametrise slightly. The opposite is the case between the model nr.
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2 and 3. Here we see an improved F1-score by increasing the depth and complexity of the dense layers,

which suggests that the features collected by the convolutional layers fit better with this network.

To reach a good balance between the complexities in these different model architectures, we look

at the tradeoff between computational complexity, latent space dimensions and model performance.

Model nr. 4 seems to be the best tradeoff between these parameters. At only 867k total number of

parameters and a latent space dimension of 50 it has an impressive F1-score, and is only outperformed

by the model nr. 10, which has a latent space of 100 and 4.4M number of network parameters.

Therefore, this is the model architecture we will use for the remainder of this thesis.

However, it is important to mention that these results are only applicable to the types of environ-

ments and objects presented in figure 3.16 and figures 3.17a-3.17c which are limited to straight walls,

cubes, cylinders and spheres of different dimensions. We have found the network parameters suitable

for extracting features of this granularity from the environment. It is to be expected that should the

MAV explore much more complex environments; the CVAE will try to represent these environments

using the types of figures it has seen in this dataset which may not be sufficient at all.

Lastly, we need to discuss the fact that the F1-score is an aggregate measure that tells us about

the reconstruction performance of the CVAE across the whole input-output point cloud tuple. No

information about the performance with respect to the locality of the objects, or their size, is included.

The first problem with this is that we do not know whether all sectors of the input TSDF point cloud

are treated equally during training. If there exists a bias in the training data for the locality of objects,

this will not be accounted for. The result may be that the latent space is unevenly distributed with

respect to how an object moves around in the local TSDF point cloud. The second problem is the

problem of object size. In the current CVAE setup, we are treating each input-output voxel tuple

independently in the cost function. This means that objects that are larger in size are statistically

more likely to be reconstructed than smaller objects solely due to their increased number of voxels.

The current F1-score treats each input-output voxel tuple independently as well and is thus not able to

capture the imbalance with respect to the coupling between the likelihood of reconstruction and the size

of objects. Ideally, we should have incorporated into the loss function a penalty for not reconstructing

an object regardless of its size. The F1-score should also have been adjusted measure the geometric

average between precision and recall not from independent input-output voxel tuples but rather from

the precision and recall of entire objects in the input-output point cloud tuple. However, this would

require extensive labelling of the training data.

3.7.2 Visual Evaluation of Model Performance

Before proceeding with the visual inspection of the autoencoder performance, it must be mentioned how

these visualisations are created and what exactly they represent. As all unknown space is considered

occupied, and the input to the autoencoder itself has the dimensions of a rectangular cuboid, if we were

to look directly at the input and output TSDF point clouds, we would see nothing but a rectangular

cuboid. To overcome this, a great deal of points have been filtered out. All points outside the visibility

radius of the local representation have been filtered away, and so have the points corresponding to the

unobservable cone-shaped regions directly above and below the agent. These points will always be

considered occupied by both input and output and thus have no significance for our analysis.

Let us begin by looking at the figure 3.18. Here, the MAV is placed directly in front of a cube with

walls on either side. We can see how this gets encoded into the occupancy map from the TSDF server
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in figure 3.18b, with only some geometry preserved. The first thing to notice is how the top of the box

seems to be increasing towards the edge of the TSDF point cloud. This is due to the geometry of how

the LiDAR scanning operates, as shown in figure 3.4. The second important thing to notice is that the

sides of the cube are not at 90-degree angles to the side facing the MAV. This is to be expected, as the

left side of the cube has not been observed as the MAV has been approaching the cube straight-on. For

the right side of the cube to be observed, the MAV needs to be a certain distance away from the cube,

and at this distance, the cube is outside the visible region of the TSDF occupancy map. If we look at

the reconstructed TSDF point cloud in figure 3.18c, we see that the cube is now a more pointy object.

Some loss of geometry is to be expected, as the CVAE is performing a lossy compression. Also, notice

how there exists two artefacts at either end of the reconstructed TSDF point cloud that is present in

all figures 3.18c-3.21c. Somehow the model has learned during training that having these two artefacts

present will improve either the reconstruction loss or the KL-divergence loss.

We continue by looking at the figure 3.19. The wall is perfectly represented in the reconstruction

in figure 3.19c, while the two obstacles have not been decoded in such a way that preserves their

geometry. We can see that they are represented as two blobs with no discernible straight sides as is

the case in the input data. However, their locations in the body frame seem to line up nicely with the

input TSDF point cloud in figure 3.19b.

Moving on to the more challenging environment in figure 3.20, we have three obstacles placed

around the MAV. In this case, we can see that the autoencoder struggles a lot more, as shown in

figure 3.20c. We can clearly see that it understand that there exist three separate objects, however,

it is not able to accurately reconstruct either their geometry or their position. The cylinder to the

bottom right of the TSDF point cloud is placed way too far off-centre, which could result in the agent

misunderstanding where there is a safe path.

An interesting property of this autoencoder is its ability to generalise across many input samples.

Let us look at the figure 3.21. The MAV is placed close to the wall, but due to how it has been

spawned, the wall is not represented as a solid mass all out to the outer rim of the TSDF point cloud

radius. Even though the input to the autoencoder is only a strip, the autoencoder can recognise this

as a wall and generalises this to the other examples of walls it has seen before, as can be seen in figure

3.21c.

In the case of approaching an object head-on, the object will not have been seen from different

angles. Because we have defined all unseen space as occupied space, we generate a TSDF point cloud

as shown in figure 3.22. In figure 3.22b we see that the general shape of the cylinder is preserved, but

as we get closer to the cylinder, we see that the shape stretches out, as seen in figure 3.22c. Since this

cylinder has not been seen from several different angles, the TSDF point cloud assumes that the space

behind it is occupied, which results in the shape of the cylinder not being preserved. It is important

to keep this behaviour in mind as we proceed to the navigation problem in the following chapter.

In this section we have tried to make a generalised autoencoder using many different types of

objects with different dimensions. The results in this section show that the autoencoder is not able

to accurately reconstruct this wide array of different types of objects and geometries that are present

in the training environment 3.16. Therefore, it is evident that more work needs to be done to this

autoencoder to generalise it, before it can perform in a wide range of different environments.
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3.7.3 Implementation Evaluation

In addition to evaluating the autoencoders performance, we also have to consider the whole pipeline

in which it is implemented. We know that the best performance a learning-based model can deliver is

strictly bounded by the quality of the data it is fed. This is very much the case for this autoencoder

as well, and we have to discuss the performance of the algorithms and physical considerations of the

perception system, which comes before the autoencoder in the computational pipeline.

The first important aspect to consider is the physical considerations of the perception system itself.

As previously mentioned, the geometry of the LiDAR ray casting means that we have both observable

and unobservable regions in the space around the robot, as seen in figure 3.4. This means that the

perception system can give a rich representation of an environment on the plane in which it sits, but

it is very limited in its ability to judge obstacles’ heights. Another consequence of this fact is that the

path that the MAV can take while retaining observability in the direction it is going is necessarily also

limited. If the MAV decides to ascend directly, it will move into unobservable space. Increasing the

angle of the LiDAR raycasting will significantly improve this.

To mitigate the shortcomings of a LiDAR system such as the one we are using here, it is normal

to integrate all incoming TSDF point clouds into either a local map or a global map. In our imple-

mentation, we are only working with a local map of fixed size, in which the MAV is situated directly

in the middle. The radius of this local map representation has been chosen so that it is small enough

to have an accurate representation of the immediate surroundings and at the same time being large

enough to let the agent plan further ahead than just a couple of seconds. But constructing this local

map is not trivial. In this implementation, we are using the local TSDF mapping from the Voxblox

[31] software package. While this implementation is fast and has some interesting properties, it is also

not perfectly suited for this use case. At its core, this TSDF generation process is designed to be used

for integrating local TSDF point clouds into a global ESDF map of the environment. This means

that some of the TSDF point cloud integration, which would have been very useful for our use case,

has been left for the generation of the global ESDF map. One example of this is the way the TSDF

map handles object permanence. Since we assume a static map, we can integrate the TSDF point

clouds taken at different angles of an object to ascertain its geometry more precisely. This works well

for objects that move inside the visible region of the LiDAR. In figure 3.19b we see that the TSDF

mapping has seen both the box and the cylinder from many angles, and they are thus represented as

free-standing objects. However, this is not the case for objects moving from inside the visible region

to outside.

Let us examine figure 3.18b. As the MAV has been approaching this cube, it has clearly noticed

its true height. However, all parts of the cube that exits the visible region are erased from memory.

We observe this in the figure with an object increasing in height towards the edges of the local map.

The same is true for objects that move from the visible region to underneath it. The TSDF saves no

information about its position and geometry. This means that even though we are using an integrating

method for generating the TSDF point cloud, the area directly above and below the MAV is unobserv-

able. Any velocity vector of the MAV that points outside the visible region will be executed without

considering the immediate environment. Therefore, it is apparent that the input to the autoencoder

should use an integrating approach that assumes object permanence, not only in the visible region, but

also in the non-visible region. This way, the shortcomings of the LiDAR perception systems could be

mitigated. Another possible solution to this problem is to use a sliding window of past observations,
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and pass those on to the agent to have a temporal perspective over the objects positions.

It is also worth mentioning that the TSDF generation process assumes a low yaw rotational velocity.

The local TSDF map reacts slowly to changes in yaw because of the way it integrates the incoming

TSDF point clouds. If a sudden and quick rotation is induced to the MAV, i.e. because of a collision,

the resulting TSDF mapping is very noisy. It then takes a considerable amount of time to clear

erroneous voxels. Practically, this has two implications. The first implication is that we should fly the

MAV yawless. Since the only way of maintaining a constant yaw angle inside a confined environment

is through the perception of the surrounding environment, a sensor fusion framework that can detect

rotations in the yaw axis of the MAV accurately is needed. The second is that the local TSDF

representation is unstable for collision-prone MAVs. If a MAV is to frequently collide with walls, it

would need some time to stabilise its local TSDF map before proceeding with confidence. This adds

a cost to the flying time of the MAV.

Let us look at table 3.3 presenting the bandwidth of the data streams between the different com-

ponents of the CVAE pipeline. It might come as a surprise to the reader that the bandwidth actually

increases after the raw LiDAR point clouds have been integrated into the TSDF representation. There

are two fundamental reasons for this. The raw point cloud stream coming from the LiDAR is a sparse

representation of the environment. This means that only the points corresponding to an object are

included. However, in the TSDF point cloud all points in the 3D space within a given radius are

included. This makes this representation a dense representation. The second reason for the increase in

bandwidth is that the TSDF encodes a truncated signed distance into each point in 3D space, whereas

in the raw point cloud from the LiDAR all points have the same underlying value corresponding to a

surface. Furthermore, we can observe that the bandwidth of the data stream significantly reduces as

the TSDF point clouds are compressed into a latent vector. The resulting latent vector data stream

reduces the bandwidth by three orders of magnitude. This result is immensely useful for applications

outside of the scope of this thesis as well, as any situation in which bandwidth is severely limited could

benefit from such an intelligent compression.

3.8 Conclusion

This chapter has looked at a novel and efficient way of compressing a 3D voxel-based Truncated Signed

Distance map into a latent space representation using a Convolutional Variational Autoencoder. An

exhaustive search of model architectures has illustrated how to balance the different subcomponents of

the CVAE to optimise reconstruction performance while keeping the computational cost low. Both the

training and evaluation of this compression algorithm was conducted based on single corresponding

input-output voxel tuples and is thus not treating the 3D environment in a topological manner where

similar voxels are clustered together. This makes the algorithm more sensitive to objects which contains

a large number of voxels given the statistical nature of the reconstruction on a voxel-to-voxel basis.

To overcome this, labelling of the input dataset into discrete objects should be implemented in the

training process to ensure maximum recall of objects regardless of their mass.

We showed that the algorithm is capable of compressing the bandwidth of the point cloud data

stream by three orders of magnitude while being able to reconstruct the input point cloud coarsely. The

main limitation of this compression method is its limited ability to generalise to unseen environment

topologies.
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To make this approach more practically feasible, the LiDAR should have a higher field of view to

ensure that a higher amount of the immediate environment is directly observable to the MAV. Since the

field-of-view may never be a 100% because of the presence of the MAV hardware, a more intelligent

way of integrating new point cloud measurements into the local Truncated Signed Distance Field

representation should be employed. This could ensure that objects that leaves the directly observable

region are remembered. This would increase the size of the action space of the MAV significantly.



Chapter 4

Reinforcement Learning for

collision avoidance

4.1 Motivation

The problem of control of Micro Aerial Vehicles (MAVs) have been solved in a multitude of ways by

traditional control theory methods like the Linear-Quadratic Regulator (LQR), and Model Predictive

Control (MPCs) [62] [63]. These systems have proven to be accurate, robust and well-performing for

many different tasks and environments. Their performance is also adequate on the topic of navigation

in collision exposed environments, [64]. Traditionally, there has been a formal divide between control

algorithms and path planning algorithms. Path planning algorithms often only consider a path in

terms of edges and vertices without considering the system’s dynamics. In geometrically confined en-

vironments, the traditional methods have to solve a series of heavily constrained optimisation problems

to propose reasonable trajectories. A MAV is limited in computational power as any additional weight

and space lead to shorter battery life. As a result, the computationally heavy optimisation problems

lead to slower, and therefore shorter, trajectories.

Biological systems like insects, birds and bats are naturally able to perform collision-free flight and

navigation in geometrically constrained environments with a high level of precision. This indicates

that there should exist a learning-based way of performing collision-free navigation and flight control.

Such a method is tested and elaborated on in [65]. Here the desired response to the environment

was learned through imitating the response of an expert planner. This paper shows trajectory results

similar to the expert at a fraction of the computational cost and time.

Building on this knowledge, we will attempt a learning-based approach to solve collision avoidance

and high-level control of a MAV in geometrically constrained environments. Noting again the tradi-

tional diviosion between path planning and flight control, a path planner will typically feed a waypoint

reference to a flight controller without considering the dynamics of the system. Thus, our approach will

represent an integrated End-to-end approach which will do both path planning and dynamic control

of the MAV using the same model.

48
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4.2 Related Work

In [66], the authors present a decentralised algorithm for doing multiagent collision avoidance. They

show that this Reinforcement Learning based navigation algorithm scales to multiagent scenarios with

more than 2 agents. Using a LiDAR sensor, a ground-based robot localises itself with respect to the

map and also detects dynamic obstacles that it uses this to generate a collision-free trajectory.

In [56], an Imitation Learning approach is taken to teach a ground robot to navigate in a cluttered

2D environment using an expert operator. The immediate surroundings is sampled using a laser

range finder and fed to a Convolutional Neural network which extracts the relevant features from the

environment. Together with the information about the goal position, these features are then fed to a

fully connected neural network representing the agent’s policy.

In [67], the authors build upon the system in [56] by including a Reinforcement Learning step after

the initial Imitation Learning. They still use the laser scanner, but instead of a CNN extracting fea-

tures, they use a Minimum pooling strategy which is then fed directly to the agent. The Reinforcement

Learning agent is trained using an extension of the TRPO algorithm, namely the Constrained Policy

Optimization (CPO) algorithm.

In [68], the authors develop an autonomous car that navigates using a fusion of monocular vision

and a LiDAR 2D depth map. They feed each of the corresponding data streams into its own CNN,

which are merged and flattened after a couple of layers to produce an action for the car. This method

uses Deep Q- networks and a discretisation of the action space into five possible actions.

In [69], the authors train a cross-modal Variational Autoencoder whose inputs are an RGB image

and the relative position of the next goal. The latent space of this autoencoder is then fed directly to

a control policy neural network, which only has this latent space as input. This agent then controls a

small MAV with velocity commands, which tries to find and fly through gates on a MAV racing track.

