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A B S T R A C T   

Some cyclically loaded components such as mooring chains can develop fatigue cracks in locations where the 
shape of the part is equivalent to that of a curved or bent round bar. Here we consider a semi-elliptical crack 
growing from the surface of a curved round bar. This geometry can for example represent a chain link segment 
with a crack located at its inner- or outer radius. The surface crack can be either almond shaped, sickle shaped or 
straight-fronted. Stress intensity factors (SIFs) over the fronts of such crack geometries are in the present work 
investigated for several elementary mode I stress distributions. Finite element analysis and linear elastic fracture 
mechanics methods are used to develop semi-analytical solutions for the SIF at any point on the crack front. 
Effects of relative bar curvature on numerical results are demonstrated. Relative to otherwise identical cracks in 
straight bars, SIFs for cracks in the curved bars considered here are found to differ by up to 8%. With an offshore 
mooring chain model as a case example, the estimation of SIFs for cracks in a complex residual stress field is 
furthermore demonstrated using a cubic polynomial stress approximation.   

1. Introduction 

Predicting the remaining fatigue life of a round bar component 
containing a surface crack is a well-known engineering problem that is 
relevant to a vast range of different industries. A semi-elliptical crack 
model is often used to represent such cracks, allowing a wide range of 
crack shapes to be approximated using no more than two parameters. 
Fatigue in metallic materials under high-cycle fatigue conditions will 
furthermore usually only involve plasticity at a small-scale. Crack 
growth analysis methods based on linear elastic fracture mechanics can 
therefore often be considered acceptable. In many cases, the round bar 
component containing the crack will be a straight cylindrical bar sub
jected to tension and/or bending loads. Examples of such cases are 
cracks in rods and shafts. In certain cases, the crack under consideration 
is on the other hand growing in a distinctly curved or bent round bar 
component. Compared to the simpler case of a straight bar, the analysis 
of cracks growing in curved bars does however not appear to have 
received much attention in published literature. 

A relevant example problem involving cracks in curved round bars 
can be found when considering fatigue crack growth in offshore mooring 
chains. Chains of this type are frequently used for anchoring oil and gas 
installations in conditions where corrosion fatigue can be an important 

damage mechanism. Fatigue cracks in mooring chains are in most cases 
observed to grow from the exterior and interior sides of the curved parts 
of the links [1–3]. Fig. 1 indicates the two most common fatigue crack 
locations. The stress distributions present in these regions of the link will 
generally have a non-trivial relationship with the remote tension load P, 
and can often not be adequately described by simply superimposing a 
uniform tensile stress and a linear bending stress [4,5]. In addition to the 
possible influence of bar curvature by itself, it may thus also become 
necessary to consider a relatively complex loading of the crack. 

Semi-elliptical surface cracks in round bars can broadly be classified 
into three distinct shape categories. If the crack area is convex, the crack 
can be described as almond shaped. If the crack area on the other hand is 
concave, the crack can be described as sickle shaped. The third category 
is the straight-fronted crack, which is a special case of the two former 
elliptical shapes and can serve as an intermediate shape in between 
them. Based on empirical observations, fatigue cracks in smooth round 
bars subjected to cyclic tension or bending loads generally tend to be 
almond shaped. Sickle shaped cracks can however also be encountered 
in some cases, for example when a crack is growing from a circumfer
ential notch or similar stress concentration [6]. Since offshore mooring 
chains often develop notable stress concentrations due to corrosion and 
wear [7], all three crack shape categories could potentially be relevant. 
And since the bar diameter in this application often exceeds 100 mm, it 
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can also be added that the size of the fatigue crack under consideration 
sometimes can be rather small relative to the diameter. 

In order to model the growth of a semi-elliptical fatigue crack as a 
linear elastic fracture mechanics problem, the stress intensity factor 
(SIF) associated with the crack front must be evaluated. This allows 
crack growth rates under constant amplitude loading to be calculated by 
correlating the cyclic stress intensity factor range (ΔK) with experi
mentally determined crack growth rates. Additionally, a method for 
predicting crack shape development will be needed. One approach can 
be to assume that changes in crack aspect ratio must be driven by a 
variation in local crack growth rates over the crack front. When crack 
growth rates are calculated from ΔK, this does however require evalu
ation of SIFs at multiple different crack front locations. 

The evaluation of SIFs associated with almond shaped cracks in 
straight round bars under tension and bending loads is a subject that has 
been addressed in a number of publications [8–12]. A review covering 
various SIF solutions for this geometry has been presented by Toribio 
et al. [13]. In addition, the evaluation of SIFs for almond shaped cracks 
in curved round bars has to some extent been addressed by the present 
authors [5]. The subject of calculating SIFs associated with sickle shaped 

cracks has been addressed in a handful of publications [14–17]. Only a 
few of the various closed-form solutions found in literature do however 
readily allow for SIFs to be evaluated at arbitrary crack front positions. 
Solutions addressing both almond- and sickle shaped cracks in curved 
round bars furthermore appear to be hard to find. 