In [70], the authors present a fixed-time path generation algorithm that produces optimal motion

plans for static environments using a stepping neural network approach. The core of the proposed

OracleNet algorithm consists of Recurrent Neural Networks to determine end-to-end trajectories.

In [71], the authors conduct an exhaustive study of both end-to-end methods and unsupervised-

learning-based architectures for ground robot navigation in dynamic environments. The state rep-

resentation is a 2D laser scanner angular map with which an autoencoder is trained, and a long

short-term memory network (LSTM) is used to predict future sequences. These two are then fed to a

fully connected network which generates a control action for the robot.

In [72], an algorithm for ground robot navigation in crowded environments using Deep Reinforce-

ment Learning is developed. The input to the model is a cross-modal representation consisting of

the goal and robot state, the known states of pedestrians and other robots, the latent space from an

autoencoder trained on an occupancy grid, and an angular map. These are all concatenated and fed

into the Reinforcement Learning agent, which generates trajectories.

In [73], the authors present an algorithm for collision avoidance of a fixed-wing MAV that uses a

ray-casting method with rays protruding from the tip of the MAV to measure the distance to a potential

object in its path. The agent controlling the MAV is trained using an experience pool consisting of

human expert experiences. Based on the DDPG and MPC algorithms, a novel algorithm MEP-DDPG

is designed to train an agent using both experience pools and the output of an MPC algorithm. In [74],

the Rapidly Random-exploring Tree (RRT) algorithm is improved using a CNN model to generate a
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nonuniform sampling distribution. This way, costly and unnecessary computation is avoided as the

CNN model can predict the probability distribution of the optimal path on the map.

In [75], a control network is fed the latent space from a trained Variational Autoencoder and

the output of a recurrent neural network to drive a racing car in a 2D simulation. The variational

autoencoder was trained on images from the simulation environment to be able to make a compact

representation of the input data. In addition, they showed that a memory capacity greatly improved

the agents performance.

In [76], the authors propose a Reinforcement Learning-based algorithm for the manipulation of

objects using robotic arms. The first step of their algorithm is to train a deep spatial autoencoder to

acquire a set of features, with which the Reinforcement Learning agent is later trained on.

In [77], the authors present a learning-based pipeline to do local navigation of a quadrupedal robot

in environments with both static and dynamic obstacles. The robot is given high-level navigation

commands, and is able to safely navigate around obstacles using the data from a depth camera. Their

approach combines the output from a Variational Autoencoder with an RL agent and a LSTM layer.

Transitioning between training a policy on demonstrations and training using a deep RL method

can be tricky since they can have vastly different gradients. In this paper [78] from 2019, the authors

propose an actor-critic framework merging a behavioural cloning loss from an expert with a Q-learning

loss. This method allows for a smoother transition between Imitation Learning methods and RL

methods.

4.3 Problem Formulation

The purpose of this chapter is to discuss and propose a data-driven method of utilising the compressed

latent space discussed in chapter 3 for executing collision-free navigation and flight control. The

navigation and control will be performed by a neural network, referred to as the learning-based agent,

trained to reach a goal point in a collision-free manner given a geometrically constrained environment.

This chapter aims to design an agent with a policy capable of mapping a latent space representation

of the surrounding environment and a state vector into an acceleration vector. Details of the network

architectures for the agent will be discussed further in section 4.5.1. The output acceleration vector

will be handled by the inner control loop system of the MAV. This is illustrated in figure 4.1. The

conditions of the output will be further discussed in the section about wanted behaviour of the MAV

4.4.7.

As observed in figure 4.1, we can keep the decoder and use it to indirectly evaluate how well the

features in the latent space describe the immediate surroundings of the MAV. For example, if the

reconstruction completely misses an object, it is a strong indication that the latent space does not

contain the necessary information for the agent to be able to generate optimal actions.
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Figure 4.1: The agent has a latent space representation of the environment and the position relative
to the goal, and the speed as input. The output of the agent is an acceleration vector fed into the
inner control loop of the UAV.

4.3.1 End-to-end Versus Modular Training

It is worth discussing the implementation in this thesis in the context of other approaches like the

method presented in [68] which uses an end-to-end approach in terms of neural network architecture.

We have split the perception and control sections into two separate networks, and two separate training

processes. First, we train the autoencoder using an unsupervised approach, and then we train the agent

on the latent space from the autoencoder. However, consider the case of training just one network

end-to-end. This would be an architecture that would be some combination of the encoder part of the

autoencoder and the agent.

The first immediate advantage of making such a network is that we could know that the features

collected in the first layers of the networks were optimised to be strictly the ones needed for collision

avoidance. With our implementation, we have a feature extractor that is regarded as a black box. The

autoencoder may just as well extract information irrelevant to the collision avoidance problem.

The drawbacks of such an integrated architecture is that we would have no way of observing how

well the network extracted features from the environment. With the current implementation, we

can continuously monitor the reconstructed TSDF point cloud from the latent space and watch for

inconsistencies. This means that debugging is much easier. For example, if an end-to-end network

architecture agent collides, one does not know whether it did so because of a bad feature extraction or

confusion from the features extracted.

According to the paper [77], dividing the training into two separate stages yields a more sample

efficient Reinforcement Learning stage as well as a superior policy. We use this property, and the fact

that the encoding process can be monitored, as motivation for the modular approach we have chosen
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in this thesis.

4.3.2 Objective of the Chapter

The overall objective of this chapter is to present, discuss and evaluate two data-driven methods for

training a learning-based agent to navigate and high-level control a MAV through confined environ-

ments using a latent space representation. This chapter will therefore rely heavily on the ability of

the encoder to represent the local environment. First, we will train the learning-based agent using an

Imitation Learning (IL) framework using an expert to make optimal suggestions with which the agent

may be trained. Second, we will train the learning-based agent in a Reinforcement Learning (RL)

framework using pre-trained weights from a short IL process. We will discuss the chosen approaches

with respect to its performance in executing collision-free flight, and suggest how these methods could

be improved. The goal is to have a learning-based agent which can solve both the problem of path

planning and high-level control in an End-to-end fashion, with the encoder taking as input a local

TSDF point cloud and the learning-based agent calculating an acceleration vector directly.

4.4 Theoretical background

4.4.1 Quadrotor Dynamics

In this section, we will discuss the dynamics of the quadrotor system, as illustrated in the figure 4.2.

To describe the attitude and position of the quadrotor, we will be using two coordinate systems; the

inertial reference frame {~e11, ~e21, ~e31} and the body-fixed frame {~e1B , ~e2B , ~e3B}. The body-fixed frame

has its origin placed at the centre of mass for the quadrotor, which means that the first and second

axes ({~e1B , ~e2B}) of the body frame points span out the plane on which all the rotors lie. The axis

~e3B is placed normal to this plane, such that it points in the opposite direction to the thrust vector of

the quadrotor propellers.

Each rotor generates a thrust Fi, and all rotors are placed with equal distances to each other and

the centre of mass. In order to balance the torques generated by the spinning rotors, their spinning

direction is opposite to that of their neighbors.
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Figure 4.2: Model of the Quadrotor

m ∈ R the total mass of the quadrotor

J ∈ R3×3 the inertia matrix with respect to the body-fixed frame

R ∈ SO(3) the rotation matrix from the body-fixed frame to the inertial frame

SO(3) The group of all rotations about the origin of three-dimensional Euclidean space R3

Ω ∈ R3 the angular velocity in the body-fixed frame

x ∈ R3 the location of the center of mass in the inertial frame

v ∈ R3 the velocity of the center of mass in the inertial frame

d ∈ R the distance from the center of mass to the center of each rotor in the ~e1B , ~e2B plane

fi ∈ R the thrust generated by the i-th propeller along the -~e3B axis

τi ∈ R the torque generated by the i-th propeller about the ~e3B axis

F ∈ R the total thrust, i.e. F =
∑4
i=1 Fi

M ∈ R the total moment in the body-fixed frame

Table 4.1: Parameters of the quadrotor helicopter

The location of the centre of mass and its attitude with respect to the inertial frame thus defines

the configuration of the quadrotor system. This configuration thus lies on the manifold of the special

Euclidean group SE(3), which is all rotations and translations in three-dimensional Euclidean space

R3 that preserves Euclidean distances.

Assuming that the thrust of each propeller is directly controlled and that the torque generated

by each propeller is directly proportional to its thurst, we can derive the equations of motion for

the quadrotor system. This simplification means that we are leaving out the nonlinear dynamics of

the aerodynamic thrust capabilities of the propellers with respect to its torque. The thrust vector is

defined to be normal to the plane spanned out by the vectors {~e1B and ~e2B}, which means that the

total thrust f acts in the direction of -~e3B . To transform this thrust vector into the inertial frame, we

only need to multiply the vector e31 with the rotation matrix R: −fR~e31

To balance the torque generated by the propellers, the first and the third propellers are rotating
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clockwise, while the second and fourth propellers are rotating counterclockwise when generating posi-

tive thrust. We write the torque of the i-th propeller as τi = (−1)icτfFi for a fixed constant cτf . The

relationship between the total thrust F and the total moment M can thus be formulated as:
F

M1

M2

M3

 =


1 1 1 1

0 −d 0 d

d 0 −d 0

−cτf cτf −cτf cτf



F1

F2

F3

F4

 (4.1)

This matrix is invertible when d 6= 0 and cτf 6= 0, as its determinant is 8cτfd
2. This means that

for a given F and M , we can find the corresponding thrust Fi for each rotor.

The equations of motion for the quadrotor are thus:

ẋ = v (4.2a)

mv̇ = mg~e31 − FR~e31 (4.2b)

Ṙ = RΩ̂ (4.2c)

JΩ̇ + Ω× JΩ = M (4.2d)

where the hat map .̂ : R3 → SO(3) is defined as a cross-product operation such that x̂y = x × y for

all x, y ∈ R3

4.4.2 Reinforcement Learning

Reinforcement Learning (RL) is a class of Machine Learning (ML) methods concerned with the inter-

action between a given environment and an agent[36, p.1]. We distinguish between the agent and the

environment by defining every state the agent can control directly, as the agent itself. The rest of the

system is referred to as the environment. The interaction is based on a series of discreet time steps.

First, the agent alters the environment by applying input. The agent then receives a scalar reward

based on the input provided and the state of the environment it was applied on. The goal of the agent

is to learn the behaviour that maximises the sum of rewards for a series of consecutive time steps. To

be able to discuss the RL methods used in this thesis, we first have to go through some fundamental

concepts in RL. The background of RL is rich in details and methods with strong links to one another.

It is helpful to study the early methods of RL to understand the concepts of the method used in this

chapter. Therefore, the topic was rigorously detailed in both project theses [2][3] leading to this master

thesis. Some knowledge of basic RL is advantageous for the coming theory section. However, we will

elaborate the theory needed to understand the PPO algorithm used in this chapter.

Terminology in Reinforcement Learning and Control Engineering

RL and control engineering concerns themselves with much of the same concepts regarding optimal

control. However, in the intersection between RL and control engineering, the terminology is often

different. We explain the discrepancies here.

The word agent in RL is defined as the acting unit which interacts in the environment. In control

engineering, this would be termed the controller of the system.



CHAPTER 4. LEARNING-BASED METHODS FOR COLLISION AVOIDANCE 55

The environment in which the agent operates, is defined as the controlled system in the context of

control engineering.

The action made by the agent in an RL problem the input the agent has on the environment, and

this would be termed control signal by control engineers.

Markov Decision Processes

Markov Decision Processes (MDPs) are stochastic processes in which the Markov property holds. This

property can be defined as follows:

P{X(tn+1) ∈ B|X(tn) . . . X(t1)} = P{X(tn+1) ∈ B|X(tn)} (4.3)

The Markov property states that the probability of the next state X(tn+1), in a given state space

Borel set B, given all the history of the previous states of X, is equal to the probability of the following

state X(tn+1) given only the current state [36, p.49].

This property of markovian dynamics is essential in the field of RL, as an optimal decision about

the next state of the system can be decided solely on the last state. For this property to hold, one must

make sure that the state space encodes the necessary information for this to be the case.

The Markov chain is a graph representation of the dynamics of a system where each node of the

chain corresponds to a state in which the Markov property holds. The probabilities of transitioning

between the nodes are formalised through a Transition matrix.

The set S of states in the environment is the finite set s1, s2, . . . , sn which defines the state space.

Each state s encodes all the information that matters to an agent about its history in a given problem

such that the Markov property holds. We define legal states as the states that the agent is able to

explore, like empty space, and illegal states in which the agent is unable to explore, like inside obstacles.

The set A of actions in the environment is the finite set a1, a2, . . . , ak which defines the action space of

the agent. Given a state s ∈ S, the set of actions that can be applied is denoted A(s). The agent uses

these actions to control the state of the system. Not all actions can be applied in every state, with a

common example being the actions in a state where a collision occurs.

The transition function determines the transition probabilities of moving from a state s ∈ S given

an action a ∈ A to a new state s′. This matrix contains the probabilities of transitioning between all

reachable system states, and is defined as follows: T : S × A × S → [0, 1]. The probability of going

from a state s to a new state s′ given an action a, must be in the interval [0, 1].

The reward function is defined as: R : S ×A× S → R, where a reward R is generated when going

from a state s to a new state s′ given an action a. This reward signal is used to label the behaviour of

the agent. By maximising this reward, the agent will find the optimal behaviour for interacting with

the environment.

The Markov Decision Process (MDP) is formally defined as the tuple 〈S,A, T,R〉, where S is the

set of possible states, A is the set of possible actions, T is the transition matrix, and R is the set of

possible rewards. The transition matrix T and the reward function R constitutes what we call the

model of the MDP.

The policy π is a function that determines what action a to apply in a given state s: π : S → A. It

can be referred to as a mapping between the state space and the action space. This policy is the set

of all the actions an agent will take in every state of a given environment. The agent uses the policy
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to interact with the MDP as follows:

1. An initial state s0 is generated from a given initial state distribution

2. The agent chooses an action a0 = π(s0) based on the policy π

3. Using the transition matrix T and the reward function R, the agent makes a transition to the

next state s1 with a probability given by the transition matrix T (s0, a0, s1) which results in an

award given by the reward function r0 = R(s0, a0, s1)

4. The process repeats for the following states in the chain which produces the tuples 〈s0, a0, r0〉, . . . , 〈sn, an, rn〉

5. The process ends when the agent reaches some termination criteria, often a goal state sgoal

The interaction is illustrated in figure 4.3 for a general time step t.

Figure 4.3: Illustration of the environment-agent interaction for a time step t. A state st is fed into
the agent. The agent applies an action at. The environment returns a reward rt for the state-action
pair.

Policy Gradient Methods

Within the field of RL, there are several types of algorithms that work in different types of state spaces

and action spaces. The dimensionality and the nature of these spaces can be very different, and thus

the algorithms that try to solve the problems in which these spaces are defined are also equally diverse.

In RL the main distinction between methods are concerned with discreet an continuous state and

action spaces. Consider a problem described with a discreet state space and a discreet action space.

In this situation, it is possible to list every action that can be applied for every state. Here, the agent

can traverse the state space, attempt different combinations of state-action pairs, and be rewarded.

The statistical reward for each state-action combination can then be calculated and stored in a large

matrix with states along one dimension and actions along the second dimension. The optimal policy

will then be to, for each state, pick the action that has the highest found statistical value in the

matrix. However, if the problem is continuous in either the state space, action space or both spaces,

the number of state-action combinations will be infinite. This makes storing state-action values in a

matrix infeasible, and complicates the RL problem significantly.

Often in the field of robotics, as is also the case in this thesis, the problem is using continuous state

and action spaces. Practically, this means that the robot we are controlling is moving in a smooth and
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continuous environment, which then translates to the state variables being smooth and continuous.

The same is the case for the action space. The action space presented in this thesis is the output of

the RL algorithm, which sends an acceleration vector to the low-level PID controllers of the quadrotor

helicopter. This acceleration vector is also smooth and continuous in that both its magnitude and

orientation are smooth and continuous values.

We introduced the concept of Markov decision processes in the previous section 4.4.2. Here, the

state- and action space is defined as a finite set of actions A and states S. However, we can generalise

all the concepts introduced in that section to the case of continuous and differentiable action and state

spaces.

When working with continuous action and state spaces we turn to a class of RL algorithms called

policy gradient methods. These methods consist of parametrised policies, meaning that we have a

function with a policy parameter vector θ which deterministically maps every state s in our continuous

state space into an action a in the continuous action space. Many different types of models may be

used to parametrise the policy, however in this thesis we will focus on parametrisation using Artificial

Neural Networks (ANNs). We define our parametrised policy as:

π(a|s, θ) = Pr(At = a|St = s, θt = θ) (4.4)

Equation 4.4 describes the policy as the probability of the agent taking an action a at time t, given

the state s and the parameter vector θ. The parameter vector θ consists of all the weights and biases

present in the neural network.

Policy gradient methods try to increase the performance of the parametrised policy by using a

function J(θ) which measures the policy’s performance. This function will return a scalar value based

on the parameters in the parameter vector θ. We can thus write the general working principle behind

policy gradient methods as:

θt+1 = θt + α ˆ∆J(θt) (4.5)

This update rule approximates a gradient of the performance function Ĵ(θt) that determines in

which way all the parameters in the network must be changed to increase the overall function with

respect to the policy’s parameter vector θ. Since we are learning from data samples, we are working

with stochastic estimates of the gradient of the performance measure function J(θ). This process is

the same as the process described in section 2.1, under ”Gradient-based training”.

This process can also be expressed as a maximisation problem:

max
θ
E

[
H∑
t=0

R(st)

∣∣∣∣πθ
]

(4.6)

This maximisation problem tries to find the optimal parameter vector θ for maximising the expected

sum of future rewards given the policy network πθ.

Now that we know that the parametrised policy πθ(a|s) is stochastic, we can interpret the policy

as a probability of taking an action a in state s. This brings with it a very useful property, namely

that the parametrised policy is a smooth and differentiable function with respect to its parameter

vector θ. Moreover, since we know that the function is smooth and differentiable, we can also change

its parameter vector in a gradual fashion. This makes it possible to avoid sudden and potentially
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disastrous changes in the policy, bringing with it better properties for convergence.

The next challenge we need to overcome is the fact that measuring the performance of the policy is

both dependent on the action selection and the distribution of states in which those actions are made.

Furthermore, both of these distributions are affected by changes in the policy’s parameter vector θ.

We can imagine the case in which we isolate just one state and observe how the action changes as we

do changes in the parameter vector. However, knowing how the distribution of future states is changed

as we change the actions the agent chooses is a function of an environment that will be unknown to

us.

The policy gradient theorem is the answer to this challenge:

∇J(θ) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s, θ) (4.7)

µ(s) describes the weight of the error in the given state s, which practically relates to its frequency

in the dataset. Normalising by this value ensures that states that are visited often do not get larger

gradients than those visited infrequently.

qπ(s, a) denotes the value (Q-value) of being in a specific state s, taking the action a, and following

the policy π from thereon. This term is used to provide a magnitude to the gradient; if this term is

large, and thus the action gives a large value, the gradients get scaled proportionally, and if it is small,

the opposite is the case.

∇π(a|s, θ) denotes the gradient to the probability that an action a is taken in state s, given a

parameter vector theta. This, combined with the Q-value, tells us that if a state-action pair generates

a lot of value, the probability of that state-action pair will be increased by a lot. In contrast, a

proportionally small value will scale state-action pairs that generate a low value.

Monte Carlo Policy Gradient

The policy gradient theorem in equation 4.7 is theoretically useful but practically not very helpful for

our algorithm. We cannot sum over all actions in every single state as we have a continuous action

and state space. Therefore this formula needs to be further developed.

First, we remove the summation over all states and the term µ(s), which again is a measure of how

often different states occur under the current policy. Under the assumption that the agent following

the policy π will visit each state in the state space with the same probability, this can be removed.

We replace the s with St, which is the expectation of being in a state in a given timestep under the

policy π. This expectation can then be sampled. Lastly, we know that the policy gradient only needs

to be proportional to the real gradient since any proportional term will be absorbed into the learning

rate parameter α. This now gives us:

∇J(θ) = Eπ

[∑
a

qπ(St, a)∇π(a|St, θ)

]
(4.8)

To remove the summation over all actions, we will only consider the action a in the current state

s. This means that we replace the summation over all possible actions with an expectation under the

policy π, which can then be sampled:

∇J(θ) = Eπ

[
qπ(St, At)∇π(At|St, θ)

]
(4.9)
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We need to normalise this gradient with respect to the different probabilities of actions. Doing

this we will normalise the gradient magnitudes so they are not biased towards those actions that are

performed frequently. Therefore our expression needs to be divided by π(At|St, θ). To simplify further,

we also use the following identity: Eπ[Gt|St, At] = qπ(St, At). Gt then denotes the total discounted

sum of future rewards. Our equation now looks like this:

∇J(θ) = E

[
Gt
∇π(At|St, θt)
π(At|St, θt)

]
(4.10)

This is in fact the update rule for the plain-vanilla policy gradient algorithm REINFORCE [79].

We use the identity ∇ln(x) = ∇x
x to simplify, and insert the gradient estimate into our stochastic

gradient ascent algorithm:

θt+1 = θt + αGtln(π(At|St, θ)) (4.11)

The intuition behind this algorithm is very simple; every increment along the policy gradient is

proportional to the return Gt. A positive step along the gradient will increase the probability of the

given action, and when this gets scaled by the expected future sum of rewards we see that actions

with higher returns increase their probabilities proportionally. This algorithm is a Monte carlo-based

algorithm since it samples all the rewards through the whole episode and later uses that sequence of

rewards to calculate the discounted sum of future rewards at every time step.

Baseline

To reduce the variance from the Gt-term during training, we may introduce the concept of a baseline

b(s) [36, p.329]. This baseline may be any function which does not depend on the action a at a given

state s. We thus have a generalisation of the Policy gradient theorem 4.7:

∇J(θ) ∝
∑
s

µ(s)
∑
a

(
qπ(s, a)− b(s)

)
∇π(a|s, θ) (4.12)

If we insert this concept into our stochastic gradient ascent algorithm, we get the following:

θt+1 = θt + α
(
Gt − b(St)

)∇π(At|St, θt)
π(At|St, θt)

(4.13)

When designing the baseline function, it is important that it is in the same order of magnitude as

the values of an action. We will then end up scaling the magnitude of the gradient corresponding to

some advantage of a specific action compared to the baseline. This process can be generalised into a

general advantage function:

A(s, a) = Q(s, a)− V (s) (4.14)

This function represents an essential concept in RL. Suppose the value of an action, or the dis-

counted sum of future rewards in the Monte Carlo setting, is larger than a baseline represented by a

value function. In that case, this means that this action will improve the overall policy of an agent.

Conversely, if the advantage is negative, it will worsen the performance of the policy. This means that,
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in the context of equation 4.13, the probability of a bad action will be lowered as the gradient becomes

negative, and vice versa with a positive action.

Actor-critic Methods

If we approximate the value function used in the previous advantage function calculation with a

parametrised function approximator, we have what is called an Actor-critic method. This means that

we now have two neural networks; the actor network π(At|St, θt) which for a given state St and

parameter vector θt generates an action At, and the critic network v̂(St, w) which for a given state

St and parameter vector w generates a value estimate. The training of the critic network is a classic

supervised-learning problem, where the neural network is trying to predict the discounted sum of

future rewards given the current actor policy and a state, and is trained using the samples from the

trajectories generated by the actor and their actual discounted sum of future rewards.

With the parametrisation of the value function we introduce bootstrapping. This refers to the fact

that a future estimate will be calculated using an existing estimate. Thus, we introduce bias and an

asymptotic dependence of the function approximation. This is offset by the fact that bootstrapping

reduces the variance in the training and thereby accelerates learning [36, p.124]. We integrate this into

our stochastic policy gradient ascent framework:

θt+1 = θt + α
(
Gt − v̂(St, w)

)∇π(At|St, θt)
π(At|St, θt)

= θt + α
(
Rt+1 + γv̂(St+1, w)− v̂(St, w)

)∇π(At|St, θt)
π(At|St, θt)

(4.15)

To be able to learn continuously, we replace the Gt which corresponds to the actual discounted

sum of future rewards in a complete simulation episode with Rt+1 + γv̂(St+1, w) where γ denotes the

discounting factor. Now we can apply the gradient ascent at every timestep.

Trust Region Policy Optimization (TRPO)

To understand the Proximal Policy Optimization (PPO) algorithm which is used in this thesis, it is very

useful to begin by explaining the Trust Region Policy Optimization (TRPO) algorithm [80]. We know

that calculating a proper step length α for gradient descent is crucial for convergence from standard

optimisation problems. In algorithms that use a constant step length, like the Deep Deterministic

Policy Gradient algorithm, we could end up in the situation where optimal solutions could be missed

entirely because of the step length striding completely past it. It could even happen that an optimal

solution would be lost after the algorithm nudged the optimisation process away. In general, the step

direction that should be taken is usually well calculated in that it finds the steepest direction with

which to descend. However, the step length α must be chosen to ensure a monotonic improvement to

the overall function value. Trust-region methods like TRPO do precisely that.

It is worth noting that in the context of RL, straying away from an optimal point because of bad

step size is much worse than in normal optimisation problems. This is because the data the agent is

training on is not static, and any change in the policy network which results in a worse policy will give

the agent worse observation data with which to learn.
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If we replace Gt in equation 4.10 with the advantage function A(s, a) from equation 4.14, we have

the following gradient ascent algorithm:

∇θJ(θ) = Êt

[
∇θlogπθ(at|st)Ât

]
(4.16)

Note the use of hats .̂ which is used to indicate that we are here working with estimates based on

sampling. We rewrite the policy gradient as a loss function LPG which we aim to maximise:

LPG(θ) = Êt

[
logπθ(at|st)Ât

]
(4.17)

if we instead use importance sampling we may use a state-action sampling which is based on the

old parameter vector θold:

LISθold(θ) = Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
(4.18)

Now we have the basic optimisation problem which the TRPO algorithm tries to maximise. To

constrain the optimisation process from moving too far from the previous policy, we will also include

a constraint to the step size. Using the KL-divergence explained in equation 2.9 we can measure the

difference between two random distributions. If we ensure that the new policy does not violate some

threshold δ from the old policy using this KL-divergence, we can constrain the step size accordingly.

The TRPO algorithm is formulated as follows:

max
θ

Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
s.t. Êt

[
KL[πθold(.|st), πθ(., st)]

]
≤ δ

(4.19)

PPO

In this thesis, we will use the Proximal Policy Optimization algorithm (PPO), an iteration of the

TRPO algorithm. The goal behind PPO is to simplify the implementation and thereby decrease the

computational complexity in the training phase. It is shown that it manages this while at the same

time having comparable performance to other state-of-the-art algorithms [81].

The most computationally expensive operation during the TRPO training is calculating the KL-

divergence and doing a backtracking line search. See algorithm 2 for reference. PPO cleverly avoids

this by including the constraint in step length directly into the optimisation objective itself.

Before defining this optimisation objective, we have to define the probability ratio rt(θ) which is

familiar from the TRPO optimisation objective in equation 4.19:

rt(θ) =
πθ(at|st)
πθold(at|st)

(4.20)

Practically, we can see that rt(θold) = 1. We rewrite the objective function from TRPO using rt(θ):

LCPI(θ) = Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
= Êt

[
rt(θ)Ât

]
(4.21)
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(a) The case when the advantage esti-
mate is positive

(b) The case when the advantage esti-
mate is negative

Figure 4.4: Clipped objective function visualised with respect to the clipped probability ratio

Just like in the case of the TRPO algorithm, we need to make sure that the policy update is

constrained in such a way that the policy network is not pushed into a region in parameter space

where the future collected data will be of such a quality that the algorithm never recovers again.

Therefore, instead of solving this problem using a KL-divergence constraint, we will use a clipped

objective function.

LCLIP (θ) = Êt
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]
(4.22)

To understand this clipped objective function better, let us look at figure 4.4. We have two different

cases; a case for when the advantage estimate Ât is positive 4.4a and another for when it is negative

4.4b. Let us begin by looking at the case in which the advantage function is positive. We can see then

that whenever the probability ratio rt(θ) is also positive, new probability ratio rt(θnew) is clipped so

that it can only change the values in the parameter vector with a factor of 1+ ε with respect to the old

probability ratio rt(θold). Thus, the parameter ε limits the magnitude of the positive gradient, which

means that it limits how much the increase of probability for a given action is. Conversely, suppose

the advantage function is negative and the probability ratio rt(θ) is also negative. In that case, we

also limit how big the magnitude of the step length along the negative gradient will be. If an action

is bad, and is less likely, we limit the step length to 1− ε.
If the action taken gives both a negative advantage estimate and is more probable, the min()

operator in equation 4.22 returns rt(θ)Ât. This means that the algorithm will undo its decision to

make the action more probable in the first place, and the step length will be proportional to the quality

of the action.

4.4.3 Imitation Learning

Imitation Learning (IL) is a set of methods for replicating a desired dynamic behaviour based on

demonstrations of some expert agent [82]. It is closely related to Supervised Learning as they both

attempt to reconstruct a behaviour given by an underlying data set. However, when doing IL, one has
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to account for the fact that the underlying data distribution varies according to the actions that the

agent itself makes. This is in contrast with normal Supervised learning, where an independent and

identically distributed data set may be hand-crafted for the best performance of the model. While RL

is cursed by its necessity of experiencing its own data, IL can learn a policy π directly from a dataset

D. This implies two things. Firstly, IL is constrained to the performance of the data generated by

the expert. However, it can outperform the expert by, for example, manipulating the data to remove

unwanted behaviour. Secondly, IL is immensely more sample efficient than RL, with some works

exhibiting an exponential difference between RL and IL [83]. This means that having IL as a first step

in the RL process will save a lot of computation, as the weights of the neural network of the agent are

already tuned in the right direction. Practically this means that our MAV can learn basic skills like

hovering and moving at a constant speed from the expert, thus saving a significant amount of time by

not having to learn this through RL.

Defining the Imitation Learning Problem

The expert behaviour is implicitly demonstrated through example trajectories. Each trajectory τ is

defined as a time sequence of extracted features φ denoted τ = [φ1, . . . ,φT ]. These features can for

instance be the state of the system. Additionally, some context vector containing some information

about the task is denoted s.

The data set of example behaviour with size N can then be written as the set D = {(τi, si)}Ni=1.

Different Methods

We can distinguish between two different types of IL methods, Behaviour Cloning and Inverse RL.

It is also interesting to distinguish between model-based and model-free methods. In a model-based

method the system can be simulated, and the generated policy be deemed feasible. In a model-free

method, the system will train faster, but the policy can, in theory, be unfeasible. We will further only

discuss the use of the model-based solution.

Behaviour Cloning

In BC we aquire the dataset {(xt, st,ut)}. In that case we can derive the policy by solving for the

mapping between the state x and context s tuple, and the control input u as seen in 4.23.

ut = π(xt, st) (4.23)

Inverse Reinforcement Learning

Hand-engineering reward functions refer to when developers tune the reward function by inspecting

the MAV behaviour and altering the weights they believe might are the reason for unwanted behaviour.

For small scale problems, this method is entirely viable. For larger-scale problems, finding an optimal

reward function by hand-tuning can be infeasible for projects constrained by time and resources.

In Inverse Reinforcement Learning (IRL), the reward function is derived from a set of data samples

generated by an expert [84]. The optimal behaviour of the expert implicitly details the optimal reward

function. Thus, IRL seeks to calculate the reward function explaining the behaviour of the agent.