The main subject of the present paper is the evaluation of SIFs 
associated with semi-elliptical cracks in curved round bars subjected to 
mode I loading. With bar curvature considered as an independent var
iable, semi-analytical polynomial solutions for approximating the SIF 
variation over almond- and sickle shaped crack fronts are hereafter 
developed. Effect of bar curvature on SIFs and some implications for 
fatigue cracks in a typical offshore mooring chain link are furthermore 
addressed. 

2. Methods 

2.1. Geometry and crack growth model 

A semi-elliptical crack in a curved round bar with diameter D is 
considered (Fig. 2). The elliptical crack front is defined in the x-y plane, 
with semi-axes aelp and belp. For an almond shaped crack (Fig. 2a), the 
ellipse origin is at the coordinate system origin, and the crack depth is a 
= aelp. For a sickle shaped crack (Fig. 2b), the ellipse origin is moved to 
the opposite side of the bar, and the crack depth is a = D - aelp. The bar 
(Fig. 2c) has a radius of curvature Rc in the y-z plane, with center of 
curvature located on either the cracked- or uncracked side of the bar. For 
SIF calculation purposes, this geometry and locations along the crack 
front will be characterized by four dimensionless parameters α, β, γ and ξ 
defined as follows:  

• The crack shape parameter α is defined so that α > 0 for almond 
shaped cracks, α < 0 for sickle shaped cracks, and α = 0 in the case of 

Nomenclature 

Ai,qrs coefficients for polynomial geometry correction factor 
solutions (crack center) 

a crack depth 
aelp, belp ellipse semi-axes 
Bi,qrs coefficients for polynomial geometry correction factor 

solutions (crack edge) 
Ci,qrst coefficients for polynomial geometry correction factor 

solutions (crack front) 
D bar diameter 
Fi geometry correction factor for reference stress σi 
FEA finite element analysis 
KI stress intensity factor, mode I loading 

ΔK stress intensity factor range (Kmax - Kmin) 
ΔKeff effective stress intensity factor range (U*ΔK) 
N number of fatigue cycles 
RC bar radius of curvature 
SIF stress intensity factor 
U effective stress intensity factor ratio (ΔKeff/ΔK) 
α crack shape parameter 
β relative crack depth 
γ bar curvature parameter 
ν Poisson’s ratio 
ξ relative crack front position 
σi reference stresses for polynomial stress distribution (i = 0, 

1, …, 6) 
σz normal stress in crack plane  

Fig. 1. Offshore mooring chain link. Typical fatigue crack locations (1 and 2) 
are indicated. 

Fig. 2. Parametric description of a curved bar with crack. Definitions are shown for (a) almond shaped crack, (b) sickle shaped crack, and (c) bar curvature. Shaded 
areas represent the crack. Sign conventions for α and γ have been included. 
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a straight-fronted crack. Its absolute value |α| is in any case equal to 
the ellipse aspect ratio aelp/belp.  

• The relative crack depth is β = a/D.  
• The relative bar curvature γ is defined so that γ > 0 if the crack is on 

the outer radius of the bar, γ < 0 if the crack is on the inner radius of 
the bar, and γ = 0 for a straight bar. Its absolute value |γ| is in any 
case D/Rc.  

• The exact location of a point on the crack front is specified as ξ = |x/ 
xe|, where xe is the x-coordinate for the intersection point between 
the crack front and the bar surface. 

The crack is subjected to Mode I loading where the normal stress 
distribution σz in the crack plane, before any crack has been introduced, 
can be defined by the following polynomial function: 

σz(x, y) = σ0 + σ1(1 − 2y/D) + σ2
(
1 − 4y2/D2)+ σ3

(
1 − 8y3/D3)+ σ4

(
1

− 4x2/D2)+ σ5
(
1 − 8|x|3

/
D3 )+ σ6

(
1 − 8x2y

/
D3)

(1) 

This stress distribution can in the case of a straight bar under tension 
loading be reduced to a uniform tensile stress σz = σ0, or for a straight 
bar under bending load reduced to a linear bending stress σz = σ1(1 – 2y/ 
D). In general, it represents a superposition of seven elementary mode I 
stress distributions (Fig. 3). For more complex loading conditions and/or 
residual stress fields, the stress distribution in the crack plane can be 
approximated by determining best-fit values for the reference stresses σi 
= σ0, …, σ6 in Eq. (1). The quadratic and cubic terms in x have been 
included to allow for a more accurate approximation of some stress 
distributions that can be relevant for mooring chain links. See for 
example the residual stress distributions indicated by Bastid and Smith 

[4], as well as the stress analysis results presented in Section 3.3 of the 
present paper. Note however that since Eq. (1) does not contain any 
terms that are linear in x, it can only represent stress distributions that 
are smooth and symmetric over the x = 0 plane. 

Fatigue crack growth is in this work modelled using an incremental 
crack shape updating method based on a model presented by Carpinteri 
[9], Couroneau and Royer [10]. The method is illustrated in Fig. 4. It is 
assumed that that the local crack growth rate in a direction perpendic
ular to any point on the crack front is described by a crack growth law in 
the form da/dN = f(ΔKeff). The effective stress intensity factor at the 
same point is ΔKeff = U*ΔK, where ΔK = ΔKI(…,ξ) is the local SIF range 
and U is the effective stress intensity factor ratio. The latter parameter 
may be used for representing e.g. crack closure and/or stress ratio ef
fects. For the sake of simplicity, two points on the crack front can be 
considered, located at the center of the crack (ξ = 0) and near the crack 
front edge (ξ = 0.9). If the crack depth a is incremented by a small 
distance Δa, it follows that the local crack increment distance Δu at the 
crack front edge position can be approximated as: 

Δu = Δa
da/dN(ξ = 0.9)
da/dN(ξ = 0)

(2) 

Using this method, a numerical crack growth calculation can be 
performed by incrementally propagating the crack front in small steps of 
Δa while updating the crack shape parameter α. At the start of each 
crack growth increment, the semi-elliptical crack front is represented by 
a set of discrete points. While fatigue crack growth calculations in the 
present work have been performed using two points, any number of 
points can be used as long as it is no less than two. For each individual 
point, Δu is determined, and its corresponding coordinates on the 
updated crack front calculated by extending a vector of length Δu in a 
direction perpendicular to the initial crack front. In the special case of a 
point located at the center of the crack front (ξ = 0), Δu is equal to Δa. At 
the end of the increment, the shape parameter α of the updated crack 
front is determined by fitting an ellipse to the new coordinates. If the 
crack front is represented by more than two points, a least squares ellipse 
fitting procedure can be used for this purpose. The number of accumu
lated fatigue cycles N can finally be determined by integration of the 
fatigue crack growth law. 

From Eq. (2) it can be seen that the crack shape development pre
dicted by this model depends on the crack growth law as well as the 

Fig. 3. Elementary mode I stress distributions.  

Fig. 4. Incremental crack shape updating method for fatigue crack growth 
simulations. 

M. Aursand and B.H. Skallerud                                                                                                                                                                                                             



Theoretical and Applied Fracture Mechanics 112 (2021) 102904

4

variation in ΔKeff over the crack front. A SIF solution suitable for 
calculating local ΔK on all intermediate crack front shapes encountered 
during the crack growth calculation is accordingly needed. 

2.2. SIF calculations 

Mode I stress intensity factors (SIFs) are in this work evaluated for a 
variety of almond- and sickle shaped semi-elliptical cracks in curved 
round bars. As is detailed in Section 2.1, crack geometry is defined by 
parameters α and β, bar curvature is defined by γ, while the stress dis
tribution is defined by Eq. (1). Using the principle of superposition, the 
local SIF at crack front position ξ can then be expressed as: 

KI =
∑6

i=0
Fi(α, β, γ, ξ)σi

̅̅̅̅̅
πa

√
(3) 

The functions Fi(α,β,γ,ξ) are dimensionless geometry correction fac
tors associated with the corresponding reference stresses σi in the stress 
distribution. Semi-analytical approximate solutions are in the present 
work developed for these functions using sets of finite element analysis 
(FEA) results. 

Geometry correction factors Fi for each component of the stress 
distribution are first numerically calculated using FEA of semi-elliptical 
crack models. Parameter ranges for the FEA models are summarized in 
Table 1. These geometries include 15 different crack shape parameters 
α, 9 different crack depths β, and 7 different bar curvatures γ. In the 
special case of β > 0.40, the most extreme of the sickle-shaped crack 
geometries (α = -1.5) are excluded. The length of the bar is equal to 3D 
for all geometries. In total, 938 different geometries are considered for 
each of the 7 elementary stress distributions. Each geometry is meshed 
using 20-node hexahedral elements, using collapsed-node elements with 
mid-side nodes moved to quarter-point positions around the crack front 
(Fig. 5). Since the model has two symmetry planes, only a quarter of the 
bar is included in the FEA mesh. Material properties are modelled as 
isotropic and linear elastic with Poisson’s ratio ν = 0.3. Loading is 

Table 1 
Parameters for FEA model. The lower limit for α is − 1.2 for β > 0.40, and − 1.5 
otherwise.   

Symbol Lower limit Upper limit 

Crack shape parameter α − 1.5 (− 1.2)  1.5 
Relative crack depth β 0.03  0.50 
Bar curvature parameter γ − 1.2  1.2 
Relative crack front position ξ 0.00  0.82  

Fig. 5. FEA mesh examples. Images show quarter-bar models for (a) almond shaped crack with bar curvature γ > 0, (b) sickle shaped crack with bar curvature γ < 0, 
and (c) detail of crack front mesh. 