This project will not use the methods of IRL, so we will not detail it further.
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4.4.4 Expert Planner

To generate data for training our learning-based agent using the IL framework, we implemented an

expert which we used to generate data sets of optimal actions. As illustrated in figure 4.5, the expert

consists of two modules. The Rapidly Exploring Random Graph algorithm (RRG) [85] is used for

generating a path between the current position of the MAV and a goal point given a global map of

the whole environment. The first node of the path returned by the RRG algorithm is fed into a PD

controller, which converts this into an acceleration vector. This makes the output of the expert directly

comparable to the output of our learning-based agent, and we are thus able to train directly on the

actions from the expert. Let us look closer at the RRG algorithm.

Figure 4.5: The structure of the expert used for Imitation Learning

Rapidly Exploring Random Graphs

The Rapidly exploring Random Graph algorithm is an optimal sampling-based motion planning

method [85]. It is both Probabilistically complete and Asympotically Optimal.

Probabilistic completeness means that the algorithm is guaranteed to converge to a solution given

that a valid collision-free path exists in free space as the number of iterations tends to infinity. However,

this guarantee is not worth much to us if the path returned by the algorithm is non-optimal. This

why the notion of Asymptotic Optimality is useful. An algorithm is asymptotically optimal if it is

guaranteed to converge on an optimal path with respect to a cost function as the number of iterations

tend to infinity.

RRG is an incremental algorithm to build a connected roadmap. It will first try to connect the

nearest node to a given new sample. If this attempt was successful, the new node is added to the set

of vertexes. Every time a new sample xnew is added to the set of vertexes V , the algorithm tries to

make connections from all other vertices in V that are located within a ball of radius r as defined in

equation 4.24. The variable γRRG is defined in equation 4.25.
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r(card(V )) = min(γRRG(log(card(V ))/card(V ))1/d, η) (4.24)

γRRG > γ?RRG = 2(1 + 1/d)1/d(µ(Xfree)/ζd)
1/d (4.25)

where :
η the constant of the local steering function

d dimensions of the space

card(.) Cardinality

µ(Xfree) Lebesque measure of the obstacle-free space

ζd volume of the unit ball in d-dimensional Euclidean space

The local steering function of the system defines its behaviour from one time step to the next and

is thus a useful limiting factor when constructing paths. The Lebesque measure of obstacle-free space

is the equivalent to a volume in a 3-dimensional euclidean space, but generalised to a d-dimensional

space.

At each discrete time step of the expert, a bounded area around the MAV is uniformly sampled.

This set of sampled points are then passed to the RRG algorithm, which calculates an optimal path.

The complete algorithm can be found in algorithm 4.

Generation of the TSDF Map for the Expert

The expert needs an apriori TSDF map of the whole environment to do the sampling operation. We

have used two different methods of creating this TSDF map. The first is to use the Graph-Based

exploration algorithm proposed by [7] to iteratively build the TSDF map as the MAV explored the

environment and then save it. This was only used off-line.

The other method is to use the Ground Truth module from the Voxblox software package [31].

Voxblox Ground Truth is a module for automatically generating the TSDF maps directly from the

Gazebo world file. We wanted the agent to have as general a policy as possible; therefore randomly

scrambling environments was used. The module creates a map TSDF map in real-time, making it very

useful for generating a new global TSDF map after every random scrambling of the environment.

4.4.5 The Data Aggregation Algorithm (DAgger)

A challenge when doing IL is the continuously changing underlying data distribution. Unlike plain-

vanilla supervised learning, one cannot assume an independent and identically distributed training

data set. This is because the training distribution itself is generated using the models’ own actions.

The naive approach to solving this problem is by ignoring it completely and train an agent directly on

the action of an expert π? through a set of states dπ? which are then visited by the expert. We can

formulate this as the following mathematical process:

π̂sup = arg min
π∈Π

Esdπ? [l(s, π)] (4.26)

where l(s, π) is a given loss function. The fundamental flaw with this approach is that the agent
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only sees a distribution of states s which are already optimal given the expert policy π?. Practically,

this means that as soon as the agent finds itself outside the set of states dπ? chosen by the optimal

policy, it has had no similar training data and therefore will not perform well.

For teaching our agent the actions of the expert planner, we will use the Data Aggregation (DAgger)

algorithm from the paper [86], and seen in algorithm 5. This algorithm solves this problem by efficiently

exploring the state space. At the first iteration of the algorithm, a dataset of trajectories D are gathered

directly from the expert’s policy. It then trains a policy π̂2 on this dataset. This serves as a way to

have some initial training of the parameter weights of the policy π, which ensures that the policy is

changed in the right direction. For the following iterations, the current policy π̂n is used for generating

new trajectories, and these are added to the dataset D together with the expert actions π?(s) at each

state in that trajectory. After each new trajectory has been added to the training dataset, the next

policy π̂n+1 is then trained on this dataset. Thus, by training each new policy on the aggregate of all

previously collected trajectories, the algorithm efficiently explores the state space while learning what

the expert would do in each of those situations.

The algorithm also includes a tunable parameter βi, which lets us modify the policy that the agent

uses to explore the state space. Instead of having the policy πi at iteration i be strictly the result of the

estimated policy π̂i trained on the aggregate dataset up to iteration i, we can, with a probability βi,

choose the action of the expert policy π?. This can serve as a way to minimise the visitation of states

which will be irrelevant as the agent policy improves. At the beginning of the training, we may have

a large βi, and decay this probability as the policy improves. This results in a policy πi at iteration i

formulated as follows:

πi = βiπ
? + (1− βi)π̂i (4.27)

4.4.6 Differences Between the Imitation Learning Problem and the Rein-

forcement Learning Problem

IL and RL are groups of ML methods that are very versatile and used for various applications in the

robotics community. The advantage of IL-based methods is a high rate of convergence. It requires less

resources in the form of computational time and training data. It has shown remarkable performance

in replicating the behaviour of experts. At the same time, the agent is unable to explore the policy

space beyond what is provided by the expert. This means it is bounded in performance by the expert.

The IL problem is also unable to differentiate between ”good” behaviour from the expert and ”poor”

behaviour. This requires the expert to perform reliably in every situation or to remove data points

from the set that can lead to poor performance for the agent.

In general, RL methods are found to create policies that are more able to generalise than policies

from IL methods. They are not bounded by the expert but rather by the state-action space the agent

traverses and the loss function it uses for optimising. However, continuous RL problems have an infinite

state action space to traverse, and therefore requires an immense amount of data to converge to a valid

policy. This complication is apparent in robotics for even small continuous state-action spaces. For

example, the problem of collision-free navigation with an encoded 3D environment has a very complex

state space, making it very prone to convergence towards non-optimal local minima.

As previously stated, the procedure in this chapter is first to train the agent using the IL method.
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The resulting agent will be compared to another agent which has been trained by IL only for a short

period of time, and later trained to convergence using a RL method. This succession of methods is

used to exploit the advantages of each method while minimising their weaknesses. In this way, we

can prune the state-action tree of bad behaviour before passing it on to the RL method. This is

found to ensure faster convergence while still able to achieve the generalisable policies RL methods are

celebrated for [67]. The agent’s performance will not be bounded by the expert but might be prone

to converge on some local minima, based on how the agent has been optimised before being passed to

the RL training framework. The method is based on using an IL agent far from convergence but is

able to perform some basic navigation. The specific choice of starter network for the RL method will

be based on inspection of the convergence rate as well as inspection of performance.

4.4.7 Desired Behaviour of the MAV

The purpose of the system is to navigate through geometrically constrained environments without

colliding. The learning-based agent should therefore ensure that the MAV navigates at a safe distance

from objects. The MAV should be evaluated in its ability to choose safe paths. This means keeping

relatively straight paths whenever possible to mitigate any risks that an oscillating behaviour might

inflict on the system. Furthermore, the target should be reached in a controlled manner with little

overshooting. The efficiency of the MAV will also be part of the evaluation, but only to ensure the MAV

reaching the target in a reasonable amount of time. The ability of the agent to produce environment

cognisant controlled movements will be the main area of focus, with efficiency being less important to

this thesis.

4.5 Proposed Method

In this section, we will elaborate on how to use data driven methods to train an agent for collision-free

flight using the encoded latent space representation of the environment detailed in chapter 3. We will

also detail the decisions and reasoning behind the technical choices made for the system. The data-

driven methods proposed will be the IL method Data Aggregation (DAgger) [86], and the RL method

Proximal Policy Optimization (PPO)[81]. The method constitutes training a model using the DAgger

algorithm to train an IL agent until convergence. We will then evaluate this agent. We save the model

for every iteration of the DAgger algorithm, which makes us able to use a version of the agent, which

is far from convergence and switch to the PPO method and train until convergence with this method.

We will then discuss and compare the two different methods. The first being performance of a learning

based agent which has been trained solely on the IL method. The second is the learning based agent,

initiated with weights of an unconverged IL trained agent, and trained until convergence with the RL

method.

4.5.1 The Agent

Here we will discuss and detail the processes behind choosing the two agent networks. The agent

is only able to observe the difference between the goal and the MAV, the speed of the MAV and a

latent space representation of the environment. The purpose of the agent is to create a policy mapping

the observed input to an acceleration vector. The acceleration vector should be calculated in such a
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way that a consecutive sequence of acceleration vectors fulfils the wanted behaviour of the MAV, as

discussed in section 4.4.7.

The agent is parametrised as a deep neural network. Consequently, the size and complexity of

the chosen network greatly affect the behaviour during training and execution, as explained in section

2.1. This affects the agent’s behaviour, among others, its sensitivity to overfitting and the number of

data samples needed for convergence. Therefore, we will aim for a network that has a complexity that

matches the granularity of the large non-linear input space. At the same time, the agent complexity

should not be too high to overfit and lose the ability to generalise. We based the discussion around the

network as observed in the paper [72] discussed earlier. Here the authors present an agent that has a

similar complexity in the input space, consisting of an encoded occupancy map, states of objects and

goal and an angular map. In this paper, they used a ground-based robot, which restricts the output

of the network to two dimensions, which is significantly less complex than 3D flight. They used three

fully connected hidden layers to connect their different input streams into the output layers. Given

their similar problem, we adopted a network with similar complexity.

It was also discussed that the complexity of the agent network should, to some degree, be similar

to the complexity of the encoder. This is reasonable to expect as the granularity with which the

encoder compresses the environment will be reflected in the complexity in the latent space. Thus, the

agent needs to be sufficiently complex to map and utilise the information in the latent space. If the

complexity of the latent space far exceeded that of the agent, the agent would not be able to make a

consistent and optimal mapping from the latent space to a control action. Since both the encoding

process in the autoencoder and the mapping from input states to control actions in the agent are

considered black boxes, we can only infer their compatibility through exhaustive testing. It may be

the case that decoding the latent space just for optimal collision avoidance is a task that requires a

much simpler network than fully reconstructing the input TSDF point cloud.
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Figure 4.6: The large network architecture.



CHAPTER 4. LEARNING-BASED METHODS FOR COLLISION AVOIDANCE 70

Figure 4.7: The small network architecture.

The process of finding the right architecture also had an element of trial and error, where we trained

different networks with different encoders. The resulting architectures were found and tuned through

this process. They differ only in the number of hidden layers.

The first chosen network architecture is visualised in 4.6. This architecture consists of three fully

connected hidden layers. The number of units in the first and third layers was 128. The second hidden

layer had 256 units. The activation function for the hidden layers was the Rectified Linear Unit (ReLU)

function defined as f(x) = max(x, 0), as explained in section 2.1.

The second network architecture is visualised in figure 4.7 and had two hidden layers. The first

layer with 256 units, and the second with 128 units. The activation function for these layers was the

ReLU function, as seen in equation 2.2.

The output of the agent is an acceleration vector for the MAV. This is a vector in 3 dimensions

protruding from the origin of the navigation frame of the MAV. The navigation frame of the MAV

shares the same origin as the body frame, but it is always parallel with the world frame. The consequence

is that this acceleration vector stays the same independently of the MAV’s attitude. This avoids an

unnecessary coupling between the attitude of the MAV and the acceleration vector which the agent

produces. The acceleration vector is translated to roll, pitch, yawrate, and thrust commands using the

equations in equation 4.2.

The output layer is a dense layer of three units with the tanh activation function. This function is

useful as it maps inputs to the space of [−1, 1], which is a useful constraint to have on the magnitude

of the acceleration vector. Using the tanh activation function also ensures smooth derivatives.
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Memoryless Aspect of the Agent

Assuming the Markov property for this system, the agent will only evaluate the information given in

the current time step when making decisions. This memoryless property of the agent consequently

will not produce control actions that are optimal with respect to the previous actions and is a source

of oscillatory behaviour over a sliding window of control actions. This may result in greedy policies,

which do not consider the optimal sequence of control actions, but only the optimal with respect to

the current state of the system.

4.5.2 Environments

We have created several environments to gather sample data and for evaluating the agent. When

discussing and creating these environments, we have looked for some specific properties. Firstly,

the intention of having a simulated environment is to facilitate the data-driven methods for collision

avoidance. Therefore, the environment should contain a number of obstacles such that most trajectories

within a 6-meter radius have some obstacle blocking a straight path, as the goal points generated during

training were always at a 6-meter distance or more. The goal point was also spawned at least 1 meter

from each wall and 0.5 meters from each obstacle. Further, the environment should not be too cluttered

or too complex making small perturbations from the optimal path result in a collision.

To allow for a generalised policy, we wanted the environment to change and increase the number

of possible states a MAV could experience. We created 6 environments for training and 1 for testing.

The environment has a base of dimensions 8m × 22m with 10 meter high walls. Four obstacles were

used. The largest obstacle was a cylinder with a radius of 1.5 meters and a height of 8 meters. We

also used a smaller cylinder with a radius of 1 meter and a height of 7 meters. The two remaining

obstacles were identical cuboids with a base of 1 × 1 and a height of 6 meters. One of the training

environments can be observed in figure 4.8.

Figure 4.8: One of the six environments used for training the agent.

4.5.3 Autoencoder

In the chapter 3 we investigated the limits to how well an autoencoder is able to generalise, given a

random well-distributed training data set. We pushed the architecture to see how complex environ-

ments the autoencoder was able to reconstruct. However, in this section, we are much more interested
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in having an autoencoder with which we know we will get better results. An inevitable consequence of

the data pipeline is that the agent’s performance in this chapter will rely heavily on the performance

of the encoder. Therefore, we trained the autoencoder on 100, 000 TSDF point cloud samples, which

were collected in the 6 training environment environments described in section 4.5.2. To ensure that

we did not overfit the encoder, we implemented a validation loss using a separate, similar environment

to generate the validation dataset. The network architecture chosen for analysis in chapter 3 was used

here as well because of its impressive performance in comparison to its number of trainable parameters.

To show some degree of generalisation, the autoencoder has not been trained on point clouds collected

in the environment in which the agent will be tested later.

4.5.4 Evaluation Metric

In order to quantify the quality of the different models and methods, we will run 100 iterations

consisting in spawning new goal points and attempting to reach them. The different runs can either

be classified as “goal reached”, “timeout”, “encoder-caused collision” or “agent-caused collision”. The

collision class distinguish between two classes of collisions. Encoder-caused collisions will be caused by

the failure of the encoder to represent the obstacle in the latent space. Agent-caused collisions will be

marked as caused by a sub-optimal or poor performing, policy.

The trajectory is labelled with “timeout” if it has not reached a goal or collided within a specific time

after spawning. The time it takes for a timeout to occur in a given run is proportional to the distance

between the MAV spawn position and goal spawn position with the function max time(distance) =

3 ∗ distance. As the smallest distance is 6 and the largest is 7, a timeout occurs after between 18 and

21 seconds of flight.