Fig. 6. FEA results in the form of calculated geometry correction factors for selected crack geometries under tension loading, showing (a) mesh refinement study and 
(b) an investigation into the effect of bar length. 
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accomplished by applying a crack-face pressure boundary condition 
corresponding to the desired stress distribution. For each crack geome
try, Fi values are extracted from 10 equally spaced points on the crack 
front. Analyses were performed using the commercial software Abaqus 
2017, with conversion from J-integral values to geometry correction 
factors Fi performed under the assumption of plane strain conditions. An 
overview of all FEA results is provided in the accompanying dataset 
[18]. Semi-analytical solutions for Fi(α,β,γ,ξ) are finally developed by 
least-squares fitting of polynomial expressions to the FEA results. 

The finite element meshing strategy and choice of bar length used in 
the present FEA models can be supported by the data presented in Fig. 6. 
Results from a mesh refinement study performed on one of the crack 
geometries are presented in Fig. 6a. The final meshing strategy can be 
seen to use significantly smaller element sizes than what appears to be 
required for convergence. This additional refinement is in part intended 
to aid the meshing software in readily producing acceptable meshes for 
the full range of different crack geometries. Results from an investiga
tion into the effect of bar length on FEA results are furthermore pre
sented Fig. 6b. While the magnitude of this effect is considerable for 
relatively short bars, it appears to diminish rapidly when extending the 

bar length beyond approximately 2D. It can also be noted that since the 
final bar length is equal to 3D, none of the bar curvature parameters 
considered in this work result in self-intersecting model geometries. 

For a surface breaking crack in a round bar, it is well known that the 
linear elastic stress singularity associated with the crack front can 
deviate from the classical square root relationship when approaching 
the free surface [19–21]. This implies that the conventional SIF defini
tion may be considered unsuitable inside a near-surface boundary layer. 
In order to lessen the effect of the near-surface boundary layer on the 
semi-analytical solutions, FEA results from crack front positions char
acterized by ξ > 0.82 are therefore disregarded. The choice of ξ = 0.82 as 
a cutoff point was the result of a pragmatic trial and error process aimed 
at ensuring that the variation in FEA results over any of the considered 
crack fronts could be reasonably approximated using cubic polynomial 
functions. It can be noted that this cutoff position is comparable to what 
has been used in some earlier studies by Shin and Cai [12] as well as 
Rubio et al. [16], in which FEA results from crack front positions up to ξ 
≈ 0.83 were used when developing polynomial solutions. For positions 
characterized by ξ > 0.82, the polynomial expressions presented in this 
work will accordingly yield extrapolated values. 

Fig. 7. Geometry correction factors at center of almond shaped semi-circular crack front in straight bar, for (a) tension and (b) bending load.  

Fig. 8. Geometry correction factor variation over almond shaped crack fronts in tension loaded straight bar.  
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The total number of discrete Fi(α,β,γ,ξ) values from FEA used in 
fitting each semi-analytical polynomial function Fi is 8120. Since a va
riety of higher-order polynomials were considered for these functions, 
the final polynomial expressions were chosen by weighing the sizes of 
the candidate polynomials against prediction errors estimated using 
leave-one-out and k-fold cross validation techniques. 

3. Results and discussion 

3.1. SIF solution 

The semi-analytical solutions for the dimensionless geometry 
correction factors Fi were chosen to be polynomial expressions of the 
following form: 

Fi(α, β, γ, ξ) =
∑9

q=0

∑4

r=0

∑2

s=0

∑3

t = 0
t ∕= 1

Ci,qrstαqβrγsξt (4) 

Each individual function Fi = F0,…,F6 corresponds to the stress 
component with reference stress σi in the stress distribution, i.e. Eq. (1), 
and contains 450 non-zero coefficients Ci,qrst. Any 00 terms in the ex
pressions must be evaluated to 1. When only evaluating at the two points 
ξ = 0.0 and ξ = 0.9, the following simplified expressions can be used: 

Fi(α, β, γ, ξ = 0.0) =
∑9

q=0

∑4

r=0

∑2

s=0
Ai,qrsαqβrγs (5)  

Fi(α, β, γ, ξ = 0.9) =
∑9

q=0

∑4

r=0

∑2

s=0
Bi,qrsαqβrγs (6) 

Best-fit coefficients Ai,qrs, Bi,qrs and Ci,qrst are provided in an accom
panying dataset [18]. See also Appendix A. The polynomial fits all have 
a coefficient of determination R2 of 0.9999 or higher, while their relative 
errors compared to the FEA results are no higher than 3.2%. 

In the special case of a straight bar under tension- or bending load, 
the polynomial stress intensity factor (SIF) solution defined by Eq. (3) 
and Eq. (4) can readily be compared to results published by other 

Fig. 9. Geometry correction factors at center of a sickle shaped semi-circular crack front in a straight bar, for (a) tension and (b) bending load.  

Fig. 10. Geometry correction factor variation over sickle shaped crack fronts in straight bars under bending load.  
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authors. Fig. 7 shows geometry correction factors at the ξ = 0 crack front 
center position on an almond shaped semi-circular crack. Comparisons 
are made against FEA results reported by Astiz [8], Couroneau and 
Royer [10], as well as Shin and Cai [12]. FEA results from the present 
work are also included. The variation in F0 over the crack fronts of 
selected almond shaped cracks is furthermore shown in Fig. 8. Note that, 
since the discrete crack geometries considered in FEA differ among the 
different studies, FEA results from the present work are not available for 
all selected cracks. Also note that the FEA results from ξ > 0.82 were 
disregarded when fitting the polynomial solutions. Some smaller de
viations from the results reported by Shin and Cai can be found when 
approaching the bar surface at ξ = 1.0. The single largest difference 
corresponds to a 9% increase in F0 compared to the literature data. 
Overall, the present SIF solution does however agree reasonably with 
the literature data. 

For sickle shaped cracks of various shapes, Fig. 9 shows geometry 
correction factors F0 and F1 at the ξ = 0 crack front position, while 
Fig. 10 shows variation in F1 over the crack fronts. Comparisons have 

been made against FEA results from Carpinteri and Vantadori [15], as 
well as Rubio et al. [16]. Deviations from the results reported by Rubio 
et al. can be seen for the large semi-circular sickle shaped crack (α =
− 1.0, β = 0.4), where the present polynomial solution appears to yield 
noticeably higher values. Reasonable agreement between the present 
SIF solution and literature data does however appear to exist for the 
remaining geometries. 

Another special case that can be useful for verification purposes is 
that of a semi-elliptical crack in a round bar when the relative crack 
depth β approaches zero. A given almond shaped surface crack (α > 0) in 
a round bar can in this case be considered to have nearly identical ge
ometry to that of the same crack located in a semi-infinite plate. The 
variation in F0 over the crack fronts of selected cracks characterized by β 
≈ 0 is shown in Fig. 11. Comparisons are made against the closed form 
solution for surface cracks in plates published by Newman and Raju 
[22], as well as the more recent solution by Strobl et al. [23]. An 
assumption of ν = 0.3 is made when implementing the latter solution. 
Some disagreement between the solutions can be identified in the near- 

Fig. 11. Variation in geometry correction factor over the crack front when relative crack depth approaches zero. Showing (a, b) two different crack shapes α.  

Fig. 12. Effect of bar curvature on SIF at (a) center of selected straight-fronted cracks under uniform tensile stress and (b) mean effect over the full range of 
considered geometries and crack front positions under linear bending stress. 
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surface boundary layer. Since the present polynomial solution uses 
extrapolation in this region (ξ > 0.82), this is however as expected. The 
present SIF solution can otherwise be seen to be consistent with the 
literature solutions for this semi-infinite geometry. 

The curvature of the round bar component is found to have a 
discernable effect on calculated SIFs. Fig. 12 shows the effect of bar 
curvature on SIFs associated with different straight-fronted cracks. 
Values shown in Fig. 12a are geometry correction factors F0 for the ξ =
0 crack front position, normalized by the corresponding values for the 
same crack in a straight bar (γ = 0). The polynomial SIF solution is 
shown as full lines while FEA results are indicated by markers. A non- 
trivial relationship between bar curvature and SIF can be observed. 
For smaller relative crack depths β = a/D, the SIFs tend to increase with 
increasing curvature parameter γ. As the crack becomes deeper how
ever, an opposite trend appears. 

Fig. 12b shows a mean effect plot obtained by considering all ge
ometries and crack front positions within the parameter limits defined in 
Table 1, including min/max bounds. Although this diagram only shows 
results for bending stress, the magnitude of the bar curvature effect was 
found to be approximately the same for all seven elementary stress 
distributions. Across all stress distributions and geometries considered, 
the single largest error that can be introduced by disregarding bar cur
vature effects is found when the relative bar curvature corresponds to γ 
= − 1.2. The calculated SIF at the center of a flat-fronted crack (α = 0, ξ 
= 0) with relative depth β = 0.1 is in this case 8% lower than for the 
same crack in a straight bar. 

3.2. Fatigue crack growth in a straight bar 

For validation of the semi-analytical SIF solutions when used with 
the numerical fatigue crack growth model from Section 2.1, predicted 
crack shape development is compared against a set of experimental 
measurements. A straight bar of diameter D = 12 mm containing various 
flat-fronted cracks is considered. Initial crack depths a are 1, 2 and 3 
mm. Comparisons are made against crack shape measurements adapted 
from Yang et al. [24], where fatigue loading of steel bars with this ge
ometry had been performed at a stress ratio of σmin/σmax = 0.1. 