To differentiate between the two classes of collision, we need to determine how well the encoder

represented the environment for a given amount of time steps before the collisions. Here we will use

the 5 last time steps as this results in the minimal amount of time the agent needs to do an evasive

manoeuvre. We define a voxel neighbourhood around the MAV of dimensions 10 × 10 × 3 as the

immediate neighbourhood of the agent. As none of our environments can collide upwards, and the

LiDAR can only detect sideways, it is less important if this dimension is represented correctly. This

corresponds to 2 meter square in the x-y plane and 30 centimeter above and below the drone. We then

take the binarised TSDF input to the encoder and the decoded latent vector of the same binarised

TSDF and determine how similar they are. To calculate their similarities, we will take the XNOR of

the two images. The XNOR truth table can be seen in table 4.5.4. The mean is then calculated as a

percentage. Determining if it is a collision caused by the agent or the encoder is done by thresholding.

Suppose the incoming neighbourhood TSDF is similar to the decoded neighbourhood TSDF to some

given percentage. In that case, it is reasonable to assume the fault is a poor policy from the agent.

By observing many collisions, representations of above 90 per cent accuracy captured the object in

the neighbourhood quite well. If the representation quality was under 80 per cent it was often missed.

Therefore the threshold deciding if the agent or encoder caused the collision was set to 85 per cent.
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Input TSDF Decoded TSDF XNOR

0 0 1

0 1 0

1 0 0

1 1 1

This is an attempt to create some understanding of the cause of a collision. However, it does not

give any guarantees as to what exactly caused the collision. For example, one can imagine a situation in

which the decoded TSDF point cloud is correct, but its placement in the latent space is not consistent

with similar environments. An agent could thus not be expected to have understood the latent space

properly. This represents a complex coupling between the encoder and the agent, and it is apparent

that ambiguous training examples from the latent space could lead to a suboptimal behaviour from

the agent. Nevertheless, this metric may serve as a strong indication as to what happened prior to the

collision.

After observing several trained agents, it was decided that the goal radius should be increased when

evaluating the agent. This is because the precision needed to reach small goals was very difficult to

achieve with such a large state space. It should be noted that the data-driven methods are good enough

to reach this level of precision when training and evaluating the agent in a collision-free environment.

A possible explanation for the lack of precision in the close proximity of the goal point is that the

complexity of the input space itself creates a much more complex mapping between state and action,

which itself is much more optimised for collision avoidance than precisely hitting the goal point.

Therefore, the ability to reach small goal points is not as emphasised in this thesis compared to the

collision avoidance properties of the control actions, even though such precise movements are essential

when navigating in collision prone environments in general. The goal radius during evaluation was

thus set to 1 meter.

4.5.5 Reward Function Design and Implementation

The structure and parameter values of the reward function implicitly encode how the optimisation

process is conducted, and therefore it has a big impact on the agent behaviour. Therefore, it is

important that the reward function is closely related to the desired behaviour of the system, discussed

in 4.4.7. In these terms, it should punish reckless behaviour leading to collisions and reward controlled

movement towards the goal point.

The Reward Function

We will discuss the reward function implemented in this method, term for term.

The first term in the reward function, rgoal, is the reward for reaching the goal point. This can be

seen in equation 4.28. This equation will be activated when the agent has reached the goal, and be

zero otherwise. Thus, this reward is only active for a single time step.

rgoal =

100 if agent is within the goal sphere

0 if agent is not within the goal sphere
(4.28)
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The rcollision term is the penalty for collision and is similar to the goal reward. It can be seen

in equation 4.29. Here the reward is negative, meaning it will penalise trajectories that result in a

collision.

rcollision =

−100 if agent has collided

0 if agent has not collided
(4.29)

The next part of the reward function is the quadratic penalty on state, denoted as xTQx. This

is the reward that is supposed to ensure policy optimisation in the direction of controlled flight in

the general direction of the goal point. The first three elements of the state vector are the euclidean

distance between the MAV and the goal point. This is symbolised by the variable εi = mavi − goali,
where i is the axis. The other three variables are the velocity of the MAV in each axis. The weights

are represented in the diagonal matrix Q. The weights tunable but restricted to negative or zero to

ensure consistent gradients.

Q =



qxpos 0 0 0 0 0

0 qypos 0 0 0 0

0 0 qzpos 0 0 0

0 0 0 qxvel 0 0

0 0 0 0 qyvel 0

0 0 0 0 0 qzvel


, x =

[
difference in position

velocity

]
=



εx

εy

εz

vx

vy

vz


(4.30)

The next part of the reward function is the quadratic penalty on input observed in the term uTRu.

The matrix R is a negative semi-definite diagonal weight matrix. The matrix R and input vector u

can be observed in 4.31.

R =

rx 0 0

0 ry 0

0 0 rz

 , u =

uxuy
uz

 (4.31)

The last term of the reward function penalises the agent for being close to obstacles. This term

is observed in equation 4.32, where δobstacle is the distance to the closest object and α is a negative

tunable parameter. The MAV searches a neighbourhood around the MAV for voxels that are occupied.

This neighbourhood is set to 1 meter in the x-y plane and 0.6 meters in the z-axis. This is considered

a particularly risky parts of the environments in terms of collisions. The purpose of this term is,

therefore, to encourage the agent to stay away from risky areas. The values will be discrete as the

voxels are discretisations of the 3D space.

αδobstacle (4.32)

The complete reward function is shown in equation 4.33.

r = rgoal + rcollision + xTQx+ uTRu+ αδobstacle (4.33)
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Motivation for Using Dense Rewards

It is useful in RL to distinguish between sparse and dense reward functions. A sparse reward function

is typically only concerned with the outcome of the trajectory, for example, rewarding goal reached

or penalising collisions. In this way, the agent is unbiased toward finding potentially suboptimal

policies. However, the absence of intermediary rewards can lead to inefficient learning and difficulty

in convergence[87]. On the other hand, labelling each applied action of the agent with a score, as in

a dense function, will ultimately lead to higher learning efficiency. This also enables the tuning of

specific behaviours. In this implementation, we have chosen to use a dense reward function.

The motivation behind the choice of a dense reward function was to be able to specify a cautious

control sequence. In addition, we wanted efficient learning because of the time constraint. The perfor-

mance of the IL agent indicated that finding a very optimal policy was not too realistic. A more global

optimal policy found by a sparse reward system would therefore not likely perform much better. This

will be discussed further in section 4.6.2.

Tuning for the RL Reward Function

As discussed in the opening section 1.1.2, this work is a continuation of the projects conducted in the

fall of 2020. In both projects, extensive tuning of the RL problem was performed for achieving optimal

flight trajectories. The components of the reward function used in those projects are similar to the one

in this thesis. Navigation in collision-free environments and navigation in geometrically constrained

environments is very different in terms of complexity and behaviours. The tuned values found in the

earlier projects were used as initial values and proportions for the reward function with the intention

of tuning them to more ideal values for the new problem. Fully training and tuning RL agents by

hand engineering reward functions requires extensive resources in the form of computational power

and time. Given the nature of the problem, as will be discussed further in section 4.6.2, and the time

constraint, the reward function was only tuned to a sufficient degree. For instance, the state and input

penalisation was increased to ensure a more stable flight.

4.6 Limitations in the Implementation Process

Here we will discuss the limitations with respect to the scope of the thesis and in regards to the

methods used.

4.6.1 Topics of Discussion Regarding the Expert Planner

The expert, as detailed in section 4.4.4, is able to perform very accurate path planning with no

collisions. However, different aspects of this path planner need to be discussed when using it as an

expert in our IL framework.

First of all, the IL process is not able to distinguish between wanted and unwanted behaviour

generated by the expert. This naturally limits the agent’s learning to the examples that the expert

can provide, and the agent will inherit the behaviour generated by the expert. From this we are faced

with a couple of challenges and trade-offs.
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Ability to Find Path

There are two main parts of the DAgger algorithm. In the first part of the DAgger algorithm, the

expert will control the agent directly. In the second part, it is only used to label the states off-line with

corresponding optimal acceleration vectors. This leads to two different discussions of how to tune the

variables size and size extension.

In the first part of the algorithm, the expert output is examined as a sequence of control inputs.

The system is reset if it has not found a path after a number of attempts. This number is set to 7

to allow for the planner to find a path in difficult areas. A failure to find a path here will lead to the

expert producing a control action at the current time step with the same values as in the previous time

step. We have observed that keeping the same control input across time steps can lead to unwanted

behaviour with stochastic properties. If the previous input was very small, then the behaviour will

be fine, but if the previous input was large, then the result can be very unstable and unfit for a

geometrically constrained environment. Therefore, the challenge is that if the MAV accelerates to a

high speed, then the next recorded input needs to aggressively slow the MAV down. This may result in

a much more aggressive behaviour of the MAV than what is wanted. The states and actions where the

expert planner does not find a path are not logged and therefore not used for training the agent. This

part of the algorithm is the shortest, corresponding to around 5%− 10% of the total data gathered for

the IL problem. At the same time, this is the first training iteration, which corresponds to the largest

fall in the loss function. Therefore, this iteration is important for how the agent searches through the

state space in later iterations.

There are several ways to circumvent this issue, for example, setting the x and y accelerations to

zero, or decaying them by some function xt+1 = eγxt, where γ is the amount of failed paths. It is

important to keep some value for the acceleration in the z-direction to ensure a stable altitude.

In the second part of the algorithm, the expert is called off-line to label the states with acceleration

vectors. A failure to find a path here will lead to the data point being dropped from the training set.

These data points will thus often correspond to colliding, or high risk trajectories. They are important

samples to show the model for it to understand what collision avoidance means. It is important to

minimise the amount of times it fails to find a path in this part of the algorithm. At the same time,

we want a clear safe zone between the MAV and the objects in the environment.

Both of the issues in the first and second part of the algorithm were resolved by tuning the two

parameters size and size extension, which are used to determine if a sampled node is free or occupied.
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Figure 4.9: Illustration of the distance parameters size and size extension.

As noted previously in the expert planner section 4.4.4, the RRG path planner samples points in

3D space within some bounded volume in the close proximity of the MAV to create the path graph.

The considered environments have a small enough size that this bounded volume is set large enough to

cover the map. Requirements for the dimensions of the path can also be set here. These requirements

determine whether the nodes in the sampled space are to be labelled as occupied or free. The variables

we tuned were size and size extension. The first variable size is the minimum required distance to

objects for a trajectory to be considered safe. The size extension serves as an additional distance

extending the initial minimum distance. The path planning algorithm will first sample the immediate

space around the MAV and attempt to find a path using the total distance size+ size extension. It

will label any node with a distance less than size + size extension to an object as occupied. If the

planner fails to find a path it will try to make a path but only use the distance size, increasing the

amount of space considered ”free”. If the planner again fails to find the path, an error is raised.

The size variable was set to [x = 0.4, y = 0.4, z = 0.2] and the size extension was set to [x =

0.3, y = 0.3, z = 0.0]. These values were found by iteratively tuning, trying to keep the values as high

as possible while ensuring that the planner could find viable paths in most situations. For reference,

the actual size of the MAV is approximately [x = 0.4, y = 0.4, z = 0.11]. The nodes in the sampled

3D space correspond to where the centre of the MAV would be, leaving a minimum margin of 0.2

meters in the x − y plane. With this configuration, we obtained a low rate of failures to find paths

while also observing a high rate of viable paths with a safe distance to objects. It was found that even

small increases in the size parameter would have a large impact on the ability of the expert to find a

collision-free path.

Difference in Observability between the Expert and the Agent

One of the principles in IL is that the expert and agent should have the same observability of the

system. In this training process, the expert has a pre-built global map and can sample every point of

the map and do collision checks. On the other hand, the agent is fed a latent space representation that

has no guarantees of representing the environment in an easily understood way. Using the decoder

during the training, we can get an indication as to how the latent space represents the environment.
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However, there are no guarantees that the agent will interpret this information in a similar manner.

This makes the IL problem difficult, and a certain level of performance can therefore not be guaranteed.

Consider the edge case where the decoded latent space shows an object between the source and

destination when in reality the path is obstacle-free. In this case, the expert, whose planner has full

observability of the environment, will produce acceleration vectors that point directly into the object

from the point of the agent’s view.

This is an example of an inconsistency inherited from the trained decoder. Therefore, it should be

fair to assume that the agent would inherit more of these inconsistencies, especially during training.

These types of mistakes from the encoder in the training data will most certainly lead to ambiguity

regarding the constraints of walls and obstacles. The geometrical constraints of the environment

are learned implicitly by showing trajectories avoiding obstacles. However, if some data samples

corresponding to the acceleration vector pointing into an object as interpreted by the latent space,

the implicitly hard constraints for hitting obstacles are lost. The trained policy based on a dataset

containing such edge cases will have softer constraints to collisions and therefore be more collision

prone.

Multi Modal Imitation Learning

As discussed further in 4.4.4, the planner samples the 3D space uniformly to determine if a part of the

space is free or occupied. The planner is initiated anew for every single time step. This means it will

create new samples and a new shortest path every iteration. The process of finding the shortest path

is, therefore, a stochastic process which can return ambiguous outputs.

Consider the case illustrated in figure 4.10. Here we observe two consecutive time steps, time step

t corresponds to image 4.10a, while time step t + 1 corresponds to image 4.10b. As the environment

in these figures is observed from directly above, it should be noted that the orange and red obstacle in

the path is a 7-meter tall cylinder. From the two figures 4.10a and 4.10b it is observed that the MAV

and the goal points are spawned at almost directly opposite sides of the object. Due to this symmetry,

the direction of travel is essentially decided by the stochastic sampling process, which may thus return

different acceleration vectors for many consecutive time steps. This will lead to oscillatory behaviour

in the data set. This behaviour is problematic for two main reasons.

1. The ambiguous nature of the expert planner can cause oscillatory behaviour in the agent by

mapping very different acceleration vector to the same states.

2. The gradient used for optimising the policy will use the mean of the acceleration vector for the

same states. This will result in a policy where the MAV will, at times, aim directly for the

obstacle.

Let us now consider figure 4.10c illustrating the two calculated acceleration vectors for each respec-

tive time step and the sum of the two acceleration vectors illustrated as a thicker arrow. The thicker

arrow points almost directly straight forward. This is due to most of the acceleration in the left-right

direction being cancelled out. When we optimise the agent based on the training data, we calculate the

residuals between the predicted acceleration vectors and the acceleration vector given by the expert

for each state. The loss function is a mean square error of these residuals and represents the gradient

of our network. Consider now a hypothetical example of a single update batch of 32 data points where
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16 of the points have the acceleration vector vleft corresponding to image 4.10a. The remaining 16

points have the acceleration vector vright corresponding to image 4.10b. Also imply that the states

are very similar to each other xt ≈ xt+1, t ∈ [1, 32]. In this case, the update step of this batch will

optimise the policy to generate acceleration vectors that are parallel to the sum of the acceleration

vectors as depicted in image 4.10c. Practically this may result in the agent essentially accelerating

directly toward the object if there exists any ambiguity as to which side of an object it should pass.

This behaviour is unwanted as it undermines the hard constraints on collisions that we want for our

system.

(a) The planner outputting a path on the left side
of the obstacle for time step t

(b) The planner outputting a path on the right
side of the obstacle for time step t + 1

(c) Illustrations of the acceleration vectors for
time step t and time step t + 1. The pink vec-
tor is the sum of the two acceleration vectors.

Figure 4.10: An example of the stochastic properties of the path finding algorithm of the planner.
This is visualised in Rviz. The different colored cubes observed in the image are the global TSDF
representation of the environment that is used by the planner. The dark pink line is the shortest path,
as found by the planner for that time step. This path connect the MAV on the lower part of the
picture with the goal point on the upper part of the image. The goal point is illustrated by a yellow
sphere.

Alternative Output for the agent

To counteract the multi-modal IL problem, a different structure of the output of the agent was discussed

and partially implemented. Unfortunately, it has been left out of the scope of this thesis due to time
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constraints. The proposed alternative output head of the neural network can be observed in figure 4.11.

Here the predicted output vector would be split into two different acceleration vectors, based on which

direction it was pointing in the y-direction. Left acceleration vectors are those that act in the plane in

which y < 0, and the right acceleration vectors in the other plane where y ≥ 0. In addition to these two

acceleration vectors, we would implement a predictor which would determine which of the acceleration

vectors to use for each time step. This predictor would use a Sigmoid activation function to force the

predicted output to be either 0 or 1. A prediction below 0.5 would be characterised as using the left

acceleration and above 0.5 a right acceleration. The loss function would be a binary cross-entropy loss

between the predicted left or right acceleration vector and the sign of the y component, interpreted as

binary, in the expert acceleration vector.

Figure 4.11: Visualisation of the multiple output agent for fixing the multi modal imitation problem.

This type of agent would be spared from the issues originating from the multi-modal IL problem.

Here the acceleration vector corresponding to image 4.10a would only optimise the left acceleration

output. In this way the sum of data points could not correspond to the mean of the figure as visualised

in figure 4.10c. However, this method would only work if the MAV and the goal point were spawned

on approximately the same y-coordinates or else it could lead to bias in the policy. In addition, it

would not solve the issue of the policy being induced with oscillatory behaviour as the predictor could

be trained to oscillate.

To clarify, this network architecture was only partially implemented but had to be abandoned due

to time constraints.
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Incompatibleness with the Voxblox Ground Truth Module

As discussed earlier, it was important to achieve generalisability of the system. This led us to pursue a

direction of randomly scrambling the objects in a given environment. As discussed in the expert section

4.4.4, the expert requires a pre-built map to find paths. For the randomly scrambled environment, the

Voxblox Ground Truth module was used for automatic online map generation. Significant amounts

of time and resources were used to create this truly randomised environment. However, there was a

compatibility issue between the expert planner and the maps generated by the Voxblox Ground Truth

module. When using these maps the ability of the expert to find a path was greatly reduced. It was

able to find paths in which no collision occurred for a straight path. In these situations, the expert

only uses ray-casting to determine if the path is collision-free, and then returns the destination point

as the solution. The ability to find non-straight paths was greatly reduced, being only able when the

path is very close to a straight line. The issue remains unresolved as it was discovered too late in

the process. To circumvent this issue we randomly scrambled 7 environments and mapped them with

the Graph-Based planner [7] in exploration mode. These maps were then compatible with the path

planner.

4.6.2 The Imitation learning Problem and the Reinforcement Learning

Problem

During the work on this thesis, a considerable amount of time has been spent trying to overcome the

challenges from the IL process at the expense of the RL process.

As discussed in section 4.4.6, the approach of this chapter is to train an agent using a IL method

and then train it further using a RL method. During the development of this thesis, it was found that

training a policy that could show properties of understanding the environment was a very difficult

task. It was also very dependent on the quality of the encoder in terms of ability to represent the

environment and generate consistent latent space representations. The IL is a much simpler problem

than the RL problem as the agent receives the suggestion of an expert agent for each time step. This

makes the process much more straightforward than in the RL-setting where the optimisation is done

through random perturbations of the agent policy in each time step.

ML methods are constituted on the notion that there exists some underlying function f(x) ex-

pressing the relationship between the input and the output. The methods revolve around using a

parametrised function approximation g(x) such that it approximates the underlying function, g(x) ≈
f(x). The approximating function g(x) is the policy network of the agent. We need to make a function

approximation g(x), which makes a consistent mapping from the input data of the agent to an action.

Since the input of the agent includes the latent space, the function approximation g(x) will only be

consistent if there exists a consistent way of mapping from the latent space. Regarding this, there are

two points of interest.

1. The problem of collision-free navigation has been solved earlier with classical control methods as

described in the introduction.

2. In the mathematical theory regarding neural networks the class of theorems named universal

approximation theorems states that a neural network can approximate any function, provided

an arbitrary number of units [88].
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Considering point 1, we are strongly motivated to believe that there exists a function, f(x), how-

ever complex, that maps some representation of the environment into an acceleration vector. The

representation should contain sufficient information about the environment. This function should map

in such a way as to allow for collision-free behaviour. Considering point 2, if this function exists, then

there exists some network architecture capable of approximating it.

This means the problem should be possible to solve, given a learning-based method. The question is

if the input latent space vector is consistent enough and if the network architecture is complex enough.

As developers, it is difficult to ascertain the complexity or structure of the latent space. Given an

inconsistent input latent space, it is not given that there exists an underlying function f(x) that allows

for approximating a control policy able to satisfy the wanted behaviour discussed in 4.4.7.

As stated previously, the IL problem is simpler and grants more guarantees in terms of performance.

If the system is constrained by the underlying function being difficult to approximate, then it is more

efficient to use the time and resources on the IL problem than the RL problem.

4.7 Results

Here we will present how well the agent performed with respect to the criteria introduced in the

evaluation metric section 4.5.4. The agent will be evaluated in the test environment as described in

section 4.5.2 about environments. We will first present how well the agent performs when trained only

using IL. This agent will be referred to as the IL trained agent. Then we will evaluate the agent which

receives pre-trained weights from the IL process and is further trained by the RL method PPO. This

agent will be referred to as the learning-based agent The weights that the agent is initialised with in

the RL training process have been extracted from the IL process long before the process would reach

convergence. This is to avoid that the agent should be initialised to some local minimum that the

RL training process is not able to escape from. The presented percentages are rounded to the nearest

integer to allow for a comprehensible discussion.

4.7.1 Computational Complexity

We present the inference time for both the encoder and the agent, as well as the computational time for

the graph-based local planner. The neural networks are executed multi-threaded, and the algorithms

are evaluated on an Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz. The training environments were

used for timing the controllers.

Process Time

TSDF creation 32.06 [ms]

Encoder 48.85 [ms]

Agent 2.43 [ms]

Table 4.2: Inference time for the learning-based pipeline
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Process Time

mean [ms] Std. Dev. [ms]

TSDF creation 32.06

Path planning and control calculation 44.32 145.18

Table 4.3: Statistics for the computational time of the local planner

4.7.2 Imitation Learning

The two IL agents were trained until convergence and evaluated using the metric discussed in section

4.5.4. The results for the test environment can be seen in table 4.4. Here the MAV was able to reach

the goal sphere for 148 runs, it had a total of 160 collisions and 92 timeouts. 128 of the 160 collisions

had a neighbourhood around the MAV deemed to be represented in the latent space to a sufficient

degree. On the other hand, 32 of the collisions had neighbourhoods that were poorly represented. The

percentage of each of the categories are represented in the second row.

Agent 1
Reached Goals Agent-Caused Collisions Encoder-Caused Collisions Timeouts

148 128 32 92
37 % 32 % 8 % 23 %

Table 4.4: Large network agent performance on the test environment.

In table 4.5 we can observe the performance of the large network agent trained by IL on the test

environment. The total amount of runs are 400. Here, the number of goals reached was 169, the total

number of collisions was 134, and the number of timeouts was 97. For the collisions, 102 of the 134

were labelled as having a sufficiently well represented neighborhood around the MAV, while 32 were

labelled as insufficiently represented.

Agent 1
Reached Goals Agent-Caused Collisions Encoder-Caused Collisions Timeouts

169 102 32 97
42 % 26 % 8 % 24 %

Table 4.5: Large network agent performance on the training environment.

Now we will present the results gathered from the agent with the smaller network. Table 4.6 shows

the performance of the agent in the test environment. Here, 127 runs resulted in a reached goal, 184

resulted in collision and 89 of the runs timed out.

Agent 2
Reached Goals Agent-Caused Collisions Encoder-Caused Collisions Timeouts

127 163 21 89
32 % 41 % 5 % 22 %

Table 4.6: Smaller network agent performance on the test environment.
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Table 4.7 shows the performance of the small network in the training environment. Here 204

trajectories ended in a reached goal state, 148 ended in a collision and 49 timed out.

Agent 2
Reached Goals Agent-Caused Collisions Encoder-Caused Collisions Timeouts

203 120 28 49
51 % 30 % 7 % 12 %

Table 4.7: Smaller network agent performance on the training environment.

4.7.3 Reinforcement Learning

Here we will present the results for the training with the RL method PPO. In table 4.8 we observe

the performance of the learning-based agent initialised by the large network and further trained with

the PPO algorithm. Here, 82 trajectories ended in “reach goal” and 153 trajectories collided with a

sufficient representation of the neighbourhood of the MAV. Further, 38 runs led to collision with an

insufficient representation of the neighbourhood while 127 timed out.

Agent 1 After PPO Training
Reached Goals Agent-Caused Collisions Encoder-Caused Collisions Timeouts

82 153 38 127
20 % 38 % 10 % 32 %

Table 4.8: Large network learning-based agent performance on the test environment.

Table 4.9 shows the performance of the learning-based agent with a large network architecture

trained with PPO on the training environment. This evaluation led to 118 trajectories ending in

reached goal and 116 trajectories colliding with a sufficient representation of the neighbourhood of the

MAV. 33 of the runs led to collision with an insufficient representation of the neighbourhood while 133

of the runs timed out.

Agent 1 After PPO Training
Reached Goals Agent-Caused Collisions Encoder-Caused Collisions Timeouts

118 116 33 133
30 % 29 % 8 % 33 %

Table 4.9: Large network learning-based agent performance on the training environment.

Now we will present the results from the learning-based agent with a smaller architecture. In table

4.10 we observe the agent performance in the test environment. Here, 144 of the trajectories reached

a goal while 152 of collided with a sufficient representation in the latent space, while 47 collided with

an insufficient representation in the latent space. 57 of the evaluation runs timed out.

In table 4.11 the agent performance in the training environment is presented. 184 of the trajectories

reached goal, 108 collided with sufficient representation in the latent space while 31 collided with

insufficient representation. 77 of the trajectories timed out.
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Agent 2 After PPO Test Environment
Reached Goals Agent-Caused Collisions Encoder-Caused Collisions Timeouts

144 152 47 57
36 % 38 % 12 % 14 %

Table 4.10: Small network learning-based agent performance on the test environment.

Agent 2 After PPO Training Environment
Reached Goals Agent-Caused Collisions Encoder-Caused Collisions Timeouts

184 108 31 77
46 % 27 % 8 % 19 %

Table 4.11: Small network learning-based agent performance on the training environment.

4.8 Discussion

In this part we will discuss the performance of the agents as presented in chapter 4.7. The information

in the presented tables are the statistics of the outcomes from the trajectories. These are useful to

discern the general performance of different agents. To further contribute to the discussion, we will

distinguish different traits of the MAV behaviour by illustrating trajectories where the trait is clearly

present.

We begin by discussing the computational complexity of the whole pipeline.

4.8.1 Computational Complexity

The networks are run on a CPU on a desktop computer. Needless to say, this is a very computationally

different environment to the mobile System-on-Chip (SoC) computer found on common MAVs. Since

all systems on a MAV are heavily constrained by power consumption, the computer systems may often

be run on CPU systems that are more lightweight and offer better performance per watt of energy.

However, many SoCs that are suited for MAVs also integrate GPUs. If an algorithm can be run

partially or fully on a GPU, it will free up computational resources for the CPU and thus run much

more efficiently.

The Tensorflow software library [11] is highly optimised for running on GPUs. Since we have based

all our neural network models on this framework, it is reasonable to expect that the inference times in

table 4.2 can be further reduced if an SoC with an integrated Nvidia GPU is used.

The largest part of the inference time is used on the encoder, and this is the major bottleneck for

the total inference time. However, even running this entire pipeline, from LiDAR point cloud inputs

to control outputs, on a CPU can result in a high-level control frequency of 12 Hz. This is sufficient

for a MAV navigating at slow to medium speeds through a cluttered environment. It is important to

note that the inference time for the learning-based pipeline is constant. The computational complexity

does not increase or decrease over time, or with the complexity of the scene.

Let us now look at table 4.3 which shows the computational time for the graph-based planner we use

as expert and baseline. The time it takes to create the TSDF representation is the same, as it uses the

same code base as in the learning-based pipeline. The most significant difference is the time it takes to

calculate a path and a control action varies greatly. We see a standard deviation of 145.18 ms from the
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mean of 44.32. This clearly shows how the computational complexity of this path planning algorithm

varies greatly with time and the complexity of the immediate environment. The best-case scenario

happens when the randomly generated goal point happens to be situated in a straight and collision-free

path from where the MAV happens to be. In this case, the time the algorithm uses for creating a path

is only about 2 ms as it is only checking for collisions along a straight line. However, whenever the

path planning algorithm needs to sample a complex immediate environment to do graph-based path

optimisation, the computational time often jumps to about 350 ms. Therefore, it is apparent that in

the worst-case scenario, the graph-based path planner is only able to reach a frequency of about 2 Hz

when including the time spent constructing the map of the immediate environment.

4.8.2 Imitation Learning

We will now discuss the general performance of the two agents by their performance as presented in

table 4.4, 4.5, 4.6 and 4.6. This discussion will revolve around the ability of the agent to generalise

and its performance with respect to collision avoidance.

The most crucial topic of interest is the substantial amount of collisions present in every evaluation.

Considering the main topic of evaluation being collision avoidance, we can clearly deduct from this

metric that none of these agents consistently provide collision avoidance. A 40 percent chance of

colliding in the test environment is a clear indication of this fact. At the same time, there seem to be

times where it shows signs of being environment-aware and thus demonstrates collision-free trajectories.

These trajectories occur when the MAV loops around objects to reach a goal or attempt to suddenly

change its trajectory when it is about to hit an object. These examples are motivating examples as

they can indicate where potential future work should be focused.

From here, we will discuss the degree to which collision avoidance is present in the policy. It should

be noted that both agents show some tendencies of being overfitted. This is observed in the amounts of

trajectories labelled as reached goal in the training environment, table 4.5 and 4.7, being higher than

the number of reached goals in the test environment, table 4.4 and 4.6. The same conclusion can be

deducted from the significant reduction in collisions. Using this argument, it can be stated that agent

2 is more overfitted to the environment than agent 1. An important aspect of collision-free navigation

is to ensure the generalisability of the agent. Overfitting is unwanted as it inhibits the ability of the

agent to generalise.

A subset of the trajectories that reached the goal can be caused by the goal and MAV being spawned

with a direct and collision-free path between them. These should not account for a large portion of

the trajectories, but since the goals are generated randomly, one does not avoid the possibility of a

straight path occurring.

The large network IL agent is most able to generalise between the two models. From the evaluation

in the test environment, we can observe that it is about as likely to reach within 1 meter of the goal

point as to collide. Reaching within 1 meter of the goal means travelling between 5 and 6 meters of

collision-free trajectory. Such a long flight in environments as cluttered as presented here deduces that

the agent is able to show some property of environment awareness, although not consistently.

It is interesting to note the proportional difference of collisions caused by the encoder when com-

paring performance in the training and test environments. The training set has a notably higher

proportion of encoder caused collisions than the testing set. The encoder-caused collisions in the test

environment for the first agent accounted for 20% of the total collisions. In the training environments,
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it accounted for 23.9%. The difference is more apparent in agent 2. In the test environment, 11% of

the collisions are due to encoder errors, while in the training environment, the same number is 18.9%.

It is difficult to ascertain the reason for this. It might be that the overfitted agent has a more reckless

behaviour to the point of reaching states that are harder to decode, but this is unlikely considering the

decrease in the total amount of collisions and increase in reached goals. The most probable cause is

that the agent is overfitted to the encoder, which does not necessarily return consistent outputs or any

guarantee for performance. Any irregularity in the encoder output might have drastic implications in

regard to the input sequence. This would mean instances of irregular outputs from the encoder can

have more fatal outcomes for an overfitted agent.