Numerical calculations have been performed with the crack front 
represented by two nodes located at the crack front center (ξ = 0) and 
near the crack front edge (ξ = 0.9), respectively. Crack depth incre
mentation has been performed in steps of Δa = D/2000 while assuming 
a Paris-Erdogan crack growth law on the form da/dN = 1e-8(ΔKeff)3 

mm/cycle. Since it has been shown by several authors [25–27] that 
plasticity induced crack closure tends to become more pronounced near 

free surfaces, a possible variation in the effective stress intensity factor 
ratio U = ΔKeff/ΔK over the crack front is considered. If U = Ucenter at the 
center of the crack and U = Uedge at the free surface, the effect on crack 
shape development is determined by the crack closure factor ratio Uedge/ 
Ucenter. A ratio of Uedge/Ucenter = 1.0 implies that crack closure has no 
effect on crack shape development. Newman and Raju [28] suggested to 
use Uedge/Ucenter = 0.9 + 0.2*(σmin/σmax)2 + 0.1*(σmin/σmax)4 for positive 
stress ratios, which in the case of σmin/σmax = 0.1 evaluates to a ratio of 
about 0.902. Measurements performed by Song and Shieh [29] on a 
surface crack in steel under constant amplitude fatigue loading at a 
stress ratio of σmin/σmax = 0.1 similarly suggested an average Uedge/Ucenter 
ratio of approximately 0.92. Crack growth calculations are therefore 
performed assuming Uedge/Ucenter ratios of 1.0 and 0.9, with Ucenter 
applied to the crack front node at ξ = 0 and Uedge applied to the node at ξ 
= 0.9. 

Results from the numerical crack growth calculations are shown in 
Fig. 13. When crack closure effects are disregarded (Uedge/Ucenter = 1.0), 
the cracks are predicted to develop a somewhat more flat-fronted shape 
than experimentally observed. This suggests some overestimation of the 
effective crack driving force near free surfaces relative to the interior 
regions of the crack. Good agreement with the experimental data is 
however achieved when correcting for plasticity induced crack closure 
effects by assuming Uedge/Ucenter = 0.9. 

3.3. Implications for cracks in offshore mooring chain links 

In order to comment on the practical usefulness of the present model, 
an offshore mooring chain link with bar diameter D = 114 mm is 
considered as a practical case example. A comparison has been per
formed between the full model and a simplified case, in which bar 
curvature is disregarded and the stress distribution is approximated as a 
linear combination of tension and bending stress. A semi-circular crack 
(α = 1.0) is located at the crown of the chain link, i.e. in the plane 
labelled as location 1 in Fig. 1. Relative bar curvature in this region 
corresponds to γ = 0.85. The chain link is assumed to have been sub
jected to an initial proof loading during manufacture, before any crack 
has been introduced. As is specified by DNVGL-OS-E302 [30] for a grade 
R4 chain of this geometry, the proof loading is performed by applying a 
tensile load P = Pproof = 8703 kN to the chain, corresponding to 70% of 
its minimum specified breaking load. This process results in localized 
plastic deformation, and after unloading, introduces compressive re
sidual stresses in the crack location of interest. 

The proof loaded chain is then assumed to experience a cyclic fatigue 
load ranging between Pmax = 3105 kN and Pmin = 1863 kN, 

Fig. 13. Crack shape development calculated for initially flat-fronted fatigue cracks under cyclic tension loading, showing results for three different initial 
crack depths. 
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corresponding to 25% and 15% of its minimum breaking load. A stress 
analysis of the uncracked chain link geometry subjected to these loading 
conditions is performed using elastic–plastic finite element analysis 
(FEA). Boundary conditions and material model are taken as identical to 
that used by Zarandi and Skallerud [31]. Least-squares fitting to FEA 
results is then used to approximate the resulting stress distributions in 
the crack plane between the crack origin (y = 0) and half-thickness 
position (y = D/2) as polynomial functions. Two stress approximations 
have been considered; a simplified linear stress distribution and the 
more comprehensive 7-term polynomial represented by Eq. (1). Values 
for the resulting best-fit stress distributions used in this example are 
provided in Table 2. Due to the residual stresses, the situation near the 
crack origin can be characterized as being in compression at Pmin and 
transitioning to tension at Pmax. 

Stress intensity factors Kmin and Kmax calculated for the two load 
levels Pmin and Pmax are shown in Fig. 14. The curves labelled “Model” 
represent results calculated when taking bar curvature into account and 
using the 7-term polynomial stress approximation. The curves labelled 
“Simplified” represent results calculated when assuming that the bar is 

straight, and the linear stress approximation is used. Resulting effective 
stress intensity factor ranges ΔKeff are also included, as well as plots 
highlighting relative differences. Subplots a-c show results from the 
center of the crack (ξ = 0) while d-f show results from the near-edge 
position (ξ = 0.9). Note that, since stresses near the crack origin are 
compressive at Pmin, the resulting Kmin also assume negative values in 
this region. Negative SIF values are in general not physically meaning
ful, implying that ΔK by itself in this case might be inadequate for 
representing crack driving force. In addition to ΔKeff = ΔK, curves 
representing the simple assumption of ΔKeff = Kmax whenever Kmin <=

0 has therefore been included as well. 
From the results shown in Fig. 14, it is evident that curvature and 

choice of polynomial stress field representation in this example case end 
up having no significant effects on calculated ΔK. Considering Kmax on 
the other hand, which is influenced by residual stresses, the 7-term 
polynomial stress approximation can be seen to potentially provide a 
far more accurate SIF representation than the linearized stress repre
sentation. At a relative crack depth β = 0.1, the differences in calculated 
ΔK values are less than 2%, while Kmax values differ by about 34% at the 

Table 2 
Best-fit stress distributions representing normal stresses to crack plane in chain link with residual stresses.  

Stress distribution Load level σ0 [MPa] σ1 [MPa] σ2 [MPa] σ3 [MPa] σ4 [MPa] σ5 [MPa] σ6 [MPa] 

Linear Pmax  386.2 − 350.5 0 0 0 0 0 
Pmin  316.7 − 511.3 0 0 0 0 0 

7-term Pmax  655.0 − 120.0 54.1 − 193.6 69.3 − 113.2 − 256.1 
Pmin  570.9 − 273.9 63.5 − 218.9 102.2 − 97.7 − 273.0  

Fig. 14. Effects of bar curvature and choice of polynomial stress definition on SIFs for an example crack in the chain link model. The full model is compared with a 
simplified case that assumes straight bar and linearized stress field. Results are shown for (a-c) the ξ = 0 crack front position and for (d-f) the ξ = 0.9 position. 
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center of the crack (Fig. 14c) and by about 67% at the near-edge position 
(Fig. 14f). Thus, if the simple assumption of ΔKeff = ΔK is made, there 
does not appear to be any practical advantages to using the more 
comprehensive model. For alternative ΔKeff definitions that consider the 
SIF magnitude on the other hand, such as the assumption of ΔKeff = Kmax 
whenever Kmin <= 0, the 7-term polynomial stress representation ap
pears to be capable of providing substantially more accurate represen
tations of the ΔKeff variation over the crack front. 

4. Conclusion 

Mode I stress intensity factors (SIFs) for semi-elliptical cracks in 
curved round bars have been evaluated using finite element analysis. 
Closed-form semi-analytical solutions for approximation of the SIF at 
any point on an almond- or sickle shaped crack front have furthermore 
been developed for several elementary mode I stress distributions. The 
given solutions are intended for use in fatigue crack growth analysis 
problems involving curved bar geometries, such as chain links. 

Conclusions that have been drawn from the present work are as follows:  

• Numerical crack growth calculations based on the closed-form SIF 
solutions predict crack shape development curves that compare 
reasonably well with empirical observations for cracks in straight 
bars. Some overestimation of the effective crack driving force near 
free surfaces does however become apparent when crack closure 
effects are disregarded.  

• Bar curvature by itself has a comparably minor effect on SIFs. 
Relative to an otherwise identical crack in a straight bar, SIFs for 
cracks in the curved bar geometries considered by this study are 
found to differ by up to 8%. The exact relationship between bar 
curvature and its effect on SIFs appears to be non-trivial and crack 
geometry dependent.  

• In the industrially relevant case of proof loaded chain links, the cubic 
polynomial stress approximation σz = σz(x, y) used in the present SIF 
solutions is found to be useful when the effect of residual stresses on 
SIF magnitudes (Kmax) over the crack front is of interest. While a 

Table A1 
Polynomial coefficients for pure tensile stress.    

A0,qrs (ξ = 0) B0,qrs (ξ = 0.9) 