The encoder was trained in the same training environments as evaluated here. This might be an

indication that the encoder is able to generalise better than the agent. The autoencoder is trained

with a validation loss, and this is probably as important to integrate in the agent training to monitor

the generalisability of the policy. This might also be viewed as a generalisation bottle-neck for the

pipeline as a whole. If the encoder is only able to generalise to a certain degree, then the ability of the

agent to generalise will be constrained accordingly.

Exemplified Behaviour of the Imitation Learning Agent

Here we will discuss different types of performance that can be observed from the trained agent. To

visualise these performances, we will use four different images as shown in figure 4.12. The first image,

figure 4.12a, shows the output TSDF at a particular time step t, with the MAV in the centre. While

the second image, figure 4.12b, shows the output TSDF decoded from the latent vector of the same

time step t. These images have the same properties as the ones discussed in chapter 2. The third

image, figure 4.12c, shows the trajectory of the MAV in the visualisation tool Rviz, observed from

above. Here the MAV is represented as the green, red and blue axes. The yellow sphere is the goal

point the robot is to reach, it is here visualised with a radius of 0.1 meters. Additionally, in this

image we can observe the path as the grey dotted line from the spawn point to the MAV. The yellow

line visualises the MAV position in relation to the origin of the world frame. The red dots are the

simulated LiDAR points cast from the MAV onto the objects. These are the points that the local

TSDF representation is constructed with, and are therefore important to understand the observability

of the agent. It should be noted that the proportion of the axes of the body frame in figure 4.12c

does not correspond to the actual sizes of the MAV in the simulation. The fourth image, figure 4.12d,

shows the MAV in the simulated environment world in Gazebo as seen from above. In this image, the

sizes and proportions are correct. The Gazebo image is therefore useful for understanding the scales

of the drone and objects in the environment.

The performances can be categorised into three different classes of trajectories. The first class

of trajectory will show the MAV when it manages to perform collision avoidance. The second will

exemplify when a collision occurs even though the reconstructed TSDF is able to represent the object

with sufficient fidelity. The third shows a collision occurring without the obstacle being represented

correctly in the reconstructed local TSDF. It is important to note that these visualisations are hand-

picked and discussed here as they are representative of general tendencies in the trajectories. These

tendencies often do not occur in isolation. They are usually entwined within in parts of the input

sequence which makes establishing a cause of success or failure difficult to ascertain. The examples

visualised here are meant as illustrations of situations where these tendencies are easily distinguishable.
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Trajectory Indicating Collision Avoidance Properties

Consider the trajectory visualised in figure 4.12. Here the local TSDF map in 4.12a is a correct

representation of the environment observed in image 4.12c and 4.12d. The decoded version in 4.12b

is able to reconstruct the incoming TSDF with sufficient fidelity. In image 4.12c the trajectory of the

MAV is plotted. It is observed that it is successful in keeping a safe distance from the cylinder and the

wall. This example illustrates the tendency when the agent expresses clear indications of being aware

of the surrounding environment by controlling the drone in the desired manner.

(a) The occupancy map of the environment created by
the TSDF server

(b) The reconstructed TSDF point cloud from the
CVAE

(c) Trajectory of the MAV and its goal (d) The MAV in simulation

Figure 4.12: An example trajectory of the IL agent performing collision avoidance with the object well
represented in the deconstructed latent space.

Another example of the IL agent executing the desired behaviour is observed in figure 4.13. The

reconstruction in image 4.13b is deemed as representing the environment well, even though it misrep-

resents the object on the lower part of the image. For this particular trajectory, the object in the

lower part is not critical for collision avoidance regarding the route between the MAV and goal spawn

points. The wall on the right side and the cylinder on the left bounds the trajectory of the MAV. Here
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the MAV is able to reach the goal in a collision-free manner, while also having a safe distance to the

closest object. This is an example of the desired behaviour of the agent.

(a) The occupancy map of the environment created by
the TSDF server

(b) The reconstructed TSDF point cloud from the
CVAE

(c) Trajectory of the MAV and its goal (d) The MAV observed from above in the simulation.

Figure 4.13: A trajectory by the IL agent exhibiting collision avoidance properties with good recon-
struction

Collision Trajectory with Object Present in Latent Space

Now consider figure 4.14. Here the reconstructed TSDF in 4.14b, reconstructs the input TSDF in

4.14a, to an accurate degree. The reconstructed TSDF is able to represent the object with sufficient

fidelity, meaning there is a decent indication that the object is represented in the corresponding latent

vector. Nonetheless, the MAV moves directly into the object. From image 4.14c, it is apparent that

the MAV is only a few time steps from colliding with the obstacle. It is interesting to note that the

trajectory is a very straight line. Suppose we consider that this is a series of control inputs where

each calculated input only observes the state of that particular time step. Then the straightness of

the path shows a consecutive policy for the traversed state space. If the policy produced very different

outputs during this particular sequence, we would observe some perturbations in the path. However,
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we observe none. Meaning one of two situations must be happening. The first possibility is that the

agent does not decode the latent space vector correctly, making the object inobservable for all states.

The reconstructed TSDF in image 4.14b is decoded using the decoder of the autoencoder pair. There

is no guarantee that this corresponds to the way the agent decodes the latent space. On the other

hand, due to the multi-modal issue in optimising the policy, it may be conditioned to aim for obstacles

as discussed in section 4.6.1. This may happen if there is close to an equal chance of picking a path

that goes left or right to avoid an obstacle. In either case, this MAV behaviour is highly undesired.

(a) The occupancy map of the environment created by
the TSDF server

(b) The reconstructed output TSDF point cloud from
the CVAE

(c) Trajectory of the MAV and its goal. The MAV is
the lower of the two axis frames.

(d) The MAV in simulation.

Figure 4.14: A colliding trajectory by the IL agent with good reconstruction

Collision Trajectory Without Object Correctly Represented in the Latent Space

In figure 4.15 the third class of agent performance can be observed. In this collision example there

are severe differences in the original local TSDF in 4.15a and the reconstructed TSDF in 4.15b. There

is also an error in the original TSDF map where the two obstacles visualised in 4.15d are merged

together. This is caused by the ego-motion of the MAV and can be a source of errors for the encoder
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and agent. The problem arises when an object has only been seen from one certain angle. Since the

TSDF server assumes that unseen space is occupied, as the MAV approaches an object straight on,

the object will ”grow” in length. This is illustrated in figure 3.22. Practically this means that the

corridor of free space between the cylinder and the rectangular box in figure 4.15d will be ”filled in”

by the TSDF server as seen in figure 4.15a. Only when the MAV can directly observe this free space

will the TSDF point cloud clear this part of the TSDF to more closely resemble the real environment.

This means that the agent must take control actions to see an object from several angles to better

understand where it is going. However, since our implementation is memoryless and therefore assumes

the Markov property, this behaviour is difficult to teach the agent. It will always make decisions only

based on the current input TSDF point cloud, and it cannot distinguish whether this TSDF point

cloud fully reflects the true environment.

In this example, there is little indication that the latent space contains sufficient information about

the obstacle. Here it would seem that the latent space vector refers to an object being further away,

to the bottom of the image. In image 4.15c the agent trajectory is close to a direct line with some

indication of the path steering towards the goal point. It is not possible to distil the entire control

sequence based on figure 4.15. However, it is important to note that a collision will only be a matter

of chance if the obstacle is unobservable for the agent. The agent cannot be expected to perform

collision avoidance in a situation where the latent space does not contain sufficient information about

the environment. As trajectories similar to the one illustrated in this example occur during training

as well, they will lead to data ambiguity and a poorer policy. This problematic behaviour is discussed

further in the observability section 4.6.1.
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(a) The occupancy map of the environment created by
the TSDF server

(b) The reconstructed output TSDF point cloud from
the CVAE

(c) Trajectory of the MAV and its goal (d) The MAV in simulation

Figure 4.15: A colliding trajectory by the IL agent with erroneous reconstruction

4.8.3 Reinforcement Learning

Consider now the performance of the learning-based agent trained with RL as presented in the 4 4.8,

4.9, 4.10 and 4.11. It is evident that the large network performs much worse than any other model

in the presented results. This is observed by the amount of reached goals having declined and the

number of collisions having risen. The proportion of timeouts are substantially high which is evident

of a slower trajectory, as is confirmed by visual inspection. The architecture of this agent has been

shown to be able to perform better, as observed in the presentation of the results of the IL agent.

We will therefore regard the large network learning-based agent as having converged to a sub-optimal

policy. The computational resources learning-based methods demand are substantial, and achieving

an optimal, or near-optimal, policy is not guaranteed. This is a large disadvantage of using methods

such as IL and RL.

In IL, the agent is trained using the acceleration vector found by the expert. The system does not

take into account whether the latent vector represents the TSDF accurately or not. When exploration
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is performed in RL, the representation is crucial for predicting the input sequence. Given a faulty

input vector, collision-free navigation is just a matter of chance. Let us now consider the exploration

perspective of the RL agent. Exploration that results in small changes of the MAV position will be

rewarded or not penalised too much, while exploration resulting in large changes have a significant

chance of collision, generating a large penalty. This penalty of exploration might increase the possibility

of achieving a slow and cautious behaviour of the agent as observed in the performance of the large

agent.

The performance of the smaller network learning-based agent trained with RL is similar to the

performance of the two learning-based agents trained with IL. It is difficult to decide which agent

performs better. There are small differences between the agents’ performance, but not enough to

distinguish the methods used with certainty.

Combining two very different learning-based methods is a demanding task. The different setup

of the optimisation problem as observed in the IL method and the RL method are described vastly

different [78]. While each attempts to solve the same problem, they inherently will focus on differences.

In RL, this difference in the optimisation problem can, to some extent, be tuned by altering it to

resemble the implicit reward function of the expert. However, due to the difficulties of solving the IL

problem, as described in section 4.6.2, there was not enough time to focus on ensuring consistency in

the behaviour of the gradients when changing between the methods.

In regards to tuning the reward function, it is hard to state if there exists some form of optimal

tuning of the reward function to ensure the behaviour discussed in 4.4.7. Increasing the goal reward

could lead to straight paths being weighted more and therefore result in less collision avoidance prop-

erties. Weighing the penalty on the difference in position between the MAV and goal higher could

lead to more reckless behaviour. In general this is a difficult input space without guarantees for the

existence of an optimal policy, making learning-based approaches difficult.

The explained issue here underlines the problem detailed in section 4.6.2. Here the discussion

revolves around the existence a true underlying function describing the relationship between the un-

predictable input space and the acceleration fulfilling the desired behaviour underlined in section 4.4.7.

The parameter space of the agent is very complex, meaning it is not possible to rule out the existence

of a combination of weights mapping input to output in an adequate way, but it is very difficult, to

approximate this function.

Exemplified Behaviour of the Trained Learning-based Agent

Here we will discuss trajectories that are expressive of the behaviour of the drone. Much of the same

discussion from the results from the IL agent performance in section 4.8.2 will be relevant here as well.

For this visualisation we have only used the small network.

Trajectory Exemplifying Collision Avoidance Properties

In figure 4.16 the learning-based agent trained with RL executes a trajectory where it manoeuvers

efficiently through the environment. Figure 4.17 is also an example of the wanted behaviour of the

MAV.
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(a) The occupancy map of the environment created by
the TSDF server

(b) The reconstructed TSDF point cloud from the
CVAE

(c) Trajectory of the MAV and its goal (d) The MAV in simulation

Figure 4.16: An example trajectory of the RL agent performing collision avoidance with the object in
the deconstructed latent space.
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(a) The occupancy map of the environment created by
the TSDF server

(b) The reconstructed TSDF point cloud from the
CVAE

(c) Trajectory of the MAV and its goal (d) The MAV in simulation

Figure 4.17: A trajectory by the RL agent exhibiting collision avoidance properties with good recon-
struction

Trajectory Colliding with Object Missing in the Latent Space

In figure 4.18 the agent collides with an object which is not present in the latent space at all. In this

example, the agent cannot be expected to perform collision avoidance.
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(a) The occupancy map of the environment created by
the TSDF server

(b) The reconstructed TSDF point cloud from the
CVAE

(c) Trajectory of the MAV and its goal (d) The MAV in simulation

Figure 4.18: An example trajectory of the RL agent colliding with the environment. The MAV collides
with an object which is present in the occupancy map from the TSDF server, observed in 4.18a, but
is absent from the reconstructed TSDF point cloud from the CVAE, seen in 4.18b

Agent Colliding With Object Well-Represented in the Latent Space

In figure 4.19 the object is present in the latent state representation, and the agent should therefore

be expected to perform collision avoidance in this example. The MAV is unable to dodge the obstacle

and collides.
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(a) The occupancy map of the environment created by
the TSDF server

(b) The reconstructed TSDF point cloud from the
CVAE

(c) Trajectory of the MAV and its goal (d) The MAV in simulation

Figure 4.19: An example of a trajectory by the RL agent leading to a collision with the environment.
The collision happens with an object that is clearly represented in the reconstructed TSDF point cloud
as seen in 4.19b.

4.9 Conclusion

In this section, we have presented a learning-based agent which, together with the Convolutional

Variational encoder, represents an End-to-end method of doing both local path planning and high-

level flight control. The learning-based agent was trained both through an Imitation Learning and

a Reinforcement Learning framework to teach it to navigate and control a MAV. The inputs to the

learning-based agent are the latent space representation of the immediate 3D environment around the

MAV and the relative position of the MAV with respect to a given setpoint and the velocity of the

MAV. The output of this learning-based agent is an acceleration vector that is fed directly to the

low-level control algorithms of the MAV.

A challenge with this approach is a total dependency on the consistency of the latent space repre-

sentation from the encoder. This means that whenever the latent space fails to encode an object, the
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learning-based agent has no way of sensing an impending collision. Even though the latent space is

itself regularised through the process of training the CVAE, we have no guarantee as to how this latent

space is organised internally or its complexity. The result of this is that making a function that maps

from this latent space to a valid collision-free acceleration vector can only be done through exhaustive

training of several different network topologies. Our work indicates that a learning-based agent can

extract spatial information from the latent space representation of the local environment but naturally

struggles when the latent space representation is not consistent or ambiguous.

We highlighted the challenges encountered through the Imitation learning training process when

using a traditional path-planning algorithm as an expert in the Data Aggregation Algorithm. Since

our learning-based agent is operating according to the Markov property, the system is completely

memoryless. This means that the sequence of control outputs from the learning-based agent will

not be optimised with respect to each other, only the information available in the current time step.

The consequence of this becomes apparent if there exists an ambiguous solution to the optimal path

planning problem. One example being if a symmetric object is situated directly between the MAV and

the goal point as discussed in section 4.6.1. In this case, the path suggested by the expert path planner

may oscillate between subsequent time steps. When these examples are taught to the learning-based

agent, the resulting path it will learn may be the average of the paths between which the traditional

planner is oscillating. Practically, this can result in the agent accelerating directly into an object if it

is unsure if it should go left or right.

When we trained the learning-based agent using the Reinforcement Learning framework, we im-

ported a model which had been previously trained for a short period of time using the Imitation

Learning framework. This was to avoid having to teach the agent certain basic skills like stable flight

without having to spend time teaching it through exploration using RL. However, an inevitable conse-

quence of this method is that the agent will inherit certain non-optimal behaviours from the IL training

process, as previously explained. Our work shows that the learning-based agent trained using the RL

framework is difficult and guarantees no optimal, or close to optimal, policy.

Our algorithm runs at a constant 12 Hz regardless of the environment complexity, which contrasts

with the traditional sampling-based local path planner used as the baseline. This is significant because

it will allow a MAV to navigate at a constant rate without needing to slow down because of an

optimisation problem growing in complexity with its surrounding environment.