q r s = 0 s = 1 s = 2 s = 0 s = 1 s = 2 

0 0  1.0986  0.0085 − 0.0105  0.5841 − 0.0043 − 0.0011 
0 1  − 1.3039  0.8380 − 0.1986  0.9256 0.2647 − 0.0476 
0 2  11.1412  − 5.0147 2.0243  3.6551 − 1.9986 0.5865 
0 3  − 20.0905  10.2996 − 5.2847  − 7.9855 3.8137 − 1.6279 
0 4  29.5980  − 8.5500 4.1484  21.6522 − 2.8994 1.0539 
1 0  − 0.1344  − 0.0112 0.0053  0.3315 0.0014 − 0.0162 
1 1  0.9933  0.1036 − 0.0887  − 4.4648 0.4510 0.1208 
1 2  − 5.6901  − 0.2993 0.4658  23.5223 − 3.4859 − 0.2074 
1 3  13.0322  0.5697 − 1.1220  − 51.9053 8.9003 − 0.1619 
1 4  − 13.5603  − 0.3873 1.0891  40.1995 − 7.6296 0.4136 
2 0  − 0.4859  − 0.0229 0.0202  0.3799 0.0171 0.0071 
2 1  1.9626  − 0.2629 − 0.1516  − 2.0933 0.6957 − 0.7118 
2 2  − 4.4536  3.3055 − 0.1853  − 1.7497 − 2.1921 5.3879 
2 3  − 6.5530  − 8.5433 2.3889  30.1609 − 2.3817 − 13.6096 
2 4  23.3589  6.3626 − 3.1872  − 40.1889 7.6412 11.1595 
3 0  − 0.4468  0.0225 0.0060  − 0.8627 0.0170 0.0722 
3 1  0.9717  − 1.4363 0.2307  17.1280 − 0.6983 − 1.5070 
3 2  − 17.7617  9.9631 − 2.5129  − 106.3898 12.4853 6.5683 
3 3  52.2199  –22.2907 6.7266  249.9532 − 40.1780 − 7.5695 
3 4  − 77.9473  18.9124 − 4.9500  − 194.9282 33.6757 0.6660 
4 0  0.4857  0.0387 − 0.0288  − 0.6516 − 0.0220 − 0.0241 
4 1  − 2.2050  − 0.1614 0.3623  0.8537 − 1.6472 1.6577 
4 2  2.0054  − 1.7473 − 0.5768  21.3136 7.1079 − 13.1726 
4 3  21.0262  5.4897 − 2.2345  − 111.0221 − 0.3989 33.9083 
4 4  − 36.9194  − 3.0985 4.1940  113.9855 − 11.0925 − 27.1931 
5 0  0.6377  − 0.0353 − 0.0133  1.0647 − 0.0585 − 0.0928 
5 1  − 3.3013  1.8868 − 0.0526  –23.7312 1.0213 2.1914 
5 2  33.9234  − 14.1639 1.3228  152.0523 − 16.8681 − 9.7791 
5 3  − 102.1877  34.5597 − 3.4321  − 375.1932 55.7707 10.6072 
5 4  121.0991  − 30.1393 1.7351  315.8876 − 48.9200 0.2297 
6 0  − 0.2463  − 0.0248 0.0161  0.3458 0.0124 0.0204 
6 1  1.0595  0.2498 − 0.2151  1.4294 1.0835 − 1.1745 
6 2  2.7906  − 0.1520 0.3469  − 28.1455 − 4.9691 9.3112 
6 3  –23.6541  − 0.4644 1.4646  112.9459 1.3377 − 24.1249 
6 4  32.2297  − 0.2567 − 2.8113  − 113.3222 6.3405 19.4930 
7 0  − 0.3616  0.0237 0.0090  − 0.5431 0.0484 0.0475 
7 1  2.4715  − 1.0475 − 0.0782  12.6530 − 0.6915 − 1.1933 
7 2  –23.8749  8.2532 0.1826  − 82.1191 9.4749 5.3901 
7 3  72.6943  − 21.2215 − 0.6401  208.9585 − 31.4449 − 5.5097 
7 4  − 79.3487  18.7429 1.2966  − 185.5462 28.7287 − 0.8096 
8 0  0.0451  0.0051 − 0.0030  − 0.0492 − 0.0026 − 0.0049 
8 1  − 0.1164  − 0.0690 0.0394  − 0.7192 − 0.2221 0.2584 
8 2  − 1.5954  0.1768 − 0.0427  8.8493 1.0470 − 2.0392 
8 3  7.9354  − 0.1930 − 0.4023  –32.1348 − 0.3659 5.3195 
8 4  − 9.8045  0.1749 0.7187  32.2526 − 1.2667 − 4.3512 
9 0  0.0713  − 0.0051 − 0.0020  0.0891 − 0.0115 − 0.0085 
9 1  − 0.5955  0.2053 0.0305  − 2.2215 0.1527 0.2217 
9 2  5.6396  − 1.6540 − 0.1689  14.5486 − 1.8416 − 1.0074 
9 3  − 17.3276  4.3424 0.5134  − 37.6583 6.1042 0.9608 
9 4  18.4080  − 3.8203 − 0.6229  34.5431 − 5.7235 0.2898  
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simpler linear stress approximation can be adequate for approxi
mating the SIF range (ΔK) under nominally elastic cyclic loading, the 
cubic polynomial approximation is found to provide a far better fit to 
the calculated residual stress distribution. 
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Appendix A 

In the case of tension- or bending load, polynomial coefficients Ai,qrs 
and Bi,qrs for Eq. (5) and Eq. (6) are provided in Table A1 and Table A2, 
respectively. The complete set of coefficients, including Ci,qrst for Eq. (4), 
are provided in a separate dataset [18]. 
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