Chapter 5

Conclusions, Discussion, and

Recommendations for Further Work

5.1 Summary

Chapter 2 elaborated and defined the fundamental theory for the following chapters. This theory

consisted mostly of machine learning methods. This includes a discussion about the training process

of the neural network, which will be the main workhorse throughout this thesis. In addition, the effect

the architecture of a neural network has on its optimisation landscape and therefore its tendencies for

over- or underfitting on the training data, was also discussed.

Chapter 3 presented a method for heavily compressing point clouds representations of the local

environment of the MAV to reduce its dimensionality. This compression was done while retaining

geometric information to make it more computationally tractable for the controller in the following

chapter. The theory behind the generation of the TSDF point cloud and the CVAE was presented

together with an exhaustive search of different network architectures. We showed that it is possible

to make a compressed latent space representation of the TSDF point clouds gathered in a given envi-

ronment and discussed how well the CVAE is able to generalise to unseen environments. The selected

network architecture was pushed as far as possible to highlight the challenges posed by compressing

point clouds using a CVAE. Then the practicalities regarding the generation of TSDF point clouds,

all the way from the LiDAR, up until the passing of the TSDF to the encoder, was discussed with an

emphasis on the effects of parameters in the implementation. The CVAE is able to learn environments

with a limited subset of types of obstacles well, but the challenge is to have it generalise properly to

unseen or more complex environments. There is also no guarantee as to how well the latent space is

structured, other than it being regularised to resemble a normal distribution.

Chapter 4 discussed learning-based methods for generating an agent, parametrised as a neural net-

work, capable of executing collision-free flight based on the latent space representation from the CVAE

of chapter 3. This represents an End-to-end approach to solving both the local path planning and

high-level control problem with the same model, which contrasts with the traditional divide between

the two disciplines. The chapter’s objective was to train the policy of such an agent using both Imi-

tation Learning (IL) and Reinforcement Learning (RL), and evaluate its effectiveness. Theory behind

99
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the methods used were elaborated and discussed. The two proposed neural network architectures were

trained both through the IL framework and the combined IL and RL framework. Each used the best

performing encoder network architecture from chapter 3.

5.2 Conclusion

In this master thesis, we have presented a novel way to do learning-based local path planning and

high-level flight control. Using 3D Convolutional Variational Autoencoders, a regularised latent space

representation is created from the immediate environment. Our work indicates that the agent is able

to extract information about its position relative to the objects surrounding it. This lets the agent

infer a geometric understanding of its immediate environment, and from there, be able to some degree

execute a collision-free trajectory. We demonstrated in chapter 3 how well a CVAE is able to compress

the TSDF point clouds under a given set of assumptions. The biggest challenge was to generalise from

the training environment in which the TSDF point clouds were collected to unseen environments. We

reached the limit to how well the proposed autoencoder architecture can generalise and used this as

a hard upper limit for the later sections of this thesis. The training of the learning-based agents, as

explained in chapter 4, resulted in agents able to infer a of geometric understanding of the robot’s

immediate environment from the compressed latent space. This pipeline represents an End-to-end

method that combines both traditional local path planning and high-level flight control. From the

raw point cloud inputs from the LiDAR to the control outputs of the low-level MAV controllers, the

whole pipeline is able to run at a constant frequency of approximately 12 Hz. This is a very interesting

property, as it means that the run time of our algorithm does not increase or decrease over time or

with the complexity of the immediate environment. However, significant work still remains on both

the perception and the control part of this implementation for it to consistently provide collision-free

trajectories with comparable performance to the graph-based path planner we use as the baseline.

5.3 Discussion and Recommendations for Further Work

This implementation of local path planning has shown promising results, and it is the authors’ im-

pression that this implementation is worth further research. Being a completely novel approach, there

still remains work for this method to be competitive. This method is not competitive in terms of

consistently solving the collision avoidance problem compared to the graph-based local path planner

we use as the baseline. We will now discuss what we believe to be the most important challenges with

this implementation, and what we believe will help solve them.

5.3.1 Ensure Generalisability of the Encoder

One of the biggest challenges of this implementation is ensuring that the latent space of the autoencoder

is consistent and generalised. This means that if the autoencoder observes something it has not seen

before, it will be able to infer a corresponding latent space that will be consistent with respect to the

types of environments it has seen before. Right now, we see that we are pushing the limits to how well

the autoencoder is able to generalise. If we train the autoencoder directly in the environment in which

the agent will be trained later, we get a consistent latent space at the cost of heavy overfitting. We
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tried to circumvent this by making a well-distributed dataset with which the autoencoder is trained.

However, we observe that we still are not reaching the needed level of generalisability for the agent to

be able to consistently make optimal decisions based on the latent space. This means that, already

before the imitation learning process is initiated, the input latent space is already non-optimal.

If one were to guarantee an optimal and consistent latent space, one would need to manually

label the training data and the objects therein. This would enable the training process to monitor

which types of objects get reconstructed correctly, while also optimising the recall of obstacles in the

reconstruction. This would enable the algorithm to be optimised for maximum recall of objects, instead

of recall of voxels. In the latter case, a small and thin object will be prioritised less than a massive

object, as the massive object represents a larger proportion of the overall voxels. This is the case

for our thesis. Ideally, failing to reconstruct thin objects should be penalised just as much as objects

with comparatively larger sizes. If one could know in advance what types of combinations of obstacles

would be reconstructed correctly, the agent could be trained in a constructed world where one had

the guarantee of the latent space being consistent. The obvious drawback to this solution is the fact

that the needed labelling would represent a huge amount of work to be useful. If one only had a small

dataset, the training of the agent itself wouldn’t generalise, but only overfit on this small dataset. It

is therefore apparent that the size of this labelled dataset would need to be immense for it to have any

academic value.

5.3.2 Memory of Objects Disappearing From Direct View

As discussed in chapter 3, one of the limiting factors for true 3-dimensional flight of the MAV is

the limited observability due to the constrained field of view of the LiDAR, as well as the process of

creating the local map. This results in the set of valid directions of travel for the MAV being strictly

constrained to the field of view of the LiDAR. To remedy this, one should implement a LiDAR with

a much larger field of view to increase the amount of directly observable space around the MAV. The

coverage of the LiDAR cannot be total due to the presence of the MAV hardware. Thus we need an

integrating approach that ensures that objects that disappear from direct view are remembered. This

can be solved by ensuring that the TSDF generation process does not discard points that belong to

objects that escape the directly observable region, or by working with a sliding window of TSDF point

cloud observations. Assuming a static environment, this could make sure that the MAV would have a

much wider range of valid directions to travel.

5.3.3 Challenges with Respect to the Imitation Learning and the Rein-

forcement learning Problems

Balancing a learning-based method on top of input data that can be unpredictable and without guaran-

teed performance is a difficult task. Cases where the latent space is inconsistent can lead to situations

where a proposed action from the expert leads the MAV to what appears to be obstacles from the

perspective of the agent. This problem is elaborated on in chapter 4.6. Ensuring that the agent is

only trained on valid data points could be a way of completely decoupling the performance of the

autoencoder from the ability of the agent to understand the latent space, but removing all data points

where the encoder is inconsistent would make the agent reliant on perfect input data. When playing

the finished agent, the encoder would still be imperfect, and the agent would probably be less able to
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handle the new input space. Further efforts into this implementation should focus on making a reliable

and consistent latent space representation.

5.3.4 Validation Loss for the Agent

The implementation of validation loss could be a useful tool to ensure that the agent does not overfit

to the training environment. Generalisation is an essential aspect of the system, and implementing

validation loss is a simple method to ensure the best performance from the agent. This could be

implemented by observing the loss of the agent at given intervals during the training process in an

environment in which the agent has not seen before.

5.3.5 Ambiguous Learning Samples From the Expert Planner

The multiple head agent, discussed in chapter 4.6.1, may be implemented as it could solve the issue of

the agent being optimised to collide directly into objects if there exist any ambiguities with respect to

which side of an object the agent should navigate. This would greatly improve the learning process by

removing examples of behaviour which directly violated the hard constraints on collision avoidance.

By optimising a set of neural networks which corresponded to the direction of travel in two separate

half-planes in the x-y plane of the MAV, the outputs of these networks could be ranked so that the

agent took a definite choice as to which direction the MAV should proceed.

Since our implementation is completely memoryless, the choice of action in a given timestep is

totally independent of both the preceding and subsequent actions. If the learning-based agent were to

include some memory capacity, it could be trained to ensure that a sequence of actions is consistent

and non-oscillatory. It may also have understood the oscillatory nature of the expert planner better,

recognising that deciding confidently to go a certain direction would reduce the ambiguities from the

expert planner and result in a more consistent path.

5.3.6 Randomising the Environment

Increasing the generalisability of the agent requires data from a wide array of different environments.

To ensure a more general policy, the environment should be shuffled randomly at regular intervals.

These shuffles should be random to ensure no bias from the developers will affect the dataset, but

should have some underlying structure guaranteeing that objects will be placed between most of the

points in which the MAV and the goal spawn. This is to ensure that collision avoidance trajectory

samples dominate the data set. There necessarily will be a limit as to how complex an environment

we are able to generalise the model to recognise. Therefore, it is apparent that the scope of the

generalisability of our models is constrained to a certain class of environment with a certain class of

objects. Navigating inside a large cave will necessarily require a very different model than navigating in

an office environment. Therefore, generalisability, in this case, refers to the model’s ability to operate

with environments in which the placement of obstacles is completely random.
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Acronyms

LiDAR Laser imaging, detection, and ranging

MDP Markov Decision Process

ANN Artificial Neural Network

CNN Convolutional Neural Network

VAE Variational Autoencoder

CVAE Convolutional Variational Autoencoder

RL Reinforcement Learning

IL Imitation learning

DAGGER The Data Aggregation algorithm

TRPO Trust region policy optimization

PPO Proximal policy optimization

GPS Global Positioning System

LiDAR Light detection and ranging

MPC Model predictive control

NMPC Nonlinear model predictive control

SDF Signed Distance Field

TSDF Truncated Signed Distance Field

KL-divergence Kullback-Leibler divergence

MAV Micro Aerial Vehicle

UAV Unmanned Aerial Vehicle
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RGB Red, Green, Blue

LQR Linear-Quadratic Regulator
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A.1 Algorithms

Algorithm 1 One-step Actor-Critic (episodic), for estimating πθ ≈ π∗
1: Input: a differentiable policy parametrization π(a|s, θ)
2: Input: a differentiable state-value function parametrization v̂(s, w)
3: Parameters: step sizes αθ > 0, αw > 0
4: Initialize policy parameter θ ∈ Rd′ and state-value weights w ∈ Rd (e.g., to 0)
5: loop forever (for each episode):
6: Initialize S (first state of episode)
7: I ← 1
8: loop while S is not terminal (for each time step):
9: A ∼ π(·|S, θ)

10: Take action A, observe S’,R
11: δ ← R+ γv̂(S′, w)− v̂(S,w) (if S’ is terminal, then v̂(S′, w)

.
= 0)

12: w ← w + αwδ∇v̂(S,w)
13: θ ← αθIδ∇ln

(
π(A|S, θ)

)
14: I ← γI
15: S ← S′

Algorithm 2 Trust-region Policy Optimization[80]

1: Input: initial policy parameters θ0 and initial value function parameters φ0

2: Hyperparameters: KL-divergence limit δ, backtracking coefficient α, maximum number of back-
tracking steps K

3: for k = 0,1,2,... do
4: Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment
5: Compute rewards-to-go R̂t
6: Compute advantage estimates, Ât (using any method of advantage estimation) based on the

current value function Vπk
7: Estimate policy gradient as: ĝk = 1

|Dk|
∑
τ∈Dk

∑T
t=0∇θlogπθ(at|st)|θkÂt

8: Use the conjugate gradient algorithm to compute x̂k ≈ Ĥ−1
k ĝk, where Ĥk is the Hessian

of the sample average KL-divergence

9: Update the policy by backtracking line search with: θk+1 = θk + αj
√

2δ
x̂Tk Ĥkx̂k

x̂k, where

j ∈ {0, 1, 2, ...,K} is the smallest value which improves the sample loss and satisfies the sample
KL-divergence constraint

10: Fit value function by regression on mean-squared error: φk+1 =

arg minφ
1

|Dk|T
∑
τ∈Dk

∑T
t=0

(
Vφ(st)− R̂t

)2
, typically via some gradient descent algorithm
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Algorithm 3 Proximal Policy Optimization, Actor-Critic style[81]

1: for iteration = 1,2,... do
2: for iteration = 1,2,...,N do
3: Run policy πold in environment for T timesteps
4: Compute advantage estimates Ât, ..., ÂT
5: Optimize surrogate L w.r.t θ, with K epochs and minibatch size M ≤ NT
6: θold ← θ

Algorithm 4 The Rapidly-Exploring Random Graph algorithm [85]

1: V ← {xinit};E ← ∅
2: for i=1,. . . ,n do
3: xrand ← SampleFreei
4: xnearest ← Nearest(G = (V,E), xrand)
5: xnew ← Steer(xnearest, xrand)
6: if ObstacleFree(xnearest, xnew) then
7: Xnear ← Near(G = (V,E), xnew,min{γRRG(log(card(V ))/card(V ))1/d, η})
8: V ← V ∪ {xnew};E ← E ∪ {(xnearest, xnew), (xnew, xnearest)}
9: for all xnear ∈ Xnear do

10: if CollisionFree(xnear, xnew) then
11: E ← E ∪ {(xnear, xnew), (xnew, xnear)}

return G = (V,E)

Algorithm 5 The DAgger algorithm [86]

1: Initialize D ← ∅
2: Initialize π̂1 to any policy in Π
3: for i=1 to N do
4: Let πi = βi + (1− βi)π̂i.
5: Sample T-step trajectories using πi
6: Get dataset Di = {(s, π∗(s))} of visited states by πi and actions given by expert
7: Aggregate datasets: D ← D ∪Di.
8: Train classifier π̂i+1 on D
9: return best π̂i on validation
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A.2 Specifications

Vertical resolution 64 channels

Horizontal resolution 512

Range 120

Vertical field of view 45 ◦

Precision ± 0.7-5cm

Points per second 1,310,720

Rotation rate 10 Hz

Table A.1: The technical specifications for the Ouster OS1-64 LiDAR [61]
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[51] Roland Pugliese, Thomas Konrad, René Zweigel, and Dirk Abel. “Object Detection and Poten-

tial Field-based Trajectory Planning on LiDAR 3D-Point Clouds for UAV in Uncertain Environ-

ments”. In: Proceedings of the 32nd International Technical Meeting of the Satellite Division of

The Institute of Navigation (ION GNSS+ 2019). 2019, pp. 2622–2636.

[52] Daniel Ricao Canelhas, Erik Schaffernicht, Todor Stoyanov, Achim J Lilienthal, and Andrew

J Davison. “Compressed voxel-based mapping using unsupervised learning”. In: Robotics 6.3

(2017), p. 15.

[53] Sina Sharif Mansouri, Christoforos Kanellakis, Björn Lindqvist, Farhad Pourkamali-Anaraki, Ali-

Akbar Agha-Mohammadi, Joel Burdick, and George Nikolakopoulos. “A unified nmpc scheme

for mavs navigation with 3d collision avoidance under position uncertainty”. In: IEEE Robotics

and Automation Letters 5.4 (2020), pp. 5740–5747.

https://arxiv.org/abs/1712.09913
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1109/IROS.2017.8202315
https://doi.org/10.1109/IROS.2017.8202315


BIBLIOGRAPHY 112

[54] C. Tu, E. Takeuchi, A. Carballo, and K. Takeda. “Point Cloud Compression for 3D LiDAR Sensor

using Recurrent Neural Network with Residual Blocks”. In: 2019 International Conference on

Robotics and Automation (ICRA). 2019, pp. 3274–3280. doi: 10.1109/ICRA.2019.8794264.
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